
SEKE 2013

Proceedings of the Twenty-Fifth
International Conference on
Software Engineering &
Knowledge Engineering

Boston
June 27-29, 2013

i

PROCEEDINGS

SEKE 2013
The 25th International Conference on

Software Engineering &
Knowledge Engineering

Sponsored by
Knowledge Systems Institute Graduate School, USA

Technical Program
June 27 - 29, 2013

Hyatt Harborside at Logan Int’l Airport, Boston, USA

Organized by
Knowledge Systems Institute Graduate School

ii

Copyright © 2013 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN-10: 1-891706-33-0 (paper)
ISBN-13: 978-1-891706-33-2

ISSN: 2325-9000 (print)

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:offi ce@ksi.edu
http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

iii

Foreword
This year marks the 25th anniversary for the International Conference on Software Engineering and Knowledge
Engineering (SEKE). For a quarter of century, SEKE has established itself as a major international forum to foster,
among academia, industry, and government agencies, discussion and exchange of ideas, research results and
experience in software engineering and knowledge engineering. The SEKE community has grown to become a very
important and infl uential source of ideas and innovations covering the interplay between software engineering and
knowledge engineering, and its impact on the knowledge economy has been felt worldwide. On behalf of the Program
Committee Co-Chairs and the entire Program Committee, I would like to extend to you the warmest welcome to
SEKE 2013.

We received 259 submissions from 40 countries this year, marking an increase of approximately 15 percent in the
number of papers, and 33 percent in the number of countries.. Through a rigorous review process where a majority
(88 percent) of the submitted papers received three reviews, and the rest with two reviews, we were able to select 72
full papers for the general conference (27 percent), 5 full papers for four special tracks (2 percent), and 78 short papers
(30 percent), for presentation in forty one sessions during the conference. In addition, the technical program includes
excellent keynote speech and panel discussions, and four special tracks: Mining Social Network Data for Industrial
Applications, Petri Nets for Emerging Technologies, Knowledge Management in Software Engineering and Slow
Intelligence Systems.

The high quality of the SEKE 2013 technical program would not have been possible without the tireless effort
and hard work of many individuals. First of all, I would like to express my sincere appreciation to all the authors
whose technical contributions have made the fi nal technical program possible. I am very grateful to all the Program
Committee members whose expertise and dedication made my responsibility that much easier. My gratitude also goes
to the keynote speakers who graciously agreed to share their insight on important research issues, to the conference
organizing committee members for their superb work, and to the external reviewers for their contribution.

Personally, I owe a debt of gratitude to a number of people whose help and support with the technical program and
the conference organization are unfailing and indispensable. I am deeply indebted to Dr. S. K. Chang, Chair of the
Steering Committee, for his constant guidance and support that was essential to pull off SEKE 2013. My heartfelt
appreciation goes to Dr. Du Zhang, the Conference Chair, for his help and experience, and to the Program Committee
Co-Chairs, Dr. Marek Reformat of the University of Alberta, Canada, and Dr. Haiping Xu of the University of
Massachusetts, Dartmouth, USA for their outstanding team work. I am truly grateful to the special track organizers,
Dr. Aldo Dagnino of ABB, USA, Dr. Swapna Gokhale of the University of Connecticut, USA, Dr. Dianxiang Xu of
the Dakota State University, USA , Dr. Sivan Rapaport of the Columbia Business School, USA, Dr. Meira Levy of
the Shenkar College of Engineering and Design, Israel, Dr. Shi-Kuo Chang of the University of Pittsburgh, USA,
and Dr. Irit Hadar of the University of Haifa, Israel, for their excellent job in organizing the special sessions. I would
like to express my great appreciation to the Publicity Chair Dr. Xiaoying Bai of Tsinghua University, China; to Asia,
Europe, and South America liaisons Dr. Raul Garcia Castro of Universidad Politecnica de Madrid, Spain, Dr. Hironori
Washizaki, Waseda University, Japan, and Jose Carlos Maldonado, ICMC-USP, Brazil and to the Poster/Demo session
Co-Chairs, Dr. Farshad Samimi of Trilliant, USA and Dr. Ming Zhao of Florida International University, USA. Last
but certainly not the least, I feel compelled to acknowledge all the timely help that I have always received from the
following KSI staff members: David Huang, Alice Wang, and Dennis Chi. Their enthusiastic and round-the-clock
support and assistance throughout the entire process has been truly remarkable. It has been a great pleasure to work
with all of them.

Finally, I hope you will fi nd your participation in the SEKE 2013 programs rewarding. Enjoy your stay in the Bay
State and Beantown.

Swapna S. Gokhale
SEKE 2013 Program Chair

iv

The 25th International Conference on
Software Engineering & Knowledge Engineering

(SEKE 2013)

June 27 - 29, 2013
Hyatt Harborside at Logan Int’l Airport, Boston, USA

Conference Organization

 Steering Committee Chair
Shi-Kuo Chang, University of Pittsburgh, USA

Steering Committee
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

Advisory Committee

Jerry Gao, San Jose State University, USA
Natalia Juristo, Madrid Technological University, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada
S. Masoud Sadjadi, Florida International University, USA

Conference Chair
Du Zhang, California State University, Sacramento, USA

Program Chair

Swapna Gokhale, University of Connecticut, USA

v

Program Co-Chairs
Marek Reformat, University of Alberta, Canada

Haiping Xu, University of Massachusetts Dartmouth, USA

 Program Committee
Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain

Taiseera Albalushi, Sultan Qaboos University, Oman

Edward Allen, Mississippi State University, USA

Omar El Ariss, Penn State Univ at Harrisburg, USA

Doo-hwan Bae, Korea Advanced Institute of Science and Technology, Korea

Ebrahim Bagheri, National Research Council Canada, Canada

Hamid Bagheri, University of Virginia, USA

Rami Bahsoon, University of Birmingham, United Kingdom

Xiaoying Bai, Tsinghua University, China

Purushotham Bangalore, University of Alabama at Birmingham, USA

Fevzi Belli, Univ. Paderborn, Germany

Ateet Bhalla, Oriental Institute of Science & Technology, Bhopal, India.

Swapan Bhattacharya, Jadavpur University, India

Alessandro Bianchi, Department of Informatics - University of Bari, Italy

Borzoo Bonakdarpour, University of Waterloo, Canada

Ivo Bukovsky, Czech Technical University in Prague, Czech Republic

Gerardo Canfora, Universita del Sannio, Italy

Jaelson Castro, Universidade Federal de Pernambuco - UFPE, Brazil

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

Peggy Cellier, IRISA/INSA of Rennes, France

Keith Chan, The Hong Kong Polytechnic University, Hong Kong

Kuang-nan Chang, Eastern Kentucky University, USA

Ned Chapin, InfoSci Inc., USA

Shu-Ching Chen, Florida International University, USA

Wen-Hui Chen, National Taipei University of Technology, Taiwan

Zhenyu Chen, Nanjing University, China

Stelvio Cimato, The University of Milan, Italy

Peter Clarke, Florida International University, USA

vi

Esteban Clua, Universidade Federal Fluminense, Brasil

Nelly Condori-fernandez, University of Twente, The Netherlands

Fabio M. Costa, Instituto de Informatica, Brasil

Maria Francesca Costabile, University of Bari, Italy

Jose Luis Cuadrado, University of Alcala, Spain

Juan J. Cuadrado-gallego, University of Alcala, Spain

Aldo Dagnino, ABB, USA

Jose Luis De La Vara, Simula Research Laboratory, Norway

Massimiliano Di Penta, University of Sannio, Italy

Scott Dick, University of Alberta, Canada

Junhua Ding, East Carolina University, USA

Jing Dong, University of Texas at Dallas, USA

Weichang Du, University of New Brunswick, Canada

Philippe Dugerdil, HEG - Univ. of Applied Sciences, Switzerland

Christof Ebert, Vector Consulting Services, Germany

Ali Ebnenasir, Michigan Technological University, USA

Raimund Ege, NIU, USA

Magdalini Eirinaki, Computer Engineering Dept, San Jose State University, USA

Davide Falessi, University of Rome, TorVergata, Italy

Behrouz Far, University of Calgary, Canada

Scott D. Fleming, Oregon State University, USA

Liana Fong, IBM, USA

Renata Fortes, Instituto de Ciencias Matematicas e de Computacao - USP, Brazil

Ellen Francine Barbosa, University of Sao Paulo, Brazil

Fulvio Frati, The University of Milan, Italy

Jerry Gao, San Jose State University, USA

Felix Garcia, University of Castilla-La Mancha, Spain

Ignacio Garcia Rodriguez De Guzman, University of Castilla-La Mancha, Spain

Itana Gimenes, Universidade Estadual de Maringa, Brazil

Swapna Gokhale, Univ. of Connecticut, USA

Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Desmond Greer, Queen’s University Belfast, United Kingdom

Eric Gregoire, Universite d’Artois, France

Christiane Gresse Von Wangenheim, UFSC - Federal University of Santa Catarina, Brazil

Katarina Grolinger, University of Western Ontario, Canada

vii

Hao Han, National Institute of Informatics, Japan

Xudong He, Florida International University, USA

Miguel Herranz, University of Alcala, Spain

Clinton Jeffery, University of Idaho, USA

Jason Jung, Yeungnam University, South Korea

Natalia Juristo, Universidad Politecnica de Madrid, Spain

Selim Kalayci, Florida International University, USA

Eric Kasten, Michigan State University, USA

Taghi Khoshgoftaar, Florida Atlantic University, USA

Jun Kong, North Dakota State University, USA

Nicholas Kraft, The University of Alabama, USA

Aneesh Krishna, Curtin University of Technology, Australia

Vinay Kulkarni, Tata Consultancy Services, India

Gihwon Kwon, Kyonggi University, South Korea

Jeff Lei, University of Texas at Arlington, USA

Bixin Li, School of Computer Science and Engineering, Southeast University, China

Ming Li, Nanjing University, China

Tao Li, Florida International University, USA

Yuan-Fang Li, Monash University, Australia

Zhi Li, Guangxi Normal University, China

Shih-hsi Liu, California State University, Fresno, USA

Xiaodong Liu, Edinburgh Napier University, United Kingdom

Yi Liu, GCSU, USA

Hakim Lounis, UQAM, Canada

Joan Lu, University of Huddersfi eld, United Kingdom

Marcelo de Almeida Maia, Federal University of Uberlândia, Brazil

Antonio Mana, University of Malaga, Spain

Vijay Mann, IBM, India

Riccardo Martoglia, University of Modena and Reggio Emilia, Italy

Hong Mei, Peking University, China

Hsing Mei, Fu Jen Catholic Unicersity, Taiwan

Ali Mili, NJIT, USA

Alok Mishra, Atilim University, Turkey

Kia Ng, ICSRiM - University of Leeds, United Kingdom

Allen Nikora, Jet Propulsion Laboratory, USA

viii

Amjad Nusayr, University of Houston-Victoria, USA

Edson A. Oliveira Junior, State University of Maringa, Brazil

Erick Passos, IFPI, Brazil

Xin Peng, Fudan University, China

Oscar Pereira, University of Aveiro, Portugal

Antonio Piccinno, University of Bari, Italy

Alfonso Pierantonio, University of L’Aquila, Italy

Daniel Plante, Stetson University, USA

Rick Rabiser, Johannes Kepler University, Austria

Filip Radulovic, Universidad Politécnica de Madrid, Spain

Damith C. Rajapakse, National University of Singapore, Singapore

Rajeev Raje, IUPUI, USA

Jose Angel Ramos, Universidad Politecnica de Madrid, Spain

Henrique Rebelo, Universidade Federal de Pernambuco, Brazil

Marek Reformat, University of Alberta, Canada

Robert Reynolds, Wayne State University, USA

Daniel Rodriguez, Universidad de Alcala, Spain

Ivan Rodero, The State University of New Jersey, USA

Samira Sadaoui, University of Regina, Canada

Masoud Sadjadi, Florida International University, USA

Claudio Sant’Anna, Universidade Federal da Bahia, Brazil

Salvatore Alessandro Sarcia, OnESE FORUM, Italy

Andreas Schoenberger, Distributed and Mobile Systems Group, University of Bamberg, Germany

Tony Shan, Keane Inc, USA

Michael Shin, Computer Science/Texas Tech University, USA

Qinbao Song, Xi’an Jiaotong University, China

George Spanoudakis, City University, United Kingdom

Jing Sun, University of Auckland, New Zealand

Yanchun Sun, Peking University, China

Gerson Sunye, Institut de Recherche en Informatique et Systemes Aleatoires, France

Jeff Tian, Southern Methodist University, USA

Genny Tortora, University of Salerno, Italy

Mark Trakhtenbrot, Holon Institute of Technology, Israel

Peter Troeger, Universitat zu Potsdam, Germany

T.h. Tse, The University of Hong Kong, Hong Kong

ix

Giorgio Valle, The University of Milan, Italy

Sylvain Vauttier, Ecole des mines d’Ales, France

Silvia Vergilio, Federal University of Parana (UFPR), Brazil

Akshat Verma, IBM, India

Sergiy Vilkomir, East Carolina University, USA

Arndt Von Staa, PUC-Rio, Brazil

Gurisimran Walia, North Dakota State University, USA

Huanjing Wang, Western Kentucky University, USA

Jiacun Wang, Monmouth University, USA

Linzhang Wang, Nanjing University, USA

Hironori Washizaki, Waseda University, Japan

Victor Winter, University of Nebraska at Omaha, USA

Guido Wirtz, Distributed Systems Group, Bamberg University, Germany

Eric Wong, University of Texas, USA

Franz Wotawa, TU Graz, Austria

Dianxiang Xu, Dakota State University, USA

Frank Xu, Gannon University, USA

Haiping Xu, University of Massachusetts Dartmouth, USA

Chi-lu Yang, Taiwan Semiconductor Manufacturing Company Ltd., Taiwan

Hongji Yang, De Montfort University, United Kingdom

Jijiang Yang, Tsinghua University, China

Huiqun Yu, East China University of Science and Technology, China

Cui Zhang, California State University Sacramento, USA

Du Zhang, California State University, USA

Hongyu Zhang, Tsinghua University, China

Yong Zhang, TsingHua University in Beijing, China

Zhenyu Zhang, The University of Hong Kong, Hong Kong

Hong Zhu, Oxford Brookes University, United Kingdom

Xingquan Zhu, Florida Atlantic University, USA

Eugenio Zimeo, University of Sannio, Italy

x

Poster/Demo Sessions Co-Chairs

Farshad Samimi, Trilliant, USA
Ming Zhao, Florida Int’l University, USA

Publicity Chairs
Xiaoying Bai, Tsinghua University, China

Asia Liaison
Hironori Washizaki, Waseda University, Japan

Europe Liaison

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

South America Liasion
Jose Carlos Maldonado, University of Sao Paulo, Brazil

Proceedings Cover Design
Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Local Arrangements

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Gabriel Smith, Knowledge Systems Institute Graduate School, USA
Noorjhan Ali, Knowledge Systems Institute Graduate School, USA
Dennis Chi, Knowledge Systems Institute Graduate School, USA

David Huang, Knowledge Systems Institute Graduate School, USA
Alice Wang, Knowledge Systems Institute Graduate School, USA

Farida Begum, Knowledge Systems Institute Graduate School, USA

xi

Table of Contents

Foreword .. iii

Conference Organization ... iv

Keynote I: Surprising discoveries from emotion sensors
Professor Rosalind W. Picard ... xxvii

Keynote II: Environment-Aware Software Engineering
Professor Shi-Kuo Chang .. xxviii

Keynote III: Overcoming Big Data Challenges
Professor Taghi M. Khoshgoftaar ... xxix

Software Security

Runtime Values Driven by Access Control Policies - Statically Enforced at the
Level of Relational Business Tiers
Óscar Mortágua Pereira, Rui L. Aguiar, Maribel Yasmina Santos ... 1

Exploring Architectural Design Decision Management Paradigms for Global Software
Development
Meiru Che, Dewayne E. Perry ... 8

A Semantic-based Semi-automated Role Mapping Mechanism (S)
Lijuan Diao, Wei She, I-Ling Yen, Junzhong Gu .. 14

Process and Workfl ow Management

Detecting Portability Issues in Model-Driven BPEL Mappings (S)
Jörg Lenhard, Guido Wirtz .. 18

Introducing Software Process Specifi cation to Task Context (S)
Ivens da S. Portugal, Toacy C. Oliveira .. 22

xii

A Solution to the State Space Explosion Problem in Declarative Business Process
Modeling (S)
Renata M. de Carvalho, Natalia C. Silva, Cesar A. L. Oliveira, Ricardo M. F. Lima 26

Requirements Engineering

Context Factors: What they are and why they matter for Requirements Problems
Corentin Burnay, Ivan J. Jureta, Stéphane Faulkner ... 30

Detecting traceability links through neural networks
Andre Di Thommazo, Thiago Ribeiro, Guilherme Olivato, Rafael Rovina, Vera Werneck,
Sandra Fabbri .. 36

Generating Ontologies through Organizational Modeling
Karen Najera, Alicia Martinez, Anna Perini, Hugo Estrada ... 42

Using NLP Techniques for Identifying GUI Prototypes and UML Diagrams From Use
Cases
Rafael T. Anchiêta, Rogério F. de Sousa, Raimundo S. Moura .. 48

A fuzzy based approach for requirements prioritization in goal oriented requirements
elicitation process (S)
Mohd Sadiq, S K Jain ... 54

Integrating Functional with Non-functional Requirements Analysis In Object Oriented
Modeling Tool Based on HOOMT (S)
Jinwu Wang, Fan Zhang, Xiaoqing (Frank) Liu, Eric Barnes, Buqing Cao,
Mingdong Tang .. 59

Automated Construction of System Domain Knowledge Using an Ontology-Based
Approach (S)
Mohammad Moshirpour, Armin Eberlein, Behrouz H. Far ... 63

Cloud Computing

Dynamic Adaptation of Cloud Computing Applications
André Almeida, Everton Cavalcante, Thais Batista, Nélio Cacho, Frederico Lopes,
Flavia Delicato, Paulo Pires ... 67

xiii

A Machine Learning Based File Archival Tool (S)
Robert Carreras, Du Zhang, Jinsong Ouyang ... 73

Modeling and Analyzing Attack-Defense Strategy of Resource Service in Cloud
Computing
Huiqun Yu, Guisheng Fan, Liqiong Chen, Dongmei Liu ... 77

Software Engineering Decision Support

Proposal and Validation of a Feasibility Model for Information Mining Projects (S)
Pablo Pytel, Paola Britos, Ramón García-Martínez ... 83

Decision Support for Re-planning of Software Product Releases (S)
S. M. Didar-Al-Alam, Guenther Ruhe, Dietmar Pfahl ... 89

A Non-Intrusive Process to Software Engineering Decision Support focused on increasing
the Quality of Software Development (S)
Everton Gomede, Rodolfo M. Barros ... 95

Social Media

Group Profi ling for Understanding Educational Social Networking
João Gomes, Ricardo Prudêncio, Luciano Meira, Alexandre Azevedo Filho, André Nascimento,
Hilário Oliveira ... 101

Understanding Common Perceptions from Online Social Media
Derek Doran, Swapna S. Gokhale, Aldo Dagnino ... 107

Analyzing Social Behavior of Software Developers Across Different Communication
Channels (S)
Aftab Iqbal, Marcel Karnstedt, Michael Hausenblas .. 113

Effective Crowdsourcing for Software Feature Ideation in Online Co-Creation Forums
Karthikeyan Rajasekharan, Aditya P Mathur, See-Kiong Ng .. 119

xiv

Human Computer Interaction

Profi les for Convenient Front-end Privacy
Ronald Maier, Johannes Sametinger ... 125

A Real-time Personalized Gesture Interaction System Using Wii Remote and Kinect
for Tiled-Display Environment
Yihua Lou, Wenjun Wu ... 131

Releasing the OMCS-Br Knowledgebase to Facilitate Insertion of Culture in Applications:
Brazilian Experience (S)
Andre de O. Bueno, Junia C. Anacleto .. 137

Data and Knowledge Visualization

A Visual Approach to Validate the Selection Review of Primary Studies in Systematic
Reviews: A Replication Study
Katia Romero Felizardo, Ellen Francine Barbosa, José Carlos Maldonado 141

Andon for Dentists (S)
Saulius Astromskis, Andrea Janes, Alberto Sillitti, Giancarlo Succi ... 147

Identifying Extract Method Opportunities Based on Variable References (S)
Mehmet Kaya, James W. Fawcett .. 153

Software Engineering Tools and Environments

Mutation Analysis for JavaScriptWeb Application Testing
Kazuki Nishiura, Yuta Maezawa, Hironori Washizaki, Shinichi Honiden 159

A Knowledge-based Approach for Generating Test Scenarios for Web Applications
Rogene Lacanienta, Shingo Takada, Haruto Tanno, Morihide Oinuma 166

Improving Usability Inspection Technologies for Web Mockups through Empirical Studies
Luis Rivero, Tayana Conte ... 172

Random Visual GUI Testing: Proof of Concept
Emil Alégroth ... 178

xv

Using Change Entries to Collect Software Project Information
Hazeline U. Asuncion, Macneil Shonle, Robert Porter, Karen Potts, Nathan Duncan,
William Joseph Matthies Jr. ... 184

Improving Software Engineers’ Skills through the Simulation of Distributed Software
Development in Academic Environments
Luiz Leandro Fortaleza, Olavo Olimpio Matos Júnior, Tayana Conte,
Sérgio Roberto Costa Vieira, Rafael Prikladnicki ... 190

A Feasibility Study of Follow-the-Sun Software Development for GSD Projects (S)
Josiane Kroll, Rafael Prikladnicki, Jorge L. N. Audy, Erran Carmel, Jude Fernandez 196

Structural Testing and Coverage

Structural Testing of Autonomous Vehicles
Vânia de Oliveira Neves, Márcio Eduardo Delamaro, Paulo Cesar Masiero,
Caio César Teodoro Mendes, Denis Fernando Wolf ... 200

Structural Testing of Exceptions Handling (S)
Luciano Augusto Fernandes Carvalho, Vânia de Oliveira Neves, Paulo Cesar Masiero 206

A Hybrid Coverage Criterion for DynamicWeb Testing (S)
Yunxiao Zou, Chunrong Fang, Zhenyu Chen, Xiaofang Zhang, Zhihong Zhao 210

Software Product Lines

Towards the Effectiveness of a Variability Management Approach at Use Case Leve
Anderson Marcolino, Edson Oliveira Junior, Itana Gimenes, José Maldonado 214

Selecting Agile Practices for Developing Software Product Lines (S)
Diego Spillere de Souza, Patrícia Vilain .. 220

Domain Analysis in Combination with Extreme Programming toAddress Requirements
Volatility Problems (S)
Andrea Janes, Sarunas Marciuska, Alessandro Sarcia, Giancarlo Succi 226

A Mutation Approach to Feature Testing of Software Product Lines
Johnny Maikeo Ferreira, Silvia Regina Vergilio, Marcos Antonio Quinaia 232

xvi

Scrum-based Approach for Analyzing Commonalities and Variabilities in Software
Product Lines
Ivonei F. da Silva, Tassio Vale, Silvio R. L. Meira, Eduardo S. de Almeida 238

Mining Features from the Object-Oriented Source Code of a Collection of Software
Variants Using Formal Concept Analysis and Latent Semantic Indexing
R. AL-msie’deen, A.-D. Seriai, M. Huchard, C. Urtado, S. Vauttier, H. Eyal Salman 244

Model-Driven Generation of Context-Specifi c Feature Models
Thibaut Possompès, Christophe Dony, Marianne Huchard, Chouki Tibermacine 250

Software Domain and Meta-Modeling

An ADM-based Method for migrating CMS-based Web applications
Feliu Trias, Valeria de Castro, Marcos López-Sanz, Esperanza Marcos 256

BeMoRe: a Repository for Handling Models Behaviors
Youness Bazhar, Yamine Aït-Ameur, Stéphane Jean ... 262

Processing rhetorical, morphosyntactic, and semantic features from corporate technical
documents for identifying organizational domain knowledge (S)
Bell Manrique Losada, Carlos Mario Zapata Jaramillo ... 268

Slow Intelligence and Intelligent Systems

Swimming Activity Recognition Based on Slow Intelligence Systems
Wen-Hui Chen, Shi-Kuo Chang ... 273

Image Steganography Using Fuzzy Domain Transformation and Pixel Classifi cation
Aleem Khalid Alvi, Robin Dawes ... 277

Smart Phone Based Indoor Pedestrian Localization System (S)
Lokesh Agrawal, Durga Toshniwal ... 283

xvii

Quality and Reliability

A Formal Cost-Effectiveness Analysis Model for Product Evaluation in E-Commerce
Ran Wei, Haiping Xu .. 287

On the Use of Bug and Predicate Signatures for Statistical Debugging
Yiwei Zhang, Eric Lo, Ben Kao ... 294

BacterioORACLE: An Oracle suggester tool
Pedro Reales Mateo, Macario Polo Usaola .. 300

Managing Corrective Actions to Closure in Open Source Software Test Process
Tamer Abdou, Peter Grogono, Pankaj Kamthan ... 306

Recommender Systems

Comparing Collaborative Filtering Methods Based on User-Topic Ratings
Tieke He, Xingzhong Du, Weiqing Wang, Zhenyu Chen, Jia Liu ... 312

ABEY: an Incremental Personalized Method Based on Attribute Entropy
for Recommender Systems (S)
Xingzhong Du, Tieke He, Zhenyu Chen, Jia Liu, Chengfeng Hui .. 318

STERS: A System for Service Trustworthiness Evaluation and Recommendation
based on the Trust Network (S)
Yasha Wang, Jiangtao Wang, Yuxing Teng, Junfeng Zhao ... 322

Web and Data Mining

Towards a Network Ecology of Software Ecosystems: an Analysis of two OSGi Ecosystems
Klaus Marius Hansen, Konstantinos Manikas ... 326

Revisiting the Performance of Weighted k-Nearest Centroid Neighbor Classifi ers
Muhammad Rezaul Karim, Malek Mouhoub ... 332

Mining Software Repository to Identify Crosscutting Concerns Using Combined
Techniques (S)
Ingrid Marçal, Rogério Eduardo Garcia, Ronaldo C. M. Correia, Celso Olivete Junior 338

xviii

Software Architecture

The Layered Architecture revisited: Is it an Optimization Problem?
Alvine Boaye Belle, Ghizlane El Boussaidi,Christian Desrosiers, Hafedh Mili 344

Towards the Establishment of a Reference Architecture for Developing Learning
Environments
Ellen Francine Barbosa, Maria Lydia Fioravanti, Elisa Yumi Nakagawa,
José Carlos Maldonado ... 350

Testing Confi gurable Architectures For Component-Based Software Using an
Incremental Approach
Chuanqi Tao, Bixin Li, Jerry Gao .. 356

Software Maintenance

Using Architecture to Support the Collaborations in Software Maintenance
Yanchun Sun, Hui Song, Wenpin Jiao .. 362

Reverse Engineering of Sequence Diagrams by Merging Call Trees
Seonghye Yoon, Sunghyun Min, Sooyong Park, Soojin Park ... 368

Mining Architectural Patterns Using Association Ruless
Cristiano Maffort, Marco Tulio Valente, Mariza Bigonha, André Hora, Nicolas Anquetil,
Jonata Menezes .. 375

Bug Prediction for Fine-Grained Source Code Changes
Zi Yuan, Lili Yu, Chao Liu .. 381

Security and Fault Tolerance

An effi cient QCL-based alert correlation process
Lydia Bouzar-Benlabiod, Salem Benferhat, Thouraya Bouabana-Tebibel 388

Security Metrics for Java Bytecode Programs (S)
Bandar Alshammari, Colin Fidge, Diane Corney ... 394

An Empirical Study of an Improved Web Application Fuzz Testing Technique (S)
Lili Yu, Zi Yuan, Chao Liu, Feng Chen .. 400

xix

Petri Nets

A Petri Net Model Specifi cation for Delivering Adaptable Ads through Digital Signage in
Pervasive Environments
Frederico M. Bublitz, Lenardo C. e Silva, Elthon A. da S. Oliveira, Saulo O. D. Luiz,
Hyggo O. de Almeida, Angelo Perkusich ... 405

An Approach for Analyzing Software Specifi cations in Petri Nets
Junhua Ding, Dianxiang Xu, Jidong Ge .. 411

A Best Method to Synthesize Very Large K-th Order Systems without Reachability
Analysis (S)
Daniel Yuh Chao, T. H. Yu ... 417

Pervasive Computing

Combining multiple stress identifi cation algorithms using combinatorial fusion
Yong Deng, Zhonghai Wu, D. Frank Hsu .. 421

eDOTS 2.0: A Pervasive Indoor Tracking System
Ryan Rybarczyk, Rajeev Raje, Mihran Tuceryan ... 429

A context-aware approach on semantic trajectories (S)
Caio Silva, M.A.R Dantas .. 435

Software Architecture and Quality

Towards Quantifying Quality, Tactics and Architectural Patterns Interactions (S)
Mohamad Kassab, Ghizlane El Boussaidi ... 441

Metrics-based Detection of Similar Software (S)
Paloma Oliveira, Hudson Borges, Marco Tulio Valente, Heitor Augustus Xavier Costa 447

A Checklist for Evaluation of Reference Architectures of Embedded Systems (S)
José Filipe Marreiros Santos, Milena Guessi, Matthias Galster, Daniel Feitosa,
Elisa Yumi Nakagawa .. 451

xx

Measurement and Empirical SE

Empirical Evidence on Developer’s Commit Activity for Open-Source Software Projects
Sihai Lin, Yutao Ma, Jianxun Chen .. 455

The Impact of Confi rmation Bias on the Release-based Defect Prediction of Developer
Groups
Gul Calikli, Ayse Bener .. 461

A Study on First Order Statistics-Based Feature Selection Techniques on
Software Metric Data
Huanjing Wang, Taghi M. Khoshgoftaar, Randall Wald, Amri Napolitano 467

Software Effort Estimation using Regularized Radial Basis Function Neural Networks
Khaled Shams, Haitham Hamza, Amr Kamel .. 473

Towards a Unifi ed Framework for Measuring the Properties of Class Diagrams
Augmented with OCL (S)
Mohamed Elshaarawy, Haitham S.Hamza, Ismail Taha ... 479

Assessing RBFN-Based Software Cost Estimation Models (S)
Ali Idri, Aya Hassani, Alain Abran .. 483

Proposal of an Automated Approach to Support the Systematic Review of Literature
Process (S)
Jefferson Seide Molléri, Luiz Eduardo da Silva, Fabiane Barreto Vavassori Benitti 488

Automated Computation of Use Cases Similarity can Aid the Assessment of Cohesion and
Complexity of Classes (S)
Renato C. Juliano, Bruno A. N. Travençolo, Michel S. Soares, Marcelo de A. Maia 494

Generation of Thematic Maps using WPS-Cartographer: An experimental study (S)
Francisco Carlos M. Souza, Alinne C. Corrêa dos Santos, Vinicius Pereira,
Ellen Francine, Vinícius Ramos Toledo Ferraz ... 500

Automated Support for Controlled Experiments in Software Engineering: A Systematic
Review (S)
Marília Freire, Daniel Costa, Edmilson Campos, Tainá Medeiros, Uirá Kulesza,
Eduardo Aranha, Sérgio Soares ... 504

xxi

Mobile Systems

SIGAA Mobile – A sucessful experience of constructing a mobile application from a existing
web system
Gibeon Soares de Aquino Júnior, Itamir de Morais Barroca Filho ... 510

ANDRIU. A Technique for Migrating Graphical User Interfaces to Android (S)
Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Rafael Gómez-Cornejo,
Maria Fernandez-Ropero, Mario Piattini ... 516

Using a Partially Instantiated GQM to Measure the Quality of Mobile Applications (S)
Luis Corral, Alberto Sillitti, Giancarlo Succi .. 520

Software Maintenance and Quality

Locating and Understanding Concurrency Bugs Based on Edge-labeled Communication
Graphs (S)
He Li, Mengxiang Lin, Tahir Jameel, Zhenyuan Jiang .. 525

Multiple Coordinated Views to Support Aspect Mining Using Program Slicing (S)
Fernanda Madeiral Delfi m, Rogério Eduardo Garcia .. 531

How Does Acquirer’s Participation Infl uence Performance of Software Projects:
A Quantitative Analysis (S)
Yasha Wang, Jiangtao Wang, Jiakuan Ma, Bing Xie ... 537

Web-based Knowledge Management

Synchronized Data Acquisition from Web Services Serving at Disparate Rates
D. R. Plante .. 542

A Dialogue Game Approach to Collaborative Risk Management (S)
Fabrício S. Severo, Lisandra M. Fontoura, Luís A. L. Silva ... 548

Maturity Model and Lesson Learned for improve the Quality of Organizational
Knowledge and Human Resources Management in Software Development (S)
Flávio E. A. Horita, Marco I. Hisatomi, Fernando H. Gaffo, Rodolfo M. de Barros 552

xxii

Knowledge Management in Software Engineering

Recovering Software Architectural Knowledge from Documentation using
Conceptual Model
Mojtaba Shahin, Peng Liang, Zengyang Li ... 556

Knowledge Management Applied to Software Testing: A Systematic Mapping
E. F. Souza, R. A. Falbo, N. L. Vijaykumar .. 562

Improving Architectural Knowledge Management in Public Sector Organizations – an
Interview Study (S)
Dan Tofan, Matthias Galster, Paris Avgeriou .. 568

Enhancing Deployment Requirements’ Traceability via Knowledge Management Audit (S)
Naomi Unkelos-Shpigel, Irit Hadar, Meira Levy ... 574

Testing and Fault Diagnosis

Generating Partial Covering Array for Locating Faulty Interactions in Combinatorial
Testing
Ziyuan Wang, Ting Guo, Wujie Zhou, Weifeng Zhang, Baowen Xu ... 578

Analyzing the Effectiveness of a System Testing Tool for Software Product Line
Engineering (S)
Crescencio Rodrigues Lima Neto, Ivan do Carmo Machado, Vinicius Cardoso Garcia,
Eduardo Santana de Almeida ... 584

Exploiting Weights of Test Cases to Enhance Fault Localization (S)
Yihan Li, Chao Liu, Zi Yuan ... 589

Programming Languages and Software Engineering

Comparative Evaluation of Programming Paradigms: Separation of Concerns with
Object-, Aspect-, and Context-Oriented Programming (S)
Fumiya Kato, Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa 594

Extended Design Patterns in New Object-Oriented Programming Languages (S)
Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa .. 600

xxiii

ELCD: an effi cient online cycle detection technique for pointer analysis
Fei Liu, Lulu Wang, Bixin Li .. 606

Artifi cial Intelligence Approaches to Software Engineering

Exploring Ensemble-Based Data Preprocessing Techniques for Software Quality
Estimation
Kehan Gao, Taghi M. Khoshgoftaar, Amri Napolitano ... 612

Comparison of SRGMs and NNEs on Multiple Data Sets
Catherine Stringfellow, Sreya Reddy, Raaji Vedala-Tiramula, Swetha Myneni 618

HESA: The Construction and Evaluation of Hierarchical Software Feature Repository
Yue Yu, Huaimin Wang, Gang Yin, Xiang Li, Cheng Yang ... 624

Class Diagram Retrieval with Particle Swarm Optimization
Wesley Klewerton Guez Assunção, Silvia Regina Vergilio .. 632

Software Process and Quality

Towards a strategy for analysing benefi ts of Software Process Improvement programs
Cristiane Soares Ramos, Ana Regina Rocha, Káthia Marçal de Oliveira 638

How Does Refactoring Affect Understandability of Business Process Models? (S)
Ricardo Pérez-Castillo, Maria Fernández-Ropero, Mario Piattini, Danilo Caivano 644

A multi-dimensional approach for analyzing software artifacts
Sébastien Adam, Ghizlane El Boussaidi .. 650

Semantic Analysis

Semantic Confl icts Detection in Model-driven Engineering
Valéria Oliveira Costa, João M. B. Oliveira Junior, Leonardo Gresta Paulino Murta 656

Automatic Generation of Semantic Web Services
Thiago P. da Silva, Thais Batista, Frederico Lopes, Flavia C. Delicato, Paulo F. Pires 662

xxiv

A Knowledge Modeling System for Semantic Analysis of Games Applied to Programming
Education
Elanne Cristina Oliveira dos Santos, Gleison Brito Batista, Esteban Walter Gonzales Clua 668

Representing Chains of Custody Along a Forensic Process: A Case Study on Kruse Model
Tamer Fares Gayed, Hakim Lounis, Moncef Bari ... 674

Agents and Ontologies

Argumentation Understood as Program Synthesis (S)
Ashwag Omar Marghraby, Dave Robertson .. 681

Virtual Medical Board: A Distributed Bayesian Agent Based Approach (S)
Animesh Dutta, Sudipta Acharya, Aneesh Krishna, Swapan Bhattacharya 685

Software Quality Assurance Ontology from Development to Evaluation (S)
Nada Bajnaid, Rachid Benlamri, Algirdas Pakstas, Shahram Salekzamankhani 689

Embedded and Ubiquitous Software Engineering

DOPROPC: a domain property pattern system helping to specify control system
requirements (S)
Fan Wu, Hehua Zhang, Ming Gu ... 695

A Mixed-way Combinatorial Testing for Concurrent Programs (S)
Xiaofang Qi, Jun He, Peng Wang .. 699

Model Driven Development for Internet of Things Application Prototyping
Ferry Pramudianto, Indra Rusmita Indra, Mathias Jarke .. 703

Embedded and Ubiquitous Software Engineering

Pattern-based Decentralization and Run-time Adaptation Framework for Multi-site
Workfl ow Orchestrations
Selim Kalayci, S. Masoud Sadjadi ... 709

xxv

Framework for digital voting systems (S)
Patricia Dousseau Cabral, Ricardo Pereira e Silva, Roberto Silvino da Cunha 715

How do You Execute Reuse Tasks Among Tools?
Fábio P. Basso, Cláudia M. L. Werner, Raquel M. Pillat, Toacy C. Oliveira 721

Using Prolog Rules to Detect Software Design Patterns: Strengths and Weaknesses (S)
Hamdi A. Al-Jamimi, Moataz Ahmed ... 727

Adaptive Systems

Runtime Monitoring and Auditing of Self-Adaptive Systems (S)
Daniel H. Carmo, Sergio T. Carvalho, Leonardo G. P. Murta, Orlando Loques 731

An ontology-based user model for personalization of educational content (S)
Joice B. Machado, Gustavo L. Martins, Seiji Isotani, Ellen F. Barbosa 737

Architectural Design Spaces for Feedback Control Concerns in Self-Adaptive
Systems (S)
Sandro S. Andrade, Raimundo José de A. Macêdo .. 741

Software Maintenance and Evolution

Towards Coupled Evolution of Metamodels, Models, Graph-Based Transformations and
Traceability Links (S)
Chessman Corrêa, Toacy Oliveira, Cláudia Werner ... 747

Measuring the Structural Similarity between Source Code Entities (S)
Ricardo Terra, João Brunet, Luis Miranda, Marco Túlio Valente, Dalton Serey,
Douglas Castilho, Roberto Bigonha .. 753

On Use Case Identifi cation
David Kung .. 759

xxvi

Poster/Demo

 ScubAA: A Human Plausible Reasoning Approach to Agent Trust Management (P)
 Sadra Abedinzadeh, Samira Sadaoui ... A-1

Attribute-Value based Reconfi guration Model for Sensor Network Environ (P)
Hyunjun Jung, Sukhoon Lee, Doo-Kwon Baik ... A-3

 DuSE-MT: From Design Spaces to Automated Software Architecture Design (P)
Sandro S. Andrade, Raimundo José de A. Macêdo .. A-5

Author’s Index ... A-7

Reviewer’s Index .. A-14

Poster/Demo Presenter’s Index ... A-17

Note: (S) indicates a short paper.
 (P) indicates a poster or demo, which is not a refereed paper.

xxvii

Keynote I
Surprising discoveries from emotion sensors

Professor Rosalind W. Picard
Founder and Director, Affective Computing Research Group

Media Lab, Massachusetts Institute of Technology, USA

Abstract
Emotion is much more vital to health and cognition than we ever thought - infl uencing pretty much
every organ in our body, not just our brain and “how we feel.” We built a camera to read heart rate,
and a wearable sensor to measure a key dimension of emotion and encountered some huge surprises
during long-term measurement - from seizure detection to mysterious “storms” that happen mostly
during non-REM sleep. We have also been learning how brain activity can map to different places on
the surface of your skin. This talk will highlight new technologies and insights that have come out of
our lab including Q sensor, CardioCam, and MoodMeter.

About the Speaker
Professor Rosalind W. Picard, Sc.D. is founder and director of the Affective Computing research
group at the Massachusetts Institute of Technology (MIT) Media Lab. She is also co-founder of
Affectiva, Inc., delivering technology to help measure and communicate emotion.
Picard holds a bachelor’s degree in electrical engineering with highest honors from the Georgia
Institute of Technology, and master’s and doctoral degrees, both in electrical engineering and
computer science, from MIT. Prior to completing her doctorate, she was a member of the technical
staff at AT&T Bell Laboratories where she designed VLSI chips for digital signal processing and
developed new methods of image compression and analysis. In 1991 she joined the MIT Media Lab
faculty. She became internationally known for constructing mathematical texture models for content-
based retrieval of images, for creating new tools such as the Photobook system, and for pioneering
methods of automated search and annotation in digital video. She published the award-winning
book/Affective Computing,/which was instrumental in starting a new fi eld by that name. Picard
has been awarded dozens of distinguished and named lectureships internationally, and in 2005 was
honored as a Fellow of the IEEE.
The author of over two hundred scientifi c articles and chapters in multidimensional signal modeling,
computer vision, pattern recognition, machine learning, human-computer interaction, and affective
computing, Picard is an international leader in envisioning and creating innovative technology.
She holds multiple patents, having designed and developed a variety of new sensors, algorithms,
and systems for sensing, recognizing, and responding respectfully to human affective information,
with applications in autism, epilepsy, autonomic nervous system disorders, sleep, stress, human and
machine learning, health behavior change, market research, customer service, and human-computer
interaction.
Picard interacts regularly with industry and has consulted for companies such as Apple, AT&T, BT,
HP, iRobot, and Motorola. She is a popular keynote speaker and has given over 100 keynote talks.
Her group’s achievements have been featured in forums for the general public such as/The New
York Times, The London Independent,/National Public Radio,/Scientifi c American Frontiers,/ABC’s/
Nightline/and/World News Tonight with Peter Jennings, Time, Vogue, Wired,/Voice of America
Radio,/New Scientist,/and BBC’s “The Works” and “The Big Byte.”.

xxviii

Keynote II
Environment-Aware Software Engineering

Professor Shi-Kuo Chang
Dept. of Computer Science

University of Pittsburgh, USA

Abstract
In this talk I will introduce the concept of slow intelligence as a new approach for environment-
aware software engineering. Not all intelligent systems have fast intelligence. There are a
surprisingly large number of intelligent systems, quasi-intelligent systems and semi-intelligent
systems that have slow intelligence. Such slow intelligence systems are often neglected in
mainstream research on intelligent systems, but they are really worthy of our attention and
emulation. I will discuss the general characteristics of slow intelligence systems and then concentrate
on personal health care as an example of artifi cial slow intelligence systems. Other applications to
social network modelling, product customization and image processing will also be discussed.

About the Speaker
Dr. Chang received the B.S.E.E. degree from National Taiwan University in 1965. He received
the M.S. and Ph.D. degrees from the University of California, Berkeley, in 1967 and 1969,
respectively. He was a research scientist at IBM Watson Research Center from 1969 to 1975. From
1975 to 1982 he was Associate Professor and then Professor at the Department of Information
Engineering, University of Illinois at Chicago. From 1982 to 1986 he was Professor and Chairman
of the Department of Electrical and Computer Engineering, Illinois Institute of Technology. From
1986 to 1991 he was Professor and Chairman of the Department of Computer Science, University
of Pittsburgh. He is currently Professor and Director of the Center for Parallel, Distributed and
Intelligent Systems, University of Pittsburgh. Dr. Chang is a Life Fellow of IEEE. He published
over 230 papers and 16 scientifi c books. He is the founder and co-editor-in-chief of the international
journal, Visual Languages and Computing, published by Academic Press, the founder and editor-in-
chief of the international journal, Software Engineering & Knowledge Engineering, published by
World Scientifi c Press, and the co-editor-in-chief of the international journal on Distance Education
Technologies. Dr. Chang pioneered the development of Chinese language computers, and was the
fi rst to develop a picture grammar for Chinese ideographs, and invented the phonetic phrase Chinese
input method..

xxix

Keynote III
Overcoming Big Data Challenges

Professor Taghi M. Khoshgoftaar
Dept. of Computer & Electrical Engineering & Computer Science

Florida Atlantic University, USA

Abstract
Due to the infl ux of data across a wide variety of application domains, Big Data has become a central
topic in data science research. Big Data provides many opportunities to learn key insights which can
only be found from large collections of data, but also poses unique challenges when practitioners
are faced with data characteristics which are much more diffi cult to address on large-scale data.
For example, high-dimensionality (having a large number of independent attributes or features)
can occur at multiple scales of data mining, but extremely large datasets are not amenable to some
traditional approaches. In addition, data imbalance (having many more instances in one class than
in other classes) can be especially challenging when large datasets make oversampling infeasible.
Finally, one oft-overlooked challenge -- datasets which are inherently diffi cult to learn from -- is
even more diffi cult to handle with extremely large quantities of noise. In this paper, we will discuss
these problems in the context of one important Big Data application domain -- bioinformatics -- and
present our work on addressing these challenges, though using techniques designed to solve these
problems while operating effi ciently and returning meaningful results even when faced with Big
Data.

About the Speaker
Dr. Taghi M. Khoshgoftaar is a professor of the Department of Computer and Electrical Engineering
and Computer Science, Florida Atlantic University and the Director of the Data Mining and Machine
Learning Laboratory, and Empirical Software Engineering Laboratory. His research interests are in
big data analytics, data mining and machine learning, health informatics and bioinformatics, and
software engineering. He has published more than 500 refereed journal and conference papers in
these areas. He was the conference chair of the IEEE International Conference on Machine Learning
and Applications (ICMLA 2012). He is the workshop chair of the IEEE IRI Health Informatics
workshop (2013). He is the Editor-in Chief of the Big Data journal. He has served on organizing and
technical program committees of various international conferences, symposia, and workshops. Also,
he has served as North American Editor of the Software Quality Journal, and was on the editorial
boards of the journals Multimedia Tools and Applications, Knowledge and Information Systems,
and Empirical Software Engineering and is on the editorial boards of the journals Software Quality,
Software Engineering and Knowledge Engineering, Fuzzy Systems, and Social Network Analysis
and Mining.

1

Runtime Values Driven by Access Control Policies
Statically Enforced at the Level of Relational Business Tiers

Óscar Mortágua Pereira1, Rui L. Aguiar2

Instituto de Telecomunicações
DETI, University of Aveiro

Aveiro, Portugal
{omp1, ruilaa2}@ua.pt

Maribel Yasmina Santos
Centro Algoritmi

DSI, University of Minho
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract—Access control is a key challenge in software
engineering, especially in relational database applications.
Current access control techniques are based on additional
security layers designed by security experts. These additional
security layers do not take into account the necessary business
logic leading to a separation between business tiers and access
control mechanisms. Moreover, business tiers are built from
commercial tools (ex: Hibernate, JDBC, ODBC, LINQ), which
are not tailored to deal with security aspects. To overcome this
situation several proposals have been presented. In spite of
their relevance, they do not support the enforcement of access
control policies at the level of the runtime values that are used
to interact with protected data. Runtime values are critical
entities because they play a key role in the process of defining
which data is accessed. In this paper, we present a general
technique for static checking, at the business tier level, the
runtime values that are used to interact with databases and in
accordance with the established access control policies. The
technique is applicable to CRUD (create, read, update and
delete) expressions and also to actions (update and insert) that
are executed on data retrieved by Select expressions. A proof of
concept is also presented. It uses an access control platform
previously developed, which lacks the key issue of this paper.
The collected results show that the presented approach is an
effective solution to enforce access control policies at the level
of runtime values that are used to interact with data residing in
relational databases.

Keywords-security; access control; database, business tiers;
software architecture.

I. INTRODUCTION
Sensitive data is growing every day as an immediate

consequence of the increasing usage of software systems.
The data is related not only to personal information, as it
happens for example in social networks, but it is also related
to other important and critical areas such as commercial,
institutional and security organizations. To prevent any
security violation, several security measures are taken such
as user authentication, data encryption and secure
connections. Another relevant security concern is access
control. There are two main approaches to enforce access
control policies: the one provided by vendors of database
management systems and XACML [1] (eXtensible Access
Control Markup Language). Both approaches rely on
additional security layers built by security experts leading to
a clear separation between the security mechanisms and

business tiers. Moreover, current commercial tools that are
used to develop business tiers do not support access control
policies, this way hampering the process of bridging the gap
between access control mechanisms and business tiers built
from those tools. To overcome this situation, several access
control techniques have been proposed [2-13] but none of
them effectively models the values that are defined at
runtime. The runtime values are critical because they are
dynamically defined by users at runtime, this way enabling
users to request the access to different data in each execution
cycle. We present three examples to justify our claims. The
first one is based on a native Select expression, the second
one is based on a native Update expression and, finally, the
third one is based on modifying the contents of a record set
containing data retrieved by a Select expression (in these
cases the modifications are also committed to the host
database). The following example is a simple Select
expression.

Select t1.* from table1 t1, table2 t2
 where t1.id = t2.t1_id and
 t1.value > pValue

The parameter (runtime value) pValue plays a key role to
decide which data are retrieved from table1. In each
individual execution cycle, the parameter may have a
different value, this way retrieving a different set of records
from table1. To overcome this source of possible security
gaps, two approaches are used to implement the access
control mechanisms: centralized approach and distributed
approach. Regarding the centralized approach, the most
common technique is the use of views (with [10] or without
query rewriting techniques). This technique conveys several
drawbacks among which the lack of scalability is
emphasized [14, 15]. Regarding the distributed approach,
two techniques were proposed: in [4] is proposed a new
predicate, identified as known, to model which information
users already know, this way covering the points here under
discussion but only superficially; in [2] the policies are
statically enforced at the table columns level and not at the
CRUD (Create, Read, Update and Delete) expressions level,
leading to lack of flexibility.

The following example is the second example, which is a
simple Update expression:

 Update table1 t1 set t1.value=pValue
 Where t1.id=pId

2

Similar to the Select expression, this Update expression also
uses parameters. The parameter pValue updates the attribute
value of table1 of a record identified by another parameter
pId. Once again, parameters are user defined and play a key
role on Update expressions to decide the data to be updated.
The current techniques and their limitations, previously
described for Select expressions, are also applied to Update
expressions. The remaining types of CRUD expressions,
Insert and Delete, convey similar limitations.

The last example is a very common situation on current
tools that are used to develop business tiers, such as JDBC
[16], Hibernate [17], ADO.NET [18] and LINQ [19]. The
example shows that beyond the use of CRUD expressions,
databases are also modifiable by executing protocols on data
retrieved by Select expressions. The example shows that
after retrieving data from a database, it is kept in record sets
(recordSet) and then applications are allowed to update their
content through an update protocol. In this case the attribute
attributeName was updated to value and then the
modification was committed. This case is different from the
two previous ones because there is no evidence of any
CRUD expression and users are modifying data they have
been previously authorized to retrieve. Even so, we cannot
despise the need to control the runtime values being used to
modify the contents of those record sets and, therefore, used
to modify the contents of databases. Beyond the update
protocol, current tools also provide an insert protocol where
users are also allowed to use runtime values.

recordSet=executeSelectExpression(sql)
recordSet.update(“attributeName”, value)
recordsSet.commit()

Currently, there isn´t any known access control technique

to enforce policies at the business tier level and able to
statically control the provenance of runtime values that are
used on actions issued against databases. To overcome this
situation we propose a technique where parameters are
statically driven by access control policies enforced at the
business tier level. Additionally, we present a proof of
concept to validate the proposed technique. The proof of
concept leverages an existent and internal access control
platform, partially based on [13].

This paper is organized as follows. Section II presents the
related work. Section III presents the required background to
keep the paper self-contained. Section IV describes the
conceptual architecture and, finally, section V presents the
final conclusion.

II. RELATED WORK
Views have been widely used to restrict the access to

protected data. In spite of their relevance, the use of views to
implement access control conveys a key drawback: lack of
scalability [14, 15]. Basically the number of views increases
with the number of policies. Access control based on views
is easily managed in database applications with a short
number of policies. But access control in database
applications with a large number of policies may become
unmanageable as in cases where they depend, for example,
on data stored on databases. Moreover, the problem is not

restricted to the level of views. Users accessing the same
table but with different authorization levels use different
views and, therefore, different CRUD expressions. In order
to minimize this scalability gap, Rizvi et al. [10] present a
query rewriting technique to determine at runtime if a CRUD
expression is authorized, without the need of creating
different versions of views. It uses security views to filter
contents of tables and simultaneously to infer and check at
runtime the appropriate authorization to execute any CRUD
expression issued against the unfiltered table. The user is
responsible for formulating the CRUD expression properly.
They call this approach the Non-Truman model. Non-
Truman models, unlike Truman models, do not change the
original CRUD expressions. The process is transparent for
users, and CRUD expressions are rejected if they do not have
the appropriate authorization. This approach has some
disadvantages: 1) performance - the inference rules to check
the appropriate authorization at runtime are complex and
time consuming; 2) productivity - authorizations are checked
against security views and not against original data in a
transparent way, hampering the debugging process when any
syntax error or security violation occurs; 3) awareness -
programmers cannot statically check the correctness of
CRUD expressions because the policies and the mechanisms
are centralized in a server; 4) incompleteness - the inference
rules are complex and their completeness is not assured by
the authors.

In [4], Chlipala et al. present a tool, Ur/Web, that allows
programmers to write statically-checkable access control
policies as CRUD expressions. Basically, each policy
determines which data is accessible. Then, programs are
written and checked to assure that data involved in queries is
accessible through some policy. To allow policies to vary
from one user to another, their CRUD expressions use actual
data and a new extension to the standard SQL to capture
‘which secrets the user knows’. This extension is based on a
predicate referred to as ´known’ used to model which
information users are already aware of to decide upon the
information to be disclosed. Ur/Web is a promising solution,
but beyond introducing a new programming technique, it
presents two key drawbacks: 1) it does not check the use of
runtime values of where clauses, allowing queries to
implicitly leak protected data; 2) authors say that their
implementation “…only handles a subset of the common
SQL features.”.

Caires et al. [2] introduces a new programming language,
name as λ, to define and enforce access control policies by
static typing. The security model comprises tables, their
attributes and the access control policies associated to each
attribute. Authors show that runtime values are checked
against the policies before being used. Beyond introducing a
new programming language, policies are enforced at the
attribute level of tables, this way hindering or even
preventing the use of multiple policies on each attribute.

The paper [13] presents an access control-driven
architecture with dynamic adaptation (ACADA). Business
tiers are automatically built from a business architectural
model, enforcing access control policies defined by a
security expert. Access control mechanisms are statically

3

implemented by typed objects driven by security policies at
the business tier level. ACADA effectively controls which
CRUD expressions are authorized to be used but does not
control the runtime values being used.

III. BACKGROUND
To ease the development process of business tiers,

system architects use tools specially designed to that end.
Two main groups of tools are considered: Call Level
Interfaces (CLI) [20] and Object-to-Relational Mapping
(O/RM) tools. ODBC [21], JDBC [16] and ADO.NET [22]
are three examples of CLI and Hibernate [17], LINQ [23]
and JPA [24] are three examples of O/RM tools. These tools
provide services to allow applications to interact with
databases. These services need to be understood before
advancing to any security solution implemented at the
business tier level. In spite of the diversity of tools and the
difference between the paradigms of the two groups, there is
a common basis between them. This is very important to
promote the use of a single technique in all tools and mainly
on both groups. The common basis is centered on their two
main access modes to stored data: direct access mode and the
indirect access mode. The direct access mode allows the
execution of CRUD expressions written in the native SQL
language and the indirect access mode allows applications to
interact with data returned by Select expressions. While the
direct access mode is widely used and easily understood, the
indirect access mode needs a more detailed explanation.
When a Select expression is executed, it returns a relation
containing the retrieved data. These relations are locally
managed by local memory structures (LMS). There are four
protocols to interact with the data managed by LMS: read
protocol (to read data from LMS), update protocol (to update
data contained in LMS), insert protocol (to insert new data in
LMS) and delete protocol (to delete data contained in LMS).
Any modification on the contents of LMS is replicated on the
host database. Figure 1 and Figure 2 depict a simple example
based on JDBC and LINQ, respectively. The method
updateStudentMobilePhone updates numbers of mobile
phones of every student whose id is contained in the first
argument (sId). The Select expression is built with two
parameters (line 29-31, 116-118) and executed (line 32, 119-
120) through the direct access mode (rs.executeQuery and
jpa.ExecuteQuery). Then LMS (rs (ResultSet [25]) for JDBC
and ord (typed object) for LINQ) are iterated row by row
(line 33, 121). mobilePhone is updated (line 36-37, 126-127)
if the student id (rs.getInt and s.id) is contained in the list sId
(line 34-35, 123-124) through the indirect access mode. This
update on the LMS is equivalent to the following Update
expression

 Update Student s
 Set s.mobilePhone=mobilePhone
 Where s.id=sId(idx)

and, therefore, sId and modiblePhone in Figure 1 and Figure
2 behave as runtime values for the two parameters of the
equivalent Update expression. From this example it is also
easily inferred the equivalency between the insert and delete
protocols and the correspondent Insert and Delete

Figure 1. Example based on JDBC.

Figure 2. Example based on LINQ.

expressions. These two simple examples have shown the
usage of the two access modes that are provided by current
tools and also the usage of runtime values. Additionally, the
examples also show that JDBC and LINQ, akin to the
remaining tools, are not driven by access control policies.
Their access modes allow programmers to write any CRUD
expression (using the direct access mode) and also allow the
use of any protocol on LMS. These latter two issues have
been addressed in [13].

IV. ARCHITECTURE PRESENTATION
In this section we present an access control technique

which enforces policies at the business tier level which is
able to statically control the provenance of runtime values
that are used on actions issued against databases. The
technique supervises the runtime values that are used on both
access modes of current tools that are used for developing
business tiers. Nevertheless, access control policies can only
be effectively enforced if other complementary aspects are
also considered. Among them the authorized CRUD
expressions and the actions on LMS are emphasized. Those
aspects are not addressed in this paper because they were
already addressed in [13]. From [13], a platform has been
designed and developed. The platform will be used and
modified to present the proof of concept. This section is
organized as follows: the sub-section A presents the proposed
technique; sub-section B briefly presents the used platform;

4

sub-section C presents the proof of concept and, finally,
subsection D presents a use case.

A. Proposed Technique
We start by introducing the concept of Business Access

Point (BAP). A BAP is an entity responsible for managing
the runtime values of the two access modes in accordance
with the established access control policies. Each access
mode type has its own particular characteristics. As such,
their conceptual architecture is presented separately.

Direct Access Mode

The direct access mode allows the execution of CRUD
expressions based on the native SQL language. In a general
context, each CRUD expression comprises a hard coded part
and eventually one or more parameters of which the values
are defined at runtime. The values for these parameters are
not mandatory to be driven by any access control policy. It is
up to the security expert to decide for each CRUD expression
which parameters are driven by access control policies and
which parameters are not driven by any access control
policy. Thus, the direct access mode (DAM) is formalized by
the next triplet:

DAM(RTV, RTVacp, execute)

where RTV is a set of RunTime Values for parameters not
driven by any access control policy, RTVacp is a set of
RunTime Values for the parameters driven by access control
policies and, finally, execute is a method responsible for
setting the runtime values for parameters and also for the
execution of CRUD expressions. As initially announced,
RTVacp are statically enforced and, therefore, their
implementation will have this in consideration. Eventually,
each runtime value may be encapsulated as an interface that
provides a service aimed at returning values driven by access
control policies.

Indirect Access Mode

The indirect access mode provides four protocols for the
interaction with the data contained by LMS that is returned
by native Select expressions. A first solution has been
proposed to provide the four protocols driven by access
control policies [13]. Basically, it includes two aspects: 1)
the availability of each protocol is individually configured
and 2) each protocol that is made available provides methods
to access only the attributes that are authorized by the
established policies. This approach is not complete because
it does not support parameters driven access control policies.
Next follows the proposed approach to overcome this
security gap. The indirect access mode (IAM) is formalized
as follows:

IAM(readP, insertP, updateP, deleteP)

where readP is the read protocol, insertP is the insert
protocol, updateP is the update protocol and, finally, deleteP
is the delete protocol. Only the insert and the update
protocols use runtime values. The read protocol does not
modify the contents of LMS and the delete protocol is
executed as an atomic operation on all attributes of the
selected row. Thus, each individual method of the insert and

update protocol that is used to modify each attribute of the
returned relation (contained in LMS) needs to be configured
to be or not to be driven by access control policies. They are
formalized as:

method(RTV) or method(RTVacp)

where method is the method’s name, RTV and RTVacp have
the meaning previously presented for the direct access mode.
The only difference is that either RTV or RTVacp represent a
single runtime value. The indirect access mode is only
available after a Select expression is executed through the
direct access mode. The remaining CRUD expressions do
not create LMS. This leads to the need of defining two facets
for the BAP: one for the Select expressions (BAPs) and
another for the remaining expressions (BAPiud). BAPiud
supports the direct access mode only and is formalized as
follows:

BAPiud(DAM)

BAPs supports both modes and is formalized as follows:

BAPs(DAM,IAM)

B. Used Platform
The proof of concept here presented leverages the work

previously presented in [13]. The work has been used to
design a new architecture known as DACA (Dynamic
Access Control Architecture). Figure 3 presents a simplified
block diagram of DACA. DACA is able to dynamically, at
runtime, build and keep updated business logic of relational
database applications in accordance with the established
access control policies. It comprises 2 main components: a
client side component for the application and business tiers
and a server side component where metadata of access
control mechanisms are kept. The basic operation of DACA
is as follows (see Figure 3): 1- application tier instantiates a
Dynamic Access Control Component (DACC); 2- DACC,
through the Business Manager, establishes a connection with
the Policy Server; 3- The Policy Server transfers and keeps
security metadata and CRUD expressions continuously
updated on DACC, in accordance with the established access
control policies; 4- DACC, through the Business Manager,
dynamically builds and keeps business logic updated; 5-
application tiers ask Business Manager to execute authorized
CRUD expressions; 6- Business Manager delegates the
execution of CRUD expressions on the implemented

Server Side
Client Side

DACC

Business
Manager

Application
Tier

Policy Server

RDBMS

Business
Logic

1 2

3

4

5

6

7

Figure 3. Simplified block diagram of DACA.

5

Business Logic; 7- CRUD expressions are executed (the
RDBMS server may or may not be the same as the
one responsible for the Policy Server).

C. Proof of Concept
The initial version of DACA was redesigned to address

the issues of this research and it is hereafter known as
RDACA (Redesigned-DACA). We have decided that the
policy to be followed for RTVacp requires that the values can
only come from data previously retrieved by authorized
Select expressions. To address this new security requirement
the original DACA security access control mechanisms were
redesigned. To give a complete view of the implemented
solution, class diagrams of BAP will be provided.

The client-side of RDACA was implemented in Java and
JDBC and, therefore, all examples are based on those tools.
In the RDACA each RTVacp is defined as an interface
comprising a unique method which is responsible for
retrieving the authorized value. The proposed approach, as it
will be shown, allows a static validation for all RTVacp at
development time.

Figure 4, Figure 5 and Figure 6 present simplified class
diagrams for the approach followed for the BAP to enforce
access control policies. In a first step, one interface is defined
for each individual RTVacp as shown in Figure 4: IRTV_a,
IRTV_b, …, IRTV_n. Each interface is related to a unique
RTVacp and it comprises also one unique method responsible
for ensuring that the values are effectively authorized. rA, rB,
…, rN are the defined methods and DT_a, DT_b and DT_n
are the data types of the RTVacp in the host programming
language. The concrete implementation of each method
depends on the adopted security strategy. In case of the
RDACA, these methods retrieve data from data previously
retrieved by authorized Select expressions and also managed
by BAPs.

Figure 5 presents a simplified class diagram for one
BAPs. The constructor of the base class, BAPs, receives a
connection to the database and the CRUD id to be executed.
Programmers do not write CRUD expressions anymore.
They are only allowed to select, though the CRUD id, which
CRUD expression is necessary. In case she is not authorized
to use the requested CRUD expression, an exception will be
raised. Other important aspects are the IExecute and the
ILMS interfaces. IExecute is associated with the direct access
mode and ILMS is associated with the indirect access mode.
IExecute comprises one unique method (execute). It accepts
as arguments RTV and RTVacp for the runtime values of the
clause conditions for the Select expression to be executed. In
this particular case, it accepts an RTV of type DT_a and an
RTVacp of type IRTV_b. Thus, to execute the requested
Select expression it is necessary to be a holder of an BAPs
providing an IRTV_b. Regarding the ILMS interface, it
comprises several interfaces being IRead and IUpdate
presented with some detail. They are enough to convey a
complete understanding about the followed approach. IRead
implements the read protocol on LMS providing all the
necessary methods to that end. Each method retrieves the
value of one attribute of the returned relation. There are two

types of methods: one type retrieves values that can only be
used as RTV and the other type retrieves values that can be
used as RTVacp. Methods retrieving RTV are directly defined
in the IRead interface, such as rB and rC as shown in Figure
5. Methods retrieving RTVacp are defined by extending IRead
with the interfaces that provide RTVacp, see Figure 4. The
shown IRead interface provides two methods for RTV (rB
and rC) and one interface for one RTVacp (IRTV_a). This
distinction allows Business Manager (see Figure 3), by
analyzing the schema, to be able to distinguish between RTV
from RTVacp and, therefore, to provide, during the automatic
building process of Business Logics, different
implementations for the two types of methods. Regarding the
IUpdate interface it is associated with the update protocol. In
this particular case it comprises two methods: a) uA updates
the attribute a and it accepts an RTVacp (IRTV_a); b) uB
updates the attribute b and it accepts any RTV of type DT_b.

Figure 6 presents a simplified class diagram for one
BAPiud. The description for the base class and also for the
IExecute interface is identical to the previous BAPs.
Regarding ISet, it comprises one unique method (set), which
accepts as arguments RTV and RTVacp for the runtime values
of the column list of the Update expressions. In t his case it
accepts two RTVacp and one RTV. Thus, to be able to use

...
+rA() : DT_a

«interface»
IRTV_a

+rB() : DT_b

«interface»
IRTV_b

+rN() : DT_n

«interface»
IRTV_n

Figure 4. Set of RTVacp.

+uA(in value : IRTV_a)
+uB(in value : DT_b)

«interface»
IUpdate

+execute(in a : DT_a, in b : IRTV_b)

«interface»
IExecute

«interface»
IBAPs

+BAPs(in conn : Connection, in crud : uint)

BAPs

«interface»
ILMS

IDelete

IInsert

+rB() : DT_b
+rC() : DT_c

«interface»
IRead

IRTV_a

Figure 5. Simplified class diagram for a concrete BAPs.

+BAPr(in conn : Connection, in crud : uint)

BAPiud «interface»
IBAPiud

+execute(in a : IRTV_a, in c : IRTV_c, in d : DT_d)

«interface»
IExecute

+set(in b : IRTV_b, in c : IRTV_c, in d : DT_d)

«interface»
ISet

Figure 6. Simplified class diagram for a BAPiud.

6

this BAPiud it is required to be authorized to execute the
required CRUD expressions and to hold three RTVacp
(IRTV_a, IRTV_B and IRTV_c) provided by one or more
BAPs.

D. Use Case
We are now prepared to present a real use case

implemented with Java, JDBC and Microsoft Northwind
database1. The use case is based on an actor responsible for
managing orders coming from customers in the USA only.
The actor is authorized to execute the two following CRUD
expressions:

Select * from Customers
 where customerId=? // (RTV)
 and Country=’USA’

Select * from Orders
 Where CustomerId=? // (RTVacp)

 and ShipCountry=? // (RTV)

The first Select expression allows the access to
information about the customers residing in the USA and the
second Select expression allows the access to orders only
from customers the user is authorized to know (RTVacp – in
this case residing in USA) and whose ship county is user
defined (RTV). The BAPs associated with the latter Select
expression is updatable and one particularity is that the
attribute employeeId requires an RTVacp when using the
indirect access mode.

To address this case, two BAPs are needed, one for each
CRUD expression. We have used the table names to identify
each BAPs, Customers and Orders. From the two Select
expressions we see that, when using the direct access mode,
the second one requires an RTVacp for the first parameter -
CustomerId. Figure 7 shows an example of how the two
BAPs (Customers and Orders) may be used. A new instance
of Customers is created (line 30) and the CRUD expression
is executed (line 31) to select data about the customer
identified by the RTV of customerId. Then, the first and only
row of the LMS (rs) is selected (line 32). Some attributes are
read (line 33-34). Then an instance of Orders is created (line
35) and the CRUD is executed (line 36). The CRUD has two
parameters, the first one is an RTVacp and the second one is
an RTV. The RTVacp is for customerId and it is passed as the
instance of Customers, which implements the required
interface for the RTVacp. The ship country is an RTV and,
therefore, it is user defined. Some attributes are read (line 37-
38) and the programmer tries to update employeeId but the
NetBeans indicates an error because the correct data type
cannot be an integer (line 39). To update employeeId through
the indirect access mode the programmer needs an RTVacp of
the required type. To convey a deeper understanding some
additional details are provided for the two BAPs. Figure 8
shows the interface herein named as ICustomerId for the
RTVacp customerId. This interface is used not only to be
implemented by BAPs but also used whenever identifications
of customers need to be used as RTVacp for arguments of
BAP methods, as shown in Figure 7. The implementation of

1 http://www.microsoft.com/en-us/download/details.aspx?id=23654

Figure 7. Example to show the use of the two BAPs: Customers and Orders.

Figure 8. Interface for the RTVacp to be used for the parameter CustomerId.

this interface should comprise some validation procedures to
prevent its misuse. As previously explained,
BusinessManager automatically generates the required
source code for Business Logic. In this particular case, it
creates the required source code for rCustomerId() in
accordance with the established security requirements.

The IRead interface for Customers is presented in Figure
9. It provides a set of methods to read the attributes of the
returned relation. CustomerId is the only attribute with the
ability to be used as an RTVacp and, therefore, the IRead
interface extends the ICustomerId interface.

Figure 10 shows the IExecute interface for the BAPs
Orders. It comprises two arguments. The first argument is an
RTVacp for customerId and, therefore, it requires the
correspondent interface (ICustomerId). The second argument
is an RTV for the ship country. Figure 11 presents its
implementation in which a main aspect is emphasized. The
RTVacp (customerId) is passed as an interface (line 28) and

Figure 9. IRead interface for Customers.

Figure 10. IExecute interface for Orders.

Figure 11. execute method implementation of Orders.

7

the run time value (line 32) is obtained from the method
specifically created for the effect and defined in the
ICustomerId interface.

There is a runnable demo available at
https://dl.dropboxusercontent.com/u/71192544/Work/Confer
s/SEKE/SEKE_2013/Example.7z .

V. CONCLUSION
This paper presents a technique aimed at enforcing access

control policies statically at the level of the runtime values
that are used on business tiers to interact with data stored on
relational database management systems. The technique is
applicable to commercial tools geared up to develop business
tiers, such as JDBC, ODBC, Hibernate and LINQ, and
supports their two most common access modes: the direct
and the indirect access mode. Security experts are able to
decide the policies to be used, which runtime values are
driven by those policies and which are not. Runtime values
driven by access control policies are managed at the business
tier level to ensure the use of authorized values only. The
presented proof of concept is based on an existent platform
that has been redesigned to support a new security
requirement. The new security requirement says that only
previously retrieved values from the database are allowed to
be used for the runtime values driven by access control
policies. The implemented technique is based on interfaces
comprising a unique method of which the implementation
ensures the new security requirement. Beyond the presented
proof of concept a runnable demo is also available.

It is expected that the outcome of this research will have
impact on future proposals addressing access control on
relational databases, mainly when policies are enforced at the
level of client business tiers.

As future work, we intend to apply the techniques used in
[26, 27] to design a thread-safe version of DACC. These
techniques have proved to be not only simple to implement
but above all conveying a significant performance
improvement.

REFERENCES
[1] OASIS. "XACML - eXtensible Access Control Markup Language,"

Feb, 2012; http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[2] L. Caires, J. A. Pérez, J. C. Seco et al., "Type-based access control in
data-centric systems," in 20th European conference on Programming
Languages and Systems: part of the joint European conferences on
theory and practice of software, Saarbrucken, Germany, 2011, pp. 136-
155.

[3] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine Grained Authorization
Through Predicated Grants,” in IEEE 23rd ICDE - Int. Conf. on Data
Engineering, Istanbul, Turkey, 2007, pp. 1174-1183.

[4] A. Chlipala, "Static checking of dynamically-varying security policies
in database-backed applications," in 9th USENIX Conf. on Operating
Systems Design and Implementation, Vancouver, BC, Canada, 2010,
pp. 1-14.

[5] B. J. Corcoran, N. Swamy, and M. Hicks, "Cross-tier, Label-based
Security Enforcement for Web Applications," in 35th SIGMOD Int.
Conf. on Management of Data, Providence, Rhode Island, USA, 2009,
pp. 269-282.

[6] J. Fischer, D. Marino, R. Majumdar et al., “Fine-Grained Access
Control with Object-Sensitive Roles,” in 23rd ECOOP - European
Conference on Object-Oriented Programming, Italy, 2009, pp. 173-
194.

[7] Q. Wang, T. Yu, N. Li et al., “On the correctness criteria of fine-
grained access control in relational databases,” in 33rd Int. Conf. on
Very Large Data Bases, Vienna, Austria, 2007, pp. 555-566.

[8] W. Gary, G. Carl, S. Zhendong et al., “Static checking of dynamically
generated queries in database applications,” ACM Transansactions on
Software Eng. Methodology, vol. 16, no. 4, pp. 14:01-14:27, 2007, doi:
http://doi.acm.org/10.1145/1276933.1276935.

[9] B. Hicks, S. Rueda, D. King et al., “An architecture for enforcing end-
to-end access control over web applications,” in 15th ACM
symposium on Access Control Models and Technologies, Pittsburgh,
Pennsylvania, USA, 2010, pp. 163-172.

[10] S. Rizvi, A. Mendelzon, S. Sudarshan et al., “Extending Query
Rewriting Techniques for Fine-grained Access Control,” in ACM
SIGMOD Int. Conf. on Management of Data, Paris, France, 2004, pp.
551-562.

[11] K. LeFevre, R. Agrawal, V. Ercegovac et al., “Limiting disclosure in
hippocratic databases,” in 30th Int. Conf. on Very Large Databases,
Toronto, Canada, 2004, pp. 108-119.

[12] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for
automatically enforcing privacy policies,” SIGPLAN Not., vol. 47, no.
1, pp. 85-96, 2012, doi: 10.1145/2103621.2103669.

[13] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, " ACADA - Access
Control-driven Architecture with Dynamic Adaptation," in SEKE -
24th Intl. Conf. on Software Engineering and Knowledge Engineering,
San Francisco, CA, USA, 2012, pp. 387-393.

[14] M. I. Y. d. Valle, A. Mana, J. Lopez et al., “Secure Content
Distribution for Digital Libraries,” in Proceedings of the 5th
International Conference on Asian Digital Libraries: Digital Libraries:
People, Knowledge, and Technology, 2002, pp. 483-494.

[15] J. Lopez, A. Mana, and M. I. Y. d. Valle, “XML-Based Distributed
Access Control System,” in Proceedings of the Third International
Conference on E-Commerce and Web Technologies, 2002, pp. 203-
213.

[16] M. Parsian, JDBC Recipes: A Problem-Solution Approach, NY, USA:
Apress, 2005.

[17] B. Christian, and K. Gavin, Hibernate in Action: Manning Publications
Co., 2004.

[18] C. Pablo, M. Sergey, and A. Atul, "ADO.NET entity framework:
raising the level of abstraction in data programming," in ACM
SIGMOD International Conference on Management of Data,
Beijing,China, 2007, pp. 1070-1072.

[19] M. Erik, B. Brian, and B. Gavin, “LINQ: Reconciling Object,
Relations and XML in the .NET framework,” in ACM SIGMOD Intl
Conf on Management of Data, Chicago,IL,USA, 2006, pp. 706-706.

[20] ISO. "ISO/IEC 9075-3:2003," [2011 May;
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134.

[21] Microsoft. "Microsoft Open Database Connectivity," Jul, 2012;
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx.

[22] G. Mead, and A. Boehm, ADO.NET 4 Database Programming with C#
2010, USA: Mike Murach & Associates, Inc., 2011.

[23] D. Kulkarni, L. Bolognese, M. Warren et al., "LINQ to SQL: .NET
Language-Integrated Query for Relational Data," Microsoft.

[24] D. Yang, Java Persistence with JPA, pp. 390: Outskirts Press, 2010.
[25] Oracle. "ResultSet," Jul, 2012;

http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html.
[26] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, "A Concurrent Tuple

Set Architecture for Call Level Interfaces," in ICIS - 12th IEEE/ACIS
International Conference on Computer and Information Science,
Niigata,Japan, 2013, pp. (accepted).

[27] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, "Assessment of a
Enhanced ResultSet Component for Accessing Relational Databases,"
in ICSTE-Int. Conf. on Software Technology and Engineering, Puerto
Rico, 2010, pp. V1:194-201.

8

Exploring Architectural Design Decision Management Paradigms
for Global Software Development

Meiru Che, Dewayne E. Perry

Department of Electrical & Computer Engineering
The University of Texas at Austin

Austin, Texas, USA
meiruche@utexas.edu, perry@mail.utexas.edu

Abstract—Global software development (GSD) is an increas-
ing trend in the field of software engineering. It can be
considered as coordinated activities of software development
that are geographically and temporally distributed. The man-
agement of architectural knowledge, specifically, architectural
design decisions (ADDs), becomes important in GSD due to
the geographical, temporal, and cultural challenges in global
environment. However, little work has be done on capturing,
sharing, and evolving ADDs in a GSD context. Based on
our previous work on ADD management in localized soft-
ware development (LSD), we extend our study to explore
ADD management paradigms for GSD in this paper. We
propose three ADD management strategies for the distributed
development environment, and according to global software
project structures, we explore and analyze three typical ADD
management paradigms that can be widely adopted in GSD. We
aim to provide a fundamental framework on managing ADD
documentation and evolution in GSD, and offer good insights
into sharing and coordinating ADDs in a global setting.

Keywords-architectural design decisions; global software de-
velopment; architectural knowledge; documentation; evolution

I. INTRODUCTION

Global software development (GSD) is an increasing fo-

cus in the field of software engineering. It can be considered

as the coordinated activities of software development that are

not localized and centralized but geographically and tempo-

rally distributed [14]. In GSD, software teams work together

at geographically separated locations to accomplish software

projects. Thus, global teams face challenges associated with

the coordination of their work due to different locations,

time zones, languages, and cultures. In order to cope with

different challenges in the globalization of software devel-

opment, communication, as well as coordination, a number

of approaches have been proposed in different domains of

GSD [1]. However, little attention has been paid to software

architecting processes and software architectural knowledge

management in the context of GSD. Similar to localized

software projects, software architecting and architectural

knowledge are important to support designing, developing,

testing, and evolving software. We note, however, that in the

global development of large complex systems, architecture

plays an even more critical role in the structure of the project

[13]. Therefore, managing and coordinating architectural

knowledge such as architectural design decisions (ADDs)

is a significant and also relatively new research problem in

the context of GSD.

Perry and Wolf considered the selection of elements and

their form to be ADDs, and the justification for these

decisions to be found in the rationale [20]. It was not

until 2004, with Boschs paper [5] at the European Work-

shop on Software Architecture, that software architecture

has generally come to be considered as a set of ADDs.

This specific focus on ADDs led to a broader focus on

architectural knowledge [19]. Capturing and representing

ADDs helps to organize architectural knowledge and reduce

its evaporation, thus providing a better control on many

fundamental architectural drift and erosion problems [20] in

the software life cycle. In a globally distributed software

environment, the documenting and sharing of ADDs can

serve to support the complex collaboration and coordination

needs of software projects. With the increasing trends of

further globalization of software development, managing

ADDs in GSD becomes a much more critical task than in a

localized environment.

In our previous work on ADD management, we had an

overall goal of providing a systematic approach that supports

ADD documentation and evolution in a localized software

development (LSD) context. Based on this, we intend to fo-

cus on involving ADD management in a global development

environment in this paper. Since little work has been done on

ADD documentation and evolution in GSD, we are going to

discuss several ADD management strategies for multi-site

software projects, and then explore the typical paradigms

for ADD management in global software projects. We aim

to provide a fundamental framework for managing ADDs

in the context of GSD, and offer insights into architectural

knowledge documentation and evolution for researchers and

practitioners in the field of software architecture.

II. LOCALIZED ADD MANAGEMENT APPROACH

This section briefly introduces our previous work on ADD

documentation and evolution in a localized software project

context. We give an overview of the basic approach to

9

Figure 1. Triple View Model Framework

managing ADDs, which provides a foundation for exploring

ADD paradigms in GSD.

A. Triple View Model

To capture and document the ADD set in a software

project, we propose the Triple View Model (TVM) to

clarify the notion of ADDs and to cover key features in

an architecting process [7].

The TVM is defined by three views: the element view,

the constraint view, and the intent view. This is analogous

to Perry/Wolf models elements, form, and rationale but with

expanded content and specific representations [20]. Each

view in the TVM is a subset of ADDs, and the three

views together constitute an entire ADD set. Specifically,

the three views mean three different aspects when creating

an architecture, i.e., “what”, “how”, and “why”, as shown

in Fig. 1. The three aspects aim to cover design decisions

on “what” elements should be selected in an architecture,

“how” these elements combine and interact with each other,

and “why” a certain decision is made. The detailed contents

of each view in the TVM are illustrated in Fig. 2.

In the element view, the ADDs describe “what” elements

should be selected in an architecting process. We define

computation elements, data elements, and connector ele-

ments in this view. Computation elements represent pro-

cesses, services, and interfaces in a software system. Data

elements indicate data accessed by computation elements.

Both computation elements and data elements are regarded

as components in software architecture, and connector ele-

ments are (at minimum) communication channels (that is,

mechanisms to capture interactions) between those compo-

nents in the architecture.

In the constraint view, the ADDs are defined as behaviors,

properties, and relationships. They describe constraints on

system operations and are typically derived from require-

ment specifications. Specifically, behaviors illustrate what a

system should do and what it should not do in general. It

specifies prescriptions and proscriptions based on require-

ment specifications and other system drivers. Properties are

defined as constraints on a single element in the element

view, and relationships are constraints on interactions and

configurations among different elements.

Figure 3. The Process of the Scenario-Based Method

The ADDs in the intent view are composed of rationale

and best-practices in an architecting process. Rationale,

which includes alternatives, motivations, trade-offs, justifica-

tions and reasons, is generated when analyzing and justifying

every decision that is made. Best-practices are styles and

patterns we choose for system architecture and design. The

architectural decisions in the intent view mainly exist as tacit

knowledge [24].

B. Scenario-based ADD Documentation and Evolution

The TVM is the foundation of ADD documentation and

evolution. Based on the TVM, we define the scenario-based

ADD documentation and evolution method (SceMethod) [7].

In the SceMethod, we aim to obtain and specify the

element view, constraint view, and intent view through end-

user scenarios, which are represented by Message Sequence

Charts (MSCs) [21]. Figure 3 illustrates the SceMethod

process. At the beginning of the architectural design process,

we obtain initial ADD results. Later on, as the requirements

change, the ADDs are evolved and refined according to

the new or updated requirements. By documenting all the

possible ADDs and evolving these decisions with changing

requirements, the SceMethod effectively makes ADDs ex-

plicit and reduces architectural knowledge evaporation.

Basically, we have the following four steps in the

SceMethod to derive ADDs in a software project. For the

sake of brevity, we will not discuss the detailed process of

each step, but just give a brief introduction. We have the full

description in [8].

1) Initialization: Before applying the TVM to end-user

scenarios, the requirements of the software system are

elicited, then we use MSCs to describe both the positive and

negative scenarios. An MSC is composed of agent instances,

interaction messages, and the timelines of the agents.

2) From MSC Syntax to Element View: We derive the

element view directly from the syntax of MSCs. Specifically,

each agent instance is taken as a computation element, and

from the interaction messages between the source and target

agent instances, we can extract data elements accessed by

computation elements. Connector elements serve as commu-

nication channels between computation elements. Therefore,

the element view is derived as follows:

10

Figure 2. Triple View Model for Architectural Design Decisions

Computation Elements = {Agent Instances}
Data Elements = {Interaction Messages}
Connector Elements = {Channels between Agents}
3) From MSC Semantics to Constraint View: Based on

the semantics of MSCs, we analyze behavior, properties, and

relationships of the goal system to document ADDs in the

constraint view. The ADDs on the behavior of the system

are documented as:
Behavior = {Prescriptions; Proscriptions}
Prescriptions = {Positive Scenarios}
Proscriptions = {Negative Scenarios; Exceptions}
In addition, we use three factors to define properties, and

we adopt simple path expressions to illustrate the interacted

events in the MSCs to specify relationships:
Properties = {Receive; Issue; Check}
Relationships = {Event Traces by Path Expressions}
4) Intent View Documentation: Since decision making

strategies are usually behind stakeholders’ thoughts, the

intent view cannot be derived directly from MSCs, which

make it difficult to define a formal specification for docu-

menting the intent view. The best way to make the intent

explicit is to record decision making strategies as the archi-

tecting process moves forward. Specifically, answering each

question that occurs to the stakeholders in the architecting

and designing phase is helpful to constitute the ADDs in

the intent view. Besides, architectural styles, architectural

patterns and design patterns that we apply as best-practices

should also be recorded as design decisions in the intent

view.
Rationale = {Answers to The Intent-Related Questions}
Best-Practices = {Architectural/Design Styles and Patterns}

III. MULTI-SITE ADD MANAGEMENT STRATEGY

As mentioned previously, the TVM and the SceMethod

are the foundation of architectural knowledge management

in GSD. However, managing ADDs in GSD becomes more

difficult and complex than in LSD. On the one hand,

the capturing and the documenting on ADDs are not just

Table I
MULTI-SITE ADD MANAGEMENT STRATEGIES

Strategy ADD Management Mechanism

Client-Server
Strategy

Centralized ADD documentation on the
headquarters site;
Centralized ADD evolution on the headquarters site;
Central repository is set up to store ADD knowledge
information from the headquarters site;
Central repository is accessed by all the sites.

Hybrid
Strategy

Individual ADD documentation on each local site;
Individual ADD evolution on each local site;
Central repository is set up to store ADD knowledge
information from each local site;
Central repository is accessed by all the sites.

Incremental
Strategy

Individual ADD documentation on site 1;
Individual ADD evolution on site 1;
ADD knowledge on site 1 is transferred to site 2;
Individual ADD documentation on site 2;
Individual ADD evolution on site 2;
ADD knowledge on site 2 is transferred to site 3;

.

.
ADD knowledge on site n-1 is transferred to site n;
Individual ADD documentation on site n;
Individual ADD evolution on site n.

within a centralized environment, but considered for multi-

site teams distributed geographically and temporally. On

the other hand, the communication and the exchange of

ADDs have a significant impact on the coordination of

the distributed teams, and further, influence the subsequent

analysis, design and implementation of global projects.

In order to support ADD management in GSD projects,

we propose three different strategies for managing the doc-

umentation and the evolution of ADDs in a distributed con-

text, and discuss how distributed sites coordinate with each

other to share and maintain consistent architectural knowl-

edge. The three strategies for multi-site ADD management

are client-server strategy, hybrid strategy, and incremental

strategy respectively. Table I describes the detailed ADD

management mechanism for each strategy.

In the client-server strategy, one site in the global software

teams is considered as the headquarters, and it is responsible

for the entire process of ADD documentation and evolution

11

in the global software project. Therefore, all the tasks on

ADD documentation and evolution are conducted in the

headquarters, which is similar to a localized software project

context. In addition, a central repository is set up in the

headquarters site to record and store the up-to-date ADDs,

so that all the other sites can access the repository to share

and reuse the ADDs through the global context. We term

this strategy the client-server strategy because architectural

knowledge resides in a central repository (as the server) and

is accessed by all the distributed sites (as the clients).

In the hybrid strategy, every individual site manages

architectural knowledge in a localized context, i.e., each site

in the GSD project documents and evolves its own ADDs

that are derived from its local architecting process. However,

a central repository is also set up in one of the GSD sites

for storing and sharing architectural knowledge throughout

all the global teams. The repository is accessed by all the

sites in the global project, and by this means, different sites

can share and reuse ADD knowledge, or even reapply ADD

knowledge in a different context. We term this strategy the

hybrid strategy because it combines both the local ADD

management and the global architectural knowledge sharing

and reusing.

In the incremental strategy, the ADD management mech-

anism is analogous to the incremental development, i.e.,

on site 1, it manages the local ADD documentation and

evolution process, and stores all the architectural knowledge

in its local site. When site 1 derives all the ADD knowledge,

it transfers the ADDs to site 2. Site 2 manages its local

ADD documentation and evolution as well, and moreover,

it combines the ADD information from site 1 into a larger

ADD set. Similarly, when site 2 derives all the ADD

knowledge, it transfers the ADDs to site 3, which follows the

same way as site 1 and 2. In this strategy, each site captures

ADDs in a certain context of the global project, and the final

goal is that we are able to have a fully complete ADD set

through the incremental documenting and evolving process.

IV. ADD MANAGEMENT PARADIGMS IN GSD

In this section, we aim to explore the typical ADD man-

agement paradigms in GSD. First, we introduce three main

software project structures adopted in a global development

context, then we discuss the corresponding paradigm that is

specific to each project structure.

A. Global Software Project Structures

Since global software projects very often have to deal

with large and complex software systems, and development

activities are performed by geographically different teams,

the structure of a global software project plays a significant

role in GSD. A good structure provides an effective way to

organize the GSD project across multiple development sites,

and in the meantime, it also offers a platform for managing

the resources on both the development and the organizational

activities.

A large number of possible ways to structure the GSD

projects have been adopted. The main structures widely used

are product-based structure, process-based structure, and

release-based structure [3]. In addition, platform-based struc-

ture, competence-based structure, and open source structure

are also often considered in GSD [3]. In this paper, the

focus is on the first three typical structures to address ADD

management in GSD.

In a product-based structure, a global system is decom-

posed into different components based on its requirement

specification. Different components are then allocated as

work items to different global teams. In a process-based
structure, work items are allocated across different teams

in accordance with the development phases of a software

project. Specifically, we may allocate requirement, design,

development, and test to different sites, and each site focuses

on the tasks in the specific phase. As for the release-based
structure, each site is responsible for a different release of

the project, i.e., the first product release is developed on site

1, the second release is developed on site 2, and the third on

site 3. In most cases, the releases are overlapped on different

sites due to the timing requirement from customers.

B. ADD Management Paradigms

Given the foregoing discussion, we are going to explore

and discuss three different paradigms for managing ADDs

in GSD, which are specific to the three widely used software

project structures.

1) Product-based Paradigm (Product-based Structure /
Hybrid Strategy): For product-based structures in GSD,

the system is decomposed into components and the com-

ponents are allocated to distributed sites, thus each site

conducts its own architecting process locally focusing on

the functionality of the allocated components. During the

architecting process in each local site, ADDs can be captured

and documented by using the TVM and the SceMethod.

We adopt the hybrid strategy to manage ADDs in the GSD

projects with product-based structures. Figure 4 illustrates

this paradigm in details.

As shown in Fig. 4, each site manages ADD documenta-

tion and ADD evolution locally according to the SceMethod

and the TVM that we discussed in localized software

projects. In addition, one of the global sites is selected as

the headquarters and needs to set up a central repository

for recording and storing the architectural decisions, which

enables the geographically distributed sites to share ADDs

in the global context. Each site can access the central repos-

itory, check in their local ADDs to the repository, and even

read and reuse the ADDs from other sites when necessary.

The headquarters site with the central repository coordinates

the architectural knowledge in the repository and keep them

consistent without conflicts. During the evolutionary process,

12

Figure 4. Product-based Paradigm in GSD

Figure 5. Process-based Paradigm in GSD

the evolved ADDs from each site are also transferred to the

central repository. As we discussed for the hybrid strategy,

the multiple sites in GSD manage architectural decisions

not only within their local sites, but also with a central

coordination to share and reuse architectural knowledge.

2) Process-based Paradigm (Process-based Structure /
Client-Server Strategy): For the process-based structures

in GSD, it is appropriate to use client-server strategy for

managing ADDs. The reason is that the architecting process

mainly occurs in the architecture phase, and all the other sub-

sequent development phases, i.e., the design, development,

and testing phases, are largely considered as the clients who

access the ADDs that are derived in the architecture phase.

Therefore, the client-server strategy provides us suitable

support for GSD projects with process-based structures. We

describe this paradigm in Fig. 5.

In Fig. 5, we note that the architecting process is con-

ducted in the site with architecture phase, relying on our

TVM and SceMethod to derive the entire ADD set. More-

over, a repository is set up in the same site to manage

architectural knowledge documentation and evolution. This

repository is also regarded as a central repository among the

global teams, and all the other sites access the repository

for sharing and reusing ADDs in the specific development

phases. In some cases, the subsequent development phases,

such as design phase, may also come up with new ADDs

as the process proceeds. However, we do not deal with this

kind of exceptions for now, but only explore the general

paradigms that are normally used in GSD. More implications

and exceptions will be addressed in our future work.

3) Release-based Paradigm (Release-based Structure /
Incremental Strategy): The third paradigm that we are going

to explore and analyze is for GSD projects with the release-

Figure 6. Release-based Paradigm in GSD

based structures. In release-based structures, different prod-

uct releases are allocated to different sites, so that each

site handles all the development activities for the assigned

release. It is obvious that in this paradigm each site derives

its ADD set locally, and maintain ADD documentation and

evolution in its local repository. Note that we do not need to

create a central repository as the previous two paradigms,

but only use each local repository for the architectural

knowledge management.

As illustrated in Fig. 6, each repository plays an impor-

tant role in establishing a bridge to transfer architectural

knowledge, which complies with the mechanism in our

incremental strategy. Typically, the ADDs from the first site

are transferred to the second site, so that the architectural

knowledge from the first product release can be reused

efficiently in the next release. In the release-based structure,

the multiple releases contain similar or even the same func-

tionalities and product features, which implies that the ADDs

derived from different releases may have similarities as well.

By adopting the incremental strategy in this paradigm, each

repository can serve as a reused ADD pool, and the latter

site is easy to combine, reuse, or even modify the ADDs

derived from the former site.

V. RELATED WORK

The key concepts of the traditional view on software

architecture are components and connectors [4], [20]. Nowa-

days, software architecture has been seen as a set of ADDs

[16], [23]. The architectural decisions in the software archi-

tecting process are increasingly focused by researchers and

practitioners [12], [18], and ADDs are also considered to be

a part of architectural knowledge [19].

Guidelines for documenting software architecture has

been provided in [9], [15], however, those documentation

approaches do not explicitly capture ADDs in the architect-

ing process. Recently, many models and tools have been

proposed for capturing, managing, and sharing ADDs, most

of which are discussed and used within a localized software

development context. Tyrees template [25] provides a simple

13

document describing key architectural decisions, which es-

tablishes a concrete direction for design and implementation,

and also clarifies the rationale for different stakeholders.

In [19], an ontology of ADDs and their relationships have

been described. This ontology then can be used to construct

architectural knowledge of a software system. ADDSS [6]

is a web-based tool for documenting ADDs. It establishes

the backward and forward traceability between requirements,

decisions, and architectures. Other models and tools such

as Archium [17] and AREL [22] are also proposed for

managing ADDs
With the increasing attention paid to GSD, ADD man-

agement should be able to effectively applied in a GSD

setting as well. However, little work has be done on ADD

management in the GSD environment. A few of general ar-

chitectural knowledge management practices for GSD have

been proposed in [10], and the usefulness of these practices

are evaluated in [11]. Furthermore, a literature review has

been done [2] to explore architectural knowledge in a GSD

context, and to synthesize architectural knowledge concepts,

practices, tools and challenges that are important in GSD. In

[26], six architectural viewpoints are defined to model GSD

systems, which are based on a metamodel that has been

derived after a thorough domain analysis of GSD literature.
Notably, architectural knowledge, specifically, ADDs, has

not been widely discussed and supported in GSD, and the

aforementioned approaches do not address in detail how

to capture, share, and evolve ADDs in a global software

project. In this paper, our goal is to provide a fundamental

framework on managing ADDs in the GSD context.

VI. CONCLUSIONS AND FUTURE WORK

With the increasing trend of GSD, the management of

ADDs becomes more significant and critical due to the

geographical, temporal, and cultural challenges innate to

GSD. In this paper, we propose three different strategies

for managing ADDs within multiple distributed development

sites. Based on this, we explore three typical ADD manage-

ment paradigms that can be widely used in GSD, and provide

a high-level methodology on how to manage the documenta-

tion and the evolution of ADDs in the GSD context. In our

future work, we plan to perform field studies to evaluate

the ADD management paradigms in GSD projects. We also

intend to investigate problems and implications for ADD

management to provide insights into architectural knowledge

management in GSD.

REFERENCES

[1] First Workshop on Architecture in Global Software
Engineering. Helsinki, Finland, August 2011.
Http://www.cs.bilkent.edu.tr/AGSE-2011/.

[2] N. Ali, S. Beecham, and I. Mistrik. Architectural knowledge
management in global software development: A review. In
ICGSE’10, pages 347–352, 2010.

[3] A. Avritzer, D. Paulish, and Y. Cai. Coordination implications
of software architecture in a global software development
project. In WICSA ’08, pages 107–116, 2008.

[4] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice. Addison-Wesley, Boston, MA, USA, 1998.

[5] J. Bosch. Software architecture: The next step. In EWSA’04,
pages 194–199, 2004.

[6] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas. A web-based
tool for managing architectural design decisions. SIGSOFT
Softw. Eng. Notes, 31, September 2006.

[7] M. Che and D. E. Perry. Scenario-based architectural design
decisions documentation and evolution. In ECBS’11, pages
216–225, 2011.

[8] M. Che and D. E. Perry. Managing architectural design
decisions documentation and evolution. International Journal
Of Computers, 6:137–148, 2012.

[9] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little. Documenting Software Architectures: Views and
Beyond. Pearson Education, 2002.

[10] V. Clerc. Towards architectural knowledge management
practices for global software development. In SHARK’08,
pages 23–28, 2008.

[11] V. Clerc, P. Lago, and H. v. Vliet. The usefulness of
architectural knowledge management practices in gsd. In
ICGSE’09, pages 73–82, 2009.

[12] J. C. Dueñas and R. Capilla. The decision view of software
architecture. In EWSA’05, pages 222–230, 2005.

[13] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography
of coordination: dealing with distance in r&d work. In
GROUP ’99, pages 306–315, 1999.

[14] J. D. Herbsleb. Global software engineering: The future of
socio-technical coordination. In FOSE, pages 188–198, 2007.

[15] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[16] A. Jansen and J. Bosch. Software architecture as a set of
architectural design decisions. In WICSA, pages 109–120,
2005.

[17] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer.
Tool support for architectural decisions. In WICSA, page 4,
2007.

[18] P. Kruchten, R. Capilla, and J. C. Dueñas. The decision view’s
role in software architecture practice. IEEE Softw., 26:36–42,
March 2009.

[19] P. Kruchten, P. Lago, and H. V. Vliet. Building up and
reasoning about architectural knowledge. In Quality of
Software Architectures, pages 43–58, 2006.

[20] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17:40–
52, October 1992.

[21] D. M. A. Reniers. Message sequence chart: Syntax and
semantics. Technical report, Faculty of Mathematics and
Computing, 1998.

[22] A. Tang, Y. Jin, and J. Han. A rationale-based architecture
model for design traceability and reasoning. J. Syst. Softw.,
80:918–934, June 2007.

[23] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 2009.

[24] D. Tofan. Tacit architectural knowledge. In ECSA’10, pages
9–11, 2010.

[25] J. Tyree and A. Akerman. Architecture decisions: Demysti-
fying architecture. IEEE Softw., 22:19–27, March 2005.

[26] B. M. Yildiz and B. Tekinerdogan. Architectural viewpoints
for global software development. In ICGSE, pages 9–16,
2011.

14

A Semantic-based Semi-automated Role Mapping Mechanism

Lijuan Diao

East China Normal University, China

Lijuan_diao@126.com

Wei She, I-Ling Yen

Univ. of Texas at Dallas

{wxs061000, ilyen}@utdallas.edu

Junzhong Gu

East China Normal University, China

jzgu@ica.stc.sh.cn

Abstract. Role based access control (RBAC) has been widely

adopted in industrial and government. However RBAC is only

suitable for closed enterprise environment. With modern

Internet based application, collaboration and sharing among

multiple organizations become essential and RBAC is no longer

sufficient. Role mapping has been the solution to deal with

multiple domains, where the roles in the hierarchy of one

organization are mapped to the roles in the hierarchy of another

organization. But role mapping can be a tedious task for the

security officers if it is done fully manually. Yet, performing role

mapping automatically incur security risks.

In this paper, we introduce a semi-automated role mapping

process, where promising role mappings are generated

automatically and recommended to the security officer(s). The

security officers then approve or modify the recommended role

mappings. We present a method for automatically generate role

mappings based on the similarities of the roles in two role

hierarchies. We use an example to illustrate our approach and

show its feasibility.

Keywords: role-based access control, role mapping, concept

extraction, role similarity.

I. INTRODUCTION

With the rapid proliferation of Internet technologies,

sharing and collaboration have become the common

paradigm in the new, globalized cyber world. For example,

cloud provides large-scale sharing of hardware, software, and

services and facilitates collaboration among them. Federated

data warehousing offers information sharing. Applications,

such as globalized supply chains, emergency response,

distributed design, etc., require a wide range of sharing and

collaboration. These sharing and collaborations raise security

concerns. Proper access control and security defenses should

be in place to assure that certain resources are only viewed,

used, or modified by the entities who are intended to be

allowed to view, use, or modify those resources.

There have been significant advances in access control

technologies over the last two decades. In the early era, basic

access control schemes, such as access control matrix and

capability lists, have been used. From late 90s, role-based

access control (RBAC) becomes the major paradigm,

especially for large enterprises and organizations. Role

hierarchy semantically reflects the structure of authorities

and responsibilities of the personnel in an organization and,

hence, the access rights can be defined accordingly. Also,

compared to other access control models, RBAC can greatly

cut down the cost for access control policy specifications.

Most of the traditional access control models, including

RBAC, are developed on the basis of a closed system where

the users, roles, activities, and the protected resources are

well defined. These access control models cannot be directly

applied to multi-domain systems, where cross domain

accesses cannot always be properly defined in advance.

Attribute-based access control (ABAC) is another access

control model that has been extensively investigated in recent

years. ABAC are suitable for the open systems where

requesters (users and processes) are rarely pre-known to the

access control module. Attribute-based access control can be

regarded as a natural extension of many conventional access

control models (e.g. multi-level security model, role-based

model, etc.), and is highly expressive. However, the cost of

policy specification and decision making in ABAC greatly

depends on the set of attributes selected for the involved

domains (e.g. its size). Moreover, there is no well formed

standard for attribute-based models yet, and, thus, are hard to

be put to use in practice.

Cross domain role mapping is another potential solution to

achieve access control in multi-domain systems. It extends

the RBAC model and maps the roles of foreign collaborative

domains into the local roles of each domain [1-5]. There are

two approaches in role mapping. First, a trusted mediator can

be used to integrate the role hierarchies of two interacting

domains [1,3]. Since the access rights defined in the global

role hierarchy may have conflicts with the access control

requirements of the individual domains, these works focus on

conflict resolution and optimization of role mappings.

Generally, the mediator-based approaches have scalability

problems and require a fully trusted mediator to perform the

integration. In [3-5], mediator-free solutions are proposed to

secure cross-domain interactions. They do not perform the

integration of the hierarchies. They record all the

inter-domain mappings that are activated to enable the access,

and deny the access when there is a conflict.

In existing role mapping approaches [1-5], the association

of roles from different domains is done solely by security

officers. Such manual process can be tedious and lack of

agility. In some applications, the role mapping may be

required on demand. For example, in an emergency response

scenario, new parties may come to the aid due to special

needs in special circumstances, and they will need immediate

information and resources sharing with all assisting teams. In

order to assure proper access control, role mappings among

the new and the existing organizations need to be done

dynamically in real-time. Thus, a certain degree of

automation is needed in order to achieve timely role

mappings. However, security is a serious issue and

automation is definitely not a full solution. Thus a rigorous

15

process should be defined such that automated analysis can

be done to come up with “recommendations” of role

mappings to cut the cost and time for role mapping. Security

officers of the involved domains should verify and validate

the recommendations to assure proper access control policy

definition and enforcement.

The automated role mapping generation process is based

on similarity of roles. It extracts key concepts for each role.

Based on the key concepts, the basic similarity between two

roles is computed. Conceptually, the position of the role in

the role hierarchy, i.e., the parents and children of the role,

also provides plenty of information about what the role is.

Thus, we also consider the role hierarchy in the similarity

metric for the roles. Based on an aggregated similarity

measures between roles, role mappings are generated and

recommended. Such recommendation of role mappings can

be altered individually or system-wide to improve its

flexibility. Also, the recommendation can help security

officers and cut down the time and efforts for role mappings.

The rest of this paper is organized as follows. Section II

provides a running example to illustrate the role mapping

process. Section III discusses the semi-automated role

mapping process and the corresponding system architecture.

Section IV presents the role mapping recommendations for

the example role hierarchies. Section V states the conclusion

of the paper.

II. A RUNNING EXAMPLE

Figure 1. The role hierarchies of two health care systems.

Health care systems contain numerous private data and are

frequently considered in security research. We take example

role hierarchies of two health care systems as the running

examples (Figure 1). In Figure 1 (a), the role hierarchy of a

hospital (only showing a partial set of roles) and the names

and descriptions of the roles are given in Table 1. Figure 1 (b)

shows the role hierarchy of a long-term care nursing home

(LCNH). The roles, names and descriptions of the roles in the

LCNH are given in Table 2.

Role Role Name Part of role description

�
��

 Hospital

President

The president of a hospital.

In charge of doctors, nurses, pharmacists,

administration of the hospital

�
��

 Surgical

Dept Head

The head of the surgical department.

In charge of surgeons who perform surgeries,

nurses, surgical facilities

�
��

 OB/Gyn

Dept Head

The head of the obstetricians and gynecologists.

In charge of the doctors, nurses, and facilities

�
��

 Pharmacist

Dept Head

Head of the pharmacists

In charge of pharmacists, prescriptions, drugs

�
��

 Head Nurse Head of the nurses

In charge of nurses, nurse hospitalized patients,

patient care, assist doctors

�
��

 Surgeon Doctor who performs surgical operations

�
��

 Medical

Intern

Medical_intern is an advanced student or

graduate in medicine gaining supervised practical

experience (`houseman' is a British term)

�
�	

 Surgical

Nurse

Nurse, specialized to take care of patients after

surgery, knowledgeable in cleaning wound,

removing surgical threads, IV and other injection,

simple medical checks, such as blood pressure,

body temperature.

�
�

Medical

Technicians

Operate special medical devices, perform

medical tests, and interpret the results.

Examples include radiology tech, cardiology tech

Table1. The roles and their descriptions in the hospital case.

Role Role Name Part of role description

�
��

 LCNH

Director

The director of the long-term care nursing home.

In charge of nurses and facilities in the nursing

home, administrations, correspondence with

medical director for health and care advices.

�
��

 Medical

Director

The doctor provides long-term care advices, is

involved at all levels of care and supervision for

the individual patients in the LCNH.

�
��

 Nursing

Director

Head of the nurses.

Manage nurses for all long-term care patients.

�
��

 Visiting

Doctor

The doctor that provides regular visits to the

LCNH, assessing health conditions of patients.

�
��

 Physical

Therapist

Develop physical therapy programs for individual

patients, such as exercises, equipment assisted

exercises, massage, evaluate patient progress in

physical conditions.

�
��

 Nurse Take care of patients, perform needed care,

injections, simple medical checks, such as blood

pressure, body temperature.

Table2. The roles and their descriptions in the NCNH case.

Our goal is to perform semi-automated role mappings for

the two role hierarchies. More specifically, we plan to

recommend role mappings based on similarities between pairs

of roles. For example, role �
��

, which is a nursing director

role in NCNH can very likely be mapped to �
��

, the nursing

director in the hospital role hierarchy.

In RBAC, permissions are assigned to roles to grant their

accesses to various resources. There may be a large number of

permissions in a real system. In Table 3, we list a few

example permissions for the hospital, including the

permission IDs and the functional descriptions of the

permissions.

Permission ID Function description

�
�
 Record the nursing care information of patients

�
�
 View medicine information of patients

�
�
 Need to prepare and dispense drugs

�
�

 View diagnoses of patient

�
�

 Responsibility for curing the patient in the ear

�
�

 Check the operation information of the patient

Table 3. The example permissions list for the hospital.

The example permissions given in Table 3 are assigned to

the roles in the hospital role hierarchy. �
��

 has permission

��
�
� . Also, �

��
, �

��
 and �

��
 have permissions ��

�
� ,

��
�
��

�
��

�
� �, and ��

�
�, respectively.

R
11

R
12

R
13

R
14

R
16

R
15

R
17

R
18

R
19

(a) (b)

R
21

R
22

R
23

R
24

R
25

R
26

16

III. SEMI-AUTOMATED ROLE MAPPING PROCESS

A. The Role Mapping Manager

We consider having a role mapping manager (RMM) in

each domain to manage role mapping related tasks. RMM

includes a role mapping recommender (RMR), a role

mapping approver (RMA), a role mapping management unit

(RMMU), a role mapping approval interface (RMAI), and a

role mapping activation manager (RMAM). The architecture

of RMM is shown in Figure 2.

Figure 2. Architecture of the role mapping manager.

RMR. In a collaborative task, the roles of domain � that

need to access some resources in domain � need to be

mapped to domain �. To ease the task, the role mapping

recommender (RMR) automatically generates potential

cross-domain mappings for the involved roles and prepares

them for approval. Since role mappings involve multiple

domains, the RMRs of the involved domains need to work

together to generate the role mappings. In Section IV, we

discuss the techniques for generating role mapping

recommendations.

RMAI. To assure security, each role mapping generated

by RMR, say ��
	

� �
�

�
�, which maps a role in a domain � to

a role in domain �, needs to be manually approved by the

SOs of domain �. Some mappings may only require the

approval by one SO and more critical mappings may require

the approval by additional SOs. The approval policy

specifies such approval requirements. Once a mapping

��
	

� �
�

�
� is approved, it is sent to the RMMU and stored in

the cross-domain role mapping database (CDRMDB) with an

approval signature.

RMMU. RMMU manages the cross-domain role

mappings in its database. The role mappings approved

manually are stored in the regular database while the role

mappings approved automatically are stored in a tagged

database. Other entities in the system can retrieve the role

mappings through RMMU. RMMU also provides tools and

interfaces for the security officers to define role mappings

manually and to modify and/or remove cross-domain role

mappings in the database.

RMAM. The cross-domain role mappings stored in the

regular database of the RMMU are deactivated by default.

When a specific collaborative task (e.g., the execution of a

workflow, etc.) occurs, RMAM activates a set of cross-

domain role mappings and resolve the potential conflicts

among them to facilitate the execution and proper data

accesses of the task.

B. The Role Mapping Process

With the RMM architecture, the semi-automated role

mapping process for generating cross-domain role mappings

from domain � to domain � include:

1) The RMR in domain � identifies the roles in domain �

that may need to access some data and other resources in

domain � in potential collaborative tasks. It then sends a

role mapping request with all the identified roles to the

RMR in domain �.

2) Upon receiving the role mapping request, for each role

�

 in the request, the RMR in domain � searches its

role hierarchy for a similar role to it, say �
�

�

. In this step,

RMR may perform semantic similarity analysis between

�

 and �
�

�

 and trust analysis of domain � and the

involved entities in domain �.

3) The RMR in domain � , after generated the list of

recommended cross-domain role mappings, passes them

to the RMAI for approval. RMAI notify the security

officers regarding the approval request. The SO (or SOs)

of domain B goes through the role mappings using

RMAI’s GUI tools to view these mappings and makes the

approval decisions.

4) The list of approved mappings is returned to domain �.

C. Automated role mapping Analysis

We use semantic technologies to find similar roles in

different domains and use the information to recommend

potential role mappings between two domains.

We use the information in the role hierarchy, role

description, and role responsibility as input to perform

concept extraction, similarity derivation, etc.

1) Concept Extraction

We build the concept set of each role from the role

description, role responsibility, and property in the OWL

based role model [6]. Various concept extraction methods

have been introduced in the literature [7]. Most of these

methods are statistical based and require a significant amount

of input data in order to extract special features such as

paragraph features, thematic word features, uppercase word

features, etc.

We develop a simple matrix-based analysis method for

concept extraction from various descriptions related to each

role in the OWL-based role model. The detailed approach

can be found in [8]. We apply the approach to derive the

concept sets for the roles in the hospital and the NCNH role

hierarchies, and parts of the results are given in Tables 4 and

5.

Security Officer(s)

RMAM CDRM

DB

Activated

Role

Mappings

RMR RMMU

Session

RMAI

Role Mapping

Approval Policy

Role Hierarchy

Specifications

Role Mapping

 Policy

17

Role Concept

�
��

Hospital President, administrator, doctors, nurses

�
��

 Surgical Dept Head, surgeons, doctor, director

�
��

 Head nurse, nurse, patient care

… …..

Table 4. The concept list in the hospital case.

Role Concept

�
��

 Long-term care nursing home, director, administrator

�
��

 Medical Director, doctor

�
��

 Nursing Director, nurse, patient assistance, elderly care

… …

Table 5. The concept list in the NCNH case.

2) Similarity between Roles

We use two independent metrics to define the similarities

between roles. The first metric defines the similarity between

the concept sets of the roles. Concept is a group of

semantically equivalent or very similar words. The concept

of the roles provides the general level of agreement in the use

of words for describing the roles and detects equivalent

words that are likely to have been used to refer to similar

roles in different domains. Similarities in the concept of two

roles can be used as a basic similarity assessment approach to

detect equivalent or synonymous roles, which may be an

inconclusive form of similarity assessment because roles in

two domains may be very different in terms of their role

names, descriptions and responsibilities. Note that the role

hierarchies also carry important information which can be

used to help with similarity assessment. Thus, our second

similarity metric attempts to incorporate semantics into the

similarity measure by using distinguishing features as

another indicator of how similar roles are. Due to space limit,

the detailed similarity definitions are omitted here and

readers can find the information in [8].

IV. ROLE MAPPING RECOMMENDATION FOR

 THE EXAMPLE ROLE HIERARCHIES

We derive the similarities between the roles from the

NCNH role hierarchy to the hospital role hierarchy. For each

role, the pair with the maximal similarity is chosen to be the

recommended role mapping. The result mapping

recommendations are illustrated in Figure 3.

Similarity between roles may not be the only factor to be

considered for role mapping. Security officers can specify

various mapping policies to guild the automated mapping

recommendation process. For example, consider mapping

roles from domain � to domain �. The trust level of each

role from domain � can be matched against the criticality of

the roles in the local domain � following the mapping

policy. Also, specific permissions required for the

collaborative tasks can be analyzed and specified in advance

to guild the mapping with least privileges. Since the methods

for evaluating the additional metrics that may be used in the

role mapping recommendation process is not in the scope of

this paper, we do not consider it here.

Figure 3. The role mapping recommendations for the example case.

V. CONCLUSIONS

In this paper, we introduce an automated role mapping

recommendation process to help generate recommended role

mappings between two domains to ease the role mapping

task that is to be perform by the security officers manually.

The approach in this paper focuses on using the semantic

similarities between roles to determine the role mappings.

We plan to investigate additional metrics that are frequently

considered by security officers in determining role mappings

and develop techniques to evaluate these metrics to guide the

automated role mapping recommendation process.

VI. ACKNOWLEDGMENT

This research is supported in part by the NSF IUCRC on

Net-Centric Systems and its industrial membership, by the

Shanghai Scientific Development Foundation with Grant No.

11530700300, and by the China Scholarship Council. We

thank our sponsors for their support.

VII. REFERENCES

[1] B. Shafiq, J.B.D. Joshi, E. Bertino, A. Ghafoor, “Secure interoperation

in a multidomain environment employing RBAC policies,” IEEE

TKDE, vol. 17, no. 11, pp. 1557-1577, 2005.

[2] P.A. Bonatti, M.L. Sapino, V.S. Subrahmanian, “Merging

heterogeneous security orderings,” European Symposium on Research

in Computer Security, pp. 183-197, 1996.

[3] M. Shehab, E. Bertino, A. Ghafoor, “Secure collaboration in

mediator-free environments,” ACM CCS, pp. 58-67, 2005.

[4] S. Dawson, S. Qian, P. Samarati, “Providing security and

interoperation of heterogeneous systems,” Distributed and Parallel

Databases, vol. 8, pp. 119-145, 2000.

[5] W. She, I-L. Yen, F.B. Bastani, B. Tran, B. Thuraisingham,

“Role-based integrated access control and data provenance for SOA

based net-centric systems,” IEEE SOSE, pp. 225-234, 2011.

[6] J. Kupiec, J. Pedersen, F. Chen, “A trainable document summarizer,”

ACM SIGIR Conference on Research and Development in Information

Retrieval, pp. 68-73 , 1995.

[7] Tadashi Nomoto and Yuji Matsumoto, “A new approach to

unsupervised text summarization,” ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 26-34, 2001.

[8] L. Diao, W. She, I-L Yen, J. Gu, “A semantic-based Semi-automated

role mapping mechanism,” Tech. Rep. UTDCS-10-13.

R
11

R
12

R
13

R
14

R
16

R
15

R
17

R
18

R
19

(a) (b)

R
21

R
22

R
23

R
24

R
25

R
26

18

Detecting Portability Issues in Model-Driven BPEL Mappings

Jörg Lenhard and Guido Wirtz

Distributed Systems Group, University of Bamberg
An der Weberei 5, 96047 Bamberg, Germany

E-mail: {joerg.lenhard | guido.wirtz}@uni-bamberg.de

Abstract

Service orchestration languages, like the Web Services
Business Process Execution Language (BPEL), have been
frequently used to provide an implementation platform for
model-driven development approaches. As avoidance of
vendor lock-in and portability of process definitions are
central aims of BPEL, most approaches claim to support
a large set of different runtime environments. But, even
though today various runtimes for BPEL are available, ev-
ery runtime implements a different language subset, thus
hampering portability. Our idea is to improve this situa-
tion by using techniques, the Web Services Interoperability
Organization (WS-I) has used to improve services interop-
erability. We describe a portability profile for BPEL that
can detect portability issues in process definitions. Using
this profile, we evaluate the portability of BPEL mappings
used in several model-driven development approaches.

Keywords: SOA, BPEL, portability, profile, mapping

1. Introduction
Software portability is the ability to move software from

one runtime platform to another without having to rewrite

it fully or in part. It is a central characteristic of soft-

ware quality [5]. Next to interoperability, it is also one

of the core aims of service-oriented processes [6]. Being

an OASIS standard that describes an open and platform-

independent XML language for programming executable

processes based on services, BPEL [8] is a main driver

of services portability. For this reason, it is used as ex-

ecution language in various model-driven mappings, such

as [10, 12]. In these mappings, higher level and generally

more abstract process or domain models, such as business

process models, are transformed into executable BPEL code

in the form of one or more process definitions. Through

their property of being portable, BPEL process definitions

enable these approaches to work on many different systems.

Shared standards are the basis for interoperability and

portability of applications that run on heterogeneous plat-

forms. However, these characteristics are difficult to

achieve. Various case studies [7, 13] show that interoper-

ability of heterogeneous systems still is limited. In the Web

Services ecosystem, the WS-I is established as the main

driver of interoperability. Its working mode is to define pro-

files which are standard documents that describe restrictions

and assertions on existing standards, such as the basic pro-
file 2.0 [14]. Such assertions delimit the expressiveness of

a standard or clarify the interpretation of it with the aim of

making implementations more likely to interoperate. Al-

though this approach does not guarantee interoperability, it

relieves the problem and is accepted in practice.

Whereas the WS-I profiles deal with enforcing interop-

erability, portability has been neglected so far. The idea we

present in this paper is to apply the concept of profiles from

the area of services interoperability to the area of services
portability. We address BPEL, as it is designed to build

portable and executable programs. In previous work [4],

we could show that current runtimes for BPEL (i.e., BPEL

engines) implement different parts of the specification and

the portability of process definitions among them is prob-

lematic. Here, we present a portability profile for BPEL

that works similar to WS-I profiles [14] and addresses com-

mon portability issues. The issues are identified through an

extensive benchmark of current engines. Using the profile,

we can detect portability limitations in approaches that use

a model-driven mapping to BPEL [9, 10, 12].

In the next section, we outline related work and in the

following present the BPEL Portability Profile, focusing on

the test assertions defined by it. Thereafter we discuss is-

sues in model-driven approaches using BPEL. Finally, we

summarize the paper and present areas of future work.

2. Related Work
Related work separates in approaches that try to mitigate

portability issues in BPEL and work on BPEL mappings.

[1] also identifies the problem of portability among dif-

ferent BPEL engines which is ascribed to the informality of

the specification and resulting ambiguities. The authors ad-

dress the problem by defining the language Blite which en-

19

hances BPEL with a formal definition and refines the behav-

ior of problematic constructs. Blite programs can be com-

piled to executable BPEL code for a specific runtime [1].

Such an approach can preempt portability errors, but re-

quires the usage and understanding of another language on-

top of BPEL, which in the case of a formal notation can be

hard to learn. We do not define a new language, but provide

assertions based on empirical data that can be used to detect

portability issues in existing code.

Being an open international standard, BPEL has been

used as target language in numerous model-driven map-

pings. A well-known one is part of the Business Process

Model and Notation (BPMN) [9]. This is a standard de-

veloped by the OMG for modeling and visualizing several

perspectives of business processes. It defines a notation

for process models and a mapping of these process mod-

els to executable BPEL code. Since BPMN 2.0, this map-

ping is updated to the most recent revision of BPEL [9, pp.

445–474]. Before that, academic approaches tried to map

BPMN 1.0 to BPEL 2.0 [10].

In service-oriented computing, a notable distinction of

process models is made between orchestration and choreo-

graphy models [11]. Choreography models describe a

global view on a distributed process between multiple au-

tonomous parties. In a model-driven setting, a local exe-

cutable process for each of the different parties can auto-

matically be derived from the global choreography. Such

a local service-oriented process is called an orchestration.

An example of a choreography to BPEL mapping is given

in [12] based on the ebXML Business Process Specification

Schema (ebXML BPSS).

3. The BPEL Portability Profile

The BPEL portability profile follows the scheme of the

WS-I profiles [14]. It defines test assertions that can be seen

as invariants of the standard specification [8]. Each test as-

sertion defines a normative requirement of the profile that

should be adhered to, if the goal of the profile (in this case

portability of the code) is to be reached.

The assertions for the profile are based on data of an

analysis of the BPEL conformance of a large set of BPEL

engines [4]. The conformance assessment was performed

using the tool betsy1 [3]. The benchmark in this paper com-

prises seven engines: ActiveBPEL, bpel-g, Apache ODE,

OpenESB BPEL Service Engine, Easy BPEL, Orchestra,

and the engine of a leading middleware vendor whose name

we cannot disclose for licensing reasons. The conformance

test produces a data set indicating the support for every fea-

ture of the language specification by each engine. Based

1Betsy is a conformance testing tool for BPEL. For more information,

see the project page: https://github.com/uniba-dsg/betsy.

Betsy is also used in [4], but here we consider a larger number of engines.

on this, it is possible to calculate the relative proportion to

which each feature of the language is supported by today’s

runtimes. For each feature that is not fully supported by all

engines and the usage of which might consequently result

in a portability issue, a test assertion can be derived. These

test assertions in turn enable the identification of portability

issues in process definitions.

Test Assertions: Test assertions follow a predefined

structure and contain several decisive elements. For the

WS-I profiles and tools, not all test assertions are testable,

because for several assertions the required information can-

not be collected with the tools. The assertions of this pro-

file base on the structure of process definitions only and as

a consequence all assertions are testable. We defined and

implemented a test assertion for every feature of the speci-

fication that was not supported by all engines under test. In

total, this amounts to almost 70 assertions, each checking

for the usage of specific BPEL elements or activities, their

combination, or their configuration. Assertions that check

for similar aspects, such as the usage of toParts and

fromParts, are grouped together. The testing is based

on XPath 2.0 expressions, similar to the mechanism used

by WS-I profiles. Each assertion defines such an expres-

sion which selects all elements in the code that violate the

criterion the assertion is checking. Based on the amount of

engines that do not support a given feature, a test assertion

can be classified according to a level of severity. The lower

the amount of engines that support a feature, the more of a

barrier to portability this feature will be.

The assertions are specified in the XML format for asser-

tions defined by the WS-I. Crucial elements are the target
and predicate which are both XPath 2.0 expressions. The

target selects all elements in a process definition that vio-

late the test assertion. This is necessary for being able to

produce a list of all violations of an assertion when using

the profile. The predicate determines whether on evalua-

tion the assertion as a whole is counted as passed, which is

the case if there are no elements found by the target. The

diagnostic part specifies the severity of the test assertion.

Portability Levels: Based on the severity of the test as-

sertions violated, it is possible to classify a process defi-

nition into different levels. This classification can be used

to discriminate high-quality process definitions in terms of

their portability from low-quality ones. We define the porta-

bility levels i) portable, ii) widely portable, iii) partially
portable, iv) limited portability, and v) nonportable.

The severity, Sev(ta), of an assertion ta depends on the

degree of support of the feature, S(ta), tested by the asser-

tion. If all engines support a feature, it is fully portable.

If at least 80 % of all engines support the feature, which

can be considered an acceptable level of portability [2], it

is classified as widely portable. If less than 80 %, but more

than 50 % support the feature, it is classified as partially

20

portable. If less than 50 %, but more than one engine sup-

port the feature, which here amounts to at least 16 %, it is

classified as being of limited portability. Finally, if only a

single or no engine supports the feature, it is classified as

nonportable.

Sev(ta) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Portable, if S(ta) = 100%

Widely Portable, else if S(ta) ≥ 80%

Partially Portable, else if S(ta) ≥ 50%

Limited Portability, else if S(ta) ≥ 16%

Nonportable, otherwise

The classification, Level(p), of a mapping or process

definition p depends on the severity of the test assertions

that it violates. The set V is the set of assertions vio-

lated by p and NV is its size. Effectively, a process defi-

nition is assigned to the portability level of the most severe

test assertion it violates. It is classified as portable only if

no issues could be detected. This means, if all violations

that are found concern test assertions of the severity widely
portable, then the complete process definition is assigned

to this level. If there is a single violation of the level non-
portable, then the complete process definition is classified

as nonportable.

Level(p) = max
i=1...NV

(Sev(tai)) where tai ∈ V

The Bpp Tool: We have implemented the assertions and

classification in the bpp tool2. The tool is written in Java

and takes fragments of BPEL code, being complete process

definitions or not, as input. The test assertions are encoded

in it, and can be printed in the schema of a WS-I profile. At

runtime, bpp checks each test assertion for the input code

and records violations. Finally, the tool produces reports

that conform to the WS-I report schema.

4. Evaluation of BPEL Mappings

In the following, we discuss issues in mappings from

BPMN 1.0 [10], BPMN 2.0 [9, pp. 445–474], and ebXML

BPSS [12] to BPEL.

4.1. BPMN 1.0

A notable contribution in the area of BPMN to BPEL

mappings is [10] which focuses on revision 1.0 of BPMN,

but claims to map to the up-to-date revision of BPEL.

BPMN 1.0 on the other hand maps to an outdated version of

BPEL. The mapping in [10] takes the form of BPMN con-

structs that are translated to fragments of BPEL code and

two examples of complete mappings.

2For more information and a description on how to use the tool, see the

project page: https://github.com/uniba-dsg/bpp. The BPEL

fragments that underpin the discussion in section 4 are included as well.

Issues: The approach focuses on a control-flow oriented

mapping to BPEL and omits several details. Whereas miss-

ing namespaces can be easily fixed, a missing declaration

on how data handling works (i.e., by referencing variables

or using the parts syntax) is problematic when it comes

to the portability of the mapping. The parts syntax for

dealing with data in BPEL is rarely supported, so the under-

specification of data handling results in a portability issue

here. A more severe problem is that the mapping uses ele-

ments unknown to BPEL 2.0 to direct the flow of control, as

for example the if-case elements in the order fulfillment

process mapping. These elements seem to be a variation

of the BPEL 1.0 switch-case activity and their usage

renders the mapping nonportable. Issues of minor severity

in the mapping are the usage of links in the flow activ-

ity, as for example in the order fulfillment process mapping,

which are only partially supported. A minority of engines

does not support the flow activity, onAlarm timeout han-

dlers and onMessage handlers when used in a pick.

Discussion: The severe issues in this mapping can be

fixed by using the syntax defined by BPEL. By enhancing

the mapping with a definition of how data items are han-

dled in invoke activities, also this issue can be tackled.

The usage of links is a crucial aspect of the mapping, so

replacing it is likely to be a non-goal, even if it limits its

portability.

4.2. BPMN 2.0

In revision 2.0 of BPMN, the mapping to BPEL is up-

dated to the most recent revision of the specification [9,

pp. 445–474]. The mapping describes elements of BPMN

process diagrams and presents a fragment of BPEL code

for each element. We analyzed each code fragment sepa-

rately and, barring spelling errors in the BPMN specifica-

tion, could detect portability issues in half of these code

fragments. None of them are classified as nonportable, but

25 % of the issues are of limited portability.

Issues: One issue that reduces the overall mapping to

limited portability are the fragments for the send and ser-

vice tasks [9, pp. 448/449] and message end events [9, p.

457]. Similar to the mapping in [10], theses mappings use

an invoke activity in BPEL, but do omit data flow and,

therefore, fail to specify for instance an inputVariable.

Depending on the Web Service operation that is invoked,

this is legal in BPEL, but omiting variables is not sup-

ported by a majority of the engines. The data associations

mapping [9, pp. 467/468] readdresses this issue, but uses

the from- and toParts syntax of BPEL to assign vari-

ables instead of assign activities, which is also rarely sup-

ported. Areas of partial portability in the mapping are com-

pensation intermediate events and compensation end events

[9, pp. 457/458] which both use the compensate or the

compensateScope activity. Error end events [9, pp.

21

Table 1. Summary of Portability Issues
Mapping Classification Major Issues Minor Issues

BPMN 1.0 [10] nonportable non-BPEL elements, data handling timeout handling, links

BPMN 2.0 [9] limited portability data handling, usage of parts-syntax compensation, links, timeout handling

ebXML BPSS [12] widely portable – timeout handling

457/458] are mapped to a throw. The interpretation of this

activity, in case it is used to terminate a process instance,

varies among engines. Another problematic part is the map-

ping of message handlers [9, p. 452] and message boundary

events [9, pp. 458/459] which map to onMessage event

handlers of a BPEL scope. While such event handlers

are widely supported when used in pick activities, this is

not the case when they are attached to a scope. Finally,

the mapping of error boundary events [9, p. 459], multiple

boundary events [9, pp. 460/461], and the inclusive decision

pattern [9, p. 463] use links, partly in combination with

transitionConditions, to direct the flow of control

which is only of partial portability. Minor issues in the map-

ping are timeout handlers in event sub-processes [9, p. 452]

and the exclusive event-based decision pattern [9, p. 462]

which use onAlarm event handlers and timer intermediate

events [9, p. 456] which rely on the wait activity. These

timing-related activities are unsupported in a minority of

engines. Also, the forEach activity, used in the multi-

instances mapping [9, p. 455], is not ubiquitous.

Discussion: The main portability problems in the map-

ping result from data handling, either from not specifying it

or from using a syntax that is only of limited portability. The

more critical issues could be resolved by using assign ac-

tivities instead of the parts syntax in BPEL.

4.3. ebXML BPSS

[12] defines a mapping from the ebXML Business Pro-

cess Specification Schema to BPEL. The models trans-

lated are state-machine-based choreography definitions and

BPEL fragments for translating states are presented.

Disussion: Only few issues could be detected in the

mapping. No nonportable, limited, or partially portable el-

ements were found, so the overall classification of the ap-

proach is widely portable. The only issues relate to timeout

handling, implemented through onAlarm event handlers

which are not supported by all, but by a majority of engines.

4.4. Summary

Table 1 summarizes the results from the previous sec-

tions. Portability issues could be detected in all mappings

and two out of three produce BPEL code that will only be

executable on a minority of today’s BPEL engines. The

most severe issues in the mappings relate to data handling

which can be expressed in several different ways in BPEL,

of which only a subset is widely supported.

5. Outlook and Future Work
In this paper, we proposed a mechanism for detecting

portability issues in BPEL code, applied it to three model-

driven development approaches that target the language,

and made recommendations on how to fix detected issues.

Future work centers on two areas: Improving the porta-

bility profile by gathering more data on BPEL support and

complementing the qualitative assessment here with a quan-

titative one based on formally defined portability metrics.

References

[1] L. Cesari, A. Lapadula, R. Pugliese, and F. Tiezzi. A tool for

rapid development of ws-bpel applications. In ACM SAC,
Sierre, Switzerland, March 22-26 2010.

[2] M. Glinz. A Risk-Based, Value-Oriented Approach to Qual-

ity Requirements. IEEE Computer, 25(8):34–41, 2008.
[3] S. Harrer and J. Lenhard. Betsy – A BPEL Engine Test Sys-

tem. Bamberger Beiträge zur WI und AI, no. 90, University

of Bamberg, July 2012.
[4] S. Harrer, J. Lenhard, and G. Wirtz. BPEL Conformance

in Open Source Engines. In IEEE SOCA, Taipei, Taiwan,

December 17-19 2012. IEEE.
[5] ISO/IEC. Systems and software engineering – System and

software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models, 2011. 25010:2011.

[6] R. Khalaf, A. Keller, and F. Leymann. Business processes

for Web Services: Principles and applications. IBM Systems
Journal, 45(2):425–446, 2006.

[7] S. Kolb, J. Lenhard, and G. Wirtz. Bridging the Hetero-

geneity of Orchestrations - A Petri Net-based Integration of

BPEL and Windows Workflow. In IEEE SOCA, Taipei, Tai-

wan, December 17-19 2012. IEEE.
[8] OASIS. Web Services Business Process Execution Lan-

guage, April 2007. v2.0.
[9] OMG. Business Process Model and Notation (BPMN) Ver-

sion 2.0, January 2011.
[10] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter

Hofstede, and J. Mendling. From Business Process Models

to Process-Oriented Software Systems. ACM Transactions
on Software Engineering and Methodology, 19(2), 2009.

[11] C. Peltz. Web Services Orchestration and Choreography.

IEEE Computer, 36(10):46–52, October 2003.
[12] A. Schönberger, C. Pflügler, and G. Wirtz. Translating

Shared State Based ebXML BPSS models to WS-BPEL.

IJBIDM, 5(4), 2010.
[13] A. Schönberger, J. Schwalb, and G. Wirtz. Interoperability

and Functionality of WS-* Implementations. International
Journal of Web Services Research, 9(3):1–22, 2012.

[14] WS-I. Basic Profile Version 2.0, November 2010.

22

Introducing Software Process Specification to Task
Context

Ivens da S. Portugal, Toacy C. Oliveira
COPPE/UFRJ – Federal University of Rio de Janeiro (UFRJ)

Rio de Janeiro – RJ - Brazil
ivens@cos.ufrj.br, toacy@cos.ufrj.br

Abstract—A Software Development Process is used as a guideline
to the development of a Software Product, from its conception to
its delivery and maintenance. Depending on the complexity of the
Software Process, a large number of artifacts must be handled by
the Software Engineer. However, despite the sheer number of
available artifacts, only a subset of such artifacts is used to
complete a particular activity within the software process. As a
result, typical Process-Centered Software Engineering
Environments must restrict the access to unnecessary artifacts
based on the current process context thus avoiding errors and
information overflow. The Degree of Interest (DOI) function is a
mechanism that is used to infer the importance of an element
related to the ambient it is inserted. Currently, the Mylyn plugin
uses the DOI function to infer the artifact’s relevance based on
how the user manipulates files in the Eclipse Environment but
overlooking the Software Process in which such artifacts are
inserted. This work presents an extension to the Mylyn’s DOI
function to incorporate software process’ context information to
discover the relevance of a given artifact.

software development process, software process, software
process execution, Degree of Interest, task context

I. INTRODUCTION
A Software Development Process (SDP) is a structure used

by Software Engineers during the development of a software
product. Basically, a SDP helps them to define what activities
should be done, as well as the order, and provide an easy and
simple way of communication between all stakeholders [1]..

Depending on the complexity of the SDP and the Software
Product under development, the software process execution can
contain a large number of interrelated activities and artifacts
[4]. For example, the Rational Unified Process (RUP1)
specifies more than a hundred activities and artifacts that can
easily overwhelm the developers with unneeded information.
Due to such great amount of activities and artifacts, a Software
Engineer must search, within several artifacts, those of interest,
to perform a particular activity. The task of searching those
artifacts can be tiring, error-prone and time-consuming. Some
effort will be put into the act of looking for artifacts rather than
to the act of completing the activity being executed. Once the
Software Engineer has the relevant artifacts on his workspace,
he can perform the activity.

Besides, the execution of an activity can be interrupted by
the execution of another activity with higher priority. It means

that the Software Engineer should close the artifacts related to
the first activity while performing another search to retrieve the
artifacts related to the new interrupting activity. When that new
activity is finished, the Software Engineer then closes the
artifacts related to this activity and search the artifacts for the
first activity. The process of changing activities demands
attention and especially time. Software Engineer spends a
considerable amount of time searching artifacts, which reduces
the time he/she effectively spends working. This leads to a
decrease in their productivity [10].

A solution for these two problems, searching for proper
artifacts and switching activities, is the utilization of a Degree-
of-Interest (DOI) function to create what is called a context for
the activity. An activity context relates each activity with the
most relevant artifacts required in its execution. The
relationships are established by calculating a value of interest
for each artifact used in the execution of a particular activity.
The more selected and edited an artifact is, the more important
it is for that activity. As a result, artifacts with high interest
(more manipulated) are added to the related context. On the
other hand, low interest artifacts can be omitted from Software
Engineer's view. A current implementation of the DOI function
can be found in Mylyn [9] where tasks are associated with Java
files within the Eclipse Integrated Development Environment.

An important drawback to the current DOI function is its
obliviousness to the SDP the activities should follow. As a
result, establishing the initial context of an activity is difficult
due to the lack of information on artifact manipulation when
starting an activity. Moreover, without process knowledge, it is
hard to use DOI for other types of artifacts than Java files since
Java conforms to a precise structure from where some relations
can be inferred (e.g. import and class extension relationships).

In this work we propose an extension to the Mylyn’s DOI
function and its associated environment to add SDP awareness.
We do this by modifying the DOI function to take into account
the activity-artifact relations that are present in most software
processes specifications such as RUP and SCRUM. We have
also adapted the Mylyn plugin to import a process
specification. The final adaptation is called MylynSDP.

This work is organized as follows. Section 2 presents
Related Work. In Section 3, we introduce the idea discussed in
this paper as well as the MylynSDP’s implementation. Section
4 draws some conclusion related to this work.

1 http://www-01.ibm.com/software/awdtools/rup/ verified on May 10,
2013

23

II. RELATED WORK

A. Task Context
During the development of a Software product, a

programmer may face an Integrated Development Environment
(IDE) full of classes and methods that belong to the project. In
order to perform a task, such as implementing a new
functionality for the system under construction, he/she often
must consult a set of classes or methods, so he can come up
with ideas and strategies to the implementation. The problem is
that this set of classes and methods relevant to the task being
performed is too small compared to the set of classes and
methods available for use. Due to this, the programmer may
spend a great amount of time to gather the relevant classes and
so perform the required task [10][7].

The problem of creating a task context, described above,
has been under investigation by scientists of British Columbia
University, in Canada, since 2005. These studies led to the
construction of a tool for programmers to help them retrieve
relevant classes to the task at hand, called Mylyn [9]. Mylyn is
a plugin for the IDE Eclipse that associates a development task
to the Java classes, its methods and variables. Mylyn has a DOI
function, which can set an interest value for each class, method
or variable based on the programmer's interaction with the
code. The most used classes have higher interest, which means
that should be in the context of the task being performed. After
setting the interest value for some classes, Mylyn's DOI
function can omit some classes from the programmer's view
(those with lower interest value) and help him focus on the
most important classes. Table I describes the types of
programmer’s interactions that are recognized.

TABLE I. MYLYN’S INTERACTION EVENT TYPES

Interaction Event Type Description

Selection Select an artifact via mouse or keyboard

Edition Textual or graphical edits

Command Operations like save, compile, build

Propagation Interaction affects other classes,
methods or variables

Prediction Possible future interactions

Mylyn is aware of the fact that a programmer's task can be
interrupted either by another task with a higher priority or
because the programmer's need to close the IDE and continue
the task later. In both situations, the context of the task would
be lost if Mylyn did not persisted the context to disk. This
action allows the programmer to interrupt a task’s execution,
either by stopping it or switching contexts, and consequently
switching tasks, without the need of retrieving the activity's
context again later, which increases his/her productivity

Unfortunately, Mylyn's DOI function and other features are
aimed to programming activities only. This corresponds to just
one part of the whole software development process. A good
approach would be to expand these features and cover the
whole software process, by dealing with all activities and all
artifacts present in the software process.

B. Process-Centered Software Engineering Environment
A Process-Centered Software Engineering Environment

(PSEE) is a software development environment that allows a
Software Engineer to design and execute a software process. In
other words, a PSEE supports software process enactment. A
PSEE can provide ways of managing the Software Process by
being aware of the duration of the activities, its end dates and
what artifacts are being used and produced [2][8]. An extensive
study of PSEE characterization has been made in [11].

The concept of associating Software Process' activities and
artifacts, concerning their importance, in order to construct a
context for the activity has been used in a project called
WebAPSEE [3][5][6]. WebAPSEE is a PSEE aimed at
providing automation and flexibility of Software Process
management. To achieve this, WebAPSEE allows the Software
Engineer to design and execute the Software Process. It also
provides other features such as process reuse, artifact version
control and business reports generation.

WebAPSEE maintains a repository of Artifacts that is
consulted when constructing the context of an Activity.
Unfortunately, task contexts in WebAPSEE are manually
defined. If any new artifacts are created in the specification,
task contexts need to be manually updated. The same happens
when an activity is added to the software process specification.

Another relevant PSEE is called TABA Station [12].
TABA is a meta-environment able to generate software
development environments based on a software process
specification. By doing this, a Software Engineer can manage
the execution of the Software Process within an environment
suitable for his/her needs. When instantiating an environment,
TABA creates a repository where the software process’
artifacts are stored. Unfortunately, as in WebAPSEE, the
Software Engineer must associate artifacts and activities to
build the contexts manually although this context is already
described in the software process specification. An important
drawback of this PSEE is related to process flexibilization.
Whenever a change is made in the software process
specification, the environment generated must be recreated.

Some other PSEEs are RedMine1 and Rational Team
Concert (RTC)2.

III. MYLYNSDP

A. Overview
Depending on the complexity of the Software Process, it

can contain a large number of activities and artifacts. In
addition to this, as discussed in previous sections, a Software
Engineer can possibly switch from one activity to another,
which leads to the time-consuming job of reconstructing the
context of the activity. The objective of this study is to help
Software Engineers to be more productive by reducing the time
spent with the search for artifacts to construct the context of an
activity. In order to achieve that, Mylyn project and features
were extended, which led to the implementation of an
application named MylynSDP.

In this paper, and throughout the code of MylynSDP, each
job that should be executed by the Software Engineer is called

1 http://www.redmine.org verified on May 10, 2013
2 http;//www.ibm.com/software/rational/products/rtc/ verified on May 10,

2013

1

24

an Activity. In addition, the documents used in the process are
named Artifacts. However, during the execution of the
Software Process, every activity is referred to as a Task.
Artifacts remain being called Artifacts. Also, formally, the set
of Artifacts a Software Engineer needs to complete a Task is
called a Task Context.

The application described in this paper is aimed to work on
Eclipse IDE1 (as Mylyn is). After importing the Software
Process specification and creating the desired artifacts and
tasks, the main interface will look like Figure 1. Tasks are
shown in the right panel (Figure 1-a), artifacts are shown in the
left panel (Figure 1-b) and the central panel is the working area
(Figure 1-c). The main idea is to omit irrelevant artifacts when
a Software Engineer activates a task, as shown in the second
window of Figure 1.

Figure 1. MylynSDP’s Main Interface. When a task is selected, only a those
artifacts related to that task are shown

MylynSDP, described in this paper, has 4 main parts:
Software Process Specification Import Mechanism; Saving
Mechanism; Restore Mechanism; and DOI function. Each of
them is explained in the following sections.

B. Software Process Specification Import Mechanism
Initially, MylynSDP imports an XML file with the written

specification of the Software Process. The Import Mechanism
perform three actions: (1) it process the XML file to gather
information about the activities and artifacts, (2) it copies
Process specification to the workspace for later use and (3) it
transform the XML file being imported to a format that Mylyn
understands, so it can continue the import and can create the
space needed for the management of tasks and artifacts.

During the execution of a Software Process, an activity can
be performed more than once. To perform an activity, it should
be instantiated into a task. Due to this, it is said that an activity

is a type of a task. Artifacts present in the Software Process
specification do not fully represent the set of artifacts that is
actually being used in the execution. For example, while a
system can have 30 different real Use Case documents, they
will be represented as one single artifact element in the
software process specification. Because of this, it is said that
the artifacts in the software process specification document are
a type for the artifacts used in the execution of the Software
Process. From now on, this paper will treat activities and
artifacts presented in the Software Process specification as
types for Tasks and Artifacts of the Software Process
execution, respectively.

C. Restore Mechanism
From this moment, the Software Engineer can create

activities as well as artifacts. There is a new Wizard for each of
the actions. Artifacts are simple text files but created in a
different manner, so that a type of artifact can be associated and
persisted to disk by the Restore Mechanism.

In order to create a task, the Software Engineer follows the
local task creation process in Mylyn, but when setting the
parameters for the task, such as its name, there is a section to
fill in the type of the task, i.e. the associated activity. The
Restore Mechanism saves both name and type of the new task
to disk. It is important to note that both artifacts and activities
types are based on the Software Process specification imported
earlier.

As the Software Process specification already defines
which artifacts are associated with an activity, the context of a
particular task (instance of an activity) can be initially inferred.
This is done by consulting the Software Process specification
already imported whenever a task is created. A similar action
happens when creating a new artifact, so it can be put on the
suitable already created task contexts.

D. Saving Mechanism
The original Mylyn's Saving Mechanism's objective is to

persist to disk information about the interest value associated
with each file, along with the actions performed by the Mylyn's
user. As explained on section Section II - A, Mylyn maps five
types of interactions: Selection, Edition, Command,
Propagation and Prediction. A new type of interaction is being
introduced: the Specification interaction. It was created to
handle the case where an interest value should be increased for
a particular artifact because it initially belongs to a context.

Modifications made to the Saving Mechanism are small and
mainly related to the ability of saving a new type of interaction
in the interaction history.

E. DOI function
Each interaction event with a particular artifact increases

that artifact's interest related to the task being executed. In
addition, the interest value will decrease when interaction
events are happening to other artifacts.

Mylyn do not store all interaction events being performed
by the Software Engineer. Instead, it saves the ordinal number
of the interaction event performed at the creation of the artifact.

25

This is done so that Mylyn can save disk storage space. When
the next interaction event happens, the comparison between the
two numbers, (1) the ordinal number associated with the new
event and (2) the ordinal number related to the interaction event
performed on the creation of that artifact, will allow the DOI
function to calculate the decay value of the interest value.

The DOI algorithm, shown Figure 2, that calculates the
interest value associated with the artifacts of a task context is
divided into three parts: (1) the event registration, (2) the
encoded value calculation and (3) the decay value calculation.
When an interaction event happens to a particular artifact,
"updateEventState()" method is called. It just increments the
number of selections, edits or any other interaction event type
that was performed on that artifact. Later, when needed,
Mylyn, and so MylynSDP, calls "getValue()" method to
retrieve the interest value for an artifact in a task context.

The first step is to calculate the number of ‘selection’,
‘edition’ and ‘command’ interaction events registered so far
times a constant associated with each interaction event type.
The "specificationBias" variable is a zero-or-one value that
indicates if that artifact initially belongs to the current task
context based on the Software Process specification. If so, the
value of 200 is added to the interest value, which will certainly
put this artifact into the current task’s context. The value 200 is
arbitrary and was reached by testing the code and calibrating it.
The "getDecayValue()" method is then called to calculate the
decrease of the interest based on how many interaction events
were applied since the creation of that artifact. Finally,
"getValue()" method returns the interest value for a particular
artifact in a task context.

Figure 2. Degree of Interest function’s code.

IV. CONCLUSION
In this paper, a new way of interacting with a Software

Process Execution's artifacts was described. By selecting a task
to be performed, the Software Engineer is presented with the
most relevant artifacts related to the task activated instead of all
artifacts. This smaller set of artifacts is called the task context.
As the Software Engineer executes the task, he handles some of
the artifacts of the task context. The more an artifact is used,

the more it is relevant to the task execution and the more it is
likely to remain on that task context. In addition, the less an
artifact is used, the less it is important to the execution, and the
less it is likely to be on that task context.

The initial context of any task is defined based on the
Software Process specification. The idea of filtering the
visualization of the Software Process Execution’s artifacts by
grouping them into task context is based in Mylyn's approach
to help programmers that deals with a large number of classes
in a project. The idea described has two main advantages, both
related to the search of artifacts. The first is that a Software
Engineer no longer needs to spend much time to build a context
to complete a task’s execution. The second advantage is related
to the task change, and consequently the context change. The
Software Engineer does not need to reconstruct the task context
after every task switch. The framework helps him by persisting
the task context to disk and retrieving it when needed.

All the ideas discussed in this paper were implemented as an
Eclipse's Mylyn extension, which was then named MylynSDP.
A validation project is about to be conducted to verify and
validate all the concepts presented in this paper.

REFERENCES

[1] A. Fuggetta, “Software process: a roadmap,” in Proceedings of the ICSE
Conference on the Future of Software, pp. 25-34, 2000.

[2] A. Fuggetta and C. Ghezzi, “State of the art and open issues in process-
centered software engineering environments,” in Journal of Systems and
Software, vol. 26, 1994, pp.53-60.

[3] A. Lima, A. Costa, B. França, C. A. L. Reis and R. Q. Reis, “Gerência
flexível de processos de software com o ambiente WebAPSEE,” in 20th
Software Engineer Brazilian Symposium – Frameworks Session,
Florianópolis – Brazil, 2006.

[4] B. Bruegge, A. D. Lucia, F. Fasano and G. Tortora, “Supporting
distributed software development with fine-grained artefact
management,” in Proceedings of the IEEE International Conference on
Global Software Engineering, pp. 213-222, 2006.

[5] C. A. L. Reis and R. Q. Reis, “Laboratório de engenharia de software e
inteligência artificial: construção do ambiente WebAPSEE,” in
ProQuality, vol. 3, UFLA, 2007, pp. 43-48.

[6] E. Sales, C. L. Reis and R. Q. Reis, “Apoio à gerência de artefatos de
software integrado a execução de processos de software,” in 22nd
Software Engineer Brazilian Symposium, 2008.

[7] G. Murphy, “Attacking information overload in software development,”
in IEEE Symposium of Visual Languages and Human-Centric
Computing, 2009.

[8] G. H. Travassos and A. R. Rocha, “O Modelo de Integração de
Ferramentas da Estação TABA”, Ph.D. Thesis, 1994

[9] I. M. Gimenes, “Uma introdução ao processo de engenharia de software:
ambientes e formalismos” in 13a Jornada de Atualização em Informática,
1994.

[10] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proceedings of the 4th International Conference on Aspect-
Oriented Software Development, pp. 159-168, 2005.

[11] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity”, in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp.
1-11, 2006.

[12] R Matinnejad and R. Ramsin, “An analytical review of process-centered
software engineering environments,” in Proceedings of the IEE 19th
International Conference and Workshops on Engineering of Computer-
Based Systems, 2012.

26

A Solution to the State Space Explosion Problem in Declarative Business Process
Modeling

Renata M. de Carvalho, Natalia C. Silva, Cesar A. L. Oliveira, Ricardo M. F. Lima
Center for Informatics, Federal University of Pernambuco, Brazil

{rwm, ncs, calo, rmfl}@cin.ufpe.br

Abstract

Declarative business process models focus on modeling
what must be done but do not determine how. The existing
engine for controlling the execution of declarative processes
uses automata-based model checking. Unfortunately, the
well-known state space explosion problem limits the abil-
ity to explore large processes through automata-based ap-
proaches. In this work, we propose a novel mechanism to
control the execution of declarative business processes. Our
approach has the advantage of not requiring the computa-
tion of all reachable states. This allows for the modeling
and execution of larger business processes when compared
to the automata-based approach.

1 Introduction

Declarative business processes surged from the necessity

for supporting process execution in complex or changing

environments [4]. The declarative approach describes busi-

ness processes by means of business rules that state what

one can, can not, or should do to produce the desired out-

put. It informs what has to be done, but not how.

The first work to propose the declarative paradigm of

process modeling was published by Pesic [4]. Her work

also proposes the DECLARE system, which is a tool capa-

ble of modeling and interpreting declarative process mod-

els [4]. DECLARE employs Linear Temporal Logic (LTL)

to formally model and verify business rules. In order to con-

trol the execution of a business process, DECLARE converts

the LTL formula into a finite non-deterministic automaton

(FNDA). This automaton contains all possible execution

paths for the business process, according to its rules.

Unfortunately, the number of states in an automaton in-

creases exponentially with the size of the LTL formula [2].

As the number of business rules increases, the correspond-

ing automaton becomes very complex and its generation too

expensive, if not prohibitive. Since companies usually have

a large number of business rules, the process execution may

turn out to be impossible in many practical situations.

To tackle this problem, we propose a mechanism to ver-

ify the process rules at runtime. Our approach does not rely

on generating all possible paths. Instead, we employ an ef-

ficient algorithm to block the execution paths that would

lead to unacceptable behavior. For example, our algorithm

prevents the process from reaching deadlock states. At the

same time, we allow the execution of all activities that are

valid according to the process business rules. Such strategy

allows for the execution of larger business processes when

compared to the automata-based approach.

2 Declarative Business Process

Declarative processes propose the use of declarative lan-
guages to define business rules that drive the business pro-

cess execution [4]. This approach allows the process par-

ticipants to take context-aware decisions during the process

execution. On the other hand, one can define constraining

business rules to prevent participants from performing pro-

hibited or undesired activities.

The DECLARE framework, proposed by Pesic [4], is a

tool for modeling and executing declarative processes. It

offers rule templates that can be used to construct a process’

business rules. These templates are mapped into formal ex-

pressions described in Linear Temporal Logic (LTL) and

interpreted through a reasoning engine to identify enabled

and prohibited activities during process execution.

ConDec, a graphical template language, is a constraint-

based language developed by Pesic [4] for modeling busi-

ness rules in declarative business processes. Its semantics

is formally specified in LTL. Its graphical representation

aims at improving its usability by non-LTL experts. Each

constructor of the graphical language corresponds to a con-

straint template modeled by an LTL formula. These tem-

plates are classified in four groups, but for this paper only

the following three are considered:

• existential templates: express the number of times an

27

activity can or needs to be executed in a process in-

stance. This group comprises: existence (A, N) – in-

dicates that an activity A must be executed at least N
times; absence (A, N) – indicates that an activity A
must be executed at most N times; and init (A) – indi-

cates the first activity to be executed in the process.

• relational templates: express dependencies between

activities. This group has five templates: prece-
dence (A, B) – indicates that B cannot be executed

before an activity A; response (A, B) – indicates that,

for each execution of A, a certain activity B must be

executed afterwards; succession (A, B) – corresponds

to the conjunction of response and precedence; co-
existence (A, B) – indicates that, if A is ever executed,

certain activity B must also be executed and vice-

versa; and responded-existence (A, B) – indicates that

if A is ever executed, activity B must also be executed

(either before or after A);

• negation templates: a negative version of the rela-

tional templates. For example, the template not re-
sponse (A, B) indicates that after the execution of A,

the activity B cannot be executed anymore; not co-
existence indicates that after the execution of A, the ac-

tivity B cannot be executed anymore, and vice-versa.

The analysis of LTL formulae rely on the generation of

a Büchi automaton representing all acceptable traces that

conform to the LTL formula [2]. The problem with this

approach is that this automaton grows exponentially with

model size and tends to become very large for complex

models. Experiments we have conducted using ConDec

showed that the number of states becomes too large even

with a few dozen rules. In real business applications, a

business process may require about thirty to fifty rules or

more. This makes the use of ConDec impractical for most

real business processes.

3 An approach for declarative processes that
avoids the state space explosion problem

This paper proposes a mechanism to verify rules at run-

time and control the execution of declarative processes. Our

approach does not generate all possible execution paths.

Our proposed approach is called ReFlex. Once ReFlex

starts the process execution, it interacts with the user to

show the enabled activities at each execution point. Re-

Flex also warns the user when the process termination is

enabled or disabled according to the pending activities. Fig-

ure 1 shows an overview of the proposed execution envi-

ronment. During the modeling phase, the user specifies a

business process in ConDec language (activities and con-

straints). This model is then compiled into a structure that

stores the necessary information (activities states, counters,

and rules fulfillment). ReFlex uses it to interpret the rules.

Rules
Compiler

ReFlex

A B C

D E F

UI

Business Process
(activities + rules)

execute

execute

update status

Modeling phase

Execution phase

activities states
+

counters
(existential rules)

+
rules fulfillment
(relational and
negation rules)

Figure 1. Overview of ReFlex.

In our approach, we adopt an additional state-based rule

template that is not present in ConDec. The new rule is

called “precedent-obliged (A, B)” and indicates that B can-

not be executed while A is in the “obliged” state.

In the execution phase, ReFlex manages the structure

generated by the compiler. This task involves changing ac-

tivity states, and enabling/disabling the process termination.

ReFlex is also responsible for interacting with the user in-

terface. The interface notifies the user about activities en-

abled/disabled for execution. The user can only select en-

abled activities for execution. After executing an activity,

ReFlex updates the structure and sends the new status to the

user interface.

3.1 Problem representation

The concept of activation of a ConDec constraint was

introduced by Burattin et al. [3]. The activation of a con-

straint in a trace is an event whose occurrence imposes some

obligations on other events in the same trace. If the imposed

obligation is fulfilled then the activation is considered a ful-
fillment; if the obligation is not fulfilled, it will be called a

violation. Based on the concepts of fulfillments and viola-
tions introduced, Definition 3.1 shows how activities of a

business process are represented in this work.

Definition 3.1 (Business process activities representation)
The activities of a process P are represented in a tuple
SP = (enabledP , disabledP , blockedP , obligedP),
where:

• enabledP is the set of enabled activities (the user is
free to execute any activity in the set);

28

• disabledP is the set of disabled activities (the user
cannot execute such activities at current execution
point; these activities can became enabled in the fu-
ture);

• blockedP is the set of blocked activities (activities
that cannot be executed anymore). It is the set of ac-
tivities that represent a violation to some rule in the
process;

• obligedP is the set of obliged activities (activities
that must be executed before the process termination).
It is the set of activities that represent a fulfillment to
some rule in the process.

Throughout the process execution, a number of proper-

ties must remain valid. Definition 3.2 lists these properties.

Definition 3.2 (Properties of BP activities) Let A be the
set of activities in a process P .

• ∀a ∈ A, a ∈ enabledP ∪ disabledP ∪ blockedP ;

• enabledP ∩ disabledP = ∅;

• blockedP ∩ enabledP ∩ disabledP = ∅;

• obligedP ⊆ enabledP ∪ disabledP

Burattin et al. also introduce the notion of healthiness of

a trace. The healthiness of a process trace can be quanti-

fied based on the number of activations, and the number of

fulfillments, and violations of these activations. A trace is

“healthy” with respect to a constraint if the fulfillment ratio

is 1 (one) and the violation ratio is 0 (zero).

The main concern of this work is to guarantee that the

traces generated by the proposed approach are “healthy”. In

other words, we want to guarantee that all activations will

be fulfilled and none of them will be violated.

Whenever an activity is executed, the activities states are

updated to represent the process status. Table 1 describes

how the activities states are updated according to the be-

havior of each type of rule.

During the compilation process, we identify triples

(A,B,C) of activities that are inter-related such that A
obliges C and B blocks C. These triples may cause dead-

lock if A and B are both executed before C. To avoid this

situation, we apply the following liveness-enforcing rule.

Definition 3.3 (Liveness-enforcing rule) For every triple
(A, B, C) where A obliges C and B blocks C, include
a new rule not response(B, A) and a new rule prece-
dent obliged(C, B).

Notice that the addition of these new rules may cause the

emergence of new triples, which require the addition of new

rules until all triples that may cause a deadlock have been

handled.

Table 1. Behavior of each rule in the proposed
approach.

Rules Behavior

Existential Rules

init(A)

All activities but A are

disabled. After A is executed,

the remaining rules determine

the process status.

existence(A, n)
A is obliged until it is executed

n times.

absence(A, n)
After n− 1 executions of A, it

is blocked.

exactly(A, n)

A is obliged until it is executed

n times, but after n executions,

it is blocked.

Relational Rules

response(A, B)
After the execution of A, B is

obliged.

precedence(A, B)
While A is not executed, B is

disabled.

succession(A, B)

After the execution of A, B is

obliged, but it is disabled while

A is not executed.

coexistence(A, B)

If A is executed, B is obliged,

and vice-versa (only for the

first execution).

responded existence(A, B)
The first execution of A

obliges B.

Negation Rules

not response(A, B)
After the execution of A, B is

blocked.

not coexistence(A, B)
After the execution of A, B is

blocked, and vice-versa.

State-Based Rules

precedent obliged(A, B)
While A is obliged, B is

disabled.

4 Complexity of the proposed approach

In this section we analyze the memory requirements of

our algorithm comparing it against the LTL-based approach.

Space complexity of an algorithm is defined in terms of

what limits the number of tape cells a Turing Machine (TM)

needs to use during its computation. Definition 4.1 presents

the formal definition of deterministic space bounded com-

putation [1].

Definition 4.1 (Space-bounded computation [1]) Let
S : N → N, s ∈ S, and L ⊆ {0, 1}∗. We say that
L ∈ SPACE(s(n)) if there is a constant c and a TM M
deciding L such that at most c × s(n) locations on M ’s
work tapes (excluding input tape) are ever visited by M ’s

29

head during its computation on every input of length n.

Considering a TM with two tapes (a read-only input tape

and a read/write work tape), on the read-only tape the input

head can read symbols but not change them. The work tape

may be read and written in the usual way. Only cells of work

tape contribute to the space complexity in such a TM [6].

A complexity class is a set of problems of related com-

plexity defined by factors such as: (i) the model of computa-

tion; and (ii) the resources that are being bounded. L is the

class of problems that are decidable in logarithmic space

on a deterministic Turing machine [6]. In other words,

L = SPACE(log n).

In our case, the input tape stores all activities and rules

of a process. Let us say that this requires n cells. Looking

at the declarative problem defined in Section 3, the work

tape is used to store: (i) for each activity, its state; (ii) for

each existential rule (except init), a single cell containing

a counter for how many times the associated activity was

executed; and (iii) for each relational and negation rule, a

single cell with a mark indicating if the rule was fulfilled.

Hence, the amount of data stored in the work tape is always

smaller then the input tape. Rules require more than a single

cell to be stored in the input tape, and, on the other hand,

they require only one cell in the work tape. Figure 2 shows

a representation of the TM that represents our approach. We

consider that the existential counters are limited to a number

less than infinite, so they can fit in a single cell if we use a

sufficiently large tape alphabet.

Once the size of the work tape is always less than the

input n, our algorithm is in the L complexity class.

...

...

...

input
(read-only)

work
(read/write)

output
(write-only)

activities + rules

activities states

enabled activities

Figure 2. Space bounded computation for the
proposed approach.

Comparing to the LTL approach, it is known that the

complexity of model checking for LTL is in PSPACE com-

plexity class [5]. PSPACE is the class of problems that

are decidable in polynomial space on a deterministic TM.

This is due to the state space explosion problem. As our

approach does not share this problem, the problem is decid-

able in logarithmic space (SPACE(log n)).

5 Conclusions

In this paper, we approached the state space explosion

problem in the context of declaraive business processes.

LTL-based approaches require the computation of an au-

tomaton representing all acceptable traces. Unfortunately,

this is often impracticable for most real business processes.

To tackle this problem, we proposed a mechanism that

stores in activities and rules states all the information nec-

essary to control the process. At the compilation process, a

liveness-enforcing mechanism blocks the execution of paths

that result in deadlocks, without affecting valid execution

paths. Such mechanism disables or blocks activities at the

necessary moments in order to prevent the user from mis-

takenly driving the process into unacceptable states. This

strategy allows for the efficient execution of large business

process models using the declarative paradigm.

We compared our approach to the traditional LTL-based

approach, in terms of space complexity. While the LTL-

based approach faces the state space explosion problem,

which is an problem of PSPACE complexity, the mecha-

nism proposed in this paper reduces the problem to the L
class of complexity, which allows for an efficient implemen-

tation of a declarative business process engine.

References

[1] Sanjeev Arora and Boaz Barak. Computational Com-
plexity: A Modern Approach. Cambridge University

Press, New York, NY, USA, 1st edition, 2009.

[2] Luboš Brim, Ivana Černá, Pavel Krčál, and Radek

Peláek. Distributed ltl model checking based on neg-

ative cycle detection. In Foundations of Software Tech-
nology and Theoretical Computer Science. Springer

Berlin / Heidelberg, 2001.

[3] Andrea Burattin, Fabrizio Maria Maggi, Wil M. P.

van der Aalst, and Alessandro Sperduti. Techniques for

a posteriori analysis of declarative processes. In EDOC,

pages 41–50, 2012.

[4] Maja Pesic. Constraint-Based Workflow Management
Systems: Shifting Control to Users. PhD thesis, Tech-

nische Universiteit Eindhoven, The Netherlands, 2008.

[5] Philippe Schnoebelen. The complexity of temporal

logic model checking. In Proceedings of the 4th Work-
shop on Advances in Modal Logic (AIML’02), pages

481–517. King’s College Publications, 2003.

[6] Michael Sipser. Introduction to the Theory of Compu-
tation. International Thomson Publishing, 2nd edition,

2006.

30

Context Factors: What they are and why they matter
for Requirements Problems

Corentin Burnay, Ivan J. Jureta
Fonds de la Recherche Scientifique – FNRS, Brussels

Department of Business Administration

PReCISE Research Center

University of Namur, Belgium

{corentin.burnay, ivan. jureta}@unamur.be

Stéphane Faulkner
Department of Business Administration

PReCISE Research Center

University of Namur, Belgium

stephane. f aulkner@unamur.be

Abstract—When eliciting requirements, it is important to
understand why some information may remain implicit, while
other are shared by stakeholders. This requires knowing which
variables influence if an individual shares implicit information
during requirements elicitation. Based on our past experimental
work on decision-making, we identify variables – Context Factors
(CFs) – which influence whether implicit information is shared,
and we define a procedure to validate CFs. Our contribution is
that we present and define a set of CFs, we define an experimental
procedure to validate CFs, and we discuss how the understanding
of CFs helps identify information that can remain implicit during
elicitation, and can thereby help to increase the completeness
of requirements. We relate CFs to the common Requirements
Problem concept, and we highlight the main limitation of our
results.

Keywords—Requirements Problem, Elicitation, Context Factors,
Implicit Information

I. INTRODUCTION

Although Requirements Engineering (RE) is a complex activ-
ity, the basic problem that it aims to solve within a systems
engineering project – called the Requirements Problem (RP)
– can be stated in simple terms: Given assumptions about
the domain in which the system-to-be should run, and the
requirements of the system’s stakeholders, find and describe
a design of that system which is consistent with the domain
assumptions, and together with domain assumptions, satisfies
the requirements. If we denote domain assumptions with K,
requirements with R, and the description – specification – of
the system-to-be with S, the idea above amounts to the RP
statement from Zave & Jackson [1]: given K and R, find S
such that K,S
 R, where
 is some consequence relation.

An RP instance is the result of elicitation and design
activities a requirements engineer does. If we denote with I
all information that she can potentially elicit from stakeholders
and discover or design on her own, we can split I into IX , the
information that the engineer manages to document, and other
information IM that remains implicit. Since we assume that K,
R, and S are documented, they are parts of explicit information
IX .

The obvious risk that this explicit/implicit distinction
highlights, is that the implicit KM, SM, and RM may include key
information on stakeholders’ expectations and assumptions, so
that if they remain implicit, the requirements engineer may

end up solving a wrong RP instance. The goal of this paper
is to advance our understanding of this risk and contribute to
research on how to mitigate it. To do so, we view the relation
between IM and IX as a function:

IX = f (CF, I), (1)

where IX depends on the available information and other
variables, which we call Context Factors (CFs). The objective
of the paper is then to identify, justify and suggest a way to
validate the content of CFs. Our contribution is that we identify
variables that go into CF, and that we define an experimental
procedure for validating CFs, based on our past experimental
work on the role of implicit information in decision-making
[2], [3].

The rest of this paper is organized as follows. We first
discuss the relation between RP and CFs, and introduce the
notion of a filtered RP (§II). We define CFs, and provide their
taxonomy (§III). We define our experimental procedure (§IV).
We discuss related work (§V), and summarize conclusions and
directions for future research (§VI).

II. FILTER IN REQUIREMENTS ELICITATION

A. Introductory Example

Consider the chief financial officer of a firm. She wishes
her company’s accounting software to be connected with the
ecommerce software, so that ecommerce sales can be auto-
matically recorded. Denote this proposition with p. Once p is
communicated to the engineer, it is part of explicit information
IX . Also, since p seems to be a requirement, it would likely
be part of RX in the RP, provided p remains relevant during
RE.

How p fits an RP instance, depends on other information
in both IX and IM . In IX , because it may already be part of IX
that accounting software is not to be changed through work on
the new system-to-be, so that p as a requirement falls outside
the scope of the systems engineering project. In IM , because
the requirements engineer may assume that, the stakeholder
was not informed about the scope of the systems engineering
project, and so gave p on the basis of wrong assumptions.

Suppose now that the stakeholder makes assumptions when
giving p, that the requirements engineer does not know so that

31

they are in IM . For instance, that the accounting department
needs to be motivated to use the system-to-be, that this moti-
vation can arise if they see the system-to-be will simplify their
work and that the connection with the ecommerce software is
a simplification of that work. Those assumptions directly relate
to the context of the business.

The way we see the situation in the example, is that the
explicit information which will be shared by a stakeholder
i depends on information accessible to her, and on other
variables, the CFs: IXi = f (CF(i), Ii). By CF(i), we mean that
the importance of specific CFs will vary across stakeholders.
We do not write CFi, because we are interested in CFs that
apply across different stakeholders. That is, we assume that
CFs will influence information sharing for all stakeholders, but
we cannot assume that every CF has exactly the same effect
on every stakeholder.

Equation IXi = f (CF(i), Ii) is not good enough, as it does
not account for the role of elicitation strategies that the
engineer applies. If we denote E elicitation strategies, such
as interviews, observation, study of documentation, etc., and
we denote g the engineer who applies these strategies, we have
the following:

IXi = f (CF(i),Eg, Ii). (2)

We can then relate CFs to the RP, as follows: The explicit
Requirements, Domain assumptions, and Specifications, are
based on information which is filtered. We consider this
observation important, because it leads us to consider what
the filters may be, and how they work. This suggests there are
three types of filters:

• Expertise, in the sense that individual stakeholders, based
on their interests, responsibilities, and so on, have access
to part of all information that may be relevant. Hence
the subscript on I: Ii need not be equivalent to I j of a
stakeholder j;

• Context Factors (CF) influence which information will
be shared, and depend on the environment other than the
elicitation strategies;

• Elicitation strategies (E) that the engineer applies.

For instance, as financial officer of the company, the
stakeholder may have limited knowledge about the system’s
design and the kind of information that it requires to be
correctly performed. Because of her expertise in a domain, she
may not be conscious that some information she has is relevant
to RE. She will therefore filter it involuntarily. The situation in
which the elicitation happens also acts as a filter. For instance,
considering that the company has financial troubles would
probably influence the communication of the officer, because in
such context an error would be even more damageable. Hence,
the stakeholder can be influenced by some specific context
factors. Finally, a stakeholder will filter information depending
on what is being asked to her and how it has been asked,
regardless of her expertise or the context. In other words, the
stakeholder is influenced by elicitation strategy adopted by the
engineer.

B. Requirements Problem Filters

As an answer to the previous observations, we suggest
the filtered requirements problem. Considering the previous
example, we claim it is more relevant to write the RP as
KX ,SX
 RX , instead of K,S
 R: the former reminds us that
domain assumptions, requirements, and the specification are
the result of filtering. In KX ,SX
 RX , we read KX , SX , RX as
follows:

• RX is the result of the engineer’s analysis of individual
stakeholders’ requirements, where for each stakeholder i,
we have RXi = f (CF(i),Eg,Ri);

• KX is the result of analysis of individual stakeholders’
domain assumptions, where for each stakeholder i, we
have KXi = f (CF(i),Eg,Ki);

• SX is the result of the engineer’s decisions on the design
of the system-to-be.

The main problem of RE is then to make sure having the
largest KX , RX and SX and hence minimize the implicit/filtered
information. We are aware that there can be interaction be-
tween CFs and Elicitation strategies, and that it may be
more appropriate to put them together, as one combination of
variables. Yet, we keep the distinction, because we believe that
we should first attempt to understand CFs separately from Eg,
in part because research on the design of Elicitation strategies
can be informed by a better understanding of CFs.

C. Internal and External Factors

Before we proceed further on CFs, we explain the reason-
ing that led us to the filtered RP, and the three types of filters.
Our basic assumption is that a stakeholder’s reasoning, when
deciding to share information, is non-monotonic: the stake-
holder checks the information to share against her assumptions,
chooses to share, does share, and can retract the information
(change her mind) if she finds out new information, which
invalidates her prior assumptions. Research on non-monotonic
reasoning distinguishes two types of variables that influence
reasoning, namely internal and external variables.

Internal variables concern the way an individual uses
knowledge and heuristics in reasoning [4], [5], [6], [7]. Factors
are internal when they are not specific to the environment in
which the reasoning takes place. We leave all internal variables
as being related to Ii in IXi = f (CF(i),Eg, Ii), that is, as
influencing the information from which the stakeholder picks
that, which she will share. We are not interested in internal
variables in this paper, mainly because our aim is to work
on factors that can be influenced in a more straightforward
manner, being related to the environment of the stakeholder.
This restriction in the scope of our research also means that
we cannot recognize if/when there are interactions between
internal and external variables. We consider, however, that
this limitation should not hold us back from drawing relevant
conclusions about external variables.

External variables concern the environment of stakeholders
and are not related to reasoners [8], [9], [10]. We divide these
variables into CFs and Eg, as we want to emphasize that, while
elicitation is an external influence on stakeholders, it is not the
only one which influences how stakeholder shares.

32

The rest of the paper focuses on a taxonomy for CFs and
ways to validate it.

III. CONTEXT FACTORS

CFs are variables characterizing the context of the stakeholder
during elicitation. The purpose of identifying and analyzing
CFs is to adjust elicitation strategies to the specifics of the
context. In this paper, we consider operational definitions of
context [11], [12], as their are composed of a finite set of well
defined dimensions.

Operational definitions are useful when deciding about
elicitation strategies, since there exists a finite number of
context dimensions – or CFs – to investigate. To make sure
the engineer does not miss key implicit information, questions
should be asked about each CF. This brings us to the related
question of which CFs there are. We explore this question
below: we give an operational definition of context, that we
argue accounts for the dimensions of context that are relevant
in the scope of a requirements elicitation.

A. Taxonomy of Context Factors

Strictly speaking, CFs are not a set of concepts defining a
particular context. By defining CFs, we are not defining an
entity-relationship-like model of a particular context. If we
model objects in a given context as instances of concepts, then
CFs are meta-concepts, the instances of which are concepts
that we would expect to recur over different specific contexts.
We see the set of these meta-concepts as a non-exhaustive
checklist to use in improving the elicitation of information
about a specific context. CFs are issued from an extended
review of the literature on context and ubiquitous computing
[3], and is composed of six categories that have been proved
to be relevant for RE.

Some CFs are dimensions dealing with the range of a
context, i.e. the scope of context. The engineer must be careful
to identify and investigate these factors, in order to adapt the
elicitation strategy, determine the scope of context and hence
increase completeness of IX .

Items deal with salient entities existing inside the context.
They can be instantiated across two groups, human and ar-
tificial: human items are real and living entities that likely
interact with the system (e.g. stakeholders), while artificial
items are typically objects that have been created by human
items (e.g. softwares, devices, furniture, etc.). Such distinction
matters, since human and artificial instances likely have dif-
ferent impact on filtering process, and therefore on the filtered
RP instance.

Rules deal with constraints existing in the context, which
hold true regardless of Items’ states. They refer to notions such
as laws, cultures, habits, etc. Rules deal with any constraint
that applies to elements of the context and which survives
after their death. Rules deal with the nature and the content
of the constraints, but also with their justification and status
inside the context.

Localization deal with the position of the context. Lo-
calization divides into two subcategories: one relating to the
time, the other dealing with place. Defining the scope of a
context requires the review of Items and Rules combined with

Localization Factors to support engineer in determining at what
time and what place formerly identified instances are to be
considered.

Some other CFs must be studied to make sure scoped
elements of the context have been sufficiently detailed, i.e. the
depth of context. Depth CFs do not make sense if considered
without regards to scope. It is not relevant – or at least not
efficient – to ask detailed questions to stakeholders if the scope
is not correctly defined.

Connections deal with the relationships/links between
Items and/or Rules. They focus on the way entities of the
scoped context relate to each other.

Activities deal with objectives of those Items instances,
which are intentional. They refer to set of goals and intentions
of such Items existing in the scope of context.

Granularity deal with the nature, the quantity and the
level of information that is provided about Items. They must be
considered at two different levels. A first level called “Micro”
handles factors related to instances. A second level called
“Macro” deals with information that only makes sense a the
level of the entire context.

The six previous categories together form what we consider
to be the set of CFs. A major drawback of our approach is
the impossibility to demonstrate these categories are the only
to be part of CFs. If the set of factors we identify as being
part of CFs is referred to B = {I,R,L,C,A,G}, then we have
that CF ⊇ B. We claim this set of factors is necessary but not
sufficient for eliciting information about context. By necessary,
we mean that omitting any of these categories would lead to
misunderstanding about how CFs filter, and hence to gaps in
the identification of IXi.

B. Elicitation Strategy

Beside the filter they represents in the RP, CFs can be
used to adjust the Elicitation strategies Eg to the specifics of
the context, and hence improve completeness of the elicitation.
By asking the right questions in the right way, we claim it is
possible to enforce the stakeholder’s filter and get more infor-
mation than what would be shared spontaneously. This section
illustrates what CFs are, and how they suggest questions to
be asked to stakeholders in order to increase completeness
of IXi. This discussion in not exhaustive and suggests no
methodology. It simply shows how CFs can identify types of
information to elicit. Questions are to be considered in the
context of our introductory example.

Items factors lead to questions such as:

• Who are the members of the accounting team? Who else
need access to the system?

• From which system(s) do e-commerce data come? What
hardware is used to exchange data?

• What are the expected output of the system? What is
meant by sales results? What are the reports? Who are
the requesters of these outputs?

Rules factors may lead to questions such as:

33

• What are the regulations for the treatment of e-commerce
data? Who/What is the source of these norms, guidelines,
etc.? What if the rule is violated?

• What are the internal rules from the management? What
conditions make these rules applicable?

• What are the best practice, the norms and the guideline
in e-commerce?

Location factors may lead to questions such as:

• When and where the reports will be accessed, be pub-
lished, be communicated?

• What is the frequency of sales results updates? When do
transactions happen? Where are they recorder? How much
time do they occur in time?

• How and how often do Items change over time?

Connection factors may lead to questions such as:

• What are the relations between the departments of the
company? Do they work in collaboration or in conflict?
How much are part of the relation?

• How strong is a connection between departments? What
are the consequences if it disappears? What is the pur-
pose of the relation? Which department is active in this
connection?

Activity factors may lead to questions such as:

• Why are the reports important to the financial officer?
What does she expect from it?

• What is the core business of the company? What is the
vision and strategy for business?

• Who sets the targets of the company? What are the
mechanisms to ensure the compliance?

Granularity factors lead to questions such as:

• Do we have a clear understanding of the metrics expected
by the business? Do we need to refine?

• Do we have enough details about the kind of data that
are required to compute sales results?

• Is there some imprecision in the available data? How
detailed and precise is the information?

IV. PROTOTYPE EXPERIMENT

We claimed in this paper that stakeholders retain information
according to three filters: expertise in a domain, CFs and
Elicitation strategy. Moreover, we discussed the significant
relations between CFs and Elicitation strategies. Although CFs
presented in this paper are issued from a literature review
on context, our ongoing work is the empirical validation
of CFs we presented, as actual and valid members of the
filter function IXi = f (CF(i),Eg, Ii). This section presents a
prototype experiment to be used for such validation, and is
based on our past experiments on context and non-monotonic
reasoning [3], [2].

A. Questionnaire

It consists of six distinct groups of “assertions” that are
to be read as pieces of context. Those assertions are potential

instances of the CFs meta-concepts. Two tasks are required
for each assertion. Subjects are first asked whether they judge
the assertion relevant in the scope of an IT project, i.e. if it
would be more difficult to perform RE without that assertion
being clarified. In a second time, subjects are asked about the
likelihood that a customer discuss the assertion spontaneously.
Based on this double evaluation, it is possible to determine
whether CFs are relevant to RE, but also to analyze whether
practitioners consider CFs as being filters in the communica-
tion of stakeholders.

The list of assertions used in our experiment is presented
in Table 1 (one line per CF). The table is the result of authors
experience, and aims to stay relevant with the sample of ques-
tions suggested in section III-B. Evaluation of the assertions is
done on a 5-level scale. Subjects have the possibility to suggest
other relevant assertions, for each CF.

A pilot study has been conducted with a dozen sub-
jects, to ensure the questionnaire is easily understandable,
the instructions are clear, and the Internet based collection
method is appropriate. Feedback of subjects were positive, and
preliminary results suggest interesting results for a larger scale
experiment. The pilot study also contributed to the definition
of the final assertion list.

Situation described to subjects: Your colleague asks you
some advice for next mission. She has to design a system,
and plans a first conference call with the customer to collect
as much relevant information as possible. She is not sure
about how to proceed during the interview, and asks you some
advice.

Instruction described to subjects: Knowing about your
experience, she asks you to evaluate some assertions that she
thinks will enable her to have a good idea of the business. Her
concern is to cover as much content as possible. You are asked
to judge the relevance of her assertions, and the likelihood that
a customer discuss it spontaneously. Use a value between 1
and 5 to express the relevance/confidence toward statements,
5 being the largest grade.

B. Target Population and Procedure

We will mainly submit the questionnaire to professionals in
computer sciences, software and requirements engineers. We
also target participants with experience in project management,
ICT or other relevant management skills. Information about
participant’s professional status will be collected and treated
to ensure the validity of the experiment.

To collect feedback on the questionnaire, and repeat the
experiment, the questionnaire will be published on the Internet,
under the form of a regular questionnaire. Participants will be
asked to carefully read the assignment before answering. The
assignment will clearly ask to read the problem statement and
the different choices that are offered before starting the grading
activity.

The approach of the experiment is top-down. We start from
some broad meta-concept – CFs – and try to validate instances
of these CFs that are relevant in RE. This implies the list of
assertions suggested in this experiment is not complete. This
also implies the work should be extended through additional
studies.

34

TABLE I. SUMMARY OF ASSERTIONS SUBMITTED TO SUBJECTS’ EVALUATION

Q1 Q2 Q3 Q4 Q5

I Units and Struc-
ture of the busi-
ness (department,
team, ...)

People interacting
with the system

Objects related to
the system

Other IT systems
of the company

Input and Output
of the system

R Applicable laws
and regulations

Best practices in
business

Recommendations
and Constraints
from management

Norms, guidelines
or culture

Habits, traditions
of the business

L Place/time where
or when the sys-
tem is used

Frequency of use
of the system

Aspects of the
business changing
over time

Phenomena
occurring at
regular interval

Synergies inside
the business

C Types of relations
between items
(friends, enemies,
etc.)

Respective power
of agents inside a
relation

Nature of impor-
tant relations in
the business

Importance of
these relations to
the company

Strength of the re-
lation

A Core business of
the company

Vision and Strat-
egy for the busi-
ness

Purpose of the
system

Intention behind
the IT solution

Goal and Targets
assigned to em-
ployees

G Metrics relevant
to the business

Legal or Financial
status

Atmosphere in of-
fices, on market

History, Evolution
in the past of the
business

Particularities of
the company

V. RELATED WORK

The empirical validation of factors that influence decision-
making – and among other the decision to share information –
has been a center of attention in many fields of research. Yet,
considering origins of our contribution, we specifically focus
this section on context studies in non-monotonic reasoning
literature (NMR) and context in RE.

As already explained, we see two different categories of
CFs. A first one is related to human cognition and influences
what information Ii is accessible to stakeholder. Ford and
Billington [4], [5] propose an experiment to validate the impact
of such subjects-related factors. They present factors such as
the reluctance to draw conclusion based on conflicting rules
or the number of positive and negative sentences, which they
argue influence the consistence of subjects when reasoning.
Hewson and Vogel [6] present an experiment which suggests
human reasoning is consistent with some basic assumptions
of NMR literature, but found that people do not always
satisfy literature’s predictions when reasoning about a chain of
negative sentences. Vogel [7] proposes an extension of previous
study, designing an experiment to test other forms of negative
reasoning.

A second category includes factors which are not, strictly
speaking, specific to the person and influence the content of IXi.
Wason and Shapiro [10] propose experiments that emphasize
the difference in performance between subjects, depending
on the way problems are introduced to them. They suggest
these differences are due to the concreteness of terms that
are used – some are concrete while others are abstract terms–
, thereby emphasizing the intrinsic influence of information.
Elio and Pelletier [8], [9] propose that reasoning is likely
to be influenced by several external factors. They highlight
that whether an objects is naturally-occurring or artificial

influences the way people think about this object. They also
discuss the influence of other factors like the quantity of
information that is provided or the information about the
relative size of the objects.

In addition to previous NMR studies, we performed several
experiments to get better insight into the influence of external
factors on RE and elicitation. For instance, we showed that
some external factors proposed by Elio and Pelletier do not
have the same influence in the context of RE [2]. We also
have some other ongoing experiments on context [3]. We
propose a Context Framework – issued from a literature review
on context-aware and ubiquitous computing – to account for
several dimensions of context and their influence on reasoning
in RE.

There has been limited attention regarding the question
of accurate context’s definition in RE. Yet, context as a
source of information is not new. Many papers propose high
level discussions about context in RE: Potts and Hsi [13],
[14] emphasize the existence of Contextualism – opposed to
abstractionism – as a possible alternative design philosophy
for information systems. Sommerville et al. [15] propose
discussions about how ethnographic analysis is value-added
to RE, thereby broadening the scope of RE context to culture
questions. Beyer and Holtzblatt propose the Contextual Design
model [16], which increases the scope of relevant information
to any data about the field where people are living. Previous
works illustrate the trend to include even more data in the
scope of RE relevant information.

Cohene and Easterbrook [17] discuss a topic closer to what
we address in this paper. They suggest elicitation techniques
that are used in a interview should be adapted to fit the kind
of information engineers are trying to find, i.e., adapt the
elicitation technique to the situation – or context.

35

Previous related works highlight how valuable information
about context is to RE. But few papers propose a structured
definition of context. Sutcliffe et al. [18] go on a method
for requirements analysis which aims to accounts for indi-
vidual, personal goals and the effect of time and context on
requirements. They suggest a list of aspects to deal with, but
do – to the best of our kowledge – no empirical validation.
RE community seems to agree on the importance of further
research on the link between context and RE. Cheng and Atlee
[19] stress the importance of context and empirical validation
of RE models as a direction for future research to accelerate
the transfer of research results into RE practice.

VI. CONCLUSIONS

In this paper, we tried to contribute to the clarification of
how stakeholders may keep some relevant information implicit
during the elicitation of requirements. We argued that instances
of the classical RP are obtained through a filtering process, we
suggested a conceptualization of variables that influence the
filters, and called them CFs. We discussed how CFs relate to
requirements problem, suggested a list of CFs, and proposed
an experimental procedure for validating the relevance of some
individual CFs.

Our ongoing work consists of applying the experimental
procedure, the resulting refinement of CFs, and the study
of how CFs relate to requirements elicitation strategies. We
believe that this work is relevant with regards to increasing
the rigor in requirements elicitation, and for enabling future
design of systematic elicitation strategies. We also see this
research as part of ongoing RE research on defining and using
the notion of context in requirements.

REFERENCES

[1] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” Transactions on Software Engineering and Methodology, vol. 6,
no. 1, pp. 1–30, 1997.

[2] C. Burnay, I. Jureta, and S. Faulkner, “Influence of context on decision
making during requirements elicitation,” in ARCOE 2012, 2012, pp.
39–51.

[3] ——, “Context-driven elicitation of default requirements,” CoRR, vol.
abs/1211.2620, 2012.

[4] M. Ford and D. Billington, “Strategies in human nonmonotonic reason-
ing,” Computational Intelligence, vol. 16, no. 3, pp. 446–468, 2000.

[5] M. Ford, “Human nonmonotonic reasoning: the importance of seeing
the logical strength of arguments,” in Synthese, 2005, pp. 71–92.

[6] C. Hewson and C. Vogel, “Psychological evidence for assumptions
of path-based inheritance reasoning,” in Proceedings of the Sixteenth
Annual Conference of the Cognitive Science Society, 1994, pp. 409–
414.

[7] C. Vogel, “Human reasoning with negative defaults,” in Lecture Notes
in Artificial Intelligence: Practical Reasoning. Springer, Berlin, 1999,
pp. 606–621.

[8] R. Elio and F. J. Pelletier, “Human benchmarks on ai’s benchmark
problems,” in Proceedings of the Fifteenth Annual Conference of the
Cognitive Science Society, 1993, pp. 406–411.

[9] ——, “On relevance in non-monotonic reasoning: Some empirical
studies,” in Relevance: American Association for Artificial Intelligence
1994 Fall Symposium Series, 1994, pp. 64–67.

[10] P. C. Wason and D. Shapiro, “Natural and contrived experience in a
reasoning problem,” Quarterly Journal of Experimental Psychology,
vol. 23, pp. 63–71, 1971.

[11] D. Lenat, The Dimensions of Context-Space. Technical Report, Cycorp,
1998.

[12] A. Zimmermann, A. Lorenz, and R. Oppermann, “An operational
definition of context,” in Proceeding of the Sixth International and
Interdisciplinary Conference on Modeling and Using Context, 2007,
pp. 558–571.

[13] C. Potts and I. Hsi, “Abstraction and context in requirements engineer-
ing: Toward a synthesis,” Ann. Software Eng., vol. 3, pp. 23–61, 1997.

[14] C. Potts, “Requirements models in context,” in Proceedings of the 3rd
IEEE International Symposium on Requirements Engineering, 1997, pp.
102–104.

[15] S. Viller and I. Sommerville, “Social analysis in the requirements
engineering process: From ethnography to method,” in Proceedings of
the 4th IEEE International Symposium on Requirements Engineering,
1999, pp. 6–13.

[16] H. Beyer and K. Holtzblatt, Contextual design: defining customer-
centered systems. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998.

[17] T. Cohene and S. M. Easterbrook, “Contextual risk analysis for inter-
view design,” in Proceedings of the 13th IEEE International Conference
on Requirements Engineering, 2005, pp. 95–104.

[18] A. G. Sutcliffe, S. Fickas, and M. M. Sohlberg, “Pc-re: a method for per-
sonal and contextual requirements engineering with some experience,”
Requirements Engineering, vol. 11, no. 3, pp. 157–173, 2006.

[19] B. H. C. Cheng and J. M. Atlee, “Research directions in requirements
engineering,” in Workshop on the Future of Software Engineering,
FOSE 2007, 2007, pp. 285–303.

36

Detecting traceability links through neural networks

Andre Di Thommazo
Instituto Federal de São Paulo, IFSP

Universidade Federal de São Carlos, UFSCar
São Carlos, Brazil

andredt@ifsp.edu.br

Vera Werneck
Universidade do Estado do Rio de Janeiro, UERJ

Rio de Janeiro, Brazil
vera@ime.uerj.br

Thiago Ribeiro, Guilherme Olivato, Rafael Rovina
Instituto Federal de São Paulo, IFSP

São Carlos, Brazil
{guilhermeribeiro.olivatto, thiagoribeiro.d.o,rafarovina}

@gmail.com

Sandra Fabbri
Universidade Federal de São Carlos, UFSCar

São Carlos, Brazil
sfabbri@dc.ufscar.br

Abstract— Although a Requirements Traceability Matrix
(RTM) is one of the most commonly used ways to
represent requirements traceability, it is difficult to create
it manually. This scenario motivates the investigation of
alternatives to generate the RTM automatically. This
paper presents an approach to automatically create an
RTM based on a neural network, called RTM-N,
that combines two other approaches, one based on the
entry data of functional requirements – called RTM-E –
and another based on natural language processing – called
RTM-NLP. Data obtained from a first experimental study
which evaluated RTM-E and RTM-NLP were used to
train a neural network and make it capable of detecting
the requirements traceability automatically, thus
generating the RTM-N. With the aim of evaluating the
RTM-N and re-evaluating the RTM-E and RTM-NLP,
another experimental study was conducted. On average,
the approaches showed the following results in relation to
the reference RTM: RTM-E had 78% effectiveness,
RTM-NLP had 76% effectiveness, and RTM-N had 85%
effectiveness. The results show that using a neural
network to combine and generate a new RTM was more
effective in determining the requirement dependencies
and, consequently, the requirements traceability links.

Keywords—requirements traceability; neural networks;
requirements traceability matrix.

I. INTRODUCTION

The importance of requirements management for the

software development process is highlighted by several
authors in the Computer Science literature [1],[2],[3].
Salem [4] considers that the majority of software errors
are derived from errors in requirements elicitation and in
keeping up with their evolution throughout the software
development process.

Data from a research performed by the Standish Group
[5] found that the three most important factors
(approximately 37%) for software project unsuccessful

were: user specification gaps, incomplete requirements,
and constant changes in requirements. These factors are
directly related to requirements management, where the
requirements traceability matrix (RTM) is an essential
element as it records the existing relationship among
system requirements. Due to its importance, it is the main
focus of many researches. Sundaram, Hayes, Dekhtyar,
and Holbrook [6] consider traceability determination an
essential task for many software engineering activities,
although it is a time-consuming and error-prone task. The
authors claim that this task can be facilitated through
computational support, as a tool can reduce the effort and
cost of elaborating and maintaining the requirements
traceability. These authors also mentioned that the
automatic generation of RTMs is still very limited in the
existing tools.

According to Cleland-Huang, Gotel, and Zisman [1],
the researches which have recently addressed
requirements traceability have focused on automatic
traceability definition. Moreover, Wang, Lai, and Liu [7]
point out that these current researches make use of spatial
vector models, semantic indexing, or probability network
models as ways to automate traceability. In spatial vector
modeling, the frequency of terms in the text of the
artifacts is used to determine the traceability links. The
semantic indexing—proposed by Deerwester, Dumais,
Furnas, Landauer, and Harshman [8]—uses the context of
the terms in the text to identify the traceability links. The
probability network models [9] create a matrix where
dependency between each term is mapped in relation to
the other document terms. Based on this matrix, the
traceability links are generated.

All the quoted proposals are also detailed by Cleland-
Huang, Gotel, and Zisman [1] as possible approaches for
traceability detection.

Given the aforementioned context, this paper presents
an approach to automatically create an RTM based on
neural networks. This approach is called RTM-N and
combines two other proposed approaches: one based on
the functional requirements (FR) entry data – called RTM-
E – and another based on natural language processing
(NLP) –called RTM-NLP.

37

A neural network can store knowledge acquired
through examples and make inferences about new ones.
Therefore, using the data from an experimental study that
evaluated the RTM-E and RTM-NLP approaches [10], we
created a neural network that is capable of determining the
level of dependence between FRs.

A second experimental study was conducted to
evaluate the effectiveness of the RTM-N and re-evaluate
the RTM-E and RTM-NLP. This experimental study is
detailed in this paper. To make the experiment possible,
the three RTM automatic generation approaches were
implemented in the COCAR tool [11]

This paper is organized as follows: in Section II, the
requirements management, traceability, and RMT are
introduced; Section III presents a brief definition of the
neural networks theory; in Section IV, the three RMT
automatic creation approaches are presented; Section V
shows the experimental study performed to evaluate the
approaches’ effectiveness; conclusions and future work
are discussed in Section VI.

II. REQUIREMENTS TRACEABILITY

The main objective of requirements management is
organizing and storing all requirements as well as
managing any changes to them [2],[3]. The requirements
are constantly changing during the software development
process and managing them usually becomes a laborious
and extensive task [7]. One way of managing requirements
is to define the requirements traceability, which concerns
the ability to describe and monitor a requirement during its
whole lifecycle [12]. Traceability is a technique which
allows the dependency relationship between pairs of
requirements and between requirements and other artifacts
generated during the software development process to be
identified and visualized.

According to Guo, Yang, Wang, Yang, and Li [12],
requirements traceability is an important requirements
management activity as it can provide the basis for

evolutional changes in requirements besides acting directly
on the quality assurance of the software development
process. Although various researches have considered the
traceability between requirements and other artifacts,
minor attention has been given to the relationships
between requirements [13]. A way to map such
relationships between requirements is by creating an RTM.

In general, the RTM is constructed as follows: each FR
is represented in the i-th line and in the i-thcolumn of the
RTM and the dependency between them is recorded in the
cell corresponding to each FR intersection [2]. The
importance of and need for the RTM in the software
development process is debated by several authors
[2],[12],[13],[14]. The RTM allows the impact of a change
(or the insertion of a new requirement) on the system as a
whole to be predicted.

Many authors also highlight the difficulty in
determining and maintaining the RTM, noting that this
task is laborious and error prone. Sommerville [2]
emphasizes the difficulty in obtaining this kind of matrix
and overcomes it by proposing a way to subjectively
indicate not only whether the requirements are
interdependent but how strong such dependency is.

III. NEURAL NETWORKS

Neural networks have the ability to acquire knowledge
for pattern recognition [16]. They are inspired by the
human brain and are composed of several artificial
neurons. The artificial neurons were created by McCulloch
and Pitts[17]. Each neuron (or node) in a neural network
receives a number of input values. A function, called the
activation function, is applied to these input values and the
neuron activation level is generated as the function result
that corresponds to the output value provided by the
neuron. The activation function can vary and the main
types are represented in Figure 1. The x-axis represents the
input value for each neuron and the y-axis represents the
output (or the level of activation) provided by the neuron.

Figure 1. Examples of activation functions (adapted from [16]).

Figure 2 shows the representation of a neuron receiving
various inputs (xi) and their weights (wi). The output value
provided by the neuron depends on the inputs, the weights,
and the activation function used. The behavior of the
neuron can be defined by Equation 1.

(1)

38

According to the calculated value of X, the Y value is
determined by the activation function, generating the
output provided by the neuron.

Figure 2. Schematic of an artificial neuron.

There are multiple classifications for neural networks.
These classifications may depend on different
characteristics: (i) the number of layers or the type of
connectivity, fully connected or partially connected; (ii)
the flow of the processed signals, feed-forward or feed-
back; (iii) the way the training is done, supervised (when
desired input and output data are presented to the neural
network) or unsupervised (when only the input data are
presented to the neural network and it is in charge of
setting the output values). The training consists of
presenting input patterns to the network such that it can
modify their weights. Thus, its outputs should present an
adequate response when the input data provided are
similar but not necessarily identical to those used in
training [18].

The RTM-N approach, based on neural networks, for
determining the traceability is detailed in Section IV. The
results of the two other approaches – RTM-E, which
explores the relationship between the entry data
manipulated by the FRs, and RTM-NLP, which uses NLP
– are used as the neural network input data for training the
neural network. As output data, the network determines the
level of dependency between the FRs (“no dependence”,
“weak dependence”, “strong dependence”).

IV. APPROACHES TO RTM DEFINITION

The three RTM automatic generation approaches
proposed in this work take only the FRs into account when
establishing the degree of relationship between each pair.

The approaches were implemented in the COCAR tool,
which uses a template [19] to collect the requirements
entry data. This template contains the necessary data for
composing a Requirements Document (RD) and
supporting the application of the approaches. The main
objective of using such a template is to standardize the
registration of the FRs, avoiding inconsistencies,
omissions, and ambiguities. An important field of this
template that deserves attention is called “Entry” and is
essential for the RTM-E approach application, as
explained below. In a previous work dependency graphs
were also generated [10]. However, as the focus of this
paper is the RTM generation, visualization graphs will not
be explorated

In the following, the approaches are presented.

A. RMT-E Approach

The objective of this approach is to detect the
traceability links through the FRs entry data.

The dependency relationship between two FRs is
determined by the percentage of data common to them
both. To calculate such a relationship, the Jaccard Index
[20] is used. It compares the similarity and/or diversity
degree between any two data sets (A and B, for example).
Equation 2 represents this index where the numerator is
given by the quantity of data intersecting both sets (A and
B) and the denominator corresponds to the quantity of data
in the union of those sets.

Considering FRa the entry data set of a functional
requirement A and FRb the entry data set of a functional
requirement B, their dependency level is calculated by
Equation 3. Hence, each position (i,j) of the traceability
matrix RTM(i,j) corresponds to the value generated by
Equation 4. The RTM generated by the RTM-E approach
is named RTMe.

It is worth noticing that initiatives to automatically
determine the RTM using FR entry data were not found in
the literature. Similar initiatives do exist to help determine
traceability links between other artifacts, mainly models
(UML diagrams) and source code, like the ones proposed
by Cysneiros and Zisman [21].

From two FRs, the RTM-E approach generates a
number that represents the percentage dependency
between them. Then, based on this number, the
dependence is classified as "no dependence", "weak
dependence", or "strong dependence”. The dependency
level values were chosen according to an interactive and
iterative method based on the data provided by three RDs
from different ranges. These levels were “no dependence”
for a dependency level value equal to 0%, “weak
dependence” for values between 0% and 50%, and “strong
dependence” for values greater than 50%.

B. RMT-NLP Approach

The objective of this approach is to detect the
traceability links through NLP.

Even though there are many initiatives that make use of
NLP to determine traceability in the software development
process, few of them consider traceability inside the same
artifact [13], as mentioned before. In addition, the
proposals found in the literature do not use a requirements
description template and do not determine dependency
levels as done in this work.

Aiming to determine the dependency level between
two FRs, this approach uses the Processing field of the

 (3)

(4)

 (2)

39

template and the Frequency Vector and Cosine Similarity
methods [22]. Such methods provide the percentage
similarity between two text excerpts.

Text pre-processing is performed before applying the
Frequency Vector and Cosine Similarity methods, with the
aim of improving the process efficiency. The first step is to
eliminate all words, called stopwords, that might be
considered irrelevant (articles, prepositions, and
conjunctions). Then, a process known as steaming is
applied. This step reduces all words to their original
radicals, leveling their weights in the text similarity
determination. After the two aforementioned steps, the
method calculates the similarity between two FRs texts
using the Processing field of the template. The RTM
generated by the RTM-NLP approach is named RTMnlp.

As done in the RTM-E, the dependency level values
were chosen in an interactive and iterative way according
to the same three RDs from different ranges. The obtained
levels were “no dependence” if the value was between 0%
and 40%, “weak dependence” for values between 40%
and 70%, and “strong dependence” for values above 70%.

C. RTM-N Approach

The objective of this approach is to detect traceability
links combining the RTM-E and the RTM-NLP through
neural networks.

A Multilayer Perception (MLP) neural network was
used to develop the RTM-N approach. It is composed of
source nodes that represent the network input layer, one or
more intermediate layers, and an output layer. Except for
the input layer, the others are composed of neurons
(circles). Furthermore, the MLP network connectivity is
feed-forward; that is, the output of each neuron connects
only to all the neurons of the next layer, without the
presence of feedback loops. Thus, the signal propagates in
the network progressively.

Aiming to model the FR traceability, the MLP neural
network was created with two entries: the values
generated by the RTM-E and by the RTM-NLP. The
outputs were: "no dependence", "weak dependence", and
"strong dependence" and the network topology is detailed
in Figure 3.

To train the neural network it is necessary to "teach"
the network, providing the correct patterns. Therefore, we
provided it with data from an experimental study
conducted to evaluate the approaches RTM-E and RTM-
NLP [10]. In this experimental study a reference RTM
was created for each of the 18 systems that were analyzed.
This reference RTM was constructed based on the
detailed analysis of each FR pair, determining the
dependency between them as “no dependence”, “weak
dependence”, or “strong dependence”. Thus, in the
training phase, values between 0 and 1, meaning the
percentage dependency calculated by the RTM-E and
RTM-NLP approaches, were provided to the neural
network as input data. The correct relationship, marked in
the reference RTM, was provided as output data.

Once the neural network has been created and trained,
when it is provided with new input data obtained by the

RTM-E and RTM-NLP approaches, the level of
dependence between the involved FRs can be
automatically identified. The RTM generated by the
RTM-N approach is called RTMn.

Figure 3: RTM-N Topology

V. EXPERIMENTAL STUDY

This study was conducted to evaluate the effectiveness
of the RTM-N and re-evaluate the RTM-E and RTM-NLP
aproaches. It has been conducted following the guidelines
in Table I.

The results of the comparison between the data in
RTMe, RTMnlp, and RTMn are presented in Table II.
The first column contains the name of the specified
system, the second contains the FR quantity, and the third
presents the total number of possible dependencies
between FRs that may exist (“no dependence”, “weak
dependence”, or “strong dependence”) and whose formula
was shown in Figure 6. The fourth, sixth, and eighth
columns contain the total number of coincidental
dependencies between the RTMe, RTMnlp, and RTMn
matrices. For example, if the RTM-Ref has determined a
“strong” dependency in a cell and the RTM-E approach
has also registered the dependency as “strong” in the same
position, the correct relationship has been identified. The
fifth, seventh, and ninth columns show the effectiveness
of the RTM-E, RTMnlp, and RTMn approaches,
respectively, which are calculated by the relation between
the quantity of correct dependencies found by the
approach and the total number of dependencies that could
be found (third column).

The statistical analysis was conducted using
SigmaPlot software. The normal distribution of data was
confirmed applying the Shapiro-Wilk test and the results
were expressed in mean ± standard deviation. To compare
the effectiveness between the proposed approaches
(RTM-E, RTM-NLP, and RTM-N), variance analysis
(ANOVA) was used with Holm-Sidak post-test. The
significance level adopted was 5%. The RTM-N approach
was found to be more effective than RTM-E (85% ± 0.05
versus 77% ± 0.05; p=0.001) and than the RTM-NLP
approach (85% ± 0.05 versus 76% ± 0.07; p<0.001)

40

TABLE I – EXPERIMENTAL STUDY GUIDELINES

Context The experiment has been conducted in the context of the Software Engineering class at UFSCar – Federal University
of São Carlos. The experiment consisted in each pair of students conducting the requirements gathering of a system
involving a real stakeholder. The final RD had to be created using the COCAR tool.

Objective Evaluation of the effectiveness of the RTM-E, RTM-NLP, and RTM-N approaches in comparison to a reference RTM
(called RTM-Ref) constructed by a detailed analysis of the RD.

Participants Twenty-eight graduation students of the Bachelor’s Computer Sciences course at UFSCar
Artifacts RD:

• produced by a pair of students on their own;
• related to a real application, with the participation of a stakeholder with broad experience in the application

domain;
• related to the information systems domain with basic creation, retrieval, update, and deletion of data, and

inspected by a different pair of students to identify and eliminate possible defects;
• Included in the COCAR tool after the identified defects have been removed.

RTM-Ref
• created from the RD input into the COCAR tool;
• built based on the detailed reading and analysis of each FR pair, determining the dependency between them

as “no dependence”, “weak dependence”, or “strong dependence”;
• recorded in a spreadsheet so that the RTM-Ref created beforehand could be compared to the RTMe,

RTMnlp, and RTMn for each system;
• built by the paper´s authors, who always contacted the RD’s authors whenever a doubt was found.

Metrics The effectiveness of the three approaches with regard to the coincidental dependencies found by each approach in

relation to the RTM-Ref. The effectiveness is calculated by the relation between the quantity of dependencies correctly
found in each approach against the total of all dependencies that can be found between the FRs. Considering a system
consisting of n FRs, the total quantity of all possible dependencies (T) is given by Equation 6:

Therefore, the effectiveness rate is given by Equation 7:

The Precision and Recall [1] metrics could not be used, given that such metrics only take in account the fact that a
dependency exists and not their level (“weak” or “strong”).

Threats to
validity

• Students’ inexperience to develop the requirements with the stakeholders. To minimize this risk, known
domain systems were used as well as RD inspection activities.

• RTM-Ref had been built by people who did not have direct contact with the stakeholder. To minimize this
risk, any doubts about relationship occurrence were asked to the students.

TABLE II . EXPERIMENTAL STUDY RESULTS

 RTM-E RTM-NLP RTM-N

System

FRs
Number of possible

dependencies Correct Effectiveness Correct Effectiveness Correct Effectiveness

Zoo 19 171 131 77% 138 81% 149 87%

Habitation 24 276 233 84% 205 74% 235 85%

Student flat 28 378 295 78% 325 86% 337 89%

Taxi 15 105 82 78% 77 73% 91 87%

Clothing store 27 351 295 84% 253 72% 319 91%

Freight 16 120 98 82% 85 71% 102 85%

Court 24 276 204 74% 181 66% 218 79%

Financial control 17 136 94 69% 101 74% 107 79%

Administration 19 171 134 78% 129 75% 148 87%

Book store 19 171 129 75% 145 85% 149 87%

Ticket 15 105 88 84% 91 87% 95 90%

Movies 16 120 88 73% 82 68% 91 76%

Bus 15 105 72 69% 78 74% 81 77%

School 15 105 82 78% 77 73% 91 87%

 (7)

 (6)

41

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach based on neural
networks—RTM-N—to automatically generate the RTM.
Neural networks are able to acquire knowledge for pattern
recognition. Thus, from patterns generated in an
experimental study, a neural network was trained for
automatic detection of the level of dependency between
FRs.

Two other approaches proposed and presented in this
paper—the RTM-E, which is based on the percentage of
entry data that two FRs have in common, and the RTM-
NLP, which uses NLP to determine the level of
dependency between requirements—were used as input of
the neural network.

From the three approaches presented, it is worth
mentioning that there are already some reported proposals
in the literature using NLP for traceability link
determination, mainly involving different artifacts
(requirements and models, models and source-code, or
requirements and test cases). Such a situation is not found
in the RTM-E, and no similar attempt was found in the
literature to generate traceability links between FRs.

All approaches were implemented in the COCAR
environment. Then, the experimental study was performed
to evaluate the effectiveness of each approach. The results
showed that RTM-N presented superior effectiveness
compared to the other two. This was because the RTM-N
used the results presented in the other two approaches and
in the RTM-Ref to train the neural network to recognize
the level of traceability (“no dependence”, “weak
dependence”, and “strong dependence”).

Hence, considering that RTM determination is a
difficult task, the RTM-N approach combined the two
approaches and knowledge of analysts who constructed
the RTM-Ref to create a way to automatically detect the
traceability links.

The results motivate the continuity of this research and
new investigations of how to better combine the
approaches for the creation of the RTM using neural
networks.

The main contributions of this particular work are
incorporated into the COCAR environment and correspond
to the automatic relationship determination between the
FRs. This facilitates the evaluation of the impact of a
change in a requirement on the others. As future work, it is
intended to improve the NLP techniques used, considering
the use of a tagger and the incorporation of a terms
glossary for synonym treatment. Another investigation to
be done concerns how an RTM can aid the software
maintenance process, and more specifically, the support
for regression tests generation.

REFERENCES

[1] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems
Traceability, Springer, 491 p., 2012.

[2] I. Sommerville, Software Engineering. 9th edition – New York-
Addison Wesley, 2010

[3] A. Zisman and G. Spanoudakis, "Software Traceability: Past,
Present, and Future", The Newsletter of the Requirements
Engineering Specialist Group of the British Computer Society,
September 2004

[4] A.M. Salem, "Improving Software Quality through Requirements
Traceability Models," 4th ACS/IEEE Int. Conf. Computer Systems
and Applications (AICCSA 2006), Dubai, Sharjah, UAE, 2006.

[5] Standish Group, CHAOS Reports, 1994. Available at
http://www.standishgroup.com/sample_research/chaos_1994_2.ph
p. Last accessed February 2007.

[6] S.K.A. Sundaram, J.H.B. Hayes, A.C. Dekhtyar, and E.A.D.
Holbrook, "Assessing traceability of software engineering
artifacts," 18th Int. IEEE Requirements Engineering Conf.,
Sydney, Australia, 2010.

[7] X.Wang, G. Lai, and C. Liu, "Recovering relationships between
documentation and source code based on the characteristics of
software engineering," Electron. Notes Theor. Comput. Sci., 2009.

[8] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R.
Harshman, “Indexing by latent semantic analysis,” J. Am. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[9] R. Baeza-Yates, A. Berthier, and A. Ribeiro-Neto, Modern
Information Retrieval. ACM Press/Addison-Wesley, 1999.

[10] A. Di Thommazo, G. Malimpensa, G. Olivatto, T. Ribeiro, and S.
Fabbri, "Requirements traceability matrix: automatic generation
and visualization," in Proc. 26th Brazilian Symp. Software
Engineering, Natal, Brazil, 2012.

[11] A. Di Thommazo, M. D. C. Martins, and S. C. P. F. Fabbri,
“Requirements Management in COCAR enviroment” (in
portuguese) WER 07 - Workshop de Engenharia de Requisitos,
2007, Toronto, Canada.

[12] Y. Guo , M. Yang , J. Wang, P. Yang and F. Li, "An Ontology
based Improved Software Requirement Traceability Matrix", 2nd
International Symposium on Knowledge Acquisition and
Modeling, KAM , Wuhan, China, 2009

[13] A. Goknil, I. Kurtev, K. Van den Berg and J.W. Veldhuis,
"Semantics of trace relations in requirements models for
consistency checking and inferencing", Software and Systems
Modeling , Volume 10 Issue 1, February 2011

[14] E. V. Munson, and T. N. Nguyen, “Concordance, conformance,
versions, and traceability”; Proceedings of the 3rd international
workshop on Traceability in emerging forms of software
engineering, Long Beach, California, 2005.

[15] D. Cuddeback, A. Dekhtyar and J.H. Hayes, "Automated
requirements traceability: The study of human analysts",
Proceedings of the 2010 18th IEEE International Requirements
Engineering Conference, RE2010, Sydney, Australia, 2010

[16] B. Coppin, Artificial Intelligence Illuminated, Jones and Bartlett
Publishers, 729 p. , 2004.

[17] W. S Mcculloch, W. Pitts “A logical calculus of the ideas
immanent in nervous activity” The bulletin of mathematical
biophysics, v. 5, n. 4, p. 115–133, 1 dez. 1943.

[18] A. O. Artero, Inteligência Artificial - Teorica e Pratica (in
Portuguese), Livraria da Fisica, 230 p., 2009.

[19] K.K. Kawai, "Guidelines for preparation of requirements document
with emphasis on the Functional Requirements" (in portuguese).
2005. 170 f. (Master in Computer Cience)- Universidade Federal
de São Carlos, São Carlos, 2005.

[20] “The Probabilistic Basis of Jaccard's Index of Similarity” –
Avalilable at:
http://sysbio.oxfordjournals.org/content/45/3/380.full.pdf Last
access on November, 2012

[21] G. Cysneiros and A. Zisman, "Traceability and Completeness
Checking for Agent Oriented Systems". Proceedings of the 2008
ACM symposium on Applied computing, New York, USA, 2008.

[22] G. Salton and J. Allan, "Text retrieval using the vector processing
model," in 3rd Symp. Document Analysis and Information
Retrieval, University of Nevada, Las Vegas, 1994.

42

Generating Ontologies through Organizational
Modeling

 Karen Najera Alicia Martinez
 INFOTEC CENIDET
 Mexico D.F., Mexico Cuernavaca, Mexico
 Karen.najera@infotec. amartinez@cenidet.
 com.mx edu.mx

 Anna Perini Hugo Estrada
 FBK INFOTEC
 Trento, Italy Mexico D.F., Mexico
 perini@.fbk.eu hugo.estrada@infotec.
 com.mx

Abstract— Ontologies are recognized as important component of
information systems supporting business processes within and
across organizations. At modeling time, they contribute
identifying key elements from business processes; at development
time, their structure can be translated automatically into
information system’s source code; finally, at run time, through
queries and reasoning, they provide proper data for decision
making. Additionally, ontologies provide the basis for sharing
and publishing organizational information through the Semantic
Web. However, representing organizational information directly
into an ontology requires specialized expertise in the ontology
engineering domain, thus, ontologies are not generated using a
domain language easily for the organizational domain experts. In
this work, we propose the use of specialized organizational
modeling techniques as starting point to model the organization,
thereby, ensuring the proper definition of the organizational
knowledge. Then, a mechanism is provided to automatically
transform the organizational knowledge in its corresponding
ontological representation. Our proposed approach is based on
Model Driven Engineering ideas and it involves: a) the
development of an ontology representing the metamodel of two
widely used organizational modeling techniques i* and Tropos
and b) the systematic transformation of i* based modeling
primitives into instances of the ontology.

Keywords-Organizational modeling; ontologies; organizational
knowledge base; Model-Driven Engineering

I. INTRODUCTION
Ontologies are becoming popular to be an important
component of information systems that supports business
processes within and across organizations. Ontologies can give
support to the system lifecycle: at modeling time, ontologies
can be used to identify and describe key elements from
business processes such as data, activities and profiles
involved in the process itself (e.g. [1]); at development time,
the structure of an ontology can be automatically translated
into the source code of an information system by using an
appropriate development support environment, as described
for instance in [2] where business knowledge represented as
OWL ontology is automatically translated into an information
system implemented in the Mercury programming language.
Hence, if changes of a business process are reflected in the
ontology, the information system will also automatically

reflect those changes. Finally, at run time, ontologies can add
semantics to specify the behavior of business process [3], for
instance, by using queries and reasoning to retrieve proper
data for decision making or process validation (e.g., [4, 5, 6]).
Additionally, ontologies provide the basis for sharing and
publishing organizational information through the Semantic
Web [7].
However, representing organizational information directly into
an ontology is not an easy task. A crucial step in building good
quality ontologies is the right involvement of domain experts.
As argued in [8, 9], traditional methodologies and tools are
based on the idea that knowledge engineers drive the modeling
process. This often creates an extra layer of indirectness which
makes the task of producing and revising ontologies too rigid
and complex, e.g., for the needs of business enterprises.
Therefore, in this work we propose the use of specialized
organizational modeling techniques as starting point for the
capture and representation of organizational knowledge,
thereby ensuring their proper definition. Then, we aim to
provide a mechanism to automatically generate the
corresponding ontological representation from the
organizational model.
The i* visual modeling language [10] is one of the most
widely used organizational modeling techniques [11]. It
supports the description of networks made up of social actors
of an enterprise and the social intentional relationships and
dependencies among them together with the representation of
the internal behaviors required to satisfy actor dependencies.
i* provides the modeling basis to software engineering
methodologies that support the early requirements elicitation
stage such Tropos [12]. Therefore, we propose to start
capturing the needed organizational knowledge with the i* or
Tropos modeling languages and automatically generate the
corresponding ontological representation in the standard
semantic web language Web Ontology Language (OWL) [13].
This is done to enable enterprise domain experts, with low
knowledge engineering skills, to effectively represent
organizational knowledge such as: strategy, structure,
processes, and behavior, information and system requirements,
in terms of ontologies.
In this paper, we present an approach based on Model Driven
Engineering ideas that involves: a) the development of an

43

ontology representing the metamodel of two widely used
organizational modeling techniques i* and Tropos and b) the
systematic transformation of the knowledge represented in a
specific i* based model into instances of the ontology.
Following this approach, we provide the automatic generation
of an Organizational Knowledge Base (that we called
Organizational KB), where OntoiStar embody the
terminological knowledge (Tbox), that is, the knowledge
about the terminology of the organizational domain, and
OntoiStar instances represent the assertional knowledge
(Abox), which is the knowledge coming from a specific
organization description represented in an i* based model.
As a result, and according to the organizational knowledge
represented into an organizational model, we can provide: 1)
organizational knowledge available to be exploited and
consumed in the Semantic Web; 2) system requirements
captured in the ontology for software development, such as
agent systems; 3) proper data for decision making through
ontology reasoning.
This paper is structured as follows: Section 2 presents the
background in the organizational modeling domain. Section 3
provides the overview of our proposal. Section 4 describes the
development of the proposed approach. Section 5 describes
related work and finally, Section 6 concludes this work and
summarizes our ongoing and future work.

II. ORGANIZATIONAL MODELING
We have as goal to represent organizational knowledge in
terms of ontologies. Therefore, we propose, as starting point,
the use of specialized organizational modeling techniques to
model the organization, thereby, ensuring the proper definition
of the organizational knowledge. For this purpose, we have
selected i* [10] and Tropos [12].
i* supports the description of organizational networks made up
of social actors who have freedom of action, but also depend
on other actors to achieve their objectives and goals. It
provides a visual language which includes two models: the
strategic dependency model, a graph to represent social and
intentional relationships (dependencies that describe an
‘agreement’) among the network of actors of an enterprise;
and the strategic rationale model, a graph to describe and to
support the internal behavior of each actor required to satisfy
their dependencies on other actors. Examples of i* primitives
are presented in Table 1.
Tropos is an agent-oriented software methodology based on
i*. it provides a development process that is organized into
five phases: Early requirements, to produce a model of the
organization; Late requirements, to introduce the system-to-be
in the model analyzing its impact in the organization;
Architectural design, to obtain a representation of the
architecture of the system in terms of subcomponents and the
relationships among them; Detailed design, to define the
software agent rationale, including capabilities and interaction
specifications; and Implementation, which involves the
production of code. The Tropos visual language uses the core
concepts of i* presented in Table 1 (with minimal differences
omitted due to space).

Due to the growing interest around i* [11], variants based on
the original framework have been defined (such as Tropos and
several more). Therefore, approaches for dealing the
heterogeneity of the i* variants have been proposed. We have
analyzed two of these approaches [14, 15] as we aim to
support the ontological representation of organizational
knowledge represented not only with i* and Tropos but also
with other i* variants. In [14] a metamodel is proposed where
following a union approach the constructs of i* and Tropos
were included in the metamodel; in [15] a metamodel focused
in i*, Tropos and GRL is proposed where following an
intersection approach the common constructs of the three
variants were included in the metamodel; in [15] the iStarML
specification language is proposed. iStarML is an XML
interchange format which provides a common representational
framework for i* variants diagrams. It includes a set of tags
corresponding to the core constructs of different i* variants
and a definition of attributes in each tag to represent
particularities of the constructs (see Table 1, where attributes
have been omitted due to space).
We have implemented the approach presented in this work,
based on the metamodels and the iStarML format proposed in
[14, 15].

TABLE I. I* AND TROPOS CONSTRUCTS

i* and
Tropos core
constructs

Modeling
primitive

Types iStarML tag

Actor

None
Role
Position
Agent

<actor>

Actor link

Is_a
Is_part_of
Occupies
Covers
Instance
Plays

<actorLink>

Intentional
element

Goal
Softgoal
Resource
Task (i*)
Plan (Tropos)

<ielement>

Dependency
(depender,
dependum,
dependee)

Goal
Softgoal
Resource
Task (i*)
Plan (Tropos)

<dependency>
<depender>
<dependee>

Boundary
Actor boundary

Actor

 <boundary>

Intentional
element link

Decomposition
Means-End
Contribution

<ielementLink>

III. OVERVIEW OF THE PROPOSAL
In this section, we present the overview of our proposal, which
is presented in Fig. 1. The phase 1 corresponds to the
development of an OWL ontology, called OntoiStar, for the
ontological representation of the metamodel of i* and Tropos.

44

The phase 2 consists of the automatic generation of an
Organizational KB by transforming the knowledge represented
in a specific i* based model into instances of the ontology
OntoiStar. Phase 1 has been divided in two processes. Process
1 is related to the analysis of i* based metamodels [14, 15],
which was addressed to determine the constructs to be
represented in OntoiStar. Process 2 refers to the generation of
OntoiStar, where constructs identified in the process 1 were
manually mapped into OWL constructs following MDE ideas.
Phase 2 was also divided in two processes. Process 3 is related
to the graphical representation of the organization with any of
the organizational modeling technics i* or Tropos, generating
an i* based model. This process can be realized with i*
modelers or editors that enables producing a model specified
in iStarML [15], for instance jUCMNav1 or HiME2. Process 4
refers to the automatic transformation of the i* based model
specified in iStarML to instances of the ontology OntoiStar. In
order to support this process, we have developed a tool that
implements transformation rules between the iStarML format
and the ontology OntoiStar according to the MDE approach.
The output of the tool corresponds to the ontology OntoiStar
instantiated with the knowledge described in the i* based
model, namely, the Organizational KB.

Figure 1. Overview of the proposed approach

IV. ONTOLOGY GENERATION APPROACH
In this section, we describe our proposed approach to represent
the organizational knowledge in terms of ontologies. Our
approach starts from models described with the organizational
modeling techniques i* and Tropos to generate an
Organizational KB in the ontology domain. The approach is
based on MDE ideas. MDE is a methodology which focuses
on creating and exploiting domain models for the software
development. It is based on layered architectures, where
models, metamodels and metametamodels correspond to the
M1, M2 and M3 layers, respectively. Fig. 2 shows the layered
architectures of the domains that we are addressing. On the
left side, it is found the layered architecture of i* based
modeling languages, and on the right side, it is found the
layered architecture that we have proposed for the ontology
domain. Transformation bridges [16] can be defined to move
from a layered architecture to another. A transformation
bridge comprises a set of transformation rules which together
describe how a model conforming to the source metamodel
can be transformed into a model conforming to the target

metamodel. A transformation rule defines how one or more
constructs in the source metamodel can be transformed into
one or more constructs in the target metamodel. A
transformation bridge is defined in two steps:
1) Constructs in each metamodel are identified.
2) The relationships between the constructs of both
metamodels are analyzed and specified, i.e. transformation
rules are defined.
A transformation bridge can be defined at the level of
metamodels (M2) as well as the level of metametamodels
(M3). Thus, a transformation bridge defined at level Mn can
then be used to automate model to model transformation at
level Mn-1.
In our approach, we have defined two transformation bridges:
M3 transformation bridge, which has been defined in M3 layer
to generate the OWL ontology OntoiStar. Therefore, it
contains the transformation rules between concepts from the i*
metametamodel (represented in the Unified Modeling
Language, such classes and associations) in the i* layered
architecture and concepts from the OWL metamodel (such
classes and properties) in the OWL ontology architecture.
M2 transformation bridge, which has been defined in M2 layer
to transform any i* based model into instances of the ontology
OntoiStar. It contains the transformation rules between
concepts from the i* metamodel (represented in iStarML) in
the i* layered architecture and concepts from the ontology
OntoiStar in the OWL ontology architecture. We have
developed a tool that implements the transformation rules of
this bridge in order to automate the transformation process of
any i* based models.

Figure 2. Arquitectural solution of the approach

The implementation of the proposed approach is described in
the following subsections.

A. Ontological metamodel development phase
In this subsection, we describe the phase 1 of our proposed
approach, that is, the development of the ontology OntoiStar
which represent the ontological metamodel of i* based
modeling languages.
Process 1 was carried out in order to determine the constructs
of the i* based modeling languages to be included into
OntoiStar. It consisted of an analysis of two metamodels that
address the integration of several i* variants [14, 15], as we
mentioned in section II. The metamodel proposed in [14]
includes all the elements of i* and Tropos; the metamodel
proposed in [15] includes only the common concepts of the

1 The jUCMNav website.
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/

2 The HiME website. http://www.lsi.upc.edu/ llopez/hime/

45

variants i*, Tropos and GRL. The main differences between
these metamodels lie in concepts not common, the
representation of concepts relationships, the class hierarchy
and the class properties. For the development of OntoiStar, we
have adopted the common characteristics of both metamodels
including concepts, relations and attributes, but also some
specific characteristics of each one. From [14] we have
adopted: a) super classes to define a class hierarchy between
constructs (see i* and Tropos core concepts in Table 1); b)
enumeration classes to represent specific attributes such as
contribution types: positive and negative; c) the representation
of all concept relationships in terms of classes and
associations. From [15] we have adopted the most classes’
properties, such as, disjoint and complete. As a result of the
analysis we have generated an i* metamodel including the
adopted characteristics. The resultant i* metamodel is the
basis to generate the ontology OntoiStar.
Process 2 was carried out in order to generate the ontology
OntoiStar. OntoiStar has been generated by applying the M3
transformation bridge (from i* metametamodel to OWL
metamodel), which is defined as follows:
(1) Constructs from the i* metametamodel and from the

OWL metamodel are identified.
The i* metametamodel is described with UML therefore,
the relevant constructs to consider for the transformation
are: class, attribute, association and class property.

The significant constructs of the OWL language to
develop OntoiStar are: OWL Class, Object property and
Data property; the axioms: subClassOf,
ObjectPropertyDomain, ObjectPropertyRange,
DataPropertyDomain, disjointWith and unionOf.

(2) Relationships between constructs from the i*
metametamodel and the OWL metamodel are analyzed
and specified. The following transformation rules were
proposed:
Rule 1: Classes and class associations from i*
metametamodel as classes in OWL.
Rule 2: Associations from i* metametamodel as object
properties in OWL.
Rule 3: Class properties from i* metametamodel as
axiom class properties in OWL.
Rule 4: Enumeration elements from i* metametamodel as
class instances in OWL.
Rule 5: Attributes (we define two kinds of attribute
representation):

(a) Class attributes from i* metametamodel as data
properties in OWL.
(b) Attributes (of enumeration class) from i*
metametamodel as object properties in OWL.

The M3 transformation bridge is manually applied in layer
M2, transforming the i* metamodel into its ontological
representation: OntoiStar. Table 2 presents partially results of
the application of Rule 1, the OWL class representation of
classes and class associations of the i* metamodel.

An example of application of Rule 2 is the actor is_a link. It
represents the relationship between two actors. Therefore, the
actor class “Actor” and a class to represent the is_a link
“isALink” have been generated following Rule 1. Then two
object properties have been defined to represent the source and
target associations between the isALink class and the Actor
class.
 <owl:ObjectProperty rdf:ID="has_Actor_IsALink_source_ref">
 <rdfs:range rdf:resource="#Actor"/>
 <rdfs:domain rdf:resource="#IsALink"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_Actor_IsALink_target_ref">
 <rdfs:domain rdf:resource="#IsALink"/>
 <rdfs:range rdf:resource="#Actor"/>
 </owl:ObjectProperty>

After applying the transformation rules to all the elements of
our proposed i* metamodel, we obtain the ontological
metamodel OntoiStar. Thus, we obtain the Tbox part of the
Organizational KB.

TABLE II. M3 TRANSFORMATION BRIDGE

i* and
Tropos core
constructs

Types OWL construct

Actor

None <owl:Class rdf:about="#Actor"/>
Role <owl:Class rdf:ID="Role"/>
Position <owl:Class rdf:ID="Position"/>
Agent <owl:Class rdf:ID="Agent"/>

Actor link Is_a <owl:Class rdf:about="#IsALink"/>
Is_part_of <owl:Class rdf:about="#IsPartOfLink"/>
Occupies <owl:Class rdf:about="#OccupiesLink"/>

Intentional
element

Goal <owl:Class rdf:ID="Goal"/>
Softgoal <owl:Class rdf:ID="SoftGoal"/>
Resource <owl:Class rdf:ID="Resource"/>
Task (i*) <owl:Class rdf:ID="Task"/>
Plan (Tropos) <owl:Class rdf:ID="Plan"/>

Dependency
(depender,
dependum,
dependee)

Goal
Softgoal
Resource
Task (i*)
Plan (Tropos)

<owl:Class rdf:ID="Dependency"/>
<owl:Class rdf:ID="DependeeLink"/>
<owl:Class rdf:ID="DependumLink"/>
<owl:Class rdf:ID="DependerLink"/>

Boundary <owl:Class rdf:ID="ActorBoundary"/>
Intentional
element link

Decomposition <owl:Class rdf:ID="DecompositionLink"/>
Means-End <owl:Class rdf:ID="MeansEndLink"/>
Contribution <owl:Class rdf:ID="ContributionLink"/>

B. Organizational Knowledge Base generation phase
In this subsection, we describe the phase 2 of our proposed
approach, that is, the automatic generation of the Abox part of
the Organizational KB. First, we present a tool that supports
the automatic transformation of the knowledge represented in
a specific i* based model into instances of the ontology
OntoiStar. Then, we describe the processes of this phase,
which must be performed whenever that it is desired to
represent the organizational knowledge of a specific
organization in terms of ontologies.
The tool is called TAGOOn – (Tool for the Automatic
Generation of Organizational Ontologies). It is based on MDE
ideas. Therefore, through a set of transformation rules
implemented in the tool, it automatically populates the
ontology OntoiStar with instances that represent the i*

46

elements belonging to a specific organizational model. Thus,
generating the Abox part of the Organizational KB.
OntoiStar instantiation is carried out by implementing in
TAGOOn the M2 transformation bridge (from i* metamodel,
described in the iStarML specification, to OntoiStar) as shown
in Fig. 3. Transformation rules between iStarML constructs
(see Table 1) and the ontology OntoiStar has been defined.
The transformation rules are automatically applied to i* based
models on layer M1. In this way, TAGOOn supports the
automatic transformation of any i* based model into instances
of the ontology OntoiStar.

Figure 3. M2 transformation bridge implemented in TAGOOn

Following we describe the Organizational KB generation
process flow (Fig. 4). Process 3 consists in modeling the
organization by using the visual i* or Tropos modeling
languages. This model can be realized with i* modelers or
editors that enables producing a model specified in the
iStarML format. The model in iStarML is the input for the
process 4, which is performed by the tool TAGOOn. The tool
then parses the iStarML file, and according to the defined
transformation rules, instantiate the corresponding classes and
properties in the ontology OntoiStar. The output of the tool is
the ontology OntoiStar with instances that represent the
knowledge content in the i* based model. The ontology
OntoiStar with their instances shapes an Organizational KB in
which is possible to apply services offered by the ontology
technology such as reasoning and querying. The output can be
edited with an ontology editor, for modifying the ontology or
its instances or it can be the input of development or reasoning
platforms supported by ontologies.

Figure 4. Organizational KB generation process flow

TAGOOn has been validated with a case study carried out in
[17]. It consists of a real project to model the processes of a
postgraduate institution (www.cenidet.edu.mx) that offers
Master and PhD programs. We present a fragment of the
process to register students in the academic semesters. The
registration process involves: 14 actors, 43 actor
dependencies, 117 intentional elements and 44 intentional
element links. The fragment is related with the actors

“Student” and “Thesis advisor” and their Softgoal dependency
“Choose appropriated courses” and their goal dependency
“Choose courses” (Fig. 5). Table III presents parts of the
iStarML file and the resultant OWL file.

Figure 5. Fragment of a i* model and its iStarML

TABLE III. FRAGMENTS OF THE ISTARML AND THE OWL FILES

V. RELATED WORK
Solutions to the problem of modeling in various aspects of

an enterprise were proposed in several works, both in terms of
definition of the metamodel and in terms of methodologies to
support the creation of the model itself. Concerning the
metamodel the TOVE Ontology Project [18] proposes a set of
integrated ontologies for the modeling of an enterprise which
spans several aspects of an enterprise, such as activities, states,
resources, time, and so on. The Common KADS model set [19]
is a collection of models (organization, task, agent) for
structuring knowledge in an organization. The organizational
ontology [7] is a core ontology to represent organizational
structures developed with the objective of supporting linked
data publishing of organizational information across different
domains. In [20], a set of ontologies are proposed to support
business process integration. Focusing on methodologies for
ontology / model creation, we can notice that most of them -
e.g., TOVE Enterprise methodology [18], CommonKADS
[19], Methontology [21] and the Enterprise ontology [22] - are
built around the knowledge engineer, who executes and
coordinates all the different phases of the knowledge
acquisition and formalization process. The novelty of our
approach w.r.t. these proposals lies in using a Model Driven

Fragments of the iStarML file Fragments of the OWL file
<actor id="05" name="Student"/>
<actor id="06" name="Thesis
advisor"/>
<ielement id="01" name="Choose
appropriated courses"
type="Softgoal">
 <dependency>
 <depender aref="05"/>
 <dependee aref="06"/>
 </dependency>
 </ielement>
 <ielement id="02" name="Choose
courses" type="Goal">

<OntoiStar:Actor rdf:ID="Student"/>
<OntoiStar:Actor
rdf:ID="Thesis_advisor"/>

<OntoiStar:Softgoal rdf:ID="Choose
appropriated courses"/>
<OntoiStar:Goal rdf:ID="Choose
courses"/>
<OntoiStar:Resource rdf:ID="Proposed
schedule"/>

47

Engineering ideas to represent organizational knowledge in
terms of ontologies from specialized techniques for modeling
organizations, where concepts are familiar to enterprise domain
experts such as a) the representation of social and intentional
relationships among the network of actors of an enterprise, and
b) the representation of the internal behaviors required to
satisfy actor dependencies. The approach is also complemented
by an intuitive visual representation language which can
facilitate the involvement of enterprise domain experts in the
modeling process. The ontology generation is managed in a
transparent manner for the user.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented a semi-automated approach to
generate ontologies from an organizational model described
with i* or Tropos modeling languages. Specifically, it
describes how the ontological metamodel of i* based
modeling languages (OntoiStar) has been developed, and it
also explains the transformation process that can be applied to
automatically populate OntoiStar with instances of i* elements
belonging to a specific organizational model. Thus, providing
an Organizational KB where OntoiStar represent the Tbox and
OntoiStar instances, represent the Abox.
Services offered by the ontology technology such as reasoning
and querying can be applied to this Organizational KB.
Furthermore, it can be opened and edited with an ontology
editor, or it can be the input of development or reasoning
platforms supported by ontologies. As the organizational
knowledge is represented in the standard Semantic Web
language OWL, it could be available to be exploited and
consumed in the Semantic Web by paradigms such as Linked
Data.
Although, we considered the case of i* notation, the approach
can be generalized to other organizational modeling
frameworks, since it follows MDE ideas.
In our ongoing work, we are currently addressing the
integration of other i* variants to OntoiStar, thereby the
ontology will be useful for any i* variant. Moreover, we are
consolidating the tool to support the automated generation of
an Organizational KB through an i* based model described
with any of the variants integrated in OntoiStar.

REFERENCES
[1] A. Prieto and A. Lozano-Tello. Use of ontologies as representation

support of workflows oriented to administrative management. Journal of
Network and Systems Management, 17(3):309–325, 2009.

[2] M. V, E. Bossche, P. Ross, I. Maclarty, B. V. Nuffelen, and N. Pelov.
Ontology driven software engineering for real life applications, 2007.

[3] I. Weber, J. Hoffmann, and J. Mendling. Beyond soundness: on the
verification of semantic business process models. Distributed and
Parallel Databases, 27(3):271–343, 2010.

[4] M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov. A bpmo based
semantic business process modelling environment. In Semantic Business

Process and Product Lifecycle Management, volume 251 of CEUR,
2007.

[5] G. Gröner and S. Staab. Modeling and query patterns for process
retrieval in owl. In 8th International Semantic Web Conference (ISWC
2009), volume 5823 of LNCS, pages 243–259, Springer, Washington,
DC, 2009.

[6] C. Ghidini, C. D. Francescomarino, M. Rospocher, P. Tonella, and L.
Serafini. Semantics based aspect oriented management of exceptional
flows in business processes. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 2011.

[7] D. Reynolds. An organizational ontology. W3C,
https://dvcs.w3.org/hg/gld/raw-file/default/org/index.html, March, 2013.

[8] V. Dimitrova, R. Denaux, G. Hart, C. Dolbear, I. Holt, and A. G. Cohn.
Involving domain experts in authoring owl ontologies. In Proceedings of
the 7th Int. Semantic Web Conference (ISWC 2008), volume 5318/2010
of LNCS, pages 1–16. Springer Berlin / Heidelberg, Karlsruhe,
Germany, 2008.

[9] C. Ghidini, M. Rospocher, and L. Serafini. Moki: a wiki-based
conceptual modeling tool. In ISWC 2010 Posters & Demonstrations
Track: Collected Abstracts, volume 658 of CEUR Workshop
Proceedings (CEUR-WS.org), pages 77– 80, Shanghai, China, 2010.

[10] E. S.-K. Yu. Modelling strategic relationships for process reengineering.
PhD thesis, Toronto, Ont., Canada, Canada, 1996.

[11] X. Franch. The i* framework: The way ahead. In Sixth International
Conference on Research Challenges in Information Science RCIS’12,
pages 1–3, Paris, France, 2012.

[12] P. Giorgini, J. Mylopoulos, A. Perini, and A. Susi. The Tropos
Methodology and Software Development Environment. In E. Yu, P.
Giorgini, N. Maiden, and J. M. eds., editors, Social Modeling for
Requirements Engineering, pages 405–423, Chapter 11, MIT Press,
Cambridge, MA, 2010.

[13] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web
Ontology Language Reference. Technical report, W3C,
http://www.w3.org/TR/owl-ref/, February 2004.

[14] M. Lucena, E. Santos, C. T. L. L. Silva, F. M. R. Alencar, M. J. Silva,
and J. Castro. Towards a unified metamodel for i*. In Second
International Conference on Research Challenges in Information Science
RCIS’08, pages 237–246, Marrakech, Morocco, 2008.

[15] C. Cares, X. Franch, A. Perini, and A. Susi. Towards interoperability of
i* models using istarml. Computer Standards & Interfaces, 33(1):69{79,
2011.

[16] S. Staab, T. Walter, G. Gr¨oner, and F. S. Parreiras. Model driven
engineering with ontology technologies. In Reasoning Web, pages 62–
98, 2010.

[17] H. Estrada. A service-oriented approach for the i* framework. PhD
thesis, Valencia University of Technology, Valencia, Spain, 2008.

[18] M. S. Fox and M. Gr¨uninger. Enterprise modeling. AI Magazine,
19(3):109–121, 1998.

[19] G. Schreiber, H. Akkermans, A. Anjewierden, R. Dehoog, N. Shadbolt,
W. Vandevelde, and B. Wielinga. Knowledge Engineering and
Management: The CommonKADS Methodology. The MIT Press,
December 1999.

[20] M. Grüninger, K. Atefi and M. Fox. Ontologies to Support Process
Integration in Enterprise Engineering. In: Computational &
Mathematical Organization Theory vol 6, n 4, pp. 381-394, 2000.

[21] M. Fernandez-Lopez, A. Gomez-Perez, and N. Juristo. Methontology:
from ontological art towards ontological engineering. In Proc. Symp. on
Ontological Eng. Of AAAI, Providence, Rhode Island, 1997.

[22] J. L.G. Dietz. Enterprise Ontology. Springer, Berlin / Heidelberg, 2006.

48

Using NLP Techniques for Identifying GUI
Prototypes and UML Diagrams From Use Cases

Rafael T. Anchiêta, Rogério F. de Sousa and Raimundo S. Moura
Department of Computing

Federal University of Piauı́

Teresina (PI), Brazil

E-mail: {rta, rfigsousa, rsm}@ufpi.edu.br

Abstract—Use cases are an effective way of modeling the
interaction between user and computer system, which covers
not only how the user will interact with the system but how
the system will respond to the user. They are generated from
the requirements specification and written in natural language
narratives. This paper presents a prototype to generate GUI
prototypes, class diagrams, and use case diagrams from use case
descriptions written in the Portuguese language using natural
language processing techniques. We use the ANTLR tool, text
patterns, part-of-speech tagger, stop words, and stemming algo-
rithms to solve the problem. A preliminary evaluation highlights
promising results for the approach used.

Keywords— Requirement engineering, use cases, natural
language processing

I. INTRODUCTION

Requirements Engineering (RE) is an important field of

the software development process. Requirements should be

documented in the Software Requirement Specification (SRS).

In the SRS, we have used a textual use case, as introduced

by Booch et al. [1], which constitutes the interaction between

the use cases and the actors. Use cases can also be modeled in

a graphical form using the Unified Modeling Language (UML)

notation, serving as a table of contents for the functional

requirements. They describe the interactions between a system

and its environment.

In use cases, the most important part is the description of

events flow (scenarios). It provides a means of communication

between actors and the system. In his book [2], Alistair

Cockburn presented an effective technique for specifying the

interaction between a software system and its environment.

The technique is based on natural language specification

for scenarios and extensions. Scenarios and extensions are

specified by phrases in plain English language. This makes

requirements documents easy to understand and to communi-

cate even to non-technical people.

The use of natural language to specify the behavior of a

system is, however, a critical point, due to the inherent ambi-

guity, duplication, and omission from different interpretations

of the natural language descriptions [3]. The specification of

communication (interaction) between actors and system (use

cases) is fundamental to the development of Graphical User

Interface (GUI) prototypes and, normally, application’s users

validate the software requirements by the GUI prototypes.

According to IEEE STD 830-1998 [3], prototypes are useful

for the following reasons:

1) The customer may be more likely to view the prototype

and react to it than to read the SRS and react to it. Thus,

a prototype provides quick feedback.

2) The prototype displays unanticipated aspects of the

systems behavior. Thus, it produces not only answers

but also new questions. This helps reach closure on the

SRS.

3) An SRS based on a prototype tends to undergo less

change during development, thus shortening develop-

ment time.

Through the use case descriptions, it is also possible to

generate class diagrams and use case diagrams.

Class diagrams help decrease the gap between the require-

ments analysis phase and the design phase. This gap creates

inconsistency and it needs to be bridged. Class diagrams are

also used for object-oriented system design and are widely

used by the software industry and engineering community,

because they represent the static view of the systems. Use

case diagrams describe scenarios which show features of the

system from the viewpoint of the user, and the customer should

see the use case diagrams as the key features of your system.

In this context, in this paper we present a prototype to auto-

matically identify GUI prototypes from use case descriptions,

written in Portuguese language and that follow the Praxis1

process using Natural Language Processing (NLP) techniques.

Previous research has shown that it is possible to identify

elements of user interfaces through textual use cases [4].

The main contributions of our approach include: (1) a

decrease in the inconsistency between analysis phase and

design phase; (2) a minimization of development time of the

GUI prototypes; (3) assistance to requirements engineers in

the process of requirements elicitation; and (4) a decrease in

the gap between requirements engineers and system user.

The Praxis process is used in many computer science

courses and in real software development projects, especially

in Synergia - Software Engineering Laboratory and Systems.

It is based on object-oriented technology; its rating analysis

and design is the UML 2.0, created by the Object Management

Group (OMG) consortium, which brings together hundreds of

1http://homepages.dcc.ufmg.br/∼wilson/praxis/

49

the world’s leading producers of software. The methods of

the Praxis cover the areas of the Capability Maturity Model

Integration (CMMI), which is a process improvement approach

that provides organizations with essential elements of effective

processes. The patterns of the Praxis are in accordance with

the standards of the IEEE Engineering software, the most

comprehensive and respected area, specifically IEEE STD

830-1998 [3].

The rest of the paper is organized as follows. In Section

II we describe an overview about NLP techniques. Section

III we show some related works. In Section IV we present

the developed prototype. In Section V we discuss preliminary

evaluations. Finally, in Section VI we present conclusion and

future works.

II. NLP TECHNIQUES: OVERVIEW

Traditionally, NLP techniques have been used to analyze

texts and extract structured information from non-structured

data. NLP algorithms aim to identify the real importance of

each term in certain contexts, enabling a gain in the quality

of results produced; in other words, NLP attempts to extract

a fuller meaning representation from free text. NLP typically

makes use of linguistic concepts, part-of-speech, grammatical

structure, as well as dealing with ambiguity and anaphora.

This area includes various knowledge representations, such

as a lexicon of words and their meanings and grammatical

properties and a set of grammar rules and often other resources

such as an ontology of entities and actions, or a thesaurus of

synonyms or abbreviations [5].

According to Luisa et al. [6], several scientific studies have

used NLP in RE, and have generated many contributions:

1) Assistance in the management and documentation of

requirements [7], [8].

2) Assistance in the ambiguity localization and duplication

in the requirements specification document [9] .

3) Extraction directly from text of natural language ele-

ments to generate conceptual models [10], [11].

A. Stop Words

One of the frequently used methods on semantic natural

language processing is the elimination of stop words, which

are words with little or no additional semantic information.

Depending on application, they can be considered a homoge-

neously distributed noise signal to be filtered from other words,

as they have no semantic discriminating power but dilute the

apparent distribution of the words we are interested in.

In this paper, we take grammatical classes such as article,

pronoun, adjective, adverb, conjunction, and numerals and put

them in a set called stop list. This set is not used to identify

GUI elements nor to generate use case diagrams.

B. Taggers

In NLP, taggers are systems that analyze a text and insert

morphological, grammatical or syntactical tags for each lexical

item. A part-of-speech tagger is a morphosyntactic tagger

which analyzes the text and identifies parts of speech such

as nouns, adjectives, pronouns and verbs, among others.

Basically, the tagger inserts a tag into each word; this

action is performed according to the algorithm of the tagger

used. The tagger can use a lexicon and a set of procedures

that support the process of defining a tag to be used on

a particular word. These two components are part of the

language model used for the task of tagging (e.g. Engen-
haria/NOUN de/PREPOSITION Requisitos/NOUN). Figure 1

illustrates a generic scheme for a morphosyntactic tagger with

the tokenization phase incorporated.

Fig. 1. Tagger morphosyntatic: overview

After the text is tokenized, the grammatical classification

phase begins. For each token, the classifier looks for the

possible grammar classes in the lexicon. If the token is not

found in the lexicon, then the tagger uses specific procedures

aimed to find a classification. When there is ambiguity, the

disambiguation uses context information to solve this problem.

The language model used by the tagger can be based

on rules, cases, or decision trees; in this case the tagger is

called symbolic or linguistic. The model-based representation

can use Hidden Markov Models, probabilistic decision trees

or statistical distribution; in this case, the tagger is called

statistical or probabilistic.

In this paper, we use Tree Tagger [12], a tagger based on

probabilistic decision trees obtained from annotated corpora.

In our experiments, it got better results when compared with

MXPOST [13] and QTAG [14]. Futhermore it can easily be

adapted for other languages.

C. Stemming

Stemming is the process of reducing inflected words to

their stem, such as “confirma, confirmar, confirmação”. These

words have the same stem (confirm), but belong to different

grammatical classes, noun, verb, and noun respectively. The

stemming process is used when we want to group words with

different spellings and grammatical categories, but related to

the same concept.

In this paper, we use the Orengo and Huick algorithm [15],

developed exclusively for the Portuguese language.

III. RELATED WORK

In literature, there are many researches that were conducted

to automate generation of user interfaces and class diagrams.

In order to generate user interfaces automatically, A. M.

Rosado [16] uses Object Constraint Language (OCL), which

is a declarative language to describe rules that apply to UML

models to add preciseness and semantic richness both to the

domain and use case. Through the UML class diagram, a

50

simple user interface is generated. To generate a complete

user interface, the author uses OCL constraints and a use case

model.

M. Elkoutbi et al. [17] make use of UML scenarios to

create a semi-automatic user interface. These scenarios are

acquired in the form of collaboration diagrams, as defined by

the UML, and are enriched with user interface information.

Afterwards, the diagrams are transformed into specifications of

UML state diagrams of user interface objects involved. From

the set of specifications, the user interfaces are generated.

In this work, based on the feedback given by the user, the

collaboration diagram and the interface can be iteratively

refined, and the overall process is a specification consisting

of the state diagrams of all the objects involved, along with

the user interface generated and refined.

Ren [18] makes a research on analysis of interaction process

between actors and use cases. This work makes use of the pat-

tern Model View Controller (MVC) to generate an interaction

model. Moreover, he discusses automatic generation of user

interfaces based on use cases. The authors focus on analysis

of the interaction process between actors and the system in use

cases, and build an interaction process model and an interface

hierarchical structure model in the end.

W. C da Silva [10] presents a tool to automatically gen-

erate class diagrams from requirements models based on the

Portuguese language. The author has used NLP techniques to

perform a preprocessing to remove all accents from the words,

and separate all punctuation marks; then the simple text is put

on the input format used by the tagger tool. The authors have

also developed a tool which makes use of textual patterns,

but the textual patterns are in fact quite simple, since the tool

generates a large number of false positives and false negatives.

A. Fantechi et al. [7] discuss the use of methods based

on a linguistic approach to analyze functional requirements

described by means of a textual natural language (use case

descriptions). The authors use lexical analysis of requirements

to identify occurrences of certain patterns and generate class

diagrams.

The goal of our work is to generate GUI prototypes, class

diagrams, and use case diagrams from use case descriptions

written in the Portuguese language and that follow the Praxis

process format, using NLP techniques. Our approach differs

from others because our starting point are the textual use cases

of a SRS and these narratives have been written naturally in

the Portuguese language. Finally, researches to explore the

possibilities to automatically generate GUI prototypes, class

diagrams, and use case diagrams from natural language are

highly challenging in the world. To apply NLP techniques to

the Portuguese language is also another great challenge due

to the complexity of the language (phrasal structure and word

accentuation), but we are trying to overcome these difficulties

by using textual patterns and hybrid NLP techniques.

IV. PROTOTYPE

The prototype was developed in the Java language and auto-

mates the creation of GUI prototypes, class diagrams, and use

case diagrams from use case descriptions. It receives as input

an use case description and after looking for some predefined

textual patterns, identifies and generates GUI prototypes and

diagrams. The Figure 2 shows a general overview process.

Fig. 2. GUI prototypes and diagrams from use case descriptions. Overview

The prototype has resources such as drag and drop com-

ponents; insert, edit, and delete components; read PDF, TXT,

and DOC formats, export diagrams in PNG, JPG, and XML

Metadata Interchange (XMI) formats. The XMI format is

according to XMI v2.1.1 version2, which is an OMG standard

for exchanging metadata information via Extensible Markup

Language (XML). It also allows changes between the proto-

type and diagrams, so that a change in the prototype alters the

class diagram associated with this prototype and vice versa.

This is done interactively by the prototype developed.

The prototype has five integrated modules for generating

GUI prototypes and diagrams. The main module is the syntac-

tic module; it is responsible for generating GUI prototypes and

diagrams. It receives tagged tokens from the tagger, interacts

with an actions base and the stemming module to accomplish

this task. Figure 3 shows a prototype screenshot.

Fig. 3. Prototype screenshot

A. Lexical and Tagger Module

The lexical module tokenizes the text into words and/or

punctuation marks. In this module, we use the ANTLR tool

(Another Tool for Language Recognition) [19], which is a

generator of lexical and syntactic analyzers.

The tagger receives tokens and makes the tagging according

to their grammatical class. The tagged tokens are sent to the

syntactic module.

B. Syntactic Module

The syntactic module was also implemented by the ANTLR

tool. It gets tagged tokens and makes the search for prede-

fined textual patterns to identify UML elements (attributes,

2http://www.omg.org/spec/XMI/2.1.1/

51

operations, actors, ...); next, it generates GUI prototypes, class

diagrams, and use case diagrams.
Table I shows the textual patterns used to identify GUI

prototypes and class diagrams. Table II shows the textual pat-

terns used to identify use case diagrams. These patterns were

defined by manual analysis of several use case descriptions.

The symbol (‘?’) means that the grammatical class may or

may not occur.

TABLE I
TEXTUAL PATTERNS GUI PROTOTYPE AND CLASS DIAGRAM

Candidate Textual Patterns
Interface Name/Class Noun AND Preposition AND Noun2

Fields / Attributes
(Conjunction OR Comma OR Colon) AND
[Article]? AND Noun

Fields / Attributes
(Conjunction OR Comma OR Colon) AND
(Article OR Preposition)? AND Noun AND
Preposition AND Noun

Buttons / Operations Verb OR Noun

1) GUI prototype and Class Diagram: When the syntactic

module finds one candidate pattern Interface Name / Class,

then it is checked whether the second noun (Noun2) belongs

to a predefined suffix base. If it does, then the word stem

is recovered to eliminate words that have different degrees,

numbers, and genders. This stem is stored in a data structure to

eliminate duplicates. The predefined suffix base is commonly

used to identify possible interface names, classes, and actors

and it was implemented using a relational DB. This base has

32 suffixes and was defined according to a PhD thesis by

Miriam Sayão [20].
For example, in the text “tela de usuário”, the pattern

“Noun AND Preposition AND Noun2” is identified; the word

“usuário” will be analyzed as (stem: “usu”; suffix: “ário”);

because “ário” belongs to our predefined suffix base, then the

stem “usu” is stored in our data structure, then it is identified

an interface with the name “tela de usuário” and as a class

with the name “usuário”.
In order to identify attributes, we use only the predefined

patterns. For example, in the text “O Gerente preenche os
dados do Usuário: nome, login, senha e grupos do usuário”.

The words “nome, login, senha e grupos” will be defined as

attributes/fields of the class or interface identified before.
Additionally, if some attribute is equal to the name of an

interface or a class, a simple association is created with mul-

tiplicity one to one between the UML classes. For example,

in the text “O Gestor de Compras informa o Fornecedor”

the words “compras” and “fornecedor” were identified as

classes/interfaces, and, because the word “fornecedor” is also

identified as an attribute, then an association one to one is

created between “compra” and “fornecedor”. On the other

hand, if the expression “um ou mais” appears before an

attribute, then an association with multiplicity one to many

is created.
In operations, we use a small base of words consisting of

nouns and verbs related to a CRUD pattern (Create Read

Update Delete). In the context of use case descriptions, the

relevant types are Input, Output, Create, Read, Update, Delete

and Include [21]. This base of words, or actions base, in-

troduces semantic information into the analysis and has been

implemented using a relational DB, but, if necessary, it could

be represented as an OWL ontology. In use case descrip-

tions, there are commonly appearing words such as “inclusão,
alteração, consulta, exclusão, impressão”, and so on. By using

the actions base, it is possible to suggest the words “incluir,
editar, pesquisar, excluir e imprimir”, respectively. This base

is useful because we can get quite accurately the desired action

by the end user in the description.

After identifying the possible interface names (fields and

buttons), and classes (attributes and operations), we store this

information in a data structure. From this structure, it is

possible to generate GUI prototypes and class diagrams. Figure

4(a) shows an GUI prototype and 4(b) shows a class diagram

generated from the partial description presented in Figure 5.

TABLE II
TEXTUAL PATTERNS USE CASE DIAGRAM

Candidate Textual Patterns
Input Actor Noun1 AND Verb
Input Actor Noun1 AND Preposition AND Noun
Output Actor Noun1 AND Noun
Use Case Noun1 AND Preposition AND Noun

2) Use Case Diagram: In the process of use case diagrams

generation, we use the predefined suffix base to identify the

actors and make a distinction between actors and use cases

of the use case descriptions. When a pattern is found, it is

verified if the first noun (Noun1), belongs to the predefined

suffix base; if so, this word will be stored in a structure data.

For example, in the text “Gestor de Compras”, the pattern

“Noun1 AND Preposition AND Noun” is identified; the word

“gestor” will be analyzed as (stem: “gest”; suffix: “or”);

since the word “or” belongs to our predefined suffix base,

the stem “gest” is stored in our data structure. To improve

the processing, some grammatical classes that are not used

such as article, pronoun, adjective, adverb, conjunction, and

numeral were ignored. Words of these grammatical classes

are considered stop words and, therefore, they will not be

processed by the syntactic module.

In order to identify the use cases, we use only the predefined

textual patterns. The relationships between use cases and other

use cases, such as extend and include, are identified by the

words “<ponto de extensão>” and “<ponto de inclusão>”

respectively, which is a standard in written Praxis (e.g., <ponto
de extensão> Emissão de Nota). The associations between

actors and use cases are identified by the prototype easily,

because they are always in the same detailed use case.

After identifying the actors and use cases, we store this

information in a data structure. From this structure, it is

possible to generate use case diagrams. Figure 5 shows a

partial description of the use case “User Management” and

Figure 4(c) shows an use case diagram generated from the

partial description.

In this paper, we use the ANTLR tool, which is a language

tool that provides a framework for constructing recognizers,

52

(a) GUI prototype (b) Class diagram (c) Use case diagram

Fig. 4. GUI prototype and diagrams generated by the prototype

interpreters, compilers, and translators from grammatical de-

scriptions containing actions in a variety of target languages.

The grammatical rules of the parser are described by a context-

free grammar in EBNF notation (Extended Backus Naur

Form).

Fig. 5. Partial description of the use case “user management”

V. PRELIMINARY EVALUATION

As a preliminary evaluation of the prototype we use five

SRS: (1) a generic system sales; (2) a system of images

manipulation using Kinect; (3) a system dashboard; (4) a

routes management system; and (5) an electronic document

management system.

All use case descriptions were transcribed for the prototype.

Figure 6 shows the quantity of GUI prototypes, entity class

diagrams, and use case diagrams contained in SRS.

Fig. 6. Quantity GUI prototypes, classes, and use cases

All SRS are real systems developed in the Laboratory

of Software Engineering and Industrial Informatics (EaSII),

except the first SRS, which is a supporting material in many

courses in Software Engineering from Brazilian Universities.

Figure 7 shows the accuracy of the prototype in identifying

GUI prototypes, class diagrams and use case diagrams.

Fig. 7. Accuracy of the prototype. GUI prototypes, classes, and use cases

The fields in highlight (bold) show the elements that were

not identified by the prototype, i.e., those that were identified

as false negatives, except for the last row and second column

which signals one GUI prototype that was identified, i.e., it

was identified as a false positive.

Note that our prototype identified all classes, actors, and

use cases. Regarding GUI prototypes, our prototype has not

identified five fields in (1) SRS and six fields in (2) SRS. The

buttons which were not identified did not belong to the CRUD

pattern. Figure 4(a) shows a GUI prototype generated by the

prototype.

Regarding class diagrams, the prototype correctly identified

all classes. It is noteworthy that the prototype identified all

simple associations contained in the use case descriptions.

Certainly, a future work is to identify other types of relation-

ships between a class and other classes, such as generalization,

composition, and so on. Figure 8 shows a class diagram

generated by the prototype.

Fig. 8. Class diagram generated by the prototype

In use case diagram, the prototype correctly identified all

actors and use cases contained in the use case descriptions.

Moreover, it also correctly identified all relationships between

actors and use cases, and between use cases and other use

cases. Figure 9 shows an use case diagram generated by the

prototype.

53

Fig. 9. Use case diagram generated by the prototype

A simple comparison with the five SRS was made to

analyze which elements should be identified by the prototype.

Although preliminary, our results are very promising. The pro-

totype has identified all classes, actors, use cases, relationships

between actors and use cases, relationships between use cases

and other use cases, and associations between a class and other

classes. The GUI prototype that was not identified was not in

agreement with the textual pattern.

It is noteworthy that, through textual patterns, the prototype

has not identified only five attributes (fields) in (1) SRS and six

attributes (fields) in (2) SRS. These numbers show good results

of false negatives and false positives, i.e., the prototype does

not generate many false positives (dirt) and correctly identifies

many elements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we show a prototype to automatically identify

GUI prototypes, class diagrams, and use case diagrams from

use case descriptions written in the Portuguese language

and that follow the Praxis process format using hybrid NLP

techniques.

Some Tests were performed with the SRS of real systems

developed in the Laboratory of Engineering and Industrial

Computer Sofware (EaSII).

Through a preliminary evaluation, our prototype has iden-

tified all classes, actors, use cases, relationships between

actors and use cases, relationships between use cases and

other use cases, and associations between a class and other

classes. In our tests, it only did not identify five attributes

(fields) in (1) SRS and six fields in (2) SRS. The operations

(buttons) which were not identified did not belong to the

CRUD pattern. Nonetheless, results can be considered very

promising, because the numbers show good results of false

positives and false negatives.

Other evaluations were conducted using other requirements

specifications using the same textual patterns, but the results

were not satisfactory because the specifications were not in

accordance to IEEE STD 830-1998. The specifications did

not describe the attributes associated with the classes, thereby,

the prototype did not identify any attribute. But the prototype

identified all GUI prototypes, actors, use cases, and classes.

The prototype is able to visualize the generated diagrams

and GUI prototypes, as well as drag and drop components,

insert, delete and edit components, and export diagrams in

XMI file according to XMI v2.1.1 version.

As current/future work, we are developing: (i) exploration

of the use of other semantic relations in the text (anaphora,

synonyms ...); (ii) incorporation of statistical data to identify

the elements as collocations; (iii) improvement of the proto-

type to identify more relationships between a class and other

classes; and (iv) an experiment to evaluate the prototype in

more detail.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage User Guide, ser. The Addison-Wesley object technology series.
Pearson Education, 1999.

[2] A. Cockburn, Writing effective use cases, ser. Agile software develop-
ment series. Addison-Wesley, 2001.

[3] “IEEE recommended practice for software requirements specifications,”
IEEE Std 830-1998, pp. 1–40, 1998.

[4] R. T. Anchieta, R. F. de Sousa, and R. S. Moura, “Identifying of user
interface elements from use case descriptions,” in Informatica (CLEI),
2012 XXXVIII Conferencia Latinoamericana En, oct. 2012, pp. 1 –6.

[5] A. Kao and S. R. Poteet, Natural Language Processing and Text Mining.
Springer, Berlin, 2007.

[6] M. Luisa, F. Mariangela, and I. Pierluigi, “Market research for require-
ments analysis using linguistic tools,” Requir. Eng., vol. 9, no. 1, pp.
40–56, Feb. 2004.

[7] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of lin-
guistic techniques for use case analysis,” in Requirements Engineering,
2002. Proceedings. IEEE Joint International Conference on, 2002, pp.
157 – 164.

[8] G. Fliedl, C. Kop, H. C. Mayr, A. Salbrechter, J. Vöhringer, G. Weber,
and C. Winkler, “Deriving static and dynamic concepts from software
requirements using sophisticated tagging,” Data Knowl. Eng., vol. 61,
no. 3, pp. 433–448, Jun. 2007.

[9] V. Ambriola and V. Gervasi, “On the systematic analysis of natural
language requirements with circe,” Automated Software Engg., vol. 13,
no. 1, pp. 107–167, Jan. 2006.

[10] W. C. da Silva and L. E. G. Martins, “Paradigma: Uma ferramenta de
apoio à elicitação e modelagem de requisitos baseada em processamento
de linguagem natural,” in Anais do WER08 - Workshop em Engenharia
de Requisitos, Barcelona, Catalonia, Spain, September 12-13, 2008,
C. Quer, J. P. Carvallo, and L. F. da Silva, Eds., 2008.

[11] R. Gaizauskas and H. M. Harmain, “Cm-builder: An automated nl-based
case tool,” in Proceedings of the 15th IEEE international conference on
Automated software engineering, ser. ASE ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 45–.

[12] H. Schmid, “Probabilistic part-of-speech tagging using decision trees,”
1994.

[13] A. Ratnaparkhi, “A maximum entropy part-of-speech tagger,” in Pro-
ceedings of the Empirical Methods in Natural Language Processing
Conference, University of Pennsylvania, 1996.

[14] S. E. Lee and S. S. Han, “Qtag: introducing the qualitative tagging
system,” in HT ’07: Proceedings of the 18th conference on Hypertext
and hypermedia. New York, NY, USA: ACM, 2007, pp. 35–36.

[15] V. M. Orengo and C. Huyck, “A Stemming Algorithm for Portuguese
Language,” in Proc. of Eigth Symposium on String Processing and
Information Retrieval (SPIRE 2001) - Chile, 2001, pp. 186–193.

[16] A. M. R. da Cruz and J. P. Faria, Automatic Generation of User
Interface Models and Prototypes from Domain and Use Case Models,
rita mátrai ed., ser. User Interfaces. Intech, May 2010.

[17] M. Elkoutbi, I. Khriss, and R. K. Keller, “Automated prototyping of user
interfaces based on uml scenarios,” Automated Software Engg., vol. 13,
no. 1, pp. 5–40, Jan. 2006.

[18] X. Ren and C. Wei, “Research on the interaction process in use case
for automatic generation of user interface prototype,” in Computer and
Electrical Engineering, 2008. ICCEE 2008. International Conference
on, dec. 2008, pp. 721 –725.

[19] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages, 1st ed., ser. Pragmatic Programmers. Pragmatic Bookshelf,
May 2007.

[20] S. Miriam, “Verificação e validação em requisitos: Processamento da lin-
guagem natural e agentes,” Tese de Doutorado, Pontifı́cia Universidade
Católica do Rio de Janeiro, PUC, 2007.

[21] A. Sinha, M. Kaplan, A. Paradkar, and C. Williams, “Requirements
modeling and validation using bi-layer use case descriptions,” in Model
Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Völter, Eds. Springer Berlin Heidelberg, 2008, vol. 5301, pp. 97–
112.

54

A fuzzy based approach for requirements
prioritization in goal oriented requirements

elicitation process
(A step towards extension of AGORA method)

Mohd Sadiq and S K Jain

Computer Engineering Department,
National Institute of Technology, Kurukshetra-136119, Haryana, India.

E-mail: sadiq.jmi@gmail.com, skj_nith@yahoo.com

Abstract -- Requirements elicitation is the first sub-process of
requirements engineering (RE) and involves group decision
making approaches for the selection and prioritization of
requirements. Prioritizing requirements means to determine the
implementation order of the requirements as well as the order of
importance to some stakeholders or class of stakeholders along
one or more dimensions e.g., preference, business value, cost of
implementation etc. Based on our literature review, we identify
that existing goal oriented requirements elicitation processes do
not support to prioritize the requirements when the
stakeholders’ opinion are often vague and contain ambiguity
and multiple meaning. Therefore, to address this issue, we
present a fuzzy based approach for requirements prioritization
in goal oriented requirements elicitation process by combining
α-level weighted F-preference relation in group decision making
process and binary sort tree method to get the prioritized list of
requirements. Finally, the utilization of the proposed approach
is demonstrated with the help of an example.

Keywords- Requirements elicitation, Requirements prioritization,
Decision making process, and Fuzzy set theory.

I. Introduction
 Prioritizing requirements means to determine the
implementation order of the requirements as well as the order
of importance to some stakeholders or class of stakeholders
along one or more dimensions e.g., preference, business
value, cost of implementation etc. [4]. In early phase of
requirements engineering (RE), requirements prioritization
depends on specified requirements and on the prediction of
benefit and cost of the individual requirements [6]. We
visualize RE as a process that includes five sub-processes
namely requirements elicitation, requirements modeling,
requirements analysis, requirements verification & validation,
and requirements management [20]. Out of these sub-
processes, requirements elicitation plays an important role
since it has cascading effect on other sub-processes.
Requirements prioritization [4] is an essential activity of
requirements elicitation because it provides the following
benefits to the project: (i) It improves customer satisfaction
by increasing the likelihood that the customer’s most
important requirements are delivered first and (ii) It enables
the project manager and customers to modify the project
schedule to deal with the project realities of limited resources
and fixed deadlines. For this reason, we mainly focus on the
requirements prioritization in this work.
 Several researchers [11, 15, 27] advocate the use of
fuzzy logic to deal with problems related to the prioritization
and decision making. Lai et al. [11] proposed a fuzzy based
method to rank the customer requirements in a competitive
environment. Zhu et al. [27] proposed a fuzzy qualitative and

quantitative softgoal interdependency graphs model for non-
functional requirements correlation analysis in trustworthy
software. In a similar study, owing to the vague concepts
frequently represented in decision making environments, Lin
et al. [15] proposed a fuzzy based decision making procedure
for data warehouse system selection.
 The contribution of this paper is to extend the Attributed
Goal-Oriented Requirements Analysis (AGORA) method [7]
by applying the fuzzy based approach and binary sort tree
method for the prioritization of requirements in goal oriented
requirements elicitation process.
 This paper is organized as follows: Section 2 presents
the literature review. In section 3, basic concepts of fuzzy
sets, linguistic variable, fuzzy triangular numbers, and fuzzy
preference relation are reviewed. In section 4, we present
fuzzy based approach for requirements prioritization when
multi-criteria decision making approach is used in fuzzy
environment. An example is provided in section 5 to show
how the proposed approach works under fuzzy group
decision making. Finally, conclusions are drawn in section 6.

II. Literature Review

In Goal Oriented Requirements Engineering (GORE)
literature [2, 3, 4, 7, 8, 10, 12, 17, 22, 24, 28], there is no
fuzzy based decision making process for the prioritization of
requirements in requirements elicitation process. Therefore,
to address this issue, we present a fuzzy based approach for
the prioritization of requirements when multi-criteria decision
making approach is used in fuzzy environments and multiple
stakeholders participate in requirements analysis method.
 Based on our literature review of requirements
prioritization techniques we identify the following
requirements prioritization methods: Numerical assignment
[9], Cost benefit analysis [6] , TOPSIS [5], Cumulative
voting [6, 9], Priority groups [6, 9], Top-10 requirements
[6,9], Multi-attribute utility theory [6, 9], Weighting method
[6, 9], Analytic hierarchy process (AHP) [19], Hierarchy
AHP, Minimal Spanning Tree [1], Bubble sort [1], Binary
search tree [1], and Thakurta’s framework [23] for
prioritization of quality requirements for inclusion in a
software project . These methods are based on the concepts of
accurate measure and crisp evaluation.

III. Fuzzy Set Theory

The fuzzy set, originally proposed by Zadeh [25, 26] in 1965,
is defined as follows: In a universe of discourse Ux, a fuzzy
subset A of Ux is characterized by a membership function

55

ƒ A(x), where ƒA : Ux [0, 1] and the membership function
associates with each member of x of Ux a number of ƒ A(x) in
the interval [0,1], representing the grade of membership of x
in A. Linguistic variables are variables whose values are
words or sentences in a natural or artificial language [26].
For example, poor is a linguistic variable if its values are
assumed to be the fuzzy variables labelled very poor, poor,
fair, good, and very good; rather than the numbers 0,1,2,3 etc.
There are several formats of fuzzy numbers, such as
Triangular, Trapezoidal, Gaussian, or Sigmoid that can be
used in decision making process. In our method, we have
used triangular fuzzy numbers because Li’s [14] α-level
weighted F-preference relation is based on triangular fuzzy
numbers; and it can be defined as follows:
 Let R is the real line, which is viewed as a universal set
of all fuzzy sub-sets. A triangular fuzzy number A is normal,
convex fuzzy subset of R, with a piece wise linear
relationship function μA, defined by:

μA (x)= (1)

The fuzzy numbers can be denoted by the triplet of (a, b, c).

A fuzzy preference relation P on R is a fuzzy subset of R x R
with membership function ƒ P (A, B), , where ƒ P
(A, B) represents the degree of preference of A over B.

1. P is reciprocal iff ƒ P (A, B) = 1- ƒ P (B, A),
 [14].

2. P is transitive iff ƒ P (A, B) and ƒ P (B, C)
 ƒ P (A, C) , [14].

3. P is a fuzzy total ordering iff P is reciprocal,
transitive, and comparable [13].

IV. A Fuzzy based Approach for
Requirements Prioritization

The section presents a fuzzy based approach for requirements
prioritization by combining: (i) α-level weighted F-preference
relation proposed by Li [14] when multi-criteria decision
making approach is used in fuzzy environment and multiple
stakeholders participate in requirements analysis method and
(ii) binary sort tree method i.e. in-order tree traversal of
binary search tree [1]. The proposed method is presented
simply in the following:
 Step 1: Identify the primary stakeholders and secondary
stakeholders. Primary stakeholders include those who are
central to any project initiative, i.e., beneficiaries, financial,
politicians, sponsors, and decision maker. Secondary
stakeholders include developers, experts, operators etc.
 Step 2: Identify the high level objective of the primary
stakeholders and suggest the different configuration of the
system on the basis of the cost, operability, reliability,
performance etc.
 Step 3: Detect the confliction among QRs, if any.
 Step 4: Create the decision matrix with the help of AHP
[18, 19, 21]; and select the best configuration, say G1,
according to the need of primary stakeholder.
 Step 5: Decompose the selected configuration, say G1, into
sub goals and construct AND/OR graph. In AND
decomposition, if all of the sub goals are achieved, their

parent goals can be achieved or satisfied. On the other hand
side, in OR decomposition, the achievement of at least one-
sub goals leads to the achievement of its parent goal. Let the
decomposed goals are represented by g1, g2, g3, g4, ---------gh.
 Step 6: Identify the functional requirements from g1, g2, g3,
g4, ----------gh.
 Step 7: Group the functional requirements on the basis of
implementation order (IMO) and order of importance (OI) of
requirements. For example, GIMO = {FR1, FR2, FR3, ---FRm)
and GOI = {FR4, FR5, FR6, -------FRn) represents the groups of
functional requirements on the basis of implementation order
(IMO) and order of importance (OI) of requirements
respectively.
 Step 8: Let “dm” decision makers are participating during
requirements analysis to prioritize the requirements on the
basis of “C” decision criteria. Here decision criteria are the
quality requirements.
 Step 9: Collect the experts’ fuzzy assessments and express
their opinions on the importance of each requirements.
 Step 10: Aggregate fuzzy performance rating through all
decision maker by means of extended addition and scalar
multiplication to form a comprehensive performance matrix
P, in which performance rating pij = (1/n) (p1

ij p2
ij ,

.........., pn
ij) is a triangular fuzzy number of the form:

(p1ij, p2ij, p3ij) = k
1ij, k

2ij, k
3ij).

Now calculate the fuzzy weight through all decision makers
by means of extended addition and scalar multiplication to
form a comprehensive weight vector W [14].
 Step 11: Aggregate fuzzy ratings with fuzzy weights by
means of extended multiplication to form a weighted,
comprehensive decision matrix D, in which dij = pij wj is a
fuzzy number with parabolic membership functions in the
form of [14]:
(λ1ij, λ2ij, λ3ij /dij/∆1ij, ∆2ij, ∆3ij); where

λ1ij = (w2j-w1j)(p2ij-p1ij); λ2ij = w1j (p2ij-p1ij) + p1ij (w2j-w1j),

λ3ij = w1jp1ij; ∆1ij = (w3j-w2j) (p3ij-p2ij); ∆2ij = w3j (p3ij-p2ij) + p3ij
(w3j-w2j); ∆3ij = w3ijp3ij; and dij = w2jp2ij

 Step 12: Define each alternative (sub-goals) as a fuzzy
number Ai, i=1, 2 ...m by means of extended addition and
scalar multiplication through the criteria, i.e.,

Ai= 1/C (di1 di2 ,, diC) with parabolic
membership function in the form of [14]:

(λ1i, λ2i, λ3i / Ḁi /∆1i, ∆2i, ∆3i); where

 λIi = Iij, I= 1,2,3; ∆Ii = Iij, I=1, 2, 3, and

Ḁi = ij.

 Step 13: Define extended average Ḁ by means of extended
addition and scalar multiplication through all alternatives
(sub-goals), i.e., A1i= 1/h (g1 g2 ,..., gh) with
parabolic membership function in the form of [14]:

(λ1, λ2, λ3 / Ȃ /∆1, ∆2, ∆3); where

 λI = Ii, I=1, 2, 3; ∆I = Ii , I=1, 2, 3, and

Ȃ = i

56

 Step 14: Define the extended difference, Ai Ө Ḁ, for each
Ai є R, with parabolic membership function in the form of
[14]:

((λ1i - ∆1), (λ2i + ∆2), (λ3i - ∆3) / Ḁi - Ȃ/ (∆1i - λ1), (-∆2i – λ2),
(∆3i – λ3)).

 Step 15: Calculate the ranking values rvi for each
alternative (requirements) Ai by means of F-preference
relation R [14]:

if (λ3i - ∆3) < 0, (∆3i – λ3) 0, Ḁi Ȃ;

then rvi = μR (Ai Ө Ḁ, 0) = ∏+/ (∏+ + ∏-); else if (λ3i - ∆3)
0, (∆3i – λ3) 0, Ḁi Ȃ; then rvi = μR (Ai Ө Ḁ, 0) = Ψ +/ (Ψ+
+ Ψ-); else if (λ3i - ∆3) = 0, (∆3i – λ3) 0, Ḁi Ȃ then rvi = μR
(Ai Ө Ḁ, 0) = 0.5; else if (λ3i - ∆3) 0, (∆3i – λ3) 0, Ḁi Ȃ
then rvi = μR (Ai Ө Ḁ, 0) = 1; else if (λ3i - ∆3) 0, (∆3i – λ3)
0, Ḁi Ȃ then rvi = μR (Ai Ө Ḁ, 0) = 0. Where

∏+ = -[1/4(∆1i - λ1) -1/3 (∆2i + λ2) + 1/2 (∆3i – λ3)] + [1/4 (λ1i -
∆1) (1-ϒ4) + 1/3 (λ2i + ∆2) (1- ϒ3) +1/2 (λ3i - ∆3) (1-ϒ2)];

∏- = (1/4 (λ1i - ∆1) ϒ4+ 1/3 (λ2i + ∆2) ϒ3+1/2 (λ3i - ∆3)ϒ2)];

ϒ= [- (λ2i + ∆2) + {(λ2i + ∆2)2 -4(λ1i - ∆1) (λ3i - ∆3)}]/
[2(λ 1i -∆1)];

Ψ + = 1/4 (∆1i - λ1) ϔ4 + 1/3 (-∆2i - λ2) ϔ3 + 1/2 (∆3i – λ3) ϔ2;

Ψ- = - [1/4 (λ1i - ∆1) + 1/3 (λ2i + ∆2) + 1/2 (λ3i - ∆3)] – [1/4 (∆1i
- λ1) (1-ϔ4) – 1/3 (∆2i + λ2) (1-ϔ3) +1/2 (∆3i – λ3) (1-ϔ2)];

ϔ = [(∆2i + λ2) – {(-∆2i - λ2)2 – 4 (∆1i - λ1) (∆3i – λ3)} /
[2 (∆1i - λ1)]; where “sqrt” is a square root function?

Step 16: Construct the binary search tree of rv1, rv2, rv3, ------
-----------ri,, i.e., BSTRV.

Step 17: Apply in-order tree traversal technique on BSTRV
and as a result, we will get the prioritized list of requirements.

V. An Example

To illustrate the proposed approach, we assume that 10
stakeholders are participating in requirements elicitation and
analysis, i.e., S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10 (Step1).
S1 is the primary stakeholder and its objective is to get the
benefit from the system implementation. S1 is also the
beneficiary and sponsor of the system, who wants to develop
a system. S2 is the secondary stakeholder and is responsible
for the identification of functional requirements (FR) and to
deal with the decisions that are related to the organization
goals and objective. The objective of stakeholder S3 is to
elicit the non functional requirements (NFR)/quality
requirements (QR) and also to take the decisions related to
the organizations goals and objective. Stakeholder S4 is the in
charge of the system throughout all the life cycle phases.
Stakeholder S5 is requirements analyst and developer; and is
directly involved in information system development. S6 is
operator and deals with assuring effectiveness when
performing operation within the organization. S7 are both
primary and secondary stakeholders and will act as an expert
and the decision maker. S8 is the regulator and is responsible
for quality, security and cost or other aspects of the system.
S9 and S10 are the financers; and they benefit indirectly from
the system, obtaining financial rewards and are selected on
the basis of geographical location.

Step 2: Let S1 wants to develop a software system; and its
purchasing choice depends on Cost (QR1), Operability (QR2),
Reliability (QR3), and Flexibility (QR4). Requirements
analyst i.e., S5 identified the high level objective of S1 and
offered 3 configuration of the system, i.e. System A, System
B, and System C. Configuration 1: System A is cheap and
easy to operate but is not very reliable and could not easily be
adapted to other users. Configuration 2: System B is
somewhat more expensive and is easy to operate. It is reliable
but not very adaptable. Configuration 3: system C is very
expensive, not easy to operate, less reliable than System B
but it includes a wide range of alternative uses. Selection of a
system on the basis of different selection criteria, i.e. quality
requirements (QR) is clearly a multi-criteria decision making
problem. For the detection of confliction among NFR we use
the catalogue proposed by Mairiza and Zowghi [16]. In our
case, there is no confliction among QRs (Step 3).

Step 4: The AHP is a decision support tool which can be used
to solve such types of decision making problems. After
applying the AHP, we obtain the following relative value
vector for QR1, QR2, QR3, and QR4.

QR1 =0.232, QR2 =0.402, QR3 =0.061, and QR4 = 0.305.

These values indicate that the first priority of S1 is
operability, i.e. QR2 = 0.402. The 0.305 shows that S1 like the
idea of flexibility. S1is not worried about cost and are not
interested in reliability. Now the decision matrix is formed on
the basis of Cost (QR1), Operability (QR2), Reliability (QR3),
and Flexibility (QR4) (see Table 1).

Table 1: Decision Matrix

Alternatives

Criterion Final
Priority

QR1 QR2 QR3 QR4

0.232 0.402 0.061 0.305

System A 0.751 0.480 0.077 0.066 0.392 (II)

System B 0.178 0.406 0.231 0.615 0.406 (I)

System C 0.071 0.114 0.692 0.319 0.204 (III)

Results of Table 1 indicate that S1 will select the System B
because it has high priority. System A scores 0.392, and it is
slightly worse in terms of the requirements of System B.
System C is well behind at 0.204 and would do rather badly
at satisfying the requirements of S1 in this illustrative case.

Table 2: Triangular Fuzzy numbers of linguistic values for each FR and
for the relationship between FR and QR

Triangular fuzzy numbers of
linguistic values for each FR

Triangular fuzzy numbers of
linguistic values for the
relationship between FR and
QR

Linguistic values Triangular
fuzzy number

Linguistic values Triangul
ar fuzzy
number

VL (Very Low) (0,0,0.25) VW (Very Weak) (2,2,4)

L (Low) (0,0.25,0.5) W (Weak) (2,4,6)

M (Middle) (0.25,0.5,0.75) M (Medium) (4,6,8)

H (High) (0.5,0.75,1) S (Strong) (6,8,10)

VH (Very High) (0.75,1,1) VS (Very Strong) (8,10,10)

57

Table 3: Fuzzy Importance Weight by 10 Stakeholders for Each FR

After applying steps 5, 6 and 7, let us assume that, we
identify the following set of requirements for system
B: GIMO = {FR1, FR2, FR4, FR7) and GOI = {FR3, FR5,
FR6, FR8, FR9, FR10) and there are five decision
makers in a cross functional team to evaluate the
relationship between functional requirements and
quality requirements (step 8).
 In step 9, the linguistic values of the importance
weight of each functional requirements and the
relationship between functional requirements and
quality requirements are defined. In our example, five
ranks are used and the triangular fuzzy numbers of
linguistic values for each functional requirements and
the relationship between functional requirements and
quality requirements are listed in Table 2. Ten
stakeholders were asked to evaluate the importance of
each FR and the results are summarized in Table 3,
where the stakeholders’ opinions are quite different
and the relationship between FR and QR evaluated by
cross functional team with five decision makers .The
fuzzy relationship between FR and QR is given in
Table 4 (step 10)

Table 4: Fuzzy Relationship between FR and QR

FRs QR1 QR2 QR3

FR1 (5.2,7.2,8.8) (6.8,8.8,10) (4.8,6.4,8)

FR2 (5.2,7.2,8.8) (4.4,6,7.6) (4.8,6.4,8)

FR3 (4.8,6.4,7.6) (4.4,6,7.6) (5.2,6.8,8.4)

FR4 (5.6,7.6,9.2) (4.8,6.8,8.4) (5.6,7.6,9.2)

FR5 (3.6,5.2,7.2) (4,5.6,7.6) (4,5.6,7.6)

FR6 (6.4,8.4,9.6) (6,8,9.2) (4.8,6.8,8.4)

FR7 (4,5.6,7.6) (6,8,9.2) (4.4,6,8)

FR8 (5.2,7.2,9.2) (4.4,6.4,8) (4.8,6.8,8.8)

FR9 (5.6,7.6,8.8) (4.8,6.4,8) (6,8,9.6)

FR10 (4.8,6.4,8) (6,8,9.2) (6,8,9.2)

Step 11: A weighted comprehensive decision matrix,
depicted in Table 5, can be established by applying

the extended multiplication, where QF denotes the
quadratic membership function.

Table 5: Quadratic Membership Functions

FRs Criteria

QR1 QR2 QR3

FR1 4.176QF 4.84QF 3.84QF

FR2 4.176QF 3.3QF 3.84QF

FR3 3.712QF 3.3QF 4.08QF

FR4 4.408QF 3.74QF 4.56QF

FR5 3.02QF 3.08QF 3.36QF

FR6 4.87QF 4. 40QF 4.08QF

FR7 3.25QF 4. 40QF 3. 6QF

FR8 4.18QF 3.52QF 4.08QF

FR9 4.408QF 3.52QF 4.8QF

FR10 3.712QF 4. 40QF 4.8QF

After applying the steps 12 and step 13, the extended
average of all requirements by means of extended
addition and scalar multiplication is in the form of:
3.98QF=0.406,1.78,1.79/3.98/0.306,2.86,6.54

After executing steps 14 and 15, we get the following
ranking values of requirements:

FR1=0.587, FR2=0.50, FR3=0.41, FR4=0.571,
FR5=0.27, FR6=0.625, FR7=0.435, FR8=0.488,
FR9=0.573, and FR10=0.588.

In Step 16 and 17, we used binary sort tree (BST)
method to prioritize the given set of requirements.
BST method is a sorting method that builds on binary
search tree and traverses the tree using IN-ORDER
tree traversal. Therefore, after applying the binary sort
tree method on the above set of data, we get the
following prioritized list of requirements:

FR5 < FR3 < FR7 < FR8 < F R2 < FR4 < FR9 < FR1 <
FR10 < FR6

FRs Stakeholders Fuzzy importance
weight

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

FR1 VH H VH H M L M VL H L (0.35,0.58,0.78)

FR2 H L VH VH H M L M M VL (0.33,0.55,0.75)

FR3 M VH L H VH H VH L VL M (0.38,0.6,0.78)

FR4 H M VH L VL L H H VH H (0.38,0.6,0.8)

FR5 H VL L VL M M H VL L M (0.18,0.35,0.6)

FR6 L VL H VH H VH L M M M (0.33,0.55,0.75)

FR7 VL L H L H VH M M VL VL (0.23,0.4,0.63)

FR8 L VH L VL M VH M M VL L (0.28,0.48,0.68)

FR9 L L VL M H VH VH H VL VL (0.28,0.45,0.65)

FR10 H VH H L M M VH L L VL (0.3,0.53,0.73)

58

VI. Conclusion

This paper presents a fuzzy based approach for
requirements prioritization when multiple
stakeholders participate in requirements elicitation and
analysis process. In order to strengthen the GORE
techniques and to make decision when the information
is fuzzy and imprecise, in proposed approach, we used
α-level weighted F-preference relation in group
decision making process. To simply show how
proposed approach works, a numerical example is
shown to illustrate the fuzzy group decision making
approach in goal oriented requirements elicitation and
analysis process. In our example, we assumed that
there are ten requirements, three criteria for the
prioritization of requirements, ten stakeholders are
involved in determining the weight of each goal and
five stakeholders’ are participating as decision maker.
On the basis of our analysis we identify that FR6 is the
most important requirements and it is the best
alternative for the achievement of its parent goal, i.e.,
G1. This paper is the first step towards an extension of
AGORA in which we used fuzzy decision making
approach for the prioritization of requirement.
However, the method discussed in this paper can be
further exploited by considering more sub-
goals/requirements and criteria as well as much larger
group of stakeholders in group decision making
process. The future research agenda can be listed as
follows:
(a) To propose a fuzzy attributed goal oriented
requirements elicitation and analysis (FAGOREA)
method by using fuzzy contribution values and fuzzy
preference matrix.
(b) To develop a tool to support the decision making
processes of FAGOREA.

References
1. Aho A V, Hopcroft J E, and Ullman J D, “Data

Structures and Algorithms”, Addison-Wesley, 1983.
2. Anton A I, “Goal Based Requirements Analysis”, IEEE

International Requirements Engineering Conference, pp.
136-144, 1996.

3. Anwer S, Ikram N, “Goal Oriented Requirement
Engineering: A Critical Study of Techniques”, 12th Asia
Pacific Software Engineering Conference, 2006.

4. Firesmith D, “Prioritizing Requirements”, Journal of
Object Technology, Vol.3, No.8, pp. 35-47, September-
October, 2004.

5. Hwang C L, and Yoon K, “Multiple Attributes Decision
Making Methods and Applications, Springer, Verlag.

6. Herrmann A and Daneva M, “Requirements
Prioritization Based on Benefit and Cost prediction: An
Agenda for Future Research”, IEEE international
Requirements Engineering Conference, pp.125-134,
Chicago, Illinois, USA, 2008.

7. Kaiya H et al., “AGORA: Attributed Goal Oriented
Requirements Analysis”, Proceedings of the IEEE Joint
ICRE’2002.

8. Kaiya H et al., Improving the Detection of Requirements
Discordances Among Stakeholders”, Requirements
Engineering- Springer, pp. 289-303, 2005.

9. Karlsson J, Wohlin C, Regnell B, “An Evaluation of
Methods for Prioritizing Software Requirements”,
Information and Software Technology, Volume 39,
pp.939-947, 1998.

10. Kavakli E, “Goal Oriented Requirements Engineering: A
Unifying Framework”, Requirements Engineering-,
Springer, 2002.

11. Lai X, Xie M, Tan K-C, and Yang B, “ Ranking of
Customers in a Competitive Environments”, Computers
and Industrial Engineering, Vol.54, pp.202-214, 2008.

12. Lamsweerde A V, “Goal-Oriented Requirements
Engineering: A Guided Tour”, Proceedings of 5th IEEE
International Symposium on Requirements Engineering,
pp.249-263, 2001.

13. Lee H-S, “On Fuzzy Preference Relation in Group
Decision Making”, International Journal of Computer
Mathematics, Taylor and Francis, Vol.82, pp.133-140,
2005.

14. Li R J, “Fuzzy Method in Group Decision Making”,
Computers and Mathematics with Application-Elsevier,
Vol.38, pp. 91-101, 1999.

15. Lin H Y, Hsu P Y, and Sheen G J, “A Fuzzy Based
Decision Making Procedure for Data Warehouse System
Selection”, Expert system with Applications-Elsevier,
Vol. 32, pp.939-953, 2007.

16. Mairiza D and Zowghi D, “Constructing a Catalogue of
Conflicts among Non-functional Requirements”,
ENASE-Springer, pp.31-44, 2011.

17. Oshiro K et al., “ Goal-Oriented Idea Generation Method
for Requirements Elicitation”, 11th IEEE International
Requirements Engineering Conference, pp. 1-2, 2003

18. Sadiq M et al, “More on Elicitation of Software
Requirements and Prioritization using AHP”, IEEE
International Conference on Data Storage and Data
Engineering”, pp.230-234, 2010.

19. Sadiq M, Ghafir S, Shahid M, “ An Approach for
Eliciting Software Requirements and its Prioritization
using Analytic Hierarchy Process”, IEEE International
Conference on Advances in Recent Technologies in
Communication and Computing, pp 799-795, 2009.

20. Sadiq M, Jain S.K., “An Insight into Requirements
Engineering Processes”, 3rd International Conference on
Advances in Communication, Network, and Computing,
LNCSIT-Springer, pp. 313-318, Chennai, February,
2012, India.

21. Sadiq M, Shahid M, “Elicitation and Prioritization of
Software Requirements”, International Journal of Recent
Trends in Engineering, Vol. 2, No. 3, November, 2009.

22. Shibaoka M et al., “GOORE: Goal Oriented and
Ontology Driven Requirements Elicitation Method”, ER
Workshop, LNCS, Springer-Verlag, pp. 225-234, 2007.

23. Thakurta R, “A Framework for Prioritization of Quality
Requirements for Inclusion in a Software Project”,
Software Quality Journal, Springer, 2012.

24. Yu E S K, “Towards Modeling and Reasoning Support
for Early and Late Phase of Requirements Engineering”,
IEEE International Conference on Requirements
Engineering, 1997.

25. Zadeh L A, “ The Concept of a Linguistics Variable and
its Application to Approximate Reasoning(I)”,
Information Science, Vol.8, pp.199-249, 1975.

26. Zadeh L A, “Fuzzy Sets”, Information Control, Vol.8,
pp.338-353, 1965.

27. Zhu M X, Luo X-X, Chen X H, and Wu D D, “A Non-
functional Requirements Tradeoff Model in Trustworthy
Software” Information Science-Elsevier, Vol. 191,
pp.61-75, 2012.

28. Zickert F, “Evaluation of the Goal Oriented
Requirements Engineering Methods KAOS”, American
Conference on Information system”, pp.1-9, 2010.

59

Integrating Functional with Non-functional Requirements Analysis In Object
Oriented Modeling Tool Based on HOOMT

Jinwu Wang, Fan Zhang
Department of Computer Science

Hunan Univ. of Science &
Technology

Xiangtan, China

Xiaoqing (Frank) Liu, Eric Barnes
Department of Computer Science

Missouri Univ. of Science &
Technology
Rolla, US

Buqing Cao, Mingdong Tang
Department of Computer Science

Hunan Univ. of Science &
Technology

Xiangtan, China

Abstract—Due to the rapid growth of software size and
complexity, system modeling has become an increasingly
important factor in software development. Most research on
system modeling focuses on functional requirements and is
inadequate for non-functional requirement (NFR) analysis.
This paper proposes the Computer Aided Software Analysis
Tool based on HOOMT (CASAT-HOOMT), which
integrates functional requirement and object structure
modeling with NFR modeling. The tool allows for automated
decomposition for NFRs to match the decomposition of the
object, process, and state diagram decompositions. CASAT-
HOOMT has been fully implemented and its operation is
described in this paper.

Keywords-component: HOOMT; CASAT-HOOMT; non-
functional requirements modeling; Modeling Tool.

I. INTRODUCTION AND RELATED WORK

There are many modeling methodologies used within
the software industry. Chief among these are object-
oriented modeling techniques, such as UML [1-3],
methods presented by Booch [4] and Coad [5], OMT [6-
7]. Another such technique is HOOMT [11-14], which
supports the uniform decomposition of both object
structures, functionalities, and behaviors. A significant
amount of research and development work has been done
on UML-based development methodology and
environment. Many computer aided modeling tools have
been developed based on UML, such as Rational Rose [8],
Sybase Power Designer[9], and Microsoft Visio[10].

However, there are three problems with the above
UML-based modeling tools. The first is that they lack
well-defined processes and mechanisms for structured
analysis of object, functionality and dynamic behavior
consistently based on hierarchical decomposition, the
second is lack of a unique point to begin modeling from,
and the third is a lack of integration of NFRs with other
object-oriented modeling elements.

This work presents a tool for creating and displaying
HOOMT models which is integrated with NFR analysis
techniques based on these models. In describing NFRs in
terms of the object structure, functionality, and behavior of
a system at various levels of detail, system architects can
better describe how these NFRs describe the quality of the
system.

II. HIGH-ORDER OBJECT ORIENTED MODELING WITH
NFRS IN CASAT-HOOMT
CASAT-HOOMT, was developed in order to apply
HOOMT to software design projects. The tool was
implemented through the use of Windows Forms
Programming and GDI+ graphics programming in
Microsoft's .NET Framework. The data is stored in
SQLITE database. A screenshot of CASAT-HOOMT is
given in Figure 2.

Non-functional Requirements (NFRs), are constraints
on the quality of a system. These include factors such as
system performance, reliability, maintainability, scalability
etc. CASAT-HOOMT not only maintains the advantages
of HOOMT, but also supports NFR modeling and unified
modeling, integrating functional requirements with NFRs.
CASAT-HOOMT currently supports the existing models
of HOOMT: High Order Object Model (HOOM),
Hierarchical Object Information Flow Model (HOIFM),
and Hierarchical State Transition Model (HSTM). Our
goal is to combine these model-centric views of the system
with NFR analysis in order to give users a clearer
understanding of NFRs in various contexts, and within
varying levels of detail.

Figure 1: HOOM Object Diagram in CASTAT-HOOMT

60

HOOM is an object model which assists in the analysis
of objects with complex structures. It organizes objects
hierarchically based on their abstraction level with respect
to system requirements. This allows the structural,
functional, non-functional and dynamic behaviors of
objects at higher abstraction levels to be analyzed based on
those of objects at lower abstraction levels. In HOOMT
objects are categorized into two types: high order objects
and primitive objects.

HOIFM allows for the analysis of functional
requirements and their relationships within the system
hierarchically in terms of their abstraction levels. The
information flow diagram is categorized into two types:
primitive processes and high order processes further
analyzed through decomposition into primitive processes.

HSTM was developed to analyze dynamic behaviors
and their relationships within the system hierarchically, in
terms of their abstraction levels. HSTM is a hierarchy of
high order state transition diagrams and primitive state
transition diagrams. Every attribute in HOOM
corresponds to a state in HSTM, which has its own set of
NFRs as well as the NFRs of the corresponding HOOM
attribute, and transition between state diagrams must also
be constrained by NFRs.

III. THE IMPLEMENTION OF NON-FUNCTIONAL
REQUIREMENTS MODELING IN CASAT-HOOMT

When an NFR is added to one of the preceding mode
elements, its target, factor, operator, value, unit, and chart
must be specified. This is done through the interface of
the NFR add-and-decompose module, an example of
which is given in figure 3.

In CASAT-HOOMT, NFRs are expressed by a 6-tuple:
<target, factor, operator, value, unit, chart>. Their
descriptions are as follows:

Target: NFRs do not exist independently from
functional requirements, therefore we first identify the
functionality the given NFR pertains to. In CASAT-
HOOMT, target refers to either an object, method
(process) ,or attribute (state).

Factor: Used to describe the type of the NFR, such as
performance, maintainability, reliability, security, etc. In
CASAT-HOOMT, we categorize factor into two types:
quantifiable factors and unquantifiable factors.

Operator: Comparison operator. In CASAT-HOOMT,
we defined four types of operators: “NoMoreThan”,
“NoLessThan” and “NotEqualsTo”, “EqualsTo”,
respectively indicateds by symbols: “<=”, “>=”, “ ”,
and “=”.

Value: The metric used to describe a particular non-
functional constraint in concrete terms. Value can be

Figure 2. Screenshot of CASAT-HOOMT Enviornment

61

either numeric types or enumerated types. Numeric types
correspond to quantifiable NFRs and enumerated types
correspond to unquantifiable NFRs.

Unit: (Optional) Quantifiable NFRs have a unique unit
(such as hours for mean time between failures), but
unquantifiable NFRs have none.

Chart: Represents the relationship between varying
performance values and the level of NFR satisfaction.

The NFR Chart Module is shown in Figure 3. For each
quantifiable NFR, an NFR-chart is selected to describe
the relationship between a non-functional constraint’s
value and satisfaction level. In this example, satisfaction
of the NFR is at 0% for all volumes from 0 to 500 tons.
As volume increases, so does satisfaction, until it maxes
out at 1000 tons. Additionally, the Association Type,
which describes to the relation of the NFR to its parent in
the decomposition process, must be chosen in order to
determine how each NFR is decomposed.

IV. DECOMPOSITION OF NFRS IN CASAT-HOOMT

In the decomposition process of high-order objects, the
object, methods, and attributes are decomposed. This
process is discussed in greater detail in previous work on
HOOMT . In CASAT-HOOMT, NFRs affiliated with an
object, method or attribute are decomposed in the same
way as their associated element. Because decomposition
of objects, behaviors, and attributes is an essential part of
the HOOMT method, the decomposition of NFRs must be
carried out in the same way in order to maintain
compatibility with HOOMT. This allows for an
intelligent and accurate analysis of NFRs and how they
manifest within the system at varying levels of detail. The
mode of this decomposition, however, depends on the
NFRs themselves.

In order to make NFR decomposition more convenient,
the decomposition relations are categorized into five basic
types: Equality Association (security etc.), Maximum
Association (throughput, accuracy, etc.), Minimum
Association (accessibility etc.), Process-related
Association (reliability, response times etc.), and Special-

type Association (legibility, legislative requirements etc.).
In the decomposition of NFRs, decomposition association
is chosen for each NFR, unless it is a top-level NFR with
no parent. This is used to check the consistency of NFRs
when modeling the system according to the association of
the decomposition.

The definition for each association is as follows:
Equality Association:Vf is the NFR’s value for the

target function If there is Equality Association between
target function and its sub-function, then the non-
functional requirement’s value of sub-function is Vs, and
the relationship between Vs and Vf is: Vs = Vf.

Maximum Association Vf is the NFR’s value for the
target function. if there is Maximum Associate between
target function FRf and its sub-function set FRsi, (i = 1,
2, … n), then the relationship between Vsi and Vf is:
Vsi>=Vf, (i = 1, 2, … n).

Minimum Association: Vf is the NFR’s value for the
target function. If there is Minimum Association between
target function FRf and its sub-function set FRsi, (i = 1,
2, … n), then the relationship between Vsi and Vf is:
Vsi<=Vf, (i = 1, 2, … n).

Process-related Association: Vf is the NFR’s value for
the target function. If there is Process-related Associate
between target function FRf and its sub-function set FRsi,
(i = 1, 2, … n), then the relationship between Vsi and Vf is:
Vf=f(Vsi), (i = 1, 2, … n), f() is a function which is related
to process control structure of functional requirement and
the non-functional requirement.

Special-type Association: some NFR factors can’t
depend on the associations above, but need to depend on
the definition of non-functional requirements type and
domain knowledge. This includes constraints such as
legibility.

V. IMPLEMENATION OF NFR TRACE MODULE

The trace module can track the decomposition process
of high-order objects, methods, attributes, and NFRs, and
provide the necessary feedback for system modeling and
development. In CASAT-HOOMT the Singleton Design
Pattern was chosen to design the trace module. The
interface of NFRs trace module is shown in Figure 5.
In CASAT-HOOMT, NFRs can be traced downwards
from objects, methods, or attributes to lower level
components. This allows the user to analyze and describe

Figure 4: Interface of NFR-chart module

Figure 5: Interface of NFR-trace module

62

NFRs at varying levels of detail as needed. In this
algorithm, the inputs consist of a high-order object, a
method of the high-order object, and an NFR of the
method. The output is a tree structure describing the NFR
decomposition. Specific steps are shown as follows:

Algorithm1 The Core Algorithm of Non-Functional
Requirements Trace Method
__
//Input: a High-order Object Diagram (target-Diagram)
// a method of the Object (target-Method)
// a NFR of the method (target-NFR)
//Output: a Trace Tree

//define a queue to store high-order object diagrams
Queue <High-order Object Diagram> queue = new Queue < High-
order Object Diagram > ();

//define a tree to show trace result
TraceTree traceTree = new TraceTree();

//add tree root
TreeNode node = new TreeNode(target-NFR);
Tree. addNode(node);

//used to record the current active node
ActiveNode activeNode = null;

//used to record the current parent method
NFR currParentMethod = null;

//used to record the current parent nfr
NFR currParentNfr = null;

//push the Target High-order Object into the queue
queue.Push(target Diagram);

//execute the loop until the queue is empty
while (queue.Count > 0) do {

// remove and return the object at the top of the queue.
High-order Object Diagram diag = queue.Pop();
currParentMethod = Find diag’s Method which is sub-method
of target-Method and return;
currParentNfr = Find currParentMethod’s NFR which is sub-
nfr of target-NFR and return;
activeNode = Find currParentNfr’s treeNode in traceTree and
return;

//fetch the child diagram of model node
foreach (Diagram diagram in diag.modelNode.diagramList) {

if (diagram is High-order Object) then
queue.Push(diagram);

end if;
foreach(Method method in diagram.methodList) {

if (method .patent==currParentMethod) then
foreach (NFR nfr in method.nfrList) {

if (nfr.parent == currParentNfr) then
TreeNode node = new TreeNode(nfr);
activeNode.addNode(node);

end if;
}

end if;
}

}
}

The core algorithm the NFR trace of an object is
similar to the algorithm above. The difference is that
NFRs list of the object instead of the NFR list of the
method. For the NFR trace of attributes, “method” in the
pseudo code above can be replaced by “attribute”.

VI. CONCLUSION AND OUTLOOK

In this paper, we proposed CASAT-HOOMT, which
combines functional requirements modeling with NFR

analysis in an object-oriented context. CASAT-HOOMT
combines tools to draw and analyze HOOM, HOIFM, and
HSTM diagrams. These three models are implemented
hierarchically based on abstraction levels, in order to
ensure consistency among individual models. This allows
for a unified decomposition of NFRs as they apply to each
model type, resulting in a better understanding of how
NFRs constrain the system.

Presently, model driven architecture techniques have
become increasingly important in software design. Our
next works will commit to improve CASAT-HOOMT,
and automatically generate system code according to the
CASAT-HOOMT tool.

REFERENCES

[1] Object Management Group, “Unified Modeling Language:
Superstructure,” Formal Specification, version2.1.2, 2007.

[2] G.Spanoudakis, A. Zisman, “Discovering Services during
Service-Based System Design Using UML,” Proc. IEEE
Transactions on Software Engineering, May-June 2010, pp. 371 –
389, doi: 10.1109/TSE.2009.88.

[3] D. Šilingas, R. Vitiutinas, “Towards UML-Intensive Framework
for Model-Driven Development,” Lecture Notes in Computer
Science, vol. 5082, pp 116-128, 2008.

[4] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Connallen, K.
Houston, “Object-Oriented Analysis and Design with
Applications,” ACM SIGSOFT Software Engineering Notes
archive, vol. 35, September 2008, doi: 10.1145/1402521.1413138.

[5] P. Coad and E. Yourdon, “Object-Oriented Analysis,” Prentice
Hall, Englewood Cliffs, New Jersey, 2nd ed.,1991.

[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W.
Llorensen, “Object-oriented Modeling and Design,” Prentice Hall,
Eglewood Cliffs, New Jersey, 1991.

[7] J. Rumbaugh, “OMT Insights,” SIGS Publications, New Tork,
1996.

[8] http://www-01.ibm.com/software/awdtools/developer/rose/.2007.
[9] http://www.sy-base.com/products/modelingdevelopment/ power

designer, 2012.
[10] http://office.microsoft.com/en-us/visio, 2012.
[11] X. Liu, L. Dong, and H. Lin,“High Order Object Oriented

Modeling Technique For Structured Object-Oriented Analysis”
International Journal of Computer and Information Science, vol.2,
No.2, 2001.

[12] J. Wu, M. Leu, and X. Liu, “A Hierarchical Object-oriented
Functional Modeling Framework for Co-Design of Mechatronic
Products,” Concurrent Engineering, vol.17, No.4, pp 245-256,
December 2009.

[13] X. Liu, “HOOM: A High Order Object Model,” Proc. of the
IASTED International Conference on Software Engineering, San
Francisco, CA,No.,1997.

[14] X. Liu,and H. Lin,“High order Object Model Based Software
Analysis.”Proc. of the 1997 International Conference on
Computer Software and Application Software,vol.20, no.6, June
2009, pp.1475-1469, doi: 10.3724/SP.J.1001.2009.03455.

63

Automated Construction of System Domain
Knowledge Using an Ontology-Based Approach

Mohammad Moshirpour

Department of Electrical and
Computer Engineering

University of Calgary, Canada
mmoshirp@ucalgary.ca

Armin Eberlein
Department of Computer Science and

Engineering
American University of Sharjah

Sharjah , UAE
eberlein@ucalgary.ca

Behrouz H. Far
Department of Electrical and

Computer Engineering
University of Calgary, Canada

far@ucalgary.ca

Abstract— Lack of central control in distributed systems makes
the requirement analysis and design of such systems a
challenging task. Literature suggests that detection and removal
of defects prior to the deployment of a software system is several
times less expensive than the discovery of faults afterwards.
Since manual review of software requirements and design
artifacts is too inefficient and time-consuming, devising
automated methodologies to analyze software requirements is
greatly desirable. However automating the process of software
analysis is a challenging task because each software system has
different domain knowledge. The existing approaches in the
literature often require a great deal of input from the system
engineer which makes for a time-consuming process. This
research suggests the use of scenario-based software engineering
to represent system requirements. Scenarios are often depicted
using message sequence charts (MSCs). Due to their formal
notation, MSCs can be used to analyze software requirements in
a systematic manner. This paper presents the use of an ontology-
based approach to create the domain knowledge of software
systems. This domain knowledge then can be used to analyze
software requirements and design artifacts to detect system
deficiencies. This methodology is demonstrated using the case
study of a real-time fleet management system.

Keywords - distributed system; ontology; emergent behavior;
automated analysis, scenario-based specifications; message
sequence charts.

I. INTRODUCTION
Review of requirements and design documents prior to
implementation of software systems is an effective and
efficient approach to prevent introducing flaws into a system.
Literature suggests that detecting unwanted behavior during
the design phase is about 20 times cheaper than finding them
during the deployment phase [1]. One of the greatest
challenges in the design of distributed systems is emergent
behavior [2-7]. In general emergent behavior is defined as a
specification of behavior that is in the synthesized model of
the distributed system, but is not explicitly specified in its
specifications. Emergent behavior arises when there exists a
state, in which a system component becomes confused as to
what course of action to take. Although emergent behavior is
not always problematic, there are many cases which emergent
behavior is the root cause of system defects [2-7].

Unfortunately, manual review of the requirements and
design documents may not efficiently detect all design flaws
depending on the scale and complexity of real-life systems.
Therefore devising automated methodologies to review and
verify system requirements and design artifacts are highly
desirable. The first step towards automatic analysis of software
requirements is to express them using a precise notation. An
effective and efficient way to describe system requirements is
using scenario-based specifications. A scenario is a temporal
sequence of messages sent between a system and actors using
the system. Scenarios are appealing because of their simplicity
and expressive power [2]. This research uses Message
Sequence Charts (MSC) developed by the International
Telecommunication Union (ITU) [8] to represent scenarios.

Several methodologies which systematically analyze
software requirements have been introduced in the literature [3-
5, 9-11]. Each of these methodologies requires a considerable
amount of input from the system engineer which makes the
analysis process very time consuming.

However it is very challenging to fully automate the
process of software requirement analysis. This is mainly
because each software system has its own particular domain
knowledge. This research works on devising a comprehensive
framework to detect emergent behavior in distributed and
multi-agent systems (MAS) [4, 12]. In [12] a methodology to
detect emergent behavior was introduced. However this
approach was dependent on the construction of the domain
knowledge by the system engineer [12]. This paper presents an
approach to increase the level of automation of the
methodology shown in [12]. This is done by automating the
process of building the domain knowledge of a software system
using an ontology-based approach.

The rest of this paper is organized as follows: Section 2
contains the case study of the real-time fleet management
system. In Section 3 the process of behavior modeling is
illustrated. Section 4 contains the process of building the
ontology and extracting the domain knowledge of the system.
The detection of emergent behavior is discussed in Sections 5
and the conclusions and future work are given in Section 6.

II. CASE STUDY
The Real-time fleet management system provides a multi-
purpose solution for transportation companies and their

64

customers. Such systems enable concise tracking of vehicles
which results in accurate scheduling. A prime example of such
systems is Real-time city transit information systems which
have been employed in a number of large cities. Transit users
are able to receive real-time schedules of bus stops and can
even register to be notified of bus arrivals by receiving text
messages or emails. Due to the diverse technologies used by
users, the system must provide support for different platforms
such as different browsers, mobile web, as shown in Figure 1.
The transit information system keeps track of the location of
each bus using GPS data received. It then attempts to estimate
the time remaining until each stop by considering other data
such as: weather conditions received from weather network
and traffic conditions received from roadside infrastructure.
The requirements of this system are defined using scenarios as
illustrated in Figure 2-4. These MSCs depict the estimation of
bus arrival times by the system. It can be assumed that each
category of data (i.e. traffic, weather and location data)
reaches the server on set intervals, unless there is a sudden
change of conditions. For instance, the traffic data for a given
street is reported by the roadside infrastructure every hour.

Figure 1. High level design of the fleet management system

However in the event of a sudden change in traffic condition
(such as a traffic jam due to an accident) this information is
transmitted to the server right away and arrival times are
estimated and reported accordingly. Moreover, data can be
entered manually to effect bus arrival times, such as
mechanical failure (Figure 4).

GPS Data Rec. Traffic Data Rec. Weather Data Rec. Server Web Interface

MSC1

Send traffic data

Send weather data

Send location data

Estimate
Time

Update

Send SMS

SMS Gateway

Select users

Figure 2. The system calculates bus arrival times and notifies

users

GPS Data Rec. Traffic Data Rec. Weather Data Rec. Server Web Interface

MSC2

Send traffic data

Send weather data

Send location data

Estimate
Time

Update

Send SMS

SMS Gateway

Select users

Send traffic update

Estimate
Time

Figure 3. System recalculates bus arrival according to traffic

update

Data Receivers Server Web Interface

MSC3

Send data

Estimate
Time

Update

Send SMS

SMS Gateway

Select users

Admin

Enter data

Estimate
Time

Figure 4. System recalculates bus arrival according to traffic

update

III. BEAHVIOR MODELING
The procedure of construction of finite state machines (FSMs)
from message sequence charts (MSCs) is referred to as
behavior modeling [4]. For any process i of a MSC, an
equivalent finite state machine can be constructed. Figures 5
illustrate the eFSM constructed for the infrastructure
component in MSCs 1. It is important to note that, regardless
of what type of data is received by the system, this data
triggers the calculation of bus arrival times. Thus, for the sake
of partiality, there is no sense in distinguishing between data
types received in the behavior models. Therefore all data
received is simply denoted as "Received message" or "Rec.
msg" for short.

qm1
1qm1

0

Rec.
msg qm1

2

Rec.
msg

Rec.
msg qm1

3
Estimate time

qm1
4 qm1

5
Update

qm1
6

Select users

qm1
f

Send sms

Figure 5. FSM for the Server component in MSC 1

65

The behavior model for the Server component is obtained by
the union of all the individual state machines [4].

IV. CONSTRUCTION OF THE DOMAIN KNOWLEDGE
After the synthesis of behavior models for each system
component, the state values for the models are to be
calculated. To do this, an invariant property of the system
called semantic causality is used:
Definition 1 (Semantic causality): A message is a
semantical cause for message and is denoted by

, if component i has to keep the result of the
operation of in order to perform .
For instance, in MSC1 shown in Figure 2, the message "Rec.
msg." is the semantic cause for the message "Estimate time".
As semantic causality is an invariant property of the system
and is part of the system's architecture and the domain
knowledge, it is independent of the choices made by the
domain experts. In other words, we let the current state of the
component to be defined by the messages that the component
needs in order to perform the messages that come after its
current states.
Following the definition of semantic causality, the domain
theory of the system is constructed as follows:

Definition 2 (Domain theory): The domain theory Di for a set
of MSCs M and component is defined such that for all

, if then .

Following the above example, both messages "Rec. msg." and
"Estimate time" are part of the domain theory as one is the
semantic cause of the other. The steps to be followed to build
the domain theory using the ontology-based approach are
outlined in this section.

A. Constructing the Ontology
This research proposes that two different views of ontologies
are built for the system; namely static view and dynamic view.

1) Static View of Ontology
The static view of ontology is much like a tree structure,
where the elements are components of the system and are
related to each other in this ontology based on their hierarchy
within the system. The static view of the ontology is
constructed by the domain expert (Figure 6) illustrates the
static view of the ontology for the real-time transit information
system. In the static view, the domain expert classifies all
system components into a finite set of categories.

System

Data Receivers Controllers User Interface

Traffic Rec. Weather Rec.

Location Rec.

Server Web Mobile AppMobile Web Desktop App

*

*

Gateway

SMS*

*

Figure 6. Static view of the ontology

2) Dynamic View of Ontology
The dynamic view of ontology represents the interactions
between system components and is constructed by the domain
expert. This view describes the aspects of the system which

can change with time. Figure depicts the dynamic view of the
ontology for the real-time transit information system, which
has been constructed using a deterministic finite state
automaton. The states of this automaton are the categories
which were established in the static view of the ontology
(Shown in Figure 7).

Data
Rec.
Data
Rec.

MotorsGate-
way

Controller

User-
Interface

Send data

Send message

Estimate time

Update information

Figure 7. Dynamic view of the ontology

As is the case with state machines, the dynamic view of
ontology will have 3 different types of states: start state (e.g.
Data receivers in Figure), transition states, and final states
(e.g. Gateway in Figure). General definitions for each state
type are as follows:
Start State - Resembles a category of components that will
only send messages, but do not receive any messages.
Final State - Resembles a category of components in which a
type sending or receiving a message results in completing a
task.
Transition State - is a state that is determined to be not a start
nor a final state.
B. Constructing Tables
To build the domain theory, tables are built for each state to
discover semantic causality between messages. For each state,
the rows are the transitions before the state, and the columns
are the transitions after it. The sender/receiver component for
each message is also indicated in the tables as shown in Table
1.
The information required to fill the tables is extracted from the
static and dynamic views of the ontology as follows:
 For each row consider the component which has sent/received

that message

 Using the static view of the ontology, determine what
category it belongs to
o For each column consider the component which has

sent/received that message
o Using the static view of the ontology, determine what

category it belongs to
 Now consider the dynamic view of the ontology
 The category of the sender/receiver component of

the message in the row is the starting point
 The category of the sender/receiver component of

the message in the column is the end point
 If there is a path from the start point to the end

point AND the end point is a final state
 The message in the row is a semantic cause

for message in the column and the table
completion is completed

o End For
 End For

66

Table 1. Finding Semantic causality for state
 Estimate

time
[Server]

Update
[Web
Interface]

Send sms
[SMS
Gateway]

Rec.msg[Weather
Data Rec]

X

Rec. msg [Traffic
Data Rec]

Rec. msg
[Location Data
Rec]

Upon building the domain theory based on semantic
causality we proceed to assign state values to the states of
the constructed eFSM as explained in Definition 3.

Definition 3 (State value): The state value for the
state in eFSM Σ is a word
over the alphabet such that

, and for 0 < k < f is defined as follows:

i) , if there exist some
j and l such that j is the maximum index that

ii) if case i) does not hold but
, for some k l < f

iii) , if none of the above cases hold

For example, to calculate the state value for the state the
following steps are followed: From the domain theory of
Definition 5, it can be deducted that the maximum index j for
which is a semantical cause for a
message in the transitions after is j = 3 for which

 That is to say that for
example the message "Rec. msg" is a semantic cause for
message "Update".

Therefore, it is concluded that the value of the state is
obtained using case (ii) of Definition 6 as follows:

. This
becomes:

V. DETECTION OF EMERGENT BEHAVIOR
After calculating state values using the domain theory, the
basis for comparing states and consequently discovering
identical states is established. Identical states are defined in
Definition 7 as follows.
Definition 4 (Identical states): Two states and of
process i, (m and n could be the same) are identical if one of
the following holds:

i) j = k for
ii)

s1S0
Rec.
msg S2

Rec.
msg S3

Estimate
time S4 S5

Update

Select users

Estimate
time

Manual data
Figure 8. Merging identical states

Thus as shown in Figure 8, S2 is where the system becomes
confused as what source of data to use; the received messages
or the manual update. That is, there could arise a scenario,
where the received data can over-write the manual data
entered.

VI. CONCLUSIONS AND FUTURE WORK
Literature suggests that detecting unwanted behavior

during the design phase is about 20 times cheaper than finding
them during the deployment phase [1]. Therefore it is greatly
beneficial to devise methodologies to analyze software
requirements and design artifacts in an effective and efficient
manner. However, many of the existing methodologies used to
analyze system requirements and design documents require a
lot of manual input from the system engineer and thus
introduce a certain amount of overhead [4]. The goal of this
research is to devise a systematic approach to analyze system
requirements for emergent behavior, while saving on overhead
by replacing ad-hoc methodologies with automated ones [4,
13]. In this paper an approach to extract the domain
knowledge of the system from scenarios using an ontology-
based approach was presented. Future work would include
automatic ontology generation from scenarios and completing
a software package based on this methodology [4].

REFERENCES
[1] R. F. Goldsmith, Discovering Real Business Requirements for

Software Project Success. Norwood MA: Artech House, Inc.,
2004.

[2] Casual Closure for MSC Languages 2005.
[3] R. Alur, K. Etessami, and M. Yannakakis, "Inference of Message

Sequence Charts," IEEE Transaction on Software Engineering, pp.
623-633, July 2003.

[4] M. Moshirpour, "Model-Based Detection of Emergent Behavior In
Distributed and Multi-Agent Systems from Component Level
Perspective," Master of Science Department of Electrical and
Computer Engineering, University of Calgary, Calgary, 2011.

[5] A. Mousavi, "Inference of Emergent Behaviours of Scenario-Based
Specifications," PhD Thesis PhD Thesis, Department of Electrial
and Computer Engineering, University of Calgary, 2009.

[6] H. Muccini, "Detecting implied scenarios analyzing nonlocal
branching choices," presented at the FASE 2003, Warsaw, Poland.

[7] S. Uchitel, J. Kramer, and J. Magee, "Negative scenarios for
implied scenario elicitation," presented at the 10th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE 2002), Charleston.

[8] "ITU: Message Sequence Charts. Recommendation, International
Telecommunication Union. ," 1992.

[9] I. Kruger, R. Grosu, P. Scholz, and M. Broy, "From mscs to
statecharts," in Franz j. rammig (ed.): Distributed and parallel
embedded systems, ed: Kluwer Academic Publis, 1999.

[10] J. Whittle and J. Schumann, "Generating statecharts designs from
scenarios," presented at the ICSE, Limerick, Ireland, 2000.

[11] J. Whittle and J. Schumann, "Scenario-Based Engineering of
Multi-Agent Systems," in Agent Technology from a Formal
Perspective, Third ed London: Springer-Verlag, 2006.

[12] M. Moshirpour, A. Mousavi, and B. H. Far, "Detecting Emergent
Behavior in Distributed Systems Using Scenario-Based
Specifications," in International Conference on Software
Engineering and Knowledge Engineering, San Francisco Bay,
2010.

[13] M. Moshirpour, S. Mireslami, A. Eberlein, and B. H. Far, "A
method to detect and remove emergent behavior caused by
overgeneralization " in Systems, Man, and Cybernetics (SMC
2012), COEX, Seoul, Korea, 2012, pp. 2469 - 2474.

67

Dynamic Adaptation of Cloud Computing Applications
André Almeida1,2, Everton Cavalcante2, Thais Batista2, Nélio Cacho2, Frederico Lopes2, Flavia Delicato3, Paulo Pires3

1 Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), Parnamirim, Brazil
2 Federal University of Rio Grande do Norte (UFRN), Natal, Brazil

3 Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
andre.almeida@ifrn.edu.br, evertonrsc@ppgsc.ufrn.br, thais@ufrnet.br, neliocacho@dimap.ufrn.br,

{fred.lopes, fdelicato, paulo.f.pires}@gmail.com

Abstract—Cloud-based applications are composed of services
offered by distinct third-party cloud providers. As most cloud-
related information (i.e. properties of the services such as price,
availability, response time, etc.) of the services are dynamic and
may change any time during the application execution, it is essen-
tial to adapt the application upon the detection of QoS violations
that affect the application requirements. In this paper we present
a dynamic adaptation approach managed by an autonomic con-
trol loop that takes place when a service becomes unavailable or
when QoS parameters are degraded. Our dynamic adaptation
approach relies on dynamic aspect-oriented programming (DAOP)
to: (i) encapsulate the dynamic adaptation (removal and/or inser-
tion of services) as an aspect that contains join points that specify
where each aspect must act, and; (ii) easily change the application
by dynamically removing a service and inserting a new one.

Keywords-Cloud Computing, Software Product Lines, Aspect-
Oriented Programming, Dynamic Adaptation, Autonomic
Computing.

I. INTRODUCTION
Cloud-based applications are inherently dynamic as they re-

ly on a set of services provided by several underlying cloud
computing platforms that can suffer from instability and Quali-
ty of Services (QoS) fluctuations. Moreover, the major difficul-
ties in terms of developing such applications encompass issues
such as the decision of which underlying cloud computing
platforms to use, the need of continuously monitoring the dy-
namic cloud-related information of the very broad variety of
services, and the need of adapting the application upon the
detection of QoS violations that affect the application require-
ments. In this context, the software product lines (SPL) [1]
paradigm is useful for [2]: (i) representing the alternative cloud
services to be used by the applications as variabilities; (ii) con-
figuring the application by choosing the proper cloud platform
service that fits the application needs, and; (iii) annotating the
cloud-related QoS information as properties of each service,
thus making it easier the identification of the dynamic infor-
mation to be monitored.

In this paper we present a dynamic adaptation approach for
cloud-based applications that takes place when a service be-
comes unavailable or when an agreed QoS parameter is violat-
ed. Our dynamic adaptation approach relies on dynamic aspect-
oriented programming (DAOP) [4] to: (i) encapsulate the dy-
namic adaptation (removal and/or insertion of services) as an
aspect that contains join points that specify where each aspect
must act, and; (ii) easily change the application by dynamically

removing a service and inserting a new one. In fact, the use of
DAOP has been a natural choice for supporting adaptation of
dynamic SPL [5] as it supports late variability to deal with
elements that can change at runtime, such as cloud services. In
our scenario, the flexible variability mechanism of DAOP
enables cloud services, represented as variabilities, to be woven
and unwoven at the application at runtime. In addition, we use
our existing SPL-based monitoring strategy [3] to detect when
an adaptation is required.

This paper is structured as follows. Section II briefly pre-
sents the background of this work. Section III contains the
description of our adaptation approach for Cloud Computing
applications, and the implementation details. Section IV pre-
sents an evaluation of our approach. Section V discusses relat-
ed works. Finally, Section VI presents final remarks.

II. BACKGROUND

A. Cloud Computing
Cloud Computing is a paradigm that enables ubiquitous,

convenient, on-demand network access to a shared pool of
configurable computing resources that can be rapidly provi-
sioned and released with minimal management effort or inter-
action with the service provider and are provided in a pay-per-
use way to the user. There are three fundamental models of
cloud service providers: (i) IaaS (Infrastructure as a Service)
platforms, which often provide physical resources such as vir-
tual machines, servers, networks, etc.; (ii) PaaS (Platform as a
Service) platforms, which typically provide an underlying in-
frastructure to develop, deploy, execute, and manage cloud-
based applications, and; (iii) SaaS (Software as a Service) plat-
forms, which provide application software on the cloud and
users can access them by using a browser.

Building cloud-based applications is a challenging task as
they are significantly more complex due to the intrinsic com-
plexity of using third-party cloud providers. The major difficul-
ties encompass issues such as the decision of which underlying
Cloud Computing platforms to use, and the need of tracking
pricing policies of services provided by different clouds plat-
forms, thus hampering the development of applications using
different cloud services [2]. Furthermore, the particular nature
of Cloud Computing applications creates specific requirements
that also demand changes in terms of the development of such
applications, encompassing methodologies and techniques for
requirements elicitation, architecture, implementation, deploy-
ment, testing, and evolution of software. In such context, this

68

paper strives to make easier the development of applications
using different cloud services, so that these applications can be
monitored at runtime and adapted under dynamic conditions
that may affect their requirements. To achieve these goals, our
approach uses two paradigms, namely software product lines
[1] and aspect-oriented programming [7], as briefly introduced
in Section II.B.

B. Software product lines and Aspect-Oriented Programming
SPL [1] enable the creation of a family (or product line) of

similar products by identifying commonalities (similarities)
between all members of the family as well as characteristics
that vary among them, the variabilities. Commonalities and
variabilities between products of a family are typically modeled
in terms of features, which may be a requirement, a function, or
a non-functional feature depending on the interest of such
stakeholder involved in the application development. Features
can be [6]: (i) mandatory, i.e. the feature must be included in a
product; (ii) optional, i.e. the feature may or may not be includ-
ed if the feature from which it derives is selected; (iii) or-
inclusive, i.e. among the set of related features at least one of
them must be selected, and; (iv) alternative, i.e. among the set
of related features exactly one of them must be selected.

AOSD [7] emerged as an approach to promote the modular-
ization of crosscutting concerns, which are usually spread over
several modules in a software system. Without proper means
for separation and modularization, crosscutting concerns tend
to be scattered over a number of modular units and tangled up
with other concerns, thus resulting in lower cohesion and
stronger coupling between modular units, and reduced degrees
of understanding, evolvability, and reusability of software
artifacts. In AOSD, crosscutting concerns are modularized as
aspects, which are abstractions used to encapsulate crosscutting
concerns that are associated with a set of classes and/or objects
affected by such aspects. In turn, basic concerns of a software
system are non-crosscutting concerns that can be modularized
as conventional classes and objects, so that a mechanism called
weaver is responsible for composing (weaving) the code re-
garding basic and crosscutting concerns. In aspect-oriented
programming (AOP) [7] the major mechanisms to modularize
crosscutting concerns in terms of aspects are join points,
pointcuts, and advices. Join points are well-defined points in
the application code (e.g. method calls) that specify how clas-
ses and aspects are related. Each aspect defines one or more
expressions called pointcuts, which are used to select the join
points that will be affected by the aspect’s crosscutting behav-
ior. Finally, when the program execution reaches a join point
selected by some pointcut expression, a piece of code called
advice attached to a pointcut can be executed before, after or
around it: (i) a before advice runs whenever a join point is
reached and before the current computation proceeds; (ii) an
after advice runs after the method body that has run and just
before returning the execution control to the caller, and; (iii) an
around advice runs whenever a join point is reached and has
explicit control whether and when the computation under the
join point is allowed to run.

In the synergic relationship between AOP and SPL [8], re-
cent research has pointed out that AOP promotes better modu-
larity and changeability of SPL than conventional variability
mechanisms [9]. Besides modularizing crosscutting concerns

and managing variabilities in an SPL [10, 11], AOP is able to
improve its evolvability and stability upon dynamic scenarios
[11]. Aspects can contribute to modularize variabilities and
facilitate their addition or removal according to the product
(application) configuration, which is usually based on the se-
lection of a set of features [8, 12]. For these reasons, we exploit
such relationship between AOP and SPL in our approach for
supporting adaptation of an SPL as it supports late variability to
deal with elements that may change at runtime [5], such as
cloud services. As we present hereafter, the flexible variability
mechanism of dynamic AOP enables cloud services, represent-
ed as variabilities, to be woven and unwoven at the at runtime,
thus supporting the adaptation of the application [4].

C. Running example:HW-CSPL
In our previous work [2], we have proposed a seamless ad-

aptation of the SPL-based development to support specificities
of cloud-based applications by adopting an extended feature
model in order to introduce attributes to the features, in which
an attribute is any characteristic of a feature that can be meas-
ured. Similarly, we also ground on this idea of introducing
attributes to features in the feature model with the notion of
properties, which have the form of <name, type, value> triples
regarding a feature. Thus, a property can represent cloud-
related information such as pricing, elasticity support and QoS
parameters. In addition, the feature model becomes more ex-
pressive in order to represent important characteristics of the
cloud services such as pricing model, availability, and response
time. In order to illustrate such approach, we have developed
HW-CSPL (Health Watcher Cloud Software Product Line), an
SPL developed from the Health Watcher (HW) [13] real Web-
based system. HW enables citizens to consult information
about the public health system of a city and to register com-
plaints in terms: (i) ingestion of contaminated food; (ii) mis-
treatment of animals or diseases transmitted by contaminated
animals, and; (iii) other cases, e.g. hygiene problems in restau-
rants, sewage leaks, etc. The commonalities were proposed
from the requirements and features in the original HW system
and the different service facilities provided by cloud platforms
led to the features that represent the variabilities.

Fig. 1 illustrates the HW-CSPL extended feature model. It
contains mandatory features representing commonalities: (i)
Persistence, the persistence mechanism of the application, and;
(ii) Log System, the infrastructure used for storing log infor-
mation. Such model also contains one optional feature, File
Storage, which defines how files (e.g. images related to the
application data) are managed in the application. Each one of
these top-features has properties regarding the services repre-
sented by their alternative feature groups. For instance, the
Persistence feature has three dynamic properties (price, availa-
bility, and responseTime) and offers two options for applica-
tion’s data persistence, respectively represented by the Rela-
tional Amazon RDS feature, which is related to the Amazon
RDS database service provided by Amazon Web Services
(AWS) [18], and by the Relational HP Cloud, which is related
to the relational database service provided by the HP Cloud
platform [19].

III. DYNAMIC ADAPTATION OF CLOUD APPLICATIONS
QoS parameters and other dynamic-kind information regar-

69

Figure 1. HW-CSPL feature model.

ding the used cloud services may change over time, thus affect-
ing the deployed applications that make use of such services. In
this perspective, our previous work [3] introduced a strategy
that enables to continuously monitor the dynamic properties of
the cloud services that are required/used by an application. In
this work we extend our previous approach by using the
MAPE-k loop [25], as illustrated in Fig. 2. In the Monitoring
phase the values gathered by the Feature Monitoring Agent are
stored in a database managed by the Knowledge component,
which is currently responsible for storing all information used
in our strategy to achieve the adaptation of cloud applications.
In the Analysis phase, the Product Generator and Evaluator
generates the product description, which stands for the config-
uration of the product to be deployed. This is achieved by pars-
ing the feature model and evaluating the product selection
criteria, described in more details in our previous work [3].
Afterwards, the generated product description is stored in the
Knowledge component and serves as input for the Planning
phase, in which the Aspect Composer component parses the
product description in order to generate a pointcut/advice mod-
el to be used by the Dynamic Weaver component in order to
reconfigure the application in the Execution phase. All of these
elements are conceptually described in the following subsec-
tions. Although Cloud Computing offers several models, we
concentrate our approach on IaaS platforms, more specifically
the AWS and HP Cloud platforms, but our strategy is generic
and can be used with other platforms. As we are working with
dynamic adaptation using QoS information, it is fair to com-
pare services provided by platforms that follow the IaaS model.

A. Feature model
In our previous work [3], the feature model regarding the

SPL was extended in order to enable the user to annotate the
features with dynamic properties to be monitored. Now, such
feature model was extended again by adding two new ele-
ments: (i) the points of interest (represented as pointcuts) that
describe which parts of the application are susceptible to adap-
tation; (ii) the code responsible for implementing the variability
(represented as an aspect) and how they are bound to the
pointcuts.

Fig. 3 shows a fragment of the XML representation regard-
ing to the FileStorage feature in HW-CSPL. In lines 2 to 6 in
Fig. 3, the pointcuts tag contains the declaration of the pointcut
pc01 associated to the FileStorage feature (lines 3 to 5). In line

Figure 2. Overview of the proposed dynamic approach

4, the pointcut expression
means that the interception must happen when the store meth-
od regarding the Storage class is executed even if it has multi-
ple signatures (as represented by the wildcard). In addition,
it is possible to define how such pointcuts are associated to the
aspects/advices that implement the variabilities of the feature
model by using the bindings tag, as shown in lines 9 to 12 of
Fig. 3. Advice types are the same used on traditional AOP: in
a before advice a specific behavior must be executed before
reaching the pointcut, in an after advice, a specific behavior
must be executed after reaching the pointcut, and in an around
advices replaces the current execution of the pointcut. As
shown in lines 10 and 11, the pointcut pc01 is related to an
around advice named store and that is implemented by the
class hw.aspects.storage.HPStorage class.

B. Product Generator and Evaluator
The extended feature model and the product selection cri-

teria serve as inputs to the Product Generator and Evaluator
component, which was extended from our previous work [3].
This component evaluates the product selection criteria by
using the monitored values of the feature attributes and then
generates the product description, a XML description of the
selected product according to such criteria and that will be
deployed/adapted. Such product description consists in speci-

70

Figure 3. XML representation regarding the FileStorage feature in HW-CSPL.

fying the features that compose the product and contains in-
formation about the pointcuts and a reference to the implemen-
tation of the variabilities that compose the product, as well as
where aspects must be weaved into the application, thus en-
compassing the definition of pointcuts expressions and their
associated advices and aspects.

Fig. 4 shows a fragment of the XML representation of the
product description that uses the RelationAmazonRDS variabil-
ity associated to the Persistence feature. In lines 3 to 13, the
pointcut and aspect/advice are described for the RelationalA-
mazonRDS variability. Due to space restrictions, this descrip-
tion contains only the information needed for reconfiguring the
application, so that the other details specified in the XML rep-
resentation of the feature model (see Fig. 3) were removed.

Figure 4. XML representation of the product description.

C. Aspect Composer
The Aspect Composer component is responsible for parsing

the product description in order to generate a pointcut/advice
model, which is a representation of the product to be adapted
with pointcuts, aspects, and advices and described how the
application must be reconfigured by using the interface provid-
ed by the AOP Handler component, which provides an inter-
face to receive the pointcut and aspect/advice models. If it is
the first deployment of the application, the AOP Handler is

accessed to define the pointcuts and bind the aspects/advices to
such pointcuts. If the application has already been deployed, it
is necessary to first unbind the current aspects associated to the
application and then bind the new aspects that are described in
the product description.

The AOPHandler component is responsible for interacting
with the Dynamic Weaver implementation, so that it is neces-
sary to know how it works. Our proposal is to provide a flexi-
ble solution in order to enable the developer/user to change the
Dynamic Weaver component. For this purpose, we defined an
IAOPHandler interface to be used by the Aspect Composer to
register/unregister the pointcuts, aspects, and advices. Our
current implementation uses the JBoss AOP framework [16]
for implementing the Dynamic Weaver component, so that the
AOPHandler component knows how to deal with the provided
API. For example, if the developer/user wants to change from
JBoss AOP to the Guice injection framework [17], the provided
implementation must know how to: (i) register the defined
pointcuts by interpreting the pointcut grammar, and; (ii)
bind/unbind pointcuts with the defined aspects/advices.

D. Dynamic Weaver
The Dynamic Weaver component supports not only the

AOP programming model, but it also has the capability of
dynamically weaving code into the application. In traditional
AOP, the developer must specify, at design time, the pointcuts
and aspects (crosscutting concerns) that must be weaved into
the application. In traditional AOP, the weaving of aspects is
typically done only at compilation time. On the other hand,
dynamic weaving of applications stands for the capability of
dynamically introducing aspects within the application at
runtime. To add new functionalities to components only avail-
able at the binary format, it is necessary to rely on code instru-
mentation, which means changing the bytecodes of compiled
classes of Java applications, for example.

For dynamic weaving capabilities, our Dynamic Weaver
component must: (i) provide a grammar that enables to define
pointcut expressions or the capability for adding such expres-
sions; (ii) provide an API that supports the runtime definition of
aspects and how pointcuts are related to advices/aspects, and;
(iii) use a code instrumentation strategy to support dynamic
weaving of aspects. The Dynamic Weaver implementation used
in this work is the JBoss AOP framework [16], which supports
static and runtime weaving. It enables to insert aspects by us-
ing: (i) annotations or XML annotations for static changes, and;
(ii) the JBoss AOP API for runtime changes. Our pointcut
description uses the full grammar of JBoss AOP, thus enabling
the user to define a rich feature model since the feature imple-
mentation (variability) may be scattered in multiples point of
the code. To support the runtime binding/unbinding of aspects,
JBoss AOP relies on code instrumentation, thus incurring in the
manipulation of the generated Java bytecode. Many other solu-
tions for dynamic weaving, such as PROSE [22] and As-
pectWerkz, rely on the modification of the Java Virtual Ma-
chine (JVM), which may be a prohibitive issue in the context of
Cloud Computing applications. However, a drawback of JBoss
AOP is that it must be loaded with the JVM used by the con-
tainer/application server, which is required by the Java pro-
gramming language to instrument the Java code. Since it re-
quires more access to the JVM, using such solution for a PaaS

71

environment, which may have restrictions in terms of JVM
manipulation, is not feasible. The Guice solution [17] is a de-
pendency injector that does not require such access, but it lacks
of support of full features for AOSD because it is necessary to
implement all pointcut expressions and it only supports around
advices. In future works, we intend to implement a solution that
makes use of the Guice framework and evaluate our proposal
with PaaS platforms.

IV. EVALUATION
We have evaluated the proposed approach by using the case

study described in Section II.C. It was deployed in an Open-
Stack private cloud environment running a single cloud server
instance (Tiny - 512 RAM and 1 VCPU) and using JBoss as its
application server and Linux as base operating system. We
have purchased an Amazon RDS instance and HP Compute
instance with a MySQL database to evaluate the Persistence
feature and loaded them with a set of random data. In order to
evaluate the FileStorage feature, we have used the Amazon S3
and HP Cloud Storage services, and for the Logging System
feature we have used the Amazon SimpleDB and HP Cloud
Storage since the HP Cloud platform does not offer a non-
relational database service like Amazon SimpleDB., In order to
measure the performance of the whole adaptation process for
adapting from a product to another, we have measured the time
spent by the adaptation of each feature of the case study. As the
product is selected based on the monitored values gathered
from the purchased services, we have decided to provide a
given set of feature monitoring values in order to trigger the
adaption and to evaluate all possible scenarios (i.e. all the vari-
abilities presented in the feature model). We have measured
1000 product changes by measuring the time for each feature
takes to be adapted. In Table 1 we present for each feature of
the SPL the maximum, minimum, and average times (in milli-
seconds) spent by the adaptation process.

TABLE 1. EXECUTION TIME FOR THE DYNAMIC ADAPTATION PROCESS.

Feature Minimum
(ms)

Maximum
(ms)

Average
(ms)

Standard
Deviation

(ms)
Persistence 2968.36 3631.92 3240.19 194.67
File Storage 14.05 19.88 16.98 1.96
Log System 15.73 22.86 20.20 2.20

As shown in Table 1, the Persistence feature stands out

when comparing with the other features due to the implementa-
tion of such feature. Since the HW system uses a pooling con-
trol for database connections, the adaptation process for this
feature consists in releasing the connection pool and creating a
new one according to the changed configuration (i.e. new URL,
user and password for accessing the new database). The other
two features are directly implemented to use the services (e.g.
store an image by using the FileStorage feature or register a log
entry by using the LogSystem feature), and since we are inter-
ested in evaluating the time for reconfiguring the application
instead of the use of such services themselves, we consider
such difference as a normal issue. Considering the set of
changes and the observed standard deviations, for the Persis-
tence feature we have only 27% of the 1000 test cases outside
the standard deviation, and considering that lower times pre-
sents a better response, only 1/3 of the 27% (90 test cases) are

above the average execution. For the FileStorage feature, the
mentioned percentage is around 21% of the 1000 test cases. In
this perspective, we consider that our solution presents a stable
performance, considering the proposed scenario and feature
model. It is important to notice that the measured time is added
to the application execution time, thus meaning that the over-
head due to the use of our strategy is represented by the times
presented in Table 1. However, the process of adaptation is
only triggered when changes in the deployed product occur,
thus meaning that once a product is deployed and reconfigured,
the application execution is not affected by our solution. It is
also important to highlight that depending on the complexity of
the features/variabilities, the overhead will be increased, as we
mentioned before, but this time is counted for the feature im-
plementation and not by our solution itself.

V. RELATED WORK
The idea of using SPL for supporting adaptation has been

used by various works. Gomaa and Hashimoto [20] describe a
dynamic software adaptation approach and environment for
service-oriented product lines. This approach uses a dynamic
feature model for a family of service-oriented architectures
(SOA), in which a member of such family can be dynamically
adapted to a different member of the family at runtime. The
decision to adapt is based only on a set of software adaptation
patterns, while our approach considers the Product Selection
Criteria and the monitored values of the feature attributes.
More similar to our approach, Baresi et al. [21] use the Com-
mon Variability Language (CVL) to augment BPEL (Business
Process Execution Language) processes with variability. This
makes it possible to generate a dynamic SPL and use an aspect-
oriented based version of BPEL to manage and run the SPL.
This approach is more suitable for self-adaptive SOA systems
which are usually self-contained and loosely coupled. In con-
trast, our approach combines an expressive Product Selection
Criteria with an extended feature model, which allows our
approach to support a more fine-grained adaptation than the
previous approach.

More recently, some approaches have been using SPL to
manage software variability of cloud applications. In the
Mietzner et al.’s work [14], variability techniques are used to
support the management of variabilities in SaaS applications.
Application templates describe the variability through variabil-
ity descriptors. Likewise, FraSCAti [15], an adaptive and re-
flective middleware for multi-cloud systems, uses SPL to ena-
ble developers to select the configuration of the SaaS platform
that matches the application needs. SPL is used only to repre-
sent the features and their constraints, which captures all possi-
ble configurations. In our work we go a step further by using
SPL and aspects to implement an adaptation mechanism of
cloud applications. This is an important difference of our work
since our solution improves the adaptation and modularization
of the application.

In addition, there has been much previous research using
monitoring of QoS attributes to support dynamic adaptation.
The Dai et al.’s work [23] is based on prediction of perfor-
mance failures to support adaptation. The decision to adapt is
based on the performance of a single service, while our ap-
proach considers the Product Selection Criteria and the moni-

72

tored values of each feature. In the Leitner et al.’s work [24],
the PREvent approach is described to support prediction and
prevention of SLA violations in service compositions based on
event monitoring and machine learning techniques. The predic-
tion of violations is calculated only at defined checkpoints in a
composition based on regression classifiers prediction models.
In contrast, our approach supports adaptations every time a
product is chosen according to its Product Selection Criteria.
Despite the similarities, none of these AOP approaches take the
feature model and the Product Selection Criteria into account
to support software adaptation.

VI. CONCLUSION AND FUTURE WORK
The development of cloud-based applications that are com-

posed of services offered by distinct cloud providers is a hard
task due to the inherent heterogeneity of cloud environments.
The selection of the proper cloud services that fit the applica-
tion needs is based on cloud-related information, which is used
to triggering an adaptation process. In our previous work [3],
we introduced a strategy that enables to continuously monitor
the dynamic properties of the cloud services that are re-
quired/used by an application. If there is any change on the
values of such properties that affects the requirements of the
product already deployed, a dynamic adaptation process is
triggered in order to make the application redeployment. In this
paper we presented an adaptation strategy that relies on DAOP
to encapsulate the dynamic adaptation (removal and/or inser-
tion of services) and easily change the application by dynami-
cally removing a service and inserting a new one. The MAPE-
K control loop enables to better define the phases of our strate-
gy and a centralized knowledge management provides proper
inputs to such phases. In addition, we are able to describe, in
the feature model, the points in the application that must be
intercepted to support the adaptation process. Moreover, it is
necessary to provide a way for dynamically weaving aspects
into the application and then changing it, based on the moni-
tored values. For this purpose, we used the JBoss AOP frame-
work, which has a rich pointcut expression grammar.

In future works, we intend to improve the algorithm that se-
lects the best product to be deployed since it still generates and
evaluates all possible products, which can be prohibitive in
case of a larger SPL. Another important issue is to consider
historical information in our strategy, for instance, how the cost
of a specific adaptation affects a future adaptation. Finally, we
also intend to evaluate other dynamic strategies and frame-
works for handling dynamic weaving and dependency injection
since the JBoss AOP project is not suitable for environments
with runtime restrictions.

ACKNOWLEDGMENTS
This work was partially supported by Brazilian Academic

and Research Network (RNP) through the AltoStratus Project,
and by the National Institute of Science and Technology for
Software Engineering (INES)1 funded by CNPq under grant
573964/2008-4. Thais Batista is partially supported by CNPq
under grant 485935/2011-2, and Flavia Delicato and Paulo
Pires are also partially supported by FAPERJ and CNPq (grants
311363/2011-3, 470586/2011-7, 310661/2012-9).

1 http://www.ines.org.br

REFERENCES
[1] P. Clements and L. Northrop, Software product lines: Practices and

patterns. USA: Addison-Wesley, 2001.
[2] E. Cavalcante et al., “Exploiting software product lines to develop Cloud

Computing applications”, Proc. of the 16th International Software
Product Line Conference, vol. 2. USA: ACM, 2012, pp. 179-186.

[3] A. Almeida et al., “Towards an SPL-based monitoring middleware
strategy for Cloud Computing applications”, Proc. of the 10th Int.
Workshop on Middleware for Grids, Clouds, and e-Science. USA:
ACM, 2012.

[4] T. Würthinger et al., “Improving aspect-oriented programming with
dynamic code evolution in an enhanced Java virtual machine”, Proc. of
the 7th Workshop on Reflection, AOP and Meta-Data for Software
Evolution , 2010.

[5] T. Dinkelaker et al., “A dynamic software product line approach using
aspect models at runtime”, Proc. of the First Workshop on Composition
and Variability. USA: ACM, 2010.

[6] K. Kang et al., Feature-oriented domain analysis (FODA) feasibility
study. Technical report, Software Engineering Institute, Carnegie Mellon
University, USA, 1990.

[7] R. Filman et al., Aspect-Oriented Software Development. USA,
Addison-Wesley, 2005.

[8] M. Mezini and K. Ostermann, “Variability management with feature-
oriented programming and aspects”, Proc. of the 12th ACM SIGSOFT
Int. Symp on Foundations of Software Engineering.: ACM, 2004, pp.
127-136.

[9] E. Figueiredo et al., “Evolving software product lines with aspects: An
empirical study on design stability”, Proc. of the 30th Int. Conf. on
Software Engineering. USA: ACM, 2008, pp. 261-270.

[10] J. Oldevik, “Can aspects model product lines?”, Proc. of the 2008 AOSD
Workshop on Early Aspects. USA: ACM, 2008.

[11] S. Apel and D. Batory, “When to use features and aspects? A case
study”, Proc. of the 5th Int. Conf. on Generative Programming and
Component Engineering. USA: ACM, 2006, pp. 59-68.

[12] J. Zhang et al., “The role of aspects in software product lines”, Proc. of
the 2008 Int. Conf. on Computer Science and Information Technology.
USA: IEEE Computer Society, 2008. pp. 588-592.

[13] S. Soares et al., “Distribution and persistence as aspects”, Software:
Practice & Experience, vol. 36, no. 7, 2006, pp. 711-759.

[14] R. Mietzner et al., “Variability modeling to support customization and
deployment of multi-tenant-aware Software as a Service applications”,
Proc. of the 2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems. USA: IEEE Computer Society, 2009, pp. 18-25.

[15] L. Seinturier et al., “A component-based middleware platform for
reconfigurable service-oriented architectures”, Software: Practice and
Experience, vol. 42, no. 5, 2012, pp. 559-583.

[16] JBoss AOP Framework: http://www.jboss.org/jbossaop
[17] Google Guice: http://code.google.com/p/google-guice/
[18] Amazon Web Services (AWS): http://aws.amazon.com/
[19] HP Cloud Services: http://www.hpcloud.com/
[20] H. Gomaa et al, “Dynamic software adaptation for service-oriented

product lines”, Proc. of the 15th International Software Product Line
Conference, vol. 2. USA: ACM, 2011.

[21] L. Baresi et al., “Service-oriented dynamic software product lines”,
Computer, vol. 45, no. 10, 2012, pp. 42-48.

[22] A. Vasseur, “Dynamic AOP and runtime weaving for Java: How does
AspectWerkz address it?”, Proc. of the 2004 Dynamic Aspects
Workshop, pp. 135-145.

[23] Y. Dai et al., “QoS-driven self-healing Web service composition based
on performance prediction”, Journal of Computer Science and
Technology, vol. 24, no. 2, 2009, pp. 250-261.

[24] P. Leitner et al., “Monitoring, prediction and prevention of SLA
violations in composite services”, Proc. of the 2010 IEEE Int. Conf. on
Web Services. USA: IEEE Computer Society, 2010, pp. 369-376.

[25] An architectural blueprint for Autonomic Computing, 4th ed. IBM, 2006
(Autonomic Computing White Paper).

73

A Machine Learning Based File Archival Tool

Robert Carreras, Du Zhang and Jinsong Ouyang
Department of Computer Science

California State University
Sacramento, CA 95819-6021, USA

Abstract— Managing a cloud file share is time consuming and
costly. The task of routinely archiving stale files from the share is
very difficult for IT professionals. In this paper, we report a
machine learning based tool called MLFAT for file archiving.
MLFAT provides a mechanism to make the task of identifying
and archiving files easy and convenient through the following
process: (1) an IT professional assigns categories with associated
retention values for files and folders in the network share; (2) a
knowledge-based bootstrap engine then propagates the category
information for all the files according to the hierarchical
structure, paving the way for supervised learning; (3) a support
vector machine learner generates a decision function through
train data on a subset of the file system; (4) the decision function
is then utilized to generate archive or not archive labels for
files/folders; and (5) IT professional will make the final decision
based on the classification results. MLFAT is not based on any
specific hardware system, can be deployed in a variety of file
systems than current archival tools, and provides the ability to
run discovery queries on files. Preliminary experimental results
of the tool are promising.

Keywords- file archiving, cloud file share, knowledge-based
bootstrap, support vector machine.

I. INTRODUCTION
In this paper, we report a machine learning based tool for

file archiving. The tool is called MLFAT (for Machine
Learning File Archival Tool). The primary goal of MLFAT is
to reduce an organization’s monthly cost of renting or
maintaining a large cloud file share. MLFAT uses a support
vector machine learner to generate archival labels (archive, not
archive) for files and folders in an organization’s file share, and
an IT professional of the organization will determine if the
archive labels are correct. End users will be able to access
archived files via a client-server model.

Reducing the size of an organization’s network share will
decrease the monthly rental cost for the file share. For a
moderate sized Enterprise level cloud file share (500 GB) the
monthly cost is $339 [5]. A low cost file storage medium like
Amazon S3 with capacity of one TB filled to 500 GB costs $70
a month with an additional charge of $41.50 for file
redundancy [1]. The difference in monthly cost is due to the
access methods and allowances of the storage mediums. The
high cost storage allows two TB of downloads per month,
which is included in the file share cost. Amazon’s S3 charges
per file request and for data transfers are beyond the first
gigabyte.

The primary focus of this paper is on describing the
development of the knowledge-based ingest engine, the
machine learning component for generating archival labels, and

the graphical user interface (GUI) component. Due to space
limitation, we will not discuss issues pertaining to file storage,
file data collection, and file retrieval.

The rest of the paper is organized as follows. Section II
gives some background information on related file archiving
tools. In Section III, we describe the design of MLFAT.
Section IV provides some initial performance evaluation of the
tool. Finally Section V concludes the paper with remarks on
future work.

II. RELATED WORK
File archival tools primarily focus on reducing the

complexity and increasing the ease of identifying and archiving
files from a company file system. Major components in
archival tools often include an ingest engine (a mechanism
used to assign pertinent meta data to files entering the system),
a classification engine (a mechanism tasked with determining
the archival label), and a discovery tool (a mechanism focused
on providing specific information related to litigation issues).
End to end systems also include mechanisms for retrieval of
archived files by end users.

Full featured commercial archival tools are available on the
market. Some of them include IBM Smart Archive [6],
Symantec Enterprise Vault [11], and Dell’s file archiving
software [4]. The end-to-end archival products made available
through IBM, Symantec and Dell all provide the full
infrastructure for a company to seamlessly access archived data
using fully developed enterprise tools.

IBM Smart Archive makes use of Content Collector
software that manages an organization’s e-mail, file systems,
SharePoint content and other file data [6]. The Content
Collector software also provides deduplication functionality.
The Content Collector acts as a common ingest point for an
organization’s data, making classification and archival
decisions easier. The Smart Archive system makes use of the
Watson DeepQA technology to provide an analytics-based
discovery and archival procedure [6].

Symantec Enterprise Vault File Archival System provides
Content Control, Classification, Archiving, Retention
management and Discovery [11]. It manages the types of
content on a file server by maintaining a list of allowed file
extensions and deciding if the file type can be saved or
archived. File classification occurs during file creation. When a
user creates a file in the system, its classification is determined
by the retention policy of its parent folder [11]. In Symantec’s
system all data resides in a hierarchical folder structure,
allowing archival labels to be assigned. Retention management
makes use of a special folder type called retention folder,

74

which allows the creator to specify the length of file retention.
The system can be used to identify files for legal discovery,
external requests, or internal investigation. The discovery
mechanism is provided by indexing files. The archiving
process in the system uses a filter system based on attributes
such as file type, last access time, age, size, or free space on
volume, which IT staff determine [11].

Dell’s E-mail and File Archival solution provides a
company with the option to maintain unalterable data archives
[4]. Another advanced Archival system integrates a global
parallel file system and a standard backup/archive product with
an innovative parallel software code to construct a scalable and
parallel archive storage system [3].

Compared with the related work, MLFAT provides an
ingest engine in the form of the knowledge-based bootstrap
engine, a classification engine through a support vector
machine (SVM) learner, and a discovery mechanism with the
combination of the output files from the bootstrap engine and
the underlying relational database. With similar functionality as
the current major commercial products used for file archival,
MLFAT is not based on any specific hardware system, and can
be deployed in a variety of file systems.

III. DESIGN OF MLFAT
MLFAT is a modular tool to determine the archive label of

files and folders. Figure 1 shows its structure. The core
components are comprised of the MLFAT Learner, MLFAT
Knowledge-based Bootstrap Engine, and the graphical user
interface (GUI). Additional components include: File Crawler,
Client, File Record Server, and Storage Server. In the rest of
this section, we focus our attention on the core components and
the file record database.

Fig. 1. MLFAT structure.

A. MLFAT File Record Database
The MLFAT File Record Server uses five database tables to

maintain all current data and statistics.
The file_system table stores file and folder information that

includes: id, path, name, type, size, last modified, archived
status, parent, file extension, and label source. The category
table contains the name and retention value for each respective
category created by the user and has three attributes,
idcategory, cat_name, and retention_age. The file_category

table includes the assignment of a category entry to a
file_system entry. It contains three attributes, idfile_category,
idcat, and idfile.

The learner_stats table holds the statistical results of each
machine learner instance. It contains six attributes learner_id,
true_positive, false_positive, true_negative, false_negative, and
date. Finally the file_scratch provides a scratch table that
temporarily holds backup values from file_system. The backup
attributes are idfile_system, archived, and label_src.

B. MLFAT Knowledge-Based Bootstrap Engine
The knowledge-based bootstrap engine (KBBE) allows for

the information on file category and retention limit for that
category, specified by the IT professional, to be properly
disseminated across the file system. Special categories “root”
and “subroot” will set inheritance start points. KBBE uses
SWI-Prolog’s engine [12] as its inference engine and take
advantage of a runtime generated Prolog file as its Knowledge
Base and Working Memory. The bootstrap mode in KBBE is
comprised of three phases, Fact Gathering, Inference, and
Propagation.

Fact Gathering – This phase consists of an IT professional
creating categories and assigning them to file system entries.
Assignments also include the special categories Root and
Subroot. These assignments are stored in tuples associated with
the specific file or folder they correspond with in a relational
database.

Inference – This phase will consist of applying the
inference rules to the facts generated in fact gathering and
saving the outcomes in a relational database. There are
following inference rules:
• root(X). This rule determines the root of the file tree

represented in the knowledge base. An example root
would be the parent directory of an entire file system, like
C:\.

• subroot(X). This rule determines the locations within the
file tree that should not inherit categories from their
ancestors.

• parent(X, Y). This rule specifies the parent relationship,
with X being the parent of Y. The parent relationship
specifies that X is the parent folder in which Y resides.
An example parent relationship: parent: C:\My_Folder,
child: C:\My_Folder\My_File.txt.

• cat(L, C). This rule specifies which category, L, is
assigned to a child, C. C can either be a folder or a file in
the file system.

• ancestor(A, C) :− parent(A, C), not(subroot(C)), not(root(C)).
This ancestor rule is used to determine if a child, C,
should inherit the categories that have been assigned to A,
its Ancestor. This rule first checks if A is the parent of C.
If A is the parent of C, it makes sure that C is not a
subroot or a root because subroot and root entries do not
inherit from their parents and have no ancestors.

• ancestor(A, C) :− parent(P, C), ancestor(A, P), not(subroot(C)),
not(subroot(P)). This rule allows the determination of an
ancestor to C from any number of prior generations
(folder levels).

• cat(L, A, C) :− ancestor(A, C), cat(L, A). This rule allows

75

for the inheritance of a category, L, from any ancestor, A,
of the child C.

Propagation – In this phase, the rules generated in
inference propagate the categories throughout the file system.
This step entails the inheritance of every category assigned to
a child’s ancestors. After KBBE finishes the propagation, the
category information is stored for each affected file or folder.

C. MLFAT Learner
Once files receive their category labels through KBBE, the

SVM learner component is used to generate a decision function
that predicts if a file needs to be archived or not archived
based on when was last modified/accessed and the average
retention value for the file category of . The learner has two
phases, Training and Classifying. Based on the size of the
file_system table, the learner will determine the sample size for
the Training phase. Both phases use the third party library,
DLIB, a C++ machine learning library for SVM [7]. A DLIB
matrix provides the container for each individual sample used
in Training and Classifying. Sample initialization occurs by
assigning negative one, to all locations.

For each category that is associated with a sample, the
value one is written into the location that matches its idcategory
plus the offset of the initial attributes.

Diff_time is calculated by subtracting the last_modified
value from the current date. diff_time is rounded to whole
years, and avg_ret is the average retention_age of all categories
associated with the particular sample. All of the samples are
stored in a vector of DLIB matrixes. For each sample, the
archival label is stored in a separate vector.

Training – This is the first phase of the machine learner. It
makes use of the sample and label vectors. The training phase
begins with the sample passing through a normalization
function, which normalizes using the mean and standard
deviation [7]. The sample and labels are then randomized to
remove any ordering that might have occurred during
sampling. An SVM nu trainer, which makes use of the
sequential minimal optimization algorithm (SMO) [7] as
implemented in LIBSVM [2], takes both vectors and outputs a
decision function.

Classifying – This is the second phase of the machine
learner. It makes use of the decision function to a classification
set that is built using the same method as the training set. Each
instance of the classification set is passed into the decision
function, resulting in the output of a real number. Negative
values denote a false classification, while positive denote a true
classification. The outputs are transformed to exactly positive
one (Archive) or negative one (Not Archive) by the MLFAT
learner component. The results of the decision function are
presented to the user who analyzes them for correctness. The
file_system entries for the classification set are then updated to
match the new archival labels and label source information.

D. MLFAT Graphical User Interface
The GUI is a tabbed program, with the following 5 tabs.

The first tab lists all the categories in the system, with their
associated retention ages in tabular form. It also provides the
mechanism to create new categories. Special categories, root
and subroot are included due to them being stored in the same
database table as the user generated categories. Currently this

tab only provides the mechanism to create categories, but not
modify them. This tab covers part of the Fact Gathering phase,
by allowing the creation of Categories and persisting them to
the relational database. The second tab lists all files and folders
in the system in tabular form. It provides a check box interface
for root and subroot, and a combo box that lists all available
categories that have not been assigned to a particular file or
folder. The user is able to select root or subroot and select an
entry from the combo box, when the user clicks the Save File-
Category button, the selected categories will be persisted to the
relational database. This tab completes the Fact Gathering
Phase. The third tab is about KBBE that provides two tabular
views and two buttons, Build KBS and Propagate KBS. The
first view is a dynamically generated list of categories that
apply to a selected row in the other view, which displays all
files and folders in the system. To use this tab, the user must
first click the Build KBS button, which queries the relational
database for all root(C), subroot(C), cat(L, C) and parent(P, C)
data, and then appends the ancestor and other cat rules into a
file. After the Build KBS button is clicked the Propagate KBS
button becomes available, upon clicking, the Prolog engine
consults the built file. After the file is loaded into the Prolog
Engine, all new cat(L, C) facts are persisted to the database,
using both the KBS and queries on the relational database to
determine if the cat(L, C) facts are new to the relational
database. This tab implements both the Inference and
Propagation phases.

The fourth tab, the learner, provides three tabular views and
three buttons. The buttons consist of Run Learner, Commit
Changes, and Clear Changes. The first view is a dynamically
generated list of all the file_system entries in the classification
set. The second view presents the pre ‘run learner’ values for
archived and label source for a particular row of the first view.
The third view displays all categories and their retention ages
for a particular row of the first view. To use this tab, the user
must first click the Run Learner button. This calls and runs the
MLFAT Learner component. Once the learner is complete, the
three views are useable and the user may correct the archived
and label source values of the first view. Once the user
completes the required changes, they can click Commit
Changes, which stores the new values and stores the statistical
information for the learner instance. Instead of clicking
Commit Changes, the user may click Clear Changes, to revert
the system to the prior state. The fifth tab, Learner Statistics,
provides one tabular view, one graphical view, and one button.
The provided button is Refresh Statistics, this allows the
tabular view of learner statistics to contain the results of learner
instances generated while the program is open. The graphical
view is a graph of the receiver operating characteristic (ROC)
curve of the selected learner instance. QCustomPlot, a Qt
plotting widget, generates the graphical view and plots the
ROC point for the selected instance [14].

IV. PERFORMANCE EVALUATION
Performance of the Archive label is based on four possible

confusion matrix values: true positive, true negative, false
positive, false negative [13]. All of the confusion matrix values
will be determined and recorded for each learner instance.
Recording these statistics allows the ROC curve and precision
to be calculated for each instance of the learner. The current

76

system stores all four confusion matrix values, but only plots
the ROC curve, with the True Positive rate on the y-axis and
the True Negative rate on the x-axis.

Learner instances run against the initial development
sample data, with average retention age as the sole retention
policy factor, have consistently plotted above the fifty percent
line of the ROC curve. The learner instances tend to contain
approximately one third true positive and two thirds true
negative, which are indicative to the sample data set. Instances
run using ad-hoc retention policies initially have decreased
accuracy, but additional learner instances have increased
accuracy as the sample data begins to reflect the ad-hoc
retention policy. Each learner instance executes in a
reasonable amount of time, with the response time being a few
seconds.

Performance of the knowledge-based bootstrap engine is
evaluated by response time. When it processes small datasets,
the response time of the application is excellent, with no
noticeable delay. However, larger datasets have noticeable
response time when propagating the categories throughout the
file system. There also appears to be redundant calculations
done by the bootstrap engine when it searches for all
categories that a child can inherit from its ancestors. In order
for a child to inherit a category, only a single ancestor must
possess the category, but the bootstrap engine exhaustively
checks all the ancestors of the child to see if they have the
category. However, in small datasets, this redundant checking
does not reduce performance

The machine learner sample is based on the total file
system size, but in the case of small file systems, it trains on
two thirds and classifies one third. In the case of large file
systems, the sample size chooses a small subset to prevent the
classification set from being overly large. The current date
determines the relationship between average retention age and
the difference of current date and last modified. The sample
learner instance trains on the training set, and then classifies
the classification set.

The Machine Learner GUI tab presents the classification
results once the learner has been run. Each entry in the
classification set is displayed with the learner’s prediction of
Archive (1) or Not Archive (−1). When the user selects an
individual entry, the initial archival state and associated
categories are displayed. This display helps the user decide if
the learner is correct. The user then makes the final
determination on archival status and corrects the entries where
the learner is incorrect. The manual process of correcting the
learner enables the tracking of the confusion matrix values.

The user would then compare the average retention age, or
any other retention policy, with the last modified date and the
current date to determine if the learner’s prediction is correct.
The user can correct errors to match the retention policy.

V. CONCLUSION
The task of managing a network file share is time

consuming and costly. The task of routinely archiving stale
files from the share is very difficult for information
technology professionals. This task is not simple and products
that assist in it often require special hardware, special file
systems, or advanced learning technology, which all come at a
cost. Additionally most of these commercial systems require
specific system setup conditions.

In contrast, MLFAT provides a mechanism to make the
task of identifying and archiving easy and convenient. Using a
combination of knowledge-based approach and machine
learning, MLFAT is able to assist IT professionals in this task,
regardless of the physical hardware their network runs on.
Sample learning instances of MLFAT indicate that it provides
accurate labels in a reasonable response time.

Future work includes: Category Tab needs improvement,
mostly, with the addition of the ability to change the retention
age associated with a given category. The MLFAT should also
provide the ability to setup the relational database, and its user
on first run. It currently requires the database to be configured
separately. MLFAT should also provide the ability to load
datasets. A discovery tool should also be included to allow
users to select a particular category and have it output a list of
all files associated with the category.

REFERENCES
[1] Amazon.com Simple Storage Service (S3). Oct. 10, 2011.

http://aws.amazon.com/s3/#pricing
[2] Chang, C. and Lin, C.. LIBSVM: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1--
27:27, 2011

[3] Chen, H., Grider, G., Scott, C., Turley, M., Torres, A., Sanchez, K.,
Bremer, J., “Integration Experiences and Performance Studies of a
COTS Parallel Archive System,” IEEE International Conference on
Cluster Computing, 2010, pp.166-177.

[4] Dell. “E-Mail and File Archive Solution: Satisfy retention requirements
and improve storage optimization”,
http://i.dell.com/sites/content/business/solutions/brochures/en/Document
s/satisfy-retention-requirements.pdf, 2012

[5] Drive Headquarters: The First Cloud IT Solution Provider. Oct. 10,
2011,
http://www.drivehq.com/premium/enterprisePricing.aspx.

[6] B. Dufrasne et al, IBM System Storage Solutions for Smarter Systems,
July 2011,
http://www.redbooks.ibm.com/redbooks/pdfs/sg247945.pdf.

[7] King, D. Dlib-ml: A Machine Learning Toolkit, Journal of Machine
Learning Research, Vol.10, 2009, pp. 1755-1758.

[8] Microsoft: Visual Studio. Oct. 5, 2012,
 http://www.microsoft.com/visualstudio/.

[9] PostgreSQL: The world’s most advanced open source database. Oct. 5,
2012. http://www.postgresql.org/

[10] Qt. Oct. 5, 2012. http://qt.digia.com/
[11] Symantec. Jan 18, 2012. “Symantec Enterprise Vault™ File System

Archiving: Data Sheet: Data Protection”,
http://www.symantec.com/content/en/us/enterprise/fact_sheets/b-
ev_for_fsa_DS_21197947.en-us.pdf.

[12] SWI-Prolog. Oct. 5, 2012. http://www.swi-prolog.org/
[13] Witten, I. and Frank, E., Data Mining: Practical Machine Learning

Tools and Techniques, 2nd Edition, Morgan Kaufmann, 2005.
[14] Works like Clockwork. Oct. 5, 2012,

 http://www.workslikeclockwork.com/index.php/components/qt-
plotting-widget/

77

Modeling and Analyzing Attack-Defense Strategy
of Resource Service in Cloud Computing

Huiqun Yu1, Guisheng Fan1,2, Liqiong Chen3, Dongmei Liu1

1Department of Computer Science and Engineering

East China University of Science and Technology, Shanghai 200237, China
2 State Key Laboratory for Novel Software Technology, Nanjing University 210093, China

3 Department of Computer Science and Information Engineering

Shanghai Institute of Technology, Shanghai 200235, China

Abstract—In this paper, we propose a stochastic game theoretic
method to model and analyze the attack-defense process in cloud
computing. A stochastic game model (SGM) is proposed based
on combining Stochastic Petri nets with game theory. The attack-
defense behavior and their attributes are modeled by using
SGM , thus forming the attack-defense game. On this basis, the
nash equilibrium of attack-defense process of physical machine is
computed in order to get the best defense strategy. The related
theories of Petri net and the reachable states of attack-defense
game are used to formally verify the correctness of proposed
method. A case study shows that the proposed method adapts
quickly to the changes in cloud application and thus improves
the security of cloud computing.
Index terms: Cloud computing, security, Game Theory,

Stochastic Petri nets, attack-defense.

I. INTRODUCTION

Cloud computing sets a new paradigm for infrastructure

management by offering unprecedented possibilities to de-

ploy software in distributed environments [1]. Its goal is

to share resources among the cloud service consumers and

cloud vendors in the cloud value chain [2]. However, secu-

rity issues present a strong barrier for users to adapt into

cloud computing systems. First, cloud computing is inherently

complicated, the provider must ensure that their clients’ data

and applications are protected while the customer must ensure

that the provider has taken the proper security measures to

protect their information. Secondly, the infrastructure that

exists between the client and the cloud computing server,

presents opportunities for other types of specifically targeted

attacks. Finally, most attempts to validate security mechanisms

and strategies, however, have been qualitative by showing that

the process employed to construct a system is secure. But it

can not be practically feasible to construct perfectly secure

mechanisms and strategies, in face of complex and various

attack behaviors in cloud computing.

Game theoretic methods allow to gain an in depth analytical

understanding of the attack-defense process, which has been

successfully applied to diverse problems such as Internet pric-

ing and networking [3]. According to the Nash equilibrium,

we could get the best defense strategy to against the attack

strategy. However, some essential properties of game theory

prevent it from further using in the field of cloud computing.

For example, game theory has not enough modeling ability

to describe interaction relations in the complex structure [4].

Therefore, formal methods can be used to analyze game

process, thus increasing the semantic constraints. Petri net is

a mathematically based technique for modeling and verifying

software artifacts [5]. Which can be used to model and analyze

attack-defense process of cloud computing.

In order to solve the security of cloud computing, some

approaches [6,7] proposed enhancements for process models to

express security requirements on a more accessible level. The

approaches in [8] focus on algorithmic solutions in resource

management. A game-theoretic model of an Infrastructure-as-

a- Service (IaaS) cloud market, covering dynamics of pricing

and usage, is targeted by [9]. An agent-based simulations on

dynamic software pricing are proposed in [10] The work in

[11] provides a discussion on advantages, drawbacks, and

the future direction of using game theory. The authors in

[12] proposes a scalable method for availability analysis of

large scale IaaS cloud using analytic models. However, most

of the current works on network security focuses on system

models and their equilibrium analysis, the verification process

is generally ignored. And they cannot capture the probabilistic

nature of the state, which is more useful in analyzing attack-

defense process in cloud computing. Furthermore, they don’t

consider the different defense strategies in face of various

attack behaviors, the proposed method in this paper can

prevent or to counteract attacks more efficiently.

In this paper, we propose a stochastic game model (SGM),

which is used to describe the hierarchical structure and proba-

bilistic nature of attack-defense behavior in cloud computing.

The isomorphic Markov chain is computed by analyzing the

relations between the states in attack-defense game model. The

benefit of attack-defense strategy is also computed based on

the actual mapping of state, the security attributes and cost of

attack-defense behavior. The related theories of Petri net and

the reachable states of attack-defense game model are used

to formally verify the correctness of proposed method, which

can make the cloud computing dynamically select the defense

strategy to against attack behavior as quickly as possible.

The rest of this paper is organized as follows. In Sec-

tion 2, we analyze the attack-defense requirements of cloud

78

computing. The attack-defense strategy is given in Section 3.

In Section 4, we prove the correctness of proposed method.

In Section 5, we show the execution process and simulation

results by an actual example. Finally, Section 6 presents some

related works while Section 7 is conclusion.

II. ATTACK-DEFENCE REQUIREMENTS OF CLOUD

COMPUTING

A. Attack-defence requirements

The attacker has a specific purpose when it takes any attack

behaviors. In this paper, we use the preference of attacker on

the security attribute to define the type of attack behavior, thus

describing the purpose of attacker. Generally, the attacker has

a strong attack purpose, it is denoted by the weight of security

attribute. Physical machine can work normally only when

it owns the confidentiality, integrity and availability, but the

resource service may have the different security attributes. The

loss of target resource can also be described by using security

attribute. The cost of security attribute can be evaluated by the

hazards that the attacker do to the target resource, which can

also be denoted by the loss of three security attributes. First,

we need characterize the requirement of attack-defense game

in cloud computing.

Definition 1. The requirement of attack-defense game in cloud
application is a triple: Ξ = (BNS, RL, PRB):

(1) BNS ={RS, IT , AT}, where RS, IT , AT are the
finite set of physical machines, attack behaviors and defensive
behaviors. Stop attacking “Null” is also an attack behavior.
AT is the set of available defensive strategies. The system
doesn’t take any defensive behavior (α) is also a strategy.

(2) RL : C × C → {>,+, ‖, n}, where >,+, ‖, n are
the sequence, choice, parallel and loop relation between
behavior. Let ∀x ∈ IT ∪ AT, ForT (x) = {y|RL(y, x) =>
}, BacT (x) = {y|RL(x, y) =>}

(3) PRB = {AW,Sq, AP, ITe} is the attribute function
of cloud computing, AW : RS ∪ IT → [0, 1] × [0, 1] × [0, 1]
is the attribute function of physical machine and attack be-
havior, AW (rsi) = (C1, C2, C3) is the preference of physical
machine on the integrity, confidentiality and availability, and
C1 + C2 + C3 = 1. AW (iti) is the weight of attack behavior
on each security attribute. Sq : IT × AT → [0, 1] is used to
describe the blocking rate that defensive strategy dose to the
attack behavior. AP : IT ∪ AT → [0, 1] is the cost that the
system invokes the attack or defensive behavior, the total attack
capacity of attacker is 1, similarly, the total defensive capacity
of defender is 1. AP (Null) = AP (α) = 0. ITe : IT → (0, 1]
is the average arrival rate of attack behavior.

B. Syntax and semantics of stochastic game model

Petri net is a formal language for describing the concurrency

system. We will propose a stochastic game model based on

Petri net, and introduce the related concepts, the remaining

concept can refer to [5].

Definition 2. A five tuple Σ = (PN, IO, tr, pr,M0) is called
a Stochastic Game Model(SGM): (1) PN = (P, T, F, W)

is a basic Petri net. P, T, F, W are the finite set of places,
transitions, arcs and weights. (2) IO ⊂ P is a special type
of place, which is the interface of Σ and denoted by dotted
circle. (3) tr : T → R × R × R × R is the attribute function
of transition, tr(ti) = (λi, πi, ξi, ri) represents the response
rate, the cost, benefit and priority of ti, the default value is
(∞, 0, 1, 0). (4) pr : p → [0, 1]× [0, 1]× [0, 1] is the weight
of transition. (5) M0 is the initial marking of PN .

∀x ∈ (P∪T), we denote •x = {y|y ∈ (P∩T)∧(y, x) ∈ F}
and x• = {y|y ∈ (P ∩ T)∧(x, y) ∈ F}. Let S =
(M, UD, IC, AC) is a state of SGM , where M is a marking,

UD is the weight of place under M . IC, AC are the attack

cost and defense cost. UD(S, pi) is the weight of place

pi under S. The initial state S0 = (M0, UD0, IC0, AC0),
UD0 = {pr(p)}, IC0 = AC0 = 0. ∀ti ∈ T, ∀pj ∈• t, if

M(pj) �= ∅, then transition t is enable under S. All the

enabled transitions under S are denoted by set ET (S). For

ti ∈ ET (S), if ti meets the condition: ri ≤ min(rj), where

tj ∈ ET (S), then the firing of ti under S is effective. All

effective firing transitions under S are denoted by FT (S).
Let S = (M, UD, IC, AC) be a state of Σ, ∀ti ∈ FT (S),

where λi, πi are the response rate and cost of ti, the system

will reach a new state S = (M ′, UD′, IC ′, AC ′) by firing ti,
denoted by S[ti > S′, S′ is called a reachable state of S. M ′,
UD′ are computed based on the following rules:

(1) Computing the marking: ∀pj ∈• ti ∪ t•i , M
′(pj) =

M(pj) − W (pj , ti) + W (ti, pj)
(2) If λi = ∞, then:∀pj ∈ t•i , UD′(pj) = UD(pj) − ξi,

IC ′ = IC, AC ′ = AC + πi

(3)λi �= ∞, then:∀pj ∈ t•i , UD′(pj) = UD(pj)×ξi, IC ′ =
IC + πi, AC ′ = AC

The reachable state is dynamically changing according to

the feasible replacement of transition in the model SGM. If

there is a firing sequence t1, t2, . . . , tk and state sequence

S1, S2, . . . , Sk, which make S[(t1, ω1) > S1[(t2, ω2) >
M2 . . . Sk−1[(tk, ωk) > Sk, then Sk is a reachable state from

S. All the possibly reachable states of S are denoted by R(S)
and S∈ R(S). δ(Si, Sj) is the firing sequence from Si to Sj .

III. ATTACK-DEFENSE STRATEGY

A. Modeling cloud computing

The attack-defense model is the foundation of security

management in cloud computing.

(1) Modeling the basic components:

The attack behavior itj and defensive behavior atj is

extracted as tij,h , taj,h, where i and a explain that the transition

is an attack or defensive behavior. We introduce the subscript

h to describe the hth invocation of ith or ath. The response

rate of tij,h is equal to the average arrival rate of ith, the cost

of transition is mapped into the actual cost of behavior.

(2) Modeling the basic relation, the corresponding model is

shown in Fig.1. Let RL(itk, itr) = +, RL(itk, itw) =‖:

For the sequence relation between the attack behavior and

defensive attack, if RL(itk, atf1) = RL(itk, atf2) = . . . =
RL(itk, atfn) =>, if the system can reach position pi

k,j after

79

the jth execution of attack behavior itk. The specific model is

shown in Fig.1(a). For the sequence relation between the attack

behavior, if RL(itk, ith) =>, and the system can reach the set

of defensive position {pa
f1,g, p

a
f2,l, . . . , p

a
fn,t} when it takes the

defensive behavior {atf1, atf2, . . . , atfn} to against the attack

behavior itk. The specific model is shown in Fig.1(b).
The specific model for choice and parallel relation between

the attack behavior are Fig1(c)-(d).

Fig. 1. The offensive and defensive model of basic relation

Let the adopted strategy of attacker and defender on phys-

ical machine rs be spi
j(rs) = {itj1, itj2, . . . , itjm} and

spa
k(rs) = {atk1, atk2, . . . , atkn}. The modeling process of

attack-defense model Ωrs(spi
j , sp

a
k) for rs is:

(1) If the physical machine is in the initial position, and

∃itjy ∈ spi
j(rs), ∀itjh ∈ spi

j(rs), RL(itjh, itjy) �=>.
(2) The model library is used to model the set of behavior

{itj1, itj2, . . . , itjm, atk1, atk2, . . . , atkn}, then construct the

attack-defense model of physical machine according to the

relations between behaviors and the interface of model(The

system will merge the same place).
(3) The system will set the parameters for the place and

transition in the model according to the attributes of behavior.
Let the requirements of attack-defense game be Σ =

(BNS, RL, PRB), and the adopted strategies of attacker and

defender in the attack-defense process of cloud computing

are spi
j = {spi

j(rs1), spi
j(rs2), . . . , spi

j(rs|RS|)} and spa
k =

{spa
k(rs1), spa

k(rs2), . . . , spk
a(rs|RS|)}, the modeling process

of attack-defense model in cloud computing is: The system

will construct the attack-defense model for each physical

machine, and merge the attack-defense model of physical

machine, then set the initial parameters for cloud computing.

B. Computing the benefit of physical machine
Definition 3. Let Markov chain MC be isomorphic to SGM
model Ω, |R(M0)| = n, n×n order matrix Q = [qi,j] is called
the transfer matrix, where:

qi,j =

⎧⎪⎪⎨
⎪⎪⎩

−
∑

tk∈FT (Mi)

λk: ifi = j

λk: elseif∃tk ∈ T, Mi[tk > Mj

0: otherwise

qi,j describes the probability from state si to state sj .

The transfer matrix describes the reachable relation between

the states. Let n stable states in MC be a row vector

X = (x1, x2, . . . , xn). We can get the stability probability

P [si] = xi of each reachable marking. Stability probability

can be used to predict the probability that the system reaches

each state.

In order to accurately evaluate the cost of attack, we must

quantify the type of attack and the extent of loss that the attack

do for target resource.

Definition 4. Let sk be a stable state of Grs(spi
j , sp

a
k) =

(S, E, pt, Γ), the physical machine rs may reach the states
after firing the attack iti under state sk, AT (iti) = ath, then:

(1) When rs reaches sf by firing ti, the possible loss L(sf)
of security attribute is equal to:

L(sf) = P [sf] × (v(sf) +
∑

sj∈backS(iti,sf)

v(sj)p[sj])

v(sf) is the attribute function of rs under sf ,
backS(itj , sf) = {sk|∃tj ∈ backT (iti, sf), sf [tj > sk}.

(2) The revenue of IR(iti, sf , rs) is equal to the bene-
fits got by firing a successful attack. If iti = Null then
IR(iti, sf , rs) = 0, else IR(iti, sf , rs) = (AW (rs) −
L(sf))× (1, 1, 1)T . Where (AW (rs) is the weight of physical
machine on security attribute.

(3) The cost of IC(iti, sf) is the required software and
hardware when the attacker fires an attack and the corre-
sponding legal sanctions after detecting the attack (which is
a negative value), IC(iti, sf) = −AP (iti, sf).

(4) The benefit of attack IC(iti, sf) is the getting ben-
efit (which is a positive value) when the system takes the
defensive strategy ath on physical machine rs, we can set
AR(ath, sf , rs) = IR(iti, sf , rs) × sq(iti, ath).

(5) The benefit of attack IN(ITa, ATh, rs) represents the
benefit when the attack takes a series of attack behaviors
ITa = {ita1, ita2, . . . , itam} on rs and the defender reaches
the state set R(ITa) after takeing the set of defensive be-

havior ATh: IN(ITa, ATh, rs)=
∑

sf∈R(ITa)

IR(itam, sf , rs)-

IC(sf). In the similar way, the benefit of defensive behavior

is: AN(ITa, ATh, rs)=
∑

sf∈R(ATa)

AR(atam, sf , rs)- AC(sf).

Definition 4 gives the benefit of a single attack behavior

and defense behavior according to the actual meaning of the

SGM ’s state. However, the best benefit of a single behav-

ior can not guarantee the best benefit of cloud computing,

otherwise, it is necessary to consider the cooperative relation

between the behavior, the defense capability of defender.

C. Attack-defense game

The set of player’s strategy SP = (SPi, SPa) is the strategy

of attacker Pi and defender Pa. SPi = (spi
1, sp

i
2, . . . , sp

i
m) is

the set of strategy of player Pi. SP is the tools and means used

by the player in the game, each strategy set at least has two

different strategies. Each strategy contains the deployment of

80

the player on all physical machines, the paly’s behavior on the

physical machine rs is denoted by set SP (rs), such as, spi
1 =

{{it1, it2}, {it5, it6, it7}} is the invoked attack behaviors it1
and it2 on the physical machine rs1. While the invoked attack

behaviors of spi
1 on physical machine rs2 are it5, it6, it7,

and the system will not take any behaviors on the remaining

physical machines.

In the process of attack-defense game, the utility of player

is equal to the total benefit of all physical machines. UPi

is a function of SPi → R, which is the utility func-

tion of player and R is the value of utility. The benefit

of strategy is equal to the total benefit of the strategy on

all physical machines. From analyzing the computation for-

mula of the benefit of strategy, we can get that the bene-

fit of attacker is not only related with the attack strategy,

but also is related with the defense strategy of defender.

∀spi
f ∈ SPi, ∀spa

j ∈ SPi, Ui(spi
f , spa

j), Ua(spi
f , spa

j)
are the utility of attacker and defender if the system

takes the defense strategy spa
j for the attack strategy

spi
i. Ui(spi

f , spa
j) =

∑
rsk∈RS)

IN((spi
f , rsk), (spa

j , rsk), rsk),

Ua(spi
f , spa

j) =
∑

rsk∈RS)

AN((spa
f , rsk), (spa

j , rsk), rsk).

The player’s strategy in the attack-defense process is de-

noted by set SP = (SPi, SPa), the utility of attacker and de-

fender can be described by a matrix U(SP) = [Ui(spI
f , spa

j),
Ua(spi

f , spa
j)], the row of the matrix represents the possible

attack strategy that may be used by attacker, and the column

of the matrix represents the defense strategy that may be used

by defender.

We use the zero and game to describe the game relation

between attacker and defender. In the attack-defense game

model, the attack and defensive strategy (spi∗, spa∗) is a

Nash equilibrium if and only if strategy spi∗ is the best

strategy for player i to against another player: ∀spi ∈
SPi, Ui(spi∗, spa∗) ≥ Ui(spi, spa∗) and ∀spa ∈ SPa,

Ua(spi∗, spa∗) ≥ Ui(spi∗, spa).
The attacker and defender in game process can select

their behavior according to the strategy (spi∗, spa∗) in Nash
equilibrium. The best strategies of attacker in cloud computing

and their corresponding defensive strategy can be computed by

solving the following equation:

(1) MinUi(spi
f , spa

j)
(2)MaxUa(spi

f , spa
j)

(3)
∑

itk∈spi
f)

AP (itk) =
∑

atk∈spj
a)

AP (atk) = 1

The main purpose of computing and analyzing stochastic

game model is to predict the stability probability of attack

behavior in cloud computing.

IV. ANALYSIS TECHNIQUES

The attack-defense model in cloud computing is mainly

used to model the attack-defense game process of all physical

machines, we can analyze the correctness of SGM model by

analyzing the properties of each physical machine. However,

the size of state space can affect the analysis process of

constructed model. Therefore, we will firstly analyze the state

space of constructed model.

Because the transition in the attack-defense model can be

executed after getting the required resource. Therefore, the

attack-defense model of physical machine doesn’t have the

deadlock, the state space of Ωrs(spi
j(rs), sp

a
k(rs)) is finite.

Similarly, the state space of attack-defense model of cloud

computing is finite. So we can use the attack-defense model

to analyze the related properties. ∀atg ∈ spa
k(rs), the corre-

sponding transition of itj , atg on Ωrs(spi
j(rs)), Ωrs(spa

k(rs))
are denoted by set T (itj), T (atg).

Theorem 1. The attack-defense model of physical machine
rs is Ωrs(spi

j(rs), sp
k
a(rs)), S0 is the initial state of model.

∀itj ∈ spi
j(rs), then ∀t ∈ T (itj) ∪ T (atg), ∃S ∈ R(S0),

which makes t ∈ FT (S).

Proof: ∀t ∈ T (itj)∪T (atg), from the modeling process of

SGM model Ωrs(spi
j(rs), sp

a
k(rs)), we can get that t is an

execution of a behavior. We will prove the theorem by using

the mathematical induction.

If ∀itk ∈ spi
j(rs), >�∈ RL(itk, itj) ∩ RL(itk, atg), then

∀S ∈ R(S0), there is t ∈ FT (S).
Otherwise, if ∃itk ∈ spi

j(rs)>∈ RL(itk, itj) ∩
RL(itk, atg), the forward attack and defensive transition of

t are denoted by set Fork(t) = {tij1, . . . , tijm, taj1, . . . , t
a
jm},

tijm, tajm are the forward and final attack or defensive behavior.

We can assume ∀th ∈ Fork(t), ∃S′ ∈ R(S0), which

makes th ∈ FT (S′) establish. We will prove that t ∈ FT (S)
establishes when ∃S ∈ R(S0).

Therefore ∃S′ ∈ R(S0), which makes tajm ∈ FT (S′).
According to the operation semantics of SGM , we can get

∃S1 = (M1, UD1, IC1, AC1) ∈ R(S′), S′[tajm > S1.

Because ta•jm = pa
jm, we can get M1(pa

jm) = 1.

According to the relation between t and the remaining

behavior, it can be divided into four cases: (1)∀tg ∈ spi
j(rs)∩

spa
k(rs), RL(tijm, tg) �=>, and RL(tijm, tg) =>. (2)t is an

attack behavior and ∃itt ∈ spi
j(rs), RL(itt, t) = +. (3)t is

a defensive behavior and ∃atg ∈ spk
a(rs), RL(tijm, atg) =>.

(4) t is an attack behavior and ∃itt ∈ spi
j(rs), RL(itt, t) =‖.

Case 1: Because RL(tijm, t) = RL(tijm, tajm) =>, accord-

ing to the modeling process of basic relation, we can get

pa•
jm = t ∧• t = pa

jm, so t ∈ FT (S1), because S = S1,

the proposition establishes. In the similar way, we can get the

proposition also establishes in other cases.

In summary, ∀t ∈ T (itj) ∪ T (atg), ∃S ∈ R(S0), which

makes t ∈ FT (S).
Theorem 1 illustrates that all behaviors are possible to be

invoked in the attack-defense model Ωrs(spi
j(rs), sp

a
k(rs)) of

physical machine. Similarly, the attack-defense model can also

describe the choice, parallel and sequence relation.

Theorem 2. The attack-defense model of physical machine
rs is Ωrs(spi

j(rs), sp
k
a(rs)), S0 is the initial state of model,

∀itj ∈ spi
j(rs), ∀atg ∈ spa

k(rs), RL(itj , atg) =>, then
∀tij,k ∈ T (itj), ∃S ∈ R(S0), which makes tij,k ∈ FT (S),

81

then S′ ∈ R(S), FT (S′) ∩ T (atg) �= ∅.

Proof: Reduction to absurdity, FT (S′) ∩ T (atg) = ∅. We

can assume that tag,h ∈ (ti•j,k)• ∩ T (atg).
Because the transition of itj , atg on Ω are denoted by set

T (itj), T (atg), then ∀t ∈ T (itj)∪T (atg), ∃S ∈ R(S0), which

makes t ∈ FT (S). Because M(RSi,k•pac) = 1, we can get

(RSi,k•tc) ∈ ET (S).
Because the firing of transition will not take the time. There-

fore, ∃S1 ∈ R(S), which makes V ET (S, RSi,k) = RSi,k•tc.

Because (RSi,k•tc)• = {RSi,k•pch, RSi,k•pcac},
•(RSi,k•tc) = {RSi,k•puac}.

According to the value of M(RSi,k•pc), there are two cases:

Case 1: M(RSi,k•pc) = 0. Therefore,

M(RSi,k•pch) = STi,j , and ∃S2 ∈ R(S1), which makes

M2(RSi,k•pIO
ou) = 1, that is M2(TKi•P i,k

ou) = 1. Because

TS(TKi•ptm) > M(RSi,k•pc), TS(TKi•pac) = 1, we can

get M2[TKi•tou,k >. Because •(TKi•te) = TKk•pwe, we

can get ∃S4 ∈ R(S3), which makes M4(TKk•pe) = 1.

Because •(TKi•te) = TKk•pwe, we can get ∃S4 ∈ R(S3),
which makes M4(TKk•pe) = 1. We can set S′ = S4, the

proposition establishes.

In the similar way, we can get M(RSi,k•pc) �= 0, the

proposition is also proven.

In summary, ∃S′ ∈ R(S), FT (S′) ∩ T (atg) �= ∅.

Theorem 2 explains that the attack-defense model of phys-

ical machine can correctly describe the relation between the

attack behavior and defense behavior.

V. EXAMPLE AND EXPERIMENT SIMULATION

We use a network topology to simulate the attack and de-

fense process. The machine taking the attack behavior is in the

external network, cloud application has 20 physical machines

(10 public Web servers (rs1 - rs10), five file servers(rs11 -

rs15), five internal database servers (rs16- rs20)). The firewall

is used to separate cloud application from the external network.

The rules of firewall are as follows. When target machine is

Web server, service is HTTP or FTP then all source host’s

access strategy is allow. When target machine is file server,

service is FTP then all source host’s access strategy is allow.

When target machine is database server, service is Oracle and

FTP then Web and file source host’s access strategy is allow.

We can use the vulnerability scanning software to analyze the

vulnerability of all physical machines, the host information

and weaknesses. Vulnerability Attribute functio Web server,

Apache chunked Enc,Wu-Ftpd SockPrintf(), (0.3,0.2,0.5) ,File

server, FTP, rhost overwrite, (0.4,0.4,0.2),Database server,

Oracle TNS Listener,Local buffer overflow (0.4,0.5,0.1)

The physical machine has the vulnerability and its

dependency relation, the attacker can take the atomic

attack.at1,Delete the threat of account and restart the

httpd service,0.2 at2,Restore the node and delete the

threat of account, 0.2 at3,Clear the virus and delete the

threat of account, 0.1 at4,Install sniffer to monitor the

program,0.2 at5,Clear the monitoring program of snif-

fer,0.1 at6,Delete the threat of account and re- start ftpd

service,0.3 at7,Clear the threat of sniffer,0.2 at8,Null,0

The available defensive behaviors of defender are: httpd

attack(it1),ftpd attack(it2),continue to attack(it3),destroy the

node and leave(it4),install sniffer(it5),get the access rights

of information center(it6) and network nodes(it7),steal

data(it8),close node(it9),dos(it10),null(it11). Their attributes

are (0,0,0.1), (0,0,0.05), (0,0,0.05), (0.1,0,0.1), (0,0.1,0),

(0,0.1,0), (0,0.15,0), (0,0.3,0), (0,0,0.2), (0.3,0,0), (0,0,0).

Their cost are 0.2,0.2,0.1,0.2,0.2,0.2,0.2,0.3,0.2,0.5,0. Firing

rate of these behaviors are 1,1.5,1.5,2,2,1.5,1.5,2,2,1.5,∞.

The relations between behaviors are: ForT (it3) =
{it1, it2}, BacT (it3) = {it4, it5}, BacT (it8) = {it9, at7},
BacT (it5) = ForT (it8) = {it6, it7}, BacT (at1) = {it1},
ForT (at2) = {it4, it9, it10}, BacT (it2) = {at4, at6},,
RL(it1, it2) = RL(it4, it5) = RL(it6, it7) = +. Sq(it1, at1)
= Sq(it4, at2) = Sq(it10, at2) = Sq(it9, at2) = Sq(it2, at6) =

Sq(it2, at4) = Sq(at4, at5) = Sq(it8, at7)=0.95,

According to the characteristics of attack behavior and

defensive behavior, we can construct the attack-defense model

Ω2(IT, AT), which is shown in Fig.2. From analyzing the

state space of Ω2, we can get: (1) The state space of Ω2 is

finite, the state space of physical machine’s model is also finite

under a certain attack-defense strategy. (2) The model can

correctly describe the attack behavior and defensive behavior

and their relation. For example, RL(it9, at2) =>, the mapping

of it9 on Ω2 is {ti9,1, t
i
9,2, t

i
9,3, t

i
9,4}, if Ω2 reaches state S by

firing transition ti9,3(M(ti9,3)=1), then the firing of transition

ta2,2 under state S is effective.

We will randomly generate 15 attack-defense strategies.

Because the generated strategy is large, we only give the attack

strategy of rs1, rs2, rs11, rs16. First, we will analyze the

change rules of different attack strategies on security attribute,

which is shown in Fig.3, the X axis is the steps, Y axis is the

revenue. From analyzing the figure, we can get that the change

rules of security attribute on the different attack strategies are

different for the same physical machine. The reason is that the

revenue of attack behavior on security attribute is different. For

example, the attack behavior spi
15(rs1) = {2, 3, 5, 7, 8, 9}, so

the revenue of attack behavior spi
15 on rs1 is (0,0.25,0.3).

The change rules of the confidentiality of rs1 with the time

changing are shown Fig.4, the X axis is the strategy, Y axis

is the revenue of security attribute.

VI. CONCLUSIONS

As a new distributed computing mode, cloud computing

is different from the traditional distributed computing: loose

organization, high scalability, heterogeneity, and so on. And

all these make the attack-defense process under the cloud en-

vironment different from that under the traditional distributed

computing environment. In this paper, we have proposed a

stochastic game theoretic method to select attack-defense of

resource service in cloud computing. A Stochastic game model

is defined as a unified formalism to describe different compo-

nents of cloud computing. The physical machine, the basic

relation between the attack behavior and defense behavior

are took into account in the modeling process, thus we can

82

pi
1,1

pI
s,1

ti
1,1

pi
2,1ti

2,1

pa
g,1

pa
f,1

ta
g,1

ta
f,1

pi
k,2ti

k,2

pi
a,3

pi
e,1

ti
e,1

ti
a,3

pi
d,1ti

d,1

pi
a,2ti

a,2

pa
a,1

pa
b,1

pa
c,1

ta
a,1

ta
c,1

ta
b,1

pa
e,1

pa
j,2

ta
e,1

ta
j,2

pa
j,1ta

j,1 pi
d,1ti

d,1

pi
a,2ti

a,2

pi
d,1ti

d,1

pi
a,2ti

a,2

pa
a,1

pa
b,1

pa
a,1

pa
b,1

pi
d,1ti

d,1

pi
a,2ti

a,2

pi
d,1ti

d,1

pi
a,2ti

a,2

pa
a,1

pa
b,1

pa
a,1

pa
b,1

pi
d,1ti

d,1

pi
a,2ti

a,2

pa
a,1

pa
b,1

Fig. 2. The attack-defense model Ω2(IT, AT)

Fig. 3. Analyzing the security attributes of rs1

Fig. 4. Analyzing the confidentiality of rs1

characterize precisely the attack-defense process. An attack-

defense strategy is proposed, which is used to dynamically

select the defense strategy to against the attack behavior

according to the actual situations. The operational semantics

and related theories of Petri nets help prove the effectiveness of

attack-defense game process. Experiment results show that the

proposed can effectively model and analyze the attack-defense

in cloud computing.

ACKNOWLEDGMENT

The work is partially supported by the NSF of China

under grants No. 61173048. Innovation Program of Shanghai

Municipal Education Commission under Grant No.12YZ166.

Construction Program of Shanghai Science and Technology

under Grant No.12510503800. The Fundamamental Research

Funds for the Central Universities.

REFERENCES

[1] S. Marstona, Z. Lia, S. Bandyopadhyaya, et al. Cloud computing-the
business perspective. Decision Support Systems. 2011, 51(1): 176-189.

[2] C. Vecchiolaa, R. N. Calheirosa, D. Karunamoorthya, et al. Deadline-
driven provisioning of resources for scientific applications in hybrid
clouds with Aneka. Future Generation Computer Systems. 2012, 28(1):
58-65.

[3] E. Altman, T. Boulogne, R. El-Azouzi, et al. A survey on networking
games in telecommunications. Computers and Operations Research. 2006,
33(2): 286 - 311.

[4] Y. Z. Wang, M. Yu, J. Y. Li, et al. Stochastic game net and applications
in security analysis for enterprise network. International Journal of
Information Security. 2012, 11(1): 41-52.

[5] M. TADAO. Petri nets: properties, analysis and application. Proceedings
of the IEEE. 1989, 77(4):540-581.

[6] J. Juerjens. UMLsec: Extending UML for Secure Systems Development.
Proceedings of the 5th International Conference on The Unified Modeling
Language. LNCS 2460. 2002: 412-425.

[7] C. Wolter, A. Schaad. Modeling of Task-Based Authorization Constraints
in BPMN. Processing of the 5th International Conference on Business
Process Management. LNCS 4714, 2007:64-79.

[8] G. Wei, A. Vasilakos, Y. Zheng, et al. A aame-theoretic method of
fair resource allocation for cloud computing services. The Journal of
Supercomputing. 2009, 54(2):1-18.

[9] K. Jorn, H. Karl. A game-theoretical approach to benefits of cloud
computing. Proceedings of the 8th international conference on Economics
of Grids, Clouds, Systems, and Services. Springer-Verlag, 2011: 148-160.

[10] J. Rohitratana, J. Altmann. Agent-based simulations of the software
market under different pricing schemes for Software-as-a-Service and
perpetual software. Economics of Grids, Clouds, Systems, and Services.
Springer-Verlag, 2010: 62-77.

[11] M. Manshaei, Q. Y. Zhu, Quanyan, T. Alpcan, et al. Game theory meets
network security and privacy. ACM Computing Surveys. 2012, 45(3):1-
45.

[12] F. Longo, R. Ghosh, V. K. Naik, et al. A scalable availability model
for Infrastructure-as-a-Service cloud. Processing of the 2011 IEEE/IFIP
41st International Conference on Dependable Systems & Networks. IEEE
Computer Society, Washington, DC, USA, 2011: 335-346.

83

Proposal and Validation of a Feasibility Model
for Information Mining Projects

Pablo Pytel
PhD Program on Computer Science,
UNLP - GISI UNLA - GEMIS UTN-

FRBA, Buenos Aires, Argentina.
ppytel@gmail.com

Paola Britos
Information Mining Research Group.
National University of Rio Negro at El

Bolson, Argentina.
paobritos@gmail.com

Ramón García-Martínez
Information Systems Research Group,

National University of Lanus, Remedios
de Escalada, Argentina.

rgarcia@unla.edu.ar

Abstract— Information Mining projects are a special type of
Software Engineering projects with the objective of extracting
non-trivial knowledge from available data repositories.
Information mining projects share similar problems with
Software Engineering projects. Most of these problems should be
handled at the initial activities of the project. But there is no
model to analyze and evaluate the project feasibility which could
be used to predict the main project risks. In this context, the
objective of this paper is to propose and validate an ad-hoc model
that can be used at the beginning of an Information Mining
project in order to analyze its feasibility.

Keywords-Feasibility Model; Information Mining; Software
Engineering; Small and Medium-sized Enterprises.

I. INTRODUCTION

Information Mining projects are a special type of Software
Engineering projects with the objective of extracting non-trivial
knowledge which is located (implicitly) in the available data
from different sources [1]. Commonly, instead of developing
specific software, available software tools are used which
include the necessary techniques and algorithms [2]. As a
result, the features of Information Mining projects are different
from Traditional Software Engineering projects and, also, from
Knowledge Engineering projects, even though the algorithms
are based on artificial intelligence methods [3]. The most used
methodologies for Information Mining projects are CRISP-DM
[4], SEMMA [5] and P3TQ [6]. These methodologies are
considered as proven by the community, but they exhibit
problems when trying to define the phases related to project
management [7]. Some elements of project management are
mixed with project development process and tasks (such as
project monitoring, verification and measurement) and others
are not considered in the referenced methodologies.

In this context, it is detected the lack of a model to analyze
and evaluate the project feasibility which could be used to
predict the project risks. Therefore the objective of this paper is
to propose and validate an ad-hoc model that can be used at the
beginning of an Information Mining project in order to analyze
its feasibility and then identify its strong and weak points. First,
the problem is identified by analyzing the reasons of project
failures (section II). Then the corresponding solution is
proposed by specifying the feasibility model (Section III)

which is validated using real project information (Section IV).
Finally the main conclusions are presented (Section V).

II. ANALYSIS OF PROJECT FAILURE

Most Traditional Software Engineering projects can be
considered (at least) partial failures because few projects meet
all their cost, schedule, quality, or requirements objectives [8].
From the challenged or canceled projects, the average project
was 189 percent over budget, 222 percent behind schedule, and
contained only 61 percent of the originally specified features.
In 2005, it has been considered that from 5 to 15 percent of
projects were abandoned before or shortly after delivery as
hopelessly inadequate [9]. In other words, few projects truly
succeed. The most important reasons are, among others:
inability to manage the project complexity, poorly defined
system requirements, sloppy development practices,
commercial pressures, unrealistic / unarticulated project goals
and unmanaged risks.

Information Mining projects share similar problems.
Conducted studies about Information Mining projects have
detected that not all projects are successfully completed [10],
ending most in failure [11]. In 2000, it has estimated that 85%
of the projects have failed to achieve its goals [12]. In other
words, this means that in average only 15 projects had been
successfully completed from 100 developed ones. After five
years working, the community has been able to decrease this
project failure rate to approximately 60% [13]. Hence it can be
said that the community is working on the right lane but there
are still project elements that should be enhanced.

Most of these problems have to be detected in the initial
activities of the project. Before starting any Traditional
Software project, the organization normally decides whether it
is appropriate performing it or not. Making such decisions is
complex and depends on multiple factors as it is necessary to
know both the impact of the software on the organization and
the developing associated risks [14]. The project features are
required to be analyzed by assessing the technical and
economic feasibility of the project (commonly known as
feasibility study). In Expert System development projects,
something similar happens. As the initial specifications for
these systems are often uncertain, incomplete, and inconsistent,
it is necessary to develop several prototypes for coherently
define the system functionality, performance, and interfaces

84

[15]. Since Knowledge Engineering (KE) projects use more
resources than Traditional Software development projects [16],
their feasibility study is highly more important in order to
identify the risks that should be monitored and controlled
during the project.

Information Mining project’s initial tasks ought to be
similar to a Traditional Software Development or KE projects.
By early detection of the risks, its effects could be reduced
during the project development. However, as the features of
Information Mining projects are different from Traditional
Software and KE projects, the models to study the feasibility
cannot be reused for this type of projects and it is necessary to
propose specific ones. In this domain, several studies have been
conducted to identify success criteria [17-20], but there is no
comprehensive model to analyze if the project is achievable or
not. While in [21] a model that uses a fuzzy expert system has
been proposed to measure the project success level from the
quality used in each of its phases of CRISP-DM, this study
may be performed once the project is completed because it
requires the quality level applied in each phase to be known.
On the other hand, in [22] a Bayesian analysis is used to
determine whether the company is qualified to implement a
data mining project (i.e. the enterprise characteristics are
valued to decide whether data mining can be applied or not),
but it does not consider important topics such as the business
problem. Furthermore, this analysis does not make the
classification of feasibility in different dimensions, considering
it as a whole.

III. PROPOSED FEASIBILITY MODEL

The proposal of the feasibility model for Information
Mining projects requires the identification of the main
conditions for considering a project as feasible (subsection A).
Such a task is dependent on the project features which can be
known in the initial stages. However, it is not usually easy to
answer these conditions by answering 'yes' / 'no' questions (or
by giving a numerical value). Thus the proposed feasibility
model should be able to handle a range of linguistic values to
answer each condition. From such values, and by applying a
pre-defined process, it would be possible to determine the
overall project feasibility (as detailed in subsection B).

This model has been based on the feasibility test defined for
KE projects defined in [15, 16] which has been adapted and
validated using actual Information Mining projects. These
projects have been provided by researchers from the following
research groups: GISI-DDPyT-UNLa, GEMIS-FRBA-UTN
and GIEdI-UNRN. Be advised that all these projects had been
performed by applying the CRISP-DM methodology [4] within
Small or Medium-size Enterprises (SMEs). Therefore, the
models can be considered reliable only for small and medium-
sized Information Mining projects developed with this
methodology.

A. Conditions

The main conditions are identified based on [17-24] and
classified into three groups (or dimensions):

• Conditions that determine the plausibility of the project
include the factors that make it possible to perform the

information mining project. A project can be performed if
the following conditions are met: the available data
repositories have current and representative data of the
business problem to be solve, the business problem is
understood, and the team has a minimum knowledge about
the information mining process.

• Conditions that determine the adequacy of the project
include the factors that determine whether information
mining is the appropriate solution for the identified
business problem (i.e. it is the best solution for the
problem). It is appropriate to apply information mining
when the following conditions are met: the available data
repositories have digital format (they are not only in
paper), the business problem cannot be solved by using
traditional statistical techniques, the business problem will
not change during the project, and the data quality is good.
The following metrics are used for assessing the data
quality:
o Quantity of attributes and records (measuring the

availability of enough data to apply the data mining
process).

o Degree of credibility of the data (measures of how
much you can trust on the data accuracy depending on
the source and nature).

• Conditions that determine the success of the project
include the factors ensuring the project accomplishment.
An information mining project will be successful if the
following conditions are met: data repositories are
implemented with technologies allowing easy data access
and manipulation (i.e. integration, cleaning, and formatting
tasks), the project stakeholders (either high level managers,
mid-level managers or end-users) support the project, it is
possible to perform the project planning considering best
practices with necessary required time, and the team has
experience in similar projects.

B. Proposed Procedure

The following five steps are proposed to assess the project
feasibility:
Step 1: Determining the value of each project features.
Looking for characterizing an Information Mining project and
evaluating its feasibility, 13 features are used which are
specified in Table I. Such features, based on the conditions
identified in subsection A, should be answered from the
interviews conducted with the organization stakeholders at the
beginning of the ‘Business Understanding’ phase of CRISP-
DM methodology. They should be valued by using one of the
following words: 'nothing', 'little', 'regular', 'much', and 'all'.
For each feature the following attributes are defined:

o Category: used only to group the features according to
what or who is concerned.

o ID: indicates a code to uniquely identify the property
and the dimension to which it belongs (Plausibility,
Adequacy, or Success).

o Condition: describes the question associated to the
feature to be identified for characterizing the project.

o Weight: indicates the relative importance of each
feature in the global model.

85

Note that features related to plausibility and adequacy
dimensions must have a value equal to or bigger than ‘little’,
otherwise the project can be considered as non-feasible. For
success features, there is no minimum threshold (they can be
valued with ‘nothing’).

TABLE I. PROJECT FEATURES EVALUATED BY THE MODEL.

Category ID Condition Weight

Data

P1 How much actual is considered the data from
the repositories? 8

P2
How representative is considered the data in the
repositories in order to solve the business
problem?

9

A1 How much the data repositories have digital
format? 4

A2 How many attributes and records are available
in the data repositories? 7

A3 How much credibility has the available data? 8

S1 In which degree the repository technology
supports the manipulation of the data? 6

Business
Problem

P3 How much the business problem is understood? 7

A4 In which degree the business problem cannot be
solved by traditional statistical techniques? 10

A5 How stable is considered the business problem
during the project? 9

Project

S2 How much the stakeholders support the
project? 8

S3
In which degree the project plan considers the
required time to perform best practices during
the project?

7

Project
Team

P4 How much knowledge has the team about
information mining? 6

S4 How much experience has the team in similar
projects? 6

Step 2: Converting feature values into fuzzy intervals.
Once the linguistic values have been defined for each feature of
Table I, they should be translated into numeric values to
calculate the project feasibility. This transformation process is
based on Fuzzy Expert systems [25]. For each word value, a
fuzzy interval is specified that is expressed by four numbers
(ranging from zero to ten) representing the breakpoints (or
corner points) of the corresponding membership function.
These intervals with the graphic representation of each
membership function are shown in Figure 1.
Step 3: Calculating the value of each dimension.
To calculate the project dimension values, the fuzzy intervals
(obtained in the previous step) are balanced considering their
corresponding weight (already defined in Table I). The interval
representing the value of each dimension (Id) is calculated with
the Formula #1 of Table II. This formula is formed by the
combination of the harmonic mean and the arithmetic mean of
the set of intervals (thus the influence of low values is reduced
when calculating the dimension value). As a result of the
formula, another fuzzy interval is achieved. To convert this
interval into a single numeric value (Vd) the arithmetic average
is used as specified in Formula #2 of the same table.

Value = ‘nothing’
Fuzzy Interval= (0.0; 0.0; 1.2; 2.2)

Value = ‘little’
Fuzzy Interval= (1.2; 2.2; 3.4; 4.4)

Value = ‘regular’
Fuzzy Interval= (3.4; 4.4; 5.6; 6.6)

Value = ‘much’
Fuzzy Interval= (5.6; 6.6; 7.8; 8.8)

Value = ‘all’
Fuzzy Interval = (7.8; 8.8; 10.0; 10.0)

Figure 1. Membership function graphical and fuzzy interval assigned.

TABLE II. FORMULAS USED BY THE MODEL.

Formula

1

=

=
⋅

⋅+

=

=⋅=
dn

i
idW

dn

i
idFidW

dn

i idF
idW

dn

i
idW

dI

1

)
1

(

2
1

1

1
2
1

where:
Id: represents the fuzzy interval calculated for the dimension d

(using ‘P’ for plausibility, ‘A’ for adequacy, and ‘S’ for
success).

Wdi: represents the weight of the feature i for the dimension d.
Fdi: represents the fuzzy interval that has been assigned to the

feature i for the dimension d.
nd: represents quantity of features associated to the dimension d.

2
4

4

1== i
idI

dV

where:
Vd: represents the numeric value calculated for the dimension d.
Idi: represents the value of the position i of the fuzzy interval

calculated for the dimension d .

3

22
688 SVAVPV

OV
⋅+⋅+⋅

=

where:
OV: represents the overall project feasibility value.
VP: represents the value calculated for dimension plausibility.
VA: represents the value calculated for dimension adequacy.
VS: represents el value calculated for dimension success.

86

Step 4: Calculating the overall project feasibility.
The numerical values calculated in the previous step for each
dimension (Vd) are combined by using a weighted arithmetic
mean (Formula #3 of Table II) obtaining the overall project
feasibility value (OV).
Step 5: Interpreting the results.
Finally, the numeric values for each dimension and the overall
project feasibility value (already calculated in steps 3 and 4
respectively) are analyzed. As a way to interpret the results of
the feasibility of each dimension, it is recommended to plot the
corresponding membership function of the obtained fuzzy
interval (Id). The feasibility of a dimension can be considered
as accepted if it exceeds the range of 'regular' value (that has
been shown in Figure 1). Examining the numeric value of the
dimension is another way to do it. If the dimension value (Vd)
is greater than 5, the dimension can be considered as accepted.
On the other hand, for analyzing the feasibility of the project,
the following criteria can be used: whenever the three
dimensions are accepted and the overall project feasibility
(OV) is greater than 5, then the project is considered as
feasible. Otherwise, it is not feasible. In both cases, the project
weaknesses to be strengthened should be recognized by
identifying the dimensions with lower values.

IV. VALIDATION OF THE PROPOSED MODEL

In this section the validation of the model proposed in
Section III is performed using the data of 25 collected
information mining projects. The first twenty-two projects (i.e.
P1 to P22) have been satisfactory finished (with some minor
problems) but the last three (i.e. P23, P24 and P25) have been
cancelled before completion.

To perform this validation the projects values calculated by
the proposed model are compared to an appraisal provided by
researchers who can be considered experts in the domain. On
one hand, the projects have been characterized by the paper
authors using the model’s features and applying the
corresponding steps to calculate the project dimensions and the
project feasibility value. Because of the paper’s strict length,
the results of applying the model in each project cannot be
reproduced here but it can be found in [26]. A summary of
these results is included in Table III.

On the other hand, a survey has been issued to each
researcher to assess one project. The researcher had examined
the project information (including the plan, meeting notes,
status reports among other things) and indicate a value between
1 and 10 (where 1 is the lowest value and 10 the biggest) to
appraise each project dimension (i.e. plausibility, adequacy,
success). Then the global feasibility has been calculated as the
average of them. The obtained values are shown in Table IV.

As soon as the previous values has been collected, the chart
graphs of Figure 2 have been prepared to show graphically the
comparison between the values appraised by the researchers
(shown with a light gray line) and the values calculated by the
model (dark gray bar) per dimension. As it can be seen the
values are very similar but not totally equal. This can also be
noted in the boxplot graphs included in Figure 3. These graphs
reflect the behavior of the values assigned by the researchers
(locate in the left part of the graph) and the ones calculated by

the model (right part) indicating the minimum and maximum
values (thin line), standard deviation range (thick line) and
average value (marker).

TABLE III. PROJECT VALUES CALCULATED BY THE PROPOSED MODEL.

Value of

Plausibility
(VP)

Value of
Adequacy

(VA)

Value of
Success

(VS)

Overall Project
Feasibility

 (OV)
P1 7.20 6.11 5.25 6.27
P2 6.87 5.07 5.25 5.77
P3 5.90 5.67 5.31 5.65
P4 5.12 6.95 4.12 5.51
P5 5.12 7.82 6.81 6.56
P6 5.45 5.61 5.25 5.45
P7 5.45 5.56 5.42 5.48
P8 6.45 5.80 5.18 5.87
P9 7.20 5.61 5.57 6.18
P10 5.85 5.34 5.57 5.59
P11 6.22 6.56 5.42 6.14
P12 7.67 7.35 6.45 7.22
P13 5.93 5.09 7.05 5.93
P14 6.20 6.59 5.69 6.20
P15 8.72 6.89 7.66 7.77
P16 6.45 6.43 5.64 6.22
P17 6.14 5.83 5.42 5.83
P18 6.00 5.31 5.42 5.59
P19 7.01 6.89 5.58 6.58
P20 8.24 6.75 5.52 6.96
P21 8.05 6.45 5.25 6.70
P22 6.45 5.81 6.54 6.24
P23 4.66 5.34 3.25 4.52
P24 4.66 3.46 4.21 4.10
P25 4.63 2.81 3.01 3.52

TABLE IV. PROJECT APPRAISAL PROVIDED BY RESEARCHERS.

Plausibility
Value

Adequacy
Value Success Value Global Feasibility

Value

P1 8.00 7.00 4.00 6.33
P2 7.00 6.00 5.00 6.00
P3 8.00 5.00 6.00 6.33
P4 6.00 6.00 4.00 5.33
P5 6.00 8.00 7.00 7.00
P6 6.00 5.00 5.00 5.33
P7 5.00 5.00 5.00 5.00
P8 6.00 5.00 6.00 5.67
P9 7.00 6.00 6.00 6.33
P10 6.00 5.00 6.00 5.67
P11 8.00 5.00 6.00 6.33
P12 7.00 8.00 7.00 7.33
P13 7.00 5.00 6.00 6.00
P14 7.00 7.00 6.00 6.67
P15 9.00 7.00 8.00 8.00
P16 7.00 6.00 5.00 6.00
P17 6.00 5.00 5.00 5.33
P18 5.00 5.00 6.00 5.33
P19 8.00 7.00 7.00 7.33
P20 9.00 7.00 5.00 7.00
P21 8.00 6.00 5.00 6.33
P22 7.00 6.00 6.00 6.33
P23 3.00 4.00 3.00 3.33
P24 5.00 3.00 2.00 3.33
P25 4.00 2.00 1.00 2.33

87

Figure 2. Comparison graph for each dimension

Plausibility Adequacy

Success Overall Feasibility

Figure 3. Boxplot graph for each dimension

As seen in the boxplot graphs of Figure 3, the model tends
to be more conservative because the total range is shorter than
the one assigned (particularly for the minimum values). But the
standard deviation range and average values are almost the
same (the bigger difference is lower than 0.30 for plausibility).
Thus from this preliminary analysis it can be said that the
model seems to be valid.

In order to assess the model, the Wilcoxon signed-rank test
is applied [27]. This non-parametric statistical test allows to
compare two related samples and define whether their
population means differ (i.e. it is a paired difference test). It is
an alternative to the paired Student's t-test when the population
cannot be assumed to be normally distributed but there is a
symmetric distribution of the differences around the median. In
this test, each project dimension is handled independently. This
means that for each dimension the values provided by the
researchers are tested against the calculated by the model. The
used null and alternative hypotheses are:

H0: the valued assigned by the researchers and the values
calculated by the model for each dimension have a median
difference of zero (in other words, there are no meaningful
differences between the researchers and the model values and
they can be considered equivalent)

H1: the median difference is not zero (i.e. the researchers and the
model values are not equivalent)

The sums of signed-ranks generated by the application of
the Wilcoxon test are shown in Table V for each dimension
(where W+ is the sum of all positive ranks and W- is the sum of
all negative ranks). All the auxiliary tables used in this test are
available in [26].

TABLE V. RESULTS OF WILCOXON SIGNED-RANK TEST

Dimension Sum Ranks+

(W+)
Sum Ranks –

(W+)
Quantity of

non-zero pairs

Plausibility 97 228 25

Adequacy 227 98 25

Success 175 150 25

Overall Feasibility 181 144 25

The null hypotheses (H0) is accepted or rejected based on
comparison of the minimum sum of ranks (W) and a critical
value extracted from the statistical reference table
corresponding to the quantity of non-zero pairs and a level of
significance. If W is lower than or equal to the critical value
then the null hypotheses can be rejected (so in this case, it
means that the model is not equivalent to the assessment of the
researcher’s appraisal). Otherwise the null hypotheses can be
considered as valid (and, in this case, the model can be
considered as equivalent). For all dimensions, there are not any
zero-value pair, so the total of pairs is 25 (n=25). As a 0.01
level of significance is selected, the critical value is equal to 68.
This value is then compared to the minimum sum of ranks for
each dimension:
• For Plausibility, the minimum sum of ranks (W) is equal

to 97 because W+ is lower than W-. As 97 is bigger than
68, the null hypotheses is not rejected and then it can be
said that there is no meaningful differences between the

Plausibility

Adequacy

Success

Overall Feasibility

88

researchers and the model plausibility values and they can
be considered equivalent.

• For Adequacy, the minimum value is of W- = 98 which is
also bigger than 68. This means that H0 is not rejected and
the model adequacy values are also valid.

• For Success happens something similar: W = W- = 150 is
also bigger than 68. This means that the success values are
also significant.

• Finally, the Project Overall Feasibility values calculated
by the model value can also be considered equivalent
because W = W- = 144 > 68.

Therefore it is confirmed that the proposed model has
calculated values equivalent to the appraisal performed by the
experts.

V. CONCLUSIONS

Information Mining projects are a special type of Software
Engineering projects with the objective of extracting non-trivial
knowledge from available data repositories. Conducted studies
for these projects have detected that not all projects are
successfully completed, ending most in failure.

 This paper has the objective of proposing an ad-hoc model
to be used at the beginning of Information Mining project in
order to analyze its feasibility. Thirteen projects features (based
on the project conditions) are defined and utilized in a
procedure to calculate the project feasibility with three
dimensions: plausibility, adequacy and success. As it is
difficult to assign the features values at the beginning of the
project, the proposed procedure considers using fuzzy intervals
to calculate the project overall feasibility.

The proposed model has been validated using the
information of 25 projects which have been appraised by expert
researchers. A preliminary statistical comparison and the
Wilcoxon signed-rank test have been applied. As a result it is
found that the proposed model can estimate correctly the
plausibility, adequacy, success and overall feasibility of the
project in the initial steps.

ACKNOWLEDGEMENTS

The research reported in this paper has been partially
granted by Research Projects 33A105, 33B102 and 33A167
within National University of Lanus, Research Project 40B133
within National University of Rio Negro, and Research Project
EIUTIBA11211 within UTN at Buenos Aires.

REFERENCES

[1] J. Schiefer, J. Jeng, S. Kapoor and P. Chowdhary, “Process Information
Factory: A Data Management Approach for Enhancing Business Process
Intelligence”, Proceedings IEEE International Conference on E-
Commerce Technology, pp. 162-169, 2004.

[2] R. García-Martínez, P. Britos, P. Pesado, R. Bertone, F. Pollo-Cattaneo,
D. Rodríguez, P. Pytel and J. Vanrell, “Towards an Information Mining
Engineering”, Software Engineering, Methods, Modeling and Teaching,
Sello Editorial Universidad de Medellín, pp. 83-99, 2011, ISBN 978-
958-8692-32-6.

[3] R. Garcia-Martinez, P. Britos, F. Pollo-Cattaneo, D. Rodriguez and P.
Pytel, “Information Mining Processes Based on Intelligent Systems”,
Proceedings of II International Congress on Computer Science and

Informatics (INFONOR-CHILE 2011), pp. 87-94, 2011, ISBN 978-956-
7701-03-2.

[4] P. Chapman, J. Clinton, R. Keber, T. Khabaza, T. Reinartz, C. Shearer
and R. Wirth, “CRISP-DM 1.0 Step by step BI guide”, Edited by SPSS,
2000. http://tinyurl.com/crispdm

[5] SAS. “SAS Enterprise Miner: SEMMA”, 2008.
http://tinyurl.com/semmaSAS

[6] D. Pyle, “Business Modeling and Business intelligence”, Morgan
Kaufmann, 2003.

[7] J. Vanrell, R. Bertone, R. García-Martínez, “Un Modelo de Proceso de
Operación para Proyectos de Explotación de Información”, Proceedings
Latin American Congress on Requirements Engineering and Software
Testing, pp. 46-52, 2012, ISBN 978-958-46-0577-1.

[8] L.J. May, “Major causes of software project failures”, CrossTalk: The
Journal of Defense Software Engineering, 11(6), pp. 9-12, 1998.

[9] R.N. Charette, “Why software fails”, Spectrum, IEEE, 42(9), pp. 42-49,
2005.

[10] H.A.Edelstein and H.C. Edelstein, “Building, Using, and Managing the
Data Warehouse”, Data Warehousing Institute, Prentice-Hall PTR,
EnglewoodCliffs (NJ), 1997.

[11] M. Strand, “The Business Value of Data Warehouses - Opportunities,
Pitfalls and Future Directions”. Ph.D. Thesis, Department of Computer
Science, University of Skovde, 2000.

[12] U.M. Fayyad, “Tutorial report”. Summer school of DM. Monash
University (Australia), 2000.

[13] J.E. Gondar, “Metodología del Data Mining”. Number 84-96272-21-4.
Data Mining Institute S.L., 2005.

[14] R. Pressman, “Software Engineering: A Practitioner's Approach”,
Editorial Mc Graw Hill, 2004.

[15] R. García Martínez and P. Britos, “Ingeniería de Sistemas Expertos”.
Editorial Nueva Librería, 2004, ISBN 987-1104-15-4.

[16] A. Gómez, N. Juristo, C. Montes and J. Pazos, “Ingeniería del
Conocimiento”, Centro de Estudios Ramón Areces. S.A. (Madrid), 1997.

[17] J. Sim “Critical success factors in data mining projects”. Ph.D. Thesis,
University of North Texas, 2003.

[18] H.R. Nemati and C.D. Barko, “Key factors for achieving organizational
data-mining success”. Industrial Management & Data Systems, 103(4),
pp. 282-292, 2003, doi:10.1108/02635570310470692.

[19] T.H. Davenport, “Make Better Decisions”, Harvard Business Review,
(November), pp. 117-123, 2009.

[20] U.Bolea, J. Jakli b, G. Papac and J. Žabkard, “Critical Success Factors
of Data Mining in Organizations”, Ljubljana, 2011.

[21] A. Nadali, E.N. Kakhky and H.E. Nosratabadi, “Evaluating the success
level of data mining projects based on CRISP-DM methodology by a
Fuzzy expert system”, Electronics Computer Technology (ICECT), 3rd
International Conference on Kanyakumari, Vol. 6, pp. 161-165, IEEE,
2011, doi:10.1109/ICECTECH.2011.5942073.

[22] G. Nie, L. Zhang, Y. Liu, X. Zheng and Y. Shi, “Decision analysis of
data mining project based on Bayesian risk”, Expert Systems with
Applications, 36(3), pp. 4589-4594, 2009.

[23] L.L. Pipino, Y.W. Lee and R.Y. Wang, “Data quality assessment”,
Communications of the ACM, 45(4), pp. 211-218, 2002.

[24] N. Lavravc, H. Motoda, T. Fawcett, R. Holte, P. Langley and P.
Adriaans, “Introduction: Lessons learned from data mining applications
and collaborative problem solving”, Machine learning, vol. 57, n.º 1, pp.
13-34, 2004.

[25] J.S.R. Jang, “Fuzzy inference systems”, Upper Saddle River, NJ:
Prentice-Hall, 1997.

[26] P. Pytel, “Datos Recopilados para Validación del Modelo de Viabilidad
de Proyectos de Explotación de Información”, Reporte Técnico GISI-
TD-2011-01-RT-2012-02, Grupo de Investigación en Sistemas
Información. Departamento de Desarrollo Productivo y Tecnológico,
Universidad Nacional de Lanús (Argentina), 2012.
http://tinyurl.com/valViab

[27] F. Wilcoxon, “Individual Comparisons by Ranking Methods”,
Biometrics 1, 80-83, 1945.

89

Decision Support for Re-planning of Software
Product Releases

S. M. Didar-Al-Alam

Dept. of Computer Science
University of Calgary,

Calgary, Alberta, Canada
smdalam@ucalgary.ca

Guenther Ruhe
Dept. of Computer Science

University of Calgary,
Calgary, Alberta, Canada

ruhe@ucalgary.ca

Dietmar Pfahl
Institute of Computer Science

University of Tartu,
Tartu, Estonia

dietmar.pfahl@ut.ee

Abstract— In presence of ongoing change, re-planning of
software release plans aims at making the plan a better fit with
changing reality. Re-planning is potentially as complex as the
original planning. Decisions to be made in this context are about
when the re-planning should happen and which features should
potentially be eliminated, added or replaced. This paper presents
a decision support approach which combines the strengths of
analytical methods with the intuition of human experts. Inspired
by the idea of software process control, the approach assumes
continuous monitoring of the amount of functionality
implemented, the consumed effort, and the number of defects
detected and corrected. The actual performance is compared
with the planned one. In case of above-threshold deviation, a re-
planning analysis is initiated for how to react in a best way on the
changed situation.

The decision support framework has been instantiated by
existing methods for generating optimized roadmaps and their
operationalization. The result is an operational method called
Dyna-H2W. The method has been applied in a case study
investigating the planning and re-planning for 50 features of a
commercial word-processing software product. The results
initially confirm the hypothesis that Dyna-H2W helps to create
more valuable products.

Keywords-component; Software release planning, re-planning
strategies, decision support, operational planning, strategic
planning, case study.

I. INTRODUCTION
Release planning is the process of assigning features to

different releases considering technological and business
objectives and constraints. Re-planning is the process of
modifying an existing release plan to better adjust the existing
plan towards changing factors. In software development,
nothing is as common as change. Re-planning is required to
accommodate various types of changes in software
development.

Re-planning is potentially as complex as the original
planning which is considered a wicked problem [1]. Decisions
to be made in this context are about when the re-planning
should happen, how to perform the re-planning, and which
features should potentially be eliminated, added or replaced by
others. These decisions are potentially impacted by multiple
factors. But neither human expertise nor model-based
analytical methods in isolation are expected to be able to

address the wicked nature and complexity of the problem. The
paradigm of software engineering decision support is applied.
It has been proven successful in situations when human
decisions have to be made in complex, uncertain and/or
dynamic environments.

Inspired by the idea of Statistical Process Control [2], we
monitor the process to detect an ‘out-of-control’ situation and
analyze re-planning actions. To support the actual re-planning
decision to be made by the product or project manager, we
propose a method called Dyna-H2W which utilizes
optimization-based planning methods for generating optimized
roadmaps and their operationalization. The method gives an
answer to the When to re-plan question and suggests How and
What to re-plan actions. Besides presenting design and giving
justification of the new method, we instantiate the method
with an illustrative case study demonstrating how Dyna-H2W
detects an out-of-control situation requiring re-planning along
with suggesting actions for improved re-planning decisions.

This paper is organized as follows. Section II presents
related work. Section III discusses the background of this
research. Section IV formulates the research questions and the
solution approach. In Section V, the results of a case study are
reported. Section VI presents a discussion of results and
threats to the validity. Finally, Section VII presents
conclusions along with plans for future work.

II. RELATED WORK AND RESEARCH QUESTIONS

A. Related Work
Release planning methods typically do not consider re-

planning [3]. Thus, the standard way to handle feature change
requests is to freeze change requests for one release period and
consider them again at the beginning of the next release period
[4]. However, McConnell identified nine deadly sins related to
project planning [5]. These sins point towards the importance
of initiating re-planning at appropriate time.

In the context of release planning, two major categories of
re-planning methods exist, i.e., static and dynamic. While
static re-planning considers re-planning in pre-defined
intervals, e.g., when a new iteration starts, dynamic re-
planning continuously monitors feature change requests and
project development, and triggers re-planning only when
certain conditions are met. While the when to re-plan?-

90

question has a predetermined value in static re-planning, it
changes dynamically in dynamic re-planning.

AlBourae et al. proposed a static lightweight re-planning
method [6] which compares old features with new incoming
features using AHP (Analytical Hierarchy Process), and then
selects the most promising features using a greedy approach.
DynaReP [7] offers a re-planning solution at operational level
through staff re-allocation.

The H2W-pred method [8] is the predecessor of the
proposed method. The emphasis of H2W-pred is on the
application of predictive models. H2W-pred is a static re-
planning method exclusively considering effort and quality
factors. In contrast to all the formerly mentioned re-planning
methods, Dyna-H2W facilitates dynamic re-planning and
utilizes multiple factors to initiate and control re-planning.
While based on computationally efficient optimization
components, the results are offered as decision support, thus
guiding the decision maker and acknowledging that additional
aspects and concerns can influence the actual decision to be
made.

B. Research Questions
In this paper, we address three research questions (RQs).

Their respective answers constitute the key structure of the
proposed new decision support method Dyna-H2W:

 RQ1: How to provide decision support on detecting the
appropriate time to initiate re-planning process?

 RQ2: How to provide decision support on performing
dynamic re-planning in consideration of multiple
factors?

 RQ3: How to integrate predictive models into the
decision support provided under RQ1 and RQ2?

III. BACKGROUND METHODOLOGY
Our proposed decision support method for performing re-

planning of software product releases is based on the idea of
performing process control in order to trigger the analysis of
re-planning scenarios. In this section, we give a short
description of the key underlying methodological components.

A. Strategic Release Planning
Strategic release planning (optimized feature selection) is

the problem to decide about which set of features should be
implemented in which of the upcoming release. We consider a
set F of features. F consists of n features abbreviated as f(1),
…, f(n). The strategic release planning process defines the
assignment of features to at most one of the k (≥ 1) upcoming
releases.

Definition 1: A (strategic) release plan defines the
assignment of features to releases. It can be expressed by a
vector x = (x(1) …x(n)). In its i-th component, the vector
specifies for feature f(i) to which release it is assigned, with

x(i) = k if feature f(i) is offered in release k (1)

x(i) = 0 otherwise (2)

In our decision support approach, we utilize an existing
planning approach called EVOLVE II [9] and its
implementation in a proprietary system called
ReleasePlanner™ [10].

B. Operational Release Planning
Once the assignment of features to releases has been

defined operational release planning can be done. Each feature
is considered the result of performing a sequence of tasks. A
specified pool of human resources, i.e., the developers, is
available to perform different tasks. Solving the operational
release planning problem means to assign developers to the
tasks to be performed and to determine the appropriate
scheduling of tasks in a way to minimize release time.

Definition 2: For a given (strategic) plan xi, and for a given
pool of developers, an (operational) release plan yi(xi) defines
the order of implementation of all tasks of the features in the
subset F1 of features of F assigned to the first release (k=1). In
addition, it defines the assignment of developers to perform
the implementation tasks creating the feature.

In instantiating Dyna-H2W, we utilize an existing planning
approach called RASORP [11] and its implementation in
ReleasePlanner™ [10].

C. Prediction Models
For applying the notion of process control, we are applying

predictive models for both effort and number of defects. There
is a variety of methods available for this purpose [12]. In terms
of effort prediction, we have applied effort prediction method
AQUA+ [13] and its customization towards release planning as
described in [9].

Different methods are available for defect or fault
prediction [14]. For defect prediction, we applied the case
based reasoning approach presented in [15] and which has been
empirically evaluated comprehensively.

Definition 3: For the implementation of a (operational)
plan yi(xi), effortpred(t,ri,yi) and effortact(t,ri,,yi) refer to the
predicted (most recently) respectively actual effort
consumption for resource ri (i = 1... m; m being the number of
different resource types in consideration) at time t.

Definition 4: For the implementation of a (operational)
plan yi(xi), defectspred(t,yi) and defectsact(t,yi) refer to the
predicted respectively actual number of detected and corrected
defects at time t.

D. Re-Planning
Re-planning incorporates elements of both strategic and

operational release planning. After the application of the
strategic planning, a set of features is defined for development
in the upcoming release. In the course of their development,
different types of changes may occur. The question becomes to
revise the existing plan in the best possible way to
accommodate these changes.

91

IV. DECISION SUPPORT METHOD DYNA-H2W

A. Overview
The key structure of the proposed decision support method

is illustrated in Fig. 1. Further details of the method are
presented in the subsequent sections. A case study utilizing the
method is presented in Section V.

The human experts in charge of making re-planning
decisions are supported by continuously monitoring actual plan
implementation. The plan and potential re-plans are generated
from two optimization components. The project data base is
continuously updated. New features arriving, changed actual
efforts and deviations in the predicted quality are
accommodated that way.

Figure 1. Workflow of Decision Support System Dyna H2W.

B. Plan Generation
Selection (and scheduling) of features has been formerly

modeled as an optimization problem [9] The objective of this
planning is to maximize a function representing the overall

stakeholder satisfaction in consideration of existing resource,
budget, time and technological constraints. As a result of this
process, a set of five optimized alternative solutions is
proposed. Out of the five optimized and maximally diversified
solutions, human experts can select the one that in a best
possible way addresses also their implicit concerns. The
situation is illustrated in Figure 1 (upper part in the lower
method component) where five alternatives are listed on the
right-hand side as columns in the screenshot. The different
numbers correspond to the assignments of the features
(corresponding to rows) to releases 1, 2 or being postponed.

Once the feature set for the upcoming release are decided,
operational planning of its implementation is initiated. Again,
this process is formulated as an optimization process. As a
result, an operational plan visualized by a Gantt chart is
generated.

In case of any reason to consider re-planning (see Sections
IV.E and IV.F for further details), both optimization steps are
re-executed with updated data reflecting the changes in the
actual project execution.

C. Plan Implementation & Monitoring
Three process parameters Δ1(t), Δ2 (t) and Δ3(t) (further

explained below) are continuously monitored. These
parameters refer to the deviation between actual process and
predicted process performance related to amount of
functionality (Δ1(t)), effort consumption (Δ2(t)) and defects
detected and fixed (Δ3(t)), respectively. As soon as one of the
factors indicates an out-of-control situation (in Figure 1
illustrated at t = t* for Δ3(t)), running re-planning analysis is
initiated. As a result, and finally depending on the human
expert, decisions are made whether things are changes and if
yes, which ones. Details of the monitoring process are
discussed next.

D. Out-of-control Situation
One of our major contributions is utilizing multiple factors

in alarming out-of-control situation and deciding “When to re-
plan”. ‘Out-of-control’ situations are considered those
situations that fall outside the expected/planned values (after
considering common variation) and indicate existence of an
assignable cause of variation. Three factors used in the
proposed framework are described below.

1) Change request in functionality
For a given time interval [0, T] corresponding to the release

period in consideration, the system is monitored for the relative
amount of feature change requests. h(t) represents the
percentage of features that are allowed to be replaced by new
features at time t (0 < t < T). Openness to change is defined in
Eq. 3, with α used as an adjustment parameter [9].

At each point in time t, the percentage of new features
relative to the number of existing ones is expressed by function
g(t). Fcurr denotes the current set of features selected for the first
release. Fnew(t) denotes the set of new features having arrived at
time t (0 < t < T). In Eq. 4, card(F) denotes the number of
elements (cardinality) of set F.

Plan implementation and monitoring

Human experts

Re-planning
?

Continuously
updated

project data

Optimized feature selection

Optimized operational plan

92

h(t) = (1- t/T) α with 0 < α < 1 (3)

g(t) = card(Fnew(t)) / [card(Fnew(t)) + card(Fcurr)] (4)

Re-planning criterion RC-1: Out-of-control situation is
triggered at time t = t*, if for the percentage of new features
g(t*) becomes greater than the openness to change h(t*). For all
such notifications experts will decide if re-planning is
necessary.

∆1(t*) = g(t*) – h(t*) > 0 (= β1) (5)

2) Effort
The operational plan y1(x1) represents a schedule and an

assignment to tasks for the development process of the current
release period [0, T]. For each resource type ri, a continuous
monitoring process checks whether the absolute difference
between actual development effortact(t,ri) and predicted
development effort effortpred(t,ri) exceeds tolerance level β2.

Re-planning criterion RC-2: Out-of-control situation is
triggered at time t = t* if

∆2(t*) = abs(effortpred(t,ri) - effortact(t, ri)) > β2 (6)

3) Quality
Similar to effort, process monitoring is done related to the

number of defects detected and fixed. The assumption here is
that a (reliable) initial defect estimation measure exists and that
defect detection and correction can be monitored in a
continuous way.

Re-planning criterion RC-3: Out-of-control situation is
triggered at time t = t* if

∆3(t*) = abs(defectspred (t) - defectsact (t)) > β3 (7)

E. Re-planning
Once conducting re-planning, the final decision about

whether a re-plan is improving the former plan is left for the
human expert decision. Moreover, the human expert also has
the flexibility to choose re-plan tools/techniques. This leaves
three categories of choices with different intensity open to the
expert i.e. (a) Manual re-plan, (b) Lightweight re-plan [6] (c)
Optimization-based re-plan (with analytical planning tools like
the one used in Dyna-H2W).

Project data and repositories are updated continuously.
Human experts are permitted to re-adjust planning goals and
acceptance thresholds β1, β2, and β3. Once re-planning has
been performed, the whole process is applied again with the
potential for another re-plan.

F. Detailed Process Steps
Finally, for detailed description of our method, and based

on all notations introduced, we present the individual steps of
how to proceed in Dyna-H2W. The assumptions are the same
as for the overview description presented in Section IV.A. The
whole process is subdivided into 10 steps as described below:

METHOD DYNA-H2W

Step 1: Start (t=0, i=1)
Step 2: Optimized feature selection (strategic planning)
Step 3: Selection of the most appropriate plan xi (out of a set
of optimized and diversified plans generated in Step 2)
Step 4: From the selected plan xi, generate optimized
operational plan yi(xi) for the upcoming release.
Step 5: During implementation at any time t, monitor in
respect of process parameters Δ1(t), Δ2 (t) and Δ3(t)
Step 6: As long as t < T and one of the re-planning criteria
RC-1, RC-2 or RC-3 is fulfilled, then re-planning analysis is
triggered. Go To Step 7. Otherwise Go To Step 10.
Step 7: Update project data in terms of features, actual effort
consumption effortact (t, ri, yi) and actual number of defects
defectsact(t,yi) detected & fixed.
Step 8: Apply predictive models for determining effortpred(t, ri,
yi) and defectspred(t,yi)
Step 9: i = i + 1 and Go To Step 2
Step 10: Stop

Expert involvement is of key relevance for performing the
above process steps. In particular, they are involved in the
decisions made in steps 3, 4, 6, 7, and 8.

V. CASE STUDY

A. Case Study Set-up
For illustration and initial evaluation purposes, a case study

is described. For that, a real world text editor software
development project is considered having 50 candidate
features. The planning horizon is two releases. Each feature to
be implemented is considered being the result of performing a
set of related tasks. These tasks are devoted to:

 Requirements elicitation

 Design

 Application development

 Third party development and

 Quality assurance.

Ten developers were supposed working on this project. All
the developers were characterized by a competence profile.
These profiles reflect the degree of experience and expertise to
perform the different candidate tasks. The estimated level of
productivity of a developer is determined based on existing
work experience. One way to support this evaluation process is
to apply pair-wise comparison between developers for each
competence area as outlined by the Analytic Hierarchy Process
[16]. The detailed project data are available online at [17].

B. Re-planning Steps
Initially, a strategic plan x1 is considered with a

corresponding operational plan y1(x1). EVOLVE II generates
five optimized and diversified alternative plans (Step 2).
Human experts choose plan x1 suggesting the implementation

93

of 27 features in the upcoming release (Step 3). The fixed
release length is T = 35 days.

Six new features are assumed to arrive randomly within this
time period. From the selected plan x1, an optimized
operational plan y1(x1) is generated for the upcoming release
with aid of RASORP tool (Step 4). Effort distribution follows
the optimized operational plan. For sake of simplicity, quality
is reduced to defects. We further assume that the number of
defects detected and fixed is directly proportional to the effort
spent on quality assurance.

To control the conformance to the planned process, we
continuously monitor re-planning criteria RC-1 to RC-3 during
the release plan implementation process (Step 5). Tolerance
levels are context specific and defined by domain expert as β1 =
0, β2 = 0.4 and β3 = 20. In addition, for criterion RC-1, α = 0.2
is defined by domain expert. It means according to Eq. 3
initially (t=0) openness to change is 0.2 (20% features could
partially be replaced by new ones). However, with time this
percentage will decrease.

In the course of re-planning, data related to the set of
features might change (e. g., effort). In addition, the feature set
itself might change. As a notational convention, D0 denotes the
project data for (i) effort consumed, (ii) defects detected &
fixed, and (iii) accumulated feature value, as it was defined at
time t = 0. Whenever a re-planning takes place (Step 6), then
Dt* denotes the set of (updated) project data at time t = t* (Step
7 resp. 8). Human experts play the key role here. With direct
involvement of human expert in Steps 3, 4, 6, 7, and 8, the final
decision is completely made by them.

C. Monitoring Development and Triggering Re-Plan
The details of running through the different re-planning

steps are available from [17]. In what follows, we just report
the key results. We consider RC-2 for each different resource
type individually. At time t = 11, RC-2 related to Requirements
Elicitation is violated (Step 6). This represents the first out-of-
control situation.

Even though three new features arrived, the openness to
change is too small as to violate RC-1. With the updated
project data (Step 7, 8), revised strategic and operational plans
x2 (Step 3) and y2(x2) (Step 4) are determined from using the
respective optimization components of ReleasePlanner™.

At point in time t = 22, re-planning criterion RC-3 is
violated. This results in another re-planning iteration. Strategic
and operational plans x3 and y3(x3) are generated, respectively.
At point in time t = 29, RC-3 is again violated. However, due
to unavailability of sufficient resources, the human expert
preferred to continue with current plan instead of re-planning.

D. Case Study Results
To evaluate the usefulness of the proposed method, we

have performed a comparative analysis between the
applications of Dyna-H2W against two other re-planning
strategies being

i. dynamic re-planning with single factor consideration,
and

ii. static re-planning with single factor consideration.

Considering no re-planning as the baseline, relative
improvements of other strategies are presented in Figure 2. The
comparison is in terms of the total release value achieved under
the different re-planning strategies. Dyna-H2W achieved the
maximum overall release (satisfaction) value. On day 22,
substantial decrease in Dyna-H2W value compared to other
strategies is observed. This is because some features completed
their implementation with lower quality than the target value at
this point in time. Although strategies (i) and (ii) considered
these features as completed, Dyna-H2W could not do so
because of the quality target being not fulfilled. Thus it shows a
lower value at day 22, but by the end of the project Dyna-H2W
achieved the maximum release (satisfaction) value along with
higher quality compared to other strategies.

As can be seen from Table 1, Dyna-H2W was able to
utilize the optimized resource allocation to detect more defects
than all the other re-planning strategies (including baseline) as
well.

TABLE I. COMPARISON OF RE-PLANNING STRATEGIES IN
TERMS OF QUALITY

Number of defects detected and fixed
Baseline (No re-
planning)

Dynamic re-planning
with single factor

Static re-planning
with single factor

Dyna-
H2W

412 407 399 422

Figure 2. Comparison of three re-planning strategies in terms of value.

VI. DISCUSSION & THREATS TO VALIDITY
Our case study served as a proof-of-concept for the

proposed approach. While running the case study, we have
made some observations.

 We observed deviation in quality results in minimizing
the overall release value. Features demand additional
quality assurance resource to minimize quality
deviation. Thus quality assurance becomes a bottleneck
of the project and results in low release value.

 In such trade-off human expert needs to achieve
balance between value and quality of the release.

 Additionally we witnessed dependency among multiple
monitoring factors. Re-planning initiated by either one
of the factors brings all deviations back to normal.

0
20
40
60
80

100
120
140

11 22 29 35

Sa
tis

fa
ct

io
n

va
lu

e
(%

)

Time

Dynamic single factor Static single factor Dyna H2W

94

Thus it impacts the regular growth of deviation for all
process parameters.

 Finally, we observe that Dyna-H2W achieves the best
overall release (satisfaction) value compared to other
strategies.

 From Table I, we observe Dyna-H2W performs best in
achieving the quality target as well. Dyna-H2W detects
& fixed highest amount of defects compared to all
other strategies.

Case study results visibly illustrate achievements of our
framework in terms of both value and quality. We cannot claim
external validity of our results due to the simplifications made
about the underlying assumptions. Main limitations are:

 We assumed that just quality assurance (QA) effort
would be responsible for defect detection and
debugging. In reality, additional effort might be
required.

 The accuracy of Dyna-H2W depends on the accuracy
of the prediction data and experts knowledge. While
the effort, value and strategic plan data were taken
from a real world data set, the QA data had to be
synthetically generated.

 The tolerance levels of the re-planning criteria are
considered constant for the release period. In a realistic
situation, many reasons may require experts to re-
adjust the tolerance levels.

VII. CONCLUSIONS AND OUTLOOK ON FUTURE RESEARCH
Accommodating different types of change is a vital issue in

release planning. Instead of handling the related decisions in an
ad hoc manner, we propose a new and systematic framework
that integrates both human intuition and analytical methods to
provide decision support. Proposed method ensures utilizing a
perfect blend of human knowledge and software engineering
tools. Initially, it has shown success in detecting appropriate
timestamps when out-of-control situation occurred and re-
planning decisions. A more comprehensive evaluation of the
approach is still pending. In particular, we are planning to
evaluate the approach under industry settings.

Another direction of future research is utilizing different
combinations of factors to initiate out-of-control situations. It
will allow experts to get the flexibility to choose factors of his
choice & need from a set of available factors. Altering the
definitions of the re-planning criteria, varying the threshold
parameters used for initiating re-planning, and discovering the
best combination of factors for utilizing proposed method are
other areas of future research.

False alarms in monitoring process are still handled
manually by human expert. Providing a decision support to
recognize false alarms would be another future research.
Finally, the overall effort of the re-planning needs to be
improved. Currently, switching between strategic and
operational planning is done manually, which is planned to be
automated in a future release of the method implementation.

ACKNOWLEDGMENT
This research was supported by an Alberta Innovates

Technology Future fellowship of the first author and the
Natural Sciences and Engineering Research Council of Canada,
NSERC Discovery Grant 250343-12 of the second author of
the paper.

REFERENCES
[1] H. Rittel and M. Webber, "Planning problems are wicked problems",

Developments in design methodology, 1984, pp 135–144.
[2] W. Florac and A. Carleton, “Measuring the software process,” Addison

Wesley, 1999.
[3] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, and M. U.

Shafique, “A systematic review on strategic release planning models,”
Information and Software Technology, vol. 52, 2010, pp. 237-248.

[4] K. E. Wiegers, “Software requirements,” Redmond, Microsoft Press,
2003.

[5] S. McConnell, "The nine deadly sins of project planning," IEEE
Software, Vol. 18, 2001, pp. 5-7.

[6] T. Al-Bourae, G. Ruhe, and M. Moussavi, “Lightweight re-planning of
software product releases,” in Proceedings IWSPM, 2006, pp. 27–34.

[7] A. Al-Emran, D. Pfahl, and G. Ruhe, “DynaReP: A discrete event
simulation model for re-planning of software releases,” Proc. ICSP 2007,
LNCS 4470, pp. 246–258.

[8] A. Al-Emran, A. Jadallah, E. Paikari, D. Pfahl, and G. Ruhe,
“Application of re-estimation in re-planning of software product
releases,” Proceedings ICSSP, 2010, pp. 260–272.

[9] G. Ruhe, “Product release planning: methods, tools and applications,”
CRC Press, 2010.

[10] https://www.expertdecisions.com/
[11] A. Ngo-The, G. Ruhe, “Optimized resource Allocation for software

release planning,” IEEE Transactions on Software Engineering, Volume
35, 2009, pp. 109-123.

[12] M. Jørgensen and M. Shepperd, "A systematic review of software
development cost estimation studies," IEEE Transactions on Software
Engineering, vol. 33, 2007, pp. 33-53.

[13] J. Li, G. Ruhe, “Analysis of attribute weighting heuristics for analogy-
based software effort estimation method AQUA+,” Empirical Software
Engineering Vol. 13, 2008, pp. 63-96.

[14] T. Khoshgoftaar and N. Seliya, “Fault prediction modeling for
software quality estimation: Comparing commonly used techniques,”
Empirical Software Engineering, Vol. 8, 2003, pp. 255–283.

[15] E. Paikari, M. M. Richter, G. Ruhe, “Defect prediction using case-based
reasoning: An attribute weighting technique based upon sensitivity
analysis in neural networks”, IJSEKE, Vol. 22, 2012, pp. 747-768.

[16] T. Saaty,“The analytic hierarchy process, planning, priority setting,
resource allocation”, McGraw-Hill, New York, 1980.

[17] https://sites.google.com/site/didar522/data-repository.

95

A Non-Intrusive Process to Software Engineering
Decision Support focused on increasing the Quality of

Software Development

Everton Gomede and Rodolfo M. Barros
Computer Science Department

State University of Londrina, UEL
Londrina, Brazil

evertongomede@gmail.com, rodolfo@uel.br

Abstract — The lack of quality in the production process of
software development isn’t attributed only to the techniques and
technologies, but also to the lack of process that management
decisions. Thus, this paper presents a process model for Software
Engineering Decision Support focused on improving the quality of
software development. Its preparation was based on areas and
expected results of the process Decision Management present in
the Reference Model for Brazilian Software Process Improvement
(MR-MPS)1. In order to contribute to its understanding and use,
it is presented a comparative study with other models present in
the literature and identifies its benefits and problems with an
application in two software development projects. The result of
this process was a 78% reduction in rework and a 22% increase
in performance of the team.

Keywords - Decision Support; Analytic Hierarchy Process;
Historical Database; Increase Quality of Software Development.

I. INTRODUCTION
During the software development lifecycle we can find a set

of decisions that should be taken in order to increase product
quality and / or respect any project restrictions imposed [1, 3, 6,
14]. Some of these restrictions can be seen in Fig. 1. But (i)
what are the decisions that must be taken throughout the
software development lifecycle? (ii) How these decisions affect
the later stages and final product quality? (iii) How to make
structured and tracked decisions throughout the software
development lifecycle? (iv) And how to make these decisions
not intrusive to the existing software development process?

Figure 1. Some restrictions that must be balanced in a project [1].

We will examine these issues in greater depth starting from
the issue (i):

A. What are the decisions that must be taken throughout the
software development lifecycle?
Consider a software development process such as Rational

Unified Process (RUP) [2] shown in Fig. 2. Several decisions
must be made along each disciplines and iterations. For
instance, on the discipline “Business Modeling” decisions as (i)
which processes are the most urgent? (ii) What processes are at
greatest risk? (iii) What are the core and support processes?
And others may emerge early in the software development
process. Its results will affect the other phases of the process
[1]. This leads us to the second issue:

B. How these decisions affect the later stages and final
product quality?
The next steps of the process will be affected since they use

up the results of previous decisions to plan their executions [1].
Regarding the quality of the final product, the result will be a
very strong relationship to the quality of the process [3]. Since
decisions were made erroneous so there is a greater probability
of final product to be a poor quality.

Figure 2. The Rational Unified Process (RUP)

C. How to make structured and tracked decisions throughout
the software development lifecycle?
In an engineering work where most decisions are

techniques [5], it should be structured and stored in a Historical
Database (HDB). The decisions created and stored in HDB can
be accessed and / or reused in the future, making the HDB in an
organizational asset [1]. Last but not least:

1 Modelo de Referência para Melhoria do Software Brasileiro (MR-MPS)

96

D. How to make these decisions not intrusive to the existing
software development process?
Despite the engineering, software projects are creative [6].

Extra bureaucracy can reduce the creativity of developers and /
or create unnecessary overhead.

Considering what was previously exposed, the aim of this
work is to present a model of process focused on the increase
of the quality of the software development process. For its
elaboration we based on the expected areas and results of the
Decision Management Process presents in the C maturity level
of MR-MPS [14]. For this we propose a non-intrusive process
to support decision making in software engineering (NIPSEDS)
using the method Analytic Hierarchy Process2 (AHP) and a
Historical Database (HDB) to address the issues A, B, C and D.

This article is divided in six elementary sections, including
this introduction. In Section 2 we presented the related work
and theory. In Section 3 we presented the process model to
Software Engineering Decision Support. Section 4 we
presented the validation of model through a case study. Section
5 we presented the results of the research. Finally, Section 6 we
presented the conclusions and suggestions for future works.

II. THEORY

A. Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) was first proposed

by Thomas L. Saaty [15] and its main characteristic is the
pairwise comparison which consists of a hierarchy of criteria
and alternatives. It is often used to analyze problems of
decision-making multi-criteria. By using AHP, the structure of
the problem must be decomposed into a hierarchy.

A hierarchy is a specific system based on the assumption
that the entities can be grouped into disjoint sets with a group
of entities which affects the other ones [15]. Pairwise
comparison is an important component of the AHP. Two
criteria are compared using a nine-point scale, where one (1)
means “equal” importance, three (3) is “low” importance, five
(5) “indicates” clearly “superior”, seven (7) is “very” important
and nine (9) denotes “extremely” important. With pair numbers
being used to indicate intermediate values, if necessary. If there
are n criteria to consider, n(n-1)/2 comparisons of pairs had to
be done. Thereafter, the reciprocal nxn matrix is constructed
and weights are then obtained [11, 12].

The consistency of pair comparison matrix needs to be
verified by means of the indexes: Consistency Index (CI) and
Consistency Rate (CR). They are defined in equation (1) and
(2) with λmax being the principal value (Eigen) and Random
Index (RI) is as shown in Table I. For consistency, CI and CR
must be less than 0.1 for the AHP analysis is considerate
acceptable [11, 12].

C.I. = (λmax – n) / (n – 1)

C.R. = C.I. / R.I.

TABLE I. RANDON INDEX

n 1 2 3 4 5 6 7 8 9 10

R.I. 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

B. Related Work
In addition to recommendations of the MR-MPS guide

[14], we found in literature some works that address issues
related to management decisions during the software
development lifecycle. In [7] the authors integrating the
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and AHP into Goal-Oriented Requirements
Engineering (GORE) in a Decision Support System (DSS) to
produce a metric of choice among the best alternatives.
However, this paper addresses only the initial phase of the
project. In [8] the authors use a group decision technique only
to the requirements phase. In [9] the authors use data mining
techniques to software engineering decisions. This adds an
overhead to the process. In [10] the authors document the
decisions made throughout the software development lifecycle
but without the concern in structuring decisions. This work
presents a historical database. Table II compares related work
with this model process.

TABLE II. RELATED WORK COMPARED WITH THIS MODEL PROCESS

Criteria
Related Work

[7] [8] [9] [10] This

Structured Decision

Decision Traced

During the Lifecycle

Historical Database

Non-Intrusive Process

 Strongly cares to partially care to and without symbol don´t attends. These criteria support areas
and expected results (from GDE1 to GDE7) of Decision Management Process of MR-MPS [14].

C. Reference Model for the Brazilian Software Improvement
Process3
Developed in 2003 by the SOFTEX4 as part of the MPS.Br5

program, the MR-MPS consists of a reference model with the
definition of prerequisites for the improvement of the quality of
the software process. Besides it, the program is composed by
an Assessment Method (MA-MPS) and a Business Model
(MN-MPS), each one of them described by guides and/or
document models.

In accordance with Capability Maturity Model Integration
for Development (CMMI-DEV) and following the described
headlines in its main program, this model was divided into
seven maturity levels. These levels define steps to
improvement processes in the organization [14]. Moreover, this
division aims to enable its implementation and assessment in
micro, small and medium enterprises.

These maturity levels are composed by processes which
define what the expected results are, and capabilities which
express its institutionalization level and implementation in the
organization. Thus, it is noteworthy that the development

2 Implemented through Expert Choice, http://expertchoice.com/
3 Modelo de Referência para Melhoria do Software Brasileiro (MR-MPS)
4 Associação para Promoção da Excelência do Software Brasileiro
5 Programa para Melhoria do Processo do Software Brasileiro (MPS.Br).

97

among these levels happens cumulatively and only when all
demands were found.

III. NON-INTRUSIVE PROCESS TO SOFTWARE ENGINEERING
DECISION SUPPORT (NIPSEDS)

To characterize the proposed process we divided it into (i)
Activities, (ii) Roles, (iii) Tools & Techniques and (iv) Inputs
and Outputs.

A. Activities
We grouped the activities of process in groups identified as

(i) Structure Decision, (ii) Make Decision (iii) Store Decision
and (iv) Publish Decision. This division aims to facilitate
understanding and enable semantics view related to the actors.
These groups are based on C level of MR-MPS [14]. Fig. 3
shows these activities.

Figure 3. Process Groups of the Non-Intrusive Process to Software
Engineering Decision Support (NIPSEDS)

This support process can be executed at any discipline or
RUP iteration (Fig. 2). RUP is a process used by public
university (Section 4) of this case study. The NIPSEDS can be
applied to any process of software development. Fig. 4 holds a
more detailed model.

Figure 4. The Non-Intrusive Process to Software Engineering Decision
Support (NIPSEDS)

B. Roles
The roles used in the process are two: (i) Project Manager

(or Scrum Master) and (ii) Decision-Makers (which can be

developers, database administrators, architects, testers, business
analysts, and others). Fig. 5 shows these roles and their
relationship with the activities.

Project Manager

Identify the purpose of the decision

Identify available alternatives

Identify the evaluation criteria

Invite the decision makers

Make the decision by the AHP method

Generate a copy of the result of the decision

Store the decision in a historical database

Publish on a website the result of decision

Notify stakeholders

Decision Maker

Figure 5. Roles of The Non-Intrusive Process to Software Engineering
Decision Support (NIPSEDS)

Note that the Project Manager participates in all process
activities. This is important to have an “Owner” of the process
being responsible for ensuring the use of it and its constant
improvement. The role of Project Manager was chosen to
represent someone with administrative and managerial
responsibilities for the project and not only with technical
responsibilities.

C. Tools & Techniques
The AHP was the technique used to structure the decision.

Further details and examples of how to use it can be seen in
[11, 12]. For the tool we used the Expert Choice. It´s
important to note that in this process is possible to use tools
and techniques adapted to the software development process
of the organization. The AHP technique comprises three
activities of the group process Structure Decision:

 Identify the purpose of the decision. This activity seeks
to identify the final goal of the decision, i.e., what we
intend to achieve. As obvious as it may seem, this is
not always trivial.

 Identify available alternatives. Identifying alternatives
consists basically of an investigation process. The
alternatives available are not always by the team
known and / or have been used in the past by the
organization. The important thing here is to research
and rank the possible options that can be used for
decision making.

 Identify the evaluation criteria. The criteria are the
attributes that the alternatives listed must be compared.
These criteria may be conflicting or mutually
exclusionary. The AHP helps prioritize these criteria
into a hierarchy [11, 12].

D. Inputs and Outputs
The process inputs are (i) the decision objective, (ii) a set of

alternatives, (iii) a set of criteria, (iv) the stakeholders and a (v)

98

method to assist in structuring the decision (in the case AHP).
The outputs are (i) the decision result and (ii) the decision
documentation, thus creating an organizational memory [1].

These inputs and outputs are important to the creation of
Historical Database (HDB). This artifact can be considered as
an organizational asset [1], since it stored the decisions made
throughout the lifecycle and to allow that future decisions are
based on a set of criteria that are always feedback. Fig. 6 shows
a HDB class diagram.

Decision

Project

CriterionParticipant

Alternative Result

0..*

1..*

1..*1..*

1..*

Figure 6. The Historical Database (HDB) class diagram

IV. VALIDATION
The research methodology used in this article was a case

study. According to Yin [13], case studies offer an empirical
research that investigates a contemporary phenomenon and
offers researchers an object of applied study in its natural
context. And, in addition, new facts and research issues about
this environment can be identified [13].

In order to work on the case study, we selected a project of
a software factory in a public university. Their teams were
composed by undergraduate and master’s students. Because of
this, the organization suffers with the seasonality issues in
periods of academic activity, lack of commitment, interest and
a low rate of productivity in its members. Another problem of
this organization is the lack of a process of preservation of
intellectual capital generated during the projects.

During two projects with 6 iterations of 15 days each, we
apply the NIPSEDS and 3 variables were collected (i) Rework
Index, (ii) Structured Decision and (iii) Performance Index. To
illustrate the NIPSEDS, one structured decision will be
presented below separated by the process groups. This decision
was performed in the second iteration of the first project and is
intended to decide which persistence framework to use.

A. Structure Decision
The outputs of these process group activities are

summarized in Fig. 7. The alternatives are (i) Entity Enterprise
Java Beans6, (ii) Hibernate7, (iii) Java Persistence API8 and (iv)
TopLink9. These are some persistence framework to java
software development. It is important to note that all decision
elements (goal, criteria and alternatives) so collected by the
team.

Figure 7. Criteria hierarchy (“Struture Decision” activities output)

B. Make Decision
With the established hierarchy made up some iteration

where each participant reported their preference about the
criteria and alternatives [11, 12]. The result of these
preferences can be viewed in Fig. 8.

Figure 8. Hierarchy with the preferences result (more details in [11, 12])

After consensus about the choice, the outcome of the
decision can now be display. Fig. 9 shows decision results.

Figure 9. Decision results (represents a consensus about the choice)

The Expert Choice allows different analyzes about the
decision taken. Two of them can be seen in Figures 10 and 11
respectively. Fig. 10 shows the sensitivity of alternative groups
of criteria. Fig. 11 shows the result of adherence with relation
to the criteria.

Figure 10. Alternatives sensibility of on criteria group

6 http://docs.oracle.com/cd/E16764_01/web.1111/e13719/toc.htm
7 http://www.hibernate.org/
8 http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
9 http://www.oracle.com/technetwork/middleware/toplink/overview/index.html

99

Figure 11. Adherence with relation to the criteria (note coverage of 72%
regarding the the objective criteria)

C. Store Decision
After consensus about the choice, the outcome of the

decision can now be stored. Table III shows an example of
stored result.

TABLE III. EXEMPLE OF STORED RESULT

Attribute Value

Date & Time 18/10/2012 – 10:50

Goal Which framework to use for the
persistence layer?

Alternatives

1. Entity Enterprise Java Beans
2. Hibernate
3. Java Persistence API
4. TopLink

Criteria

1. Learning
 1.1. Documentation
 1.2. Open source
2. Architecture
 2.1. Evolution over time
 2.2. Performance
 2.3. Ease of integration
 2.4. Amount of code to be written
 2.5. Adaptability
 2.6. Library size
3. Administration
 3.1. Licensing
 3.2. Cost
 3.3. Support

Result 1. Entity Enterprise Java Beans

Decision Makers
Bill
Mark
Steve

These data were stored in the structure shown in Fig. 6 (Section 3 D). Artifacts such as images and
Portable Document Format (PDF) can be annexed increase the quality of Historical Database (HDB).

The Decision Maker’s names were changed for confidentialy questions.

D. Publish Decision
The published result can be seen in Fig. 12. Effective

communication creates a bridge between diverse stakeholders
who may have different culture and organizational
backgrounds, different levels of expertise, and different
perspectives and interests, which impact or have an influence
upon the project execution or outcome [1].

Figure 12. Published decision in project´ website

V. RESULTS & ANALYSIS
In order to validate the process model, some performance

indicators for information and data collection were defined and
applied (Section 4). Through the analysis of these sources, it
was possible to identify advantages and limitations of
NIPSEDS. Afterwards, the results obtained with this research
are described. The first indicator shows the variation in the rate
of rework. This is because high levels of rework were
presented as major problems during the development of a
project.

Through decisions made throughout the project, we have
tried to reduce the number of rework. Thus, solving the rework,
this metric helps the project manager to identify the level of
effectiveness of decisions. Fig. 13 shows this indicator.

Figure 13. Rework Index vs. Structured Decision

As can be observed in Fig. 13, the structured decisions
have strong relationship with the decreasing of rework. After
the implementation of the framework, this fact is evidenced by
the decrease in 78% (average) of this index in Projects, that
research contributes to the quality in the development process.
Besides this, there was an improvement on the perfomance
index of members by structuring decisions during project, it is
also important for improving quality in the development
process. This happens because the effectiveness of the
performance actually contributes to the effectiveness of the
members. Thus, by sctructuring decisions, seeks to empower
and qualify them so they can increase this indicator.
Furthermore, through this measure, makes it possible to
project manager to analyze the performance of its members
and, if necessary, take steps to improve them. Fig. 14 has the
graphics prepared for analysis of this index.

100

Figure 14. Performance Index vs. Structured Decision

Besides the rate of rework the structuring decision also
maintains a strong relationship with the improvement in the
performance index of members of the team. This fact strongly
evidenced by analyzing the graphs shown in Fig. 14. Through
them, it is noted that with the number of structured decision,
implemented by the framework, an increase of 22% in
performance of the members. And that contributes not only to
meet the deadline and measurement of the team, but also to
improve the quality of coding, and especially the ease of
maintenance. Thus, in a general way, through the analysis of
the performance indicators and collected information, the
following advantages were identified:

 Increased understanding of decisions: With the
structuring of decisions, the understanding of the
problem to be solved increases. This is reflected in the
later stages where decisions of the past can be retrieved
and validated;

 Improvement in the development process: The ongoing
process of analysis and monitoring ensured that the
best options were selected for each objective;

 Improvement in choice of criteria and/or alternatives:
These activities are improved by the selection and
utilization of criteria, alternatives and objectives stored
in the Historical Database (HDB);

 Increase of the organizational memory: The storage of
experiences, estimates, knowledge and performance of
team’s members during the development of the
projects, in the suggested HDB, has as objective to
keep this information available in the beginning of
every project in order to facilitate the future decisions.

Moreover, through continuous monitoring of performance
and decision aspects in software projects, it can be stated that
the mentioned advantages have contributed significantly for the
decrease of its rework and for the increase in performance and
improvement of its activities development. All these factors,
besides contributing significantly for the application of the
process model, also collaborate to the establishment of an asset
within the organization.

VI. CONCLUSIONS AND FUTURE WORKS
Analyzing the results obtained during the case study

development, we can evaluate the success in the
implementation of the process model. It is highlighted, mostly,
the increase in motivation of members and their performance,
resulting in a significantly improvement in its development
process and decrease rework.

Thus, focused on increase the quality of software
development process, the process model presented was
developed to attend, provide and add more value to process
used by organization through planning and continuous
structuring decisions. One possible limitation of this work is
the need for a certain level of maturity in software
development. C level according to MR-MPS [14]. In this case
study the responsibility to lead the process was delegated to the
most experienced organization member (Project Manager or
Scrum Master). Finally, as presented in Table II, this process
model differs from other existing process models in literature
and can be applied in a non-intrusive way.

As future work we intend to analyze the relationship
between times spent on decisions versus the time saved with
rework. This has an economic objective related to software
development.

REFERENCES
[1] PMI, A Guide to the Project Management Body of Knowledge (PMBOK

guide), Fifth Edition, Project Management Institute, Inc, 2013.
[2] P. Kruchten, The rational unified process: an introduction, ser. The

Addison-Wesley object technology series. Addison-Wesley, 2004.
[3] Lavallée, M., & Robillard, P, “The impacts of software process

improvement on developers: a systematic review”. International
Conference on Software, 113–122, 2012.

[4] Xuan S., “A Novel Kind of Decision of Weight of Multi-attribute
Decision-Making Model Based on Bayesian Networks, Business and
Information Management”, 2008. ISBIM '08. International Seminar on ,
vol.2, no., pp.30,33, 19-19 Dec. 2008.

[5] Colwell, B., “Engineering decisions”, Computer, vol.36, no.8, pp.9,11,
Aug. 2003.

[6] Yang F., Zhang W., “Exploration and practice of constructing creative
engineering laboratory on software development”, Computer Science &
Education (ICCSE), 2012 7th International Conference on , vol., no.,
pp.1597,1601, 14-17 July 2012.

[7] Vinay, S., Aithal, S. and Sudhakara, G., “Integrating TOPSIS and AHP
into GORE Decision”, International Journal of Computer Applications
(0975 – 8887) Volume 56– No.17, October 2012.

[8] Felfernig A., Zehentner C., Ninaus G., Grabner H., Maalej W., Pagano
D., Weninger L., and Reinfrank F., “Group decision support for
requirements negotiation”. In Proceedings of the 19th international
conference on Advances in User Modeling (UMAP'11), Springer-
Verlag, Berlin, Heidelberg, 105-116. 2011.

[9] Hassan, A., and Xie, T., “Software intelligence: the future of mining
software engineering data”. SDP workshop on Future of
software engineering, 161–165. 2010.

[10] Lewis, T., Spillman, R., and Alsawwaf, M., “A software engineering
approach to the documentation and development of an international
decision support system”. Journal of Computing Sciences. 2010.

[11] Gomede, E., Barros, R. M., “Utilizando o Método Analytic Hierarchy
Process (AHP) para Priorização de Serviços de TI: Um Estudo de Caso.”
In: VIII Simpósio Brasileiro de Sistemas de Informação, São Paulo. VIII
Simpósio Brasileiro de Sistemas de Informação, p. 408-419. v. 1. 2012.

[12] Gomede, E., Proenca JR., M. L. and Barros, R. M., “Networks Baselines
And Analytic Hierarchy Process: An Approach To Strategic Decisions.”
In: IADIS International Conference Applied Computing, 2012, Madri.
IADIS International Conference Applied Computing, p. 34-41. 2012.

[13] Yin, R. K, Case Study Research: Design and Method, Third Edition,
Applied Social Research Methods Series, Sage Publications, Inc, 2002.

[14] MR-MPS (Modelo de Referência para Melhoria de Processo do
Software Brasileiro). Associação para Promoção da Excelência do
Software Brasileiro, December, 2012.

[15] Saaty, T. L, The Analytic Hierarchy Process. New York: McGraw-Hill
International. 1980.

101

Group Profiling for Understanding
Educational Social Networking

¹João Gomes, ¹Ricardo Prudêncio, 2Luciano
Meira

¹Informatics Center – Federal University of
Pernambuco - Recife, Brazil

2Department of Psychology – Federal
University of Pernambuco - Recife, Brazil

[jeag, rbcp]@cin.ufpe.br
luciano@meira.com

3Alexandre Azevedo Filho, 1,4André
Nascimento, ¹Hilário Oliveira

3Computer Engineering Center - University of
Pernambuco – Recife, Brazil

4Federal Institute of Education, Science and
Technology of Pernambuco – Ipojuca, Brazil

agvaf@ecomp.upe.br
[acan, htao]@cin.ufpe.br

Abstract: With the well-known success of social media, many
different social networking services have been developed.
One example of these new services are the educational social
networks, which make use of social networking technologies
for educational purposes. People sharing certain similarities
or affiliates tend to form communities within social media. In
educational social networks, several factors lead to
agglomeration of users, e.g. studying in the same school or
grade, curricular interests in common, etc. These diverse
activities leave behind traces of their social life, providing
clues to understand changing social structures. In order to
explain the group formation resulted from educational social
network, we applied a strategy of differentiation-based
group profiling, using the Wilcoxon rank-sum test. The
performed experiments showed that the method was effective
in identifying tags to characterize the groups, pointing tags
for 81.81% of groups. This research can assist network
navigation, visualization and analysis, as well as monitoring
and tracking the ebbs and tides of different groups in
evolving networks.

Keywords: educational social networks; communities;
group profiling.

I. INTRODUTION
Educational data mining is an emerging field that

involves the application of computational techniques to
identify patterns in large educational data repositories [1]
[2]. For example, in [1], the educational data mining is
applied to assess the performance of students; in [2] it is
investigated the impact of e-learning activities on the
students' learning development. Sophisticated techniques
of data mining are especially useful in the context of
electronic educational systems, since an informal process
of analysis is not feasible due to the complexity, variety
and low-quality of data collected [3].

The challenges created by technologic changes are
meaningful in society, modifying the ways people interact.
Among these technologies, social networks had a great
prominence and became a global phenomenon that is
present in human social life. Social networks provide
students the opportunity to interact with other students,
teachers, administrators, without geographical limitations.
Researchers support social networks for their capability to
attract, motivate and engage students in meaningful

communicative practice, content exchange, and
collaboration [4]. A variety of educational social networks
can actually be observed in recent years 1,2, 3.

The deployment of social networks in educational
systems brings new challenges concerned to the data
mining process. In fact, data mining is tackling now the
problem of mining richly structured, heterogeneous
datasets (e.g. social networks). These kinds of datasets are
best described as networks or graphs [5]. Studies on link
mining have been made for social network analysis, among
which stands out the specific problem of group profiling
[6]. This problem aims to build descriptive profiled groups
of people. A group (or community) is a set of users who
interact with each other frequently [7]. The applications for
group profiling include: understanding social structures,
visualization and network navigation, monitoring the
changes of a group of subjects, direct marketing and
alarming cases [6].

It is evident the formation of groups in educational
environments due to common interests or affinities [1]. For
instance, some users may interact because they share the
same school/classroom, are engaged in the same activities
or are interested in the same study subject or course.
Identifying the features that distinguish a group from the
rest of the network is important to explain the dynamics of
group formation and to support the decision making
process in the education environment.

In this context, this paper proposes a methodology to
perform group profiling in educational social networks,
which can help to understand the process of community
formation under online educational platforms. Our goal is
to extract attributes of each individual user and verify
whether the group members really have interests and/or
common characteristics that differentiate them from the
rest of the network.

In this approach, we initially applied the Multi-level
Aggregation Method [8] for discovering groups in the
social network data. Giving a set of attributes that describe
the users, the group profiling is performed by identifying

1 www.joystreet.com.br/products/oje

2 www.nren.net.np/
3 www.redu.com.br/

102

those attributes presenting a distribution within the group
that is statistically different from the distribution observed
in the rest of the network. More specifically, in our work,
the Wilcoxon rank sum test [9] was deployed to identify
the best discriminative attributes statistically. This test
establishes a difference between two sample groups using
magnitude-based ranks.

Experiments were performed using data collected from
the educational social network OJE. The OJE is a web
platform that works as a social network, where users are
presented to challenges in the form of games and questions
about several school subjects, called enigmas [10]. Based
on the logs generated by the activities (games and
enigmas), it is possible to collect attributes that enable the
analysis of this social network. The information extracted
from OJE can be useful for evaluating the learning process,
as well as supporting the decision making by managers and
administrators of educational systems.

The remaining of this paper is organized as follows: In
Section II we present some related work, followed by
Section III, where we describe the strategy of group
profiling. In Section IV, we introduce the experimental
settings. In Section V, we present and discuss the obtained
results. Finally, in Section VI the concluding remarks and
future work are outlined.

II. RELATED WORK
Group profiling describes the shared characteristics of a

group of people. According to [6], the main objective of
group profile is to understand the formation of explicit
communities, using individual attributes. Besides, three
sensible methods of group profiling are presented in a
comparative study: aggregation, differentiation, and
egocentric differentiation. This work uses individual
attributes for group profile. In our study, we tested the
effectiveness of the statistical method Wilcoxon rank sum,
to generation of group profiling using a differentiation-
based approach.

Other research extends topic models to extract groups
based on both network and text information.
Conventionally, a collection of documents are modeled as
a set of latent topics, and each topic represents a
distribution of words. In [11], the authors combines a topic
model [12] and a mixed membership stochastic block
model [13] by sharing the same latent mixture of
communities for both, word topics and relation topics. In
[14], connections between documents are considered in a
different fashion, as they enforce the connected documents
to share similar topics and use the network information as
regularization to extract topics. The goal of these studies is
to extract relevant themes of a collection of documents,
while the study presented in this work aims to extract
representative attributes that describe a particular group.
The next section will describe the strategy used in this
group profiling study.

III. PROFILING STRATEGY
In this section, we present our strategy for group

profiling. Figure 1 presents the general process followed
by our strategy for group profiling. Initially, the data set
are preprocessed, for extracting features to user’s

representation. After that, the network structure is
produced, composed by a set of nodes (representing the
users) and their corresponding edges. A community
detection method is applied on network for identifying the
existing communities (or groups). Finally, the Wilcoxon
rank sum test is applied to identify relevant features that
discriminate each group.

Figure 1. Group profiling strategy.

In the Users Representation stage, the relevant
attributes for characterization of users and network
formation are collected from the dataset. For instance, in
an educational social network, the attributes might be:
gender, age, school, game logs, enigma logs, among others.
After this stage, we generate the network composed by
nodes and edges. The nodes (users) bring all the
information selected in the previous phase, and the edges
represent the relationships between the nodes (e.g. if user
A and B are friends, then an edge is created). As it will be
seen, in our work, the network data is represented and
manipulated by using the framework Gephi4 (tool of
interactive visualization and analysis of networked data).

Once we produced the network structure, we perform
the phase of Communities Detection. In this stage, we
adopted in our work the Multi-Level Aggregation Method
algorithm [8] for identification of communities, since the
groups are not explicit in the network. This is a multistep
method based on a local optimization of modularity in the
neighborhood of each node [15]. The optimization is
performed in two steps. First, the method looks for "small"
communities by optimizing modularity locally. Second, it
aggregates nodes belonging to the same community and

4 www.gephi.org/

103

builds a new network whose nodes are the communities.
These steps are repeated iteratively until a maximum of
modularity is attained and a hierarchy of communities is
produced. According to [16], this method offers a fair
compromise between the accuracy of estimating the
modularity maximum and computational complexity,
which is essentially linear in the number of links of the
graph. It is a good alternative compared for instance to
greedy methods for modularity optimization [17].

After the community detection is performed, we
applied the Wilcoxon Rank Sum Test for group profiling. A
natural and straightforward approach of group profiling is
to find attributes that are most likely to occur within the
group. But, instead of aggregating the features, we can
select features that differentiate the group from the others
in the network. The goal is to find out the top-k
discriminative features that are representative of a group,
but rarely appear in the other groups. According to [6],
aggregating individual attributes is applicable only in a
relatively noise-free environment. When profiles are
constructed from noisy attributes, such as user blog posts,
log of user activities or self-reported interests,
differentiation-based methods will consistently outperform
the aggregation-based approach.

In our work, we applied a differentiation method based
on the Wilcoxon rank sum test [14] in our group profiling
approach. This test is a nonparametric procedure to
establish significant differences between two sample
groups using magnitude-based ranks (in our case, a
particular group against the rest of the network). Based on
the test result, one can identify group profiling (attributes
that would categorize the groups), that is, attributes that
showed a statistically significant difference compared to
the rest of the network (in our work we considered a p-
value of 0.05 for statistical significance).

The Wilcoxon rank sum test uses a z-statistic to
compute the approximate p-value of the test. If n1 and n2
are the sizes of two independent samples, where n1 < n2,
we can calculate the z-statistic described in Equation (1):

 (1)

where,

 (2)

 (3)

 In equation (1), R is the sum of ranks of the elements in
the smaller sample; n1 = size of the smaller sample; n2 =
size of the larger; n1 ≥ 10 and n2 ≥ 10; and are
respectively the mean and standard deviation. If both
samples have the same size, either size can be used as n1.

 In the next section, we present the case study and
experimental methodology adopted to evaluate the
proposed approach.

IV. CASE STUDY AND EXPERIMENT SETUP
In this section, we present the evaluation of our strategy

to group profiling applied to an educational social network
called OJE.

A. OJE

The OJE is a social network that connects students and
teachers through games and enigmas. As main activities
the OJE includes: (i) games with known mechanical youth
to ensure their motivation, (ii) constructed enigmas in the
format of the Brazilian National High School Exam’s
questions.

The OJE's platform provides an environment for
conducting tournaments between teams and individual
students (supervised by teachers) who engage in various
disputes. The project also enhances the teaching processes
through areas dedicated to teachers, such as a section of
lessons tips to help them use the games in their disciplines,
and a bank of questions (in development) that facilitates
the composition of exercises from the enigmas.

B. Data Set

As mentioned earlier, to conduct a study of group
profiling, it is necessary to have a rich suite of related data
on individual attributes. Hence, we selected the OJE social
network data in our case study.

The OJE network presents 5590 users, of which 5204
are active with 9340 relationships. Each user has an
average number of 3.59 friends. In Figure 2, we provide a
visualization of part of the generated network.

Figure 2. Fragment of the generated network.

C. Users’ Representation

For users’ representation, we performed several pre-
processing procedures. Initially, a set of 40 individual
attributes was extracted from the database. The most
educationally descriptive features were selected, resulting
in set of 13 attributes. Such discarded attributes were
School, Grade and City, as these imply in obvious groups.
The selected features are described below.

104

 Age: This attribute was used to verify the existence of
groups by age ranges.

 Access: We applied a verification of the users activity
level by establishing three attributes: Website, Games
and Enigmas. These were extracted from server logs.

 Participation in enigmas: Aiming to analyze the
participation on enigmas, three attributes were
defined: the number of questions accessed, and
number of correctly and incorrectly answered
enigmas.

 The Classification of games and enigmas by related
educational area: In OJE, each game and enigma has
a classification that defines its educational area. There
are six attributes used to group game and enigmas
access number. Both games’ and enigmas accesses
were distinguished by Nature, Literature and
Humanities.

D. Community Detection

The OJE has no definition in the context of groups,
with no explicit communities. Thus, it demanded the
application of external algorithms to identify communities
groups. We started the pre-processing of the data by
removing the singletons (single node) from the dataset.
Since the objective is to build group profiling, they could
not be in any community. Using the Multi-level
Aggregation Method [8], we identified 29 groups.

The groups that had fewer than 10 users were removed,
since they were considered too small and irrelevant for the
study. We calculated the density for each group, as it is a
common metric of how well connected a network is (in
other words, how closely knit it is) [18]. Only 10 groups
were selected, based on their density values. As the 10th
and 11st showed the same density value, we added the last.
The statistics of the preprocessed data set are summarized
in Table I, in which is presented the number of users and
links, the density, the network average degree, the network
diameter and the number of groups.

TABLE I. STATISTICS ON NETWORK PRE-PROCESSED

 OJE
#Users 227
#Links 672

Link Density 0.026
Average Link 5.921

Diameter 8
Group Numbers 11

In Figure 3, we visualized the resulting network after
the pre-processing step. Analyzing the figure we can
distinguish groups formed in the network, and identify
their labels. In Table II, we have all the statistics of each
group individually, introducing size, density, and average
degree of each group. In the table, we can identify groups
that are more cohesive than others, for example, comparing
the group 25 and 19.

Figure 3. Network resulting from pre-processing.

TABLE II. STATISTICS ON GROUPS
OJE

Group Size Average Degree Density
1 12 2.5 22.7 %
2 23 3.217 14.6%
3 26 3.692 14.6%
4 13 3.538 29.5%

12 19 3.368 18.7%
15 23 4.0 18.2%
17 24 4.75 20.7%
19 14 2.286 17.6%
20 20 2.8 14.7%
25 28 5.857 21.7%
28 25 5.84 24.3%

E. Group Profiling

After the detection of communities, we applied the
Wilcoxon Rank sum test as differentiation method to
identify the attributes that characterize each community
generated. The Wilcoxon rank sum test works by pairing
the distribution of the attribute values of a particular group
comparing to the values of the remaining groups.

By applying the test, we obtain the p-value for all
communities' attributes. We considered as good descriptors
of a community, those attributes in which a p-value lower
than 0.05 was observed for the Wilcoxon test. The group
profile is the list of features that characterize the
community according to the statistical test.

V. RESULTS AND DISCUSSION
In this section, we present the results obtained from the

application of the proposed group profiling strategy to
characterize the groups of users, identified on OJE
educational social network by the Multi-level Aggregation
Method [8].

In Table III, we can visualize the relevant features for
each group, according to the test results. As said, we
selected only the features that presented statistically
significant differences according to the Wilcoxon test. A
feature is marked in blue when its average value in the

105

group is greater than the average feature value observed in
the rest of the network. A red mark in turn indicates that
the feature within the group has a lower average compared
to the average value considering all network users.

TABLE III. RELEVANT FEATURES FOR EACH GROUP.

Groups Labels / Tags

1, 17 and
20

 No Features

2

 website

3

number of answered enigmas age

4

age nature game literature game

 human game games website

15

number of answered enigmas age

12

 enigma number of answered enigmas

 nature enigma literature enigma

19

 age

25

 enigma number of answered enigmas

 nature enigma literature enigma

 website nature game literature game

 games

28

 age website

One can observe that the combination of the identified

features for each group is unique, which demonstrates the
potential of the proposed method to characterize the
groups. In order get a better understanding of the results,
here we discussed three concrete examples: the groups 12,
20 and 25.

As the experiments in the previous section showed, we
found that the group 25 is the most prominent one in the
network. Figure 4 (a) presents a bar plot containing the
average value of each attribute describing group 25
compared to the average value for the rest of the network.
At the end of the analysis, we concluded that this group
consists of people who are very involved in OJE, from
website usage to the participation in games and enigmas.

Regarding group 12, we can see opposite behavior, as it
can be seen in Figure 4 (b). All features describing group
12 present an average value that is lower than the observed
average for the rest of the network. This group of users is
tied community, not only by the structure identified by the
community detection method, but also by common
behavior. The group has a good average (although not

significant) access to the website, but very low level of
access to enigmas, which is bad for the educational
purposes of OJE. Further investigation could be applied on
this set of users, to explain such behavior.

(a)

(b)

(c)

Figure 4. Averages of attribute values of one group (blue) and the rest of
the network (red). (a) we see that the group 25 really stands out about the
rest of the network (b) Despite of group 12 have a good OJE access
average, have little access to enigmas (c) Observe that there are no
significant differences attributes between Group 20 and rest of the
netwwork.

The limitation of the proposed group profiling
approach is in those groups where the differences between
the attributes of the groups and the rest of the network are
minimal (not significant). In such cases, the test did not
reveal any feature to categorize the group, showing not be
effective in such cases. In Figure 4 (c), we can see an
example of the group 20.

VI. CONCLUSIONS AND FUTURE WORK
As we can see, there are several possibilities for the

formation of communities in an educational social
network. The group profiling discussed in this work is one
technique that can be used to find out possible reasons that
causes formation of a community or why individuals
connect to or interact with each other.

106

In this work, we adopt a group-profiling approach to
extract descriptive features for a given group. Different
group profiling strategies can be adopted. A natural
approach would be aggregating individual attributes and
considering which attribute is shared most frequently
inside a group. However, as pointed out by [6], this
approach is not very feasible on noisy data and better
results are obtained with methods based on differentiation.
Based on this, we applied the Wilcoxon rank sum test
method with the objective of identifying attributes that
showed a statistically significant difference in one group
compared to the rest of the network, characterizing it.

Despite not indicating any descriptive feature in case of
groups that did not show any statistically significant
differences, the method was effective in identifying tags to
characterize the groups. In fact, descriptive features were
identified for 81.81% of the groups. As seen in the analysis
of the results, the labels identified by the test became good
profiles for groups.

This work is an ongoing study of group profiling in
educational social network. Many extensions of group
profiling can be explored. In current work, we propose to
understand emerging social structures based on group
profiles. As a future work we expected to study solutions
to our problem related to no generation of labels for some
groups. This problem happened due the limitation of the
application of Wilcoxon test for identifying profiling
group. Besides, we intended to study the application of
machine learning techniques for generation of group
profiling in educational social networks.

ACKNOWLEDGMENTS
Thanks to Joy Street, the developer company of OJE,

for the fundamental and unwavering support to the studies
presented in this article, and CNPq for financial support.

REFERENCES
[1] B. Baradwaj and S. Pal, “Mining Educational Data to Analyze

Students’ Performance”. International Journal of Advanced
Computer Science and Applications, Vol 2, pp. 63-69, 2001.

[2] M. Falakmasir and J. Habibi, “Using Educational Data Mining
Methods to Study the Impact of Virtual Classroom in E-Learning”,
International Conference on Educational Data Mining, Pittsburgh,
PA, USA, pp. 241-248, 2010.

[3] C. Romero; S. Ventura, “Educational data mining: A survey from
1995 to 2005”, In: Expert Systems with Applications: An
International Journal. Tarrytown, NY, USA, pp.135-146, 2007.

[4] N. Mills, "Situated Learning through Social Networking
Communities: The Development of Joint Enterprise, Mutual
Engagement, and a Shared Repertoire", CALICO Journal, 28(2),
pp. 345- 368. 2011.

[5] L. Getoor and C. Diehl. “Link mining: a survey”, ACM SIGKDD
Explorations Newsletter, New York, NY, USA, vol. 7, pp. 3-12,
2005.

[6] L. Tang, X. Wang and H. Liu. “Group Profiling for Understanding
Social Structures”, ACM Transactions on Intelligent Systems and
Technology, New York, NY, USA, Vol. 3, pp. 15-40, 2011.

[7] S. Wasserman and K. Faust, “Social Network Analysis: Methods
and Applications”, Cambridge University Press, 1994.

[8] V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks”, Journal of Statistical
Mechanics: Theory and Experiment. Stat. Mech.: Theory, 2008.

[9] M. Hollander and D. Wolfe. “Nonparametric Statistical Methods”,
Hoboken, NJ: John Wiley & Sons, Inc., 1999.

[10] L Meira, A. Neves and G. Ramalho. “LAN House na escola: uma
olimpíada de jogos digitais e educação”. In: Anais do VIII
SBGames, Rio de Janeiro, RJ, 2009.

[11] R. Nallapati, A. ahmed, E. Xing, and W. Cohen. “Joint latent topic
models for text and citations”, In KDD ’08: Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, New York, NY, USA, pp. 542–550, 2008.

[12] D.. Blei, A. Ng and A. Jordan, “Latent dirichlet allocation”, Journal
of Machine Learning Research 3, pp. 993–1022, 2003.

[13] E. Airodi, D. Lei , S. Ienberg and E. Xing. “Mixed membership
stochastic blockmodels”, J. Mach. Learn. Res. 9, pp. 1981–2014,
2008.

[14] Q. Mei, D. Cai, D. Hang and C. Zhai. “Topic modeling with
network regularization”. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web. ACM, New York,
NY, USA, pp. 101–110, 2008

[15] M. Girvan and M. Newman, “Community structure in social and
biological networks “, Proc. Natl. Acad. Sci. U.S.A.99, pp. 7821-
7826, 2002.

[16] A. Lancichinetti and S. Fortunato, “Community detection
algorithms: A comparative analysis”. Proceedings of the Fourth
International ICST Conference on Performance Evaluation
Methodologies and Tools. Brussels, Belgium; pp. 27-28, 2009.

[17] A. Clauset, M. Newman, and C. Moore, “Hierarchical structure and
the prediction of missing links in networks”, Phys. Rev. E70, pp.
98-101, 2008.

[18] L. Tang and H. Liu. “Community Detection and Mining in Social
Media”, Morgan& Claypool Publisheres, 2010.

107

Understanding Common Perceptions from Online Social Media

Derek Doran and Swapna S. Gokhale
Dept. of Computer Science & Engineering

University of Connecticut, Storrs, CT, 06269
{derek.doran,ssg}@engr.uconn.edu

Aldo Dagnino
Industrial Software Systems

ABB Corporate Research, Raleigh, NC, 27606
aldo.dagnino@us.abb.com

Abstract

Modern society habitually uses online social media ser-
vices to publicly share observations, thoughts, opinions,
and beliefs at any time and from any location. These geo-
tagged social media posts may provide aggregate insights
into people’s perceptions on a broad range of topics across
a given geographical area beyond what is currently possi-
ble through services such as Yelp and Foursquare. This pa-
per develops probabilistic language models to investigate
whether collective, topic-based perceptions within a geo-
graphical area can be extracted from the content of geo-
tagged Twitter posts. The capability of the methodology is il-
lustrated using tweets from three areas of different sizes. An
application of the approach to support power grid restora-
tion following a storm is presented.

1 Introduction and Motivation

Online social media services are now deeply rooted in our

modern culture and people routinely turn to these services to

share their thoughts and opinions. These frequent updates

can provide tremendous insights into how people perceive

the world around them. A significant portion of these up-

dates are shared via smartphones and mobile devices, and

hence, have location information embedded in them. This

geo-tagging offers a unique opportunity to understand how

the content or what of the posts is influenced by the loca-

tion or from where the posts are shared [4]. Such linking of

“what” to “where” can be used to support many geographic

information retrieval systems [1]. Commercial agencies can

also use this association between perception and location to

tailor their marketing strategies to geographic demands [10].

Presently, geo-tagged social media posts are linked

to specific businesses using services such as Yelp1 and

Foursquare2. Through this linking, people can share their

reviews and experiences and alert friends to their where-

abouts. Opinions about specific businesses, however, may

not offer insights into how people feel about the underlying

1http://www.yelp.com
2http://www.foursquare.com

abstract notions or topics. For example, reviews about spe-

cific fast food restaurants cannot indicate whether people in

the area like to eat fast food, or that eating fast food is popu-

lar. Instead, posts that talk about fast food generally, with or

without reference to specific restaurants, provide clues about

area-wide perceptions on the topic of fast food.

This paper proposes a methodology that uses social me-

dia posts to identify localities where a specific topic-based

perception runs strong. Partitioning a geographic area into

non-overlapping sub-areas, the methodology trains proba-

bilistic language models over posts from these sub-areas.

This ensemble of models is then queried with a phrase defin-

ing a topic-based perception to identify sub-areas where

that perception runs strong. Illustrations using Twitter feeds

from three areas of vastly different sizes, population densi-

ties, and other characteristics show that despite the diversity,

the methodology can identify sub-areas with strong percep-

tions for several common topics. The paper concludes with

an industrial application of the methodology to support effi-

cient power recovery following a major weather storm.

The paper is organized as follows: Section 2 presents our

methodology. Section 3 describes Twitter data. Section 4

illustrates the methodology. Section 5 applies it to storm

damage response. Section 6 compares related work. Con-

clusions and future directions are in Section 7.

2 Locating Perceptions

In this section, we motivate and present the methodology

for finding perceptions.

2.1 Defining Perceptions

People’s perceptions about various topics may be embod-

ied in their spoken language and now in their social media

posts. These topic-based perceptions may be influenced by

the general characteristics of an area and also by specific

local features. For example, although people across New

York City may frequently talk and post about traffic conges-

tion and delays, this issue is unlikely to be on their minds

as they stroll through Central Park. Because it is impossible

to exhaustively define all topics and their perceptions, we

1

108

propose a flexible approach which models the language of

the social media posts for each sub-area within a given area.

These language models can then be queried with multi-word

phrases which define a perception about a given topic to

identify sub-areas which strongly represent that topic-based

perception. For example, to identify perceptions of stressful

(slow) traffic, we can use the query ”hate traffic” (”traffic is

slow”). Note that sub-areas with stressful traffic may or may

not overlap those with slow traffic.

2.2 Specifying Language Models

A language model captures the features of the written

language in a collection of documents or a training corpus.

It defines a probability distribution over all n-grams, where

an n-gram is an ordered sequence of n words (w1,, wn).
We define language models for non-overlapping sub-areas

�i which comprise an area L. The maximum likelihood esti-

mate of an n-gram, computed over a corpus of social media

posts within �i ∈ L, is given by [3]:

P�i(w1,wn) =
c(w1, ...wn)

c(w1, ..., wn−1)

where c(.) is the number of times the sequence appears in

the posts. The probability that the language within a sub-

area generates a phrase T = (w1, ..., wk) is computed as the

product of the probabilities of the n-grams that comprise T :

P (T |�i) =
k∏

j=n

P�(wj−n+1, ..., wj)

Contextual information increases with n as higher order

sequences of words are considered. However, because the

frequency that larger sequences appear in social media posts

is very low, prevalent language models over these posts re-

strict to the lowest order unigrams (1-grams), which model

distinct words independent of their order [16, 5, 11]. Uni-

grams cannot model perceptions because these must be un-

derstood in the context of some topic or subject. For ex-

ample, unigrams trained over “I love driving” and “I hate

driving” will model the perceptions of “love” and “hate” but

will not associate them with the topic of “driving”. Bigrams,

on the other hand, can model the perceptions “I love”, “love

driving”, “I hate”, and “hate driving” and associate them

with a person (“I”) and the act of driving. Thus, unigrams

can only recognize “love” or “hate”, while bigrams actu-

ally identify what is being loved or hated. However, be-

cause social media posts may contain numerous distinct bi-

grams presenting unique thoughts on various topics, the es-

timates of bigrams over these posts may be inaccurate. To

improve this accuracy, we model the probability of bigram

estimates using a linear interpolation of both the bigram and

unigram estimates. This interpolation compensates for the

low count of a bigram (e.g. “love driving”) by incorporating

the expected higher count of the unigram “driving”. Thus,

for a sub-area �i, the probability of observing the bigram

(wj−1, wj) is given as:

P�i(wj−1, wj) = λ1c(wj−1, wj)/c(wj−1)+λ2c(wj)/|W (�i)|
where λ1 +λ2 = 1, |W (�i)| is the number of distinct words

in all posts in �i and c(wj)/|W (�i)| is the estimate of the

unigram that completes the bigram [3].

We use smoothing to compensate for the probability of

future unseen bigrams, which allocates some of the prob-

ability of the training bigrams to those that are as yet un-

observed [6]. The Modified Kneser-Ney (MKN) smoothing

algorithm [9] is chosen because of its superior performance

with interpolated language models [6]. The MKN algorithm

subtracts a constant d̂ from the observed frequency of ev-

ery known bigram. It then estimates the likelihood that an

unknown bigram (wj−1, wj) will appear using a modified

estimate of the unigram wj , where only the number of dis-
tinct bigrams that wj completes is considered:

Pc(wj) =
|{w : c(w,wj) > 0}|∑
v|{w : c(w, v) > 0}|

and then weighing this proportion by the probability mass

λ(wj−1) taken from the known bigrams:

λ(wj−1) =
d̂|{w : c(wj−1, w) > 0}|

c(wj−1)

Thus, under MKN smoothing the probability of observing a

bigram becomes:

P�(wj−1, wj) =
max(c(wj−1, wj)− d̂, 0)

c(wj−1)
+λ(wj−1)Pc(wj)

If (wj−1, wj) is unknown, the probability is just given by

λ(wj−1)Pc(wj), and if it is known, the probability is given

as a linear interpolation of the modified bigram and unigram

estimates. Note that the modified unigram estimate Pc(wj)
is superior to c(wj)/|W (�)| because under Pc(wj) words

that appear frequently but within few distinct contexts will

not strongly influence the probability of the bigram. We esti-

mate d̂ such that the log-likelihood that the model generates

a given bigram is maximized:

d̂ = argmax
d

∑
v

c(v, wj) logP�(v, wj)

This has a closed form approximation depending on whether

c(wi−1, wi) is equal to 1, 2, or ≥ 3 [14]. Using these ap-

proximations, we set d̂ equal to d1, d2, or d3 respectively:

d1 = 1− 2n2n1

n1(n1 + 2n2)

d2 = 2− 3n3n1

n2(n1 + 2n2)

d3 = 3− 4n4n1

n3(n1 + 2n2)

109

(a) NYC: Local-level (b) DC: District-level (c) CT: Region-level

Figure 1: Tweet Distribution in the Areas

with ni is the number of bigrams with frequency i.
The ensemble of language models, one for each sub-area,

is then queried to compute the probability that a phrase T is

generated from a sub-area �i using Bayes rule:

P (�i|T) = P (T |�i)P (�i)∑
j P (T |�j)P (�j)

P (�i) is the prior probability that a social media post is from

sub-area �i and is given by N(�i)/N(L). N(�i) is the num-

ber of posts in �i and N(L) is the total number of posts in

the entire area L. Finally, we we define define P (T |�i) as:

P (T |�i) =
k∏

j=2

P�i(wj−1, wj)

3 Data Description

We harvested geo-tagged tweets from Twitter between

January 29th and February 28th 2013 from three areas,

namely, Downtown Manhattan in New York City (NYC),

the greater Washington D.C. area and its surroundings (DC),

and the entire state of Connecticut (CT). Although these ar-

eas can be partitioned according to town and city jurisdic-

tions or even by zip code, for the sake of illustration, we

divide them into 100 equal sub-areas along a 10×10 grid us-

ing latitudinal and longitudinal coordinates. The partitions

of each area differ widely: (i) NYC sub-areas include a few

blocks and provide a local-level perspective; (ii) DC sub-

areas include substantial portions of cities, suburbs, and in-

terstates providing a district-level perspective; and (iii) CT

sub-areas contain multiple towns, entire cities and woods

offering a region-level perspective.

For each area, we eliminated non-English tweets and

those without geo-tags. Table 1 shows that the tweet den-

sity in NYC is an order higher than DC and two orders

higher than CT. The lower densities in DC and CT, how-

ever, do not impede training of the language models, be-

cause in each area tweet distributions conform to population

spread as shown in Figure 1 [7]. Thus, tweets in NYC are

almost uniform, in DC they cluster around major cities and

follow paths to major highways, and in CT they concentrate

around the three major interstates, with sparse densities in

the woods and farmland towns.

Area Sub-area Area Size Tweets Density

NYC Local 82.3km2 110,924 1,347/km2

DC District 3,452km2 394,072 114/km2

CT County 22,140km2 355,678 16/km2

Table 1: Area-wise Summary of Tweets

Geo-tagged tweets were further pre-processed by con-

verting all words to lowercase and by stripping punctuation,

hashtags (terms starting with #), username replies (terms

beginning with @), and Web links. Common words such

as “at”, “the”, and “or” lack contextual information, and

hence, were eliminated using a stopword list of 200 most

frequently used words. The stopword list was limited to 200
which is approximately equal to 1% of the average number

of distinct words across each area. We also include a “catch

all” unigram “<misc>” to aggregate the probability of all

words that occur only once. It also accounts for miscella-

neous, shorthand, mis-spelled, and other user-specific nota-

tions. On an average 3.16% of the words in each area were

mapped to “<misc>”, suggesting that we can control this

source of distortion without impacting the models’ fidelity.

4 Illustrations

In this section, we illustrate how our approach can iden-

tify sub-areas with strong topic-based perceptions.

4.1 Perceptions in NYC

Downtown Manhattan is a popular tourist destination and

includes Chinatown and Little Italy as well as Broadway and

110

(a) “Restaurant” (b) “Italian restaurant” (c) “Went to a great Italian restaurant”

Figure 2: Local-level Perceptions in NYC

(a) “traffic” (b) “traffic during commute”

Figure 3: District-level Perceptions in DC

Penn Station. Given its multi-cultural neighborhoods and

popularity, this area is rife with many types of eateries, due

to which we extract perceptions about restaurants. Figure 2a

displays the results in the form of a heat map, produced by

a generic query “restaurants”. Brighter shades across many

sub-areas indicate that people discuss restaurants broadly.

Figure 2b shows the results of a refined query “Italian restau-

rants”. The heat map now concentrates on fewer sub-areas,

mostly in the southwest, which corresponds to Little Italy.

It also includes northern sub-areas; home to many high-end

Italian restaurants3. Finally, a specific query “went to a great

Italian restaurant” produces Figure 2c which tells us that this

perception is most strongly present in Little Italy, and at the

entrances to the Holland Tunnel, Brooklyn and Williams-

burg Bridges. That this perception is strong in sub-areas

used to leave the city suggests that visitors may be more in-

clined to share their satisfaction about a great meal in Little

Italy compared to the city’s residents.

4.2 Perceptions in DC

This area encompasses Washington D.C. and the sur-

rounding suburbs. Here, sub-areas include entire commu-

3http://www.zagat.com

nities, parts of Washington D.C., portions of the I-95/495

interstate loop infamous for its heavy traffic, regional parks,

and major roads that connect Washington D.C. to Mary-

land and Virginia. The city is dominated by office parks,

federal agencies, and corporate headquarters bringing in a

large number of commuters from outside towns and sub-

urbs. We thus extract perceptions on “traffic” for this area.

The heat map in Figure 3a, resulting from a generic query

“traffic”, shows that traffic is most strongly perceived inside

and around the four sub-areas of downtown and decreases

in prominence as we go farther away. The heat map in Fig-

ure 3b, resulting from a more nuanced query “traffic during

commute”, finds that people do not discuss traffic and com-

mute within the city, but as expected in the sub-areas which

contain portions of the I-95/495 interstate loop and those to

the west neighboring Dulles Airport.

4.3 Perceptions in CT

This area covers the state of Connecticut featuring large

sub-areas that include entire towns and cities. A hot-button

issue that many people consider when deciding to relocate

to a neighborhood is the public perception of crime. City

and town governments must thus be aware of how crime

111

(a) “crime” (b) “hospital”

Figure 4: Region-level Perceptions in CT

is perceived in their jurisdictions. The heat map in Fig-

ure 4a, resulting from a generic query “crime”, suggests that

the people of CT do not think about crime except for sub-

areas along the I-91 interstate containing the cities of New

Haven, Bridgeport, Stamford, and Hartford, which are noto-

rious for its dangerousness4. Because a state encompasses a

large area, we also extract perceptions about topics that are

less likely to be thought of at a local- and district-level. The

heap map in Figure 4b, resulting from the query “hospital”,

shows that the hottest sub-areas coincide with the Yale-New

Haven Hospital and UConn Health Center. Also, adjacent

sub-areas are more likely to think of hospitals, compared to

other sub-areas in the state.

5 Storm Power Grid Damage Response

The above examples illustrate the capability of our ap-

proach to identify varied topic-based perceptions. We now

discuss how such identification can be leveraged for a dis-

aster response scenario. Natural and other disasters can cre-

ate potentially life-threatening conditions because of their

destructive impact on an electric power grid. Responding

to such outages efficiently and quickly can minimize this

damage and reduce the costs of restoration and loss of pro-

ductivity. Currently, utilities rely on experts to estimate lo-

cations of outages and the type and extent of damages in

order to dispatch appropriate crews and materials. We de-

scribe how public perceptions on the damages caused to the

power grid following a storm provides situational or “on-

the-ground” data supporting the expert’s analysis. On Jan-

uary 31st 2013, the CT area experienced hurricane force

winds causing widespread power outages. The heat map in

Figure 5, resulting from the query “power outage”, shows

that locations of this perception correspond to the power out-

4http://www.fbi.gov/about-us/cjis/ucr/
crime-in-the-u.s/2012

Figure 5: Perception of “power outage” in CT

age map 5. Zooming into an area northeast of Hartford, gen-

erates another heat map for the same perception, which now

highlights a residential block. Zooming in even further iden-

tifies specific places on the streets, which may correspond to

houses or electric poles. Based on this data, experts can tag

these streets as prone to power loss. They can analyze the

power grid in the area to determine what components failed,

and using tweets within the highlighted sub-areas, hypothe-

size about the source of damage (e.g. downed trees crushing

overhead lines). The appropriate crews and components can

then be dispatched to quickly repair these failures.

6 Related Research

Language models have been built over social media posts

for a variety of purposes. Iskandar et al. develop a query

likelihood model with Dirichlet smoothing to retrieve con-

tent from social media and Wikipedia articles [2]. Li pre-

dicts the point-of-interest of a tweet with a unigram lan-

5http://www.ctpost.com/local/article/
Storm-leaves-thousands-without-power-4238526.php

112

guage model [11]. The models are also combined with loca-

tion information to evaluate the origin of tweets. Kinsella et
al. estimate cities from which tweets originate by comparing

KL-divergences among language models [8]. Chandra et al.
also predict originating cities based on unigram models over

tweet-reply chains [5]. Chang predicts positions based on

the spatial usage of words in the tweets [15], Sadilek et al.
incorporate the position of friends and content of tweets for

prediction [13], Liu et al consider check-in histories with

tweet content [12] and Wing et al use unigram models of

tweet content across areas within geo-grids [16].

This work differs from contemporary efforts because

rather than focusing on a specific set of tasks, we develop

language models to generally identify perceptions of users

across geographic areas. Also, our sophisticated language

model uses smoothing to combine accurate estimation of un-

igrams with contextual information in bigrams compared to

the prevalent models that consider only unigrams.

7 Conclusions and Future Work

This paper presented a methodology to identify where

perceptions about a topic are strongly represented across a

given geographic area. Central to the methodology are lan-

guage models that can be queried using phrases that define

any kind of perception for any topic. Without any a pri-
ori information and aid of external data sources, we demon-

strate how the approach can identify where a specific topic-

based perception is strongly represented in sub-areas with

sizes ranging from just a few urban blocks to entire cities.

In the future, we plan to enhance the methodology with

geographic and temporal variations in word usage. We will

also explore the use of the methodology for many different

applications including location prediction, storm and disas-

ter management, and analytics for city planning and public

services including mass transit.

References

[1] G. Andogah. Geographically Constrained Information
Retrieval. PhD thesis, University of Groningen, 2010.

[2] D. Awang Iskandar, J. Pehcevski, J. Thom, and

S. Tahaghoghi. Social media retrieval using image fea-

tures and structured text. In Proc. of Workshop on
Initiative for the Evaluation of XML Retrieval, pages

358–372, 2007.

[3] L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum

likelihood approach to continuous speech recognition.

IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 179–190, 1983.

[4] R. B. Brandom. Between Saying and Doing: Towards
an Analytic Pragmatism: Towards an Analytic Prag-
matism. OUP Oxford, 2008.

[5] S. Chandra, L. Khan, and F. Muhaya. Estimating twit-

ter user location using social interactions–a content

based approach. In Intl. Conf. on Social Computing,

pages 838–843. IEEE, 2011.

[6] S. Chen and J. Goodman. An empirical study of

smoothing techniques for language modeling. In Proc.
of Association for Computational Linguistics Annual
Meeting, pages 310–318. Association for Computa-

tional Linguistics, 1996.

[7] P. Division. Land Area, Population, and Density for

Plances and (in selected states) County Subdivisions:

2000. United States Census Bureau, 2000.

[8] S. Kinsella, V. Murdock, and N. O’Hare. I’m eat-

ing a sandwich in Glasgow: modeling locations with

tweets. In Proceedings of Intl. Workshop on Search
and Mining User-Generated Content, pages 61–68.

ACM, 2011.

[9] R. Kneser and H. Ney. Improved backing-off for

m-gram language modeling. In Intl. Conference on
Acoustics, Speech, and Signal Processing, volume 1,

pages 181–184. IEEE, 1995.

[10] J. A. Lesser and M. A. Hughes. The generalizability

of psychographic market segments across geographic

locations. Journal of Marketing, pages 18–27, 1986.

[11] W. Li, P. Serdyukov, A. P. de Vries, C. Eickhoff, and

M. Larson. The Where in the Tweet. In Proc. of Intl.
Conference on Knowledge Management, 2011.

[12] H. Liu, B. Luo, and D. Lee. Location Type Classifica-

tion Using Tweet Content. In Proc. of Intl Conference
on Machine Learning and Applications, 2012.

[13] A. Sadilek, H. Kautz, and J. Bigham. Finding Your

Friends and Following Them to Where You Are. In

Proc. of Intl. Coference on Web Search and Data Min-
ing, 2012.

[14] M. Sundermeyer, R. Schlüter, and H. Ney. On the

estimation of discount parameters for language model

smoothing. Interspeech, 2011.

[15] H. wen Change, D. Lee, M. Eltaher, and J. Lee.

@Phillies Tweeting from Philly? Predicting Twitter

User Locations with Spatial Word Usage. In Proc. of
Intl. Conference on Advances in Social Networks Anal-
ysis and Mining, pages 111–118. IEEE, 2012.

[16] B. Wing and J. Baldridge. Simple supervised docu-

ment geolocation with geodesic grids. In Proc. of the
Annual Meeting of the Association for Computational
Linguistics, volume 1, pages 955–964, 2011.

113

Analyzing Social Behavior of Software Developers Across Different
Communication Channels

Aftab Iqbal, Marcel Karnstedt and Michael Hausenblas
Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway (NUIG)
firstname.lastname@deri.org

Abstract

Software developers use different project repositories
(i.e., mailing list, bug tracking repositories, discussion fo-
rums etc.) to interact with each other or to solve software
related problems. The growing interest in the usage of so-
cial media channels (i.e., Twitter, Facebook, LinkedIn) have
also attracted the open source software community and soft-
ware developers to adopt an identity in order to disseminate
project-related information to a wider audience. Much re-
search has been carried out to analyze the social behavior
of software developers in different project repositories but
so far no one has tried to study the social communication
patterns of developers in other social media channels. We
in this paper presents a new dimension to the social aspects
of software developers and study if the social communica-
tion patterns of software developers is different on project
repositories and social media channels (i.e., Twitter).

1 Introduction & Motivation
In software engineering, many tools with underlying

repositories have been introduced to support the collabora-

tion and coordination in distributed software development.

Research has shown that these project repositories contain

rich amount of information about software projects. By

mining the information contained in these project reposi-

tories, practitioners can depend less on their experience and

more on the historical data [14]. Examples of project repos-

itories are [15]: source control repositories, bug tracking

repositories, mailing list archives etc. Software develop-

ers1 use these repositories to interact with each other or to

solve software-related problems. Much research has been

carried out to analyze the social network structure and be-

havior of software developers by extracting rich information

from these project repositories [22, 13, 24].

1In this paper, we use the term “software developers” or “developers”

to represent those who have commit rights on the source control repository

of a project.

The growing interest in the usage of online social me-

dia channels (e.g., Facebook, Twitter, LinkedIn etc.) have

also attracted the open source software community. Open

source projects are often found to adopt an identity on

these social media channels (e.g., Apache Solr/Lucene2 on

Twitter, MySQL3 on Facebook) in order to disseminate

project-related information (release announcements, major

bug fixes etc.) or gather feedback/questions posted by the

users. Software developers contributing to open source

projects also exists on social media channels. Quite often,

they discuss, debate or share experiences with others rele-

vant to a software project using hashtags (e.g., #apache,

#maven, #hadoop etc.). Hence, the discussions covering

open source projects are not limited to dedicated forums or

mailing lists, there also exists huge amount of information

on the social media channels. However, on the social me-

dia channels, less technical details relevant to the project’s

architecture, code or bugs are discussed. Much of the infor-

mation available is regarding the experiences4 or announce-

ments5 particular to a software project but such valuable in-

formation can not be ignored.

It is worth mentioning that the information related to

open source projects are distributed on the Web in hetero-

geneous data islands i.e., social media channels and project

repositories. Hence, there is a need to bridge the connec-

tion between project repositories and social media channels

as shown in Figure 1. By enabling this connection, we will

have an integrated view on the software project which can

be exploited to support certain use case scenarios:

• End-users response on a particular release of a soft-

ware project.

• The popularity of a software project by applying sen-

timent analysis [17] on social messages (i.e., tweets,

2https://twitter.com/SolrLucene
3https://www.facebook.com/mysql
4https://twitter.com/olamy/status/

231031288734285824
5https://twitter.com/olamy/status/

305334578103582720

114

posts etc.).

• Keeping track of software developer’s social activity

related to a software project.

• Analysis of the social behavior of software developers

in different communication channels (i.e., social media

channels, project repositories).p j p)

Figure 1: Linking Social Media Channels and Project

Repositories.

The social behavior of users have been studied in depth

in the past on different communication channels6 sepa-

rately. However, to the best of our knowledge, no research

work has been done so far on the comparison and analy-

sis of the social behavior of software developers in differ-

ent communication channels. There is no research work

available which analyzes the behavior of software develop-

ers communication with each other on the mailing list/bug

repositories and their communication on social media chan-

nels (e.g., Twitter). This motivates us to study the social

communication patterns of software developers in different

communication channels.

Among different social media channels available to date,

we chose Twitter as a social media channel for this study.

Our initial investigation reveals that software developers

contributing to open source projects also use and communi-

cate with each other on the social media channels (Twitter

in particular). For example, Figure 2 shows the developers

social network structure (derived from the communication

happened on the mailing list) of an Apache project. Among

them, few developers are also found on Twitter. We derived

the social network structure based on their tweets (e.g.,

6We use the term “communication channels” to refer project related

communication channels (e.g., mailing list, bug tracking repository, dis-

cussion forums etc.) and online social media channels (e.g., Facebook,

Twitter etc.)

mentioning other developers in tweets) which is shown in

Figure 3. We removed the labels from nodes (cf. Figure 2

and Figure 3) in order to keep the privacy of developers.

Figure 2: Social Relation

on Mailing List

Figure 3: Social Relation

on Twitter

The social network structures of software developers (cf.

Figure 2 and Figure 3) contributing to the same software

project provides us the basis to investigate the social be-

havior of software developers in different communication

channels. We will investigate if software developers use

Twitter as another medium of communication in contrast to

the traditional medium of communication (mailing list, bug

tracking repositories, forums etc.). This will laid down the

foundations to study the social behavior of software devel-

opers with each other in different communication channels.

In the current scope of this paper, we will not take into ac-

count what software developers are discussing on Twitter

but instead we will focus on the communication happened

between developers on Twitter in a given period of time and

compare it with their communication happened on project

repositories for the same period of time.

The contribution of this work is manifolds: we have

identified social media channels as a platform which is

used by the open source community and software devel-

opers to disseminate project-related information to a wider

audience. Further we highlighted the need to integrate

project repositories and the social media channels (in-

terlinking project-related tweets/posts/hashtags, developer

ID(s), project ID(s) etc.) in order to get an integrated view

on the software project. We have introduced a new di-

mension to analyze the social aspects of software develop-

ers by taking into account non-traditional communication

channels (i.e., Twitter, stackoverflow, LinkedIn, Facebook

etc.) which are also used by software developers. We have

conducted an initial experiment to investigate the correla-

tion between software developers communication with each

other on Twitter and in project repositories by analyzing

their communication data over time.

2 Methodology
In this section, we describe our methodology to extract

information from different data sources and the usage of a

common model and standard format to represent extracted

115

information in order to support better query and integration.

Further, we describe our approach to compute communi-

cation network data which later is used to understand how

software developers communicated with each other in dif-

ferent communication channels over the period of time.

2.1 Transforming Data Sources into RDF
With “Linked Data Driven Software Development”

(LD2SD) [20], we have introduced a Linked Data-based

methodology to relate and integrate data across software

repositories explicitly and unambiguously. We propose to

use Semantic Web technologies to represent data from dif-

ferent software repositories. As such, we propose to use

RDF [21] (Resource Description Framework) as the core,

target data model. Once modeled in RDF, the data can be

easily integrated, indexed and queried using the SPARQL

query7 standard and associated tools. Finally, the integrated

data can be published on the Web using Linked Data prin-

ciples8 allowing third parties to discover and subsequently

crawl the knowledge, and also allowing to interlink with

background or other related information available remotely

on the Web. We refer the readers to [16] for details on how

these standards would be used. Instead here we focus on

transforming data from project repositories and Twitter to

RDF. We used our custom written script to convert mailing

lists and bug tracking repositories data to RDF. An excerpt

of an exemplary RDF representation of an email is shown

in Listing 19. Due to space limitations, we do not show

the RDF representation of a bug report but refer the readers

to [19] for further details on the RDFication process.

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 @prefix sioct: <http://rdfs.org/sioc/types#> .
3 @prefix email: <http://simile.mit.edu/2005/06/ontologies/email#> .
4 @prefix dc: <http://purl.org/dc/elements/1.1/> .
5 @prefix sioc: <http://rdfs.org/sioc/ns#> .
6 @prefix : <http://srvgal85.deri.ie/linkedfloss/mail2rdf/> .
7
8 :A9DB451E-4F0F-435F-8E13-9F4D86996BA4 a sioct:MailMessage ;
9 email:from <http://srvgal85.deri.ie/linkedfloss/aheritier> ;

10 dc:subject "Re: guice & memory usage was:" ;
11 email:body "There’s been little to no feedback on beta-2 so ..." .
12 sioc:reply_of :4C5D409A.9060901 ;
13 dc:Date "2010-08-18T22:43:37+02:00";
14
15 <http://srvgal85.deri.ie/linkedfloss/aheritier> a foaf:Person ;
16 foaf:name "Arnaud Heritier" ;
17 foaf:mbox <mailto:aheritier@example.org> .
18 ...

Listing 1: An Exemplary Email RDFication.

In order to compute the social communication of a soft-

ware developer with other fellow software developers on

Twitter, we first manually checked if software developers

exists on Twitter and using the Twitter account frequently.

We found few software developers who does exist on the

Twitter platform but tweeted very little (≈10-20 tweets

only). We skipped such software developers in the data

7http://www.w3.org/TR/rdf-sparql-query/
8http://www.w3.org/DesignIssues/LinkedData.html
9The URIs used in the listings are just for illustration purposes and are

not dereferenceable.

crawling and transformation process due to less data avail-

able for them. Twitter offers an Application Programming

Interface (API)10 which makes it easy to crawl and collect

data from Twitter. We crawled developers Twitter profiles

and their tweets using Twitter API and later transformed it

to RDF using our custom written scripts. An excerpt of an

exemplary RDF representation of a developer’s Twitter pro-

file is shown in Listing 2.

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 @prefix ls: <http://lab.linkeddata.deri.ie/linkedfloss/ns/#> .
3 @prefix dcterms: <http://purl.org/dc/terms/> .
4
5 <http://srvgal85.deri.ie/linkedfloss/twitter/brettporter> a foaf:Person ;
6 foaf:accountName "brettporter" ;
7 foaf:name "Brett Porter";
8 foaf:homepage <http://twitter.com/brettporter> ;
9 ls:followers "994";

10 ls:following "707";
11 ls:status_count "6050";
12 dcterms:created "2007-03-26T00:05:50";
13 dcterms:description "CTO of MaestroDev, Director of ASF, and long time

Maven, Archiva, open source guy. Author and sadly infrequent coder.
Christian. Husband. Father. Australian." ;

14 ls:location "Sydney, Australia" ;
15 dcterms:language "en";
16 foaf:knows <http://srvgal85.deri.ie/linkedfloss/twitter/aheritier>;
17 ...

Listing 2: An Exemplary Twitter Profile in RDF.

Developers often tweets about project-related informa-

tion using hashtags (e.g., #maven, #lucene) or commu-

nicate with other fellow developers by explicitly mentioning

his/her name in a tweet. An excerpt of an exemplary RDF

representation of a tweet is shown in Listing 3. After trans-

forming the data sources to RDF, we loaded the RDF data

sets into our public SPARQL endpoint11.

1 @prefix sioctypes: <http://rdfs.org/sioc/types#> .
2 @prefix dcterms: <http://purl.org/dc/terms/> .
3 @prefix sioc: <http://rdfs.org/sioc/ns#> .
4
5 <http://twitter.com/brettporter/statuses/20971803268>
6 a sioctypes:MicroblogPost ;
7 dcterms:created "2010-08-12T13:40:49" ;
8 dcterms:creator <http://srvgal85.deri.ie/linkedfloss/twitter/brettporter> ;
9 sioc:content "@aheritier the template hasn’t been updated for the

Confluence 3 upgrade, since we don’t typically use the static
rendering" ;

10 sioc:id "209950243918327809" ;
11 sioc:mentions <http://srvgal85.deri.ie/linkedfloss/twitter/aheritier>
12 .

Listing 3: An Exemplary Tweet RDFication.

In this paper, we are not focusing on interlinking devel-

oper’s information and project related tweets from Twitter

to the various software artifacts (i.e., bug, email, commit ID,

source-code, developer ID etc.) contained in project repos-

itories. Hence, we do not present any approach on creating

owl:sameAs links between relevant entities across dif-

ferent data sources. Different approaches [23, 11, 18, 19]

could potentially be utilized in order to achieve the inter-

linking between Twitter data sets and software artifacts but

it is not in the current scope of this paper.

2.2 Social Relation Computation Approach
The social network structure based on the mailing list

archives was constructed by using the reply structure of the

10https://dev.twitter.com/docs
11http://linkedfloss.srvgal85.deri.ie/sparql

116

email threads for direct communication among developers.

This approach defines a link as the interaction between the

poster of actual email and the replier to the poster email.

For example, Listing 1 indicates that the email is a reply of

another email (cf. line#12). Hence, we can easily query

the poster of email 4C5D409A.9060901 (cf. line#12) in

order to create a social link between both software devel-

opers. In the case of bug tracking repository, link was de-

fined based on the comment posted by a software developer

on a particular bug and the immediate previous commenter

on the same bug. The social network structure based on

the Twitter data was constructed by exploiting the common

practice of using well defined markup in a tweet: @ fol-

lowed by a user identifier address the user. This approach

defines a link as the interaction between the software devel-

oper who posted the tweet and the software developer men-

tioned in the tweet. For example, Listing 3 indicates that the

tweet mentions a software developer which is also reflected

through sioc:mentions property (cf. line#11). Hence,

we can create a social link between both software devel-

opers (aheritier and brettporter). Social relations

between developers on the Twitter was extracted by query-

ing the Twitter data sets using sioc:mentions predicate

property. Social relation between any 2 software develop-

ers were computed only if both software developers com-

municated directly to each other on the project repositories

and the Twitter platform. Periods without any communica-

tion are common as software developers may still contribute

to the same project even if they haven’t communicated for

many days. To tackle this issue, communication between

software developers were captured on monthly basis where

each month value represent the number of times both soft-

ware developers communicated directly to each other. Col-

lecting communication data on monthly basis provides good

amount of data for every pair of software developers in or-

der to analyze their social communication patterns over the

period of time. The initial time-stamp for calculating the so-

cial relation between any 2 software developers were com-

puted by comparing the earliest dates where communication

happened between both software developers on the project

repositories and Twitter. The later date was then used as

the starting time-stamp to compute the social relation be-

tween both software developers. For example, let say ear-

liest communication happened between 2 developers on the

project repositories was 2008-05-25 and on the Twitter

was 2010-03-15. Thus, we will consider 2010-03-15
as the starting time-stamp and compute monthly social in-

teraction between both software developers on the project

repository and Twitter over the period of time.

3 Evaluation

Before we discuss the results of our evaluation, we de-

scribe the projects selected for evaluation. We gathered

data from project repositories of 10 Apache projects (c.f Ta-

ble 1). The reason of choosing Apache projects is that the

repositories are on the Web and available to download (i.e.

mailing list archives, bugs, commit logs etc.). We selected

data from the beginning of each Apache project to date.

The primary source of communication among developers

in Apache projects is through mailing lists. Most Apache
projects have at-least 3 different mailing lists: user, dev
and commits but some projects have more than 3 mailing

lists (e.g., announcements, notifications etc.).

For our study, we downloaded only the dev mailing list

archives of each Apache project under consideration. The

reason is, software developers communicate often with each

other on the dev mailing list rather than on any other mail-

ing list. From the source-control repository data sets of

each Apache project, we extracted a list of software devel-

opers who made commits to the project. Later, we manually

checked if these software developers also exist on Twitter

and using the Twitter account frequently. Table 1 shows for

each Apache project the number of software developers who

have made commits to the source-control repository and the

developers found on Twitter.

Apache Projects Developers (SVN) Developers (Twitter)
Apache Camel [1] 36 24

Apache Directory [2] 51 11

Apache Felix [3] 47 17

Apache Hadoop [4] 97 35

Apache Logging [5] 37 7

Apache Lucene [6] 51 18

Apache Maven [7] 40 10

Apache Mina [8] 28 9

Apache MyFaces [9] 82 16

Apache OfBiz [10] 25 11

Table 1: Developers Contributed to Apache Projects and

found on Twitter.

The results in Table 1 shows good evidence of the ex-

istence of software developers on Twitter. Although, not

all software developers contributing to the Apache projects

found on Twitter. Based on the methodology described in

previous section, we found 107 distinct pair of software de-

velopers who communicated with each other on the project

repositories and Twitter. In the specific case of Apache Of-
Biz project, we didn’t find even a single pair of software

developers who communicated with each other on project

repositories and Twitter. For each pair of software devel-

oper, we computed how many times both software devel-

opers communicated directly with each other on the project

repositories and Twitter, on monthly basis. For an exam-

ple, we show the communication happened between a pair

of software developers over the period of time in Figure 4.

The figure shows that communication pattern among both

software developers is different throughout the time period

under consideration. For example, in 2009-08-12 both

developers communicated directly with each other 7 times

on the project repositories in contrast to 6 times commu-

117

nication on Twitter for the same month. Further, we see

few months where both developers didn’t communicate at

all (e.g., 2011-09-12) and in certain months they appear

to communicate on only one communication channel (e.g.,

2011-03-12).

 0

 5

 10

 15

 20

 25

 30

 35

2009-08-12

2009-09-12

2009-10-12

2009-11-12

2009-12-12

2010-01-12

2010-02-12

2010-03-12

2010-04-12

2010-05-12

2010-06-12

2010-07-12

2010-08-12

2010-09-12

2010-10-12

2010-11-12

2010-12-12

2011-01-12

2011-02-12

2011-03-12

2011-04-12

2011-05-12

2011-06-12

2011-07-12

2011-08-12

2011-09-12

2011-10-12

2011-11-12

2011-12-12

2012-01-12

2012-02-12

2012-03-12

2012-04-12

2012-05-12

2012-06-12

co
m

m
un

ic
at

io
n

co
un

ts

time

project repositories
twitter

Figure 4: Social Communication Between 2 Software De-

velopers on Different Communication Channels.

Given the social dynamics of software developers in dif-

ferent communication channels (cf. Figure 4), we evaluated

if there is a correlation between both developers communi-

cation pattern on project repositories and Twitter by mea-

suring Pearson’s correlation. The Pearson correlation test

based on the communication data between both developers

yielded a correlation value, r=0.447. The r value indi-

cates that the social communication between both develop-

ers on different communication channels is significant and

show a positive correlation of developers communicating on

different communication channels.

In order to find if the communication among software

developers is directly proportional on different communica-

tion channels, we aggregated the monthly communications

occurred on the project repositories and Twitter for every

pair of software developers. We plotted the resulting graph

in Figure 5. The graph shows that for majority of software

developers, the communication on project repositories and

Twitter is not directly proportional.

The highest correlation value we found is a developer

pair with the value (193,105) where 193 indicates the com-

munication counts on project repositories and 105 on Twit-

ter. The Pearson correlation was calculated for that particu-

lar pair based on their monthly communication data which

resulted in r=0.522. Similarly, the lowest correlation

value found is a developer pair with value (107,1) which

resulted in r=-0.040. We calculated the Pearson’s cor-

relation for all developer pairs and computed the mean and

median value which is shown in Table 2.

Developer pairs Mean Median
107 0.191 0.12

Table 2: Mean and Median of Correlation Values

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

m
ai

lin
g

lis
t

twitter

Figure 5: Scatterplot of Twitter vs. Project Repositories

Communication Between Software Developers

Based on the results in Figure 5 and Table 2, we found

that the correlation between developers communication on

Twitter and project repositories is not strong. One poten-

tial reason could be the 140 characters limitation on Twit-

ter which keeps software developers to communicate more

through traditional communication channels (i.e., mailing

list, IRC channels, forums etc.). Other reason might be the

usage of Twitter to communicate non-work related activi-

ties. However, it is quite interesting to observe how devel-

opers communicate with other fellow developers in differ-

ent communication channels. In our experiment, we found

many developers who communicated less on Twitter but

their communication on project repositories were strong.

As a next step for future work, we will also take into ac-

count the social communication graph of a developer with

fellow developers as well as non-developers. Based on that,

we will be able to understand if developers communication

pattern on Twitter is low in general or if they have less com-

munication only with fellow developers.

4 Conclusion & Future Work
In this paper, we have motivated and introduced a new

dimension to the analysis of social dynamics of software de-

velopers by taking into account social media channels. The

usage of social media channels is becoming popular among

open source software community and software developers

to disseminate project-related information to a wider audi-

ence. This motivated us to investigate if the communica-

tional behavior of software developers is same across dif-

ferent communication channels or different from each other.

Our initial results based on the data of 10 different Apache
projects shows that there is very low correlation between

software developer communications across different com-

munication channels. Further, our results shows that the so-

cial communication between software developers on Twit-

ter is comparatively low than the traditional communication

118

channels (i.e., mailing lists, bug tracking repositories etc.).

The work proposed in this paper laid down the idea of

taking into account all possible social media channels which

developers could possibly use to communicate with each

other. Based on that, researchers will be able to measure

and compare the hierarchy and centralization of software

developers in different communication channels in contrast

to previous studies where researchers had been using only

mailing lists, bug tracking repositories or discussion fo-

rums [24, 12]. Furthermore, integrating social messages/-

posts to project-related artifacts will open up new research

challenges allowing to analyze the impact of end-user’s re-

sponse on the success/failure of an open source project.

In the near future, we will take into account stackover-

flow communication network data and further analyze the

behavior of software developers communication patterns

across a variety of communication channels.

Acknowledgment
The work presented in this paper has been funded by Sci-

ence Foundation Ireland under Grant No. SFI/08/CE/I1380

(Lion-2).

References

[1] http://camel.apache.org/.

[2] http://directory.apache.org/.

[3] http://felix.apache.org/.

[4] http://hadoop.apache.org/.

[5] http://logging.apache.org/.

[6] http://lucene.apache.org/.

[7] http://maven.apache.org/.

[8] http://mina.apache.org/.

[9] http://myfaces.apache.org/.

[10] http://ofbiz.apache.org/.

[11] M. Conklin. Project entity matching across floss

repositories. In Proceedings of 3rd International Con-
ference on Open Source Systems, 2007.

[12] K. Crowston, , K. Crowston, and J. Howison. Hier-

archy and centralization in free and open source soft-

ware team communications. Knowledge Technology
Policy, 18:65–85, 2005.

[13] K. Crowston and J. Howison. The social structure

of open source software development teams. In First
Monday, 2003.

[14] A. E. Hassan. The Road Ahead for Mining Soft-

ware Repositories. In Future of Software Maintenance
(FoSM) at Int. Conf. on Software Maintenance(ICSM),
2008.

[15] A. E. Hassan, A. Mockus, R. C. Holt, and P. M. John-

son. Guest editor’s introduction: Special issue on min-

ing software repositories. IEEE Trans. Softw. Eng.,
31(6):426–428, 2005.

[16] T. Heath and C. Bizer. Linked data: Evolving the web

into a global data space (1st edition). Synthesis Lec-
tures on the Semantic Web: Theory and Technology,

1(1):1–136, 2011.

[17] M. Hu and B. Liu. Mining and summarizing customer

reviews. In Proceedings of the tenth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’04, pages 168–177, New

York, NY, USA, 2004. ACM.

[18] A. Iqbal and M. Hausenblas. Integrating developer-

related information across open source repositories. In

IEEE 13th International Conference on Information
Reuse and Integration (IRI), 2012, 2012.

[19] A. Iqbal and M. Hausenblas. Interlinking developer

identities within and across open source projects: The

linked data approach. ISRN Software Engineering,

2013.

[20] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tum-

marello. LD2SD: Linked Data Driven Software De-

velopment. In International Conference on Software
Engineering and Knowledge Engineering (SEKE 09),
2009.

[21] G. Klyne, J. J. Carroll, and B. McBride. Resource De-

scription Framework (RDF): Concepts and Abstract

Syntax). W3C Recommendation 10 February 2004,

RDF Core Working Group, 2004.

[22] Y. Long and K. Siau. Social network structures in

open source software development teams. Journal of
Database Management, 18(2):25–40, 2007.

[23] G. Robles and J. M. Gonzalez-Barahona. Developer

identification methods for integrated data from vari-

ous sources. SIGSOFT Softw. Eng. Notes, 30(4):1–5,

2005.

[24] A. Wiggins, J. Howison, and K. Crowston. Social dy-

namics of floss team communication across channels.

In Fourth International Conference on Open Source
Software (IFIP 2.13, 2008.

119

Effective Crowdsourcing for Software Feature
Ideation in Online Co-Creation Forums

Karthikeyan Rajasekharan, Aditya P Mathur, See-Kiong Ng
Information Systems Technology and Design

Singapore University of Technology and Design
karthikeyan@sutd.edu.sg, aditya_mathur@sutd.edu.sg, ngseekiong@sutd.edu.sg

Abstract—Many software companies are creating firm-centric
online forums for customer engagement. These forums can be an
effective crowdsourcing platform for software product feature
ideation and co-creation with the end users. We studied the
community interaction data from the ideation forums of two
software providers. Link analysis revealed that a small core
community was responsible for generating a large proportion of
the implemented ideas. This indicated the need to identify key
users in the online forum. Our analysis showed the applicability
of centrality measures such as betweenness in ranking key users.
We also found that commenting was likely to produce better
community formation amongst the participants than voting.

Keywords-co-creation; key users; ideation; link analysis;
crowdsourcing; social network analysis; expertise ranking;
software feature requirements

I. INTRODUCTION
Company-centric online user forums are an attractive

platform for company and end-user interactions and offer the
potential to co-opt customer knowledge as part of the
innovation process. Several consumer goods companies such as
Dell, Nike etc. manage online participation communities that
help to strengthen their product portfolio through customer-
suggested features. In particular, for the Software-as-a-Service
(SaaS) arena, the new product development process carries
higher risks of market adoption relative to the risks of technical
failure. Such company-owned online user forums can be used
to help mitigate the market adoption risk by transferring
knowledge from the user to the company, thereby enabling
better decision making pertaining to creating new customer-
centric product features.

User-led innovation has been suggested to be a key part of
the ideation process that can lead to breakthrough product
features, [1] found that "that on average user ideas score
higher in novelty and customer benefit, but lower in feasibility.
Even more interestingly, user ideas are placed more frequently
than expected among the very best in terms of novelty and
customer benefit." [12],[2] argued in favor of taking advantage
of online communities for generating ideas and suggest that the
system needs to be open and social for it to be successful. In
this paper, we focus on the addition of new features to an

existing software product through crowdsourcing in firm-
centric online forums.

For a company to effectively extract value and manage
knowledge creation in such an online community, there are two
key questions that merit consideration

1. How can a firm identify the key users for ideation in
the online ideation forum?

2. Which of the activities in the online ideation forums
are more effective in fostering community formation?

II. DATA GATHERING
To perform the analysis, the online ideation forums of

Salesforce.com (SFDC) and SAP were used. Salesforce.com is
a leading SaaS provider and as part of its online community
SFDC involves end users in its ideation process in a forum
entitled Ideaexchange. Given the nature of its business
(providing software services over the internet), the company
has an active ecosystem of partners and customers who
interact with each other and with SFDC in this online forum.
SAP also has an active ecosystem and has been pursuing Open
Innovation and Crowd-Sourcing as a means of generating new
customer insight. SAP’s ideation forum was called IdeaPlace.

A. Ideation Forum Structure
The screenshot in Figure 1 shows the structure of an

ideation forum using SFDC as an example.

Figure 1. Salesforce Idea Exchange. (forum structure)

120

The key activities that users can perform in such a forum
are the suggestion of ideas, voting on ideas (up and down),
commenting on ideas and annotating the ideas with meta-data
tags. Each idea belongs to a single user and users cannot vote
on an idea more than once. They can however, comment on a
single idea many times. Each user is uniquely identified by a
user identifier. Ideas and comments are linked to the users who
created them.

B. Crawling the Forum
The forums of Salesforce and SAP were crawled using the

Selenium and Scrapy toolkits for publicly available ideation
information and the data that was obtained were encapsulated
into PostgreSQL databases for further analysis.

C. Dataset Description
The datasets that were obtained is described in detail in table I.

TABLE I. IDEATION FORUM DATA THAT WAS GATHERED

Forum #Ideas #Participants #Comments #Votes

SFDC 19,593 73,942 62,389 516,514

SAP 7,506 2,226 7,276 40,765

In the subsequent sections, the discussion will focus on the
SFDC dataset; similar results were obtained on the SAP dataset
and are summarized in the section on related work.

III. ACTIVITY GRAPH GENERATION
We construct activity graphs (one for voting and one for

commenting) from the dataset as follows. Each Node in the
activity graph represents a unique user account. The edges in
this activity graph correspond to a particular communication
activity between two users.

An assumption made in this analysis is that each user
account refers to a unique individual. Each node is annotated
with properties such as the number of ideas and votes that were
contributed by that user.

Each edge in our graph is a reflection of communication
between two users in relation to a particular idea. Edges are
derived through the procedure illustrated by example below

1. User A makes an idea contribution to the community.
User A is identified as the originator and the node's
idea count is increased by 1.

2. User B then comments on the idea proposed by User
A. Thus, this indicates a communication interaction
from User B to User A on his or her idea. An edge is
created from User B to User A to capture this
interaction. The number of such interactions between
the two users will determine the strength of that edge.

3. User C comments on the same idea. Now an edge is
drawn between C and A.

4. User D introduces a new Idea. User D's Idea count is
incremented but no edges are drawn.

5. User C and User A comment on User D's idea. Edges
are drawn from User A and User C to User D.

This is illustrated in the Figure 2. This process is repeated
with the voting activity data to obtain the voting activity graph.

Figure 2. Activity Graph Construction

Vote graph degree distribution plot

Comment graph degree distribution plot

Figure 3. Degree Distribution of Activity Graphs

121

The activity graphs were visualized using [5] and were
found to exhibit a core-periphery structure. There is a highly
connected (relative to rest of the graph) core community whose
members have diverse interests and connect with the less active
periphery community of users. Studying the degree
distributions plots of these activity graphs as shown in Figure
3, the activity networks’ degree distribution likely follow
power law distributions as per the formulation,

Typically, for real world power law distributions, the value
of α is between 2 and 3. The values that were obtained were
2.12 and 2.05 for the vote graph and comment graph
respectively. The power law fitting libraries used in [3] were
used to make these calculations. This seems to suggest that
these are scale free networks within empirical limits and show
behavior similar to those observed in other empirical networks
in [3].

IV. ISOLATING THE CORE COMMUNITY
Given the observation that the user community structure is

that of a core-periphery type, we develop a heuristic algorithm
based on average degree of a sub-graph to isolate the core
ideation community. Intuitively, the sub-graph that forms the
core of the activity graph will have an average degree that is
maximal.

A. Core Community Isolation Results

The above algorithm was applied and the results are shown
in Figure 4. The Y axis tracks the value of the Average Degree
of the sub-graph and the X axis shows the degree cutoff. Based
on the maximal average degree of the sub-graph, we find the
degree cutoff points for the core were 150 and 61 for the Vote
graph and the Comment graph respectively

Having obtained the degree cutoffs, the core community
can be isolated. We used the actual ideation output to evaluate
the core community detected. Table II showed that while the
core community comprises of a relatively few users, they
contribute a significant portion of the ideas that are
implemented. This result when combined with the fact that
SFDC implemented only 4.3% of the total ideas put forth by
the users suggests that it is important to identify the key users
in the community for effective ideation co-creation.

SFDC Vote Graph

SFDC Comment Graph

Figure 4. Core Community Isolation

TABLE II. SFDC IDEA EXCHANGE CORE COMMUNITY PERFORMANCE

#Graph % of total
users in Core

Idea contribution
fraction of core

Implemented Idea
fraction of Core

Vote
Graph 0.35% =38%

Comment
Graph 0.68%

V. KEY USER RANKING
We conduct link analysis to rank community users for their

relative importance. This can be done by calculating the
prestige of a node and also by looking at measures of centrality
of a node. Structural prestige in network analysis has been the
basis for analyzing many networks. [11] details the PageRank
algorithm that was used to rank web pages according to
structural prestige. [16] proposed the idea of betweenness
centrality as a measure of a node’s importance in the overall
graph.

Based on the original page rank algorithm [11], we define
the community activity rank as follows

122

Where C(i) is the community activity rank of node i, E is
the set of all edges in the graph, d is the damping factor (set to
0.85), is the weight of outbound link from node j to i,

 is the sum of all of the weights of outbound edges from
node j. Thus, the final activity rank of a user is dependent on
the activity ranks of the users who collaborate with the user in
question. The key difference is that the original page rank
algorithm didn’t cater for edge weights and in our formulation
we use a directed graph with weighted edges.

Betweenness Centrality is defined as follows

Where is the number of shortest paths between j and k
and is the number of shortest paths that have node i as
part of the path. Thus, Betweenness is a measure of the
number of times a node is part of the shortest path between
any two other nodes in the graph. The intuition that guides this
centrality measure is the idea that a node in the shortest path
between two other nodes can influence the flow of information
between those two nodes.

A. Ranking Results
The two approaches to ranking users were applied using [5]

and the users were ranked. An abbreviated subset of the results
(due to space constraints) - the top 10 users - for the comment
graph are shown in tables III and IV

TABLE III. SFDC IDEAS COMMENT COMMUNITY RANK TOP 10

User Name Community
Activity Rank

Community
Recognition

1 Alexander Sutherland 0.019588813 MVP Winter 11

2 Christoph K 0.008686445 None

3 werewolf 0.007827351 MVP Winter 11

4 Andres G 0.007087102 MVP Winter 11

5 jcohen 0.006898484 None

6 TomaszO 0.006523066 None

7 ToddJanzen 0.005924399 SFDC

8 eyewellse 0.005483297 None

9 ErikM 0.005006845 None

10 chris925 0.004876349 None

TABLE IV. SFDC IDEAS COMMENT BETWEENNESS CENTRALITY TOP 10

User Name Betweenness
Centrality

Community
Recognition

1 Alexander Sutherland 0.019771398 MVP Winter 11

2 Rhonda Ross 0.015190872 MVP Winter 11,12,13

3 Scott J 0.013384961 SFDC

4 Andres G 0.00886717 MVP Winter 11

5 Matthew Lamb 0.008623408 MVP Spring 11

User Name Betweenness
Centrality

Community
Recognition

6 AMartin 0.007343319 MVP Spring 11

7 Mattias Nordin 0.005807566 MVP Winter 11,12

8 mattybme1 0.005726696 MVP Winter 11,12,13

9 Christoph K. 0.00516802 None

10 Jakester 0.004668099 None

B. Evaluation of the Ranking
To evaluate the ranking of nodes, a measurement of the

firm’s evaluation of the importance of a user is useful.
Salesforce runs a community recognition program called the
MVP program where it periodically chooses members from
the community for their outstanding achievements and
recognizes them with virtual badges as MVPs. The
Salesforce.com website describes the program as “This
program recognizes exceptional individuals within the
Salesforce community for their leadership, knowledge, and
ongoing contributions. These individuals represent the spirit
of the community and what it is all about!”

In the result tables, the Community Recognition column
shows if the individual has been the recipient of any such
award. In cases, where the contributor is part of Salesforce, the
employee is not eligible for recognition. Such members have
also been highlighted. To evaluate the ranking approaches, the
MVP recognition of a user can be used to as a qualitative
measure. I.e. to what extent can network prestige or centrality
be linked to the firm’s recognition of individual users.

If the firm's recognition of community member's
contribution is the key criteria then the Betweenness measure
does much better than the Community Activity Rank measure.
Most of the people in the top 10 as ranked by the betweenness
measure are already members that the firm (SFDC) has also
recognized publicly. This does imply that this could be
measure that can potentially be used to identify users who
have not been yet recognized. This measure could also be used
in a dynamic fashion (as the community grows) to identify
newer key users. It is interesting to note that the community
rank based approach didn’t perform as well as the
betweenness centrality measure. While the transfer of prestige
from one user to another through out-links has an intuitive
appeal, in this instance, it didn’t perform as well empirically.
[15] performed a similar analysis on the java question and
answer forum and report similar findings that in online
expertise networks PageRank derivatives did not outperform
simpler measures.

The results also pose interesting qualitative questions for
analysis. For instance, the user Jakester (number 10 as per
betweenness ranking) has suggested 26 ideas, of which 10
have been implemented by SFDC. He has also contributed 534
comments and 771 votes on ideas. It would be of interest to
understand the reasons in the decision making process of the
firm that led to him not being recognized. In a similar fashion,
it would be interesting to understand the motivational impact
of having been granted a MVP badge. While, the analysis

123

covered in this paper didn’t evaluate this, it presents an
interesting avenue for further research.

Thus, betweenness centrality is a potential tool to answer
the first question posed at the start of this paper. In an actual
implementation scenario, this metric could be calculated in an
offline batch mode for analysis. [6] has proposed a fast way of
calculating betweenness centrality that could be used to
perform this calculation.

VI. COMPARING VOTING AND COMMENTING
The next key question then is which of the two online

forum activities (voting and commenting) encourage a tighter
and close knit community to be formed? This question is tied to
what motivates users to engage and participate in innovation
forums with the firm. If the activity fosters intrinsic
motivational factors, then it is likely to be self-sustaining. [13]
note that in innovation communities a key motivating factor for
users is learning. In [9], Lakhani and Eric Von Hippel studied
the Apache Open Source community and report that in their
study "98% of the effort expended by information providers in
fact returns direct learning benefits to those providers".

To evaluate the voting activity against the commenting
activity, a measure of community quality is required. [10] uses
the notion of conductance as a measure of community quality.
According to [10], if A is the adjacency matrix of the graph G
= (V, E), then

Where

Conductance is a measure of the intra-community
connections versus the inter-community connections. The
lower the value of conductance, the better the quality of the
community i.e. the community is densely connected internally
and sparsely connected to the rest of the graph.

[10] also introduces the notion of a community profile plot.
Network Community Profile (NCP) plot characterizes the best
possible community over a range of size scales. In this plot, the
size of the nodes in a community (community size) is plotted
on the x axis and on the y axis the best possible community of
the given size (based on conductance) is tracked. Both the axis
are on a log scale. In real world networks, the value of
conductance decreases initially and then starts to increase. In
our analysis, the global minimum of the NCP plot can be a
measure of the community formation tendencies of an activity
graph. A comparison of the community size at which the global
minimum occurred was used to draw conclusions on
community formation characteristics of voting and
commenting activities.

Using this approach, the activity graphs constructed out of
comment and voting data were treated as un-directed graphs
and used to create separate network community profile plots.
The plots for the vote activity graph and the comment activity
graph are shown in the figures 5 and 6 respectively. The SNAP
[17] (Stanford Network Analysis Project) toolkit was used to
create this plots.

Both the profile plots show the expected behavior of
initially decreasing conductance followed by increasing
conductance. This is to say that the quality of communities
increases with node count for a while and then starts to
degenerate. The vote activity graph reaches a community size
of 10 nodes when conductance is at the global minimum, while
for the comment activity graph; the community size where the
global minimum is found is around ~33 nodes. In other words,
in the comment activity graph, the highest quality community
was found involving up to ~33 users whilst in the vote activity
graph, the best community size is comprised of only 10 users.

Figure 5. SFDC Vote Graph NCP Profile Plot

Figure 6. SFDC Comment Graph NCP Profile Plot

This comparison suggests that commenting activity has a
higher community creation effect than voting activity. This is
to be expected as psychologically, there is higher intrinsic
motivations and rewards (through the knowledge gained) for
engaging in discourse as opposed to merely voting on an idea.
While, this analysis has been based on a single ideation
community, it shows the distinction between voting and
commenting activity in objective and measurable terms.
Further work is required to analyze other ideation networks to
understand if similar characteristics are observed there. This
result is also in line with [9], [13] which have suggested that a
key motivating factor is learning through participation. Such

124

understanding will be important for designing suitable activity
features for the online user forums to be effective ideation co-
creation platforms.

VII. RELATED WORK
Similar analysis was performed on the SAP dataset and the

following results were obtained. The activity graph also
displayed power law distribution of node degree with an α of
2.57 and exhibited similar core-periphery structure. The size of
the core community obtained by the heuristic algorithm was
5.4% of the overall community but accounted for 20% of the
suggested ideas and 46% of the implemented ideas (only 4% of
all suggested ideas were implemented). Qualitative analysis of
the ranking also demonstrated that betweenness performed
better than the PageRank derived community activity rank.

Many analyses of online networks have used the notions of
node prestige to rank and evaluate participants. [7] used a
PageRank based approach to identify key users in online
communities. [14], [15] applied activity based ranking
techniques to the study of expertise in online question and
answer forums. In these forums, one user poses a question and
other users contribute answers to the posed question. [15]
obtained similar results where the PageRank derivatives of
node importance did not outperform simpler measures. In their
analysis, they found that “z_score” and “z_num” -simple
metrics derived from a node’s in and out degree- performed
best in their dataset. [8] used the notion of out-links as a means
of identifying rising stars in bibliography networks. The
intuition here is that the nodes in this network (namely
researchers) have prestige which they confer on others through
their co-authorship and collaboration. [4] analyzed the online
ideation community of DELL and concluded that past success
likely has detrimental effects on the productivity of new ideas.
While much work has been done on online communities, the
study of ideation in online communities is still evolving and
presents an opportunity for continued research.

VIII. CONCLUSIONS
In this paper, we have performed link analyses on the

online ideation communities of two software providers for
crowdsourcing new product features. We found that most of
the implemented ideas were originated from a small core
community in the forums. To identify the key users for product
feature ideation, we found that Betweenness centrality is a
better measure for user ranking than PageRank. We also found
that the community cohesion tendencies of commenting
activity were higher than that of voting activity. These findings
will be useful for designing such company-centric user forums
for effective co-creation of new product features.

A. Limitations
The analysis in this paper adopted a static approach to the

network activity. In reality, collaborations in online
communities weaken / strengthen over time. If two users
communicated on a certain task once, it doesn't necessarily

imply that the link remains active for their entire lifetime on the
community. This could potentially be handled by varying the
edge weight as a function of time. This is a potential area for
further research.

The analysis of community formation required splitting the
community into sub-communities. Other approaches such as
those demonstrated by [18] could be used to measure
community quality of overlapping communities. These will be
evaluated in future work on the data set.

REFERENCES
[1] MK Poetz and Martin Schreier. The value of crowdsourcing: can users

really compete with professionals in generating new product ideas?
Journal of Product Innovation, 29(2):245-256, 2012.

[2] Dahlander, Linus, Lars Frederiksen, and Francesco Rullani. "Online
communities and open innovation." Industry and innovation 15.2 (2008):
115-123.

[3] Clauset, Aaron, Cosma Rohilla Shalizi, and Mark EJ Newman. "Power-
law distributions in empirical data." SIAM review 51.4 (2009): 661-703.

[4] B. Bayus. Crowdsourcing and individual creativity over time: the
detrimental effects of past success. Available at SSRN 1667101, 2010.

[5] Mathieu Bastian, Sebastien Heymann, and M Jacomy. Gephi: An open
source software for exploring and manipulating networks. In Interna-
tional AAAI Conference on Weblogs and Social Media. Association for
the Advancement of Artificial Intelligence, 361-362 ,2009.

[6] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(1994):163-177, 2001.

[7] Julia Heidemann, Mathias Klier, and Florian Probst. Identifying key
users in online social networks: A PageRank based approach.
Information Systems Journal, 4801(December):12-15, 2010.

[8] XL Li, C Foo, K Tew, and SK Ng. Searching for rising stars in
bibliography networks. In Database Systems for Advanced
Applications,pages 288-292, 2009.

[9] KR Lakhani and Eric Von Hippel. How open source software works:free
user-to-user assistance. Research policy, 32(July 2002):923-943, 2003.

[10] Leskovec, Jure, et al. "Community structure in large networks: Natural
cluster sizes and the absence of large well-defined clusters." Internet
Mathematics 6.1 (2009): 29-123.

[11] L Page, S Brin, R Motwani, and T Winograd. The PageRank citation
ranking: bringing order to the web. pages 1-17, 1999.

[12] E. Prandelli, M. Swahney, and G. Verona. Collaborating with customers
to innovate: conceiving and marketing products in the networking age.
Edward Elgar Publishing, 2008.

[13] Anna Stahlbrost and Birgitta Bergvall-Kareborn. Exploring users
motivation in innovation communities. International Journal of
Entrepreneurship and Innovation Management, 14(4):298-314, 2011.

[14] KK Nam, MS Ackerman, and LA Adamic. Questions in, knowledge in?:
a study of naver's question answering community. Human Factors,pages
779-788, 2009.

[15] Jun Zhang, MS Ackerman, and L Adamic. Expertise networks in online
communities: structure and algorithms. Proceedings of the 16th
international conference on World Wide Web, pages 221-230, 2007

[16] Freeman, Linton. "A set of measures of centrality based on
betweenness". Sociometry, 40: (1977):35–41

[17] Stanford Network Analysis Project, http://snap.stanford.edu/index.html
[18] Palla, Gergely, Imre Derényi, Illés Farkas, and Tamás Vicsek.

"Uncovering the overlapping community structure of complex networks
in nature and society." Nature 435, no. 7043 (2005): 814-818.

125

Profiles for Convenient Front-end Privacy
Ronald Maier

Dept. of Information Systems
University of Innsbruck

Innsbruck, Austria
ronald.maier@uibk.ac.at

Johannes Sametinger
Dept. of Information Systems – Software Engineering

Johannes Kepler University
Linz, Austria

johannes.sametinger@jku.at

Abstract— Privacy can be described as the state of being unac-
companied or unobserved without unauthorized intrusion. We
define front-end privacy as privacy when accessing data from a
device, e.g., when working jointly on a computer. This is a matter
of visibility with the problem that information can get directly
disclosed. In this paper, we will define kinds of information that
we want to consider for not being disclosed or for being hidden
on the screen. Starting from typical knowledge situations we will
categorize what we call front-end situations and define risk levels.
We then introduce spheres and profiles as a means to effectively
and conveniently ensure front-end privacy. Usability and imple-
mentation considerations wrap up our approach to tackle this
neglected form of privacy.

Keywords-privacy; front-end privacy; profiles;convenience;

I. INTRODUCTION
In recent years, the share of work that can be characterized

as knowledge work (KW) has risen continuously [1], compris-
ing key characteristics of a wide array of activities concerned
with creating, translating or applying new knowledge [2,3,4].
KW has strong communication, coordination and cooperation
needs, is highly mobile, flexible, distributed and requires a
strong yet flexible, personalized and adaptable support by in-
formation and communication technologies (ICT) [5]. Conse-
quently, knowledge workers as users of advanced ICT want to
have data with them, have full control about access to them,
share them when, where and with whom they decide and yet be
confident that valuable information and knowledge is protected
against unauthorized access and use. Increasing requirements
concerning usefulness, ease of use and convenience have been
fulfilled with a plethora of ICT solutions that deploy simple
mechanisms such as the more data are on the server, the more
convenient is the access from wherever or the more data is on a
mobile device, the easier it can be accessed by its user. Howev-
er, users’ valuable data are distributed across applications and
computers, so that managing access privileges and knowing
what happens to the data has become a nuisance to users.
While organizations are increasingly aware that strong man-
agement of information security on an organizational level is
important in today’s knowledge economy and while on a socie-
tal level there has been substantial debate about privacy or the
lack thereof backed by showcases such as the introduction of
Google Streetview in Germany [6], awareness of the individual
knowledge worker’s role in information security management
has only recently been put on the radar of information security
management initiatives, e.g., [7,8,9]. Early computers were
used to solve specific problems, e.g., spreadsheets to perform
business calculations. Over the years and decades, we have

moved more and more data onto our computers and have long
ago reached the point where a work life without computers is
not possible any more for most of us. In the early computing
days, all data was kept centrally on mainframes. The personal
computer has brought computing power onto our desktop, and
the amount of data being administered has increased. The In-
ternet has interconnected all these computers and taken more
data on the computers, e.g., personal communication via e-
mail. There is also a trend to centralize data again. Companies
use servers to store and secure information. But also individu-
als use servers for the purpose of having data available on sev-
eral client machines, e.g., to synchronize data between servers,
both organization-internal and external to an organization, e.g.,
social business networks like XING or LinkedIn, laptops, smart
phones, and home/office computers. Also, people increasingly
use subscriptions to information, e.g., to get current weather
information or to get current news headlines.

In the course of these developments, many knowledge
workers have increasingly given personal information away for
convenience and functionality. From the perspective of actual
behavior, privacy seems to be a lesser concern for individuals.
At the same time, many are annoyed about the lack of conven-
ient possibilities for keeping their information secluded from
unwanted access. In addition to the considerations on privacy
of data held in remote servers and sent between the servers and
the person’s device which typically cannot be easily designed
by individuals, knowledge workers enjoy freedom to personal-
ize and design their own KW space, the front-end towards the
diverse interconnected information spread over heterogeneous
systems. People want to design (Gestalt) their KW space (in-
cluding a network of selected people) in order to increase their
individual productivity. They then use these KW spaces in
diverse situations with a variety of requirements concerning
privacy. It does make a difference whether we access our KW
space alone or in company, at home, at an office or in a public
place, just to mention a couple of cases. So far, there is a lack
of concepts guiding us in secluding information from others
while accessing it. Although individual applications offer nu-
merous functionalities in order to decide how much infor-
mation is disclosed, these functionalities are inconvenient,
because knowledge workers typically switch continuously
between accessing a plethora of applications with data distrib-
uted over many systems in order to pursue their activities.

In this paper, we will address the question on how users can
balance convenience and privacy in various situations concern-
ing a (set of) KW space(s) they access for activities they are
engaged in. The paper’s main aims are to describe barriers that

126

many knowledge workers face with respect to ensuring privacy
of their data while still being able to perform their work tasks,
to review opportunities offered by current applications that in
combination can address the requirements and to provide con-
cepts helping to design convenient solutions for managing
front-end privacy. The paper is structured as follows. Section 2
discusses conflicting priorities between convenience and priva-
cy. Front-end privacy is introduced in Section 3, where we also
consider knowledge situations as well as privacy situations. At
the end of Section 3 we discuss how users typically handle
risks to front-end privacy and present some basic solutions. In
Section 4, we introduce spheres and profiles as a means to
provide front-end privacy. Usability and realization considera-
tions are given in Section 5. Section 6 concludes the paper.

II. CONVENIENCE AND PRIVACY
Convenience is the “fitness or suitability for performing an

action or fulfilling a requirement or something (as an appliance,
device, or service) conducive to comfort or ease” [10]. It can be
anything that is intended to save resources like time or energy.
Inconvenience leads to frustration. The meaning of “conven-
ience” can change over time. Something that is convenient
today may be regarded as commodity in the future, e.g., mobile
access to the Internet, GPS positioning. Privacy can be de-
scribed as the quality or state of being apart from company or
observation with the freedom from unauthorized intrusion [10].
Cultures and individuals have different considerations of what
is private that are generally related with the particular environ-
ment in which privacy has to be considered [11], but there are
also commonalities. Privacy is related to anonymity, where
people remain unnoticed or unidentified in the public or in the
Internet. Privacy is also an aspect of security. Privacy and con-
venience are at odds with each other. According to a poll, al-
most 70 percent of consumers do not mind if their identities are
authenticated when they make a purchase, as long as their
personal information is not collected [12]. It is surprising that
users feel comfortable with the authentication of their identity.
They want to have a secure, trusted transaction experience.
Sometimes, they value convenience higher than privacy. An-
other survey has revealed that the top three privacy concerns of
Internet users in the US have not changed from 2002 to 2008
[13]. This is despite the fact, that these years have seen a signif-
icant increase in online purchases. But people have become
more concerned about the disclosure of their purchasing pat-
terns. They also express a stronger desire to be notified about
protection measures of their personally identifiable infor-
mation. People also have become more concerned about the
tendency of web sites to store information about sites that had
been visited previously [13]. A requirements taxonomy for the
reduction of web site privacy vulnerabilities is given in [14].

There are many examples, where convenience beats priva-
cy, see for example [15]. Amazon can tell its customers what
kind of books or music they might be interested in. Also, they
do not have to retype their credit card numbers every time they
make a purchase. Customers are happy because it is conven-
ient. We often give away private information, because we get
something valuable in return, e.g., frequent flyer miles, reduced
prices in supermarkets, access from any device to documents
stored on the web, exposure to significant others in social net-
works. We distinguish several forms of privacy:

 Information privacy. Privacy of any information that is
personally identifiable, e.g., medical information, fi-
nancial information, location-based information, in-
formation about someone’s troubles with the law, life-
style information, political information.

 Internet privacy. Same as information privacy, but con-
sidering any activities on the Internet, e.g., information
that is shared in social networks, financial information
that is transmitted and disclosed during online banking
sessions. In social networks, users often are not aware
of specific privacy settings and their consequences.
This results in disclosed information without know-
ledge or consent of users.

 Back-end privacy. Privacy of data and activities on re-
mote peers and servers. This is a matter of storage and
whether we trust our service providers.

 Front-end privacy. Privacy when accessing data from a
device, e.g., when working jointly on a computer. This
is a matter of visibility with the problem that informa-
tion gets directly disclosed. We usually want to see
everything when alone, but want to hide specific things
when not alone.

 Connection-based privacy. Privacy of data that is trans-
ferred between a local device and a remote machine.
This is a matter of leaving data traces with the known
problem of eavesdropping, e.g., unencrypted transfer of
data like e-mail messages.

 Administrational privacy. Privacy of data protected
from being disclosed to administrators. This is about
access rights and needed trust to our administrators.

Privacy impact assessments are a public reaction against
privacy-invasive actions of governments and corporations [16].
People increasingly want to know about organizations' activi-
ties and to have more control over their accesses.

III. FRONT-END PRIVACY
Front-end privacy is about information that we want to be

displayed on our screens in specific situations.

A. Information on the Screen
Before we proceed, we have to define kinds of information

that we want to consider for being hidden on the screen.

 File system. Branches of the file system can contain in-
formation that we do not want to be disclosed, i.e., we
do not even want someone else to see that there is
some information. Seeing the name of the file or folder
can already be too much information. And, we do not
want to have to say no when somebody else, e.g., our
boss, asks us to open a specific folder or file.

 Applications. We sometimes do not want to disclose
the fact to someone else that we have installed a specif-
ic application. For example, we do not want to unfold
that we have a weakness for playing poker. Infor-
mation about applications includes the start menu, con-
trol panel entries, desktop shortcuts, etc. In some situa-
tions, it is okay to disclose that we have an application
installed (and often will not be seen anyway), but we

127

do not want to disclose the fact that we are currently
running this application or that we have recently or
frequently used it. With some applications, the oppo-
site might be true so that we do not want to get caught
not having (sufficiently) used the application.

 Application-specific information. Some applications
manage extensive information and we want to disclose
this information only partially. This is especially true
for office applications like browsers, e-mail, contacts,
and calendar. Information we do not want to unfold to
everyone include specific calendar entries, specific
contact information, parts of the browser history, etc.

 Alerts and Notifications. Alerts and notifications are
given by the operating system or by applications. We
treat them separately, because there are situations
where we do not want to be disturbed by them at all.

 Connections. Which connections can be seen and
used? At what level of detail can they be accessed?

B. Knowledge Situations
In organizations, it is common that administrators have full

access to computers of employees. This makes administration
of the ICT infrastructure much easier. Additionally, administra-
tors can conveniently solve employees’ ICT problems by using
remote desktop connections, i.e., by having full control over
employees’ machines. Thus, administrators have potential
access to an enormous amount of private data. We can argue
that a computer paid for by a company is not supposed to have
any private data on it. But even if this is the case, there are
many possibilities to invade someone’s privacy, e.g., data about
what someone is currently working on, e-mail messages, and
logon/logoff times. All too often we are unable to decide our-
selves about how much privacy we are willing to barter for
perceived value in general and convenience in particular. This
is the case when using the infrastructure of our employer.
When we use web sites and services like those provided by
Amazon, Apple, Facebook or Google, then we often have two
choices. Either we refrain from using the site or service. Or we
give up privacy in accordance with the site or service provider.
In addition to administrators and service providers, people
around us to whom we can, should or must disclose our screen
can intrude our privacy. When, for example, we sit in our office
working on our computer, and someone is approaching us in
order to make an appointment, we open our calendar and reveal
information about delicate appointments. While disclosure of
private data to administrators and service providers typically is
on the radar of information security professionals and often
dealt with using, e.g., awareness raising measures, policies and
software-based counter-measures, the decision about how
much information our work environment should disclose to us
and others around us is not a simple one. Example privacy
situations with potentially increasing attention from outsiders
towards what happens on our screen are:

 Isolated. We work privately and isolated from other
people, e.g., in a personal office or at home.

 Office work. We are surrounded by colleagues.
 Meeting. We are in a meeting with participants sitting

together having our mobile devices in front of us.

 Public. We work in a public location, with outsiders
being able to freely roam next to our mobile devices.

 Approached. We get approached by uninvited persons.
 Presentation. We present slides in front of people.
 Joint work. We jointly work on our computer.

These examples show how diverse situations can be among
which people can switch. For example, in a team that closely
works together, people would be expected to instantly switch
between isolated work, approached and joint work as well as
office work, joint work, ad-hoc meetings and presentations, just
to mention a few switches that might occur frequently every
day. The members of the team are not necessarily limited to
organization-internal people. Advanced collaboration technol-
ogies foster virtual teams so that members can switch between
these situations without being geographically collocated, e.g.,
using co-authoring tools, multi-party videoconference, screen
and application sharing systems such as Adobe Connect,
GoogleDocs, Microsoft Sharepoint or Skype. Our list of exam-
ple privacy situations is non-exhaustive and can be extended
almost to an infinitely long list of specific situations describing
(slightly) different requirements towards privacy. However,
with respect to the consequences for profiling and for restrict-
ing access of others to valuable personal information, the de-
picted dimensions seem to sufficiently describe a set of circum-
stances of privacy that seems conveniently manageable.

For example, we get informed about the fact that a new up-
date from software XY is available as an inconvenient interrupt
during a presentation. Or we get a notification about the arrival
of an e-mail message, maybe even including information about
its sender and the subject. Or we use the browser and reveal
information about our browsing history. If we sit in front of our
computer and jointly write an e-mail message, all too often this
reveals much information about our e-mail traffic, like senders,
receivers, subject lines, used e-mail accounts, folders, etc. As
teachers at the university we sometimes need to look up an
individual entry in a list like student grades in a spreadsheet.
How do we get this information with the student next to us
without revealing information that is not intended for this per-
son? In contrast to the situation where we do something with
someone else in front of our computer (known intruders), there
are situations where someone approaches us without invitation
(unknown intruders). If we work in a public place, people sit-
ting next to us will see information that we are not willing to
reveal, e.g., in an airplane, at the airport, at a conference. How
do we foil uninvited people from staring at our screen? There
are solutions that limit visibility of screens horizontally, how-
ever, this also encumbers joint work sharing the screen and
people sitting behind us will still be able to observe our screen.

C. Front-end Situations
Applications typically operate based on the assumption that

once a user is authenticated and authorized, she is the only one
in front of the computer or all other persons that get a glance of
the screen are authorized to see all information that the applica-
tion reveals. In other words, the application interacts with the
user without any consideration of the circumstances of the
situation at hand. Take the example of online banking which
not by coincidence has been termed "home banking". If a user

128

Figure 1. Risk levels of front-end privacy situations

is in a public environment and simply wants to transfer an
amount of money, this is often not possible without revealing
further financial information such as the current balance on all
accounts or the most recent transactions. We distinguish the
front-end privacy situations exposed, surrounded, together, and
secluded, see Fig. 1.

 Exposed. The display is exposed to the looks of others.
For example, we make a presentation, or someone ap-
proaches us in order to set up an appointment.

 Surrounded. We are surrounded by people. The display
is not directly exposed to the looks of others, but peo-
ple can get a glimpse of what is on the screen. We may
be approached rather quickly, e.g., we work in the
lounge of an airport or in some other public place.

 Together. We are together with people we know and
with whom we work together, e.g., in project meetings.

 Secluded. The screen cannot be seen by other people,
e.g., we work alone in our office or at home.

The distinction among these situations is not always clear,
but a finer granularity will counteract convenience.

D. Front-end Risks
The term risk is discussed heterogeneously and focuses ei-

ther on its causes or its impacts. Risk is related to any business
operation and includes possible losses that result from the real-
ization of uncertain undesired events [17]. Risk can also be
defined as a condition in which a deviation from a desired
outcome can occur [18]. Deviations can refer to targets, plans
or results of a decision. A potential positive deviation is con-
sidered as opportunity and a negative as threat or risk in a nar-
row sense. Moreover, risks can be characterized by a probabil-
ity that an undesired event occurs and an extent of loss that
goes along with the occurrence of this event [17]. Risk man-
agement typically comprises identification, assessment, gov-
ernance and evaluation as basic steps [19]. Risk management
has also been discussed with respect to knowledge assets, e.g.,
[20,21], and is part of formal organizational initiatives such as
information security management initiatives, e.g., [7,8]. Risk
management includes measures about how to deal with risks,
specifically avoidance, acceptance, transfer, reduction, e.g.,
[22], based on [23]. Examples in this paper’s domain are:

 Reduction. Privacy risks can be reduced, e.g., by using
private acronyms and “cryptic” expressions in a calen-
dar. Thus, if other people see the calendar entries, they
at least do not immediately make sense to them.

 Acceptance. Many simply accept risks. If someone
sends a job application via email from her current em-
ployer, then there is definitely a risk. Sometimes this is
simply ignorance or lack of technological knowledge,
i.e., the facts that email messages are sent via plain text
and that administrators can easily read them.

 Avoidance. Risks can be avoided, for example, by
sending text (SMS) from a private telephone instead of
using email or by not storing selected sensitive infor-
mation on a computer at work.

 Transfer. Risks can also be transferred to another party,

for example, by insuring against problems resulting
from information being disclosed to competitors. How-
ever, this is associated with additional costs.

Most individual users will not go to the trouble of formally
assessing their risks and deploying corresponding personal risk
management measures. Instead, users resort to convenient
measures in order to save time and energy and interfere as little
as possible with the pursuit of their goals. Concerning connec-
tion-based privacy, users on the one hand typically trust secure
connections like https or VPN and on the other hand do not
have any alternatives in regular transactions they are engaged
in. Concerning administrational privacy, many users are aware
that the policies in place are not sufficient and that they have to
take into account the possibility that administrators access their
data beyond administrational duties. While users are increas-
ingly aware of back-end privacy issues, it seems like most
people are not yet aware of potential breaches of front-end
privacy which are consequently not dealt with appropriately.

E. Partial Front-end Solutions
There are solutions available that solve parts of the prob-

lem. For example, MindGems offers Boss Key, an application
that hides and restores windows when pressing a hotkey. It
covers tracks of running programs, even from the task bar and
the system tray. These applications are kept hidden in the
background and can later be restored from the point of interrup-
tion [24]. MS Outlook provides the possibilities to create sev-
eral folders for mails, contacts, calendars and task lists. These
folders can be given different permissions and they can be
visualized in overlay mode. But all data still resides on one
single server. It is not possible to combine information from
two different servers, say one for a highly confidential research
project and another one for corporate use.

IV. SPHERES AND PROFILES
Data, applications and network connections can be used for

several purposes. Some of them are closer to one purpose than
to another. For example, a project manager uses project man-
agement software, presentation software and a collaboration
client to manage data about a project and to communicate with
project members while she uses an enterprise resource planning
software accessing data on personnel, material and other re-
sources for administrative purposes. In this case, the workspace
can straightforwardly be divided into two parts. However, the
two parts can overlap due to using the collaboration client also
for exchanging data with administrative or controlling units.

A. Spheres
The phenomenon of overlapping workspaces can be de-

scribed with the metaphor of information spheres. The term
sphere means "any of the concentric and eccentric revolving
spherical transparent shells in which according to ancient as-
tronomy stars, sun, planets, and moon are set", a "natural, nor-
mal, or proper place", "an area or range over or within which

129

Dimension Filter
When 2013
Why Front-end privacy
Who R. Maier, J. Sametinger
How .doc, .ppt, .jpg, email
What -

Where -
Figure 2. Sample profile

someone or something acts, exists, or has influence or signifi-
cance" [10]. An information sphere is a collection of objects,
specifically information (contents, documents etc.), applica-
tions and pieces of information used in these applications.
Objects in spheres "gravitate" around a user-defined purpose.
Examples are a project or an ongoing individual or collective
activity, e.g., joint experience or collaboration with persons.
Spheres have conceptual rather than physical boundaries and
are transparent with respect to where, i.e. on which devices or
machines, objects are located. Using the metaphorical analogy
of the term denoting parts of the celestial system, gravitational
forces metaphorically mean that objects are attracted to other
objects. Objects potentially belong to several spheres as gravi-
tational forces from objects in several spheres can be at work.
The definition of spheres is inherently a user task. But automat-
ic definition can be supported by classifications based on ma-
chine learning algorithms that are similar to the ones that are
used for task detection. The following dimensions can help to
guide a user in defining a sphere:

 When. Time is the primary dimension for presenting
objects. It is the pace making dimension of KW.

 Why. Purpose is a leading dimension because it defines
the center of a sphere and the gravitational forces that
are at work. It is the sense making dimension of KW.

 Who. The dimension about persons and institutions de-
fines who else is involved in a sphere. For example, it
influences access rights to others' collections of objects
or allocation of communication acts to spheres. This is
the networking dimension of KW.

 How. Format and type define how knowledge is mate-
rialized and is the representational dimension of KW.

 What. Topic and domain define what a sphere is about
thematically and thus is the content dimension of KW.

 Where. Location primarily acts as a proxy for contex-
tual factors that come into play when accessing a
sphere in a specific geographical location. It is the situ-
ational dimension of KW.

Meta-information about documents contains values for
these dimensions, e.g., time of document creation or modifica-
tion, names of authors, file types. The risks of front-end priva-
cy breaches can be reduced by defining and activating spheres
and consequently by restricting data, applications and connec-
tions that are disclosed in a situation to those that are part of the
currently activated sphere. In order to simplify this process we
suggest profiles, which are described in the subsequent section.

B. Profiles
We suggest the use of profiles that we see as filters and set

them in order to selectively reduce the amount of information
being disclosed on the screen. For that purpose, we define
ranges for the dimensions presented in the previous subsection.
Values can be including or excluding. For example, let’s say
we define the range 2013 in the dimension “when”. This in-
cludes everything within the year 2013. The range “not 2013”
has the opposite meaning. We can filter persons or organiza-
tions in the “who” dimension. The how dimension lets us filter
specific file formats or information items like calendar items,

etc. Figure 2 shows a profile sample where we include every-
thing in the year 2013 that is about front-end privacy and has
the persons R. Maier and J. Sametinger assigned. Additionally,
we restrict the profile to text documents, images, slide presen-
tations, and email messages. It will be useful to let users com-
bine file extension like .gif, .jpg, .png and others to an image
category, or any office document to an office category.

Some values in our dimensions can easily be filled automat-
ically, e.g., the when dimensions. Every file in a file system has
dates associated with it, e.g., date of creation or last modifica-
tion. Persons and organizations can also be retrieved quite
easily. The why and what dimensions are more difficult to fill.
Users are not willing to manually fill in meta-information for
their documents. Simple automatisms and heuristics have to be
used for that purpose. For example, folder or file names can be
used for the why dimension. In the example of Fig. 2, this will
include everything that is stored in folders named “front-end
privacy”. The “what” dimension defines topics. For user con-
venience, we suggest to let users define values for this dimen-
sion arbitrarily. For the “why” dimension we suggest heuristics
to be defined in order to assign useful values. The dimension
“where” can be seen in many different ways. It can mean the
location where information is stored. This can be a geographic
location or the name of a server or a cloud. It can also be the
location that is assigned to a person or organization. For exam-
ple, Linz and Innsbruck can be used in that dimension and can,
thus, include all persons that live or work in these towns. In this
case, contact information can be used to find out who is at
which location. However, contact information usually illus-
trates the current situation. If someone moves from one loca-
tion to another, then automatic assignments become more diffi-
cult and error-prone. For information filtering, we have to de-
fine the effects of filters for different types of information.

 File system. Meta-information about files and the
names of enclosing folders for the “why” dimension.

 Applications. Applications can be restricted to the ones
that are necessary to work on documents that pass a
specific filter. Separate application profiles can also be
used in order to hide applications in specific situations.

 Application-specific information. Applications often
store information in big files. If stored separately, me-
ta-information about the separate files could be used
for filtering. Thus, filtering can be done outside the ap-
plication. If single files are used, then the application
will have to do the filtering.

 Alerts and Notifications. Applications running in the
background can send alerts and notifications at any
time. If applications are filtered, then their alerts and
notifications should be postponed until the application
becomes active, i.e., unfiltered, again.

130

V. USABILITY AND REALIZATION
In this section we will discuss the usability of filters and

how profiles can be implemented.

A. Usability
Even though front-end privacy is important to users in vari-

ous situations, they are usually not willing to expend any extra
effort for that purpose. Particularly, they cannot be expected to
fill in meta-information for documents. As mentioned earlier,
we have to define simple heuristics in order to provide values
for specific dimensions. We imagine a widget with 4 front-end
privacy situations, the 3 most commonly used profiles, and the
other ones available via pop-up. These should be pre-
configured along the lines described above and the widget
should offer the possibility to create new and configure existing
profiles. We also imagine an intrusion hotkey. Profiles should
be switchable via hotkeys and they should not (always) be
visible on the screen, because others get suspicious if they
realize that we switch to not-alone when they are approaching.
If we add a new contact or create a new file, it can automatical-
ly be assigned to our current spheres or spheres are determined
by the category we assign it to in our mail system.

B. Realization
It is not possible to develop an application that can imple-

ment the functionality on top of current operating systems and
applications. Spheres and profiles are hard to implement with-
out modifications in an operating system. The file system has
to filter files according to active profiles. Application-specific
information is specific to applications only because these appli-
cations, i.e., their developers, have decided to do so. For exam-
ple, contact and date entries can be stored as file each in a spe-
cific location on disk. If filtering is done on the file level, then
applications do not have to care about filtering. Alerts and
notifications are usually done by calling operating system func-
tions that open a dialog or display a message. If the operating
system had the information about active profiles and knows
that the call of a function, i.e., displaying information, is in
order to provide an alert or a notification, then this information
can be postponed until an application becomes unfiltered again.
Apple’s notification center provides some of this functionality.

VI. CONCLUSION
We discussed conflicting priorities of privacy and conven-

ience. After the description of various forms of privacy we
introduced front-end privacy in more detail, considering
knowledge situations, front-end situations, and front-end risks.
There are rudimentary approaches for front-end privacy, but
they are far from being helpful in typical settings and practices
of knowledge workers. We then described spheres and profiles
that can provide front-end privacy conveniently and effectively.
We outlined possible solutions but we have so far stood back
from implementing such a solution, because we need some
extensions to the operating system with additional interfaces
for applications. And, not all but some of today’s most fre-
quently used applications, with the MS office suite as a promi-
nent example, will have to store information in a different way.
We believe, however, that our reflections on front-end privacy
are helpful to embark on a learning journey of how to improve
their front-end privacy. Our suggested changes are not really

extensive, yet would greatly enhance chances that users not
only are aware of front-end privacy, but can readily deal with
the issues they identify. If we attribute enough importance to
this form of privacy, software vendors will follow suit.

REFERENCES
[1] E.N. Wolff, The growth of information workers. CACM, 48, 37-42,

2005.
[2] P.F. Drucker, Landmarks of Tomorrow, New York, Harper, 1959.
[3] E.K. Kelloway, J. Barling, Knowledge Work as organizational behavior.

International Journal of Management Reviews, 2, 287-304, 2000.
[4] U. Schultze, On Knowledge Work. In: HOLSAPPLE, C. W. (ed.)

Handbook on Knowledge Management. Berlin Springer, 2003.
[5] R. Maier, T. Hädrich, R. Peinl, Enterprise Knowledge Infrastructures,

Berlin, Springer, 2009.
[6] Spiegel, Google Launches Street View Germany, Spiegel Online

International, 11/18, 2010.
http://www.spiegel.de/international/business/0,1518,729793,00.html

[7] M.E. Johnson, E. Goetz, Embedding Information Security into the
Organization. IEEE Security & Privacy, 16-24, 2007.

[8] Q. Ma, A.C. Johnston, J.M. Pearson, Information security management
objectives and practices: a parsimonious framework. Information
Management & Computer Security, 16, 251-270, 2008.

[9] M. Siponen, R. Willison, Information security management standards:
Problems and solutions. Information & Mgmt., 46, 267–270, 2009.

[10] Merriam-Webster, 11th Collegiate Dictionary, 2004.
[11] E.L. Bertino, D. Lin, W. Jiang, A Survey of Quantification of Privacy

Preserving Data Mining Algorithms. In: AGGARWAL, C. C. Y.,
PHILIP S. (ed.) Privacy-Preserving Data Mining: Models and
Algorithms. Ney York: Springer, 2008.

[12] D. Takahashi, Web users will trade privacy for security and con-
venience, VentureBeat, September 2009.
http://digital.venturebeat.com/2009/09/15/web-users-will-trade-off-
privacy-for-security-and-convenience/

[13] A.I. Antón, J.B. Earp, J.D. Young, How Internet Users' Privacy
Concerns Have Evolved since 2002, IEEE Security & Privacy, Vol. 8,
No. 1, pp. 21-27, Jan/Feb 2010.
http://doi.ieeecomputersociety.org/10.1109/MSP.2010.38

[14] A.I. Antón, J.B. Earp, A Requirements Taxonomy for Reducing Web
Site Privacy Vulnerabilities, Requirements Eng. J., Vol. 9, No. 3, pp.
169–185, 2004.

[15] T. Weber, Will convenience beat privacy? BBC News, January 2006.
http://news.bbc.co.uk/2/hi/business/4649292.stm

[16] R. Clarke, Privacy impact assessment: Its origins and development,
Computer Law & Security Review, Vol. 25, Issue 2, 123-135, 2009.
doi:10.1016/j.clsr.2009.02.002

[17] S. Kaplan, B.J. Garrick, On the quantitative definition of risk. Risk
Analysis, 1, 11-27, 1981.

[18] R.R. Gallati. Risk mgmt. and capital adequacy, NY, McGraw-Hill, 2003.
[19] C.A. Archbold, Managing the bottom line: risk management in policing.

Policing: An International Journal of Police Strategies & Management,
28, 30-48, 2005.

[20] J. Jordan, J. Lowe, Protecting Strategic Knowledge: Insights from
Collaborative Agreements in the Aerospace Sector. Technology
Analysis and Strategic Management, 16, 241-259, 2004.

[21] K.C. Desouza, G.K. Vanapalli, Securing Knowledge in Organizations.
In: DESOUZA, K. C. (ed.) New frontiers of knowledge management.
Basingstoke: Palgrave Macmillan, 2005.

[22] D. Baccarini, G. Salm, P.E.D. Love, Identification and Management of
Risks in Information Technology Projects. 14th Australasian Conference
on Information Systems. Perth, Australia, 2003.

[23] H. Zhi, Risk management for overseas construction projects. Inter-
national Journal of Project Management, 13, 231-237, 1995.

[24] MindGems, BossKey,
http://www.mindgems.com/products/Boss-Key/boss-key.htm

131

A Real-time Personalized Gesture Interaction System
Using Wii Remote and Kinect for Tiled-Display

Environment

Yihua Lou, Wenjun Wu
State Key Laboratory of Software Development Environment

Beihang University
Beijing, China

{louyh, wwj}@nlsde.buaa.edu.cn

Abstract—Gesture interaction is more convenient than traditional
input methods in tiled-display environments. As the advance of
somatosensory technologies, more and more somatosensory
devices such as Wii Remote and Kinect that can be used in gesture
interaction are commercially available. We present a real-time
personalized gesture interaction system targeting for two-handed
gestures for tiled-display environment in this paper. By applying
the dynamic time warping (DTW) algorithm, the system does not
require a special training stage and is easy to use. Experiment
shows that the combination of acceleration data from Wii Remote
and skeleton point data from Kinect leads to higher recognition
accuracy with lower recognition error rate, and the system can
also recognize an ongoing gesture before it ends while the
recognition accuracy is kept high enough. Our usage of this system
in a real tiled-display environment shows that the system is
practical.

Keywords - Gesture recognition, Tiled-display environment,
Dynamic time warping, Kinect, Wii Remote

I. INTRODUCTION
Nowadays tiled-display environments are commonly used in

demonstrations and scientific discussions. Such tiled-display
facilities usually have extremely large physical size and
resolution, and are often driven by tiled-display software such as
SAGE [1]. Traditional PC oriented input methods such as mice
are not well suited for interaction scenarios in these
environments. Instead, it demands alternative interaction models
such as gesture based interaction that can offer smoother and
more intuitive user experiences.

In contrast to the device-based interaction, the design of
gesture-based interaction elicits new technical challenges.
Especially, gestures are usually dependent upon individuals,
which suggests that people may use different gestures to express
the same intention and action, and it is difficult to define a
standard gesture vocabulary except a few simple or single-
handed gestures. However, in a practical tiled-display
environment, it is not adequate to only design single-handed
gestures for human-display interaction, as many actions such as
zooming and rotation of visual objects in the display should be

performed in a two-handed manner. Moreover, even the
trajectory of a same gesture from the same individual may vary
from time to time.

Traditionally, it is not very convenient to set up a gesture
interaction system with wired devices such as data gloves.
However, as the advance of somatosensory technologies, now
there are many commercially available somatosensory devices
such as Wii Remote and Kinect, which significantly simplify the
effort to establish a gesture interaction system. Wii Remote is a
wireless accessory of Nintendo Wii, which integrates a 3-axis
accelerometer which can measure the acceleration from -3g to
+3g at 100Hz with a noise below 3.5mg [2]. With this
accelerometer, Wii Remote can offer researchers to utilize the
acceleration data as an input source for gesture recognition.
Kinect, the accessory for Microsoft XBox 360, provides even
more powerful sensing features. With the built-in skeleton
tracking engine, one Kinect can simultaneously track the
movement of six human figures at 30fps, two of which can be
retrieved with detailed skeleton position information [3]. The
motion of skeleton joints is also a good data source for gesture
recognition.

In this paper, we present a new personalized interaction
system for tiled-display environments. This system will take
advantage of both data sources, the acceleration captured by Wii
Remote and the skeleton position captured by Kinect, to improve
the accuracy of gesture recognition. Moreover, we use DTW, a
non-statistical recognition algorithm, to avoid the long-time
training process required by other machine learning algorithms
such as HMM. The system is capable for recognizing both two-
handed and single-handed gestures, and it employs an ongoing
gesture recognition process, which is not mentioned in other
relevant researches.

The rest of the paper is organized as follows: In section 2, we
will review some related works and literatures. Then the design
aspects and the overview of the system are presented in section
3. In section 4, the design of the core recognition algorithm is
described and section 5 gives the experiments and analyzes the
results. The conclusion is in section 6.

132

II. RELATED WORKS
Gesture recognition is not a new technology and has been

widely investigated. Though the definitions of gesture are not
consistent in the research community, the majority of these
works define a gesture as the locus of hand movement.
Computer vision based technologies [4] have been the most
popular research area of gesture recognition, as building a
gesture recognition system based on cameras is easy and cheap,
and there exist many excellent pattern recognition tools working
with videos and images. However, the greatest disadvantage of
computer vision based technologies is its expensive cost of
computation.

In recent years, Wii Remote or Kinect based gesture
recognition is becoming a new research focus, and most of such
researches focus mainly on single-handed gestures. An
acceleration-based personalized gesture recognition system
called “uWave” was proposed in [5]. By collecting over 4000
simple single-handed gesture samples from eight users, the
authors of this work proved that their proposed DTW-based
algorithm can achieve over 98% accuracy. In [6], another Wii
Remote based gesture recognition approach was proposed and
implemented in a library called “wiigee” [7]. The gestures
evaluated in this work are more complex and the overall
accuracy of the proposed HMM-based algorithm is proved to be
above 85%. In [8], a Kinect based gesture interaction interface
with high accuracy in recognizing eight simple gestures was
proposed by Lai et al. Another Kinect based gesture interaction
system was proposed in [9].

As the core part of gesture recognition, the choice of
recognition algorithm is also important. The most popular
algorithm for gesture recognition is HMM [10], which is good
for user-independent gesture recognition with a set of pre-
defined gestures. However, like other statistical model based
algorithms, it requires a large training dataset to build the model
before recognition, otherwise its effectiveness will be greatly
downgraded. Therefore HMM is not suitable for personalized
gesture recognition, as in such scenarios each user may create
his own gesture freely, which makes the separate training
process unavailable. In the contrast, DTW, a dynamic
programming based algorithm that has been widely used in
speech recognition, does not rely on training process, and thus is
more suitable for personalized gesture recognition. DTW
introduces a distance calculation mechanism to calculate the
distance between two time series – an input time series and a
pre-stored time series called “template”. This procedure is called
“template matching” and the distance between the two time
series is called the “matching cost”. A smaller matching cost
indicates that the two time series are more similar, and the
template that has the smallest matching cost with the input time
series is called the “matched template”.

III. SYSTEM DESIGN

A. Design Aspects
1) Easy-to-use

As the large tiled-display environment is sometimes used for
technical demonstrations or ad-hoc discussions where users may
not be well-trained before they begin to access such systems,

therefore the gesture interaction system should be easy-to-use
and does not require a long training stage.

2) Personalized
As described in section 1, gestures are fully personalized.

Therefore, the system should allow users to define their own
gestures instead of restricting the users in a limited range of
gestures. Moreover, the system should be able to identify its
current user and recognize his gesture by matching the data with
his gesture templates.

3) Two-handed
As described above, most current research proposals on

gesture interaction focus mainly on single-handed gesture
recognition. Although single-handed gestures are sufficient in
many cases, especially small and medium size displays, some
gestures such as zooming and rotation designed for interacting
with large visual objects rendered in a tiled display often involve
coordinating movement of two hands.

4) Ongoing gesture
Many gesture recognition researches only aim to improving

the recognition accuracy for the motion trajectory pattern.
However, in a practical environment, if an ongoing gesture can
be correctly classified, the features in the rest gesture motion can
be extracted as supplementary attributes of the gesture to
calculate a continuous update on the rendered visual object in
the focus. For example, given a rotation gesture defined to spin
a window on the tiled-display, the rotation angles of a classified
ongoing rotation gesture can be measured continuously for a
more smooth progressive rotation rendering than a sudden
window rotation.

B. System Overview
The system shown in Figure 1 is an extension of the multi-

user interaction system in [11] with a gesture input client added.
The gesture input client receives motion data from Kinect and
Wii Remote and recognizes gestures from the inputs. It can
interact with both the windows in the virtual desktop provided
by SAGE and the visual contents rendered by applications. The
processing flow of the gesture input client is shown in Figure 2.
It contains a pre-processing module to filter and quantize the
original input data, a core module for gesture classification using

Figure 1. Architecture of the system

133

the DTW algorithm, and a post-processing module that handles
DTW template adaption.

IV. ALGORITHM DESIGN

A. Feature Selection
The first important consideration for a gesture interaction

system is to select appropriate features for recognition. In this
paper, we use a combination of the acceleration data provided
by Wii Remote and the human skeleton position data provided
by Kinect, as that shown in Figure 3.

The feature selection of acceleration data is simple, as the
Wii Remote and its accessory Nunchuk both can provide a 3-
axis acceleration data independently, the two 3-axis acceleration
data can be packed into a 6-dimensional feature vector. Assume
the acceleration data of the left hand and the right hand are

 and respectively. Then the feature
vector can be defined as follows:

However, the feature selection of skeleton position data is
more complex. As the skeleton position data reported by Kinect
are represented by 3-D coordinates relative to the center of the
Kinect sensor, they cannot be used directly as we need the body-
relative features. Therefore, the distances between the
coordinates of the two hand joints and the spine joint are used,
which can be packed into a 6-dimensional feature vector.
Assume that , , and are the
coordinates of the left-hand joint, the right-hand joint and the
spine joint respectively, and , , , , , are defined
as follows:

TABLE I. QUANTIZATION OF ACCELERATION DATA

Original acceleration value Quantized value
a > +2g
+g < a ≤ +2g
-g ≤ a ≤ +g
-2g ≤ a < -g
a < -2g

31
21 to 30 (linearly)
-20 to 20 (linearly)
-30 to -21 (linearly)
-31

Then the feature vector can be computed as follows:

B. Data Filter and Quantization
As the data from Kinect and Wii Remote contain noise that

may degrade the recognition accuracy, a moving-average filter
is employed to filter the original noisy data. The filter window
size is set to five samples for acceleration data and three samples
for skeleton position data, and the filter window moves at a step
of one data sample.

Then, the filtered floating-point data should be quantized
into discrete integers to improve the algorithm efficiency by
eliminating the time-consuming floating-point computation in
DTW. As we found that in normal gesture samples, there are far
more acceleration values within the range of [-g, +g] than those
without the range, and a non-linear approach is introduced to
quantizing the acceleration data. It converts the acceleration
values between -3g and +3g into 63 levels between -31 and +31,
as shown in Table I. When quantizing skeleton position data, a
linear approach is used, as we found that the distance values are
distributed relatively equally in the range of [-1m, +1m]. It
converts the distance values between -1m and +1m into 61 linear
levels between -30 and +30, with an additional level -31 for
distance values smaller than -1m and +31 for that larger than
+1m.

C. Dynamic Time Warping
Given the different sampling rate of the acceleration data and

the skeleton position data, and the high complexity of processing

Figure 3. Features used in the proposed system

Left hand
Pos:
Acc:

Right hand
Pos:
Acc:

Spine
Pos:

Figure 2. Processing flow of the Gesutre Input Client

134

high dimensional vectors, they should not be just simply
combined together. Therefore both types of data are processed
by DTW for gesture classification independently, and then the
preliminary results are combined based on a simple
classification rule.

To simplify process procedure, the Euclidean distance is
used as the DTW distance function in both DTWs. For the
acceleration data, assume that there are two feature vectors
and , then the DTW distance is defined as follows:

Note that as the input data are all quantized into integer
values, the distance used in DTW will also be the square of the
actual Euclidean distance to avoid non-integer results. Similarly,
the DTW distance between two skeleton position feature vectors

 and can be defined as follows:

As the distance between two single vectors is defined, the
distance between two time series can also be defined. Assume
that and denote two time series of feature
vectors, then a matrix can be produced with each
element being the distance between and . Given a
monotonic path from to , the cost of the path is the
sum of all the distance values along on the path. The distance
between the two time series is defined as the minimal cost from
all possible costs. By using the dynamic programming technique,
both the space and time complexity of one DTW distance
computation process are . After the distances between
the input time series and each pre-stored template are calculated,
the template that has the minimal distance with the input time
series is selected as the matched template, and the input time
series can be labeled with the same gesture label as the matched
template has.

After recognition processes are done independently on the
acceleration data and the skeleton data for a user’s single action,
there will be two gestures labels generated by DTW. Only if the
two labels are same, this action can be classified as a gesture,
otherwise it will be rejected.

D. Template Adaption
Due to the use of the template matching in DTW based

gesture recognition, the accuracy of the pre-stored templates will
directly affect the recognition accuracy. However, it is
impossible to create valid and static templates, since the
acceleration data and the skeleton position data may vary each
time when a user performs a gesture. The templates should be
adaptive to ensure maximal recognition accuracy and a dynamic
template adaption is introduced.

During the normal recognition process, after a gesture is
successfully recognized, its time series data are temporary stored.
If there are two continuous rejections or three accumulative
rejections for a given gesture, and the number of temporary
stored time series data is at least three for this gesture, then the
dynamic template adaption process of this gesture is invoked.
The process is done by the following steps: First, calculate the
DTW distances between each two temporary stored time series
including the old template’s time series. Then, calculate each
time series’ accumulated DTW distance to all the other time
series, and the one with the minimal accumulated DTW distance
is chosen as the new template for the gesture. Finally, remove all
the temporary stored time series, and reset the numbers of
continuous and accumulative rejections to zero.

V. EXPERIMENTS AND ANALYSIS

A. Experiment Environment and Dataset
To evaluate the performance of the proposed system, we

implemented gesture recognition prototype using Visual C++
and Kinect SDK 1.6 for Windows. The prototype uses the press
and release of Wii Remote’s ‘A’ button to indicate the start and
end of a gesture. The experiment environment includes a
ThinkPad T420s laptop computer with a Core-i5 2520M CPU, a
Wii Remote controller with the Nunchuk extension and a Kinect
for Windows sensor.

After setting up the environment, we collected a dataset of
eight two-handed gestures shown in Figure 4 from six
individuals (two females and four males) through five days.
Each participant is asked to stand in front of the Kinect, holding
the Wii Remote in his right hand and the Nunchuk in his left
hand. And the collected dataset consists of 2400 skeleton
position samples and 2400 acceleration samples.

(a) Horizontal Zoom-In (HI) (b) Horizontal Zoom-Out (HO) (c) Vertical Zoom-In (VI) (d) Vertical Zoom-Out (VO)

(e) Rotate Left (RL) (f) Rotate Right (RR) (g) Push Forward (PF) (h) Pull Back (PB)

Figure 4. Gestures used in experiments

135

B. Gesture Recognition Accuracy
First, we evaluate the recognition accuracy of data sampled

from different days, with the first sample of each gesture from
the first day as the initial template. The recognition accuracy in
percentage is shown in Table II, in which the row and column
represent the actual gesture and the recognized gesture
respectively. The table illustrates that, with the use of dynamic
template adaption, the recognition accuracy will increase by
about 3%, while the error rate and the rejection rate decrease by
0.7% and 2.3% respectively.

If the template and the input data were both sampled on the
same date, the recognition accuracy can be significantly
increased, as shown in Table III. As the recognition accuracy
without dynamic template adaption has already been higher than
98%, the use of dynamic template adaption does not affect the
final recognition accuracy at all.

The above results reveal that the recognition accuracy of the
DTW classifier created on data gathered from the same date is
much higher than that created on data from different dates,
which is apparently a proof that the gesture trajectory from the
same individual may vary from time to time. And the lower
recognition accuracy of the two rotation gestures may be caused
by the higher variance of their input data, as we found the
average DTW distances between two samples of the two
gestures are much higher than those of others.

Then we compare the error rate of using different input
sources without dynamic template adaption in Table IV. The
results illustrate that the error rates of the gesture classifiers
using single input source are much higher than the proposed
classifier using the combination of the two types of input sources,
regardless of whether the data is captured either on the same day
or different days.

TABLE II. RECOGNITION ACCURACY FOR DATA FROM DIFFERENT DATES

 Without template adaption With template adaption
Correct Error Rejected Correct Error Rejected

HI 94.4% 0.0% 5.6% 96.7% 0.0% 3.3%
HO 95.6% 0.5% 3.9% 95.6% 0.5% 3.9%
VI 98.9% 0.0% 1.1% 98.9% 0.0% 1.1%
VO 98.9% 0.0% 1.1% 98.9% 0.0% 1.1%
RL 76.1% 7.8% 16.1% 78.3% 4.5% 17.2%
RR 78.9% 6.1% 15.0% 92.8% 3.9% 3.3%
PF 97.8% 0.0% 2.2% 98.9% 0.0% 1.1%
PB 91.7% 0.0% 8.3% 96.1% 0.0% 3.9%
Avg 91.5% 1.8% 6.7% 94.5% 1.1% 4.4%

The above results support our design assumption that the
combination of multiple gesture data sources such as the
skeleton position data and the acceleration data effectively
eliminates many recognition errors that are normally
unavoidable in other single-type input source based systems. As
a tradeoff, this method increases the rejection probability in the
gesture classification. We believe that it is better to reject
uncertain actions than to recognize them as wrong gestures, as
wrong recognitions may cause some unexpected behaviors in
practical environments while rejection will not.

C. Ongoing Gesture Recognition Accuracy
As mentioned above, if an on-going gesture can be correctly

recognized before finished, it may improve user experience.
Therefore, we will then evaluate is how early a gesture can be
correctly identified with a low recognition error rate. We use the
data from the same day without dynamic template adaption and
the result is shown in Figure 5. From the figure we can see that
if the thresholds of recognition accuracy and recognition error
rate are set to 85% and 5% respectively, then it is enough to use
only the first 70% of the data items. This means that in a practical
environment, a gesture can be recognized before the user ends
his action and the following actions the user takes can be used as
a guide.

TABLE III. RECOGNITION ACCURACY FOR DATA FROM THE SAME DATE

 Without template adaption With template adaption
Correct Error Rejected Correct Error Rejected

HI 96.7% 0.0% 3.3% 96.7% 0.0% 3.3%
HO 99.4% 0.6% 0.0% 99.4% 0.6% 0.0%
VI 99.4% 0.6% 0.0% 99.4% 0.6% 0.0%
VO 99.4% 0.0% 0.6% 99.4% 0.0% 0.6%
RL 97.8% 0.0% 2.2% 97.8% 0.0% 2.2%
RR 94.4% 0.6% 5.0% 94.4% 0.6% 5.0%
PF 99.4% 0.0% 0.6% 99.4% 0.0% 0.6%
PB 98.3% 0.0% 1.7% 98.3% 0.0% 1.7%
Avg 98.1% 0.2% 1.7% 98.1% 0.2% 1.7%

TABLE IV. ERROR RATE OF USING DIFFERENT INPUT SOURCES

Acceleration Skeleton position Combination

Same
day

Different
days

Same
day

Different
days

Same
day

Different
days

HI 0.6% 1.7% 3.3% 5.6% 0.0% 0.0%
HO 0.6% 0.6% 0.6% 4.4% 0.6% 0.5%
VI 0.6% 0.0% 0.6% 1.1% 0.6% 0.0%
VO 0.6% 0.6% 0.0% 0.6% 0.0% 0.0%
RL 1.7% 15.6% 0.6% 19.4% 0.0% 7.8%
RR 4.4% 21.1% 2.8% 8.3% 0.6% 6.1%
PF 0.0% 2.2% 0.6% 0.0% 0.0% 0.0%
PB 0.0% 2.8% 1.7% 5.6% 0.0% 0.0%
Avg 1.0% 5.6% 1.2% 5.6% 0.2% 1.8%

(a) Recognition accuracy (b) Recognition error

Figure 5. Gestures used in experiments

136

D. Practical evaluation
We have tested the system in our SAGE-based tiled-display

environment. As displayed in Figure 6, a user holding a Wii
Remote with his hands standing in front of a Kinect camera was
interacting with multiple window objects rendered on the tiled-
display. Given the large size of the tile display, a scaling ratio
between the physical gesture amplitude and the rendering effect
can be set by user before using the system. For example, the user
can set a scaling ratio for the zoom-in gesture to 100 pixels per
centimeter, which means when he performs a zoom-in gesture
on a window object, the target window is zoomed in by 100
pixels if the distance between his two hands increases by 1cm.
And as the result of our ongoing gesture recognition feature, as
long as the user does not perform the zoom-in gesture too fast,
he may see that the zoom-in process begins before his gesture
finishes and the window zooms in continuously as his gesture
goes.

We also evaluated the performance of the system, and result
shows that in normal cases the system can recognize a gesture
within 2ms.

VI. CONSLUTION AND FUTURE WORK
In this paper, we proposed a personalized gesture interaction

system for the tiled-display environment, which recognizes
gestures based on both acceleration data from Wii Remote and
skeleton data from Kinect. A DTW based real-time gesture
recognition algorithm is designed and implemented, which can
fast recognize user-dependent gestures in a high accuracy by
using the carefully selected features. And in comparison with
other gesture recognition systems that only focus on recognizing

gesture itself, the proposed system can use the additional
information of an ongoing gesture such as rotation angle and
movement range which is useful in practical scenarios. As both
Wii Remote and Kinect are commercially available consumer
devices, this system can be easily deployed in any SAGE-based
tiled-display environments.

We are now working on adding the user-identification
function to the system. By enabling this feature, the system can
automatically recognize a user and apply his gesture template
instead of manually switching.

ACKNOWLEDGMENT
This work was supported by the State Key Laboratory of

Software Development Environment Funding No. SKLSDE-
2013ZX-03.

REFERENCES
[1] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson and

J. Leigh, "High-performance dynamic graphics streaming for scalable
adaptive graphics environment," in Proc. Supercomputing, 2006.

[2] Analog Device, "Small, low power, 3-Axis ±3g MEMS® accelerometer:
ADXL330 datasheet," 2006.

[3] Microsoft, "Skeletal Tracking," http://msdn.microsoft.com/en-
us/library/hh973074.aspx.

[4] S. Calinon and A. Billard, "Recognition and Reproduction of Gestures
using a Probabilistic Framework combining PCA, ICA and HMM," in
Proc. ICML, 2005.

[5] J. Liu, L. Zhong, J. Wickramasuriya and V. Vasudevan, "uWave:
Accelerometer-based personalized gesture recognition and its
applications," Pervasive and Mobile Computing, vol. 5, pp. 657-675, 2009.

[6] T. Schlöme, B. Poppinga, N. Henze and S. Boll, "Gesture Recognition
with a Wii Controller," in Proc. TEI, 2008.

[7] B. Poppinga and T. Schlömer, "wiigee - A java-based gesture recognition
library for the Wii remote," http://www.wiigee.org.

[8] K. Lai, J. Konrad and P. Ishwar, "A gesture-driven computer interface
using Kinect," in Proc. SSIAI, 2012.

[9] M. Caon, Y. Yue, J. Tscherrig, E. Mugellini and O. Khaled, "Context-
Aware 3D Gesture Interaction Based on Multiple Kinects," in Proc.
AMBIENT, 2011.

[10] S. Mitra and T. Acharya, "Gesture Recognition: A Survey," IEEE
Transactions on Systems, Man, and Cybernetics – Part C: Applications
and Reviews, vol. 37, pp. 311-324, May 2007.

[11] Y. Lou, W. Wu and H. Zhang, "Magic Input: A Multi-user Interaction
System for SAGE Based Large Tiled-display Environment," in Proc.
ICMEW, 2012.

Figure 6. Usage of the system in a tiled-display environment

137

Releasing the OMCS-Br Knowledgebase to Facilitate
Insertion of Culture in Applications: Brazilian Experience

Andre de O. Bueno
Dep of Computing - Federal Universityof São Carlos

São Carlos, Brazil
andre.obueno@dc.ufscar.br

Junia C. Anacleto
Dep of Computing - Federal University of São Carlos

São Carlos, Brazil
junia@dc.ufscar.br

Abstract—In order to contribute with developers on developing
culturally contextualized software, we describe the reengineering
done in the Open Mind Common Sense in Brazil's (OMCS-Br)
architecture that aims to make the task of using the project's
cultural knowledgebase easier. At the same time,we provide a
new way to collect the users' cultural knowledge from those
culturally contextualized applications to feedback the OMCS-Br
knowledgebase. Two new modules are being developed and
integrated into the OMCS-Br's API: (i) a cultural filter, that
receives the search query from the application with that user’s
profile and gives back the resulting cultural knowledge, modeled
as a ConceptNent and (ii) a knowledge collector, responsible for
feeding the OMCS-Br knowledgebase back with the data
generated by the contextualized applications. A third result is a
new web interface that was created to allow any usertodo
searches at the OMCS-Br knowledgebase easy and intuitively.

Keywords-cultural contextualization; commonsense;OMCS-Br

I. INTRODUCTION

Every day computers are becoming more and more present
in our lives. By saying "computers", we want to encompass
cellphones, smartphone and tablets. Everywhere we look, we
see people using some of these devices to do a large range of
activities, going from work to hobbies.In order to make
software to these devices that better suit to the users, HCI
researchers have been studying different approaches in the
software development process. Anumber of approaches had
been proposed, and many of them emphasizing only the
technological aspect of this relationship.

Other aspects of social life like culture and behavior also
are being observed and used in the ICT development process,
i.e., humans are also being studied [1]. Some of these studies
take in consideration the people's culture, because cultural
differences are recognized to play a very important role in the
correspondence between the computer interfaces with user
expectations of different cultural backgrounds [2]. Systems
quality and culture significantly affect trust in the ICT artifact
and therefore in their adoption [3]. The Advanced Interaction
Laboratory (LIA) at Federal University of São Carlos
(UFSCar) in Brazil has created the OMCS-Br (Open Mind
Common Sense in Brazil) project to collect common sense, a
certain type of cultural knowledge from ordinary people on the
web. Such project aims at building a knowledgebase of the
Brazilian culture in a continuously and collaborative way
through the project’s website since 2005 [2]. Once there is this
database, software developers can access it and use its data to
develop contextualized applications, i.e., it becomes possible to

use the user's own culture as requirement to build applications,
making them more user friendly and easy to interact with, as
stated by researchers since then in some of the published work
as in references [4], [5] and [6]. However, some problems have
been detected along the years, especially when related to the
accessing process of the data stored in the OMCS-Br
knowledgebase. Nowadays, the access is restricted to
researchers responsible for the project, i.e., LIA's researchers
only. Furthermore, it's hard to create new ways of collecting
culture from users to enlarge the size of such knowledgebase.

We propose here the development of two new modules to
be added to the OMCS-Br project, which are: a cultural filter
(responsible for recovering contextualized data from the
knowledgebase) and a knowledge collector (responsible for
collecting into the OMCS-Br knowledgebase the data
generated by applications using the filter). With these upgrades,
we try to solve a recurring problem faced by the developers
when developing an application using the knowledgebase of
this project, which is filtering the used data in the
knowledgebase according to the user profile. At the same time,
the data from the user will be collected and inserted at the
OMCS-Br database automatically, expanding the database
size.Besides these two new modules, a web interface tool will
allow non-developers to do searches at the knowledgebase in
an easy and intuitive way. Designers for instance, could find
information in the OMCS-Br knowledgebase about users that
will be using their computer systems and, with that, it would be
possible for them to create some personas as user's
characterization resource.

II. RELATED WORK

Once Marvin Minsk said that "today, our robots are like
toys, they just do simple things they are programmed to do, but
it is evident that they are about to cross that barrier. People
have fool reasons to explain why computers still do not think.
The answer is that we still do not program them correctly...
They just do not have enough common sense" [8]. Some
research focusing on collecting common sense has appeared.
Here, common sense is understood as the not specialized
knowledge, shared by people in a social group in a determined
period, which describes the culture considering the
experiences, knowledge related to aspects spatial, physical and
social in a community, not susceptible to judgments,
representing aspects of a particular cultural group [2].

Cyc (http://www.cyc.com/) is one of the first projects trying
to collect and to store common sense, using a specific language

138

and it is not open to the public.
ThoughtTreasure(http://en.wikipedia.org/wiki/ThoughtTreasur
e) is another platform for natural language processing and
common sense reasoning. Currently the project server is
offline, what makes its use impossible.MediaLab-MIT started a
project called Open Mind Common Sense (OMCS), which
takes into account that anyone can contribute providing their
common sense, turning the construction of a knowledgebase
into a web collaborative work involving people in this
challenge[9]. The data is stored using some structures based on
the human knowledge representation model proposed by
Marvin Minsky[9]. In order to use the knowledgebase, the
researchers developed an API (Application Programming
Interface). Nonetheless its use is restricted to the researchers'
laboratory, i.e., they are the only ones who can access and use
the data provided by the project and the API.

The main concern of these three projects is the creation of a
knowledgebase to be used in machine learning. In this context,
the LIA in Brazil started the OMCS-Br project, which is
derived from OMCS-MIT, but has a different focus. In this
case, its goal is enabling the creation of culturally
contextualized applications, that is, using the user's common
sense in creating applications that will later be better suited to
the user’s need and comprehension. To reach such goal, it is
necessary to store the profile of the contributors, except name
and other data that could eventually identify that person. The
project will be better explained in the next section.

III. THE OMCS-BR ARCHITECTURE

OMCS-Br is a project that started as a collaboartionwith
OMCS-MIT, and has been developed by LIA/UFSCar since
August 2005. The project works on five work fronts: (1)
common sense collection, (2) knowledge representation, (3)
knowledge manipulation, (4) access and (5) use. Figure 1
illustrates the project architecture. First of all, common sense
knowledge is collected through a website developed by the
LIA's researches (http://sensocmoum.ufscar.br). The
knowledge is then represented as a semantic network called
ConceptNet, according to Minsky’s model of knowledge. To
build the semantic networks, the natural language statements
are exported through an Export Module and sent to the
Semantic Network Generator. The generator is composed of
three modules: the Extraction, Normalization and Relaxation
modules. The result of these three modules is a group of binary
predicates. For dealing with Portuguese natural language
processing, a natural language parser for Portuguese is used.
The predicates are filtered according to parameters of the user's
profile, such as gender, age and level of education, generating
different ConceptNet according to these data. In order to make
inferences over the ConceptNet, several inference mechanisms,
which are grouped in an API (Application Programming
Interface), were developed. The access to the API functions is
made through a Management Server, which makes available
access to instances of APIs associated with different
ConceptNet. Through this access, applications use API
inference mechanisms to perform common sense reasoning [2].
Besides collect statements from users, and model them in a
ConcepNet, we also store the anonymized profile of the
contributor. From that, we are able to make some inferences
over the data like what people from 18 to 35 year old think

about movies, or what people from Rio de Janeiro think about
how to preserve the environment. To have a certain set of
knowledge from a defined profile, it is necessary that the data
in the knowledgebase is filtered at the moment of the search,
which is usually a time consuming task to be processed.
However, the access to the ConceptNet content is only possible
through the API and, in this case, it can only be accessed by
researchers who are part of the project. It is necessary to
provide easy and practical ways to software developers or even
to the public in general to use such knowledgebase.

Figure 1 - OMCS-Br Project Architecture

IV. THE CURRENT USE OF THE OMCS-BR
KNOWLEDGEBASE

Currently,to use the OMCS-Br knowledgebase the
developer must be part of the LIA research group or contact the
group. Also, it is necessary for the developer to create a method
in the application to filter the data according to the target
context, not a trivial task.The currently adopted strategy to
filter a certain set of statements from the knowledge baseneeds
to be standardized. Each developer implements its own filter in
the application, whatleadsto each developer doing the same
task every time a new application is developed. Observing this
situation it becomes clear the necessity and urgency to create
away to facilitate and standardize this access to the database
and, also, to release this access for any developer who wishes
to use the cultural data stored in the knowledgebase.

V. APPLICATIONS USING THE OMCS-BR

Culturallycontextualized OMCS-BR based ICT
applications developed at LIA vary greatly from one to another,
ranging from educational games to therapeutic applications.
The target audience in these cases varies widely as well,
because each of these applications has a different purpose,
place and target user. Some of these applications that make use
of the OMCS-Br knowledgebase are the quiz game "What is
it?", the educational game "Contexteller", and the therapeutic
tool called "FamilySense".

The quiz game called "What is it?" [4] focuses on helping
teachers to approach the transversal themes defined by the
official curriculum for elementary and high school: sexual
education, ethics, healthcare, environment, cultural plurality,
market and consumers. Figure 2 shows the player’s interface.
The game was the first application developed by LIA that
allows teachers to contextualize the content of their classes
according to the students' local culture. Teachers can set up the
web quiz game based on the common sense knowledge from
the OMCS-Br database corresponding to their students profile.
Such knowledge is filtered according to the desired profile

139

related to age, gender, region of the country, to fit the teacher’s
pedagogical goals, i.e., the statements to compose the cards are
contextualized to the target group. This was the first process
implementing the filter based on the users’ profile to provide
cultural sensitiveness and context relevance.

Figure 2 - "What is it?" quiz game.

For the “What is it? Game,the OMCS-Br architecture was
modified so that the filter could be developed (Figure 3). Such
solution for contextualizing the application to a certain cultural
group considered that the necessary filter requests the OMCS-
Br application the ConceptNet from the statements of those
contributors who attend the profile established by the filter
module. The system saves the 10 structures previously
generated so that, in case the requested ConceptNet from the
filter was requested before, the processing time for the
application is drastically decreased. This is a very simple policy
implemented as a prototype that urgently needs to be refined.

Figure 3 - The OMCS-Br Architecture and the Filter

Contexteller [5] is a RPG-like narrative game which allows
cooperation between players on storytelling, aiming at self
expression and socialization. The game has as participants a
master, who has access to cultural knowledge to compose the
profile of the character according to the players’ cultural
knowledge as well as access to the knowledgebase in real time
to inquire about certain statements or characters mentioned in
the narration by other players. The web-based therapist tool
FamilySense is the third application to be used for families that
may not be able to attend a therapy session together [6], it is a
card game thatuses cultural information in order to help
therapist to compose questions and alternatives to be
questioned and answered by a parent and a child under therapy
to promote their mutual knowledge leading to identify feelings,
facilitate the expression and promote emotional closeness
among the participants. Each instance of the game can be
contextualized for that family's cultural values consideringtheir
socioeconomic and cultural reality.

The successful experience on culturally contextualized
software for better suit to the users' need lead us to realize that
such resource of knowledge built from a collaborative effort on
the web should be available to all developer not only the data
themselves but also a tool to support their work on providing
cultural contextualized software we believe is the next wave of
software development. That is the motivation for developing
the cultural filter presented here. Although at this moment we
are developing for Brazilian Portuguese cultural
contextualization, there are other projects collecting cultural
knowledge in other languages that can benefit from the results
of this research.

VI. CULTURAL FILTER, COLLECTOR AND WEB TOOL

To make a culturally contextualized application using the
OMCS-Br knowledgebase, it is necessary that the referred data
from the user's profile that will be using the application in
question is informed while doing the searches at the project
database to obtain the specific data to that user and, then, this
data will be used during the application creation. By following
this rule, the returned data will be culturally contextualized
according to that profile (Figure 4). Once implemented, this
filter will be integrated into the project API (responsible for
making possible the access to the knowledgebase). Through
this change, the developer no longer needs to worry about
filtering data, he needs only to be sure that his application
informs the user's profile data to the filter. Then, the filter
which is connected to the project API will perform the filtering,
search and it will return the culturally contextualized data to the
application.

Figure 4 - The Cultural Filter

Thinking about developing new ways of collecting
common sense from people, "participants must be able to
contribute with their common sense in many ways, they should
be able to provide their knowledge through a friendly interface
that looks invisible" [9]. Since the OMCS project creation, a
series of new projects had emerged trying different approaches
to gather knowledge from the general public [4,5,6], using
templates (pre-assembled structures) in natural language based
on Minky’s model of mind in the OMCS project [9]. We
propose the creation of a module called Knowledge Collector.
This module will be responsible for collecting the data
generated in culturally contextualized applications that use the
data from OMCS-Br knowledgebase. Through this new
approach, the data generated by applications will be used to
feedback the OMCS-Br project knowledgebase. With these
changes, we expect to increase the data collection for the
OMCS-Br project, which is important to the project.

140

Aiming at making the collected
available, wedeveloped a web interface
developers to search the OMCS-Br knowl
and intuitive way. Through this tool, it
people and even designers to search in th
Accessing the web tool, they will type the c
know about and do the search. If they w
advanced searches by giving more informa
schooling, and the search will happen on
collected from the users who meet these r
interface, the user will type a concept and t
do a search at the OMCS-Br knowledgeba
be shown in two different ways in the scre
list of concepts related to the one searched
the searched concept as being the root of it
perform a more specific search, he can ch
options presented by the tool to verify th
concept, its consequences, its purpose, wh
as shown in Figure 5.It's possible to see a
resulting concepts at the left, and the graph
right, we can see buttons that show differe
In the graph, the lines that connect the hea
concept) to its children nodes represent th
relation between these concepts. These rel
on each one of these lines by its name, wh
understanding that relations among them. B
web interface tool, we want to make avai
public the knowledge that somehow belo
which they usually do not have an easy
have the possibility to access this data and
to, they will see how important their con
project and, maybe, they will feel more en
build the project knowledgebase by prov
sense at the OMCS-Br website.

Figure 5- The Web Interfa

VII. CONCLUSION

As results of this work, we can
contributions: 1. Helping both researcher
general on using the OMCS-Br know
development of a cultural filter. With this c
to use the OMCS-Br knowledge
contextualizedapplications. 2. A new way
sense from users (the knowledge collector
applications,responsible for feedbacking th
the OMCS-Br knowledgebase. Using the
the knowledge collector, it is generated
inserted back at the OMCS-Br database. By
have a new way of collecting common
expanding the size of the project knowled

cultural knowledge
tool to enable non-
ledgebase in an easy
is possible for any
he project database.
concept they want to

want to, they can do
ation on age, gender,
nly among the data
requirements. In this
then push a button to
ase. The results will

een to the user: 1 - A
for; 2 - a graph with

t. If the user wants to
hoose among several
he projection of the
here it is found, etc.,
at figure 5 the list of

at the middle. In the
ent forms of graphs.
ad node (the entered
he type of Minsky’s
lations are expressed
hich helps the user in
By implementing this
ilable to the general

ongs to them and to
access. Once users

d use it as they want
ntributions are to the
ngaged in helping to

viding their common

ace Tool

n see three main
s and developers in
wledgebase by the
change, it is possible
ebasefor culturally
y to collect common
r) is inserted into the
e data generated into
se applications with

data collected and
y doing that, we will
sense from people,

dgebase faster than it

is nowadays. 3. Finally, peop
the OMCS-Br knowledgeba
which is online. In this tool,
the user’s profile so that d
culturally contextualized info
people said about it when th
sense at the OMCS-Br proj
they will have the chance o
things, and why their contr
project. Besides, they can us
to, without restraints and, mo
We are investing in this
supporting children and te
supporting the therapeutic
emotional closeness lead us t
values, beliefs and preferenc
design, the rules and the con
more interesting and easier
that, to be engaged in using t
reach the defined goals.Our
and collector implementation
some application to see their
tool, we want to develop som
in an effective way. We wan
kind of things they can do w
learn something about their
the OMCS-Br knowledgeba
intend to do a study case to s
situation by inviting some us
that, observe how they use th
how they will use them.

ACKNOW

We thank FAPESP, CAPE

REF

[1] Sarmento, A, "Issues of Hu
Management,pp. 22-23, 2005.

[2] Anacleto, J. C.; Lieberman, H
A.F.P.; Espinosa, J., "Can com
computer applications?", Proc.

[3] Vance, A.; Elie-dit-cosaque,
information technology artifa
culture.", J. of Management In

[4] Anacleto, J. C.; Pereira, E. N
Fabro, J. A., "Culture Sen
Commonsense Knowledge", P

[5] Silva, M.A.R.; Anacleto, J.C
childrens' expression and
background.",IEEE SMC, p12

[6] Anacleto, J. C.; Fels, S.; Vil
therapist tool to promote
CHI2010, ACM Press, pp. 356

[7] Masiero, A.; Filgueiras, L.;
Extraction Process for Creating

[8] Minsky, M.; Singh, P.; Slom
Symposium: Designing Archit
Magazine, vol. 25, no. 2, pp. 1

[9] Singh, P.; Lin, T.; Mueller, E.
Knowledge acquisition from th
Ont., Databases, and App of S

ple now are able to do searches at
ase through a web interface tool,
, the user will type a concept and
doing a search it is providedthe
ormation about it, i.e., things that
hey were providing their common
ject website. With this approach,
of seeingwhat people think about
ributions are so important to the
se the results whenever they need
ore than that, in a very easy way.
subject because our studies on
eenagers education as well as
process for family to promote

to state that when people see their
ces expressed in the software, the
ntent, they consider the application
for them to learn and, more than
these software, what is essential to
next steps are to finish the filter

ns and use them more directly in
r behaviors. To the web interface

me tutorial to help people in using it
nt to guide users in knowing how
with the results they get; How to
future users by doing searches at

ase? At the end of the work, we
ee how the tool will work in a real
sers to do certain task and, during

he tool, the results they will get and

WLEDGMENT

ES, Boeing for financial support.

FERENCES

man Computer Interaction", Information

H.; Tsutsumi, M.; Neris, V.P.A.; Carvalho,
mmon sense uncover cultural differences in
. WCC 2006, pp. 1-10, 2006.
C.; Straub, D. W. "Examining trust in

acts: The effects of system quality and
nformation Systems, pp. 73–100, 2008.
.; Ferreira, A. M.; Carvalho, A. F. P. De;
nsitive Educational Games Considering
Proc. ICEIS 2008.
C. ; Buzatto, D., "A game to support
socialization considering their cultural
30-1235, 2009.
llena, J. M. R., "Design of a web-based
emotional closeness.", In: Proceedings

65-3570, 2010.
Aquino, P. "Multidirectional Knowledge
g Behavioral Personas.", IHC, SBC, 2011.

man, A. "The St. Thomas Common Sense
tectures for Human-Level Intelligence", AI
13–12, 2004.
T.; Lim, G.; "Open Mind Common Sense:
he general public", Proc. 1st Int. Conf. on
Sem. for Large Scale IS, California, 2002.

141

A Visual Approach to Validate the Selection Review of Primary
Studies in Systematic Reviews: A Replication Study

Katia Romero Felizardo, Ellen Francine Barbosa and José Carlos Maldonado
Comp. Systems Department – University of São Paulo – São Carlos, SP - Brazil

katiarf, francine, jcmaldon@icmc.usp.br

Abstract

One of the activities associated with the systematic
literature review (SLR) process is the selection of pri-
mary studies. When the researcher faces large volumes
of primary studies to be analysed, the process used to
select studies can be arduous, specially when the selec-
tion review activity is performed and all studies un-
der analysis are read more than once. An experiment
was conducted as a pilot test to compare the perfor-
mance and accuracy of graduate students in conducting
the selection review activity manually and using visual
text mining (VTM) techniques. This paper describes a
replication study that used the same experimental de-
sign and materials of the original experiment. The re-
sults have confirmed the outcomes of the original ex-
periment, i.e., VTM is promising and can improve the
performance of the selection review of primary studies.
There is a positive relationship between the use of VTM
techniques and the time spent to conduct the selection
review activity.

1 Introduction

Systematic Literature Review (SLR) is a “means of
identifying, evaluating and interpreting available re-
search relevant to a particular research question, or
topic area, or phenomenon of interest” [6].

Controlled experiments, case studies and surveys are
examples of primary studies which compound the in-
formation source of SLRs. These empirical studies are
grouped and summarized by SLRs, composing the sec-
ondary studies [5]. Kitchenham [5] proposed a pro-
cess for SRs in Software Engineering (SE) that involves
three phases: (i) planning the review, (ii) conducting
the review, and (iii) reporting the review. During the
planning phase, the need for a review is identified and
the review protocol is developed. The protocol includes
items, such as sources selection, search methods and

keywords, inclusion, exclusion and quality criteria for
primary studies. The activities of the second phase in-
clude the identification of relevant research, selection of
primary studies based on the inclusion and exclusion
criteria, selection review, assessment of study quality
and data extraction. Finally, the third phase compre-
hends data synthesis and dissemination or reporting
of the SLR’s results to interested parties including re-
searchers and practitioners.

According to the literature, a potentially problem-
atic aspect of the SLR process is the primary study
selection [12], which is both challenging and time-
consuming. The selection of primary studies is usually
a three-stage process: (i) initially the selection is based
on a review of titles, keywords, and abstracts. The
studies are selected against the inclusion/exclusion cri-
teria defined in the protocol and studies that can help
to answer the specified research questions are included
and irrelevant papers are rejected; (ii) full copies of
the papers classified as included in the first stage are
obtained and selected against the same set of inclu-
sion/exclusion criteria used previously; (iii) the studies
should be reviewed (selection review activity) to ensure
that relevant studies have not been eliminated.

The selection review activity aims to prevent the
exclusion of relevant studies and can be conducted in
two different ways [6]: (i) performed by two or more re-
viewers – uncertainties about the inclusion or exclusion
should be investigated by sensitivity analysis, which
involves repeating the selection activity in the studies
divergently classified by reviewers; and (ii) performed
by an individual – the researcher should consider dis-
cussing their decisions with other researchers or, alter-
natively, the researcher can re-evaluate a random sam-
ple of primary studies to determine the consistency of
the decisions.

Consequently, the selection review activity implies
additional effort to re-read the studies, mainly if more
than one reviewer is considered. A highly successful
approach to support tasks involving the interpretation

142

of a large amount of textual data suitable to be applied
to the selection review activity is known as Visual Text
Mining (VTM) [7]. VTM is an extension of Text Min-
ing (TM), a well-established practice commonly used
to extract patterns and non-trivial knowledge from un-
structured documents or textual documents written in
a natural language [11]. VTM is the association of
mining algorithms and information visualization tech-
niques that support visualization and interactive data
exploration [1].

Felizardo et al. [2] have proposed an approach based
on VTM techniques to assist the selection review ac-
tivity in SLR. The techniques proposed by the authors
offer, for example, clues about the studies to be dou-
bly reviewed for inclusion or exclusion when an SLR
is performed by only one reviewer, replacing the ran-
dom choice strategy. The authors conducted an experi-
ment to compare the performance and accuracy of PhD
students in reviewing the selection of primary studies
manually and using the VTM-based approach. One of
the potential threats to the internal validity of the orig-
inal experiment was related to the sample used (four
subjects). Therefore, the goal of this paper is to repli-
cate the initial experiment conducted by Felizardo et
al. [2], involving a larger sample size of subjects.

The remainder of this paper is organised as follows:
Section 2 provides background information on the orig-
inal experiment. In the sequence, Section 3 brings a
detailed view of the replication; subsection 3.1 sum-
marises the results of the replication in isolation and
compares them to those of the first execution. Conclu-
sions and future work are discussed in Section 4.

2 Description of the Original Experi-
ment

Replication is an essential component of experimen-
tation. The term replication has come into use to refer
to a systematic repetition of an original experiment
to double-check its results [3]. This definition implies
that a replication must be explicitly related to a pre-
vious experiment. The original experiment to assess
the utility of VTM techniques in the selection review
activity was conducted by Felizardo et al. [2] in 2012.
The remainder of this section summarizes the origi-
nal experiment, which involved two research questions:
(1) RQ1: Do VTM techniques (content and citation
maps) improve the performance (time spent) of the se-
lection review activity in the SLR process?; (2) RQ2:
Do VTM techniques improve the accuracy (agreement
between systematic reviews as to which primary stud-
ies they should include) of the selection review activity
in the SLR process?

The subjects were four PhD students with prior ex-
perience in conducting SLRs.

2.1 Materials

• VTM Techniques

The VTM techniques used were document-maps
(content and citation maps). The process used to cre-
ate the maps can be found in [2].

A content map (see Figure 1) is a 2D visual repre-
sentation of primary studies that enables users to inves-
tigate content and similarity relationships among these
studies. Each primary study is mapped to a graphical
element represented by a circle. Similar documents, in
terms of content (i.e. titles, abstracts and keywords)
are placed close to one another and dissimilar docu-
ments are positioned far apart.

One of the techniques to review the selection activ-
ity is to create a content map containing the studies
collected and analyzed in an SLR and highlight them
using different colors1 as a strategy to identify the two
possible classes of studies – included or excluded (red
points are studies excluded from the review and blue
points represent the included ones). A clustering al-
gorithm can be applied to the content map, creating
groups of highly related (similar) documents. The re-
sulting clusters are analyzed in terms of included and
excluded documents in order to find inconsistencies.
In this analysis, the possible situations a cluster can be
configured and the possible consequences for the review
process are: (a): Pure Clusters – all documents be-
longing to a cluster have the same classification (all in-
cluded or excluded). Normally, such cases do not need
to be reviewed; (b): Mixed Clusters – there are docu-
ments with different classifications in the same cluster.
These cases are hints to the reviewer that there are
similar documents with different classifications. The
studies grouped there should be reviewed following the
traditional method; (c): Isolated Points – there are
documents that are not similar to others. These cases
are also hints to the reviewer, and the isolated study,
if classified as included, must be reviewed.

Examples of pure clusters are identified in Figure 1
as p. Mixed clusters are identified as m. The evaluation
of these clusters can be refined with the help of other
content-based strategies, detailed in [2].

Another technique to review the selection activity
is to use the citation map (see Figure 2), which
shows the primary studies (central points – circles),

1In general, visualization techniques employ color to add ex-
tra information to a visual representation. Therefore we suggest
the reading of a color printing version of this paper for fully
understanding the pictures.

143

Figure 1. Example of a content map.

their cited references (grey circles connected by edges)
and how documents are related to each other through
direct citations or cross-citations. It is possible to iden-
tify, for instance, studies that are not connected to
any other, that is, studies that do not share citations.
These studies, which are isolated in terms of references,
deserve attention from experts (reviewers) if they are
included in the review. Another situation, which re-
quires attention, arises when a highly connected study,
sharing citations with included studies, is not selected
for inclusion. In this case, important studies may be
missing since co-citation is also a valid criterion. In
summary, papers that share references with a relevant
paper could be more appropriate for inclusion in the
SLR. On the other hand, primary studies that are not
connected to any other studies (i.e., they do not share
citations or references and are referred to as isolated
primary studies) are more likely to be irrelevant docu-
ments in terms of a research question and may therefore
be more readily excluded from the SLR.

Other VTM strategies of exploration, such as coor-
dination, are detailed in [2].

Felizardo et al. [2] implemented a supporting tool,
named Revis – Systematic Literature Review Supported
by Visual Analytics, to enable users to explore a col-
lection of documents (primary studies) using the VTM
techniques (i.e., content and citation maps). It takes
Revis only a few seconds to create and present con-
tent and citation maps with a few hundred documents.
Figures 1 and 2 were created using the Revis.

• Datasets

The experiment design was organized in two ses-
sions, training and execution. For training purposes,
a small set of data (set 1, containing 20 primary stud-
ies) and a specific set of inclusion and exclusion criteria
were used. To ensure that first impressions from the

Figure 2. Example of a citation map.

training would not interfere with the experiment, a dif-
ferent set of data (set 2, containing 41 primary studies)
was used for the execution session. The set 2, includ-
ing articles/papers of periodics and conferences, was
originated from an SLR conducted and double-checked
by experts in SLRs on the domain of software testing.
The purpose of this SLR was to identify testing cri-
teria and testing tools used in the area of concurrent
program testing.

2.2 Definition of Users’ Task and Metrics

The users’ task was to review the studies and either
confirm the previous classification – conducted by an
expert – or change them, that is, to ensure that the
studies marked as included were in accordance with the
inclusion criteria and those marked as excluded were in
accordance with the exclusion criteria.

Subjects were required to record the time
they spent to perform the task, therefore their
performance was calculated using the metric:
chosen_and_relevant_articles

review_time . The articles marked
as included by two or more subjects who participated
in the experiment were considered relevant and taken
as the oracle. The accuracy was calculated as the
number of included studies that belonged to the oracle.

2.3 Experiment Conduction

Subjects were split randomly into two groups, one to
conduct the selection review activity manually (group
1) and another to use the VTM techniques (group 2).
Only the participants involved in the VTM-based task
(group 2) were trained on how to use the VTM tech-
niques and the Revis tool. In the execution session,

144

group 1 was given the list of the papers to be reviewed,
based on their reading of the abstracts and the previ-
ous classification of the papers (included or excluded).
Subjects from group 2 received the visualizations (con-
tent and citation maps) containing the same papers
used by group 1 (included papers were colored in blue
and excluded papers in red). Both groups were given
the inclusion and exclusion criteria and a form to sum-
marize their decisions.

2.4 Original Results

The main results are described as follows:

1. the performance of the subjects that used the
VTM is higher than that of the subjects using the
manual method; and

2. there is no difference in accuracy that used VTM
or reading the papers.

3 Replication

This section describes the replication of the origi-
nal experiment (detailed in Section 2). The subjects
involved in this replication were 15 graduate students
(10 PhD and 5 master’s students) of an SE course at
the USP (University of São Paulo), Brazil. They were
divided into two groups: (i) one containing 8 subjects
(group 1) and another containing 7 subjects (group 2).
Each group contained 5 PhD students with prior expe-
rience in conducting SLRs.

The same VTM techniques (content and citation
maps), datasets 1 (20 studies) and 2 (41 studies), and
the set of inclusion and exclusion criteria from the orig-
inal experiment were used in the replication. The same
users’ task (selection review manually and using VTM)
and metrics from the original experiment were used.
The design of the original experiment was duplicated
for the replication without changes (2 groups, 2 ses-
sions). No time limit was imposed for the experiment
and the participants were not allowed to communicate
with each other.

3.1 Replication Results

Table 1 shows a summary of the results. The time
(see third column) spent by the subjects of group 1 to
perform the selection review activity on the basis of
reading the abstracts varied between 57 and 87 min-
utes and the time spent by the subjects of group 2 to
perform the same activity using the VTM techniques
varied between 32 and 56 minutes.

Table 1. Summary of Results.
Group ID Time Performance Accuracy

Group 1

1 62 min 0.24 articles/min 15
2 60 min 0.20 articles/min 12
3 58 min 0.25 articles/min 15
4 65 min 0.23 articles/min 15
5 62 min 0.24 articles/min 15

(Reading) 6 75 min 0.17 articles/min 13
7 57 min 0.22 articles/min 13
8 87 min 0.13 articles/min 12

Group 2

9 50 min 0.30 articles/min 15
10 34 min 0.38 articles/min 13
11 60 min 0.18 articles/min 11
12 35 min 0.28 articles/min 10

(VTM) 13 62 min 0.22 articles/min 14
14 32 min 0.53 articles/min 17
15 56 min 0.26 articles/min 15

To answer the first research question (RQ1), the sub-
jects’ performances were measured (see fourth column)
and the results show that subject 3 reviewed 0.25 ar-
ticles/min using manual review (group 1), subject 8,
also from group 1, reviewed 0.13 articles/min, and sub-
jects 11 and 14 reviewed 0.18 articles/min and 0.53
articles/min respectively, applying VTM. The perfor-
mance of the subjects that used VTM appeared to be
better than that of the subjects that used the manual
method. Therefore, the results suggest that the use of
VTM can help to improve the performance of the se-
lection activity in the SLR in comparison to a manual
reading method.

Eighteen articles were marked as “included” by at
least two subjects and considered the oracle. Table 1
(see fifth column) shows the comparison between the
VTM and the manual reading approaches in terms
of accuracy (RQ2). Regarding the accuracy of re-
searchers, researchers 1,3,4 and 5 – group 1 correctly
classified 15 articles of a total of 18 studies included as
oracle using manual review, that is, researchers 1,3,4
and 5 correctly classified 83.3% of the articles. Re-
searchers 9 and 15 – group 2 correctly classified 15 ar-
ticles (83.3%) using VTM techniques. Researcher 14
showed a 94.4% precision (17 articles correctly classi-
fied).

Boxplots were used to show the distribution of the
performance and accuracy of the subjects in reviewing
the primary studies. They are based on non-parametric
statistics and can help explain the behaviour of the
summary statistics. The bar in the box shows the me-
dian (central tendency for the distribution) and the
length of the box indicates the spread of the distribu-
tion. Figure 3(a) shows that there is no equal variance
within the data (the variance of group 2 – using VTM is
higher than those of group 1 – reading abstracts) and
that the medians for both groups are different. The

145

highest performance (0.53 articles reviewed/min – an
outlier, i.e., a point distant from the rest of the data)
was obtained by one subject of group 2. The second
highest performance (0.38 articles reviewed/min) was
also achieved by one subject of group 2. The lowest per-
formance (0.13 articles reviewed/ min) was obtained by
one subject of group 1. Regarding accuracy (see Figure
3(b)), the boxplots show that there is similar variance
within the data and that the medians for both groups
are the same (14 studies correctly included as oracle).

(a)

(b)

Figure 3. Boxplots showing the distribution of
(a) performance and (b) accuracy.

To formally evaluate the results the Man-Whitney
test, also called Mann-Whitney-Wilcoxon test, a non-
parametric statistical hypothesis test, was used. Re-
garding performance, our results have shown that (see
Table 2 – Performance) there is a statistically signifi-
cant difference (P-Value = 0.0146 < 0.05) between the
time averages with the use of VTM and the traditional
method (reading abstracts). Therefore, we can state
that the use of VTM can improve the performance of
the primary studies review task.

A plausible explanation to the significant difference
in the performance using VTM is that VTM tech-
niques usually allow a faster data exploration helping

address the challenges that arise in the exploration of
large datasets [4]. Moreover, VTM techniques facili-
tate the extraction of high-quality information from a
large amount of primary studies usually through con-
tent/similarity and citation relationships. Our aim is
not to eliminate the traditional method, i.e., reading
the abstracts or full texts, to review the primary stud-
ies. Rather, our hypothesis is that exploratory visual-
ization techniques may augment the traditional review
approach. The employed visual representations can be
used to support the decisions made by reviewers re-
garding inclusions and exclusions.

Regarding accuracy the results have shown that (see
Table 2 – Accuracy) there is no statistically significant
difference (P-Value = 0.0487 > 0.05) between the accu-
racy averages with the use of VTM and the traditional
method (reading abstracts). Therefore, we can affirm
that the use of VTM exerts no effect on the accuracy
of the primary studies review task. The reasons for the
no significant difference in the accuracy using VTM are
not clear but it may have something to do with differ-
ent factors. Firstly, the subjects who participated of
the replication were partly master students. The level
of experience of the subjects in conducting SLRs could
affect their capable to review the studies. Only after a
few years of experience in a certain research field, re-
searchers are capable to review studies. Secondly, how
easy it is to review papers for selection in an SLR de-
pends on the domain and the papers to be examined.
In this replication, the subjects were not specialist in
concurrent software testing. Thirdly, sometimes it is
really hard to decide whether to include a paper or
not, independent of whether using VTM or not. Fi-
nally, SLRs on the same topic may reach different con-
clusions [9].

Table 2. Results for Man-Whitney test.
Variable P-Value Statistically Significant?

Performance 0.0146 Yes (P-Value < 0.05)
Accuracy 0.0487 No (P-Value > 0.05)

We compared the replication results with the out-
comes of the original experiment. In both experiments,
the results showed that the incorporation of the VTM
into the SLR study selection review reduced the time
spent on this activity and did not increase the accuracy
in comparison to a manual reading method.

4 Conclusions and Future Work

The main contribution of this research is the repli-
cation of a controlled experiment to compare PhD and

146

master students’ performance and accuracy in review-
ing primary studies manually and using VTM tech-
niques. The results show that the answer to RQ1 is
“Yes” – suggesting that the performance of the sub-
jects that used VTM is higher than that of the subjects
that used the manual method. VTM techniques usu-
ally allow a faster data exploration, therefore the main
advantage of using VTM is the acceleration of the rate
at which review of a large volume of primary studies
can be undertaken. In other words, the use of VTM
techniques speed up the selection review activity.

One of the potential threats to the internal validity
of our study is related to the fact that typically, many
SLRs involve a greater number of studies to be consid-
ered during the review stage (more than 100). How-
ever, we chose to use in our replication the same SLR
used in the original experiment, which contained 41 pri-
mary studies. We made this choice on the assumption
that adding too many studies to our replication could
similarly influence the results, affecting the motivation
of the subjects to carry out the assigned tasks.

The Revis and VTM techniques can be used in dif-
ferent domains of SLRs. According to the VTM ex-
perts, VTM tools work better with more articles [8],
where a large number of candidate studies are consid-
ered – hundreds and even thousands. The key disad-
vantage of introducing VTM in the SLR process is the
additional knowledge required, i.e., the subjects will
need to become familiar with the visual tools. A cur-
rent limitation of the Revis tool is that the documents
(papers) under analysis need to be in bibtex format in
order to be loaded into Revis. Thereby, if the stud-
ies are in any other format (e.g. PDF), it is necessary
to convert them prior to the analysis. However, many
electronic databases (e.g. ACM Digital Library; IEEE
Xplore; Web of Science; Scopus and Springer Link)
have the facility to export citations from datasets to
the bibtex format, hopefully making this process as
automated as possible.

The presented results are promising and reveal the
benefits of using VTM techniques in supporting the
conduction of SLRs. Further replications involving
more subjects and a wider dataset will be conducted in
order to identify significant effects in accuracy provided
by the use of VTM techniques. Conclusive results re-
garding the use of VTM to support the SLR process
should be achieve before widely adopting the use of
VTM techniques.

The empirical SE comunity has been addressing sev-
eral issues related to replication, including the role of
lab packages to support replications [10]. The lab pack-
age of our experiment is available for replications upon
request.

Acknowledgment

The authors would like to acknowledge the Brazil-
ian agency FAPESP(Process n.2012/02524-4) for the
financial support provided to this research.

References

[1] M. de Oliveira and H. Levkowitz. From visual data
exploration to visual data mining: A survey. IEEE
Transactions on Visualization and Computer Graph-
ics, 9(3):378–394, 2003.

[2] K. Felizardo, G. Andery, F. Paulovich, R. Minghim,
and J. Maldonado. A visual analysis approach to vali-
date the selection review of primary studies in system-
atic reviews. Information and Software Technology,
54(10):1079–1091, 2012.

[3] N. Juristo and S. Vegas. Using differences among repli-
cations of software engineering experiments to gain
knowledge. In 3rd International Symposium on Empir-
ical Software Engineering and Measurement (ESEM),
pages 356–366. IEEE Computer Society, 2009.

[4] D. Keim. Information visualization and visual data
mining. IEEE Transactions on Visualization and
Computer Graphics, 8(1):1–8, 2002.

[5] B. Kitchenham. Procedures for performing systematic
reviews. Joint Technical Report TR/SE-0401 (Keele)
- 0400011T.1 (NICTA), Software Engineering Group
- Department of Computer Science - Keele University
and Empirical Software Engineering - National ICT
Australia Ltd, 2004.

[6] B. Kitchenham and S. Charters. Guidelines for per-
forming systematic literature reviews in software en-
gineering. Technical Report EBSE 2007-001, Keele
University and Durham University, UK, 2007.

[7] A. A. Lopes, R. Pinho, F. V. Paulovich, and
R. Minghim. Visual text mining using association
rules. Computers and Graphics, 31(3):316–326, 2007.

[8] V. Malheiros, E. Hohn, R. Pinho, M. Mendonca, and
J. Maldonado. A visual text mining approach for
systematic reviews. In 1st International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 245–254. ACM, 2007.

[9] F. Peinemann, N. Mcgauran, S. Sauerland, and
S. Lange. Disagreement in primary study selection be-
tween systematic reviews on negative pressure wound
therapy. BMC Medical Research Methodology, 8:16,
2008.

[10] F. Shull, J. Carver, S. Vegas, and J. N. The role of
replications in empirical software engineering. Empir-
ical Software Engineering, 13(1):211–218, 2008.

[11] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison Wesley, 1 edition, 2005.

[12] H. Zhang and A. Muhammad. Systematic reviews
in software engineering: An empirical investigation.
Information and Software Technology, page In Press,
2012.

147

Andon for Dentists

Saulius Astromskis, Andrea Janes, Alberto Sillitti, Giancarlo Succi
Centre for Applied Software Engineering

Free University of Bozen/Bolzano, Bolzano, Italy
saulius.astromskis@stud-inf.unibz.it, {andrea.janes, alberto.sillitti, giancarlo.succi}@unibz.it

Abstract

The Lean promise, to help organizations to improve
their efficiency can also be applied to healthcare ser-
vices.

In this article we describe an application of the “An-
don” concept for odontoiatric software. This concept is
applied visualizing the treatment status in each room of
a dentist using pre-attentive processing.

As a result, a dentist or assistant is able to grasp
immediately what is going on within the team, which
rooms are free, and if special rooms with particular
equipment (such as the x-ray machine) is available.

The here described considerations can also be applied
in other types of applications.

1. Introduction

One reason for Toyota’s success—Toyota is the
world’s largest auto maker [1]—is the so called “Toy-
ota Production System”, a particular way to manufac-
ture cars. The ideas behind this particular way became
known as “Lean thinking” with the same-titled book
by Womack and Jones in 1996 [2].

Lean thinking aims to maximize efficiency, i.e., to
obtain the desired outcome minimizing the required
resources. One method to achieve this is to provide
everyone involved with a full picture of what’s going on
at any time. Lean Thinking facilitates the coordination
among the various stakeholders eliminating the need to
“transport” information from one to another [3].

The concept to ensure that everybody knows what
is going on is “Andon” [3, 4].

In Japanese, the word “Andon” means “paper
lantern”. In manufacturing it describes a signboard
that—hung above the production line—indicates the
current status of the line.

“If everything is normal, the green light is on. When
a worker wants to adjust something on the line and calls

for help, he turns on a yellow light. If a line stop is
needed to rectify a problem, the red light is turned on.
To thoroughly eliminate abnormalities, workers should
not be afraid to stop the line [4].”

The indicator is depicted in figure 1: the car at the
work station 1 is fine, the car at the work station 2
has a missing wheel. As soon as the worker notices a
problem, he pulls the Andon cord to stop the assembly
line and to inform other works to come to help him to
fix the problem.

Time
Workstation 2

1 2 3 4

Workstation 1

Andon

Andon cord

Figure 1. In the Toyota Production System, an
Andon visualizes the status of some produc-
tion step.

Knowledge management aims to support the deploy-
ment of knowledge across the organization [5]. Many
organizations have systems in place that contain a lot
of information about the ongoing business processes,
the employed resources, and the produced output (see
e.g., [6]). Unfortunately the already available data is
not used to inform stakeholders about the current sta-
tus or to guide decisions.

In this work, we present how we how we applied
the Andon concept within a practice management ap-
plication for dentists. This system was developed for
an orthodontic practice in Italy, based on the require-
ments of the dentists and the experiences made after
its introduction.

We aim to inspire others to follow our line of re-

148

search in trying to build knowledge dissemination into
their software and in this way exploit the data already
present within organizations.

2. Approach

Andons or information displays can be designed in
a variety of ways. We distinguish two scenarios to pro-
vide information through a display: “pull” and “push”.
In the “pull” scenario the user wants to get a specific
piece of information and uses the software to obtain
it [7]. In such case aspects of technology acceptance be-
come important, such as the perceived usefulness and
the perceived ease of use [8]. When designing an infor-
mation display, its important to consider [9]:

1. The dashboard should help the user to understand
the context of the data, i.e., state why was this
data collected, how should it be interpreted, how
can we use this data in future projects [10], etc.

2. The dashboard should help the user to understand
the meaning of the data, i.e., choose visualizations
that require a minimum of effort to get the con-
veyed message, be coherent in the chosen visual-
ization strategies, allow the user to choose the level
of detail of the data, etc.

In the “push” scenario the display has to be designed
so that important information is “pushed” to the user,
i.e., captures his or her attention and informs the user.

Whether a display is more suited for the “push” or
the “pull” scenario depends on how much effort a user
has to invest to see the desired data. A display that
“pushes” the information to the user has the advantage
that it can inform the user in unexpected, unforeseen
situations about problems, anomalies, etc. A display
that was designed to support the “pull” scenario should
offer more possibilities to explore the data, to filter and
to search, to investigate the reasons that caused the
data, etc [11].

To setup a display that is used in a “push” scenario,
we found the following considerations important [9, 12,
11]:

1. The user should see the display without any effort.
For example, in the car, the display is built in such
a way that it is in the range of vision of the driver.
An organizational display should be displayed on
a monitor in the corridor or the office where many
are passing by. The information will be pushed to
the users without their active participation. An
example for such a display is the Andon board,
used in lean manufacturing, and placed visibly so

that everybody sees if there is a problem on the
assembly line (see fig. 1).

2. The user should not need to interact with visual-
izations to understand the data. The charts have
to be designed in such a way that an interaction
is only necessary when the user switches into the
pull mode, i.e., the display got the attention of the
user and he or she wants to investigate further.

3. Arrange the data to minimize the time needed to
consult the display. Place the same information
always on the same spot. Allow the user to develop
habits, e.g., every morning, when passing by with
the coffee in the hand, she can check the current
size of the error-log that is displayed in the upper
right corner of the display.

4. Guide the attention of the user to indicate impor-
tant information. There are different mechanisms
that draw the attention of the user. If they are
overused, the user neglects them. For example, if
everything on the display is blinking, the user will
ignore it.

5. Since we want that the users look at the displays
by choice, also aesthetical considerations can in-
crease the interest for the user to look at the dis-
play.

To guide the design of the user interface of our elec-
tronic waiting list, we used a technique called “pre-
attentive processing”, which we explain now.

Researchers have identified different graphical prop-
erties that are processed pre-attentively and grouped
them into form, color, motion, and spatial position [12].
Pre-attentive processing elements have the advantage
that they are processed (i.e., understood) faster than
not pre-attentive elements [12].

An example is provided in figure 2a. If we try to
count the number of 3s, we have to process the num-
bers sequentially, i.e., we have to look at each number
separately and decide if it resembles the form of the
number 3.

1 0 4 2 1 3 7 8 6 7 6 4 3 2
1 3 6 8 7 5 4 3 5 6 7 8 0 0
9 7 5 2 0 9 5 3 7 8 0 1 2 7
9 8 2 3 8 6 1 9 0 5 8 4 1 6
4 7 9 4 7 2 2 2 3 7 4 9 0 1

(a)

80607050801 2040 020 0701 50
801 0402030701 30 020406060
902030506090301 204060805020
9040501 40 080906030407080 0
70209070205050501 207090608

(b)

Figure 2. How many 3s do you see?

It is much easier to count the number of 3s in fig-
ure 2b. The numbers get noticed much faster because

149

Figure 3. Electronic waiting list of a dental practice with 8 treatment rooms.

of their different color. Moreover, we are able to “fil-
ter out” only the 3s from the remaining numbers. We
cannot do this if all numbers have the same color.

How strong something is noticed pre-attentively de-
pends from how different the highlighted element is
from the others and how different the other elements
are among each other.

3. Proof of concept

In this section we present how we developed an An-
don board for a software management system for den-
tists. This Andon board is not intended to be seen by
patients, but only doctors and assistants. We imple-
mented this system for two dentists, one with 9 treat-
ment rooms, one with 14. The design of the display is
shown in figure 3, we will explain the single parts of it
below.

The here presented proof of concept is not just an ex-
ample, it is the description of an actual implementation
that is in use by two dental practices. The figures 3–5
are screenshots of the actual system we implemented.

Typically, dentists organize the visits of their pa-
tients in a calendar, and when patients arrive they have
to wait in the waiting room.

We implemented an electronic waiting list that al-
lows to create, remove, update, or delete waiting list
entries containing the following fields: the treatment
priority, two classifications of the upcoming treatment,
the time the patient arrived, the name of the patient,
the responsible practitioner, and the current room in
which the patient is.

If the patient was already registered as patient be-
fore, the responsible practitioner is selected automati-
cally, using the favourite practitioner stored in the pa-
tient’s record.

To use the electronic waiting list as a coordination
instrument, i.e., to inform practioners and assistants
who is currently waiting, which rooms are taken, etc.,
we identified the following requirements:

1. Patients do not like to wait [13]. The electronic
waiting list must indicate how much the patients
are already waiting so that those patients can be
treated as soon as possible.

2. Not all patients have the same priority. The
electronic waiting list must indicate if some pa-
tient has acute pain so that those patients can be
treated as soon as possible.

3. Some patients have special conditions that must
be taken in to consideration (e.g., a patient might

150

Figure 4. Patients that just arrived are added
to the virtual waiting room

have an allergy or some particular disease). To en-
sure the safety of the practitioners and the patient,
the electronic waiting list must indicate this.

4. The waiting list will be used as a coordination in-
strument, i.e., it will be visible on the screens of
the dental practice and seen not only by the doc-
tors, but inevitably also by the patients. To en-
sure the privacy of all patients, sensitive informa-
tion about the patient must be visualized in an
encoded way. This avoids that a patient treated
in room A sees for example, that the patient in
room B—which he or she might know—has some
disease.

5. Dentists can treat more than one patient at a time
since preparatory or concluding steps can be han-
dled by the assistants. The electronic waiting list
has to indicate which room is free so that a new
patient can be assigned quickly to an empty room.

We decided to use two pre-attentively processed
properties to design the electronic waiting list: color
for the requirements 1–4 and spacial position for re-
quirement 5.

We continue now explaining how we designed the
user interface of the electronic waiting list.

When patients arrive, they are added to the waiting
list. Patients wainting in the waiting room are shown
as a table (see figure 4). The table contains the color
coded treatment priority, the classifications, the time
of arrival, the total waiting time, and the name of the
patient.

The longer a patient has to wait, the more the line
of the patient is colored in red, representing the anger
that the patient is accumulating.

This table has three columns in which particular
information about the patient is visualized as colored
boxes (e.g., the treatment type or treatment priority).

As soon as an assistant has time, he or she will go
to the waiting room and pick up a patient and bring
him or her to a free room. The assistant can find a

free room just looking at the waiting list application in
which free rooms are represented as in figure 5a.

If a doctor wants to use the room with the
panoramic x-ray machine (shown as OPG in figure 3),
he or she can also just look if it is free now and only
then decide to ask the patient to accompany him or
her to perform an x-ray scan.

(a) (b) (c)

Figure 5. Visualization of free and busy rooms

The assistant accompanies the patient to a treat-
ment room and prepares everything for the treatment.
He or she will open the patient’s record on the com-
puter and prepare all instruments and drugs.

By opening the patient’s record on the computer
in the new room, the record in the electronic waiting
list and the visualized is automatically updated. The
room is now shown as busy as shown as in figure 5b.
Moreover, a busy room shows: a colored box indicat-
ing the treatment priority, two colored boxes indicating
the treatment type 1 and 2, the name of the patient,an
acronym of the responsible doctor, and a pie chart in-
dicating how much time the patient is already in the
room.

The patient and the pie chart are shown in red, if
the doctor did not start the treatment yet. Again, the
red pie chart shows the waiting time of the patient.
As soon as the treatment begins, the assistant presses
the “F12” key on the keyboard of the computer in the
treatment room. This changes the status in the elec-
tronic waiting list and the patient is shown as green (as
in figure 5c). To others this indicates in which room a
doctor is currently working and that assistants should
enter in a busy room only if this is really necessary to
not disturb the patient.

As soon as the patient’s record is closed, the record
in the waiting list is deleted and the room is shown as
free. The time required to sterilize and disinfect the
instruments and to prepare them for the next patient
is not handled by the waiting list since this can occur
also while a new patient is in the room.

Particularly in large practices, the visualization of
the free/busy as well as treatment status helps that
everybody in the practice obtains a clear picture of
what is currently going on, which rooms are busy, and
where the doctors are.

151

3.1. Tracking of the waiting duration

Using an electronic waiting list has the advantage
that it is possible to track and analyze waiting times.
In the practice depicted in figure 3, we tracked for one
year how much patients where waiting. In particular,
we were logging time time between when the patient
was added to the waiting list to the time the assistant
pressed “F12” to indicate that the treatment began.

From the 4th of January 2012 to the 4th of January
2013 we recorded 14,704 visits, with the waiting time
depicted in figure 6. To understand where the most
data points are, we used a visualization called hexagon
binning [14], a form of bivariate histogram useful for
visualizing the structure in datasets with large n. The
concept of hexagon binning we used is:

1. we tesselate the xy plane over the set (range(x),
range(y)) by a regular grid of hexagons,

2. we count the number of points falling in each
hexagon,

3. we plot the hexagons using a color gradient in pro-
portion to the counts.

Figure 6 shows that the majority of patients waits
under 10 minutes, still it is interesting to evaluate why
single patients had to wait more than 20 minutes.

8 10 12 14 16 18

0

10

20

30

40

50

1
13
24
36
47
59
70
82
94

105
117
128
140
151
163
174
186

Time of arrival

W
ai

tin
g

tim
e

Count

Figure 6. Visualization of waiting time in rela-
tion to the time of arrival using hexagon bin-
ning.

Moreover, figure 6 shows that during lunch time
(12pm-1pm) and in the late afternoon (after 4pm) less
patients visit the practice.

Another possible analysis is to study the waiting
times in relation to the room to which the patient was
assigned to after waiting. Some rooms have special
equipment that has to be prepared, other rooms are
generic, the interpretation of an analysis as in figure 7
depends on the specific practice.

1 3 4 5 6 7 12 13 14 20

0
5

10
15

20
25

30
35

Room
W

ai
tin

g
tim

e

Figure 7. Visualization of waiting time in rela-
tion to the room they were assigned to using
box plots (excluding outliers).

This case we see that, if the practice wants to im-
prove the waiting times, the preparations in room num-
ber 1 should be improved.

4. Conclusion and future work

This paper presented how we applied the Andon
concept for two dentists. The visualization of the cur-
rent status of the practice is not only useful to under-
stand what is going on, but the logged data can be used
later to study how to improve.

We implemented this Andon concept only for two
dentists, therefore we can consider this implementation
just an example of an approach that revealed as useful
in two cases.

In both dental practices the dentists found the An-
don board so useful to organize the assignment of pa-
tients to rooms that they required us to change the
software so that the initial screen is not anymore the
patient search, but the Andon board.

The Andon board keeps track of how long patients
are waiting, which room is free, who is waiting too long.
As a by-product the logging of the the visualized data
can be used to study the root causes of waiting times
in the practice or other upcoming problems [15].

152

As next steps we plan to extend the Andon con-
cept to the patients. We will study on how to analyze
the collected data to understand which types of activ-
ities create delays, how patients move within the prac-
tice [16], how we can inform patients on-the-fly about
delays, for example using an SMS message, and how
we can inform patients about their treatment using in-
novative types of visualizations (e.g., [17]) or analyses
(e.g., [18]).

5. Acknowledgements

We want to thank Lorenz and Ute Moser from
the Orthodontic Practice Moser and Christian Stricker
from the software house CompuNet for their feedback
on the developed Andon board.

References

[1] C. Dawson, “Toyota Takes Sales Crown,” The
Wall Street Journal (U.S. edition), p. B1, January
29 2013.

[2] J. Womack and D. Jones, Lean thinking: banish
waste and create wealth in your corporation. Si-
mon & Schuster, 1996.

[3] J. B. Austenfeld, “Toyota and why it is so success-
ful,” Papers of the Research Society of Commerce
and Economics, vol. 47, no. 1, pp. 109–173, sep
2006.

[4] T. Ōno, Toyota Production System: Beyond
Large-Scale Production. Productivity Press, 1988.

[5] I. Rus and M. Lindvall, “Knowledge management
in software engineering,” Software, IEEE, vol. 19,
no. 3, pp. 26 –38, May-June 2002.

[6] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza,
“A non-invasive approach to product metrics col-
lection,” J. Syst. Archit., vol. 52, no. 11, pp. 668–
675, Nov. 2006.

[7] A. Janes and G. Succi, “To pull or not to pull,”
in Proceedings of the 24th ACM SIGPLAN confer-
ence companion on Object oriented programming
systems languages and applications, ser. OOPSLA
’09. New York, NY, USA: ACM, 2009, pp. 889–
894.

[8] V. Venkatesh and H. Bala, “Technology accep-
tance model 3 and a research agenda on inter-
ventions,” Decision Sciences, vol. 39, no. 2, pp.
273–315, 2008.

[9] S. Few, Information Dashboard Design: The Ef-
fective Visual Communication of Data, ser. Oreilly
Series. O’Reilly Media, Incorporated, 2006.

[10] A. A. Janes and G. Succi, “The dark side of ag-
ile software development,” in Proceedings of the
ACM international symposium on New ideas, new
paradigms, and reflections on programming and
software, ser. Onward! ’12. New York, NY, USA:
ACM, 2012, pp. 215–228.

[11] A. Janes, A. Sillitti, and G. Succi, “Effective dash-
board design,” Cutter IT Journal, January 2013.

[12] C. Ware, Information Visualization: Perception
for Design, ser. Interactive Technologies. Elsevier
Science, 2012.

[13] R. Anderson, F. Camacho, and R. Balkrishnan,
“Willing to wait?: the influence of patient wait
time on satisfaction with primary care.” BMC
Health Serv Research, vol. 7, 2007.

[14] N. Lewin-Koh, Hexagon Binning: an
Overview, Apr. 2011. [Online]. Avail-
able: http://cran.r-project.org/web/packages/
hexbin/vignettes/hexagon binning.pdf

[15] I. Fronza, A. Sillitti, G. Succi, M. Terho, and
J. Vlasenko, “Failure prediction based on log files
using random indexing and support vector ma-
chines,” Journal of Systems and Software, vol. 86,
no. 1, pp. 2 – 11, 2013.

[16] L. Corral, A. Sillitti, G. Succi, J. Strumpflohner,
and J. Vlasenko, “Droidsense: a mobile tool to an-
alyze software development processes by measur-
ing team proximity,” in Proceedings of the 50th in-
ternational conference on Objects, Models, Com-
ponents, Patterns. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 17–33.

[17] I. Fronza, A. Janes, A. Sillitti, G. Succi, and
S. Trebeschi, “Cooperation wordle using pre-
attentive processing techniques,” in Proceedings
of the 6th International Workshop on Coopera-
tive and Human Aspects of Software Engineering,
2013.

[18] A. Mahdiraji, B. Rossi, A. Sillitti, and G. Succi,
“Knowledge extraction from events flows,” in
Methodologies and Technologies for Networked
Enterprises, ser. Lecture Notes in Computer Sci-
ence, G. Anastasi, E. Bellini, E. Nitto, C. Ghezzi,
L. Tanca, and E. Zimeo, Eds. Springer Berlin
Heidelberg, 2012, vol. 7200, pp. 221–236.

153

Identifying Extract Method Opportunities Based on
Variable References

Mehmet Kaya
Department of computer Science and Electrical

Engineering
Syracuse University
Syracuse, NY, USA

mkaya@syr.edu

James W. Fawcett
Department of computer Science and Electrical

Engineering
Syracuse University
Syracuse, NY, USA

jfawcett@twcny.rr.com

Abstract— Long methods are usually difficult to read and
comprehend due to the length and complexity of the code. As a
result, maintenance can be time consuming and costly. One
strategy to lower overall cost of software development for large
systems is to produce smaller and less complex methods through
method refactoring. This paper presents a new technique to
automate the selection process of program fragments for
refactoring. The soundness of this technique has been
demonstrated through experiments on several different software
systems. Long method defects can effectively be resolved by
extracting code fragments identified with the support of a tool we
have developed.

Keywords-Extract Method Refactoring; Long Method defects;
Placement Tree

I. INTRODUCTION
After the delivery or release of a software product, software

development enters what is known as the maintenance phase
where the focus is “to correct faults, to improve performance or
other attributes, or to adapt the product to a modified
environment.” [9]

For large software systems, effective maintenance is
difficult without readable, well-structured, and relatively
simple code. If code fails to meet these properties, refactoring
is one strategy to improve the internal structure of the code and
thus its maintainability. Refactoring is an umbrella term to
describe any process that enhances the program’s internal
structure without changing its external behavior.

Extract Method refactoring resolves the Long Method
defect by decomposing long methods into smaller, more
meaningful or cohesive ones. For many cases, problems in
large software systems can be attributed to large methods [1].
On the other hand, smaller methods are easier to read,
comprehend, and maintain. The decomposition process
simplifies a program by constructing more meaningful
methods. Although shorter methods/functions improve
readability, the key to reducing complexity is to identify and
extract, as a unit, related code fragments within a
function/method.

Methods after refactoring are effective, since they extend
the lifetime of programs by making the reader better able to
understand the purpose of each method [1] and more
effectively test, as well. Extract Method refactoring consists of

two major activities: identification of code fragments to be
extracted followed by the extraction of the identified code as a
new method and replacement of the original fragment with a
function call.

The extraction itself is easily achieved using built in
functionality within an IDE such as Visual Studio or Eclipse.
However, the selection process is less straightforward. There is
not a single identification strategy and various heuristics or
guidelines for selection of code fragments have been proposed
in literature [4,5,6,7]. Implementation of a selection process
can prove challenging and the addition of visualization to these
techniques is crucial for effective execution.

Most programming languages, such as C++, C#, C and
Java, obey a set of inclusion rules that govern how key
constructs are placed within source code. In this paper, the
constructs that we will focus on are methods/functions and
controls. We will see that placement structure of controls
within a method is a tree which we will refer to as a placement
tree where each element has only one parent. The approach
proposed in this paper constructs a placement tree that contains
variable reference counts for individual controls or scopes
within a given method. The placement tree is then visualized so
that each scope node has a color associated with its dominant
or most referenced variable. The goal is to create
methods/functions with a single color placement tree.
Therefore, a node that does not match the color of its parent
node is identified as a candidate code to be extracted. In our
earlier paper [3], variable references and dependencies were
used for extraction of classes out of an existing class. This
research showed that reference counts of variables and scope
definitions alone can find effective extract method refactoring
candidates.

In this paper, Section 2 covers related works, Section 3
explains the placement tree structure, which is key to this
approach. In section 4, the concept of dominant variables is
explained and the identification process of candidate code
fragments is given in Section 5 along with an explanation of
how we visualize methods to identify candidate code
fragments. The focus of Section 6 is on the extraction process
of identified code fragments. Experiments and results are
discussed in section 7 and finally concluding remarks about our
paper is presented in Section 8.

154

II. RELATED WORK
Program slicing has been used extensively to identify code

fragments for extract method refactoring [4]. However,
implementation can be tedious and time-consuming since this
technique usually requires the user to manually select the
slicing criterion. Furthermore, there is no a priori approach for
choosing the slicing criterion for extract method refactoring. In
this paper, we introduce a fully automated selection technique
and placement tree visualization tool for detecting candidate
extraction fragments in large scale systems.

In [4], a program slicing technique is proposed to extract
code fragments related to the computation of a given variable
and the state of the given object. A mechanism that uses block-
based program slicing to automatically extract methods in
object-oriented programs is proposed in [6]. A transformation
technique to decompose functions into smaller ones, Tuck, is
proposed in [7] based on program slicing.

Control Flow Graphs (CFG) are also used widely as a
method extraction tool. In [8], an automatic process for
extracting methods based on an input CFG of a function and a
set of pre-selected nodes is introduced. To find extract method
refactoring candidates, an approach based on Data and
Structure Dependency (DSD) graph and longest edge removal
algorithm is proposed in [5].

Figure 1 Example Source Code

There are some studies that target only the second step in
the subject refactoring method: extracting predefined code
fragments from original method. Given an arbitrary set of pre-
selected statements, in [8], an algorithm is introduced to extract
them preserving the semantics of the original code. In [2], a
methodology is given to extract a set of marked statements that
are difficult to extract due to the presence of some certain key
words.

Figure 2 Placement Tree and Treemap Representation

The technique proposed in this paper aims to identify
scopes that carry out distinct operations. As shown in this
paper, density of variable references in code fragments or
scopes can be a good indicator for identification of main tasks
in large methods with lots of blocks. An effective refactoring
method should be supported by a visualization tool or
technique for the developers to observe the suggested
refactoring better in large scale systems. To visualize the
structure or placement tree of the input method, a treemap
approach is adopted in this research.

Treemap visualization is an effective way of presenting
hierarchical information where nodes are represented by
nested boxes [10]. Treemap visualization in this research
represents nodes on the placement tree using boxes where a
parent includes all its children. The code fragments chosen for
method extraction are decided based on the colors of these
boxes which are appointed according to the dominant variables
in scopes.

III. PLACEMENT TREE
In the proposed technique, an input method is represented

with a placement tree where each node represents a different
scope. Scope is defined by all code enclosed within braces,
e.g., "{" and "}". A scope may include multiple other scopes
and this hierarchical placement of scopes constitutes the
placement tree.

In this approach, placement tree nodes are classified using
eight different scope types. In Table 1, these scope types are
shown with their statement coverage. The method scope itself
constitutes the root node on the placement tree. If-else blocks
are treated as single scopes, since the if part and else part
cannot be split into two different methods.

In Figure 1, an explanatory method is shown. Figure 2
shows placement tree for the given example code where each
node is identified by its start and end line number. Final visual
representation of the placement tree as a treemap is also shown
in Figure 2.

TABLE I. SCOPE TYPES

Type name Start Line End Line

Function
Line that includes
function name

Line that includes
corresponding closing

braces
For Line that includes the key

word for this scope. The
key word is basically the
type name itself, e.g. "for,
while, do, switch, if"

Line that includes
corresponding closing

brace to the one following
the respective type name.

While
Do-While
Switch
If

If-else Line that includes the key
word "if"

Line that includes
corresponding closing

brace to the one following
"else" keyword.

Anonymos
Line that includes open
brace that does not have
an attached type

Line that includes the
closing brace

corresponding the
anonymous scope opening

brace

155

IV. DOMINANT VARIABLES
After constructing the placement tree for the input method,

this approach identifies the dominant variable in each scope.
Variable with the highest reference count is identified as the
dominant variable for the given scope.

Set theory will be used to better explain how we construct
scopes and determine their corresponding dominant variables.
V(F) is the set of all variable names that appear anywhere in the
function. Long Method defects can be detected in Object
Oriented Programs, Procedural Programs or Legacy Code
using the technique proposed in this paper. All global variables
and data members of the class that method under analysis
belongs to, may be elements of V(F). Local variables declared
in the method are also in the set of V(F). In other words, all
variables accessible from within the given method are possible
elements of the set V(F), subject to whether they are referenced
in the method at least once.

V(F)={v1,v2,..,vn} (1)

We also have defined several functions to express various
properties of program statements, variables, scopes and the
method. We will use these functions in our explanations
throughout the paper. Table 2 shows the functions and their
respective input and output values.

TABLE II. DEFINED PROPERTIES

Name Input Output Use
LN A program

statement, S
Line # of S LN(S)

RC A variable
name, v; and a

scope, B

of references of v
in B

RC(v,B)

SLN A scope, B Starting line # of B SLN(B)
ELN A scope, B Ending line # of B ELN(B)

Let F represent the set of all scopes in the given method.
And every scope in the given method is represented with a set
of statements, B. Let the set V(S) represent the set of variables
that are used for execution of statement S and let the set V(B)
represent the set of all variables that appear in scope B at least
once.

 (2)
 (3)

′ ′ ′ (4)
′ ′ } (5)

′ ′ ′} (6)
 (7)

From formulas given above, one can conclude that every

statement belongs to only one scope or node in the placement
tree. A statement S' is and can only be element of one scope B
that encloses statement S'; but S' is not and cannot be
considered as an element of an ancestor node of B, AB, at the
same time.

After defining our scopes and elements of them, now we
find the variable that dominates the computations for every
scope. We determine the dominant variable based on their

respective reference counts or their respective number of
appearances in the subject scope. Let D(B) represent the
dominant variables in scope B,

The set D(B) therefore includes only those variables whose
reference counts are highest in block B. Every dominant
variable name in the whole method is assigned a unique color
to represent its power on the scope that it dominates. In our
visualization tool, these colors are used to distinguish the nodes
that should be extracted.

When the number of dominant variables is zero for the
scope B, that is |D(B)|=0, in the placement tree, that node is
represented with the color of black. On the other hand, when
the number of dominant variables is greater than one for the
scope B, that is |D(B)|>0, two approaches are proposed: Parent
Protection, Sibling Collaboration. The idea behind these
approaches is to keep the blocks that are dominated by the
same variable together as much as we can.

A. Parent Protection
When scope B is dominated by more than one variable,

according to Parent Protection approach, dominant variable of
B's parent node, BP, is checked. If dominant variable of the
parent node is an element of D(B), then parent node, BP,
protects its child node B, and this dominant variable is assigned
to be the dominant variable of node B. Otherwise, one of the
dominant variable from D(B) is randomly selected to be the
dominant variable of this scope. Let dB and dBP represent the
dominant variables of the nodes B and BP respectively.

B. Sibling Collaboration
When scope B is dominated by more than one variable,

according to Sibling Collaboration approach, dominant
variables of its sibling nodes, SB and SA, are checked. SB and
SA are those nodes that come right before, and after scope B in
source code (left and right nodes in placement tree
respectively). Dominant variable of the sibling SB is evaluated
first. If dominant variable of the sibling node, SB, is an element
of D(B), then sibling nodes, B and SB, collaborate. In this case,
dominant variable of SB is assigned to be dominant variable of
node B.

If dominant variable of the sibling node, SB, is not an
element of D(B), dominant variable(s) of the other sibling
node, SA, is evaluated. If SA has only one dominant variable,
that is |D(SA)|=1, and this dominant variable of SA is an
element of D(B), then sibling nodes, BP and SA have
collaborated, and this dominant variable is assigned to be the
dominant variable of node B as well.

If SA is dominated by more than one variable, that is
|D(SA)|>1, a random variable from D(B) D(SA) is chosen
and assigned to be the dominant variable of both B and SA. If
|D(B) D(SA)|=0, a random variable from D(B) is chosen and
assigned to be the dominant variable of node B. Let dB, dSB

156

Figure 3 Refactoring Suggestions

Figure 4 Refactoring Suggestion

and dSA represent the dominant variables of the nodes B, SB
and SA respectively.

Adopting one of these two approaches, only one dominant
variable is assigned to each node in our placement tree. This
variable will be the one that involves in the computation of that
scope most. During the resolution of multiple dominant
variables, we start from the outmost scope in parent protection
approach and leftmost scope in sibling collaboration approach.
This guarantees that when a scope is analyzed for dominant
variable, its parent node or left sibling node has already been
assigned its dominant variable with respect to the adopted
approach. User intervention can be used instead of random
selection during this process, and this remains as a future work.

V. IDENTIFYING CANDIDATE CODE FRAGMENTS
There are two types of scopes that we suggest to be

extracted from original code as new methods.

1. Large code fragments with a color different from
parent's color. In Figure 3, we show an example
for this case.

2. Consecutive sibling nodes with the same color. In
Figure 4, we show an example for this case

In this paper, refactoring suggestions aim to generate
methods with minimum number of color diversity. We suggest
to extract first the out most scopes with a color different from
their parent's color. After refactoring, resulting code should be
analyzed again for further refactoring until possibly all
generated methods and the original method have only one
dominant variable for every scope. Therefore; the resulting
code will yield methods that handle only one smaller and less
complex task. Figure 3 and Figure 4 show some of the possible
scopes that suit our refactoring suggestions.

VI. EXTRACTING CODE FRAGMENTS
After determining the code fragments for refactoring using

our tools, developers are now to extract those fragments as new
methods and replace the fragments with function calls to the
new methods. Once the code fragments for refactoring are
identified, extracting them is usually trivial except a few points
that require attention. This section explains how the extracting

process should be carried out considering some important cases
that, without careful handling, might cause compilation errors
or alteration in the behavior of the system.

A. Parameters of Extracted Methods
Analysis and visualization tools described in this paper

have been tested on several methods with different sizes. And
extract method refactoring is applied on identified fragments.
Main motivation of this work is to effectively detect code
fragments for extraction as new methods. Number of
arguments, that needs to be passed to the extracted methods,
have not been considered.

C++ is one of the most difficult programming languages for
static code analysis because of its complex syntax and
semantic. For this reason, for our experiments, methods that are
written in C++ programming language are chosen. In C++
language, there are various ways of passing arguments to
methods. By default, arguments to methods are passed by
value. When an argument is passed to a method by value,
changes that the method does on this argument never affect the
value of the argument in the calling method. C++ also provides
an option to pass arguments by reference. A reference to a
variable is simply an alias for that variable. When an argument
is passed by reference, the changes made on the argument
within the method are also reflected to the calling method.

If a variable is never used after a code fragment, that is
identified as a candidate for extract method refactoring in the
original method, this variable can be passed to the method by
value. Variables, that have been used after the fragment to be
extracted in the original method, have to be passed to the
extracted method by reference. Therefore, we suggest to use
"pass by reference" whenever the programming language
allows, to simplify the process of extract method refactoring.

B. Return Values From Extracted Methods
As stated earlier, IDEs like Eclipse and Visual Studio

support extraction of a set of preselected statements as a new
method. These IDEs have some limitations when extracting
certain types of code. For example, Eclipse requires the
selected code fragments not to include any return statement.
Visual Studio, similarly, puts some limitation on the code with
return statements. When selection contains return statements,
all paths are expected to be terminated by a return statement
too.

Code fragments with return statements need to be handled
carefully especially when not all paths in an identified code
fragment are terminated by a return statement. This is one of
the greatest challenges and limitations in extraction process of

157

Figure 5 Experiment 1

Figure 6 Refactoring Result

method refactoring. We will expand on this problem in a future
publication that we are currently working on.

C. Bound Blocks
There are two key words presence of which precludes

extraction of the code fragments that they reside in. These key
words are "continue" and "break" that respectively carries a
loop to next iteration or halts the loop. If a code fragment
contains one of these two key words and the corresponding
loop is not included in the fragment, then this code fragment
cannot be considered for extract method refactoring. In other
words, if a code fragment or node in the placement tree
contains one of the key words, "continue" and "break", then
this node is bound to its ancestor node that represents the loop
associated with these keywords.

In Figure 7, we show an example code fragment that cannot
be considered for extraction as a new method. The code
fragment between lines 601 and 605 is bound to the code
fragment between line numbers 591 and 606. Whenever two
such scopes are bound, they have to be moved together in case
of refactoring.

 Figure 7 A Code Fragment with "break"

VII. EXPERIMENTS AND RESULTS
We have run our analysis and visualization tools on several

methods from different systems. Identified code fragments in
these methods are then extracted as new methods following the
process explained in Section 5. Throughout the experiments,
parent protection approach explained in Section 3 is adopted.
Due to page limitation, we cannot put the source code in this
paper. Yet, programs before and after refactoring can be found
at [12].

A. Experiments from our Analysis Tool
We first applied this technique to a method in our tool. This

method basically analyses a statement to find data declaration
and references in the statement. Figure 5 shows the placement
tree of the original version of the analyzed method.

We extracted three new methods and ran our tool again
after refactoring. Figure 6 shows the placement trees for the
methods we generated. During refactoring, code fragments
with small lengths (usually two lines of codes) were not
extracted, as our main focus is on extracting large code
fragments.

For all the test cases that we used from our analysis tool,
we could easily come up with meaningful names for the
extracted methods based on their respective tasks. This
demonstrates that our approach, with a high probability, will
identify fragments that have a distinct task in the larger
operation of the whole method. Other experiments from this
domain and their visualizations can be found in [12].

B. Experiments from Open source Projects
Method used for this experiment is taken from a research

project written by a group we collaborate. This method
basically implements a part of reconstruction process of
medical images obtained using cone beam and/or parallel beam
collimators. The original function before any processing or
refactoring has nearly 400 lines of codes with comments and
white spaces. Figure 8 shows a portion of placement tree for
the original version of this method.

We extracted nine methods and ran our tool again on these
methods after refactoring. Figure 9 shows the placement trees
for these methods. After refactoring the method has less than
40 lines. This improves the readability of the code a lot and
makes the code more comprehensible reducing its complexity.
Hence the overall maintainability of the whole system is
improved as the developer has the chance to work on smaller
and less complex methods after refactoring.

Another method used for our experiment is one of the
longest methods from this research project with nearly 4000
lines of codes with comments and white spaces. Our tool
clearly detects many code fragments as extract method
refactoring candidates and as shown in Figure 10, one can
easily observe candidate code fragments for extraction. Figure
10 shows just a portion of the placement tree for this method.
Other parts of the placement tree are not any less diverse in
terms of colors of nodes or their dominant variables.

158

Figure 8 Experiment 2

Figure 9 Refactoring result for Experiment 2

Figure 10 Experiment 3

Figure 11 Experiment 4

Another software that we used for our experiments is
called Notepad++. Notepad++ is an open source code editor
and Notepad replacement that supports several programming
languages and natural languages [11]. Analyzed method,
feedGUIParameters, has more than 800 lines of code. Figure
11 shows a part of the placement tree for this method. As
shown in Figure 11, our tool was able to indentify large code
fragments that are candidates for extract method refactoring.

I. CONCLUSION AND FUTURE WORK
In this paper we mainly focus on identification of code

fragments for extract method refactoring. Our identification
process, as stated earlier, is based on placement tree and
variable reference counts in each node of this tree. This
approach is straightforward to implement and it effectively
works in real software systems as shown in the experiments.

In this work, initially we did not target refactoring to reduce
total number of statements in systems by detecting and
removing duplicated code. Yet, our visualization reveals that
variable reference counts can also be used for this purpose. As
shown in Figure 8, we have encountered quite a lot recurring
patterns in our placement trees. Such recurring patterns can be
found in Figure 9 as well in the placement trees of the new
methods. When we compared the corresponding code
fragments of these recurring nodes, we saw that some of these
code fragments were identical to each other, while for some,
there was a tremendous similarity between corresponding code
fragments, although they were not identical. This shows that
our approach with some improvement can be used to detect
duplicated code as well. This shapes the future direction of our
research together with a study to minimize the number of
parameters that extracted methods require.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

"Refactoring: Improving the Design of Existing Code," Addison Wesley,
Boston, MA, 1999.

[2] R. Komondoor and S. Horwitz, "Effective, Automatic Procedure
Extraction," Proceedings of the 11th IEEE International Workshop on Program
Comprehension, pp.33, May 10-11, 2003.

[3] M. Kaya and J. W. Fawcett, "A New Cohesion Metric and
Restructuring Technique for Object Oriented Paradigm," Computer Software
and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th
Annual , pp.296-301, 16-20 July 2012.

[4] N. Tsantalis and A. Chatzigeorgiou, "Identification of Extract Method
Refactoring Opportunities," Software Maintenance and Reengineering, 2009.
CSMR '09. 13th European Conference on , pp.119-128, 24-27 March 2009.

[5] T. Sharma, "Identifying extract-method refactoring candidates
automatically," In Proceedings of the Fifth Workshop on Refactoring Tools
(WRT '12). ACM, New York, NY, USA, pp.50-53, 2012.

[6] K. Maruyama, "Automated method-extraction refactoring by using
block-based slicing," SIGSOFT Softw. Eng. Notes 26, pp.31-40, May 2001.

[7] A. Lakhotia and J.-C. Deprez, "Restructuring Programs by Tucking
Statements into Functions," Information and Software Technology, vol. 40, no.
11-12, pp. 677-690,1998.

[8] R. Komondoor and S. Horwitz, "Semantics-preserving procedure
extraction," In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL '00). ACM, New York, NY,
USA, pp.155-169, 2000.

[9] http://homes.ieu.edu.tr/~kkurtel/Documents/IEEE%20Std%201219-
1998%20Software%20Maintenance.pdf

[10] D. Turo and B. Johnson, "Improving the visualization of hierarchies
with treemaps: design issues and experimentation," Visualization, 1992.
Visualization '92, Proceedings., IEEE Conference on, pp.124-131, 19-23 Oct
1992.

[11] http://notepad-plus-plus.org/

[12] http://www.lcs.syr.edu/faculty/fawcett/handouts/Research/kaya/ap.pdf

159

Mutation Analysis for JavaScript Web Application Testing

Kazuki Nishiura and Yuta Maezawa
The University of Tokyo

Tokyo, Japan
{k-nishiura, maezawa}@nii.ac.jp

Hironori Washizaki
Waseda University

Tokyo, Japan
washizaki@waseda.jp

Shinichi Honiden
The University of Tokyo, National Institute of Informatics

Tokyo, Japan
honiden@nii.ac.jp

Abstract—When developers test modern web applications
that use JavaScript, challenging issues lie in their event-driven,
asynchronous, and dynamic features. Many researchers have
assessed the adequacy of test cases with code coverage criteria;
however, in this paper, we show that the code coverage-based
approach possibly misses some faults in the applications. We
propose a mutation analysis approach for estimating the fault-
finding capability of test cases. We assume that developers can
find overlooked fault instances and improve the test cases with
the estimated capability. To create a set of faulty programs, i.e.,
mutants, we classify the JavaScript features in web applications
and then define a comprehensive set of mutation operators. We
conducted a case study on a real-world application and found
that our approach supported the improvement of test cases to
expose hand-seeded faults by an extra ten percent.

Keywords-JavaScript; Mutation Analysis and Testing; Web
Applications; Test Criteria

I. INTRODUCTION

Developers implement client-side JavaScript programs
(henceforth, JS programs) to make their web applications
interactive. JavaScript provides APIs for handling user
events, requesting asynchronous messages, and dynamically
manipulating Document Object Models (DOM)1 to rewrite
the contents on a web page. Ocariza et al. reported that 97
of the 100 most visited web sites utilized JavaScript [1].

Since event-driven, asynchronous, and dynamic features
can increase the complexity of web applications using JS
programs (henceforth, JSWAs), researchers have sought to
address challenging issues of testing JSWAs [2], [3]. In those
researches, they have leveraged code coverage criteria to
assess the adequacy of test cases. However, these approaches
might not show an absence of faults, even if they explore all
statements and branches without exception. This is because
JS programs have dynamic characteristics; e.g., assigning
any values to a non-existent property does not throw any
exceptions (See Section II-C).

Mutation analysis is a fault-based technique that provides
strong test criteria. The technique injects artificial faults
into the software under test. Fault injection is done by
applying mutation operators that represent fault types that
developers would like to discover. By running test cases on

1http://www.w3.org/DOM

faulty versions of software, developers can estimate the fault-
finding capability of test cases.

Researchers have indicated the usefulness of mutation
analysis for JSWAs [4]. Recently, some researchers have
started applying mutation analysis techniques on JSWAs [5]–
[7]. However, they focus on the specific characteristics of ap-
plications (e.g., preventing cross-site scripting vulnerability)
or heuristically choose mutation operators. Their approach
may give a high score to test cases that consider some types
of faults but do not consider others.

In this research, we try to define a comprehensive set
of mutation operators that cover JavaScript’s features by
conducting a feature analysis of JavaScript used in web ap-
plications. We define ten mutation operators and implement
a tool for performing mutation analysis on JSWAs. Using
the operators, our tool generates mutants from an original
JS program. By executing test cases on mutants, developers
can learn the fault-finding capability of the test cases and see
unexposed fault instances, i.e., unkilled mutants. Developers
can then add or modify the test cases so that more faults can
be exposed. We evaluated our tool by surveying real faults
from a public bug repository and carrying out a case study
on a real-world application.

Our contributions are as follows:
1) Proposal of a comprehensive set of mutation operators

focusing on the features of JavaScript in web
applications.

2) The AjaxMutator, an implementation of our approach.
3) A short survey on real faults and a case study on a

real-world application whose results show that our tool
can help developers improve their test cases.

II. BACKGROUND

A. Mutation analysis

Mutation analysis is a fault-based technique to assess
the adequacy of test cases [8], [9]. First, the technique
makes a small change to a program under test in order to
create faulty programs called mutants. The changes depend
on fault-seeding rules called mutation operators. Then, the
technique tests both the original program and each mutant
with the given test cases. If one of the mutants gives a
different test result from the original, the mutant is said

160

�������	�
����	���	�
��
�

(a) An item list page

��������	�
��������	�

(b) An item detail view

Figure 1: E-commerce web application

to be killed. Killed mutants indicate that the test cases can
find such faults. Hence, the technique measures the ratio of
the number of killed mutants to the number of all created
mutants as a mutation score. By referring to the mutation
score, developers can estimate the adequacy of their test
cases.

Although mutation analysis can provide strong criteria
for estimating test adequacy [10], its result depends on the
definitions of the mutation operators. In this research, we
define a comprehensive set of mutation operators that covers
all the mandatory features of JSWAs.

B. JavaScript web applications

Modern web applications combine various technologies
as described in [11] to realize their interactive web pages.
Because JavaScript binds all of these technologies, we argue
that JavaScript is a central technology.

To make their applications interactive, developers imple-
ment JS programs as follows: When users operate an ap-
plication, JS programs i) continuously process user requests
with event handlers, ii) asynchronously receive the neces-
sary data, and iii) dynamically update web page contents.
Analyzing JS programs is a challenging issue because of
its event-driven, asynchronous, and dynamic features. Here,
we focus on these JavaScript features when defining the
mutation operators.

C. Motivating example

We explain the inadequacy of the coverage criteria
for testing JSWAs using a typical e-commerce applica-
tion2 as our motivating example (Fig. 1). Additionally, we
show some of the JS program of the application using
jQuery3 in Figure 2. Here, $(′′#foo′′) and $(′′.bar′′) are
function calls that select DOM elements whose ID and
class attributes correspond to “foo” and “bar”, respectively.
Function#bind(thisArg[, arg1[, arg2[, ...]]]) is a built-in
method of a Function object that sets its this keyword and
arguments as provided values.

This application first shows an item list page (Fig. 1a). The
page does not initially contain item details about these items

2http://www.honiden.nii.ac.jp/∼k-nishiura/e-commerce-example
3http://jquery.com

$(document).ready(function() {
$(".item").each(function() {

var itemId = $(this).attr("data-item-id");
var loadingMsg = $("");
loadingMsg.addClass("message" + itemId);
loadingMsg.text("Loading detail...");
$(this).append(loadingMsg);
requestItemDetail(itemId);

});
});

function requestItemDetail(itemId) {
$.getJSON('item.php?id=' + itemId,

function(data) {
var button = $("#itemButton" + data.id);
button.text("View detail...");
button.click(

showDetail.bind(null, data.body, data.price,
data.discount1, data.discount2));

$(“.message” + data.id).get(0).textContent='';
button.show();

});
}

function showDetail(bodyHtml, price, discount1, discount2){
//

detailBody.html(bodyHtml);
//

setTimeout(showDiscount.bind(details, discount1), 1000);
setTimeout(showDiscount.bind(details, discount2), 2000);

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

…textConent = ‘’;

������

…$("#itemButton1"…

…data.text…

…2000);
…1000);

������

�����	

�����

Figure 2: JavaScript program and possible faults

public void testShowingDetail() {

WebDriver driver = new FirefoxDriver();

driver.get(TARGET_URL);

WebDriverWait wait = new WebDriverWait(driver, WAIT_LIMIT_SEC);

wait.until(visibilityOfElementLocated(By.id(”itemButton10”)));

WebElement showDetailButton

= driver.findElement(By.id(”itemButton10”));

assertEquals(”View detail...”, showDetailButton.getText());

showDetailButton.click();

wait.until(visibilityOfElementLocated(By. className(”modal”)));

driver.findElement(By.className(”buy−now”)).click();

}

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3: Test case for JavaScript program in Figure 2 (extracted)

to reduce the amount of data that has to be communicated for
fast rendering. After the whole page has been loaded, the JS
program asynchronously sends requests for the detail of each
item to a server (lines 8, 12-23) while displaying a loading
message (lines 4-7). When it receives a response containing
the discount information about the item, the JS program
removes the text message (line 20). Instead, it registers an
event handler for displaying the information to a view detail
button (lines 17-19) and then displays the button (line 21).
When the user clicks the button, the program rewrites the
DOM to show a detailed view of the item (Fig. 1b) without
any page transitions (line 27). In this view, the application
displays the information using timer events for a visual effect
(lines 29 and 30).

Figure 3 shows the test code implemented with
Selenium WebDriver4 for testing the program de-
scribed above. WebDriver enables test designers to emulate
user operations such as mouse clicks by implementing them

4http://seleniumhq.org

161

Table I. Faults that cannot be exposed with code coverage criteria

Fault Related feature Unexpected behavior in our motivating example Lines in Fig. 2
1 User event target Registers a “click” event without an exception even if there is no “button”. 15 and 17
2 Async. comm. response Displays an undefined value by referring to a non-existent “data.text” property. 18 and 27
3 DOM attr. manipulation Continuously displays “Loading detail” because of a misspelled “textConent” property. 4-6 and 20
4 Timer event interval Displays an incorrect price even though both timer events are handled because the intervals are incorrect. 29 and 30

in test code. Given our test code in Figure 3, the frame-
work proceeds as follows: WebDriver first launches Firefox
and opens a target web application (lines 2 and 3). The
framework waits until the application displays a view detail
button (line 5). Upon finding the button, the framework
clicks the detail button (line 9) and finally clicks a buy
button (line 11). Note that when testing web applications,
developers need to consider the timing of the user operations.
Therefore, the methods of wait object (lines 5 and 10) can
be used as assertions that raise an exception when a given
condition is not satisfied within a certain period of time.

The test code provides 100% statement and branch cover-
age for the JS program shown in Figure 2. However, it is not
able to find the faults shown in Figure 2. We argue that this
inadequate capability derives from the dynamic features of
JavaScript. Table I explains these faults. Regarding faults
1 and 4, for example, although the JS program explicitly
determines the user event targets and timer event intervals, it
does not check for their existence or correctness at runtime.
As for faults 2 and 3, it does not throw any exceptions even
if the running application does not have any corresponding
properties or DOM elements. Hence, exploring an entire
program without exceptions does not always indicate an
absence of faults. In the next section, we propose a mutation
analysis considering JavaScript features.

III. MUTATION ANALYSIS

Figure 4 shows an overview of our mutation approach:
1) Developers implement test cases to test whether a

JSWA runs as expected.
2) Our tool generates mutants of JS programs with our

proposing mutation operators.
3) Our tool executes the test cases on the mutants to

check if the test cases detect the mutants. Developers
can know the adequacy of the test cases (i.e., mutation
score) and which mutants remain unkilled with given
test cases.

4) Developers add test cases to kill the unkilled mutants.
Then, our tool recalculates the mutation score by
running additional test cases on unkilled mutants. This
process is repeated until the mutation score reaches a
certain threshold [12].

In this way, our approach can help developers make test
cases with better fault-finding capability.

To expose faults in JS programs, we need to define muta-
tion operators by focusing on JavaScript features. Therefore,

������
������

��	
����������

����������

�������	
������������������

�
���� ����

�
��
�

���	
����

������

�������	�	
���	�

��������	�

��������

������

Figure 4: Workflow to improve test suites by mutation analysis

we first conducted a feature analysis on JavaScript. Then, we
defined the mutation operators based on the results of the
analysis.

A. JavaScript features in web applications

[13] describes three characteristics that distinguish
JSWAs from traditional web applications; event driven
model, asynchronous communication, and DOM manipula-
tion. We conducted a feature analysis on each feature and
developed feature diagrams [14] as shown in Figure 5.

Event driven model: In comparison with traditional web
applications, JSWAs leverage JS programs for processing
user operations and elapsing time without page transitions.
For instance, when a user clicks the ”item detail” button
(user event), our motivating example displays the discount
information after a second (timer event).

When implementing user events in JS programs, develop-
ers determine the target, event type, and callback
function. The target corresponds to the built-in Window
object or to DOM elements such as buttons. JS programs
register a callback function to the event type of the target.
As for timer events, JS programs register a callback
function to an interval of elapsed time. Developers
can also optionally determine repeat, i.e., whether the
program repeatedly handles the timer event.

Asynchronous communication: Asynchronous commu-
nication enables web applications to continuously accept
user operations while waiting for server responses. For
instance, our motivating example lets the users browse an
item list while it loads the details of each item.

The two main constituents of asynchronous communi-
cation are requests and responses. A request must
contain a destination URL and a request method (e.g.,
GET, POST, etc.). Request parameters such as item IDs
are optionally included. A server processes the request and
sends a response to the application. A response contains the

162

Figure 5: Feature models of JavaScript in web applications

Table II. Proposing mutation operators based on features of JavaScript in web applications and example mutations.
JavaScript feature Operator name Original code Mutated code
User event Event target replacement buyButton.click(requestBuy) cancelButton.click(requestBuy)
registration Event type replacement button.click(showDetail) button.mouseover(showDetail)

Event callback replacement cancelButton.click(closeModal) cancelButton.click(requestBuy)
Timer event Timer interval replacement setTimeout(callback, 1000) setTimeout(callback, 2000)
registration Timer callback replacement setTimeout(showDiscount1, 1000) setTimeout(showDiscount2, 1000)
Asynchronous Request target replacement $.get(’item.php’, showItem) $.get(’item list.php’, showItem)
communications Request onsuccess callback replacement $.get(’item.php’, showItem) $.get(’item.php’, buyItem)
DOM Nearby DOM element $(”#items”).append(newItem) $(”#items”).parent().append(newItem)
manipulation Attribute assignment target replacement element.id = ”cancelButton” element.textContent = ”cancelButton”

Attribute assignment value replacement element.id = ”cancelButton” element.id = ”buyButton”

status code for signaling success, failure, etc. and a body
text. Callback functions are invoked according to the status
code if the developers choose to implement them.

Note that JavaScript also provides a means for syn-
chronous communications, but we do not regard it as a
feature of JSWAs. Synchronous communication blocks UI
threads, and best practice is not to use them.5

DOM manipulation: JavaScript provides DOM APIs
for manipulating web page elements on the client-side.
Such partial updates can make applications more responsive
than refreshing whole web pages with page transitions. For
instance, our motivating example leverages DOM manipu-
lations to display the item detail view.

DOM manipulations consist of target DOM elements
and methods of manipulating these elements. JS programs
select this target element by its position relative to another
element, tag name, or ID/class value. As for the method, the
programs create, insert, delete the element, or alternatively,
assign a value to an attribute of the element.

B. Proposed mutation operators

Here, we describe our ten mutation operators for JS
programs (See Table II) and explain how we developed them.

User and timer event registrations: Since developers
intentionally implement the optional features of user and
timer events, we assume that they typically embed faults
in mandatory features, for example, faults 1 and 4 in our
example. Hence, we decided to focus on the mandatory fea-
tures where our approach makes little changes (henceforth,
mutation candidates). When mutating a mutation candidate,

5http://blogs.msdn.com/b/wer/archive/2011/08/03/
why-you-should-use-xmlhttprequest-asynchronously.aspx

our approach replaces it with another candidate. For exam-
ple, consider the event target in Table II. Our approach
replaces the event target “buyButton” with “cancelButton”.
Similarly, it also mutates the event types of user events, the
timer intervals of timer events, and the callback functions of
both.

Asynchronous communications: Although asynchronous
communication has two mandatory features, their responses
are outside the scope of our study. This study focuses on
client-side logic, but the responses depend on the server-
side logic. As for the requests, we select only destination
URLs as mutation candidates because the differences in the
request method should be properly processed by the server-
side logic. Additionally, we claim that leveraging responses
plays an important role in JSWAs such as when preparing
the item details in our motivating example. Therefore, our
approach deals with the on-success callback functions as
mutation candidates, although this feature is optional.

DOM manipulation: We define a mutation operator
called the nearby DOM element. This definition is
based on our heuristic that developers tend to incorrectly
select a DOM element that is near a proper one. Therefore,
our approach replaces the target DOM element with its
parent or child element.

As for DOM manipulations, our limited implementation
does not yet cover creating, inserting, and deleting DOM
elements, although such an implementation is planned as
future work. Note that our tool can create mutants that
insert/delete DOM elements at improper positions and our
tool ran as expected to improve test cases in our case
study (Section IV-B). As for assigning attributes, we define
two mutation operators, one for replacing the attributes

163

Table III. Real faults in WordPress

Ticket # JavaScript feature Brief explanation
1895 User event Program does not properly register
8812 event handlers to user events.
2184 DOM Program creates improper DOM elements
9740 manipulation Program selects improper DOM elements

themselves and one for the assigned values.
We implemented our approach in a prototype tool called

AjaxMutator. This tool is publicly available.6

IV. EVALUATION DESIGN

To assess the usefulness of our approach, we conducted
a short survey about real faults and a case study using our
tool. Our research questions are as follows:

RQ1 Can JavaScript features really cause faults?
RQ2 Can developers improve test cases with our tool to

find faults that remain unexposed by following the
code coverage criteria?

RQ3 Can developers improve the test cases with our tool
in a reasonable amount of time?

We first describe design of the survey and case study, and
then discuss their results in the next section.

A. Survey: Faults in WordPress

We leveraged the public bug repository of WordPress7

to survey real faults. In accordance with [15], we searched
this repository using the keywords “JavaScript”, “js”, and
“console” and then selected only closed bugs from the
search results. Next, we manually extracted faults that a
JS program clearly caused from the selected bugs. Finally,
we extracted the faults related to the JavaScript features
discussed in this paper.

B. Case Study: Evaluation of Test Cases for Quizzy

We conducted a case study on a quiz application called
Quizzy.8 This application has 5561 lines of code, including
310 lines of a JS program. We prepared two initial test
cases using WebDriver. One represented a normal use case
in which users answer quizzes and see their total score.
Another is for testing invalid use cases in which users click
an answer button before selecting any answer candidates. We
conducted the mutation analysis with our tool and added test
cases to kill unkilled mutants.

After that, we evaluated how well our tool can assess
the fault-detecting capability of the test cases with hand-
seeded faults. We asked an undergraduate student with two
years industrial experience developing JSWAs to seed typical
faults into the application. While he seeded faults, we did
not explain our work to him.

6https://github.com/knishiura-lab/AjaxMutator
7http://core.trac.wordpress.org
8http://quizzy.sourceforge.net

Table IV. Detail of our initial and improved test suites

Test suite #TC #A #W Cov(%) MS FF(%)
Initial 2 6 16 95 45.9 89.5
Improved +5 +21 +21 100 67.0 100.0

The manual setup of the application, the test cases im-
plemented, and the details of the seeded faults are publicly
available.9

V. RESULTS AND DISCUSSION

Reality of JavaScript faults (RQ1): In our survey, we
found 26 closed bugs that JS programs clearly caused.
Among these bugs, we extracted four faults related to our
focus in Table III. Note that the other faults were logic faults
such as those related to parsing strings, and we expect that
the existing approaches can deal with them. However, the
faults related to JavaScript features are less studied, and they
are more difficult to find, as we discussed in Section II-C.
Hence, we claim that JavaScript features can cause real faults
that should be exposed.

Improving test cases (RQ2): In our case study, the
participant seeded 20 faults in the Quizzy application. Note
that we dealt with 19 faults in total, because one seeded fault
did not change the behaviour of the applications. These 19
faults consisted of one user event fault, one asynchronous
communication fault, two DOM manipulation faults, and
other faults such as typos.

Table IV shows the details of the initial and improved test
suites. To compare the sizes of the test suites, we list the
number of test cases (#TC), assertion statements (#A), and
wait statements (#W). To evaluate the adequacy of the test
cases, we measured statement coverage using jsCoverage10

(Cov), mutation score (MS), and the ratio of found faults to
the 19 seeded faults (FF).

Although the initial test suite covered all of the statements
where faults were seeded, it exposed only 17 faults among
the 19 faults (about 10% of the seeded faults were unfound).
In addition, their mutation score was low. For instance, in
this application, users can choose an option in two ways: by
clicking a radio button or clicking a label. Initial test cased
only care for clicking a radio button, so they did not kill
the mutants that only affected labels. Additional test cases
were implemented to kill such unkilled mutants. By adding
five test cases, we could improve mutation score by about
20 and it was able to expose all hand-seeded faults. These
results suggest that developers can find unexposed faults by
increasing the mutation score with our mutation analysis.

As for the mutation analysis, our tool generated 109
mutants, and we divided them into four groups (Fig. 6).
The blue bar in the figure stands for mutants killed by our

9https://github.com/knishiura-lab/
10http://siliconforks.com/jscoverage

164

Figure 6: Details of mutants generated by our tool.

initial test cases. The red bar indicates the mutants which the
initial test cases could not kill but the improved test cases
could. The green and purple bars represent unkilled mutants
with both test cases and equivalent mutants.

Note that eliminating equivalent mutants is a challenging
issue in the field of mutation analysis [9]. As for the unkilled
mutants with either test case, we found another challenging
issue for mutation analysis caused by the robustness of
modern web browsers; browsers could automatically infer
and set proper values at runtime independently of the JS
programs. Despite these issues, we believe that our tool can
generate enough mutants for developers to improve test cases
in order to find unexposed faults.

Reasonable time (RQ3): It took us an hour to prepare test
cases and another three hours to improve them. We argue
that a few hours is a reasonably short among all cost required
to assure the quality of JSWAs that may contain unexposed
faults. Additionally, we can explore applying automated
test case generation techniques [2], [3], [16] to our tool
in order to reduce the manual cost. As for the execution
cost, it took the tool 20 minutes to conduct the mutation
analysis on the initial test cases. After that, we added test
cases to increment mutation score, and recalculated mutation
score, which took another 20 minutes. Although this was a
reasonably short time, because mutants are independent, we
can further reduce this time by modifying the tool to test
several mutants in parallel.

Internal validity threats: In a case study we use a real-
world application that authors of [17] have also leveraged
in their experiments. Moreover, the faults were seeded by
a student who did not know about our study. However, we
cannot assure these faults represent real faults on JSWAs.
Additionally, we prepared the initial test cases by consider-
ing possible use cases of the application and improved them
by referring unkilled mutants, however, our knowledge of the
proposed method could have potentially affected the result
of our case study. To avoid these threats, we plan to conduct
additional case studies on a real-world development.

External validity threats: Although our set of muta-
tion operators covers the mandatory JavaScript features, we
consider to define operators for the optional features in
our future work. Moreover, we selected the WordPress bug
repository for our survey, and although there are only a

few public repositories containing JavaScript bugs, we can
define other mutation operators by modeling more real faults
from other repositories. We used a single application in
our case study, and it would be interesting to investigate
how the mutation operators developed here work for other
applications. Note that the Quizzy application has all of the
JavaScript features discussed in this paper.

VI. RELATED WORK

Mutation analysis for web applications or JavaScript
programs: Mutation analysis has been widely studied since
it was first introduced in the 1970s [8], [9]. Praphamon-
tripong and Offutt argued that existing mutation analysis
techniques do not consider the characteristics of web ap-
plications. They proposed mutation operators for HTML
and Java Server Pages [6]. Shahriar and Zulkernine defined
mutation operators for PHP and JavaScript to evaluate the
adequacy of tests for avoiding cross site scripting vulner-
ability [5]. Alshraideh conducted mutation analysis on JS
programs by applying basic mutation operators such as
rewriting arithmetic operands to automate unit testing [18].
Our study developed mutation operators by focusing on
characteristics of JavaScript in web applications. It has a
different focus from and is complementary to the previous
research.

Recently, Mirshokraie et al. have proposed some mutation
operators based on the common mistakes that inexperienced
engineers make [7]. They also proposed some mutation op-
erators related to DOM and XMLHttpRequest11 as summa-
rized in Table V. Note that we do not consider synchronous
communication because developers should avoid using it not
to block the UI thread. Implementing mutation operators
regarding element insertion is included in our future work. In
addition, Mirshokarie et al. dealt only with specific mistake
examples and some features of JSWAs whereas we try to
define comprehensive set of mutation operators. In fact,
they did not consider mutation operators about event-driven
nature that is one of the main features of JSWAs in our
analysis.

Classification of real world faults: Marchetto et al. [19]
and Guo et al. [20] surveyed typical faults in web applica-
tions. Because these surveys targeted any faults related to
web applications, we argue that faults related to JavaScript
are not sufficiently studied.

Ocariza et al. studied run-time JavaScript exceptions by
automatically exploring popular web applications in the
Alexa ranking [1]. They showed that the current quality
assurance for JSWAs was so insufficient that even widely
used applications threw run-time exceptions. Since their
study utilized run-time exceptions as perceived by users, we
claim that the actual faults behind such exceptions are not
always clear.

11JavaScript object that provides a means for HTTP communications

165

Category Mutation target Our proposal Mirshokraie’s [7]
User event 3 targets (target, type, callback) � NA
Timer event 2 kinds (interval, callback) � NA
Asynchronous Request destination URL � �
communications Asynchronous or synchronous NA (Out of scope) �

Callback for a response �(replace on-success callback) �(change conditions on which callback is invoked)
DOM DOM element selection �(replace with nearby DOM element) �(rewrite attribute of selection method)

DOM attribute assignment � �
Element insertion NA (Future work) �

Other 9 kinds (common mistakes NA �
JavaScript-related for inexperienced programmers)

�: Implemented, NA: Not Available

Table V. Comparison of mutation operators by our proposal and those by Mirshokraie et al. [7]

Ferrari et al. took a bottom-up approach that defined
mutation operators based on real faults [21]. However, there
are only few public bug repositories for JSWAs [15]. In
addition, public bug reports are typically written by users.
Thus, it is difficult to discern the actual fault causing the
reported application behavior. Therefore, we chose a top-
down approach that analyzes the features of JavaScript
in web applications and then defined mutation operators
corresponding to these features.

VII. CONCLUSION AND FUTURE WORK

In this paper, we classified the features of JavaScript in
web applications and defined mutation operators for them.
By using our tool, developers can estimate the fault-finding
capability of their test cases. We conducted a brief survey on
real faults and a case study using a real-world application.
The results of our evaluations indicated that our tool could
expose faults including ones missed by coverage criteria.
We conclude that our approach can help developers improve
their test cases and find more faults.

Our future work will be in three main directions. First,
we plan to refine the mutation operators for JavaScript web
applications by surveying more real faults and conducting
additional case studies. Second, we will use our approach to
evaluate other methods that support tests such as automated
testing. Third, we plan to investigate a new automated testing
algorithm that can kill mutants efficiently.

REFERENCES
[1] F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn, “Javascript errors in

the wild: An empirical study,” in Proc. Int’l Sym. on Softw. Reliability
Eng. (ISSRE), 2011, pp. 100 –109.

[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework
for automated testing of javascript web applications,” in Proc. Int’l
Conf. on Softw. Eng. (ICSE). ACM, 2011, pp. 571–580.

[3] A. Mesbah and A. van Deursen, “Invariant-based automatic testing
of ajax user interfaces,” in Proc. Int’l Conf. on Softw. Eng. (ICSE).
IEEE Computer Society, 2009, pp. 210–220.

[4] A. Marchetto, P. Tonella, and F. Ricca, “Testing techniques applied
to ajax web applications,” in Proc. WS on Web Quality, Verification
and Validation, 2007.

[5] H. Shahriar and M. Zulkernine, “Mutec: Mutation-based testing of
cross site scripting,” in Proc. ICSE WS on Softw. Eng. for Secure
Systems (IWSESS). IEEE Computer Society, 2009, pp. 47–53.

[6] U. Praphamontripong and J. Offutt, “Applying mutation testing to
web applications,” in Proc. Int’l Conf. on Softw. Testing, Verification,
and Validation WSs (ICSTW). IEEE Computer Society, 2010, pp.
132–141.

[7] A. Mirshokraie, Shabnam. Mesbah and K. Pattabiraman, “Efficient
javascript mutation testing,” in Proc. Int’l Conf. on Softw. Testing,
Verification and Validation (ICST). IEEE Computer Society, 2013,
p. to appear.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34 –41, april 1978.

[9] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Trans. on Softw. Eng., vol. 37, no. 5, pp.
649–678, Sep. 2011.

[10] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An experimental
evaluation of data flow and mutation testing,” Softw. Pract. Exper.,
vol. 26, no. 2, pp. 165–176, Feb. 1996.

[11] Garrett, Jesse James. (2005, Feb.) Ajax: A new approach to
web applications. [Online]. Available: www.adaptivepath.com/ideas/
ajax-new-approach-web-applications

[12] A. J. Offutt and R. H. Untch, “Mutation testing for the new century,”
W. E. Wong, Ed. Norwell, MA, USA: Kluwer Academic Publishers,
2001, ch. Mutation 2000: uniting the orthogonal, pp. 34–44.

[13] D. A. Justin Gehtland, Ben Galbraith, Pragmatic Ajax: A Web 2.0
Primer. O’REILLY, 2006, ch. Ajax Explained, pp. 61–77.

[14] D. Batory, “Feature models, grammars, and propositional formulas,”
in Proc. Int’l Conf. on Softw. Product Lines. Springer-Verlag, 2005,
pp. 7–20.

[15] F. S. Ocariza Jr., K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in Proc. Int’l Conf.
on Softw. Testing, Verification and Validation (ICST). IEEE Computer
Society, 2012, pp. 31–40.

[16] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE Trans. on Softw. Eng., vol. 17, no. 9, pp. 900–910,
Sep. 1991.

[17] Y. Zheng, T. Bao, X. Zhang, and W. Lafayette, “Statically locating
web application bugs caused by asynchronous calls,” in Proc. World
Wide Web (WWW), 2011, pp. 805–814.

[18] M. Alshraideh, “Complete automation of unit testing for javascript
programs,” Computer Science, vol. 4, no. 12, pp. 1012–1019, 2008.

[19] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation of a
web fault taxonomy and its usage for fault seeding,” in Proc. Int’l
WS on Web Site Evolution (WSE). IEEE Computer Society, 2007,
pp. 31–38.

[20] Y. Guo and S. Sampath, “Web application fault classification - an
exploratory study,” in Proc. Int’l Sym. on Empirical Softw. Eng. and
Measurement (ESEM). ACM, 2008, pp. 303–305.

[21] F. C. Ferrari, J. Maldonado, and A. Rashid, “Mutation testing for
aspect-oriented programs,” Proc. Int’l Conf. on Softw. Testing, Verifi-
cation, and Validation (ICST), pp. 52–61, 2008.

166

A Knowledge-based Approach
for Generating Test Scenarios for Web Applications

Rogene Lacanienta, Shingo Takada
Graduate School of Science and Technology

Keio University
Yokohama, Japan

Haruto Tanno, Morihide Oinuma
Software Innovation Center

NTT CORPORATION
Tokyo, Japan

Abstract— The popularity and complexity of current Web
applications continue to increase, and thus, their quality and
reliability are increasingly becoming more important. Software
testing is an important part of validating the software, but it
needs a large number of good quality test scenarios and test
cases. This can be done manually, but it would be very time
consuming. They can also be generated automatically, but
previous work only considers artifacts of the software-under-test.
Given that there are already a huge number of Web applications
that have gone through rigorous testing, we believe that the
information from these previous tests can be a good source of
information for testing future Web applications. This paper
proposes an approach to automatically produce test scenarios by
leveraging on the knowledge gathered from existing Web
applications that have already undergone software testing. Our
approach is based on a database containing test scenarios that
are collected from previous applications. When a tester wants to
produce test scenarios for a new application, he/she first creates a
“base” scenario of the application, and then searches the
database for related scenarios. The retrieved scenarios are then
used to test the applications. A case study showed that our
approach can retrieve useful test scenarios that a professional
tester was not able to build manually.

Keywords-software testing; scenario generation; knowledge-
based engineering; web applications

I. INTRODUCTION
Software testing is an important part of evaluating the

validity and correctness of a software product, but it is widely
known that software testing is both costly and time-consuming.
Thus, many methods for automating tests have been proposed
[1][2][3][4][5][6][7]. Their main goal is to reduce the cost of
testing, effectively reducing the entire cost and time consumed
for the entire software development cycle. However, they only
consider information that is available from the software-under-
test.

The world, being now very reliant on software, has
produced countless working software of good quality that has
gone under extensive (and expensive) testing. Each such
software has various software artifacts, such as design
documents, source code, test scenarios, test cases. In the past,
such artifacts have been reused, e.g., code reuse and design
reuse. We consider reuse of information concerned with testing.

We take a knowledge-based approach that taps into the
potential of already-available, high-quality software artifacts
(e.g., design documents, source code, test scenarios, and test
cases) to produce robust test scenarios for future software.
Kaner described a test scenario as a test based on how the
program is used [8]. In this paper, we focus on a Web page, and
view a test scenario as a sequence of steps that are taken to
transition from one Web page to another. For example, a test
scenario for registration may include steps such as input
username, input password, and submit information. We will
explain this further in subsection III.B.

Our approach is based on a database containing test
scenarios that are collected from previous applications. A tester
creates a base scenario of the software-under-test and uses that
to query for related test scenarios.

The rest of this paper first starts with a discussion of related
work. Section III then describes our approach. We give an
overview and then give details on the test scenario database as
well as the querying. Section IV describes a case study we
conducted to compare our approach to a manually generated set
of test scenarios. Section V makes concluding remarks.

II. RELATED WORK
Much work has been done on generating test scenarios and

test cases. Xu, et al used adaptive agents that traverse a UML
diagram representing a test scenario [1]. During traversal, the
agents perform manipulation of the nodes based on a fixed
algorithm. Andrews, et al. proposed a method to use finite state
machines to model Web applications, which are then used with
corresponding constraints in order to output test cases with
minimal state space explosion [2]. Fujiwara, et al. introduced
an approach that analyzes UML diagrams and uses a
combination of Object Constraint Language (OCL) and
Satisfiability Modulo Theories (SMT) solver to produce test
cases [3]. Artzi, et al. used symbolic execution to dynamically
create test cases and find bugs [4]. Halfond, et al. conducted
static analysis to discover Web application interfaces and help
generate test inputs [5]. Although not intended for Web
applications, Pacheco, et al. developed Randoop which
conducts random testing with feedback [6], and Gross, et al.
proposed a genetic algorithm based approach based on GUI to
generate high coverage test suite while avoiding false failures
[7].

167

Works such as these effectively increase the coverage of
test cases and/or their bug detection ability. But, they fail to
consider the knowledge available from other possible sources
of test information – that is, already deployed Web systems and
their corresponding software artifacts. We consider how such
information can be used to generate useful test scenarios.

III. KNOWLEDGE-BASED TEST SCENARIO GENERATION

A. Overview
Our approach is based on building a database of test

scenarios, to which the tester queries to obtain test scenarios
that could be used. The basic steps are as follows:

(1) The tester inputs a base test scenario.

(2) The base test scenario is analyzed. Each node in the
scenario is used to query for related nodes in the
database.

(3) Combinations of the nodes are made to generate
scenarios that are related to the base scenario.

(4) The generated scenarios are ranked and returned to the
tester.

Figure 1. Overview of test scenario generation tool

Fig. 1 shows an overview of our test scenario generation
tool. The tool is based on UMLet Tool [9], an open-sourced
Java-based application for creating UML diagrams.

In the remainder of this section, we first describe the test
scenario used in our approach. We next describe the database.
Then, we describe the node matching procedure as well as
related scenario generation. Finally, we describe the ranking of
related scenarios.

B. Test Scenario
A test scenario is basically a sequence of steps that are

taken to transition from one Web page to another. A tester can
use our tool to draw a diagram of a test scenario, similarly to a
UML activity diagram, to simplify and visualize the scenario
easily. The idea is that a developer, barring the experience they
have, can easily be familiarized in using the tool.

There are three basic types of nodes: 1) Processing is a
node indicating an internal process in the Web page, 2) Input is
a node indicating the information the Web page requires from
the user, 3) Output is a node indicating some output by the
Web page. Of course, there are also start and end nodes.

Figure 2. Example test scenario

Fig. 2 shows an example of a test scenario for the
Registration process. It has 8 nodes (including the start and end
nodes). The second node is a Processing node where a Web
page is loaded. The following four nodes are all Input nodes,
which require user input. Each Input node has an attribute and a
value associated with it. For example, the third node has
“USERNAME” as the attribute and “NORMAL” as the value.

C. Database
Each entry in the database corresponds to a node rather than

a test scenario. The following information are included in each
entry:

 Process Type: The type of operation where the node
appeared. For example, this may be “Registration”,
“Log In”, “Search,” and “New Content”.

 Node Type: Either Processing, Input, or Output. This
paper mainly focuses on Input, as they make up the
majority of nodes.

 Attribute Name: The name of the attribute.

 Node Value: The value of the node.

 Frequency: The number of times a node occurs in the
various applications. This value plays an important
role when ranking the generated related scenarios.

D. Node matching and related scenario generation
A related scenario is a scenario where one node in the base

scenario has been replaced with one “matching” node from the

168

database. Ideally, we would not limit ourselves to one node and
allow multiple nodes to be replaced. However, this may result
in combinatorial explosion. Thus, we only consider related
scenarios that differ from a base scenario by only one node.

For each node in the base scenario, the Scenario Analyzer
searches for “matching” nodes in the database. The matching
algorithm considers a hit when the node information and the
database entry information match; more concretely, when the
Process Type, Node Type, and Attribute Name all match. In
case of Input type, the Scenario Analyzer searches for Input
type nodes in the database with a “matching” attribute. There
are two types of “matches”: (1) exact match and (2) similar
match.

An exact match literally means that the attribute names for
the nodes are the same. For example, a base scenario Input
node with “Username” as an attribute, and an Input node in the
database with “Username” as an attribute are considered to be
exact matches. A similar match means that the two attribute
names can be considered as synonyms. For example, an Input
node in the database with “UserID” as an attribute can be
considered as similar to a “Username” Input node. A dictionary
is used to determine if two attribute names can be considered to
be synonyms.

The resulting matching nodes are now sent to the Related
Scenario Generator. Note that the matching nodes also have the
values for the attributes. For example, the result of searching
for an Input node with “Username” attribute and “valid” value
(henceforth denoted as “Username=valid”) may result in
matches such as “Username=taken”, “UserID=does not exist”,
etc.

Also note that each node will have a frequency value,
which will be used for ranking the final related scenarios. In the
case of a similar node, the original frequency value is weighted
to take into consideration the factor that this particular node is
not an exact match, but a close one. The default value of the
weight is 0.75.

The Related Scenario Generator now takes each node in the
base scenario, and replaces it with a matching node to form a
related scenario. Note that each related scenario will only have
one matching node; all other nodes in the related scenario are
the same as the base scenario. Fig. 3 shows an example of two
related scenarios given the base scenario in Fig. 2. In Fig. 3 (a),
the value for the “USERNAME” node is changed from
“NORMAL” to “TAKEN”, meaning that the username has
already been taken by someone and cannot be used for a new
member. In Fig. 3 (b), it is changed to “LONG”, meaning that
the username is too long and need to be shortened.

The Related Scenario Generator also attaches a score to
each related scenario. Scoring will be described in the next
subsection.

(a) (b)

Figure 3. Example related test scenarios

E. Scoring and ranking
As we described in subsection III.C, each entry (node) in

the database has a frequency value attached to it. The following
formula is used to compute a score for each related scenario.

Score = * freq

where is a coefficient taking a value between 0 to 1, and freq
is the frequency value of node that was replaced.

When the match is an exact match, the value of is 1. If it
is a similar match using a dictionary, we have set the value to
0.75.

The ranking of the related scenarios are done based on the
above score. A higher score basically means that the node
occurs in many applications, and can thus be considered to be
more important.

IV. CASE STUDY
We conducted a case study to evaluate our approach. The

case study involved two parts: (1) database population and
dictionary creation, and (2) comparison of manual vs.
automatic test scenario generation.

A. Database Population and Dictionary Creation
As the proposed approach needs a database of scenario

nodes, we first describe how we populated it. We also describe
how the dictionary was created so that “similar” matches can
be allowed.

We first conducted a survey of available open-source
programs with “good” documentations. We concentrated on
four types of Web application processes: 1) Registration of a
new user, 2) Log In where a user inputs his/her credentials to
enter the Web application, 3) Search where an element of the
Web application can be searched, and 4) New Content where a
new entry in the web application’s database can be input. We

169

also concentrated on these six types of Web applications: a)
CMS systems, b) Wiki systems, c) Forum applications, d)
Blogging applications, e) Shopping and Hotel Management
Systems, and f) Online Educational Systems. This resulted in a
set of twelve open-sourced web applications.

The documentations and the source code were used to
create the scenarios for the Web pages, and the database was
updated with them. Each scenario node was either input into
the database as a new node if it did not exist, or the frequency
was updated if the same entry already exists.

The dictionary was created in parallel with the database
population. Here, the database populator helps determine
synonymous terms by selecting possible synonyms for attribute
names of nodes if it has not been input yet. The resulting
dictionary from the entire database population was then
reviewed, and any mistakes were corrected.

The resulting knowledge database contains about 900
unique scenario steps and 180 dictionary terms.

The cost of constructing the database took about 30 man-
hours. This included analysis, encoding, and saving the Web
application scenarios.

B. Manual vs automatic test scenario generation
Test scenarios were generated for two open-sourced Web

applications, both of them separate from the set used for
database population. The two Web applications are as follows:

 Application 1: Tapestry Hotel Booking System, an
open-sourced Java-based web application for hotel
booking management [10]

 Application 2: Online Learning And Training (OLAT),
an open-sourced Java-based web application for online
learning [11]

We aimed to compare our approach (Part 1 below) with
manual generation (Part 2 below) by measuring the quality,
quantity, and time for creating test scenarios.

 Part 1 (Tool generated scenarios):

A student with minimal degree of experience in
software testing created one base test scenario for each
target Web page of the two applications. Our tool then
took the base scenarios and generated related scenarios.

 Part 2 (Manually created scenarios):

Three professional software testers (one for
Application 1 and two for Application 2) examined and
analyzed the documentation, source code, and run time
of the applications under test and created test cases for
each target Web page. All three testers had at least five
years of industry experience.

Both Part 1 and Part 2 involved a review process to verify
the output test scenario. In Part 1, post-processing was
performed to account for duplicates. This will be discussed
further in the next subsection. In Part 2, review was also
conducted to account for duplicates and identify inapplicable
test scenarios.

The output (generated scenarios) of Part 1 and Part 2 are
compared to see how effective our tool can come up with
useful test scenarios.

C. Results And Analysis
We now evaluate our approach in terms of time, quantity, and
quality of generated test scenarios.

1) Time
Table I compares the overall time taken to generate test

scenarios by engineers and the student using the tool.

TABLE I. TIME FOR SCENARIO GENERATION

 Application 1 Application 2

Engineers About 60 minutes About 90 minutes

Student
+ Tool

25 minutes
[base scenario creation = 23]
[related scenario generation = 2]

27 minutes
[base scenario creation = 25]
[related scenario generation = 2]

Here, it can be seen that the student + tool combination
generated test scenarios quickly. The main reason is that the
student only needed 23 to 25 minutes to create the most basic
scenario without dwelling too much into the documentation
and source code. The tool also enabled the quick generation of
test cases (about 2 minutes). On the other hand, the
professional engineers needed to get a general idea of the Web
page before being able to create test scenarios, and then
manually write the scenarios. This resulted in the engineers
taking two to three more times to generate the test scenarios.

2) Quantity and Quality
We compare the generated test scenarios and consider the

quantity (number of scenarios) and quality (usefulness of
scenarios).

Table II shows the number of generated scenarios. “App1”
and “App2” are Application 1 and Application 2, respectively.
“Org” stands for the original scenarios generated by our tool,
while “Norm” stands for the normalized number of scenarios
generated by our tool. “Eng” are the scenarios created by the
engineers. “Registration”, “Login”, etc are the type of Web
pages that were targeted for testing.

TABLE II. NUMBER OF GENERATED SCENARIOS

Registration Login Search New Content Total

App1
Org 47 18 9 34 108

Norm 24 13 8 13 58
Eng 15 4 3 8 30

App2
Org 60 21 22 13 116

Norm 41 18 14 8 81
Eng 18 18 4 4 44

Scenarios were “normalized” due to duplicates. Duplicates

occur when two particular node values use different wording to
express the same concept. One example that occurred in the
Registration process is when the values “taken” and “exists”
were used for the attribute “username”. These duplicates
occurred because the values for attributes were not strictly
controlled during database population. Note that this is not an

170

issue that is currently handled by the dictionary, which only
considers node attributes and not attribute values. Thus the
normalization procedure consisted of manually checking the
results and removing any duplicates. Note that the number of
duplicates was significant (46% for Application 1 and 30% in
Application 2).

From these data, we looked at the following:

(1) How many tool-generated scenarios correspond to the
engineers’ output and how many were missing?

(2) How many tool-generated scenarios were missed by
the engineers?

(3) For (2), how many are actually significant and useful
for testing the applications under test?

Tables III and IV show the results for the above questions
(1) and (2). “TO” stands for tool-output, while “EO” stands for
engineer-output. Also, the tool-output numbers are based on the
normalized values.

TABLE III. COMPARISON OF EO AND TO FOR APPLICATION 1

 TO EO Both in EO
and TO

In EO,
not in TO

In TO,
not in EO

Registration 24 15 14 1 10
Log In 13 4 4 0 9
Search 8 3 3 0 5

New Content 13 8 7 1 6

Total 58 30 28 2 30

TABLE IV. COMPARISON OF EO AND TO FOR APPLICATION 2

 TO EO Both in EO
and TO

In EO,
not in TO

In TO,
not in EO

Registration 41 18 13 5 28
Log In 14 4 4 0 10
Search 18 18 13 5 5

New Content 8 4 2 2 6

Total 81 44 32 12 49

Our tool was able to generate a majority of the test
scenarios that the engineers created (81%=(28+32)/(30+44)).
The test scenarios that were not generated included cases where
the wordings of a particular input field in the Web application
did not correspond to any database or dictionary entry. For
example, in the Registration process of Application 1, an
“Enter Text Display” field asks for a security text (a captcha).
In this case, the knowledge stored in the database and
dictionary did not match the entered information, even if,
technically, relevant related scenario nodes were available. If
the attribute name was set to “captcha”, “security text”, or any
similar entry, then relevant nodes would have matched and a
related scenario could have been generated.

For question (3), we looked at the scenarios generated by
the tool but not present in the engineers’ output set. These
scenarios were manually analyzed, using assistance from the

engineers, to determine which tool-generated test scenarios
were useful and which were not (“noise”).

Table V shows the result of analyzing the usefulness of the
generated scenarios for two applications. It breaks down the
scenarios generated only by our tool (and not by the engineers)
into either useful or noise.

TABLE V. ANALYSIS OF GENERATED SCENARIO USEFULNESS

For all the generated scenarios that were not in the
engineer’s output, 53% were found to be useful and 47% were
not. However, the number of useful scenarios varied
significantly among the Web pages. In some cases, the tool
output a large number of useful scenarios not generated by the
engineer. However, there were also instances that the tool
failed to produce any useful ones.

The most common source of noisy scenario occurred due to
differences in input type. For example, suppose that the base
scenario has an Input node with “description” as the attribute
name, and it exactly matches an Input node in the database.
However, if the Input node in the base scenario is a text field
requiring a text input, while the one in the database is a
checkbox which can take a value of “true” or “false”, then the
generated scenario will not be useful. This can be solved in the
future by adding input type information to the node.

Another common cause of noise is when synonyms were
erroneously added to the dictionary. For example, “Search” and
“Search in Product Description” were treated as synonyms
during the dictionary creation, but these were actually
completely different entities. This issue can be solved by
improving the content and quality of the entries in the
dictionary.

3) Test Scenario Reduction
The result of the case study indicates that the tool can

generate quite a large number of scenarios which may contain
some non-useful ones. As with any test case generation method,
reducing the number of test cases is important. We now
analyze the results based on the ranking of the generated
scenarios. Specifically, we consider how dropping the lower
25% and lower 50% of the ranked scenarios affect the results,
especially the noisy scenario.

 In TO,
not in EO Useful Noise

App 1

Registration 10 4 6
Log In 9 3 6
Search 5 0 5

New Content 6 6 0
Total 30 13 17

App 2

Registration 28 20 8
Log In 10 4 6
Search 5 1 4

New Content 6 4 2
Total 49 29 20

171

First, Table VI shows the results from dropping the lower
25% of the ranked scenarios. Due to space, we only show the
aggregate for Application 2. The values in parentheses indicate
the original values, prior to reduction. Cells without
parentheses indicate that the new value is the same as the
original value. “U” stands for useful and “N” stands for noise.
Note that the lower 25% were dropped for each of the Web
page, so the aggregate of all four pages actually has more than
25% dropped.

TABLE VI. TOP 75% SCENARIOS

 TO EO Both in EO
and TO

In EO,
not in TO

In TO,
not in EO

A
pp

 1

Regist.
18

(24)
15 14 1 4

(10)
U = 3 (4)
N = 1 (6)

Log In
9

(13)
4 4 0 5

(9)
U = 3
N = 2 (6)

Search
6

(8)
3 3 0 3

(5)
U = 0
N = 3 (5)

New
Content

9
(13)

8 4
(7)

4
(1)

5
(6)

U = 5 (6)
N = 0

Total 42
(58) 30 25

(28)
5

(2)
17

(30)
U = 11 (13)
N = 6 (17)

Total (App2)
58

(81)
44 28

(32)
16

(12)
30

(49)
U = 24 (29)
N = 6 (20)

The results show that removal of the lower 25% of the
generated scenarios effectively removes noise (68% =
(11+14)/(17+20)). Furthermore, 16% (= (2+5)/(13+29)) of the
useful scenarios were also dropped as well as 12% (=
(3+4)/(28+32)) of the scenarios that were both in the tool
output and the engineer’s scenario set.

To further see the effect of ranked reduction of test
scenarios, we next dropped the lower 50% of the ranked
scenarios. Table VII shows the results.

TABLE VII. TOP 50% SCENARIOS

 TO EO Both in EO
and TO

In EO,
not in TO

In TO,
 not in EO

A
pp

 1

Regist.
12

(24)
15 10

(14)
5

(1)
2

(10)
U = 1 (4)
N = 1 (6)

Log In
6

(13)
4 4 0 2

(9)
U = 1 (3)
N = 1 (6)

Search
4

(8)
3 3 0 1

(5)
U = 0
N = 1 (5)

New
Content

6
(13)

8 2
(7)

6
(1)

4
(6)

U = 4 (6)
N = 0

Total 28
(58)

30 19
(28)

11
(2)

9
(30)

U = 6 (13)
N = 3 (17)

Total (App2)
40

(81)
44 24

(32)
20

(12)
16

(49)
U = 11 (29)
N = 5 (20)

When the lower 50% is removed, 78% (= (14+15)/(17+20))
of the noisy scenarios are removed. However, there is also a
significant drop in the useful scenarios with a drop of 60% (=
(7+18)/(13+29)).

The results indicate that noisy scenarios appear far more
often in the lower rankings. When reducing the number of test
scenarios, there is a clear trade-off between reducing the noise
and retaining the useful scenarios.

V. CONCLUSION AND FUTURE WORK
We proposed a novel knowledge-based approach to

generate test scenarios for Web applications. Our approach is
based on a database containing the test scenarios from previous
software tests. The tester creates a base scenario, and then
searches for related scenarios in the database.

We conducted a case study on two Web applications,
comparing the results of manually created test scenarios by
professional software testers and test scenarios generated by
our tool based on base scenarios created by students. We found
that (1) our tool can produce more scenarios more quickly, (2)
our tool can generate scenarios that the professional did not
create, (3) noisy scenarios were also generated but they tended
to be due to dictionary (synonym) issues and inconsideration of
input type, and (4) ranking information can be used to reduce
the number of test scenarios, and effectively reduce noise up to
a certain point.

Future work includes the following. First, we need to
conduct a controlled experiment, as our evaluation was based
on a case study. Many factors could have affected the result,
especially the contents of the database. Second, we need to
consider how we can better build a dictionary, as well as other
techniques for determining synonyms. Finally, we need a way
to identify noisy scenarios.

VI. REFERENCES
[1] D. Xu, H. Li, and C. P. Lam, “Using adaptive agents to automatically

generate test scenarios from the UML activity diagrams,” Proc. of
APSEC '05, pp. 385-392, 2005.

[2] A. Andrews, J. Offut, and R. Alexander, “Testing Web applications by
modeling with FSMs,” Software & Systems Modeling, vol.4, no.3,
pp.326-245, 2005.

[3] S. Fujiwara, K. Munakata, Y. Maeda, A. Katayama, and T. Uehara,
“Test data generation for web application using a UML class diagram
with OCL constraints”, Journal of Innovations in Systems and Software
Engineering, vol. 7, no. 4, pp. 275–282, 2011.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst,
“Finding Bugs in Web Applications Using Dynamic Test Generation
and Explicit-State Model Checking,” IEEE Trans. on Software
Engineering, vol.36, no.4, pp.474-494, 2010.

[5] W. Halfond and A. Orso, “Improving test case generation for web
applications using automated interface discovery”, Proc. of ESEC-
FSE ’07, pp.145-154, 2007.

[6] C. Pacheco and M. Ernst, “Randoop: Feedback-directed Random
Testing for Java”, Proc. of OOPSLA 2007 Companion, 2007.

[7] F. Gross, G. Fraser, and A. Zeller, “Search-based system testing: high
coverage, no false alarms”, Proc. of ISSTA 2012, pp.67-77, 2012.

[8] C. Kaner, “Cem Kaner on Scenario Testing: The Power of 'What-If...'
and Nine Ways to Fuel Your Imagination”, Software Testing and
Quality Engineering Magazine, vol.5, no.5, pp.16-22, 2003.

[9] UMLet, http://www.umlet.com [accessed Feb. 20, 2013].
[10] Tapestry5 Hotel Booking,

http://tapestry.zones.apache.org:8180/tapestry5-hotel-booking/ [accessed
Feb. 20, 2013].

[11] OLAT, http://www.olat.org/ [accessed Feb. 20, 2013].

172

Improving Usability Inspection Technologies for Web
Mockups through Empirical Studies

Luis Rivero and Tayana Conte
Instituto de Computação, Universidade Federal do Amazonas (UFAM)

Manaus, AM - Brazil
{luisrivero,tayana}@icomp.ufam.edu.br

Abstract— Usability is the absence of obstacles that stop the user
from carrying out his/her tasks in the system with efficiency,
effectiveness and satisfaction. In Web applications, usability is
crucial because it determines their acceptance. Researchers have
proposed many Usability Inspection Methods (UIMs) to improve
the usability of Web applications. However, we identified that
these UIMs are mostly applied in later stages of the development
process, which can increase the cost of correcting the identified
usability problems. Correcting problems in later stages can be
costly since most of the source code will have already been
written. To improve the quality of Web applications by ensuring
usability in earlier stages of their development process, we
proposed the Web Design Usability Evaluation technique and its
tool support, which allow the evaluation of low fidelity prototypes
or mockups. In this paper, we present the results from empirical
studies evaluating these technologies. The quantitative and
qualitative results provided indicators of their feasibility and also
allowed us to identify improvement opportunities. We have
further analyzed and then integrated the identified suggestions to
generate newer and improved versions of both the technique and
its tool support; and to develop a new tool suitable for novice
inspectors.

Keywords-Usability Inspection Method; Tool Support; Web
Application; Mockups; Empirical Studies

I. INTRODUCTION
Over the past years, our dependence and reliance on Web

applications have significantly increased [1]. Furthermore, in
this type of applications, usability becomes a key factor since
it determines their acceptance and improves their quality [2].

In order to evaluate the usability of Web applications, it is
necessary to verify if the user interface is friendly, direct and
easy to understand [3]. Users expect Web applications to allow
them to carry out their tasks with accuracy, within short time
and using few resources. It is possible to verify all these
features by carrying out usability inspections.

Usability Inspection Methods (UIMs) are procedures in
which inspectors verify the system’s level of achievement of
usability attributes. The obtained results can be used to predict
whether there will be a usability problem. Since the cost of
performing usability inspections is lower than other types of
usability evaluation methods (such as user testing), the
software development industry has invested in the proposal
and improvement of a variety of UIMs for Web applications to
address Web usability issues [4].

In our previous work [3], we identified that despite this
increasing number of UIMs for the Web, few of them can be
applied in earlier stages of the development process. Finding
usability related problems in later stages can lead in an
increase in time and cost, since their correction might require
significant changes in the source code of the already
developed application [5]. Therefore, there is a need for UIMs
able to find problems during the design phases of Web
applications. Furthermore, our results also showed that only a
few of the usability inspection techniques provided tool
support, and that most of the proposed tools were not able to
support the identification of all types of usability problems.
These results indicated the need for usability inspection tools
able to support inspectors during the application of an UIM.

To meet these needs, we proposed the Web Design
Usability Evaluation (Web DUE) technique [3] and its tool
support, the Mockup Design Usability Evaluation (Mockup
DUE) tool. The Web DUE technique allows inspectors to
identify usability problems in earlier stages of the
development process by evaluating Web low fidelity
prototypes or mockups. A mockup is a model that shows
images of how the software would look like after its
implementation. The Mockup DUE tool assists inspectors
using the Web DUE technique by allowing them to: (a)
interact with mockups as if they were a real application, and
(b) use the Web DUE technique to find usability problems.

In this paper, we analyze and discuss the results of two
empirical studies in order to evolve the Web DUE technique
and the Mockup DUE tool. First we summarize the
quantitative and qualitative results that show indicators of the
feasibility of the proposed technologies. Then, analyzing and
integrating the suggestions from the inspectors who
participated in the studies, we created newer and improved
versions of the technologies. Some modifications include: (a)
rewriting instructions, (b) thoroughly describing usability
verification items, and (c) modifying the overall layout of the
tool. Finally, in order to assist novice inspectors using the Web
DUE technique, we developed a new tool to guide them
through the overall inspection process of Web mockups.

This paper is organized as follows. Section II presents the
background to Usability Inspection Methods while Section III
shows the proposal of the Web DUE technique and the
Mockup DUE tool. In Section IV we summarize the empirical
studies and their overall results. Section V shows how we used
the results from the empirical studies to create the new

173

versions of the proposed technologies. In Section VI, we
present the Mockup Guiding Design Usability Evaluation tool
for novice inspectors in the Web DUE technique. Finally,
Section VII presents our conclusions and future work.

II. RELATED WORK ON UIMS FOR THE WEB
Usability Evaluation Methods (UEMs) are procedures

composed by a set of well-defined activities that are used to
evaluate the system’s usability [4]. Usability Inspection
Methods (UIMs) are a subset of these UEMs, in which
inspectors review the usability aspects of the software
artifacts. The main advantage of UIMs is that they can lower
the cost of finding usability problems since they require fewer
resources. A UIM does not need any special equipment or
laboratory to be performed.

The most commonly used UIMs are the Heuristic
Evaluation (HE) [6] and the Cognitive Walkthrough (CW) [7].
The HE assists inspectors in finding usability problems
through the usage of a set of rules which seek to describe
common properties of usable interfaces. The CW, on the other
hand, allows inspectors to analyze if a user can make sense of
interaction steps as they proceed in a pre-defined task.

Regarding UIMs for the Web, in our previous research [3]
we identified that there has been an effort in evaluating the
usability of Web applications to improve their quality. There
have been several proposals of UIMs that are specific for the
inspection of Web applications. These UIMs are adapting
generic techniques like the HE and the CW to the Web
domain. Furthermore, some of the techniques are creating their
own specific set of rules for the Web domain.

We also identified that around 77% of the reviewed papers
reported UIMs analyzing completely developed Web
applications or at least functional prototypes [3]. Moreover,
the remaining papers described automated techniques in which
HTML code was verified, or in which UIMs evaluated if the
application model met interaction rules within the Web
domain. These results showed that despite the proposal of new
UIMs for the Web, these UIMs are mostly applied to find
problems in finished applications or versions that are previous
to their release.

Finally, besides not being used in the last stages of the
development process; most of the proposed UIMs for the Web
did not provide any tool support [3]. Furthermore, the
automated tools for usability inspection of Web applications
could only be used to point usability issues regarding colors
and patterns. These results show that there is also a need for
tool support in order to enhance the results of the inspection of
Web applications, and that such tools should be able to assist
the inspectors in finding problems related to the overall design
of their interaction.

III. A SET OF TECHNOLOGIES FOR USABILITY INSPECTION
OF WEB MOCKUPS

In [3], we proposed the Web Design Usability Evaluation
(Web DUE) technique and the Mockup Design Usability
Evaluation (Mockup DUE) tool to meet the actual needs of the
software development industry regarding UIMs for the Web.

A. The Web Design Usability Evaluation Technique
The Web DUE technique allows the identification of

usability problems in early stages of the development process.
Consequently, it allows the inspection of Web mockups,
which are software prototypes that can be created earlier in the
development. Furthermore, mockups cost less than other types
of prototypes and, software engineers can use them to validate
the software product with its end users [8].

To assists inspectors in finding more usability problems of
Web applications, the Web DUE technique uses the concept of
Web page zones [9] to guide inspectors. Web page zones are
pieces of Web pages with specific types of contents. For each
Web page zone, the Web DUE technique suggests a set
usability verification items that must be checked to verify if
the Web application meets usability principals. These items
are based on the Web Design Perspective (WDP) based
usability evaluation technique [10]. The WDP technique
evolves the Heuristic Evaluation for the usability inspection of
Web applications by using the Navigation, Concept and
Presentation perspectives. Table I shows some of the usability
verification items for one of the Web page zones. Interested
readers can find the complete list of Web page zones and their
usability verification items at our previous work [3].

In order to carry out a usability inspection using the Web
DUE technique, we must: (a) divide the mockups in Web page
zones; (b) verify if the mockups adhere to the checklists for
the Web page zones they contain; and (c) point any
nonconformities in the mockup as a usability problem. Figure
1 shows a brief example of the inspection process of the Web
DUE technique over a mockup from the SiON Web
application1 that provides indicators of science and technology
in Brazil. We have divided the mockup in the following zones:
(1) Institution, (2) Navigation, (3) Information, (4) Direct
Access, (5) Services and (6) Data Entry.

Figure 1. A mockup being evaluated with the Web DUE technique.

Table I also shows some of the usability verification items
we have evaluated for the data entry zone within this mockup
(See Figure 1 Element 6). First, Item A (indicating the correct
format of the data) has been respected, since the mockup

1 http://sion.secti.am.gov.br/

174

shows examples of how the user must enter the data.
Moreover, Item B (ability to understand terms) could cause a
usability problem because: (a) the interface does not show the
labels of the requested data, and (b) the symbol used to
confirm the action is not very clear. Finally, Item C (indicating
mandatory data) is a usability problem, since there is no
information about which of the fields are mandatory.

TABLE I. DATA ENTRY ZONE: DESCRIPTION, USABILITY VERIFICATION
ITEMS AND EXAMPLES / EXPLANATIONS.

Data Entry Zone
Description: This zone is responsible for providing the user with a form to
input data in order to execute certain operations. Then, a submit-like button
links the input data with the associated functionality.
ID Usability Verification Items Examples / Explanations
A The interface indicates the

correct format for a determined
data entrance.

The data fields must
contain/provide hints on how to
fill them. For example, a “Date”
entry field could have the next
hint: “mm/dd/yy”.

B It is possible to understand the
meaning of the terms (words
and symbols) that are being
used.

The user must be able to identify
which data are being requested
without difficulty. For instance,
a date field should not have
ambiguous names, such as
“time”, “age”, among others.

C The interface indicates which
data must be mandatory filled.

For example, the system
indicates mandatory input data
with a “*” or a “mandatory”
next to the field.

In order to perform a complete inspection, all the mockups
within the Web application must be evaluated. However,
inspectors will only need to check the usability verification
items for the zones that compose the evaluated mockup.

B. The Mockup Design Usability Evaluation Tool
In [3], we also identified that emerging UIMs for the Web

should provide tool support so that they could enhance the
results and performance of the inspection process. Therefore,
we developed the Mockup DUE tool which provides
assistance in two different stages: (a) inspection planning, and
(b) detection process. During the planning stage, the
moderator of the inspection, who prepares the materials for an
inspection, loads a set of mockups and maps them to simulate
interaction. For instance, Figure 2 shows a print screen in
which the moderator adds a link in a mockup and then, by
clicking on it, he is automatically taken to the destination
mockup of that link.

Figure 2. The Mockup DUE tool being used to interact with a mockup.

The Mockup DUE tool can also be used to identify
usability problems. In this stage, the inspector, who identifies
problems, inputs his/her name and opens a file containing the
previously mapped mockups. Then, the tool shows the Web
DUE technique, describing the Web page zones and their
usability verification items. The inspectors check if the
mockups adhere to the usability principles from the technique,
and if they detect a problem they can point it in the mockup or
add suggestions by adding notes. Furthermore, in order to
verify if the interaction model is adequate, the inspectors can
use the previously added links to simulate and evaluate the
provided interaction.

IV. EVALUATION THROUGH EMPIRICAL STUDIES

A. 1st Empirical Study: Feasibility of the Web DUE
Technique
This empirical study aimed at answering the following

research question: “Is the Web DUE technique feasible
regarding the number of detected defects and is time well
spent?” It is noteworthy that the results from this study have
been published in [11] and interested readers in its description
and evaluation artifacts can refer to that paper for further
information.

1) Description
We compared the Web DUE technique with its

predecessor, the WDP technique analyzing two indicators: (a)
effectiveness, which is the ratio between the number of
detected problems and the total of existing problems, and (b)
efficiency, which is the ratio between the number of detected
problems and the time spent in finding them. These indicators
have also been used in other empirical studies [1][11].

There were a total of eight subjects who agreed to
participate in this study. All subjects answered objective
questions regarding their degree of knowledge and
professional experience in Human Computer Interaction
(HCI), Usability Inspections and Design. Then, we classified
them as having Low, Medium or High experience according to
the information they provided. For instance, regarding their
experience in HCI, we considered: (a) Low, if the subject had
no practical experience in HCI nor had studied HCI; (b)
Medium, if the subject had studied HCI, but had poor practical
experience in usability evaluations; and (c) High, if the subject
had studied HCI in books and class, and had participated in
projects involving usability evaluation.

After classifying the subjects, each of them was assigned a
technique, either the Web DUE or the WDP technique (see the
classification in Table III). We balanced each group according
to the experience of the subjects to avoid bias. Then each
group received training in the assigned technique and carried
out a usability inspection over a set of mockups based on a
Coupon Website. It is noteworthy that the inspectors manually
simulated the interaction among the mockups, and manually
pointed errors and notes since the Mockup DUE tool was not
yet available.

After finishing the inspection, each subject delivered an
inspection report containing discrepancies describing possible
usability problems. We combined the discrepancies in a

175

unique report without repetitions. Finally, this report was
analyzed by experienced inspectors, outside the study, who
classified the discrepancies as false positives or real defects.

2) Quantitative and Qualitative Results
Table II shows the overall quantitative results from this

study which suggest that the Web DUE technique was more
effective and efficient than the WDP technique. However, due
to the small sample used, our results can only be considered
indicators of the feasibility of the Web DUE.

TABLE II. QUANTITATIVE RESULTS PER INSPECTOR AND TECHNIQUE.

 Group
 Web DUE WDP

Subjects 1 2 3 4 5 6 7 8
HCI Exp. M L L H L L H M

Inspections Exp. L L L L L L L H
Design Exp. L M L H L M M L

Time Spent (min) 100 67 200 160 147 132 124 279
Discrepancies 38 23 27 22 12 33 9 30
False Positives 19 2 5 4 1 5 0 8
Real Defects 19 21 22 18 11 28 9 22

Effectiveness (%) 24.1 26.6 27.9 22.8 14.0 35.4 11.4 27.9
Efficiency

(Defects per
Hour)

11.4 18.8 6.6 6.8 4.5 12.7 4.4 4.7

Av. Effectiveness 25.32 22.15
Av. Efficiency 10.89 6.58

To better understand the obtained results, we asked the

inspectors’ opinion towards the use of the Web DUE
technique. All subjects answered a questionnaire aiming to
identify the difficulties and advantages of using the technique.
This is the list of our findings which are also available at [11]:

 Some inspectors indicated that there were items that were
too broad, too ambiguous or not clear enough to assist in
the identification of usability problems.

 All inspectors agreed that it was easy to understand and
identify all Web page zones within the mockups.

 All inspectors agreed that the technique could aid in
finding usability problems in Web application mockups.

 The inspectors agreed that the usability verification items
were helpful when combined with the Web page zones.

 The inspectors stated that the inspection process becomes
very tiring because it is necessary to manually simulate the
interaction between the user and the system.

B. 2nd Empirical Study: Evaluation of the Mockup DUE Tool
In this second empirical study, we aimed at answering the

following research question: “Is the Mockup DUE tool easy to
use and does it satisfies its users?” It is noteworthy that the
results from this study have also been published in [11] and
interested readers in its description and evaluation artifacts can
refer to that paper for further information.

1) Description
We performed a cooperative evaluation to obtain

qualitative data about the ease of use and the degree of user
satisfaction of the tool. During this evaluation, experienced

inspectors, both in HCI and usability inspections, used the tool
and evaluated it to identify usability issues and their solutions.

There were a total of four inspectors who agreed to
participate. These inspectors had high knowledge and practical
experience in usability evaluations. During the cooperative
evaluation, all subjects performed two activities using the tool:
(a) map mockups, and (b) identify usability problems. While
carrying out the activities, the inspectors would think out loud
their opinions regarding the tool and anything they thought
made the inspection process difficult. Finally, all inspectors
answered a questionnaire aiming to identify the difficulties
and advantages of using the tool.

To ensure the certainty of the data, we recorded all of the
cooperative evaluations. We have used the recordings to
identify improvement opportunities in the design of the tool.

2) Qualitative Results
The inspectors stated that they were pleased using the tool.

However, they also pointed out that the tool’s design could be
improved a lot. We used the answers to the questionnaire and
the recordings of the cooperative evaluation to identify the
reason for these opinions. This is the list of our findings:

 All inspectors would use the tool to carry out a usability
inspection of Web mockups.

 The opinions were divided, some inspectors liked it very
much and others thought the tool needed improvement.

 Some inspectors thought it was necessary to provide more
information and hints on how to use the tool.

 The layout had a direct effect over how easy it was to
execute the functionalities. Furthermore, it was necessary
to rename some buttons and relocate some elements.

V. IMPROVING THE TECHNOLOGIES

A. The Web DUE Technique v2.0
If we look at Table II it is possible to see that the number

of false positives from the Web DUE technique was much
higher than the number of false positives from the WDP
technique. This meant that, despite allowing the identification
of more usability problems in lesser time, the Web DUE
technique led inspectors to point discrepancies that would not
affect the usability of the evaluated Web application.
Furthermore, the inspectors corroborated this statement within
the answers to their questionnaires (see example quote below):

 “… However, some verification items judge features,
which are not totally wrong or right.” - Inspector 3.

It is necessary to improve the accuracy of the Web DUE
technique by reducing the number of false positives. This can
offer inspectors a higher degree of certainty that the usability
evaluation will help find real usability problems that, if
corrected, can improve the quality of the Web application.

We analyzed the descriptions that the inspectors wrote for
each false positive. Table III shows an example of three false
positives and their corresponding description that motivated us

176

to make changes in the Web DUE technique. We will now
relate the changes to the false positives in Table III.

TABLE III. FALSE POSITIVES AND THEIR DESCRIPTION.

ID Usability Verification Item Description of the Problem
1 There is a data entry zone in the

system.
There is no such zone.

2 The user interface makes it easy to
differentiate between different data.

There is no different data.

3 The system offers a navigation
menu.

I don’t see a menu.

We realized that asking the inspectors to point any

nonconformity with the usability verification items made them
identify unrelated errors. For instance, an inspector marked
Item 1 even though providing a data entry zone depends on the
functionality of the application. Therefore, we changed an
instruction from the training as shown in Figure 3.

Figure 3. Changes in the instructions of the Web DUE technique v2.0.

We identified that the inspectors were using the usability
verification items as rules and not as guidelines for the
inspection. For instance, Item 2 was pointed because the
inspector thought that providing different data was mandatory.
This type of false positive allowed us to realize that there are
some items that should only be evaluated if a precondition is
met. Consequently, we renamed this type of items and added a
new instruction to fix this problem (see example in Figure 4).

Figure 4. Adding preconditions in the Web DUE technique v2.0.

Finally, we also came across usability verification items
and examples/explanations that did not offer enough
information to aid in the identification of usability problems.
For instance, Item 3 was pointed as an error because it was not
clear enough. Even though the evaluated application provided
accurate navigation options, the inspector thought that since
they were not menus, there was a usability problem.
Therefore, we renamed inaccurate items to provide more
insight and assistant to the inspectors (see Figure 5).

Figure 5. Thoroughly describing items in the Web DUE technique v2.0.

B. The Mockup DUE Tool v2.0
We have improved the Mockup DUE tool by analyzing

and incorporating the suggestions from the second study:

 Use of Databases: As the Mockup DUE tool used XML
files to save the inspection results, we noticed there was a
risk of losing information if one of the mockups was
accidentally deleted. Therefore, we integrated SQL to the
tool, allowing it to read all data (mockups, links, notes and
defects) from a single file. This also allows the tool to save
and load the planning and detection activities at any time.

 System State: In order to inform users of the background
actions of the tool, we added more labels and tooltips.

 Renaming Misleading Elements: Some buttons and
labels confused the inspectors. For instance, the “edit”
button in a mockup suggested that the inspectors could edit
their mockups instead of editing the interaction. Therefore,
we renamed all the confusing labels, buttons, and any
other similar interaction elements. For instance, we
renamed the previously mentioned “edit” button as “edit
mockup mapping”.

 Confirmation: Sometimes, the tool performed actions that
the user could regret, such as deleting a note or a pointed
defect. To avoid this problem, the Mockup DUE v2.0
always asks for the confirmation of undoable actions.

 Report: The first version of the Mockup DUE only
generated text files with the data of the inspection. Now,
inspectors can create a report using the Mockup DUE tool.
Figure 6 shows an example of this report which contains:
(a) the name of the inspector; (b) the time spent during the
inspection; and (c) a list containing all the errors and notes
within the evaluated mockups and their exact location.

Figure 6. Mockup DUE tool v2.0 – Generating inspection report.

Figure 7 shows the current version of the Mockup DUE
tool. In this figure, for instance, Element 1 shows how the tool
informs the current state in the inspection process, while
Element 2 shows how the tool asks for confirmation when
deleting a defect. Furthermore, since using different UIMs in
the evaluation of an application can improve the performance
of the inspection [3], we have integrated the Heuristic
Evaluation [6] to the tool. Consequently, inspectors using the
tool can now perform an inspection using two different UIMs.

VI. AN INSPECTION TOOL FOR NOVICE INSPECTORS
Our results from the second empirical study showed that

despite being an expert in usability inspections, an inspector
without previous experience in the Web DUE technique could
find the tool difficult to use. Therefore, we made adjustments
in the tool to guide inspectors through the overall inspection
process of the mockups using the Web DUE technique.

177

Figure 8 shows a new version of the Mockup DUE tool,
the Mockup Guiding Design Usability Evaluation (Mockup G-
DUE) tool. In this new tool we made changes in the detection
process, particularly replacing the part in Figure 7 Element 3.
In this new version, the novice inspectors are asked to indicate
which zones are present in the mockup. Then, the tool asks
them if there is any nonconformity with the usability
verification items. If the inspector indicates that an item has
not been respected (by leaving it unmarked), the tool asks
him/her if he/she considers it a usability problem. If it is
considered a problem, the tool asks for its description. Finally,
the problem is added to the mockup and the inspector can
locate it in the desired area as seen in Figure 7 Element 4.

Figure 7. Mockup DUE tool v2.0 – Print Screen.

Figure 8. Changes in the proposal of the new Mockup G-DUE tool.

VII. CONCLUSIONS AND FUTURE WORK
With this research we were able to develop a new set of

technologies for the inspection of Web application mockups.
Our results from the empirical studies indicated that the Web
DUE technique was more effective and efficient than its
predecessor. Furthermore, the qualitative data showed that
inspectors found the technique and the Mockup DUE tool
useful and appropriate for the inspection of mockups.

The qualitative data also suggested improvements in the
technologies. Therefore, we evolved the Web DUE and the
Mockup DUE by: (a) rewriting the instructions and usability
verification items from the Web DUE technique to make it
clearer and more understandable; (b) incorporating further
functionalities in the Mockup DUE tool like the creation of
reports and support for other techniques; (c) enhancing the
usability of the tool by adding labels and information; and (d)
proposing an enhanced tool, the Mockup G-DUE, that could

assist novice inspectors in the evaluation of mockups of Web
applications when using the Web DUE technique.

We are currently carrying out a new empirical study to
evaluate how inspectors use the Mockup DUE tool to perform
an inspection with the Web DUE technique. In this study we
have also increased the number of subjects to augment the
statistical power of the results and increase the degree of
certainty about the performance of the technologies. Finally,
we will also evaluate the Mockup G-DUE to verify its
feasibility, and we will carry out an empirical study in an
industrial environment to observe any obstacles in adopting
the proposed technologies in the software industry.

ACKNOWLEDGMENTS
We would like to acknowledge the financial support

granted by FAPEAM process PAPE 055/2013. We would also
like to thank CNPq and SUFRAMA for the provided
scholarship to the first author of this paper.

REFERENCES
[1] S. Murugesan, “Web Application Development: Challenges and the Role

of Web Engineering,” In G. Rossi, D. Schwabe, L. Olsina, and O. Pastor,
“Web Engineering: Modeling and Implementing Web Applications,”
Springer, 2008.

[2] M. Matera, F. Rizzo, and G. Carughi, “Web Usability: Principles and
Evaluation Methods,” In: E. Mendes and N. Mosley, “Web
Engineering,” Springer, 2006.

[3] L. Rivero, R. Barreto, and T. Conte, “Characterizing Usability
Inspection Methods through the Analysis of a Systematic Mapping
Study Extension,” Latin-american Center for Informatics Studies
Electronic Journal, Volume 16, Issue 1, 2013.

[4] A. Fernandez, E. Insfran, and S. Abrahao, “Usability evaluation methods
for the Web: A systematic mapping study,” Information and Software
Technology, Volume 53, Issue 8, 2011.

[5] G. Travassos, F. Shull, M. Fredericks, and V. Basili, “Detecting defects
in object-oriented designs: using reading techniques to increase software
quality,” Proc. 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, USA, 1999.

[6] J. Nielsen, “Finding usability problems through heuristic evaluation,”
Proc. CHI’92, UK, 1992, pp. 373-380.

[7] P. Polson, C. Lewis, J. Rieman, and C. Wharton, “Cognitive walk-
throughs: a method for theory-based evaluation of user interfaces,” Inter-
national Journal of Man-Machine Studies, Volume 36, Issue 5, 1992.

[8] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano, “On
the effort of augmenting use cases with screen mockups: results from a
preliminary empirical study,” Proc. 4th ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, Italy,
2010.

[9] J. Fons, V. Pelechano, O. Pastor, P. Valderas, and V. Torres, “Applying
the OOWS model-driven approach for developing Web applications:
The internet movie database case study,” In G. Rossi, D. Schwabe, L.
Olsina, and O. Pastor, “Web Engineering: Modeling and Implementing
Web Applications,” Springer, 2008.

[10] T. Conte, J. Massollar, E. Mendes, and G. Travassos, “Web usability
inspection technique based on design perspectives,” IET Software,
Volume 3, Issue 2, 2009.

[11] L. Rivero, and T. Conte, “Using an Empirical Study to Evaluate the
Feasibility of a New Usability Inspection Technique for Paper Based
Prototypes of Web Applications,” Journal of Software Engineering
Research and Development, 2013. (Submitted for Evaluation)

[12] A. Fernandez, S. Abrahao, and E. Insfran, “Towards to the validation of
a usability evaluation method for model-driven Web development,”
Proc. IV International Symposium on Empirical Software Engineering
and Measurement, USA, 2010, pp 54-57.

178

Random Visual GUI Testing: Proof of Concept

Emil Alégroth

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg, Sweden

Emil.Alegroth@Chalmers.se

Abstract—Market demands for higher quality software and
shorter time-to-market delivery have resulted in a need for new
automated software testing techniques. Most automated testing
techniques are designed for regression testing that limit their fault
finding ability to faults explicitly tested in scenarios/scripts. To
overcome this limitation, companies define test processes with
several test techniques, e.g. unit testing and random testing
(RT). RT is a technique that can be performed manually or
automatically with tools such as Fuzz, DART and Quickcheck.
However, these tools operate on lower levels of system abstraction,
leaving a gap for a Graphical User Interface (GUI), bitmap level,
automated RT technique.

In this paper we present proof of concept for Random Visual
GUI testing (RVGT), a novel automated test technique that
combines GUI based testing, Visual GUI Testing, with random
testing. Proof of concept for RVGT is evaluated in a three phase
study with results that show that RVGT is applicable for both
functional and non-functional/quality requirement conformance
testing. Furthermore, results from a survey performed in in-
dustry indicate that there is industrial need for the technique.
These pivotal results show that further research into RVGT is
warranted.

Keywords-Visual GUI testing; Random testing; Proof of Con-
cept

I. INTRODUCTION

The demands for higher software quality and faster time

to market delivery are continuously increasing in software in-

dustry. These demands force software development companies

to focus a larger percentage of time on development, leaving

less time for software quality assurance. Quality assurance

that can constitute more than 40 percent of the development

cost of a system [1]. To aid companies to reach higher

quality and lower development time a plethora of automated

testing techniques have been developed, e.g. unit testing [2],

record and replay [3], and Visual GUI Testing [4], [5]. These

automated testing techniques are used for regression testing,

i.e. to ensure that the system under test (SUT) still conforms

to the system requirements after change or maintenance of the

system [6].

Most test tools focus on functional requirement confor-

mance testing but there are also tools that can test a system’s

non-functional/quality requirement (NFR) conformance. How-

ever, most of these tools focus on performance, availability and

other quantifiable types of NFRs, whilst NFRs like usability

and user experience are left without support. This is one reason

why automated testing is not considered a replacement to man-

ual testing. Another reason is because most automated testing

techniques are only able to find faults, functional or NFR re-

lated, which have been specified in the scripted test scenarios.

Therefore, a common industrial practice is to complement the

automated scenario-based testing with manual test techniques

such as random or exploratory testing. Both these techniques

are generally performed through interaction with the SUT’s

GUI but with the important distinction that with exploratory

testing the practitioner aims at identifying the cause of a fault,

not just that there is a fault, which is the case with random

testing [7], [8]. However, in contrast to exploratory testing,

random testing can be performed automatically with tools such

as Direct Automated Random Testing (DART) [9], Fuzz [10]

and Quickcheck [11]. Automated random testing is however

generally performed on lower levels of system abstraction. A

gap therefore exists for a high-level technique that can perform

user emulated random testing through the SUT’s GUI.

In our previous work we have evaluated an automated test

technique, referred to as Visual GUI Testing (VGT) [4], [5].

VGT uses image recognition to interact with a SUT through

its GUI bitmap layer, i.e. what is shown to the human user on

the computer monitor. The image recognition is what differ-

entiates VGT from previous GUI based test techniques, e.g.

coordinate- or component/widget-based record and replay [3].

These techniques require access to the SUT’s components, un-

derlying APIs or source code, which limits their applicability

dependent on SUT implementation. In contrast, VGT is more

flexible since the image recognition makes it non-intrusive

and independent of SUT implementation, operating system or

even platform, e.g. desktop, mobile or cloud. Furthermore, the

image recognition allows the technique to emulate human user

behavior since all interactions with the SUT are performed

through, and with, the same interfaces a human uses, i.e.

GUI bitmaps and the operating system’s mouse and keyboard

operations. Therefore, VGT also has the potential to perform

automated GUI bitmap based random testing, which in the

continuation of this paper will be referred to as Random

Visual GUI Testing (RVGT). However, to the author’s best

knowledge, no research has been conducted on RVGT, either

for conformance testing of functional or non-function/quality

requirements.

In this paper we aim to bridge this gap in research with

results from a three phase study with the goal of providing

proof of concept that VGT is applicable for automated ran-

dom functional requirement and NFR conformance testing.

Furthermore the study will present a survey performed at the

179

Swedish safety-critical software development company, Saab

AB, which shows that there is a need for further research into

RVGT and that it perceivably can have positive impact on

industrial testing. Thus, the research questions that this study

aims to answer are,

1) RQ1: Can random testing be combined with Visual

GUI Testing to perform automated, GUI bitmap based,

random testing?

2) RQ2: Can random Visual GUI Testing be used to verify

system conformance to non-functional/quality require-

ments?

3) RQ3: Is there a need for/interest in random Visual GUI

Testing in industrial practice?

The continuation of this paper is structured as follows.

Section II will present related work regarding random testing,

automated random testing and VGT, followed by the research

methodology used in this study in Section III. In Section IV

the results of the study will be presented. Finally the paper

vill be concluded in Section V.

II. RELATED WORK

Random testing (RT) is a technique that is commonly used

to complement automated testing in industry. The technique

is performed through random generation of, and/or random

execution, of test cases with the overall aim to cover the

input space of a system. Thus, providing test coverage of

both common and uncommon cases that appear during system

usage and which may be faulty. Furthermore, the technique can

be performed manually, e.g. through random interaction with

the system under test (SUT) to force it into a faulty state, or

automatically by using tools, e.g. Direct Automated Random

Testing (DART) [9], Fuzz [10] and Quickcheck [11]. In addi-

tion, even though RT is based on random execution of, often

mutually exclusive, SUT interactions, studies have shown that

RT has equal or even higher fault finding ability than structured

test techniques because of higher input coverage [11], [12].

Furthermore, RT allows the user to quantify the significance

that a test will not fail and formulate statements like ”it is

certain that program P will not fail more than once in 10.000

calculations”. The conventional theory behind such a statement

comes from the equation,

1

φ
=

1

1− (1− e)1/N

where φ is the failure rate, 1/φ is the Mean Time To Failure

(MTTF), e is the probability that one failure will be observed

and N the number of test runs [8]. Hence, the number of tests

required to acquire a confidence of 1-e for a given MTTF is,

log(1− e)

log(1− φ)

This value can for instance be used as a quality metric of

the tested software. However, as with all techniques, RT has

drawbacks including, but not limited to, that it can be difficult

to define the input space, observe/evaluate the RT output,

develop proper oracles to support RT, etc.

Another technique similar to RT that is often used in

industry is exploratory testing (ET), defined as simultaneous
learning, test design, and test execution [13]. ET is based on

random input to identify faults but instead of using mutually

exclusive interactions this technique relies on cognitive deci-

sion making and the user to use previous test results to narrow

in on the cause of a fault. Because of this cognitive element,

ET is primarily a manual practice that human testers perform

without knowing about it, i.e. if a human finds a fault, he/she

naturally tries to find its cause [7]. In summary, ET focuses

on depth, i.e. finding the cause of a fault, whilst RT focuses

on breath, i.e. finding many faults but necessarily not what

causes them.

RT and ET are primarily performed manually on a GUI

level because there is a gap in terms of tool-support. However,

this gap could potentially be filled by Visual GUI Testing

(VGT) [4], a novel test technique that is currently emerging

in industry. VGT is a tool supported technique that uses

scenario-based scripts and image recognition to interact with

the system under test (SUT) through its GUI on a bitmap

level, i.e. interaction against what is actually shown to the

user on the computer monitor. The image recognition allows

VGT to emulate human user behavior and could perceivably

therefore be used for automated RT and ET. This hypothesis

is supported by previous work into VGT that has shown the

technique’s industrial applicability for scenario-based system

and acceptance test automation, resulting in modular scripts

that could be randomized on a test suite level of abstraction [4],

[5]. However, to the author’s best knowledge, there are no

studies that use image recognition to perform automated GUI

based RT.

As stated, VGT is a novel automation technique, and as

with any new automated test technique it requires verification.

One approach that is common to verify test techniques, ora-

cles, etc., is mutation testing. Mutantion testing is conducted

through fault injection into the SUT, e.g. by randomly mod-

ifying input to, or operations in, the SUT to produce faulty

output that the tested technique should be able to capture.

Even though these faults are artificially created, studies have

shown that these faults are equally difficult, or even more

difficult, to identify than industrial grade faults [14]. In this

study, mutation testing is used to verify RVGT’s ability to find

faults related to a system’s functional requirements.

III. METHODOLOGY

The study presented in this paper consists of three phases.

In the first phase, a proof of concept study was performed to

evaluate VGT’s applicability for random testing of functional

requirement conformance. The evaluation was performed on

two calculator applications, tested with a RVGT script written

in the open source VGT tool, Sikuli [15]. In the second

phase, another RVGT script was developed to evaluate VGT’s

applicability for random testing of non-functional/quality re-

quirement (NFR) conformance. This evaluation was performed

with a commercial Swedish bus-travel application to show

RVGT’s applicability on real-world applications. Both phase

180

one and two were performed on a computer with an 3.07GHz

Intel(R) Core(TM) i7 CPU, 6GB of RAM, two GeForce

GTX 460 graphic cards with SLi support and the Windows

7 Professional Operating System. In the third phase of the

study a survey was performed in industry, at the company

Saab AB, to evaluate the industrial need of RVGT. Thus, this

study follows the principles of the circular knowledge transfer

model described by Gorschek et al. [16]. The model highlights

the importance of research knowledge transfer/development in

incremental parts. It also states that laboratory experimentation

is a good idea before industrial deployment to catch research

problems and thereby save unnecessary costs for industry.

Hence, this study aims to be an initial building block for

future research into RVGT, such as industrial evaluation of

the technique, further technical improvement of random testing

algorithms, etc. The continuation of this section will describe

each phase of the study in more detail.

A. Phase One: Calculator evaluation

In the first phase of the study a RVGT script was written

to test the functional requirement conformance of calculator

applications. Thus, this phase was performed with simplistic

applications that have limited generalizability. However, this

choice of applications was motivated by the exploratory nature

of this phase of the study since it was unknown if VGT was at

all applicable for GUI based random testing. Therefore, a SUT

was required that could receive random input but for which it

was possible to construct a dynamic oracle. Hence, an oracle

that based on random input values could evaluate an expected

output for comparison to the actual output from the SUT. The

RVGT script was written using Sikuli [15], an open source

VGT tool, which uses Python as a scripting language. Python

is an object-oriented programming language that supports all

aspect of a conventional programming language such as loops,

branching, randomization, etc. However, in Sikuli the Python

language has been extended with a set of methods that use the

tool’s image recognition capabilities. These additional methods

allow the user to write scripts that can interact with any bitmap

displayed on the computer monitor and through scenarios that

exactly emulate human user interaction with the SUT.

The RVGT script was developed using a modularized

architecture, consisting of four main parts. The first part

of the script contained a set of variables to configure the

script’s speed, the tool’s image recognition sensitivity, etc.

Furthermore, this part of the script contained the GUI bitmap

components to allow Sikuli’s image recognition algorithm to

interact with the calculators. The bitmaps were stored in lists

which made them simple to change in order to migrate the

RVGT script from one calculator to another. The second part

of the script contained the script oracle that based on the

randomized input numbers, generated in the range of -100.000

to 100.000 and a randomized calculator operation, calculated

the expected output. The third part of the script defined the

GUI interaction with the SUT, i.e. translated the randomized

input numbers into click interactions that Sikuli could perform

using the mouse-cursor. Input to the calculators was given as

Fig. 1. Windows calculator interface.

Fig. 2. Simple Java calculator interface

mathematical operations following the pattern,

Clearcalculator,

Input1[0, 100.000], (Optional)Negation,

Operation[addition, subtraction,multiplication, division],

Input2[0, 100.000], (Optional)Negation,

Equals.

Hence, if two positive single digit numbers were randomly

generated the script would perform five interactions with the

SUT whilst two negative six digit random numbers would

require 17 interactions. Each mathematical operation was

followed by an assertion to verify that the output from the

calculator was equal to the expected output. The fourth and

final part of the script produced output. Output that consisted

of what the randomized numbers were, what mathematical

operation that was used, what expected value the oracle had

calculated, what the actual value from the calculator was and

finally a verdict of the performed assertion.

In order to evaluate the RVGT script it was applied on two

calculators, the standard Windows calculator and a custom

Java calculator, GUI’s shown in Figure 1 and Figure 2. The

RVGT script was developed for the Windows calculator and

then migrated to the custom Java calculator. To test the

RVGT script’s capabilities for long-term testing they were

executed 10.000 times for each calculator during which the

execution time and number of faults were measured. Due to the

simplicity of the SUTs, the hypothesis was that there would be

no faults in either the Windows or the custom Java calculator.

Hence, any fault found by the RVGT script would most likely

be a false positive caused either by the image recognition

failure or faulty implementation of the RVGT script itself.

Consequently, since the RVGT script, as expected, did not

find any faults in the calculators, other than false positives, the

181

custom Java calculator was modified by introducing mutants

into it, for mutantion testing [14]. These mutants caused the

calculator to randomly calculate a faulty value in 10 percent

of all calculations, also when calculations were performed

by a human. In addition, the Java calculator was modified

with an additional output module to track which of the

calculations were faulty. The RVGT script was then executed

against the mutated Java calculator during which 1000 tests

were generated. After the execution the result logs from the

RVGT script and the calculator were analyzed through visual

inspection to determine how many of the randomly infused

mutants the RVGT script had been able to kill. The visual

inspection was performed by comparing the output logs from

the calculator and the RVGT script.

It must however be stressed that a calculator is a quite

simplistic system in comparison with most industrial grade

systems. However, it is not completely irrelevant to showcase

proof of concept since many industrial systems build on basic

GUIs with only a few buttons and minimalistic output to the

user even though the functionality of the SUT’s backend might

be quite extensive and/or complex. An example of such a

system is the airport management system presented in [4],

which had a shallow simplistic GUI, but which controlled

safety-critical functionality.

In summary, phase one aimed to provide the proof of

concept support for RVGT’s applicability to test functional

requirement conformance. This was achieved through devel-

opment of a RVGT script to test calculator applications.

B. Phase Two: Commercial web-application

In phase two, the evaluation of RVGT was expanded also

to verification of non-functional/quality requirement (NFR)

conformance. Furthermore, to gain a broader view of RVGT’s

applicability, the evaluation in this phase was performed with

a commercial web-service, which in the continuation of this

paper will be referred to as the travel planner. The travel

planner, screenshot of its GUI shown in Figure 3, is a web-

application that allows the user to schedule bus-travel in parts

of Sweden. Bus-travel is calculated based on user input that

should consist of a start location, an end location and timing

information. These input can be given by the user either as text

strings or by clicking on a map. Output from the application is

presented in a list of different bus travel alternatives, including

departure times, if the bus fare will be late, etc. One feature of

the travel planner, which is relevant for the evaluation, is that

it automatically suggests a list of alternative locations based

on the first three letters that the user inputs to the application.

The choice to perform the evaluation on this application

was motivated by its representativeness for commercial web-

applications and thus of importance/interest for the knowledge

transfer to industry, as expressed by Gorschek et al. [16]. How-

ever, since access to the actual non-functional requirements

of the application could not be acquired during the study,

they had to be reverse-engineered based on industrial best

practice. Ten NFRs were created for the evaluation, presented

in Table I, based on their representativeness for actual NFRs

Fig. 3. The traveler planner text input GUI.

Nr NFR Description Type
1 The “travel planner” shall provide the user with

alternative bus stops within 1 second after the
first three letters of a bus stop, or location, has
been given as input.

Performance

2 No trips before the current, or user selected, time
shall be presented as available.

Reliability

3 After a user clicks the “search-trip” button it
shall take maximum 5 seconds before a result
is presented.

Performance

4 Late fares shall be presented in a clear way that
they are late.

Usability

5 When a user clicks the update button, for a
previous search, he/she shall receive new data
from the server regarding the trip.

Availability

6 The service shall be available 90 percent of the
time.

Availability

7 It shall be possible for a user to provide traveling
input in different ways, as textual input or by
clicking on a map.

Usability

8 The “travel planner” application shall work in
several different browsers.

Portability

9 It shall be possible for a blind user to tab through
the entire interface without getting stuck in a
“sink-hole”.

Usability

10 The “travel planner” shall not accept negative
time input.

Usability

TABLE I
THE NFRS THAT WERE TESTED BY THE NFR RVGT SCRIPT.

used in industry. Representativeness was evaluated through

comparison to industrial NFRs, i.e. best practice, which were

available during the study. Furthermore, the NFRs were chosen

to cover different types of NFRs, including both qualitative and

quantitative requirement types, i.e. Performance, Reliability,

Usability, Availability and Portability.

Once the NFRs had been defined, a RVGT script was

developed to test them. Similar to the script in phase one,

the travel planner RVGT script was based on a modular

architecture with one part for setting up properties of the script,

one part that contained the actual tests, one part for output,

etc. The largest difference between the scripts developed in

phase one and phase two was that randomization in phase

two was performed on two different levels of abstraction,

i.e. on both an input level but also in what order the tests

were executed. Hence, during script execution against the

182

travel planner, which was performed with 1000 tests, each of

the test cases were chosen randomly with a 1/10 probability.

Furthermore, all textual and numeric input to the application

was randomized. For the textual input the randomization was

achieved by randomly inputting three letters to the application

and then choosing the top alternative that was suggested by

the application. A similar scheme was used for numeric input,

e.g. time.

In summary, phase two aimed to identify support for

RVGT’s applicability for automated random testing of NFR

conformance, evaluated on a commercial web-application us-

ing constructed, yet realistic, NFRs. However, it should once

again be stressed that due to the small number of NFR tests

the evaluation only has limited representativeness for industrial

NFR testing.

C. Phase Three: Industrial survey

In the third phase of the study, a questionnaire survey was

performed at the company Saab AB to evaluate if there is a

need for RVGT in practice. The questionnaire was anonymous,

voluntary and was handed out to 13 industrial practitioners

that were chosen through convenient sampling. Ten people

answered the survey, leaving a response rate of 77 percent.

The industrial need for RVGT was evaluated with the question,

“What effect would the introduction of RVGT perceivably

have at Saab?”, which was presented as a forced choice

question with the three alternative answers,

1) Make current testing worse

2) Not change anything

3) Improve current testing

Included in the questionnaire was a one page summary of

RVGT and the proof of concept evaluations performed in phase

one and phase two.

IV. RESULTS

In phase one of the evaluation, a RVGT script was developed

to randomly test the functionality of two calculators. Results of

the first and second part of phase one found no faults in either

the Windows calculator or the custom Java calculator that was

developed for the evaluation. However, the script still reported

that 0.59 percent (less than one percent) of the tests failed

with false positive test results. The false positives occurred

either because of a mismatch between how the calculator and

the oracle rounded fractions, i.e. the precision of the fractions

were different which caused the result comparison to fail, or

due to image recognition failure. The image recognition failure

occurred when an input number with two subsequent nines was

generated, e.g. 199 or 991, since the mouse curser changed the

GUI state such that the image recognition algorithm could not

find the second nine. This problem only appeared for nines

and could easily have been solved by replacing the image for

the button in the script. However, both these issues show the

difficulties of constructing a perfectly functioning oracle, even

for simplistic applications.

In the third part of phase one, mutants were introduced

into the Java calculator, causing it to produce faulty output

10 percent of the time. Analysis of the output from the

calculator showed that 112 mutants were introduced, for the

1000 generated tests, of which 100 percent could be identified

and killed by the RVGT script. However, the script reported

114 failures, i.e. 2 false positives. Analysis of these two

failures showed that they were caused by the same oracle

problem as in the first two parts of phase one. In summary,

phase one provided proof of concept of RVGT’s applicability

to test functional requirement conformance but that oracle

creation can be difficult, which caused the RVGT script to

have a trustworthiness of 99 percent.

In phase two, 1000 tests were randomly performed with

random input to test 10 quality attributes, summarized in

Table I, for the travel planner application. Out of the 1000

generated tests, two threw exceptions of which one was a

fatal exception that caused that particular test to fail. Hence,

999 tests were completed and one failed due to an exception.

Figure 4 visualizes the test results and also shows that the test

cases were chosen with an even distribution. Further analysis

of the results shows that the tests had overall high success-

rate but with test number 4 being an outlier. Figure 4 shows

that the travel planner primarily struggled with performance

and availability tests. Worth noting is that the 10 test cases,

due to the eighth NFR conformance test (See Table I), were

performed in two different web-browsers, i.e. every time this

test case was randomly chosen the script switched from one

web-browser to the other. Analysis of the test case success-rate

showed no significant difference between the two browsers

since the 114 browser switches were uniformly distributed

over the 1000 generated tests. This test also showcases VGT’s

flexibility and ability to work seamlessly with several GUI

based application once.

Analysis of the outlier, test 4, showed that its low success-

rate was caused by faulty oracle implementation. If the result-

ing list of available bus fares from a search did not include

any late fare the test failed. Thus, once again showing the

difficulties of developing a perfect oracle. Further analysis of

the results showed that most failures were caused by high

network latency that caused the scripts’ assertions to time out

when the travel planner application did not respond within the

specified time frame. The result that was the most puzzling was

that the travel planner in some cases accepted negative time

input in test 10. No explanation was found for this behavior

since it could not be replicated manually.

In phase three, a survey was performed with 10 industrial

practitioners to evaluate if there is an industrial need for

RVGT. Results of the survey provide support for a need of

the technique since most of the industrial practitioners stated

that RVGT would perceivably improve the company’s current

testing (Median value 3, see question in Section III-C).

Consequently, the results from the evaluations performed in

phase one, two and three provide proof of concept that RVGT

is applicable for conformance testing of both functional and

non-functional/quality requirements. However, this research is

only pivotal, showing that the technique is at all applicable

and that there is an industrial need for the technique. Future

183

Fig. 4. Summary of the results from experiment 4. Each bar shows the
number of successful and failed NFR test cases.

RQ RQ an-
swer

Summary

1 Yes The random test script, developed in phase one to test
calculators, provides proof of concept for random
Visual GUI Testing’s (RVGT) applicability to test
functional requirements.

2 Yes The random test script, developed in phase two for
the commercial “travel planner” application provides
proof of concept for random Visual GUI testing’s ap-
plicability to test non-functional/quality requirements
of different types, i.e. performance, availability, reli-
ability and usability requirements.

3 Yes The results from the questionnaire survey provides
support that there is an industrial need for random
Visual GUI Testing.

TABLE II
SUMMARY OF THE COLLECTED RESULTS FROM EACH EXPERIMENT AND

THEIR CONNECTION TO THE RESEARCH QUESTIONS.

work therefore includes evaluation of RVGT on more types

of software systems, web, desktop, industrial software, etc.,

as well as other requirement types, e.g. robustness, safety and

security.

V. CONCLUSION

Random Visual GUI Testing (RVGT) takes the strengths

from Visual GUI Testing (VGT), e.g. flexibility and user

emulation, and combines it with the practices of random

testing to create an automated GUI based random testing

technique. To the author’s best knowledge there is no previous

work that focuses on the combination of random testing and

image recognition-based system under test (SUT) interaction.

However, there are other tools available for automated random

testing but these tools interact with the SUT on a lower

level of system abstraction, which limit their capabilities

for testing, for instance, non-functional/quality requirement

(NFR) conformance, e.g. SUT usability. These tests are instead

performed manually in industry.

In this paper we have presented a three phase evaluation

study with the goal of providing initial proof of concept for

RVGT, i.e. that the technique is applicable for both functional

and NFR conformance testing. Phase one of the study was

performed with two calculator applications for which a test

script was written in the open-source tool Sikuli [15] that gen-

erated and inputted random numbers through GUI interaction

and then compared the visual output automatically. To test

the fault-finding ability of RVGT, mutation testing was used

to introduce faults in a calculator’s operations that caused it

to produce faulty output 10 percent of the time in a long-

term test with 1000 generated RVGT test cases. 112 mutants

were generated that could all be identified by the RVGT script.

In phase two, a script was written for a commercial web-

application to test its NFR conformance. Results showed that

RVGT works for test cases executed in random order, with

random textual and numeric input, asserted through automated

visual inspection. Furthermore, in phase three, a questionnaire

survey was performed with 10 industrial practitioners at the

company Saab AB that showed a need for the technique.
In summary, this study provides initial proof of concept

that RVGT can be applied for GUI based random testing

of functional as well as non-functional/quality requirement

conformance testing. Furthermore, the study shows that there

is a need for the technique in industry which also shows that

further research into RVGT is warranted.

REFERENCES

[1] I. Jovanović, “Software testing methods and techniques,” The IPSI BgD
Transactions on Internet Research, p. 30, 2009.

[2] M. Olan, “Unit testing: test early, test often,” Journal of Computing
Sciences in Colleges, vol. 19, no. 2, pp. 319–328, 2003.

[3] A. Adamoli, D. Zaparanuks, M. Jovic, and M. Hauswirth, “Automated
gui performance testing,” Software Quality Journal, pp. 1–39, 2011.

[4] E. Börjesson and R. Feldt, “Automated system testing using visual gui
testing tools: A comparative study in industry,” ICST, 2012.

[5] E. Alegroth, R. Feldt, and H. Olsson, “Transitioning manual system test
suites to automated testing: An industrial case study,” ICST, 2012.

[6] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[7] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case
study,” in 2005 International Symposium on Empirical Software En-
gineering, 2005. IEEE, 2005, p. 10.

[8] R. Hamlet, “Random testing,” Encyclopedia of software Engineering,
1994.

[9] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in ACM Sigplan Notices, vol. 40, no. 6. ACM, 2005,
pp. 213–223.

[10] J. Forrester and B. Miller, “An empirical study of the robustness of
windows nt applications using random testing,” in Proceedings of the
4th conference on USENIX Windows Systems Symposium-Volume 4.
USENIX Association, 2000, pp. 6–6.

[11] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” in Acm sigplan notices, vol. 35, no. 9.
ACM, 2000, pp. 268–279.

[12] W. Gutjahr, “Partition testing vs. random testing: The influence of
uncertainty,” Software Engineering, IEEE Transactions on, vol. 25, no. 5,
pp. 661–674, 1999.

[13] J. Bach, “Exploratory testing explained,” Online: http://www. satisfice.
com/articles/et-article. pdf, 2003.

[14] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?[software testing],” in Software Engineer-
ing, 2005. ICSE 2005. Proceedings. 27th International Conference on.
IEEE, 2005, pp. 402–411.

[15] T. Yeh, T. Chang, and R. Miller, “Sikuli: using gui screenshots for search
and automation,” in Proceedings of the 22nd annual ACM symposium
on User interface software and technology. ACM, 2009, pp. 183–192.

[16] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for
technology transfer in practice,” Software, IEEE, vol. 23, no. 6, pp.
88–95, 2006.

184

Using Change Entries to Collect
Software Project Information

Hazeline U. Asuncion1, Macneil Shonle1, Robert Porter2, Karen Potts1, Nathan Duncan1, William Joseph Matthies Jr.1
1 Computing and Software Systems
University of Washington, Bothell

Bothell, WA 98011 USA
{hazeline, mshonle, pottsk2, njd91, wjoem}

@ u.washington.edu

2 Department of Computer Science
The University of Texas at San Antonio

San Antonio, TX 78249 USA
robertportercs@gmail.com

Abstract—Confronted with tight project deadlines, a development
team is often under pressure to make decisions regarding the
project (e.g., Which features can be included in the next release?
Is the software product ready for release?). In order to make
these decisions, it is necessary to obtain information from
multiple sources, including source code in different languages
and documentation in different formats. In this paper, we
present a technique that uses change entries to obtain relevant
project information. Our technique, FACTS PT, automatically
extracts, traces, aggregates, and visualizes change entries along
with other software metrics to provide project information.
Results from our case study at the ABC Organization* suggest
that the information provided by the FACTS PT is useful to
project managers and developers. We also offer lessons learned
regarding collecting and presenting information to a team in a
proprietary and regulated software development context.

Keywords-Software traceability; Software analytics;
information management

I. INTRODUCTION
Connecting related information during the course of

software development, referred as software traceability, is
necessary for various software lifecycle tasks such as
determining conformance to requirements or assessing the
quality of design [7, 14]. However, connecting related
information found in different artifacts to answer project
management questions has received little attention [9]. (We
define an artifact as any human-produced file during the
software lifecycle.) Ideally, a team should be able to answer
questions related to project status, quality of software artifacts,
and compliance to requirements. To answer these types of
questions and to make informed decisions, information from
various sources must be collected.

Collecting project information has been referred to as
software metrics [16], or software telemetry [18]. Techniques
have been developed to support the automated collection of
both process and product metrics [13, 18, 22, 26]. These
techniques, however, are generally focused on collecting
process information to aid developers assess their own skills
and productivity. Project managers, meanwhile, require
process and product information that provide them an
understanding of the overall state of the code, the progress

toward a milestone, and the skills and productivity of each
member of the team. Buse and Zimmerman recently used the
term software analytics to refer to the type of data and data
analysis necessary to support managers in their decision-
making tasks [9]. This paper provides a technique to support
software analytics for project managers and developers.

Agile software development methods also have techniques
for collecting project information. Burn down charts are used
to track the velocity of a team over several iterations [11].
These techniques are built-in to the agile process and are
difficult to adapt to teams which use other lifecycle models,
such as the waterfall or spiral models. Incidentally, the concept
of software analytics is also being used in agile projects [25].

We present a technique for tracing related information from
various sources. Our technique, Flexible Artifact Change and
Traceability Support for Project Team (FACTS PT), uses
change entries as a level of abstraction by which changes
across various artifacts can be uniformly represented and
monitored. Previous approaches to collecting project
information include tracking number of errors detected or
number of lines of code added [16]. We posit that change
entries do not only serve as a useful metric for project progress,
but they also provide more meaningful information regarding
the reason behind specific changes. Our contributions are: 1)
change entries as a means of gathering scattered project
information, 2) a set of tools for extracting, tracing,
aggregating, and visualizing change entries and other metrics,
3) evaluation in a real-world setting which suggests the utility
of our approach, and 4) lessons learned from the study.

This paper is organized as follows. The next section
provides a motivation behind our technique. Section 3 presents
our FACTS PT technique, followed by tool support in Section
4. Section 5 covers evaluation of our technique with lessons
learned. Section 6 discusses related work. We close the paper
with avenues of future work.

II. MOTIVATION
We now provide an overview of the challenges faced by a

development team working in a proprietary and regulated
software development context, such as the ABC Organization*
where we conducted a case study of our technique.

* Kept anonymous here due to a non-disclosure agreement. This work is supported by the US National Science Foundation under
Grant No. 1218266.

185

Figure 1. Examples of change entries on various software artifacts in different formats (source code, requirements documentation, and test report).

The ABC Organization is a research institute which
engages in scientific research and develops software for various
applied science domains. The organization has several
thousand employees with branches in the United States and
around the world. Because the organization works on software
projects that must adhere to government standards and
regulations, and because these software products may be
deployed on critical systems, the software must pass a rigorous
quality assurance standard. The organization also uses the
Capability Maturity Model Integration (CMMI) level as a
means of demonstrating its maturity level [2].

The software development team which we studied uses a
hybrid waterfall and iterative software development lifecycle.
The team comprises of a project manager, a lead software
engineer, 3-4 developers, 1-2 test engineers, and a
documentation engineer. The team releases software in
roughly 10-month cycles. Not only must the organization be
able to assess the quality of their code, they must also
demonstrate process maturity to reach the next CMMI level.

Since the group uses an iterative development, it is
important for the development group to continually monitor
changes performed on the code and accompanying artifacts for
each release cycle. In addition, the team must be able to
quickly obtain information from various artifacts, which are
often scattered among the various tools used by the team.
Finally, the team must be able to answer questions such as
“What is the status of the project?” and “Are the source code
and documentation meeting quality standards?”

III. FACTS PT TECHNIQUE
To address the challenges faced by a development team in

tracing relevant information from heterogeneous sources, we
used the FACTS PT technique. This technique consists of the
following steps: select a tracing unit to connect heterogeneous
sources of information, embed concepts within change entries,
extract change entries and other project metrics, aggregate and
visualize extracted data. We now discuss each step in detail.

A. Select a Tracing Unit to Connect Heterogeneous Sources
of Information: Change Entry
Since a software team is confronted with large amounts of

information from multiple sources, it is necessary to only trace
the relevant information. One of the challenges with many

traceability recovery techniques is the generation of potentially
large number of false positive links along with accurate links
[19]. This can be addressed by identifying a tracing unit that
can connect heterogeneous information across the project
lifecycle. The tracing unit serves as a means of “marking”
artifacts, or parts of the artifacts, to trace.

Previous techniques use requirements [7], architecture
concepts [5], or events as tracing units [24]. We connect
information via change entries, which are descriptions of
changes made in the artifacts (e.g., source code,
documentation) (see Figure 1). A change entry can be mapped
to specific deletions or additions in a file. Since change entries
can be uniformly represented across heterogeneous artifacts,
we use change entries as our tracing unit.

B. When Possible, Embed Project Concepts within Change
Entries
Once the tracing unit is selected, the next step is to embed it

with concepts understandable by a team. In our context, an
important higher level concept is a task. A task is a software
update to be performed by a software engineer. A task may
entail implementing a new feature, performing a bug fix, or
carrying out a code maintenance activity.

Since artifacts are at different levels of abstractions (e.g.,
requirements document contain abstract concepts while source
code contain concrete concepts), project concepts may only be
embedded in some change entries. For example, the concept of
task is a higher level concept by which source code changes
can be aggregated. Meanwhile, requirements document
changes may not be related to tasks since concepts at the
requirements document are at a higher level of abstraction than
tasks. It is certainly possible to embed requirement change
entries with another set of concepts, such as requirement IDs,
and then develop a mapping between requirements and tasks.

C. Extract Change Entries and other Project Metrics
The next step is to extract change entries and other relevant

project metrics to gather project information. To address the
challenge of extracting change entries from heterogeneous
artifacts, we use artifact-specific extractors, such as an
extractor for each source code language, an extractor for
specification documents in PDF, an extractor for test
documents in PDF, etc.

186

Figure 2. Gantt Chart Actuals using data from the jEdit open source project. Top figure shows zoomed out view of the chart. Bottom figure is a zoomed-in

view of the UI Task with a comment indicating the authors who performed changes for the selected date along with the number of change entries.

The extracted change entries are then represented as a
uniform change model. We use XML to represent our change
model, which contains the following information: a unique
identifier, author, date of the change, task ID (optional),
description, and path. All of these attributes, except the path,
are obtained from change entries. The description is a free-form
text that describes the change. To support access to the artifacts
that were changed, it is also necessary to determine the location
of the artifact–whether on the local machine, on the local
network, or on the Internet. The path may also point to a
specific location within the artifact to support accessibility at
different levels of granularity [6]. The path is automatically
determined relative to the project root folder. An XML file
contains multiple change entries and multiple XML files may
be used to encapsulate groups of change entries.

We also collect pertinent project metrics associated with
managing the project. These include length of time spent by a
developer on a task and number of lines changed for source
code files. To minimize the overhead in collecting metrics,
each developer simply reports the total number of hours spent
on each task. The project manager compiles these self-reported
hours into a Software Tasks spreadsheet, which includes
additional task information. Once the information is in a
spreadsheet, we can automatically extract the self-reported
hours. Metrics regarding number of lines changed for source
code files are obtained using a diff tool (e.g., SVN diff [12]).

D. Aggregate and Visualize the Extracted Data
Once the change entries, which contain task IDs, and other

project metrics have been obtained, the data can then be
aggregated and visualized at different levels of granularity. At
a high level, an overview of project progress and potential
problem areas in the code can be provided. At a detailed level,
one can view how the aggregated information was derived,
which parts of the documentation or source code has been
changed, which parts of the code are non-compliant to coding
standards, and which tests have passed or failed.

We generated the following types of visualizations: Change
Lookup by Developer, Release Comparison Report, Change
Distribution Chart, Timeline of Change Entries, Gantt Chart
Actuals, and Task-Author-Artifact Report. The Change
Lookup by Developer allows developers to search for their
tasks and all the changes they performed for the current
iteration. The Release Comparison Report shows a listing of
all the source code files that have been changed between two
specified releases. Within this report, additional information
such as detailed diff and coding standard reports are provided
for each file and are accessible via hyperlinks. The Change
Distribution Report, meanwhile, visualizes changes along
various dimensions, by software engineer, by file type, by
subsystem, by hours spent, or a combination of these
dimensions. The Timeline of Change Entries provides a
chronological ordering of change entries. The change entries

187

are color-coded according to various dimensions (e.g., author,
file type, subsystem). We discuss in detail the rest of the
visualizations.

Gantt Charts are generally used for project planning to
determine when a software product can be released [27]. We
have adapted the Gantt Chart to show actual project
information based on change entries (see Figure 2, top
screenshot). Similar to a Gantt Chart, the Gantt Chart Actuals
lists tasks (or task IDs) on the left side of the chart. Each Gantt
row spans a period of n months and is color-coded based on the
number of change entries. Upon hovering over a colored heat
map cell, additional metadata such as list of authors that
performed changes for that date and number of change entries
in brackets, are shown (see Figure 2, bottom screenshot).

Change entries, along with its mapping to a more abstract
concept (e.g., task) and more concrete concepts (e.g., lines
added or deleted, time spent), are shown in the Task-Author-
Artifact Report. In this report, a user can select a task ID. A
list of software engineers who are working on the specified task
is shown, along with summary data for the number of change
entries and hours spent for the selected task. Within each
developer, detailed information is shown, such as files that
were changed, the percentage of the total lines that are
comments, number of lines added and deleted. This report also
allows a user to assess the complexity of a task by combining
self-reported information (number of hours) along with
automatically generated metrics, such as the number of files
modified and number of lines added or deleted.

IV. TOOL SUPPORT
We built artifact-specific change extractors using Perl and

Python scripts to extract change entries from requirements and
design specifications (in PDF and Word) and from source code
written in Java and JSP. Since each artifact type follows
company standard formatting, it is straightforward to locate the
section of the file that contains the change entries. Task IDs
are included with each source code change entry (see Figure 1),
and are included in the extraction process. Once the change
entries are found, the change extractors write each change entry
to an XML file with the appropriate XML tags. All generated
XML files are then combined into one file.

The change entries and the project metrics, both in XML
formats, are then fed into the visualizations. The Timeline of
Change Entries was built using Piccolo 2D. The spreadsheet
visualizations were built on top of Microsoft Excel 2010
spreadsheet in the .NET 4.0 Windows environment using C#
and the Excel API. Spreadsheet visualizations were used since
the team was comfortable with analyzing project data in the
spreadsheet environment. The Gantt Chart Actuals and
timeline visualizations have been fully implemented, while the
other spreadsheet visualizations are partially implemented.
For the Release Comparison Report, we used an SVN diff [12]
to identify the differences between two releases. We also built
a script that analyzes high priority coding standard violations
and outputs a report for each source code file. Alternatively, an
off-the-shelf coding standard checker could also be used.

V. EVALUATION
The FACTS PT technique and tool support was evaluated

in the context of an ongoing software project that has over
200K total lines of code and implemented in five different
languages and scripts. We analyzed the change entries from
the Java and JSP codebase which covers about half of the total
codebase. The project also has numerous artifacts including
requirements specifications, design documents, test plans, test
documents, checklists, tasks, and change requests. These
artifacts are in different file formats (e.g., spreadsheets,
documents, PDF files, diagrams). FACTS PT was used to
extract change entries from a subset of these artifacts, to relate
tasks and change entries to developers, and to support tracking
project progress. The artifacts from three major releases were
studied, with thousands of change entries. The change entries
spanned the period of January 2009 to May 2011.

We were primarily focused on determining the utility of
change entries and their visualizations to developers or project
managers for their respective tasks. Thus, we sought answers
to the following research questions:

Q1: Does the FACTS PT technique assist you in
development or management tasks? If so, in what way?

Q2: How useful are the FACTS PT visualizations?

We solicited information from various members of the
team: a project manager who has 15 years of experience as a
software project manager and three programmers who have
about 10-15 years of experience. The subjects were presented
with the visualizations after the releases and were asked to
provide feedback via questionnaires and semi-structured
interviews. We conducted four iterations of the study (and
improved the FACTS PT tool support after each iteration).

A. Results
Q1: In the early iterations of the study, both the project

manager and developers concurred that the FACTS PT
technique did not assist them in their tasks.

In later iterations, both project manager and developers
stated that FACTS PT can assist them in their tasks. The
developers stated that the FACTS PT technique allowed them
to quickly identify which files have changed and to understand
the source code changes. The project manager stated that in its
current state, the FACTS PT technique can assist him with
project management tasks by identifying areas of improvement
from the generated visualizations and reports after a major
release. These areas of improvement can then be addressed in
the next software development iteration.

Q2: In early iterations of the study, the development team
stated that the FACTS PT visualizations were not useful.

In later iterations, the visualizations were useful to the
development team. The programmers were able to quickly
locate the changes they made with the Change Lookup by
Developer and were able to reflect upon their own productivity.
According to the project manager, the Gantt Chart Actuals
(Figure 2) and the Task-Author-Artifact Report were rated as
providing highly useful information because they provide

188

summary information. The other visualizations require further
changes to be rated as highly useful.

B. Discussion
Q1: Throughout the four iterations, we followed the same

general steps of extracting, aggregating, and visualizing change
entries, except for the additional steps of selecting and
embedding project concepts within change entries and
including project metrics in later iterations. It turned out that
these additional steps were keys in transforming the FACTS PT
into a technique that can assist project managers and
developers with their tasks. Viewing changes at the granularity
of change entries was acceptable to all the subjects.

Q2: Throughout the study, we visualized change entries. It
was interesting to learn that the type of visualization can
largely affect the perceived usefulness of the change entries.
Although the Timeline of Change Entries we initially used
provided some insight into the project, all subjects had
difficulties navigating it and was unable to quickly obtain
aggregate information across different dimensions (e.g., by
developer). Meanwhile, all subjects found the tabular
visualization format as most useful, especially when it
contained information extracted from various sources, as in the
Task-Author-Artifact Report or the Change Lookup by
Developer. The project manager added that when the FACTS
PT tool support becomes more mature, it can also be used
during a project iteration, as opposed to simply being used at
the end of an iteration as part of a post-release analysis. The
developers also expressed interest in visualizing their changes
from other projects. Doing so would allow them to cross-
reference the changes they make across different projects.

C. Limitations
Our approach makes the following assumptions:

Change entries are present in the files to trace.
Development teams which produce formal specifications often
have a history log as part of the document template (see IEEE
Std 830-1998 [1]). In addition, many development teams also
use a configuration management (CM) system which contains
commit records. These commit records can be used as a source
of change entries if history logs are not used. Open source
projects also maintain a change log [10]. Time spent on tasks
may be estimated from CM check-out/check-in timestamps.

It is possible that the developer-entered information, such
as hours spent on tasks and change entries may contain
incorrect information, or even missing information [10]. This
inaccuracy would be fairly straightforward to detect since the
developer-entered information is presented with the
automatically generated metrics. In addition, if developers are
incentivized for demonstrating a higher level of activity, via the
change entries, it is less likely they will neglect providing
change entries each time they make a change to a file.

With regards to limitations with our evaluation, we focused
on whether tracing, aggregating, and visualizing change entries
with other project metrics is useful to project managers and
developers. We did not examine the overhead involved with
processing the artifacts. This is a subject of future work.

D. Lessons Learned
1. A software development team is not keen on using new

tools or technology unless they have a direct benefit. This
finding is consistent with the adoption of software traceability
techniques in industry [7]. Thus, even though we also
presented change entries in the earlier iterations, the team was
not willing to use the tool because the information was not
accessible to them. Later on, when we presented the change
entries in both the aggregated and detailed level, along with
other project metrics, the team was more willing to use our tool
and technique.

2. Aesthetically pleasing visualizations do not necessarily
provide usable information. Since a development team is
constantly under time pressure, a visualization must enable
them to obtain information quickly. Thus, support for easy
navigation, filtering, searching, and data manipulation are key
requirements for a usable visualization. This is one of the
reasons why tabular formatted data is preferred by the subjects.
The information can easily be aggregated (by invoking the sum
function), filtered by an attribute, or searched by a keyword.
Our timeline visualization, while aesthetically pleasing and
classifies changes according to author or file type, does not
provide capabilities for fast data manipulation, and thus, was
not useful to them.

3. Using a combination of self-reported and automated
metrics can lower the overhead for collecting metrics, while
minimizing privacy issues that may be associated with fully
automated data collection techniques. By leveraging existing
company practices in extracting metrics, more applicable
metrics can be obtained. Moreover, some of the fully
automated techniques in metric collection may under-report the
actual time spent on an activity. Since the automated
techniques are based on engineer interaction with tools [18,
26], these techniques do not measure the time away from the
computer (e.g., face-to-face meetings with teammates).

On the other hand, manually tracking time can be a time
consuming process [16] and may potentially distract engineers
from their task since they are required to context switch
between tracking their time and performing development tasks
[17]. In a company setting, a balance can be achieved by
tracking course-grained activities and tracking time at 10 or 15
minute increments. Recording time spent on activities can be
performed at the same time as engineers report their timesheets
(e.g., once a day), to avoid the context switching problem. In
our context, the engineers track their time at the task level and
the reported times were generally accurate.

VI. RELATED WORK
We now compare our work to related research areas.

Software Traceability: Software traceability research is
concerned with identifying relationships between various
software artifacts [5]. Traceability techniques and approaches
have generally been developed to support an analyst or a
requirements engineer [15], an architect [5], or a developer [4],
but not project managers. One case study describes the use of
bug tracking as a tracing unit to support developers [21]. If a
tracing unit is not embedded into the artifacts to trace, then

189

other techniques like link recovery techniques [4, 15] can be
used to identify possible connections between artifacts.
Limited traceability support for project management tasks was
described in another study [7]. Jazz is a tool that supports
mapping of information across various artifacts that reside
within the Jazz platform [3]. Our work, however, uses change
entries as a tracing unit, and aggregates and visualizes them
with other project metrics to support developers and managers.
Our work is also not constrained to a specific tool or platform.

Process metrics: Several process metrics have been
previously proposed to support project management, including
time spent on activities and number of defects discovered
during code inspection [16]. Goal-Question-Metric paradigm
provides guidance on which metrics to collect [8], while
CQMM is a technique that collects metrics from different static
analyses tools to monitor and assess code quality [23]. In agile
development contexts, story points are used to track the amount
of work performed in each iteration [11]. Using change entries
as a metric is complementary to these techniques.

Metric Collection: There are tools that collect process and
product metrics. One particular category of tools, Software
Project Control Centers (SPCCs) are used to collect, interpret,
and visualize project metrics to provide context-, purpose-, and
role-oriented information for various members of the
development team [20]. Other tools use different techniques to
collect metrics, such as using sensors attached to various tools
(e.g., development editors, build tools) [18], tracking evolution
of classes, methods, invocations [22], or tracking personal
software process (PSP) data [26]. Another tool allows users to
plug-in their custom metrics into a provided infrastructure [13].
Our technique, meanwhile, combines self-reported metrics
from developers (i.e., time spent on tasks) with extracted
change entries and product metrics.

VII. CONCLUSION
In this paper, we presented FACTS PT, a technique that

traces change entries across heterogeneous artifacts to collect
project information. We developed a set of tools that
automatically extracts, traces, aggregates, and visualizes
change entries along with other project metrics. Our case study
at a proprietary and regulated software development context
indicates that our approach is useful to project managers and
developers. We also offered lessons learned regarding
collecting and presenting accessible information to a software
development team.

We plan to continue improving the FACTS PT tool support.
We will also solicit feedback of other members of the
development team, including QA engineers and documentation
engineers, to determine how our technique can also assist them
in their tasks. Finally, we plan to analyze the description of
change entries to automatically group together related changes.

VIII. ACKNOWLEDGEMENTS
We thank the project manager and developers at the ABC

Organization for valuable insights and feedback. Dang Nguyen
at UTSA developed the initial timeline visualization.

REFERENCES
[1] IEEE Recommended practice for software requirements specifications.

IEEE Std 830-1998, 1998.
[2] CMMI Institute. http://cmmiinstitute.com/, Jan 2013.
[3] The Jazz Project. http://jazz.net, Jan 2013.
[4] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.

Recovering traceability links between code and documentation. IEEE
Transactions on Software Engineering (TSE), 28(10):970–983, 2002.

[5] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability
with topic modeling. In Proc of 32nd Int’l Conference on Software
Engineering (ICSE), 2010.

[6] H. U. Asuncion and R. N. Taylor. Software and Systems Traceability,
chapter Automated Techniques for Capturing Custom Traceability Links
across Heterogeneous Artifacts, pages 129–146. Springer London, 2012.

[7] H.U. Asuncion, F. François, and R. N. Taylor. An end-to-end industrial
software traceability tool. In Proc of the 6th Joint Meeting of the
European Software Eng Conf and the ACM SIGSOFT Int’l Symp on the
Foundations of Software Engineering (ESEC/FSE), 2007.

[8] V. Basili and S. Green. Software process evolution at the SEL. IEEE
Software, 11(4):58 –66, 1994.

[9] R.P.L. Buse and T. Zimmermann. Information needs for software
development analytics. In Proc of ICSE, 2012.

[10] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller. Open-source
change logs. Empirical Software Engineering, 9(3):197–210, 2004.

[11] M. Cohn. Agile Estimating and Planning. Prentice Hall, 2006.
[12] CollabNet. TortoiseSVN. http://tortoisesvn.tigris.org/, Jan 2013.
[13] G. Gousios and D. Spinellis. A platform for software engineering

research. In Proc of Int’l Working Conf on Mining Software
Repositories, 2009.

[14] V. L. Hamilton and M. L. Beeby. Issues of traceability in integrating
tools. In IEE Colloquium on Tools and Techniques for Maintaining
Traceability During Design, 1991.

[15] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. Advancing candidate link
generation for requirements tracing: The study of methods. TSE,
32(1):4–19, 2006.

[16] W. Humphrey. A Discipline for Software Engineering. Addison-Wesley,
1995.

[17] P. M. Johnson and A. M. Disney. A critical analysis of PSP data quality:
Results from a case study. Emp Software Engr, 4(4):317–349, 1999.

[18] P. M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and
T. Yamashita. Improving software development management through
software project telemetry. IEEE Software, 22(4):76 – 85, 2005.

[19] J. Leuser. Challenges for semi-automatic trace recovery in the
automotive domain. In Proc of the 5th Int’l Workshop on Traceability in
Emerging Forms of Software Engineering, 2009.

[20] J. Münch and J. Heidrich. Software project control centers: concepts and
approaches. Journal of Systems and Software, 70(1–2):3 – 19, 2004.

[21] C. Neumüller and P. Grünbacher. Automating software traceability in
very small companies - a case study and lessons learned. In Proc of the
21st Int’l Conference on Automated Software Engineering, 2006.

[22] J. Oosterman, W. Irwin, and N. Churcher. EvoJava: A tool for
measuring evolving software. In Proc of the Australasian Computer
Science Conference, 2011.

[23] R. Plösch, H. Gruber, C. Körner, and M. Saft. A method for continuous
code quality management using static analysis. In Proc of the Int’l Conf
on Quality of Information and Communications Technology, 2010.

[24] W. Poncin, A. Serebrenik, and M. van den Brand. Process mining
software repositories. In Proc of the European Conference on Software
Maintenance and Reengineering, 2011.

[25] Rally Software. Advanced analytics. http://www.rallydev.com/platform-
products/advanced-analytics, Jan 2013.

[26] A. Sillitti, A. Janes, G. Succi, and T. Vernazza. Collecting, integrating
and analyzing software metrics and personal software process data. In
Proc of the Euromicro Conference, 2003.

[27] D. White and J. Fortune. Current practice in project management — an
empirical study. Int’l Journal of Project Mgmt, 20(1):1 – 11, 2002.

190

191

192

193

194

195

196

A Feasibility Study of Follow-the-Sun Software
Development for GSD Projects

Josiane Kroll, Rafael Prikladnicki, Jorge L. N. Audy
Computer Science School, PUCRS

Porto Alegre, Brazil
josi.unc@gmail.com, rafaelp@pucrs.br, audy@pucrs.br

Erran Carmel
Kogod School of Business, AU

Washington DC, USA
carmel@american.edu

Jude Fernandez
Infosys Technologies Ltd

Bangalore, India
JUDEF@infosys.com

Abstract— Follow-the-sun (FTS) is a strategy for Global
Software Development (GSD) where you hand off work at the
end of every day from one site to the next, many time zones away,
in order to speed up product development. Companies have tried
to implement FTS, but have abandoned it after some point
because of the difficulty to put it into practice. Consequently,
there are few documented industry successes. The lack of FTS
experience in the software industry is observed as the main
barrier for its adoption. For this reason, we performed a study
applying FTS to develop a software project. Our goal was to
examine the feasibility and outcomes of FTS. In this paper, we
present the experience report describing best practices and
solutions performed to overcome the challenges we found.

Index Terms—Follow-the-sun, software engineering, global

software development, coordination across time zones.

I. INTRODUCTION
Follow-the-sun (FTS) is a software development strategy

for Global Software Development (GSD) projects used to take
advantage of temporal distances between several sites located
in different time zones [1]. Its main goal is to reduce software
development cycle duration [2]. However, FTS implementation
requires great coordination, collaboration and communication
with all team members involved [1].

While FTS concept looks promising in theory, it appears to
be difficult into practice [3]. Many software companies have
attempted to implement FTS, but have abandoned it after some
point because of the difficulty of putting it into practice [1].

For this reason, this study aims to examine the FTS
feasibility and understand the challenges and possible solutions
for its development.

Our study was performed at Infosys Technologies in
Bangalore, India in the second quarter of 2012. Over the
duration of one month, working teams distributed in Mexico,
India, and Australia developed a software application using
FTS concept. In this study, we present our results, details of
software practices and solutions performed to overcome the
challenges found to develop a software application in the FTS
mode. We also discuss feasibility issues, lessons learned and
the next steps planned for this study.

II. BACKGROUND FOLLOW-THE-SUN
In FTS scenarios, team members are distributed across

different time zones and sites [2]. When team members from
one site finishes its own regular working hours, other team
members located in another site and time zone start its working

day. Tasks are handed off from one site to another at the end of
each working day [4]. The tasks transition between team
members is called a handoff.

Handoffs are performed daily by teams following to the
next site. At each site, handoffs are conducted on a daily basis
at the end of each site shift [5].

In the literature, FTS is also referenced as round-the-clock.
Although these terms are used in a similar way in the literature,
the definitions are different. FTS is about speed, cutting project
duration, while round-the-clock is about twenty-four hour
coverage, running an operation in all shifts. Both of these
concepts use time zone differences to design shifts, but for
different purposes and kinds of tasks [2].

III. STUDY SETTINGS AND METHODS
Our research was developed at Infosys Technologies in

Bangalore, India. Infosys is a global leader in consulting,
technology and outsourcing with revenues of US$ 7075 million
(FY12). Infosys provides business consulting, technology,
engineering and outsourcing services to help clients in over 32
countries.

A. Case Setting
Our study focused in the development phase of a software

application. This software application was developed by three
distributed teams located in different time zones: Mexico, India
and Australia.

In Mexico, there were two developers who were available
full-time, in India two developers available for half-time and
one project manager and in Australia we had two developers
full-time and one developer half-time.

The sites had different experience levels. In Mexico,
developers were trainees. In India, the project manager had
working experience of approximately 10 years, did not have
prior experience as a project manager. Developers from India,
had two years and one year’s experience respectively. In
Australia, developers had between eight and fourteen years’
experience.

B. Project Planning
1) Estimation

 The application development was estimated to be
completed in 4 weeks duration, and it was divided into two
sprints. Since we did not have any estimation techniques or
variations of standard techniques suited for FTS, we went more
based on standard approaches and the experience of the project

197

manager. We also estimated the time for this project
considering a typical two-location mode, which was estimated
to be 6 weeks (this was done by an external experienced project
manager not connected with this study).

2) Task Allocation
 We followed the CPro concept introduced by [6]. Based on
CPro formation concept, we formed 2 CPs (Composite
Personas) with each CP comprising at least one team member
from each location.
 In each sprint, tasks were allocated to the CP, rather than to
an individual. However, we found that this method caused
some amount of confusion amongst CP members and resulted
in some lack of direction and progress of the work in the sprint
1. Thus, this process was slightly modified in the sprint 2.
 In the sprint 2, the project manager carried out twenty-four
hour allocation of tasks to each CP. Following this each CP
member would take on the tasks in the appropriate logical
manner based on the tasks allocated for the twenty-four hours
window.

3) Team training
We prepared guidelines for FTS teams based on the

literature [1] [2]. These guidelines were reviewed by FTS
experts before the project start. These guidelines were used to
plan the project and conduct training sessions to clarify FTS.

 Only the team from Australia had experience in agile
methods. To mitigate this issue, we also conducted training
sessions about the Scrum method. Additionally, a scrum master
was allocated to the project and his role in the project was to
coach and ensure that the teams followed Scrum.

C. FTS Methods and Guidelines
1) Team setup

Based on time zones where the teams were located and
their available working hours, the daily working hours were
arranged such that there was an overlap of 30 minutes between
the locations for communication to enable the daily handover
of tasks. Initially, the handover call was planned for 30 minutes
in duration each day, subsequently it was found that it spilled
over 45 minutes and 1 hour based on the need.

2) Daily handover across locations
Handoffs were performed over phone calls or

communication tool. For sending tasks to another team, each
developer should use an Excel template. Th is template was
available on TFS system and it was called Task Handover.
Individual developers were asked to add information for each
handoff.

3) Communication between team members across
locations

Communication between team members across locations
was synchronous only during overlap times between the
locations. A team member cannot talk with teammates from
another site outside their time hours. Other forms of
asynchronous communication were via email.

Time windows for interaction were available only one hour
(maximum) per day. The first time window for interaction was
available in the first 30 minutes (maximum) of a working day.

The second time window for interaction is available on the last
30 minutes (maximum) of a working day.

The working day started in Australia following to India and
after to Mexico. Handoffs using conference calls between
developers and project manager should be done every day to
discuss new and performed tasks.

4) Retrospectives at the end of each sprint
Following the Scrum framework, at the end of sprint 1, a

detailed retrospective was conducted giving opportunity for all
members to voice out what they felt went right and what did
not. This helped considerably to identify issues and also
identify potential solutions and improvements to the overall
process.

IV. RESULTS

A. Performance
1) Performance in the sprint 1: The tasks in the sprint 1

were estimated for an effort of 368 hours. At the end of sprint
1, it was found that effort expended was 432.5 hours, which
was 65.5 hours more than planned. It was also found that only
65.5% of the planned tasks were completed with the rest
incomplete. These tasks were moved to sprint 2.

One of the main hurdles encountered by the team was
certain delays from the internal stakeholders which necessitated
rework due to new templates introduced. This was estimated to
have caused approximately 50% extra work. Similarly, the
setup of the project took up more time than estimated. Finally,
the daily FTS handover process also took more t ime than
estimated, because planning meeting were executed during
handoffs.

2) Performance in the sprint 2: Considering the existing
tasks and the carryover tasks from sprint 1, the effort
estimated for sprint 2 was 464 hours. In the sprint 2, we
observed that teams were more comfortable and productive
having getting experience in the FTS approach from sprint 1.
Several o f the problems faced in the sprint 1 were minimized
in the sprint 2. The effort expended in this sprint was only 350
hours (see Table I) which was due to team members attending
trainings and two holidays in one particular location.
Consequently, the task completion was approximately 62% of
the planned tasks.

TABLE I. PERFORMANCE IN THE SPRINT 1 AND SPRINT 2.

 Sprint 1 Sprint 2
Estimated hours 368 464
Actual hours 465.5 350
Extra hours 65.5 0
Task completion % 68% 62%

3) Completion of the project: the remaining tasks of the
project were completed in a subsequent phase in non-FTS
mode, because some team members were committed to other
client projects and had to be released.

B. Feasibility of the FTS model
The core question this study sought to answer was: Is FTS

feasible in a live practical scenario in a large organization?

198

From our experience in this project, our conclusion was that the
FTS model is feasible. We present the main reasons next.

1) Work distribution and execution in round-the-clock
manner

This model was a major departure for all members of the
team. The team went through some learning and ultimately
settled down into a practical mode. At the overall level, the
sprint user stories were divided amongst the two CPs. Further,
within a CP, in the sprint 1, tasks were not specifically
allocated to begin with. After facing some issues, this model
was modified to some extent by adopting a 24 hours task
allocation model, according to this, the project manager
allocated tasks to each CP for each 24 hours. This practice
brought in greater clarity in the team help ing in better
execution in the sprint 2.

2) Ownership of the CPro
In the sprint 1, due to the lack of defined CP ownership,

this ownership was taken by the project manager which was
not very effective. Post the retrospective, this model was
modified and specific owners for each CP was defined, thus
ensuring more commitment and execution to plan.

3) Daily Handover Process
Task handover from one time zone location to the CP

member in the next time zone location was a concept tried out
for the first time. As described above, and learning from
previous research, a simple process was adopted. The team
members reported a high level of comfort and satisfaction in
the handover process and it was seen to be a good enabler in
the FTS model.

C. Inherent Issues found in the Project
1) Project-specific challenges

A business application was chosen for this study with a
defined end customer and stakeholders. While the end
customer was supportive of the project, due to certain
organizational constraints, the project faced considerable
delays on account of other stakeholders. This contributed a
certain amount of delay especially in the sprint 1.

The total lack of experience in one location and relative
lesser experience in the second location, coupled with the
higher experience in the third location, while, not entirely
unusual, had some impact on the team working and
productivity. Further, only one location members had adequate
experience in agile software development, which meant the
others had a learning curve on agile to be tackled in the project.

2) FTS methods and practices
The biggest limitation experienced in this study was the

lack of good estimation techniques for the project. The team
used conventional estimation techniques to arrive at a target of
4 weeks for the project to be completed, whilst a neutral
estimate of the same project for two location model pegged the
estimate at 6 weeks. However, the project finally took 5.5
weeks to complete. As a consequence, the study did not show a
significant cycle time reduction as it could, although FTS
shows to be faster than a software project develop in non-FTS
mode.

3) Communication and Coordination issues

The main problem faced related to communication was
language. While English was the mode of communication, due
to differing accents spoken, team members across locations had
some trouble understanding each other during the handoff
meetings. Extra emails were requested by teams at the end of
each handoff.

Coordination problems observed related to weekend
handoffs task allocation and office timing management. Task
allocation was problematic main ly at the beginning of the
project, because tasks were not allocated properly. In addition,
tasks not completed at the end of the day are handed to the next
production site. Relate to office timing management, India
team worked haft time and Australia team had a developer
working half time.

D. Lessons Learned
With the information collected during the project, we

highlight some lessons learned.
 Templates and standard document: at the beginning of

the project, teams faced problems to identify standards
utilized in the project. Teams must know templates and
standard documents that will be used during the
software development before the project start.

 Coding standards: to avoid re-work a standard to
comment code must be defined before the coding starts.
When the FTS project started, teams were spending a lot
of time try ing to understand the code and identifying the
last changes made in the code.

 Screen sharing: transferring or explaining a task using
screen sharing becomes easy when teams can see the
information talked about. During the handoff process
we observed that teams opted by using of the screen
sharing to explain codes and design documents.

 Communication protocol: we observed that phone calls,
emails and communicators, such as Microsoft office
communicator, are useful to provide communication
between teams, but they must be used together. We also
observed during the calls meeting that some rules
following by teams can improve the quality
communication, such as, speak slowly to reduce accents
and summarize the tasks talked about by CP giver.

 Tasks for the day: a daily email allocating tasks
individually for members contributed to define priority
tasks and reduce problems faced by teams to categorize
a task in the sprint backlog.

 Handover template: we used an excel spreadsheet to
manage tasks exchanged between teams. It worked very
well, but it could be automatized.

 Weekend handoff: in the weekends is very difficult to
manage the handoff processes. In this project, we have
used communication via email. However, many
problems were identified mainly in the first weekend.
The receiver team faced difficulties to understand the
new tasks and how to continue the work. On the second
weekend was better, but the tasks were discussed before
starting the weekend.

199

 CP owner: some tasks were assigned to a CP owner
during the sprint 1. We observed that is a good way to
ensure complete tasks. Tasks can be assigned by email
to CP owners per location. Each CP owner will check if
the task has been completed.

V. DISCUSSION
We consider some practices from literature designed for

around-the-clock environments and it was adapted for FTS
model. The experience of Infosys’ experts allowed to improve
practices and to create a software process for FTS. The
adoption of Scrum practices was considered innovative in this
context.

At the end of sprint 1, some changes were made in the
process for the sprint 2. These changes are present as lessons
learned in the section D.

We observed that the imbalance experience level had a
negative effect on the project. The lack of experience affected
from the project level to estimate the hours to complete tasks as
well as the execution of tasks. Other challenges were identified
like task allocation and lacking of standards and templates at
the beginning of the project. However, these challenges were
minimized for the next sprint.

A. Constraints & Limitations
This study has some limitations that must consider:
 Imbalance team’s experience: employees with different

experience levels were allocated for this study. To
minimize possible threats , we conducted training
sessions with entire team before study start. In addition,
we created guidelines giving instructions about FTS
approach and scrum methodology.

 FTS experience: the software process followed by FTS
teams was created by Infosys experts based on own
methodologies. Experts in FTS and agile methods
reviewed guides, practices and processes.

 Agile experience: the lack of the team's experience in
agile was minimized allocating one scrum master for the
project. His role in the project was to make the FTS
team fo llow scrum method.

 Single application: one of the major limitations of this
study is that they have examined only a single system
developed by a single organization.

 Team availability: in the middle of sprint 2, team
members from two locations were allocated to other
client projects. For this reason, the project was
completed using a non-FTS mode.

VI. CONCLUSIONS AND FUTURE WORK
In this study, we reported the experience acquired with FTS

applied to develop a software project. We used best practices
from the literature and experts from the Infosys to create a
process for FTS. Many software practices performed shown to
be effective for FTS. In other hand, others shown to be
ineffective resulting rework hours.

The main contribution of this study relates to the feasibility
of FTS. Our findings show that FTS works for GSD projects

with some evidence that FTS can be used to compress duration.
However, many untypical issues had occurred during the
project. Team members attending trainings and developers
without experience allocated to the project, are some examples.
In the end, the take away from this study at Infosys is that FTS
is feasible.

A. Future Work
First, FTS needs to be experimented with more projects.

Our study has shown good results using Scrum practices, but
there is a need to gain more experience and understanding of
when it works well, and how making it work better.

Another future opportunity is to study the impact of FTS in
software projects in terms of cycle time reduction, as this is
the main benefit expected from the implementation of a FTS
project.

Our findings show that FTS is feasible, but it is hard to
execute. We observed that few studies in the literature report
solutions regarding to team coordination, task allocation and
the process for daily handoffs.

Finally, the experience at Infosys show that FTS is an
alternative to develop global software projects spread out in
different time zones. Learning how to take the advantages for
applying FTS successfully its part of the next steps at Infosys.

ACKNOWLEDGMENT
This project was financially supported by the Infosys

Technologies Company-India. The authors are grateful for the
access and support provided by the Infosys Technologies
Company involved in this study. We also thank the PDTI
program, financed by Dell Computers of Brazil Ltd. (Law
8.248/91) and Lero - The Irish Software Engineering Research
Centre (www.lero.ie). Rafael Prikladnicki is a CNPq researcher
(309000/2012-2).

REFERENCES
[1] E. Carmel, J. Espinosa and Y. Dubinsky, “Follow the Sun

Workflow in Global Software Development,” Journal of
Management Information Systems Vol. 27 No. 1, 2010, 17 – 38.

[2] E. Carmel and J. A. Espinosa, I'm working While They're
Sleeping: Time Zone Separation Challenges and Solutions,
Kindle Edition, 2011, 188 p.

[3] C. Visser and R. V. Solingen, “Selecting Locations for Follow-
the Sun Software Development: Towards A Routing Model,”
Fourth IEEE International Conference on Global Software
Engineering, 2009.

[4] E. Carmel, A. Espinosa and Y. Dubinsky, “Follow the Sun
Software Development: New Perspectives, Conceptual
Foundation, and Exploratory Field Study,” 42nd Hawaii
International Conference on System Sciences, 2009.

[5] E. Hess and J. L. N. Audy, “FTSProc: a Process to Alleviate the
Challenges of Projects that Use the Follow-the-Sun Strategy,”
In: 7th International Conference on Global Software
Engineering (ICGSE), 2012, Porto Alegre, Brazil.

[6] A. Gupta, R. Bondade and N. Denny, “Software Development
Using the 24-Hour Knowledge Factory Paradigm,” (April 29,
2008). Available at SSRN: http://ssrn.com/abstract=1130062.

200

Structural Testing of Autonomous Vehicles

Vânia de Oliveira Neves, Márcio Eduardo Delamaro,

Paulo Cesar Masiero, Caio César Teodoro Mendes, Denis Fernando Wolf

Depto de Sistemas de Computação - ICMC

Universidade de São Paulo - São Carlos, SP - Brasil

{vaniaon,delamaro,masiero,caiom,denis}@icmc.usp.br

Abstract—Software to control autonomous vehicles is a type
of embedded system that need to undergo severe testing before
deployment. After unit testing and simulations, the actual vehicle
needs to pass through field testing, which are mainly functional
and based on scenarios. There are two difficulties for this type of
testing: input data is not discrete, they occur in large quantity,
change very quickly and depend on the environment; and it is
difficult to repeat the tests with the same input data, unless
by simulation. In this context, a testing model and a tool to
support structural testing of field testing of autonomous vehicles
is proposed. The model and the tool are based on an assumption
that logs of field testing related to specific versions of the program
and scenarios are captured and can eventually be visualized,
analyzed and compared according to control flow criteria. An
example is presented.

I. INTRODUCTION

Embedded systems are present in people’s lives in a way
that is difficult to imagine everyday life without them. They
represent a wide range of systems from personal and domestic
applications such as cell phones and microwave ovens, to large
and complex applications, such as automotive and avionics, as
landing systems and automatic control of fuel injection. Gen-
erally, an embedded system may be considered as a computer
system for specific purposes and must function autonomously
(1).

As other embedded systems, a Mobile Robotic System
(MRS) is a combination of various physical (hardware) and
computational (software) components that has as its main
feature the ability to move and operate partially or fully
autonomously. A robot reaches a higher level of autonomy
when it starts to integrate capacities such as perception (sensors
able to “read” the environment in which it operates); action
(actuators and engines capable of producing movements of the
robot in the environment); robustness, and intelligence (1).

Autonomous vehicles are a particular class of MRSs. They
are critical embedded systems and, as such, face high demand
for quality. Thus, it is critical that they meet their requirements.
If the embedded software is not good enough, it can cause
serious problems such as injury, death or even severe disasters
(2). Thus, these systems must be carefully and extensively
tested and this is our motivation for investigating structural
testing in embedded systems, particularly control software for
autonomous vehicles.

In this context, the test of autonomous vehicles (AV) is
critical to the success of constructing this type of device,
as Urmson et al. (3) wrote about the car that won the
DARPA challenge in 2007: “Testing was the central theme
of the research program that developed Boss”. The test of

an autonomous vehicle control unit usually starts by testing
the units’ smaller components (eg. classes, in object-oriented
programming) and is followed by off-line integration testing
simulation tools, which can use both data from the simulation
environment or real data from test logs collected previously
(4; 5). Field testing is usually functional and based on sce-
narios. For example, the scenario or testing objective of an
autonomous vehicle could be "pass a slow moving vehicle"
or "reach an end point from a starting point deviating from
obstacles". Additionally, it could be a more general scenario
as formulated by Urmson et al. (6): blind path tracking and
perception assisted path tracking.

Field testings are the final and decisive tests to assure
the autonomous vehicles show de intended behavior but they
usually lack any information about the code structure. It could
be that the vehicle (hardware and software) passed in the
testing but important parts of the code could have never been
executed. The functional and structural testing techniques are
complementary (7) and, therefore, it is important to apply them
to test software that is part of embedded systems as it ensures
that critical sections of code have been exercised. Therefore,
the main objective of this work is to propose a testing model
and a tool to support structural testing in the context of field
testing of autonomous vehicles and a support mechanism for
automated validation and use of this model.

This paper is organized as follows: Section 2 discusses the
state of the art of testing of autonomous vehicles; Section 3
presents the model we propose to support structural testing of
AVs; Section 4 presents a supporting tool that supports the
proposal; Section 5 presents an example of usage of the tool
and, finally, in Section 6 a few closing remarks are presented.

II. TESTING OF AUTONOMOUS VEHICLES

The structure of an intelligent autonomous vehicle pow-
ered by the drive-by-wire technology consists of a control
unit complex and structured in several hierarchical levels of
control; embedded mechatronic systems that rely on internal
and external information obtained by the sensors of the vehicle,
on a communication system that integrates all the control struc-
tures, enabling remote commands and exchange of information
between the vehicle and a control station for monitoring, as
well as the communication between vehicles, and internal and
external sensors (1).

A useful practice during the test of autonomous vehicles
is to store input data from a field test for supporting further
off-line analysis, as shown in Figure 1. The development of
software (and systems) usually follows numerous interactions
in which field testing based on scenarios, called “regressive

201

tests” by Urmson et al (3), are recorded and then rerun off-line
with the help of debugging tools. The tools provide different
ways of viewing the program and allow inspections of data
and variables values (8).

There are two important characteristics of field testing input
data of autonomous vehicles that hinder testing. The first is that
the data is not discrete, that is, they occur in large quantity and
change very quickly. For instance, thousands of data readings
are carried out with high frequency during the movement of a
vehicle. The second is the difficulty of guaranteeing that the
input data are repeated, even when the test is redone carefully
reusing a scenario.

The authors of this article have realized, from the literature
of the area and contacts with a few groups of researchers
of autonomous vehicles, that normally structural testing and
coverage analysis are neglected in the development processes
used. One of the reasons that justify the lack of emphasis given
to structural testing of software for autonomous vehicles is that
it relies heavily on software tools available in the development
environment and in the dynamicity of the test.

Fig. 1. Schema to Generate Test Data

Understanding and analyzing the instructions or other
structural elements of the program that have not been exercised

(covered) in a test scenario may be useful to assess the
quality of the test. The research hypothesis of this study is
that structural test can also contribute to the planning and
analysis of test scenarios. For example, when planning a field
testing, the tester may think: what kind of obstacle or obstacle
positioning should be included in the scenario so that a method
not exercised in previous testing sections can be exercised
now? Or, when analyzing the coverage of a testing being
able to relate the test requirements that were not covered
(instructions, nodes, edges, etc.) with features of the system
that have not been tested yet.

III. PROPOSAL OF A MODEL TO SUPPORT STRUCTURAL

TESTING OF AUTONOMOUS VEHICLES

Programs for autonomous vehicles go through successive
refinements, many times parts of the code change or even
the whole code of a unit, thus generating a large number
of versions of the program and logs of testing scenarios.
To manage development in this software domain it is very
important to use not only testing tools but several other
tools like version control, configuration management and static
analysis. Moreover, it is also important to relate versions
and logs of programs with testing scenarios run with each
version and also with the coverage obtained. These features
are not usually offered by the typical tools mentioned above.
To support structural testing in this domain, the authors of this
paper created a meta-model formalizing the schema of Figure
1 and representing the main concepts and artifacts involved,
which is presented in Figure 2.

Fig. 2. A meta-model for part of a structural testing strategy

Versions of programs are defined as specific implementa-
tions of a program (or specification) that differ in some part of
the code, but keep the same architectural elements. Thus, for
example, a change of parameter does not create a new version
but installing a new camera to help controlling a vehicle creates

202

a new version of the program. The test scenarios are test
plans with the specific objective of testing subsets of program
features under test subject to certain conditions. Logs are
records of actual test data captured during a field testing of
a program version for a particular scenario. The captured test
data are the inputs received by the vehicle, eg, images from
cameras and GPS position. To capture this data, we used the
ROS system and, thus, no instrumentation is performed.

Each pair combining a version of the program and a
log entry can be executed in a simulation environment and
the results can be visualized using several types of criteria,
graphs and granularity levels. Additionally, logs created from
field testing can be used to generate other input test data
by algorithms that have as objective function to improve test
coverage according to certain criteria. The generated test cases
can also be simulated and visualized. The logs are defined as:

• logv,s is a file containing data entries for the test of
version v of a program for the scenario s. Notice that
s can also be a log generated automatically by an
algorithm for generating test data.

Based on the meta-model, it is possible to store information
about the test that can be handled by a tool that supports the
developer and the tester regarding the analysis of the results
of a field testing from the structural and coverage points of
view and use these insights to debug and refine the program
(version) under test. The coverage obtained in a test is defined
as:

• covv,s,c coverage of the version v of the of a program
executed or simulated for the scenario s and testing
criterion c.

Setting a coverage criterion c, which may be the execution
of all statements of a program or all the nodes or edges of the
control graph of a program, the tool may then, for example,
support the following comparative analysis for any coverage
criterion c:

• covv1,s,c; covv2,s,c; ...; covvn,s,c : coverage analysis of
executions of different versions of a program v under
the same scenario.

• covv1,s1,c; covv1,s2,c; ...; covv1,sm,c : coverage analysis
of executions of the same version of a program v under
different scenarios.

Figure 3 shows a graph with a generic object model for
the meta-model described above, for a program P. Given this
graph, pairs < COVL1

, COVL2
> and < COVL3

, COVL4
>,

for example, represent a sequence of structural coverage (by
different criteria) of two tests of the same version and same
scenario; the pair < COVL1

, COVL6
> represents a sequence

of the coverage of two tests of the same version for different
scenarios; and the pair < COVL5 , COVL1 > represents a
comparison of the coverage of two tests of the same version,
but one generated by a field testing and the other automatically
generated by an algorithm that used V1 as initial seed. It
would also be possible, for example, to analyze the coverage
only of executions of automatically generated logs or logs
of different versions under different scenarios (if it can be
useful). Analysis can also be made for pairs of coverage or for
multiples coverages, depending on the tool’s implementation.

Fig. 3. An object model derived from the meta-model presented in Figure
2.

IV. TOOL SUPPORT

The model shown in Figure 2 was implemented as a tool
to support field testing of autonomous vehicles. It runs in the
linux operating systems and the target language is C++. The
framework ROS (9) is also supported; it manages the creation
of testing logs that can be imported to the tool. Within the
tool environment these logs obtained from field testings can be
used as inputs for simulated executions of different program
versions and coverage can be visualized and analyzed. The
context of each testing section can be registered indicanting the
program and version identifications, the tester and the scenario
used.

A simple architecture of the tool is shown in Figure 4.
It uses a SBBD and the operating system infrastructure to
store logs, information about field testing and other data. This
module also provides several reports that support the tester to
manage its testing activity. Then we have a simulation module
that controls the execution of versions using logs as input and
provides information for two other modules that do the actual
simulation: ControlFlowGraphVis and TreemapVis. The first
used an adapted version of the tool Trucov to build and show
graphs (10) and the second uses a tool called Prefuse to show
hierarchy of classes and methods (11)

Visualization of how the program version was exercised
during a field testing can be done in several levels of ab-
straction and see the coverage obtained: by instructions, by
nodes and branches of a control graph of each method, and
by the whole class and the whole project. It is also possible to
split the classes in modules or packages and visually through
the architectural layers of the software. In this diagram, the
size of classes or methods are proportional to their size in
terms of number of lines. Moreover, the coverage of several
executions of program version, using the same scenario or
different scenarios can be combined to show an aggregated
coverage. It also shows side by side two graphs allowing to

203

Fig. 4. Architecture of the tool

compare them using different aggregation levels and log and
scenarios combination, as discussed in section III.

In the current implementation we keep track of two struc-
tural criteria: all nodes and all-edges. A design decision made
to represent in colors the coverage was to group the intensity
of executions of program instructions into five levels of green
in which the highest coverage group is darker. The number of
intensity levels can be increased or decreased as needed and
work style of the tester. The nodes of the graph colored by
yellow represent nodes that have been exercised, but have at
least an edge not exercised by the test. The red nodes represent
nodes and edges not exercised by the test.

The results of simulations are recorded by the tool. In
the actual implementation, duplicates simulations for the same
version of a program, scenario and log creates identical simula-
tions but for their timestamps. Simulations chosen by scenarios
or by logs. Visualizations are not recorded and are generated
on line to produce coverage and all other analysis allowed by
the tool.

Logs automatically generated from other logs can be stored
and managed by the tool and its coverage analyzed according
to the tester needs. The only overhead of our approach is the
use of the ROS system to log the inputs. Code instrumentation
is done off-line. Koong et al. (12) describe an approach to
structural testing of embedded system in wich the code is
fully instrumented to allow for structural testing. This can be
a problem for some types of embedded systems.

V. USE AND VALIDATION

To illustrate the proposed approach, we conducted field
testings involving a program to control the navigation of an
autonomous vehicle using stereo vision. This program uses
two images of stereo cameras and sends these images to
an algorithm that returns a 3D image (point cloud) (1; 13).
Considering the information of the coordinates x, y and z
of such images, the program calculates whether there are
obstacles and, if so, performs the deviation. The algorithm uses
GPS information to know if it reached the target destination.
No sensor is used and the actuators are the wheel and the
engine.

The overall goal of the field testing was to get to a
predetermined point deviating from obstacles, if any. The field

testing was performed considering two scenarios: in a narrow
and in a wide terrain. In the narrow terrain the vehicle was
expect to follow a straight trajectory and obstacles (traffic
cones) have been put on the way during the testing according
to the tester intuition as the vehicle moved (S1 - see Figure
6). In the wide terrain, the vehicle should perform a curve and
two cones have been previously placed in strategic places (S2)
as shown in Figure 5.

Fig. 5. Path traveled by the autonomous vehicle during the field test

In this context, the program was called ObstacleAvoidance
and it has several versions but we will use just one of them in
this paper. The two test scenarios have been conducted within
the Campus of a university. A log was generated from each
of these field testings. Figure 6 presents object model of the
example described, which is an instance of the meta-model
presented in Figure 2.

Fig. 6. An object model derived from the meta-model presented in Figure 2

Figure 7 shows an abstract vision of the coverage obtained
after the field testing using scenarios S1 (top left) and S2 (top
right). In the top part of the Figure 7 we can see eight classes
comprising the whole project and inside them their methods.
Two methods present a lower score of coverage, as can be
seen by the lighter green. We choose to analyze deeply the
one at the top rigth corner of the figure. The two diagrams at
the bottom show a closer look at them.

Figure 8 shows partially the coverage of the control graph
for both scenarios. We can see that an important part of the
right graph has not been exercized by scenario S2, which is
marked by the red color. Going back to the code we can
see that this part of the code is related to the decision of

204

Fig. 7. Visualization of project and class coverage

deviating from an obstacle. It has not been exercized because
the GPS was deactivated in this scenario, what changed the
input data. Off course, we could create and visualize an
aggregated version of all field testings of this version and them
this part of the program would appear as green and the tester
could be satisfied with this, as at least one testing covered that
part of the code.

We can also see right bellow this part of the graph three
decision nodes (in yellow) that have not exercized both its
branches. We can conclude that these two scenarios have
not been enough to reach a satisfactory coverage and new
scenarios need to be created or the one already created need
to be modified. In an aggregated graph these nodes would still
appear as yellow indicating that these two field testing were
not enough to exercized those nodes.

Fig. 8. Visualization of the coverage of a program for two different versions
of the same program and two different scenarios.

A visual analysis as the one presented above in Figure 8,

examining side by side the coverage of testings according to
their scenarios or versions can also be done at the code level.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a model to support structural field test-
ing of autonomous vehicles as well as a tool that implements
this model. The model stores information of test scenarios
which, in turn, can be performed by different versions of
different programs. Each run of a test scenario for a version of
a program can generate one or more logs. When performing the
simulation of a scenario, we obtain the coverage obtained, the
graph and the source code of the program colored according
to the coverage achieved and a software module scheme that
enables a more global view of the coverage of the program.
Using the tool, the tester can analyze this information and
think of new test scenario to cover parts of the test that have
not been performed initially.

This tools is being used and validated by researchers and
graduate students of our group of Mobile Robotic Systems and
new reports and analysis are being developed. We devised two
main important improvements to this environment in the near
future. One of them is to be able to allow for dynamic, on-
line acquisition and analysis. That is, the tester can go along
with the autonomous vehicle while it is running and collect
information on the command exercized and show coverage
information that can be used to change the program or the
scenario dynamically to better reach the tests objective.

The other improvement will be off-line. Using algorithms
(e.g. genetic) for data set generation (14) we would like to
use as input a log (or part of it) of a field testing and create a
derived log satisfying a fitness function, like reaching a specific
node or branch, or executing a particular command, in order
to increase the coverage. This new log could then be used to
simulate the behavior of the autonomous vehicle. Koong et
al. (12) also explores data set generation in the proposal but
use random testing.

ACKOWLEDGMENTS

The authors would like to thank the Brazilian funding
agencies FAPESP, CAPES and CNPq and the INCT on Safety
Embedded Systems for their support.

REFERENCES

[1] L. C. Fernandes et al., “Intelligent robotic car for au-
tonomous navigation: Platform and system architecture,”
in CBSEC 2012 - II Brazilian Conference on Critical
Embedded Systems, 2012, pp. 12 –17.

[2] C. Ebert and J. Salecker, “Guest editors’ introduction:
Embedded software technologies and trends,” Software,
IEEE, vol. 26, no. 3, pp. 14 –18, may. 2009.

[3] C. Urmson et al., “Autonomous driving in urban environ-
ments: Boss and the urban challenge,” J. Field Robot.,
vol. 25, pp. 425–466, August 2008.

[4] F. W. Rauskolb et al., “Caroline: An autonomously
driving vehicle for urban environments,” J. Field Robot.,
vol. 25, no. 9, pp. 674–724, Sep. 2008.

[5] P. G. Trepagnier et al., “Kat-5: Robust systems for au-
tonomous vehicle navigation in challenging and unknown

205

terrain.” J. Field Robotics, vol. 23, no. 8, pp. 509–526,
2006.

[6] C. Urmson et al., “A robust approach to high-speed
navigation for unrehearsed desert terrain,” Journal of
Field Robotics, vol. 23, no. 8, pp. 467–508, August 2006.

[7] G. Myers, The Art of Software Testing. John Wiley and
Sons, 2004.

[8] S. Thrun et al., “Stanley: The robot that won the
darpa grand challenge: Research articles,” J. Robot. Syst.,
vol. 23, pp. 661–692, September 2006.

[9] ROS.org, “Documentation - ros,” Online, 2013, available:
http://www.ros.org - last access in em 27/02/2013.

[10] N. Terry, “trucov - the true c and c++ test coverage
analysis tool,” Online, 2011, disponível em http://code.
google.com/p/trucov/ - Último acesso em 30/03/2012.

[11] Prefuse, “The prefuse visualization toolkit,” Online,
2013, available: http://prefuse.org/ - last access in em
27/02/2013.

[12] C.-S. Koong et al., “Supporting tool for embedded soft-
ware testing,” in Proceedings of the 2010 10th Interna-
tional Conference on Quality Software, ser. QSIC ’10.
Washington, DC, USA: IEEE Computer Society, 2010,
pp. 481–487.

[13] C. C. T. Mendes, “Navigation of mobile robots
using stereo vision,” Master’s thesis, ICMC/USP,
São Carlos/SP - Brasil, 2012 (in Portuguese)
http://www.teses.usp.br/teses/disponiveis/55/55134/
tde-18062012-162436/en.php.

[14] P. McMinn, “Search-based software test data generation:
a survey: Research articles,” Softw. Test. Verif. Reliab.,
vol. 14, pp. 105–156, June 2004.

206

Structural Testing of Exceptions Handling

Luciano Augusto Fernandes Carvalho, Vânia de Oliveira Neves, Paulo Cesar Masiero
Instituto de Ciências Matemáticas e de Computação - ICMC

University of Sao Paulo - USP

{luciano,masiero}@icmc.usp.br

Abstract—Exception handling mechanisms available in object-
oriented languages are being increasingly used and account for
about 8% of the lines of code in modern programs according to
some surveys. Yet, this mechanism is among the least understood
by programmers and the less tested. The difficulty of testing
exceptions increases in the phase of integration testing (e.g. inter-
class testing) because exceptions raised at a certain level and
untreated can rise through the call hierarchy and also because
aspects can insert exceptions not foreseen by the base program.
This paper presents a proposal for structural integration testing
of exception flows of Java and AspectJ programs. This is done
by proposing changes to the classic control flow graph and by
proposing new criteria based on the exception flow. Moreover,
these proposals were implemented in a tool named JaBUTi/AJ.

Keywords—exception handling, structural testing, tool, aspect-
oriented.

I. INTRODUCTION

Exception handling mechanisms have been incorporated
into modern programming languages to raise and handle
exceptional situations in the flow of program execution and to
facilitate marking protected code regions. Sinha and Harrold
(1) cite two studies to determine the frequency with which Java
programs use exception handling constructs and thus assess the
importance of these constructs in program testing and other
activities. The conclusion of the first study was that 8.1% of
the methods contains some form of exception handling and
the second was that 23.3% and 24.5% of classes have the
commands try and throw, respectively.

1

Despite the high frequency of occurrence, the exception
handling mechanisms are generally poorly understood and are
the lesser tested parts of the programs (2). This motivated
research into these mechanisms and several authors proposed
structural testing criteria for exceptions handling (1; 2), as well
as algorithms for static analysis of OO programs. Integration
testing is very important for exception handling mechanisms
because an exception raised on a certain level of the execution
flow and not treated, rises in the hierarchy of calls and may
even reach the original caller unit. Motivated by the emergence
of aspect-oriented programming and the observation that as-
pects can introduce unexpected exceptions in programs Rashid
et al. (3) and Coelho et al. (4) investigated this problem.
Exceptions introduced by aspects have greater chances of not
being treated by the methods in each they are raised.

The objective of this paper is to present a proposal for
structural integration testing of exceptions for Java and AspectJ

1The authors would like to thank the Brazilian funding agencies (FAPESP,
CNPq) and INCT-SEC for their support.

programs. This is done by proposing changes to the integrated
control flow graph and by means of testing criteria based
on the exception flow. Moreover, these proposals have been
implemented in an extension of the JaBUTi/AJ tool wich was
proposed by Vincenzi et al. (5) to support structural testing of
Java Program. We alo present a case study to validate the tool
and the feasibility of using the proposed criteria. The results
are discussed.

This paper is organized as follows. Section II presents
a discussion of several papers related to this work. Section
III presents our approach to structural integration testing of
exception flows in OO and OA programs. Specifically, we
show the graph created, the criteria defined and how they have
been implemented in a tool. Section IV presents a case study
conducted to test the proposal and the implementation. Section
V presents our conclusions.

II. RELATED WORK

One of the first and most important proposals for structural
testing of exception handling is that of Sinha and Harrold (2),
which proposed six criteria for testing exception handling for
Java programs. These criteria support integration test, whereas
four are for control flow and two for data flow. They discuss
the hierarchy of criteria and their relationships and also present
a method to use in unit testing and integration testing. A
continuation of this work suggests OO representations for
programs in Java containing exception handling mechanisms
by means of an integration graph, as well as algorithms to
construct this graph (1) and produce several types of analysis.

Following this same line of work, Mao and Lu (6) proposed
a new approach for integration testing of exception flow for
C++ programs. An important contribution of that paper is
to present a method to handle implicit exceptions, a subject
treated by few authors. Mao and Lu (7) presented a prototype
tool to support their approach. The authors of this article
proposed ways of identifying implicit exception handlings but
none can guarantee to identify all implicit exceptions, which
remain a challenge for the test of exception flows.

Some testing criteria for Java programs have been proposed
by Vincenzi et al. (5) for unit testing. The authors propose eight
criteria for unit structural testing split evenly into exception
dependent (ED), which represents the exception flow and ex-
ception independent (EI), which represents the regular flow. To
support the use of these criteria, they have been implemented in
the tool JaBUTi, which makes the generation of a control flow
and data flow graph from the bytecode called Def-Use Graph
(DUG) created from the program bytecode, generates testing
requirements and calculates the testing coverage automatically.
Subsequently, this tool has been extended to support testing

207

aspect-oriented programs in AspectJ and a unity can now be
a method or an advice (8). This work resulted in the initial
version of the tool JaBUTi/AJ. Then, continuing this line
of work Cafeo and Masiero (9) proposed and implemented
integration testing in the tool JaBUTi/AJ, but did not address
the mechanisms of exception handling, which is now proposed
in this article.

III. STRUCTURAL INTEGRATION GRAPH WITH

REPRESENTATION OF EXCEPTION FLOW

Our approach creates a representation of the exception flow
using a conservative heuristic trying to represent virtually all
possibilities of the exception flow in the integrated control/data
flow graph, i.e., both explicit and implicit exceptions. Excep-
tion handling is not a local control structure. It consists of
two basic and two optional elements: the element try block
defines a scope that holds the code for which exception han-
dling is being provided to; the element catch is responsible
for capturing an exception and for its handling; the element
finally is optional and defines a block of code that will be
executed after the try block whether an exception is thrown or
not and whether or not it is captured; and the fourth element is
the command throw, which is responsible for raising explicit
exceptions in the code.

Figure 1 shows an example of a code with exception
handling implemented. The integrated control graph shown in
Figure 2 is designed in the style of Sinha and Harrold. The
graph shows the intra-method and inter-method normal and
exception normal flows. The edge going from node (2).1.85
to node (1).2.7 represents an explicit exception flow for the
command catch of line 24. Node (1).2.35 is isolated because
it corresponds to the command catch of line 31 and there is
not an explicit exception in the code that requires diverting
the flow of execution to it. In our approach, the graph is
actually integrated creating just one graph and, therefore, the
flows of normal and exception intra-method and the regular
inter-method flow of execution are represented as solid line
arrows and only inter-method exception flows are represented
by dashed arrows. When this flow crosses more than one
hierarchical level, the destination node is the node where the
exception is actually handled. The graphs shown in figures 3
and 2 are two variations of the ICFG of the method main()
of the code shown in Figure 1 and will be better explained in
the remainder of this Section.

Fig. 1. Sample Java code

Fig. 2. Integrated graph

Notice in figure 3 that nodes with prefix (1) correspond to
the method function2 which is at level 1 in the hierarchy
of call, nodes prefixed with (2) correspond to the method
function1 (level 2) and methods without prefix belong
to the method main (level 0). Note also that there are two
types of edges: one with continuous lines representing regular
execution flow and other with a dashed line representing the
exception execution flow. Some nodes contain the prefix (E),
which indicates that they raise an explicit exception. These
nodes are called throw nodes in this paper. It was also
necessary to define how to identify and represent the elements
of the exception flow. For the nodes throw of Java and
AspectJ programs, where there is a command throw in the
bytecode it is generated a command athrow corresponding
to it. Thus, whenever a node contains athrow, it will be the
last statement contained in that node, which implies that a node
throw will never exit an output edge of the normal flow but
only exception edges. Examples of throw nodes in figure 3
are (E).(2).179, (E).(2).182, and (E).(2).185.

The exception edges are generated in two different ways.
The first case occurs when there is a block try and exception
edges are generated from each node that is in the scope of
the block try with destinations for all blocks catch and
finally that refers to the block try to which they belong.
In this case, all exception edges connect nodes at the same
level as for example edges ((1).2.0, (1).2.7), ((1).2.0, (1).2.35),
((2).1.72, E.(2).1.85) and ((2).1.72, (2).1.98) of Figure 3(a).
It should be noted that none of these edges has as an output
a throw node, which shows that they represent the exception
flow and are generated implicitly. The second case occurs when
there is a throw node, from which there are output exception
edges to all nodes that can handle the exception raised, whether
at the same level in which it has been raised or at any other
level where there is a treatment for the exception raised. As
an example of this case in Figure 3(a) we have all the edges
that leave the nodes (E).(2).1.79, (E).(2).1.82 and E.(2).1.85.
If it is not possible to handle the resulting exception the node
is identified as an end node, thereby indicating that the flow of
execution is interrupted at this point by an uncaught exception.

Five new criteria have been defined, related to the exception
flow. For its definition, shown below, consider: T is a set of test
cases for a program P whose graph is the integrated control
flow/data graph integrated generated for the units of P and II
is the set of paths exercised by T. A node x is included in II
if II contains a path (y1, ..., yn) such that x = yj for some j,

208

Fig. 3. Control flow graph of the method main()

Criteria Requirements

all-nodes-throw (2).1.79; (2).1.82; (2).1.85

all-edges-throw ((2).1.79,(1).2.35); ((2).1.79,(1).2.7); ((2).1.79,(2).1.85);
((2).1.79,(2).1.98); ((2).1.82,(1).2.35); ((2).1.82,(1).2.7);
((2).1.82,(2).1.85); ((2).1.82,(2).1.98); ((2).1.85,(1).2.35);
((2).1.85,(1).2.7)

all-nodes-ed (1).2.35; (1).2.7; (2).1.85; (2).1.98

all-edges-ed ((2).1.79,(1).2.35); ((2).1.79,(1).2.7); ((2).1.79,(2).1.85);
((2).1.79,(2).1.98); ((2).1.82,(1).2.35); ((2).1.82,(1).2.7);
((2).1.82,(2).1.85); ((2).1.82,(2).1.98); ((2).1.85,(1).2.35);
((2).1.85,(1).2.7)

all-nodes-ex (1).2.35; (1).2.7; (2).1.79; (2).1.82; (2).1.85; (2).1.98

TABLE I. TESTING REQUIREMENTS OF THE METHOD MAIN()

1 ≤ j ≤ n. Similarly, an edge (x1, x2) is included in II if and
only if II contains an edge such that x1 = yj and x2 = yj+1,
for some j, 1 ≤ j ≤ n − 1. Consider also that whenever a
node or edge is mentioned, it is a node or edge integrated,
that is, it is a node that refers to a unit which is at a level
j, for some j, j ≥ 1, and if it is an edge it comes out of
an integrated node . Accordingly, the criteria are defined as
follows: all-nodes-throw, II satisfies this criteria if all nodes
throw of an integrated graph is included in II; all-edges-
throw, II satisfies this criteria if all edges (x1, x2), where x1

is a node throw of an integrated graph, is included in II;
all-nodes-ed, II satisfies this criteria if any input node in a
block catch or finally of an integrated graph is included
in II; all-edges-ed:, II satisfies this criteria if all integrated
exception edge is included in II;all-nodes-ex:, II satisfies this
criteria if every node throw and every input node in a block
catch or finally of an integrated graph is included in II.

The proposed criteria are similar to those proposed by
Sinha and Harrold (1). Some criteria are similar to the all-
nodes-throw and all-throw criteria as both are designed to test
the raising of explicit exceptions and the criteria all-nodes-
ed and all-catch that are designed to test exception handling
nodes. Besides that, in this work we have a criterion designed
to test both raising and handling exceptions, the criterion all-
nodes-ex. The proposal of Sinha and Harrold (1) also presents
criteria for coverage of triples activation-deactivation, but the
criteria proposed in this paper use this as exception edges
instead as a requirement. Sinha and Harrold (1) also proposed
criteria that address the use of exception variables, but in this
work it was not created any such criterion, considering that
these criteria are most relevant for exercising the data flow of
the program than the exception flow. Other difference is that

this work also allows the possibility of dealing with implicit
exceptions, which they do not considered, such as the all-
edges, which has as requirement besides the exception edges
that leave throw nodes, exception edges leaving nodes that do
not raise explicit exceptions.

We took a more conservative approach in the JaBUTi/AJ
implementation, representing a greater number of possibilities
for exception flows. This decision leads to a side effect that
is the large number of exception edges that cam be created.
Graphs with integrated representation of the exception flow
are already naturally complex. Other issue is that in most
cases, when there is a large number of exception edges leaving
the same node, usually most of these edges may belong to
infeasible paths.

Knowing that it can be difficult to interpret the integrated
graph, we implemented in JaBUTi/AJ a few viewing options
to facilitate the tester activity. One of these viewing options
allows the display of only the edges required by the selected
criteria. In figure 3(a), for example, if the selected criterion is
all-throw-edges, the edges ((1).2.0 (1).2.7), ((1).2.0 (1).2.35),
((2).1.72, (E).(2).1.85) and ((2).1.72. (2).1.98) will be invisible.
If the criterion all-edges-ed is selected, all exception edges
would be visible, and if a criterion that only has regular flow re-
quirements, as all-edges-integrated-independent-of-exception,
all exception edges will be invisible.

The tool JaBUTi/AJ allows the tester to indicate which
test requirements were identified as infeasible. To help testers
an option to automatically attempt to identify some edges
exception as unfeasible was also implemented. We created
an option of visualization to hide these requirements when
viewing the graph. Figure 3(b) shows an example of the graph
display with this option and it can be noted that the number
of edges shown is smaller than the original graph 2 and
diminishes from 14 to just 4 exception edges. With this option
the display of exception flows in the graph of Figure 3(b) is
very similar to the graph of Figure 2, with only one more
exception edge, which is the ((1).2.0, (1).2.35) and refers to
raising an implicit exception.

Aspects can generate changes in the exception flow, and
when these changes are not done properly they can introduce
faults (4). Aspects can interfere with the exception flow in
different ways. The most obvious is that any advice may
raise an exception. Moreover, advices of type after can
disable an exception by means of the activation of a new
exception. Exceptions can also be softened by aspects using
the clause declare soft. Furthermore, advices of type
around can introduce exception handlings. For example,
exception handling can be introduced by an advice around
to implement a try block, which uses a clause proceed.

In figure 4 we show an ICFG of the method main() for
the code shown in Figure 1, which is an advice of type after
throwing crosscutting function1. The change generated by
the introduction of this advice modifies the exception flow and
we can see the differences comparing figures 4 and 3. The latter
has edges from nodes (E).(2).1.79, E.(2)1.82 and E.(2)1.85) to
nodes (1).2.7 and (1).2.35, but with the addition of advice in
figure 4 this six edges disappear and are created edges from
nodes (E).(2).1.79, E.(2)1.82 and E.(2)1.85) to node (2).1.109,
which represents the beginning of an advice, and edges from

209

node E.(2).1.119 (represents the end of an advice) to nodes
(1).2.7 and (1).2.35. It mean that all exceptions raised by
function1 that leave it to be redirected to the advice, which
causes the execution of its code and finally the exception be
raised again.

Fig. 4. Example of interactions between aspects and exception flows

IV. CASE STUDY

We conducted a case study involving the testing criteria
implemented in JaBUTi/AJ and also some of the criteria
already implemented in the tool to assess a testing strategy
for structural testing of OO and AO programs in Java and
AspectJ. The aim of this study was also to investigate regular
and exception flows and the effort required to test a program,
besides testing our implementation of the exception criteria
and how they behave in relation to aspects. This study was
conducted considering the unit under test and the integrated
graphics of this unit and all the units called to the deepest
level and for each unit were applied all the criteria proposed
in this work and also the criteria proposed by (9).

For each application the following information was col-
lected : number of classes (#Cs), number of aspects (#As),
number of lines of code excluding blank lines and comments
(#Loc), total number of program units (#U), number of
methods (#M), number of advices (#Ad), total number of test
cases designed to reach the 100% coverage (#Tc), number of
test cases designed to cover integration testing up to the highest
level of depth found to reach the 100% coverage (#Tcd) and
maximum depth (#Md). Such information is shown in Table
II.

Program #Cs #As #Loc #U #M #Ad #Tc #Tcd #Md

Music 10 2 269 42 40 2 9 3 3

Telecon 6 3 229 33 26 7 11 1 3

VM-OO 12 0 247 14 14 0 29 9 3

VM-OA 12 3 417 33 17 16 37 12 7

TABLE II. DATA COLLECTED IN THE CASE STUDY

An analysis of the entire process of the case study, carefully
evaluating each graph along with its bytecode and along with
the subgraphs from which it was combined, allowed us to
validate the implementation and verify the integrity of the
tool JaBUTi/AJ after the changes made in this work. This

study allowed us to make a preliminary analysis of the cost of
applying the strategy for structural integration testing of OO
and AO programs to Java and AspectJ. The average number
of test cases necessary to cover each Class or Aspect was
1.75 and the average number of test cases to cover each unit
was 0,69, this results showed that the number of test cases
required for our approach is usually not high.The case study
also demonstrated the applicability of the approach for small
programs, but it cannot be generalized to medium and large
programs.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a control graph representation
for integration testing of OO and OA programs aiming at
testing exception mechanisms existing in this type of language.
Five exception criteria for integration testing have also been
proposed and the JaBUTi/AJ was extended to support these
criteria. We are planning to conduct further experiments with
other programs of different sizes and complexities to further
assess the proposal.

REFERENCES

[1] S. Sinha and M. Harrold, “Analysis and testing of pro-
grams with exception handling constructs,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 9, pp. 849–71,
sep 2000.

[2] ——, “Criteria for testing exception-handling constructs
in java programs,” IEEE Transactions on Software Engi-
neering, pp. 265–74, 1999.

[3] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan,
R. Meunier, R. Coelho, M. Sudholt, and W. Joosen,
“Aspect-oriented software development in practice: Tales
from aosd-europe,” Computer, vol. 43, no. 2, pp. 19–26,
feb. 2010.

[4] R. Coelho, A. von Staa, U. Kulesza, A. Rashid, and
C. Lucena, “Unveiling and taming liabilities of aspects
in the presence of exceptions: A static analysis based
approach,” Information Sciences, vol. 181, no. 13, pp.
2700–20, 2011.

[5] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and
W. E. Wong, “Establishing structural testing criteria for
java bytecode,” Software Practice and Experience, vol. 36,
pp. 1513–41, Nov. 2006.

[6] C.-Y. Mao and Y.-S. Lu, “Improving the robustness and
reliability of object-oriented programs through exception
analysis and testing,” in 10th IEEE International Confer-
ence on Engineering of Complex Computer Systems, june
2005, pp. 432–39.

[7] C. Mao and Y. Lu, “Cpptest: A prototype tool for testing
c/c++ programs,” in Availability, Reliability and Security,
2007. ARES 2007. The Second International Conference
on, april 2007, pp. 1066 –1073.

[8] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and
P. C. Masiero, “Control and data flow structural testing
criteria for aspect-oriented programs,” Journal of Systems
and Software, vol. 80, no. 6, pp. 862 – 882, 2007.

[9] B. Cafeo and P. C. Masiero, “Contextual integration test-
ing of object-oriented and aspect-oriented programs: A
structural approach for java and aspectj,” in 25th Brazilian
Symposium on Software Engineering., sept. 2011, pp. 214–
23. DOI: 10.1109/SBES.2011.12.

210

A Hybrid Coverage Criterion for Dynamic Web Testing

Yunxiao Zou1, Chunrong Fang1, Zhenyu Chen1∗, Xiaofang Zhang2 and Zhihong Zhao1

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2School of Computer Science and Technology, Soochow University, Suzhou, China

∗Email: zychen@software.nju.edu.cn

Abstract

Testing criterion is a fundamental topic of software test-
ing. A criterion is important to evaluate and drive a test-
ing method. Code coverage is widely used in software test-
ing, due to its simple implementation and effectiveness. Dy-
namic web techniques have been used to improve the usabil-
ity and user experience of applications. However, it brings
some new challenges for testing. Dynamic web applications
have richer iterations between client-side and server-side,
such that code coverage is difficult to capture these com-
plex iterations for sufficient testing.

In this paper, we present a novel coverage criterion - hy-
brid coverage. A hybrid coverage criterion which combines
statement coverage and HTML element coverage, covers
both client-side and server-side features. The experimen-
tal result shows that the hybrid coverage can detect 22.2%-
48.1% more bugs than statement coverage, 7.9%-57.1%
more bugs than element coverage.

Keyword: Dynamic Web, Coverage Criteria, Web
Crawler, Test Case Prioritization

1 Introduction

Web applications are one of the most widely used types

of software. And a new technology, acting as the core of

the web 2.0, is AJAX (Asynchronous JavaScript and XML)

which are changing the way of developing web applications

significantly.

Testing is a major way to ensure the quality of software.

In order to evaluate and drive testing methods, some cov-

erage criteria are introduced to calculate the percentage of

program elements that the test sets exercise. Statement cov-

erage is widely used because of its ease of implementation

and its low overhead on the execution of the program under

test. However, statement coverage is not sufficiently capa-

ble to cover rich features of web 2.0 enabled web applica-

tions. First, a large number of client-side functions and con-

tents in web applications are generated dynamically by the

server-side code (e.g., PHP). The same code can produce

many different web contents via combining different server

states, session variables and other data. Test cases with the

same statement coverage information may generate differ-

ent front-end contents. Second, the new AJAX technology,

which is the combination of JavaScript and DOM tree ma-

nipulation with asynchronous server communications en-

ables powerful client-side execution capabilities. Server-

side statement coverage is not appropriate to cover these

rich features on client-side and interactions between server-

side and client-side.

For web applications, the basic unit of displaying con-

tents and receiving user input events is standard HTML el-

ement (in this paper, HTML element may be abbreviated

as element). A majority of user interactions with the web

applications are interactions with the event-able HTML el-

ements. These front-end elements can be suitable indica-

tors for testing coverage. The structure of the web applica-

tion user interface (UI) which contains HTML elements can

be created by web crawlers. However, coverage criterion

merely based on HTML elements has its own shortages. It

lacks execution information of server-side scripts, which is

an important runtime feature of dynamic web applications.

Intuitively, each of the mentioned coverage measures one

dimension of the web application. A hybrid coverage based

on both of them can measure multiple dimensions of web

application features. In this paper, we present a novel hy-

brid coverage for dynamic web applications. It combines

statement coverage and element coverage to represent both

server-side and client-side runtime conditions of the test

sets. The experiment result shows that hybrid coverage can

drive a more effective testing.

The main contributions of this paper are as follows.

1. A novel coverage criterion: hybrid coverage which

counts both the code executed and the HTML elements

accessed by the test sets which represents both server-

side and client-side conditions.

2. An empirical study is conducted to evaluate the effec-

tiveness of hybrid coverage. Two web applications are

211

used to compare hybrid coverage with coverage crite-

ria such as statement coverage and element coverage.

The result shows that our approach can drive a more

effective testing for dynamic web applications.

The rest of paper is organized as follows. Section 2 de-

fines hybrid coverage and element coverage, and proposes

the detail of our approach, including methods of calculating

the element coverage and hybrid coverage. The experiment

design and the result analysis are presented in Section 3.

We discuss the related work in Section 4. Section 5 are the

conclusion and future work.

2 Approach

The element coverage and hybrid coverage definitions

are presented as follows:

Definition 1 (element coverage) A set T of test cases sat-
isfies the element coverage criterion if and only if for each
element e ∈ E, there is at least one test case t ∈ T such
that e is accessed by t, where E denotes the element set of
the application under test.

In the definition, an element is accessed by a test case,

which means that the element is displayed or receives events

on the browser during the execution of the test case. The

element set is obtained from the web UI model which is

created by the web crawler [3].

Definition 2 (hybrid coverage) A set T of test cases sat-
isfies the hybrid coverage criterion if and only if for each
element e ∈ E, there is at least one test case t ∈ T such
that e is accessed by t, and for each statement s ∈ S, there
is at least one test case t ∈ T such that s is executed by t,
where E denotes the element set, and S denotes the state-
ment set of the application under test.

Our hybrid coverage is built on statement coverage and

element coverage. In the current state, there are mature

tools to calculate statement coverage for web applications.

However, to our knowledge, there are no ready-to-use tools

to obtain element coverage data for the web application un-

der test.

We implement a framework to obtain the element cover-

age of test cases. In the framework, a web crawler dynami-

cally navigates on the web application under test to generate

a web UI model to represent the front-end structure of the

web application. On the other hand, test cases are executed

and specific test data are collected at runtime. And the ele-

ment coverage information are calculated from the web UI

model and the collected data.

We utilize the Crawljax1 to generate the front-end model.

Because to the best of our knowledge, it is the only currently

1http://crawljax.com

available tool to support AJAX-based web sites. The data

(e.g., user name and password) needed to access hidden web

content are provided to the crawler. The output of the crawl-

ing process is a state graph with runtime DOM tree contents

contained in state vertices.

Having got the web front-end model in the previous step,

the framework performs the coverage calculation of the test

suite using the web UI model and the test data collected in

the test automation runtime environment. For collecting test

data, the framework runs the test cases in the test suite on

the web application and collects data from the DOM tree

in the browser after executing each test command in the

test case. Our technique records three attributes (id, class

and tag name) and XPATH value of the HTML elements

which receive events from each test command, and it also

records the same kinds of attributes and XPATH for the all

the HTML elements displayed in the DOM tree after exe-

cuting each test command. The data collected are used for

calculating the coverage information for each test case.

The data collected in the previous step are used for iden-

tifying and matching the accessed HTML elements in the

web UI model and computing the element coverage. The

tracked attributes and XPATH are used for matching. Each

of above properties has to be exactly matched. If there are

multiple matches in the model, the first match is selected.

After matching the HTML elements between the elements

in the collected data and in the web UI model, the set of

accessed HTML elements of test cases can be obtained.

For statement coverage, we utilize a combination of the

Xdebug2 and PHPUnit3. The tool chain can generate test

report which contains statement coverage information. Hy-

brid coverage can be easily computed with element and

statement coverage information.

3 Experiment

To explore the effectiveness of different coverage crite-

ria, a test case prioritization experiment is conducted. We

evaluate the usefulness of different coverage criteria by

comparing the fault-detect capabilities of the test case sets

which are prioritized via different coverage-based strate-

gies.

3.1 Experiment Subjects

Due to the considerable manual cost to create web au-

tomation test scripts, we chose two PHP web applications,

schoolmate4 and timeclock5. Table 1 shows some informa-

tion of these subjects.

2http://www.xdebug.org
3http://www.phpunit.de
4http://sourceforge.net/projects/schoolmate/
5http://timeclock.sourceforge.net

212

We recruited a team consisting of both senior undergrad-

uate and graduate students to create test cases for subject

programs. They created test automation scripts using Se-

lenium6 according to the specification requirements. Each

member of this team submitted test cases and a document

of detected-bug description, along with a test report. Table

1 lists some information of the test cases, and the number of

detected bugs. The bugs (defects) are real bugs in the pro-

grams and include both functional and representation bugs.

Table 1. Subject Programs
program bugs tests version LOC files

fail pass

schoolmate 23 44 151 1.5.4 8181 63

timeclock 13 13 142 1.0.2 20789 62

3.2 Experimental Procedure

In this sub-section we present a description in detail of

the experiment procedure. We first initialize the test pool,

which contains all the test cases shown in Table 1. The ini-

tial set of selected test cases is empty, and at every round of

the procedure, one test case is selected from the test pool.

For each selection, the procedure traverses the unselected

test cases in the test pool, and calculates the fitness value as

the selection metric for each candidate test case. The candi-

date test case with maximum fitness is selected. If there are

multiple qualified candidate tests, we pick up one test case

randomly among them. If the coverage of the selected tests

reaches the maximum coverage (That is, the coverage of the

test pool), the coverage data are cleared and the procedure

continues. The procedure will end if the end conditions are

met.

One of the end conditions is that all bugs are detected

by the selected test cases. However, in the industrial prac-

tices, Re-executing a large number of test cases is too time-

consuming in regression scenarios. Therefore, we set the

maximum number of selected test cases. For our experi-

ment, the maximum number of selected test cases is one

third the size of the test pool. The procedure should be sam-

pled for many times for there exists randomness in the selec-

tion phase. The guidance in [1] suggests the sampling fre-

quency should be more than 30. Following this suggestion,

the procedure will be performed 100 times for each combi-

nation of different subject programs and selection strategies.

3.3 Selection Strategies

Test case with maximum fitness value is chosen from

the test pool at each round of the procedure. Like a

6http://seleniumhq.org

multi-objective function in [5]. The basic idea is that

test case with high contribution of coverage points and

low executing cost is selected at each round. The cov-

erage contribution of candidate test case to the selected

test case set can be measured by Additional Coverage
Set (ACS). The additional coverage set can be com-

puted by the formula ACS(t, Cover Info(T)) =
CS(t) − CS(Cover Info(T)). We substitute

CS(Cover Info(T)) for CS(T) because the coverage

information may be cleared in the experiment procedure.

The executing cost of test case is measured by the cost

of initializing the test case plus the cost of executing test

commands in the test cases. In our measures, the cost of

test case initializing is a constant value, we set it with 10

according to experience; the command-executing cost is

approximated by the number of test commands in the test

case. The general fitness formula is defined as follows:

Fitness(t, T) = |ACS(t,Cover Info(T))|
Cost(t)

We define the fitness formulas for the statement cover-

age, element coverage, and hybrid coverage, respectively.

The formulas are defined according to the general formula,

with the substitution of the information and calculation of

each specific coverage for the information and calculation

of the general coverage.

3.4 Result And Analysis

An effective strategy can detect a large number of faults

with a small number of test cases. That means an effec-

tive strategy has high fault-detect capability with low cost.

We measure this feature with fault-detect rate for each com-

bination of subject programs and selection strategies. For

each sample of test prioritization, we record the fault-detect

rate, which means the number of detected bugs at any given

number of selected test cases. Then we calculate the aver-

age rates of all 100 samples to get the final results. Figure

1 and 2 illustrate the fault-detect rates of three strategies on

two subject programs, schoolmate and timeclock.

From the figures, We can see that the hybrid-coverage-

based strategy can detect more bugs than the statement-

coverage-based and element-coverage-based strategies.

And whether element coverage performs better than state-

ment coverage is dependent on the subject programs. On

schoolmate, the hybrid coverage can detect 22.2% more

bugs than statement coverage, 57.1% more bugs than ele-

ment coverage. On timeclock, the hybrid coverage can de-

tect 48.1% more bugs than statement coverage, and 7.9%

more bugs than element coverage.

4 Related Work

There are some additional coverage criteria for web ap-

plications. Most of them are page-based coverage cri-

213

Figure 1. Fault-detect Rates on Schoolmate

Figure 2. Fault-detect Rates on Timeclock

teria. Sampath et al. [4] presented a dynamic-generated

page-level coverage criteria for web applications. In their

method, the coverage criteria are based on URLs (uniform

resource locator). But AJAX-based web sites are not based

on multi-page paradigm in which every page has one unique

URL [3]. The presented coverage criteria in [4] may not

be effective on these AJAX-based web applications. In [6]

Tonella et al. developed an UML-based model for web ap-

plications and extended the model to include server pages.

In their method, multiple entities are grouped for one server-

side page outcome using static analysis. Generating each

possible outcome for every server page can quickly lead to

a model of impractical size. Di Lucca et al. [2] also devel-

oped a UML-based test model and tools for the evaluation

and automation of testing web applications. They consider

that pages of the web application as components should be

tested at the unit level, but the method to generate the test

model seems not to be well presented.

5 Conclusion and Future Work

In this paper, we present a novel coverage criterion for

web application testing. Element coverage is used for mea-

suring the set of HTML elements accessed by the test cases.

Based on this element coverage and the traditional state-

ment coverage, we present a hybrid coverage to cover both

client-side and server-side features. An experiment evalu-

ates the usefulness of the hybrid coverage criterion.

Our future work is to build a web UI model with high

completeness of elements. Element coverage is an useful

complement to the traditional code coverage. But the possi-

ble incompleteness of the underlying model may adversely

affect the performance of element coverage. Static analysis

seems another way to build the underlying model.

6 Acknowledgement

The work described in this article was partially sup-

ported by the National Natural Science Foundation of China

(61103045, 61003024, 61170067).

References

[1] A. Arcuri and L. Briand. A practical guide for using

statistical tests to assess randomized algorithms in soft-

ware engineering. In ICSE’11, pages 1–10, 2011.

[2] G. Lucca, A. Fasolino, F. Faralli, and U. Carlini. Test-

ing web applications. In ICSM’2002, pages 310–319,

2002.

[3] A. Mesbah, A. van Deursen, and S. Lenselink. Crawl-

ing ajax-based web applications through dynamic anal-

ysis of user interface state changes. ACM Transactions
on the Web, 6(1):3, 2012.

[4] S. Sampath, E. Gibson, S. Sprenkle, and L. Pollock.

Coverage criteria for testing web applications. Techni-

cal report, University of Delaware, 2005.

[5] W. Sun, Z. Gao, W. Yang, C. Fang, and Z. Chen. Multi-

objective test case prioritization for gui applications. In

SAC’13, to appear, 2013.

[6] P. Tonella, F. Ricca, E. Pianta, and G. C. Evaluation

methods for web application clustering. In WSE’03,

pages 33–40, 2003.

214

Towards the Effectiveness of a Variability
Management Approach at Use Case Level

Anderson Marcolino, Edson Oliveira Junior, Itana Gimenes
State University of Maringá - Maringá-PR, Brazil

Email: andersonmarcolino@gmail.com, {edson, itana}@din.uem.br

José Maldonado
University of São Paulo - São Carlos-SP, Brazil

Email: jcmaldon@icmc.usp.br

Abstract—Software product line (PL) is an approach focused
on a systematic software reuse that has been successfully applied
to specific domains. One of its essential activities is the variability
management to which there are several existing approaches,
including the UML-based SMarty approach. Although there are
several variability management approaches for PL, there is a need
to demonstrate the effectiveness of such approaches for industry
adoption. Therefore, this paper presents an experimental study
that aims to gathering evidence of the SMarty approach effective-
ness at use case level taking into consideration a consolidated and
well-known UML-based variability management method, named
PLUS. The experimental study provided evidence that SMarty is
an effective approach for managing variability at use case level.

I. INTRODUCTION

The software product line (PL) approach has gained in-

creasing attention in recent years due to the competition in

the software development segment [1]. Its main objective

is the derivation of products for a specific domain. Such

an approach comprises a set of essential activities, such as

variability management, which is a key issue for the success

of PLs. Several approaches for variability management have

been proposed in the literature, as pointed out by Chen et

al. [2].

Amongst existing variability management approaches are

SMarty [3] and the PLUS method [4]. SMarty aims to manage

variabilities in UML models supported by a profile and a set

of guidelines for applying such a profile to use cases, classes,

components, activities, and sequence models, as well as to

packages. PLUS is a well-known method that allows explicit

modeling of common and variable features supported by UML

extensions for use case and class models.

These approaches are promising taking into consideration

the variability management research field. However, their

effectiveness was not experimentally analyzed, which can

make it feasible for technology transfer to industry. Therefore,

this paper presents an experimental study to gathering initial

evidence with regard to the effectiveness of the SMarty ap-

proach by targeting UML use case models for a given PL.

Use case models play an essential role in PL by linking

features to lower-level models of a PL archicteture, such

as classes and components, taking into account important

traceability issues. The following use case relationships are

taking into consideration: communication, include, extend, and

dependency [3].

The remainder of this paper is organized as follows: Sec-

tion II presents essential concepts with regard to variability

management, the SMarty approach and the PLUS method;

Section III presents the planning, execution and analysis and

interpretation of this experimental study; and Section IV

presents conclusion and directions for future work.

II. BACKGROUND

A. Variability Management

Variability management is an essential PL activity for the

derivation of specific products for a given domain. It brings

out important benefits, such as, increases the reusability of the

PL core assets, while decreases the time to market and justify

the return on investment (ROI).

There are four main concepts taking into consideration for

variability management, which are:

• Variability, according to Pohl et al. [1], is “the ability

of a software or artifact to be changed, customized or

configured for use in a particular context.”

• Variation Point is the resolution of variabilities in

generic artifacts of a PL. According to Jacobson et al.

[5], “a variation point identifies one or more locations

at which the variation will occur.” Basically, a variation

point answers the question: What varies in a PL? [1].

• Variant represents the possible elements through which

a variation point may be resolved. Basically, a variant an-

swers the question: How does a variability or a variation

point vary in a PL? [1].

• Variant Constraints state the relationships between two

or more variants to resolve a variation point or a vari-

ability. For instance, a PL manager decides not to offer

certain combinations of mutually exclusive variants for

a set of products. Thus, a mutually exclusive constraint

needs to be defined for these variants.

The relevance of the variability management activity for PLs

has been gained attention of many researches, as we can see

in several existing studies in the literature [2], [4], [6]–[8].

Several existing variability management approaches do not

make it clear how to identify, represent and trace variabilities

in different artifacts [2], specially those based on UML models.

This kind of approach most takes into account stereotypes

and tagged values for representing PL variabilities. However,

they fail on presenting the rationale on how to apply such

215

stereotypes and their relationships. Industry needs evidence on

the effectiveness of these approaches to make their adoption

feasible.
In order to provide a more precise UML-based approach for

variability management, we have been developed the SMarty

approach [3], [9], which is supported by a profile and a set

of guidelines for applying its stereotypes and relationships.

However, we need to gathering initial evidence with regard to

its effectiveness by means of an experimental study. Therefore,

the Gomaa’s widely-known PLUS method [4] was chosen

to perform such an experimental study. Thus, next sections

present the PLUS method and the SMarty approach essential

concepts.

B. The PLUS Method
The Product Line UML-based Software Engineering

(PLUS) method, proposed by Gomaa [4], allows its integration

with other software process models, such as, the unified

process (UP) development.
Gomaa proposes several PL activities for requirement, anal-

ysis and design. The requirement activity encompasses PL

scope definition, use case modeling and feature modeling.

The analysis activity is composed by: static modeling, object

construction, dynamic modeling, finite state machine and

feature/class dependency modeling.
The PLUS use case modeling activity aims to explicitly

model commonalities and variabilities. PLUS provides a set of

concepts and techniques to extend UML-based design methods

and processes for single systems to handle PLs.
PLUS does not provide a definition of an UML profile,

thus there is no explicit meta attributes and classes for the

variability modeling activity. PLUS uses stereotypes to provide

identification of variation points and variants, in which several

of them are specific to certain UML models. The rationale

with regard to the use of such stereotypes is twofold: forward

evolutionary engineering and reverse evolutionary engineering.
The stereotypes proposed by the PLUS method to represent

variabilities in use cases are as follows:

• �kernel� - used to represent a mandatory use case,

which is always selected for PL specific products;

• �optional� - used to represent use cases that might be

present in a PL specific product;

• �alternative� - used to represent a mutually exclusive

relationship between use cases.

PLUS is a well-known method, thus this is the main reason

for its selection for this study, as it can be observed in the

studies of Bragança and Machado [6], Gomaa [4], Korherr

and List [7], Ziadi et al. [8], and Chen et al. [2].

C. The SMarty Approach
SMarty [3] is an approach for UML Stereotype-based

Management of Variability in PL. It is composed of an UML

2 profile, the SMartyProfile, and a process, the SMartyProcess.
SMartyProfile contains a set of stereotypes and tagged

values to represent variability in PL models. Basically, SMar-
tyProfile uses a standard object-oriented notation and its pro-

filing mechanism [10] both to provide an extension of UML

and to allow graphical representation of variability concepts.

Thus, there is no need to change the system design structure

to comply with the PL approach.

SMartyProcess is a systematic process that guides the user

through the identification, delimitation, representation, and

tracing of variabilities in PL models. It is supported by a set

of application guidelines as well as by the SMartyProfile to

represent variabilities.

The SMartyProfile comprises the following stereotypes,

which can be applied to UML use case, class, component,

activity, and sequence models, as well as it supports the

package merging UML mechanism:

• �variability� represents the concept of PL variability

and is an extension of the metaclass Comment;

• �variant� represents the concept of PL variant and

is an abstract extension of the metaclasses Actor,

UseCase, Interface, and Class. This stereotype is

specialized in four other non-abstract stereotypes which

are: �mandatory�, �optional�, �alternative OR�,

and �alternative XOR�.

• �mandatory� represents a compulsory variant that is

part of every PL product;

• �optional� represents a variant that might be selected

to resolve a variation point or a variability;

• �alternative OR� represents a variant that is part of

a group of alternative inclusive variants. Different com-

binations of this kind of variants may resolve variation

points or variabilities in different ways;

• �alternative XOR� represents a variant that is part of

a group of alternative exclusive variants. This means that

only one variant of the group can be selected to resolve

a variation point or variability;

• �mutex� represents the concept of PL variant con-

straint and is a mutually exclusive relationship between

two variants. This means that when a variant is selected

another variant must not be selected; and

• �requires� represents the concept of PL variant and is

a relationship between two variants in which the selected

variant requires the presence of another specific variant.

III. THE EXPERIMENTAL STUDY

This study is characterized as a quasi-experiment [11] that

relaxes the conditions imposed by probability distributions

and statistical inferences for the population. Therefore, we

performed the non-equivalent grouping method, considering

that the population distribution was not random (discussed in

Section III-E).

A. Definition

The goal of the experiment was to compare the PLUS

method and the SMarty approach, for the purpose of identify

the most effectiveness, with respect to the capability of

identification and representation of variabilities in Software

Product Line use case models, from the point of view of
software product line architects, in the context of graduate

students and lecturers of the Software Engineering area from

216

the State University of Maringá (UEM), Federal Technological

University of Paraná (UTFPR), and Federal University of

Amazonas (UFAM).

B. Planning
1) Local Context: a PL for Electronic Commerce (e-

commerce), proposed by Gomaa [4], was taken into

consideration to apply the PLUS method and the SMarty

approach aiming the representation of variabilities in use

case models.

2) Training: subjects were trained with regard to essential

concepts of PL and variability and use case model

variability identification and representation using PLUS

or SMarty.

3) Pilot Project: a pilot project was performed for evaluat-

ing the study instrumentation taking into account a small

sample of graduate students and a lecturer of software

engineering. Thus, corrections on the instrumentation

were made based on the pilot project results. Note that

the pilot data was not taken into consideration by the

overall experimental study data analysis.

4) Selection of Subjects: the subjects must be graduate stu-

dents, lecturers or practitioners of the software engineer-

ing area with at least minimal knowledge in modeling

use cases. In addition, after the training sessions, each

subject must be familiar with the essential variability

management concepts (Section II-A).

5) Instrumentation: every subject was giving the follow-

ing documents:

• the consent form to the experimental study;

• a characterization questionnaire, in which the sub-

jects must indicate their academic background, area

of expertise and experience, their level of experience

with the UML notation and the PL approach; and

• the description of the e-commerce PL and its use

case model with no variabilities represented.

Subjects were splitted into two groups. One group

focused on the X approach (the PLUS method) and one

group focused on the Y approach (the SMarty approach).

One group was trained to identify and represent variabil-

ities according to the X approach. The other group was

trained to identify and represent variabilities according

to the Y approach.

6) Hypothesis Formulation: the following hypothesis

were tested in this study:

• Null Hypothesis (H0): both X and Y approaches

are equally effective in terms of representing vari-

abilities in use case models.

H0 : μ(effectiveness(X)) = μ(effectiveness(Y));

• Alternative Hypothesis (H1): X approach is less

effective than Y approach.

H1 : μ(effectiveness(X)) < μ(effectiveness(Y)); and

• Alternative Hypothesis (H2): X approach is more

effective than Y approach.

H2 : μ(effectiveness(X)) > μ(effectiveness(Y)).
7) Dependent Variables: the effectiveness calculated for

each variability management approach (X and Y) as

follows:

effectiveness(z) =
{
nV arC, if nV arI = 0

nV arC − nV arI, if nV arI > 0

where:

• z is the variability management approach
• nVarC is the number of correct identified variabilities

according to the z approach
• nVarI is the number of incorrect identified variabilities

according to the z approach

8) Independent Variables: the variability management

approach, which is a factor with two treatments (X and

Y) and the e-commerce PL, which is a variable with a

prefixed value.

9) Qualitative Analysis: aims to evaluate the results ob-

tained in this study with respect to the results obtained

by means of descriptive statistical analysis, based on the

effectiveness obtained from the resolution of the use case

variability model by each subject, according to the X and

Y approaches.

10) Random Capacity: the selection of the subjects was

not random within the universe of the volunteers as this

was quite restricted. The random capacity took place at

the assignment of the variability management approach

(X or Y) to each subject.

11) Block Classification: because the application of two

different approaches to represent variability in use case

models, it was performed the random sampling, where

the population was divided into two blocks, one for the

X approach and one for the Y approach.

12) Balancing: tasks were assigned in equal numbers to a

similar number of subjects.

13) Review Mechanism: for reviewing the study analysis

it was used the calculation of the effectiveness for each

treatment.

C. Execution

1) Selection of Subjects: it was selected for this study

21 graduate students and 3 lecturers of the Software

Engineering area.

2) Instrumentation: the main assessment tool was the e-

commerce use case model with variabilities represented

according to the X and Y approaches. The main task

for each subject was reading and understanding the e-

commerce PL overview. Then, the subjects annotated

variabilities in the e-commerce use case model.

3) Participation procedure: standard procedures were

adopted for each subject participation, which are:

a) the subject attends the place where the study was

conducted;

b) the experimenter gives the subject a set of docu-

ments:

• the experimental study consent form;

• the characterization questionnaire;

217

• essential concepts on variability management in

PL; and

• the description of the e-commerce PL.

c) the subject reads each given document;

d) the experimenter explains the given documents;

e) the experimenter randomly associates each subject

to the X or Y approach;

f) the experimenter trains the subjects on the respec-

tive approach;

g) the subject reads and clarifies possible doubts about

his/her assigned approach; and

h) the subject identifies and represents variabilities

in the e-commerce use case model according to

his/her given approach.

4) Execution: collected data is presented in Table I and

analyzed using appropriate statistical methods, which are

properly discussed in Section III-D. For each subject

(“Subject #” column), it was collected the following

data for his/her given approach: the number of correct

and incorrect identified and represented variabilities; and

the effectiveness calculation.

D. Analysis and Interpretation

Based on the results obtained by analyzing the application

of the PLUS and SMarty to the e-commerce PL, the following

steps were taken:

• analyze and interpret the X and Y collected data (sample)

by means of the Shapiro-Wilk normality test and the T-

test; and

• analyze and interpret the correlation between the

effectiveness of the approaches and the subjects

characterization questionnaire by means of Shapiro-Wilk

normality tests and the Spearman’s ranking correlation

technique.

1) Effectiveness of the Approaches:
• Collected Data Normality Tests: the Shapiro-Wilk [12]

normality test was applied to the e-commerce sample

(Table I) providing the following results:

– for the X approach with sample (SampleX) size (N)

12, mean value (μ) 1.6667, standard deviation value

(σ) 4.1096, it was obtained p = 0.0827, which means

that with α = 0.05, the sample is normal;

– for the Y approach with sample (SampleY) size (N)

12, mean value (μ) 4.500, standard deviation value

(σ) 5.5453, it was obtained p = 0.1378, which means

that with α = 0.05, the sample is normal.

• T-Test for SampleX and SampleY: this kind of test

can be applied for both independent and paired samples.

In the case of this study, SampleX and SampleY are

independent. As each sample size is less than 30 and

both samples are normal, it was defined the following

hypothesis:

– Null Hypothesis (H0): approach X has the same

effectiveness of approach Y.

H0 : μ(effectiveness(X)) - μ(effectiveness(Y)) = 0;

– Alternative Hypothesis (H1): approach Y is more

effective than approach X.

H1 : μ(effectiveness(Y)) - μ(effectiveness(X)) > 0.

First we obtained the value of T, which allows the

identification of the range entered in the statistical table

t (student). This value is calculated using the average of

SampleY (μ1 = 4.5000) and SampleX (μ2 = 1.6667),

standard deviation value of both (σ1 = 5.5453 and σ2 =

4.1096), and the sample sizes (N = 12). It was obtained

the value t = 3,9699.

By taking the sample size (N = 12), we obteined the

degree of freedom (df), which combined to the t value

indicates which value of p in the t table must be selected.

The p value is used to accept or reject the T-test null

hypothesis (H0).

By searching the index df and defining the value t at

the t table (student), we found a value which is greater

than 0.001, with a significance level (α) of 0.05. The

relation between α and p produces p = 0.001, which is

less than α = 0.05. Therefore, the null hypothesis H0

must be rejected and (H1) must be accepted. It means

that there is evidence that the Y approach (SMarty) is

more effective in identifying and representing variability

in use case models than the X approach (PLUS). This

result also corroborates to reject the null hypothesis (H0)

of this experimental study (Section III-B) and accept the

alternative hypothesis (H1).

2) Correlation between the Approaches Effectiveness and
the Subjects Variability Characterization:

• Subjects Variability Characterization Normality Test:
Shapiro-Wilk was applied to the data extracted from the

subjects characterization questionnaire of each approach:

– for the X approach with sample size(N) 12, mean

value of (μ) 2.2500, standard deviation value of (σ)

0.9242, the calculated variability knowledge level

was p = 0.0002. This value with α = 0.05, indicates

that the characterization data is normal;

– for the Y approach with sample size(N) 12, mean

value of (μ) 2.9167, standard deviation value of (σ)

1.1149, the calculated variability knowledge level

was p = 0.4333. This value with α = 0.05, indicates

that the characterization data is non-normal;

• Spearman’s Correlation: this technique was applied

to verify whether there is a correlation between the

effectiveness of each approach (X and Y) and the level of

knowledge of the subjects. Equation 1 shows the formula

to calculate the Spearman ρ correlation, where n is the

sample size:

ρ = {1− 6

n(n2 − 1)

n∑
i=1

d2i (1)

218

TABLE I
E-COMMERCE PL COLLECTED DATA AND DESCRIPTIVE STATISTICS: X (PLUS) AND Y (SMARTY) APPROACHES.

The X Approach (PLUS) The Y Approach (SMarty)

Subject #
Correct

Identified
Variabilities

Incorrect
Identified

Variabilities

Effectiveness
Calculation Subject #

Correct
Identified

Variabilities

Incorrect
Identified

Variabilities

Effectiveness
Calculation

1 5 6 -1.0 1 5 6 -1.00
2 8 3 5.00 2 10 1 11.00
3 9 2 7.00 3 5 6 -1.00
4 6 5 1.00 4 8 3 5.00
5 8 3 5.00 5 11 0 11.00
6 10 1 9.00 6 11 0 11.00
7 5 6 -1.00 7 9 2 7.00
8 4 7 -3.00 8 9 2 7.00
9 4 7 -3.00 9 5 6 -1.00
10 8 3 5.00 10 9 2 7.00
11 4 7 -3.00 11 2 9 -7.00
12 5 6 -1.00 12 8 3 5.00

Mean 6.3333 4.6667 1.6667 Mean 7.6667 3.3333 4.3333
Std. Dev. 2.0548 2.0548 4.1096 Std. Dev. 2.6874 2.6874 5.3748
Median 5.5000 5.5000 0.0000 Median 8.5000 2.5000 6.000

Table II presents the data needed to calculated the

Spearman correlation for X and Y effectiveness and the

subjects level of variability knowledge.

Equations 2 and 3 present the calculation of the Spearman

correlation for the X (Corr.1) and Y (Corr.2) approaches,

respectively.

ρ(Corr.1) = 1− 6
12(122−1) ∗ 112 = 1− 0.39 =

0.61

}
(2)

ρ(Corr.2) = 1− 6
12(122−1) ∗ 300 = 1− 1.04 =

−0.04

}
(3)

Corr.1 for the X approach shown that there was a positive

strong correlation (ρ = 0.61). This means that the

subjects knowledge level on variability is important to

correctly apply the PLUS method stereotypes for identi-

fying and representing variability in use case models. On

the other hand, Corr.2 shown that there was a negative

weak correlation (ρ = −0.04). This means that the

subjects knowledge level on variability is not important

to correctly apply the SMarty approach stereotypes for

identifying and representing variability in use case mod-

els.

An important evidence of this analysis is that the PLUS

method does not provide guidelines to identify and rep-

resent variabilities in use case models. Thus, there is a

need for previous variability knowledge to properly apply

the PLUS stereotypes. In addition, the SMarty approach

provides a set of guidelines, which may improve the

activity of identification and representation of variabilities

in use case models even for those subjects with lower

variability knowledge level.

E. Validity Evaluation

1) Threats to Conclusion Validity: the major concern

is the sample size. Although obtaining well-qualified

subjects is not an easy task in software engineering ex-

periments, we tried to minimize this threat by selecting

the subjects by convenience. However, it is clear that

such a sample must be increased in prospective studies

to allow generalizing the conclusions.

2) Threats to Validity Construction: effectiveness is cal-

culated based on the ability ot the subjects in modeling

variability by taking into consideration the X and Y ap-

proaches and the e-commerce PL. The independent vari-

able variability modeling approach is guar-

anteed by the pilot project undertaken.

3) Threats to Internal Validity: we dealt with the follow-

ing issues:

• Diferences among subjects: as we took into con-

sideration a small sample, variations in the sub-

ject skills were reduced by performing the tasks

in the same order. The subjects experience had

approximately the same level for UML modeling

and variability concepts;

• Fatigue effeects: on average, the experiment lasted

for 100 minutes, thus fatigue was considered not

relevant; and

• Influence among subjects it could not be really

controlled. Subjects took the experiment under su-

pervision of a human observer. We believe that this

issue did not affect the internal validity.

4) Threats to External Validity: two threats were de-

tected:

• Instrumentation: failing to use real use case mod-

els, as the e-commerce PL is not commercial. More

experimental studies must be conducted using real

PLs, developed by industry; and

• Subjects: lecturers and graduate students of Soft-

ware Engineering were selected. However, more ex-

periments taking into account industry practitioners

must be conducted, allowing to generalizing the

study results.

219

TABLE II
SPERMAN’S CORRELATION BETWEEN X AND Y EFFECTIVENESS AND THE SUBJECTS KNOWLEDGE LEVEL.

Subject # Effectiveness ra1
Knowledge

Level
rb3 ra1 - rb1 d12 Subject # Effectiveness ra2

Knowledge
Level

rb2 ra2 - rb2 d22

1 1,00 4 5 6 -2 4 1 -7,00 10 5 12 -2 4

2 9,00 6 3 1 5 25 2 7,00 7 4 5 2 4

3 7,00 3 2 2 1 1 3 5,00 3 4 7 -4 16

4 5,00 2 2 3 -1 1 4 5,00 11 4 8 3 9

5 5,00 5 2 4 1 1 5 11,00 5 3 1 4 16

6 5,00 10 2 5 5 25 6 7,00 6 3 4 2 4

7 -1,00 7 2 8 -1 1 7 -1,00 1 3 9 -8 64

8 -1,00 12 2 9 3 9 8 11,00 12 2 2 10 100

9 -3,00 8 2 10 -2 4 9 9,00 4 2 3 1 1

10 -3,00 9 2 11 -2 4 10 -1,00 2 2 10 -8 64

11 -3,00 11 2 12 -1 1 11 -1,00 8 2 11 -3 9

12 -1,00 1 1 7 -6 36 12 7,00 9 1 6 3 9

The X Approach (PLUS) The Y Approach (SMarty)

IV. CONCLUSION

New theories and technologies must be experimented before

they can be transferred to industry and effectively be adopted

by software engineering practitioners. In this paper, it is shown

how the effectiveness of a variability management approach

(SMarty) can be analyzed to facilitate and improve variability

activities in a PL perspective.

This experimental study is important to provide a means

to demonstrate the ability to use the variability management

approaches (PLUS and SMarty). An effectiveness calculation

was done for each approach based on the application of the

approaches theory for variability representation in use case

models. This calculation allowed us to identify the more

effective approach for use case models taking into account

the e-commerce PL proposed by Gomaa [4].

Shapiro-Wilk normality test was applied to the data col-

lected from the subjects, which demonstrated the normality

of such a collected data. Therefore, the parametric T-test

technique was applied providing evidence that SMarty is more

effective than PLUS. As a last step of this study, it was

performed a correlation between the variability knowledge

level of the subjects and the effectiveness of each approach.

Spearman ranking correlation technique provided evidence

that, for PLUS, the previous knowledge on variability was

important to guide the subjects on correctly identify variabil-

ities in use case models. On the other hand, for SMarty, such

a previous knowledge was not important for one to identify

and represent variabilities in use case models. One of the

main reasons might be the fact that SMarty provides a set

of guidelines to identify and represent variabilities, making

such an activity easier.

New experimental studies and replications must be planned

and conducted to make it possible to reduce the threats,

increasing the effectiveness of SMarty and generalizing the

results. As new experiments, we are: (i) planning an ef-

fectiveness analysis of SMarty for class models taking into

consideration PLUS; (ii) planning a replication of this study

to corroborating the obtained results; and (iii) planning an

experiment for effectiveness analysis of SMarty for sequence

models.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science and

Technology Institute for Critical Embedded Systems (INCT-

SEC, Brazil) for funding this work by means of the follow-

ing agencies: CAPES, CNPq (grant # 573963/2008-8) and

FAPESP (grant # 2008/57870-9).

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Secaucus, NJ,
USA: Springer-Verlag, 2005.

[2] L. Chen, M. Ali Babar, and N. Ali, “Variability Management in Software
Product Lines: a Systematic Review,” in Proc. Int. Software Product Line
Conference. Pittsburgh, PA, USA: Carnegie Mellon University, 2009,
pp. 81–90.

[3] E. A. Oliveira Junior, I. M. S. Gimenes, and J. C. Maldonado, “System-
atic Management of Variability in UML-based Software Product Lines,”
J. Universal Computer Science, vol. 16, no. 17, pp. 2374–2393, 2010.

[4] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Redwood City, CA,
USA: Addison Wesley, 2004.

[5] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Architecture,
Process and Organization for Business Success, 1997.

[6] A. Braganca and R. J. Machado, “Extending UML 2.0 Metamodel for
Complementary Usages of the �extend� Relationship within Use
Case Variability Specification,” in Proc. Int. Software Product Line
Conference. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 123–130.

[7] B. Korherr and B. List, “A UML 2 Profile for Variability Models and
their Dependency to Business Processes,” in Proc. Int. Conference on
Database and Expert Systems Applications. Washington, DC, USA:
IEEE, 2007, pp. 829–834.

[8] T. Ziadi, L. Helouet, and J. marc Jezequel, “Towards a UML Profile for
Software Product Lines,” in Product Family Engineering Conference.
Springer, 2003, pp. 129–139.

[9] D. R. Fiori, I. M. S. Gimenes, J. C. Maldonado, and E. A. Oliveira Ju-
nior, “Variability Management in Software Product Line Activity Dia-
grams,” in Proc. Int. Conf. on Distributed Multimedia Systems, 2012,
pp. 89–94.

[10] OMG. (2011) Unified Modeling Language, Superstructure Version 2.4.1.
[Online]. Available: http://www.omg.org/spec/UML/2.4.1/Superstructure

[11] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: an Introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[12] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for
Normality (Complete Samples),” Biometrika, vol. 52, no. 3/4, pp. 591–
611, 1965.

220

Selecting Agile Practices for Developing Software
Product Lines

Diego Spillere de Souza
Departament of Informatics and Statistics (INE)

Federal University of Santa Catarina
Florianópolis, Brazil

diego.ss@terra.com.br

Patrícia Vilain
Departament of Informatics and Statistics (INE)

Federal University of Santa Catarina
Florianópolis, Brazil
vilain@inf.ufsc.br

Abstract—Although traditional development practices are often
utilized in the development of software product lines, new
approaches have been proposed recently as an alternative to turn
it into a more agile process. In this paper, we discuss how agile
practices can be included in the development of software product
lines in order to achieve that goal. The Framework of Agile
Practices is utilized as a basis for our work. Each of its practices
is included in the process as either optional or mandatory. We
present an example that demonstrates the application of our
proposal.

Keywords-Agile Development; Agile Practices; Software
Product Lines

I. INTRODUCTION
Agile methods have attracted great interest from developers

for being fast, efficient and meeting the needs of customers. As
we work directly with customers in initial development phases,
it is common that they have difficulties in defining their real
needs and, therefore, software requirements. That usually
affects the development process when using a traditional
method [1].

Agile methods had their origin in the 90’s and appeared in
opposition to traditional software development methods that
were being practiced at the time. The software community
started to question the effectiveness of traditional methods and
their difficulty of being utilized. In 2001, a group of 17
software developers decided to spread their ideas and created
the agile manifesto with values and principles that must be
followed by agile methods [2].

Some important differences between agile and traditional
methods of software development can be mentioned: agile
methods are adaptive rather than predictive, and agile methods
are people-oriented rather than process-oriented [3, 4].
However, software development methods, agile or traditional,
are mainly used in the development of a single product.
Although the developing of a product always considers the
reusability of components and frameworks, the reusability of
an architecture that is common for all products in the same
domain is not yet widely adopted. This is where the
development of software product lines plays an important role.

According to [5], a software product line (SPL) consists of
a set of software systems that share common features and meet

the needs of a particular market segment. Products of a SPL are
developed from a common set of core artifacts in a prescribed
manner. Although the definition and use of SPL began before
the year 2000, the idea of incorporating agile practices in the
development of SPL is somewhat recent [6, 7, 8].

This work proposes a set of agile practices to be utilized in
the development of SPLs. It was inspired by a general
framework for selecting agile practices [9]. We show how that
framework can be extended to support the development of
SPLs.

The paper is organized as follows. Section 2 revisits the
Framework of Agile Practices as originally defined. Section 3
discusses the development of software product lines. In section
4 we propose an extension to the Framework of Agile Practices
considering aspects relevant to the development of software
product lines. Our proposal is demonstrated with an example in
section 5. Section 6 presents our conclusions.

II. FRAMEWORK OF AGILE PRACTICES
According to the agile manifesto, every agile development

must consider the following values: individuals and
interactions among them worth more than processes and tools,
working software worth more than comprehensive
documentation, collaboration with the client worth more than
negotiating contracts, and responses to changes worth more
than to follow a plan [2]. Besides the values, the agile
manifesto also presents 12 principles that must be followed by
methods to be considered agile.

Several agile methods have been created since the 90s, and
although they share common features and follow the same
values and principles, they often have different agile practices
[9].

The work proposed in [10] and extended in [9] consists of a
comparative analysis of different agile methods and definition
of a framework that combines agile practices from such
methods. The agile methods included in this analysis are
Extreme Programming (XP), Scrum, Feature Driven
Development (FDD), Adaptive Software Development (ASD),
Dynamic System Development Method (DSDM), Crystal
Clear, Lean Software Development (LSD), and Agile Modeling
(AM). This framework, also called Framework of Agile
Practices (FAP), highlights the common features and the best

221

practices from different methods, and allows the definition of a
specific agile process through the selection of a subset of agile
practices.

Fig. 1 presents an overview of the framework, showing its
activities flow.

 Define outline
requirements

Assign requirements
to increments

Assign requ
to increm

Design system
architecture

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Figure 1. Activities of the Framework of Agile Practices

The agile practices pertaining to the activities of the current
version of FAP are grouped as follows:

• Define outline requirements: list of requirements
(mandatory), overall model, initial documentation.

• Design system architecture: system architecture design.

• Assign requirements to increments: iteration planning
(mandatory).

• Develop system increment: daily meetings, user
stories, use cases, iteration design, unit tests writing,
acceptance tests writing, development (mandatory),
pair programming, side-by-side programming,
refactoring, collective development, continuous
integration.

• Validate increment: code inspection.

• Integrate increment: iteration review meeting.

• Validate system: brief documentation, system delivery.

III. SOFTWARE PRODUCT LINES
Software Product Line (SPL) is a software engineering

technique for creating a portfolio of similar software systems
from a base of shared components and a similar production
way [11]. The idea is to use common artifacts that can be
applied to different products from a specific domain.

SPL is a paradigm that grows constantly in companies
looking for reducing development time and costs, and
increasing productivity and quality of their products. It allows
entering into the market in a faster way [5].

According to [12], a key characteristic in the development
of a SPL is the development of a component core and the
development of products from this core. Both activities may
occur in different orders or even in parallel. Moreover, the
entire process should be managed. Fig. 2 characterizes these
key activities.

It is possible to observe that these activities are iterative and
are interrelated. It is also important to emphasize that there is
no order of execution in these activities. From existing
products, information about generic requirements and
architecture can be extracted to the core of a SPL.

Figure 2. SPL key activities [12]

Next, the activities Core Asset Development and Product
Development, also known as Domain Engineering and
Application Engineering, are presented. They are the basis for
extending the FAP. The Management activity will not be
mentioned in this work.

A. Domain Engineering
Domain engineering is the activity responsible for

establishing the capacity that is necessary to develop different
products [13]. It requires building artifacts that can be reused.

 According to [14], domain engineering is composed by
three phases:

1) Domain Analysis: Definition of the reusable
requirements for the systems belonging to the domain.

2) Domain Design: Development of a common
architecture for the systems and a product plan.

3) Domain Implementation: Implementation of the core to
be reused.

B. Application Engineering
Application engineering is the process of developing a

specific application reusing the knowledge obtained from
domain engineering [15].

There are several techniques for identification and
representation of common features and variabilities among
applications in the same domain [16]. In this work, we utilize
the Feature-Oriented Reuse Method (FORM) [15].

The FORM proposes two phases for application
engineering, as follows.

1) Requirements Analysis and Feature Selection: the
application engineering starts by selecting the features defined
in domain engineering that will be part of the product. The
selection of features is done from the domain model, which
presents the features that can be selected and their
relationships.

2) Selection of the architecture and development of the
application: a reference architecture model is generated
automatically from the selection of resources done previously.
From the architecture, reusable components can be easily
found. Then, specific modules of each product must be
implemented to complement the reused architecture.

222

IV. EXTENDED FRAMEWORK
This work aims at applying agile practices to the

development of SPLs. However, as we analyze some
definitions and principles of these paradigms, we can identify
conflicting ideas between agile and SPL development
processes. Having agility in the development process demands
the reduction of diagrams and documentation, emphasizing
immediate requirements. In contrast, to create a SPL with high
quality and efficiency, the practices include the definition of
diagrams and documentation right from the beginning.

Our extension to the Framework of Agile Practices (FAP)
was defined as follows. We started with two development
cycles1: the Domain Engineering cycle and the Application
Engineering cycle, as shown in Fig. 3. Each cycle is similar to
the FAP process and it is also divided into activities2. First, we
included agile practices from the FAP. Then, from each cycle,
we excluded agile practices that were not relevant to that cycle.
We tried to keep all agile practices in the FAP that are related
to iteration planning and programming and that can be applied
to SPL development, such as daily meetings and writing tests.
Finally, in each cycle, we included traditional practices we
found essential to the development of SPLs, such as practices
related to domain modeling, assuming there is no sense in
modeling a SPL without modeling the domain. We also made
mandatory some practices related to documentation that were
optional in the original FAP because they are also essential for
SPL development.

Definition of
requirements

Assign Requirements
to Increments

Develop System
Increment

Validate
Increment

Integrate
Increment

Validate
System

Product Engineering

Domain
Analysis

evelop Syste
Increment

Definition of
requirement

em
I

P

Iteration
Definition

Domain
Design

f
ts

Validate
ncrement

Product Eng

Req
cre

ate
men

Assign R
to Inc

Integra
Increm

eeringin

Develop System
Increment

date
tem

uirements
ments

e
nt

Valid
Syst

Validate
increment

Domain Engineering

Figure 3. Cycles and activities of the Extended FAP

In domain engineering, initially an analysis of the domain is
done, a feature model is defined and the architecture of the SPL
core is designed. Next, the development of each component is
made in an iterative manner.

In application engineering, the process is quite similar: for
each product, an analysis of its requirements is initially done,
and then followed by a specialization of the feature model and

1 Here, the term “cycle” corresponds to the term “activity” used in [12].
2 The term “activity” utilized here corresponds to “phase” adopted in [14].

the architecture. The development is also iterative. Later the
product is validated and then delivered to the customer.

It is important to point out that both domain engineering
and application engineering can be carried out simultaneously.

A. Domain Engineering
As mentioned above, domain engineering is the cycle that

gathers information and features belonging to a specific domain
and describes them as reusable units. Domain engineering is
divided in five activities, which are described next.

1) Domain Analysis: Domain analysis is the activity where
an overview of the products belonging to the SPL and their
characteristics is done. It consists of the following practices:

a) List of requirements of applications (mandatory): A
list of requirements is built for each application belonging to
the SPL. In order to do so, we analyze applications that have
already been developed, are being developed or will be
developed later.

b) Feature model (mandatory): It is the model that
describes the characteristics of the SPL. This is usually a
model that highlights the features identified in the products
and describes those features by hierarchies of composition.
Such a model identifies features that are common for all
products and features that may vary among different products.

c) Documentation: Documentation should contain a brief
description of the features. Moreover, this documentation may
include an overview of the SPL with its cost estimation, risks,
and expectations for each product.

2) Domain Design: This is the activity where a reusable
architecture is specified according to the following practices:

a) Component design (mandatory): A component is
defined for each feature. If necessary, a feature may be broken
into components or a group of features may be combined as a
single component. The design should be reviewed to verify
that it meets the initial specification of the features in the
feature model. Interfaces and classes that will be part of the
core components must be specified for each module.

b) Domain architecture design (mandatory): The domain
architecture has to be represented according to the design of its
components. Different representations (e.g. package diagrams)
may be utilized to describe that architecture.

3) Iteration Definition: Each iteration must be defined
based on the following practice:

a) Iteration planning (mandatory): Components and their
requirements are assigned to the iteration. The time required
for development of the iteration is estimated. According to the
FAP, this time should not exceed eight weeks. The iteration is
broken in tasks, which are distributed to developers.

4) Develop System Increment: The SPL can always be
revisited and new features added to it. The development of
each increment should follow these practices:

a) Daily meeting: These are short meetings that occur
every day among team members who report their progress or
difficulties.

223

b) Iteration design: It consists of a design to describe the
new functionality that will be implemented in the iteration. It
is possible to enhance the existing documentation or develop a
new simple diagram.

c) Unit test writing: It is recommended to write unit tests
before coding components, based on pre-defined interfaces.

d) Acceptance test writing: When appropriated,
acceptance tests are written for features that represent testable
functionalities.

e) Iteration development (mandatory): It is the
codification of the components belonging to the iteration.

f) Collective code development: Everyone who is part of
the team becomes responsible for the code. Therefore, it is
necessary that everyone knows and understands the code.

g) Pair programming: Coding is written by a pair of
programmers. While one of them implements the code, the
other one analyzes and suggests simplifications about what is
being done.

h) Refactoring: Refactoring may happen anytime the
team thinks it is important to improve the code.

i) Side-by-side programming: The work environment
may be divided in such way that allows programmers to be
side by side in order to improve the relationship among the
team members.

j) Continuous integration: Components must be
integrated into the code as soon as the corresponding
components are implemented.

5) Validate Increment: Whenever a considerable change is
done, there is need to validate the code. It may include the
following practice:

a) Code inspection: Developers look for defects that may
have been introduced in the generated code.

B. Application Engineering
Application Engineering refers to the development of a

particular product utilizing the core artifacts obtained from
domain engineering. Application engineering is divided in six
activities, as follows.

1) Definition of requirements: Requirements are defined
according to these practices:

a) List of requirements (mandatory): It is the definition
of requirements for the product. The list of requirements may
describe and assign a priority to each requirement.

b) Selection of components (mandatory): Considering the
list of product requirements, components are selected from the
core artifacts to be part of the product. The feature model
resulting from domain engineering is utilized in this practice.

c) Overall model: It is defined as an instantiation of the
feature model, where the selected features are included. When
a new requirement is found not to be present in the feature
model, it can be included in the overall application model.

d) Initial documentation: It is a document that provides
an overview of the product considering its costs, benefits and

risks. It can also contain information such as customer contact
and meaningful technologies or tools.

2) Assign Requirements to Increments: Each iteration is
defined as in the following practice:

a) Iteration planning (mandatory): It is necessary to
define what will be developed in each iteration, taking into
account core artifacts to be reused, requirements with higher
priorities, risks and dependencies. As in the domain
engineering cycle, iterations have a time length set between
one and eight weeks. Requirements are distributed among
developers who are part of the team.

3) Develop System Increment: The development of each
iteration is carried out according to the following practices:

a) Daily meeting: These are short meetings where team
members discuss their current progress and difficulties.

b) User stories: Users do a brief description of how to
use the product functionalities.

c) Use cases: Each product requirement may have a
corresponding use case.

d) Iteration design: The design is usually done using
UML diagrams according to the requirements assigned to the
iteration.

e) Unit test writing: It is recommended to write unit tests
before coding the requirements.

f) Acceptance test writing: Acceptance tests are also
written before coding.

g) Iteration development (mandatory): It consists of
coding the product requirements assigned to the iteration,
reusing the core artifacts developed in domain engineering.

h) Collective code development: The development of the
code is responsibility of all members in the team.

i) Pair programming: Programmers are grouped in pairs.
In each pair, one writes the code while the other one looks at
how it is being done and suggests simplifications.

j) Refactoring: Code refactoring can be performed at all
times during development.

k) Side-by-side programming: Programmers are arranged
side by side in their work environment.

l) Continuous integration: Whenever a task is complete,
its code is integrated into the next system build.

4) Validate Increment: Whenever after the increment
development, the code is validated.

a) Code inspection: The code developed in the iteration
is reviewed in order to identify potential problems. Developers
inspect the code of each other.

5) Integrate Increment
a) Iteration Review Meeting: This is a meeting that

occurs at the end of the iteration to discuss whether the code
that was implemented satisfies the requirements set for that
iteration.

224

6) Validate System
a) Generation of a Brief Documentation: If the product

documentation has not been generated during its development,
a brief document with a description of the product may be
written and delivered to the customer.

b) Delivery of the System to Customer: The product is
delivered to the customer as soon as all product requirements
are properly implemented. A meeting to recognize the end of
the project is recommended.

V. EXAMPLE
We now present an example that demonstrates the FAP

extension proposed in this work. Our SPL included, initially,
three products: Document Management System (DMS), an
online tool that allows managing documents through a web
browser; File Manager (FM), a web application for organizing
files in a directory structure; Datebook System (DS), an online
tool that offers an agenda for user appointments. As none of
these products was already implemented, the domain
engineering cycle was carried out prior to application
engineering.

The following technologies were utilized in the
development of our example SPL: Java 1.6, JSF 2.0, Tomcat
6.0, Richfaces 4.0, and the Eclipse Indigo tool. Next, we briefly
talk about its development.

A. Domain Engineering
Table I presents the activities proposed by the extended

FAP, highlighting the practices that we applied to this example.

TABLE I. DOMAIN ENGINEERING CYCLE

 Extended FAP

D
om

ai
n

E
ng

in
ee

ri
ng

Activity: Domain Analysis
List of requirements of applications (mandatory)

Feature model (mandatory)
Activity: Domain Design

Component design (mandatory)
Domain architecture design (mandatory)

Activity: Iteration Definition
Iteration planning (mandatory)

Activity: Develop System Increment
Daily meeting

Iteration development (mandatory)

After selecting practices in order to define an agile process,
we began the SPL development. Initially, we defined the
feature model containing the SPL features (Fig. 4). The
components to support the features were implemented and
included as core artifacts. Some of these features were declared
as common and others as variable. After that, the SPL
architecture was defined (Fig. 5).

The development of core artifacts in domain engineering
was done during three iterations. Iterations lasted a week and
included the following practices: iteration planning,
distribution of modules to responsible, daily meeting, and the
actual development.

Figure 4. SPL Feature model

Figure 5. SPL Architecture

B. Application Engineering
Table 2 presents only the practices of the FAP application

engineering cycle used in this example.

We developed three simple applications: DMS, FM, and
DS. Next, we talk a little about the DMS development. DMS
was the first application selected to be developed. It performs
the management, control, storage, sharing and viewing of
document information. Moreover, DMS stores documents in an
internal format that allows the searching indexed by name and
content.

225

TABLE II. APPLICATION ENGINEERING CYCLE

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

Extended FAP
Activity: Definition of requirements

List of requirements (mandatory)
Selection of components (mandatory)

Overall model
Activity: Assign Requirements to Increments

Iteration planning (mandatory)
Activity: Develop System Increment

Iteration development (mandatory)
Activity: Integrate Increment
Iteration Review Meeting

Activity: Validate System
Delivery of the System to Customer

Considering the requirements list of DMS, some core
components were selected to be used in its development.

DMS was implemented through two iterations. In the first
one, we developed the view layer with its web pages and
ManagedBeans. In the second iteration, we developed the layer
responsible for the interface between ManagedBeans and core
components. Fig. 6 shows the screen to view documents.

Figure 6. DMS View Screen

VI. CONCLUSIONS
In this work we analyzed the commonalities and conflicts

between agile methods practices and SPLs practices. From this
analysis, the Framework of Agile Practices (FAP) was
extended to support the development of SPLs. This extension
proposes the use of specific practices in the domain
engineering and application engineering cycles.

We also developed an example SPL using this proposal.
Spite of being simple, the SPL development was important to
identify that the project was agile, except in relation to the
documentation (feature model and architecture design). But as
some documentation practices are mandatory for SPL
development, we conclude that even the most agile SPL
process will have to include this minimal documentation. As a
continuation of our research work, we intend to develop other
SPLs using the proposed extension by applying practices we
did not use in this example.

Other authors also combine SPL and agile method
approaches, but in different ways. [17] proposes an agile
process for the SPL scope, called RiPLE-SC. Different from
our proposal, RiPLE-SC is divided into four activities: pre-

scope, domain scope, product scope, and components scope.
The practices of pre-scope and components scope are similar to
the practices included in the domain engineering of our
proposal.

In [7], the authors propose an iterative model directed to
organizations that already use agile methods but intend to build
their SPL. Thus, a SPL is built from existing products. This
model consider four topics: requirements analysis, reuse
planing, artifacts core management, and flexible architecture.
Comparing to our proposal, the practices of the first, second
and fourth topics are similar to those included in our domain
engineering cycle. The third topic has no equivalent in our
proposal.

REFERENCES
[1] J. Highsmith, Agile software development ecosystems. Boston:

Addison-Wesley, 2002.
[2] Manifesto Ágil, http://manifestoagil.com.br/, December 2011.
[3] M. Fowler, The new methodology,

http://www.martinfowler.com/articles/newMethodology.html,
November 2011.

[4] G. Chin, Agile project management: how to succeed in the face
of changing project requirements, 2004.

[5] Software Engineering Institute, Software Product Lines –
Overview, http://www.sei.cmu.edu/productlines/, December
2011.

[6] G.K. Hanssen, T.E. Faegri, “Process fusion: An industrial case
study on agile software product line engineering”, The Journal
of Systems and Software,

[7] Y. Ghanam, F. Maurer, “Extreme Product Line Engineering -
Refactoring for Variability: A Test-Driven Approach”, 2010/

[8] K. Mohan, B. Ramesh, and V. Sugumaran, “Integrating
Software Product Line Engineering and Agile Development”,
IEEE Software, May/June 2010.

[9] P. Vilain, P.B. Fagundes, T.L. Machado, “A Framework for
Selecting Agile Practices and Defining Agile Software
Processes”, SEKE 2007, pp. 25-28, 2007.

[10] P. B. Fagundes. Framework for Comparing and Analyzing Agile
Methods, Master Thesis, UFSC, Brazil, 2005 (in portuguese).

[11] C.W. Krueger, Introduction to Software Product Lines,
http://www.softwareproductlines.com/, December 2011.

[12] L. Northrop, P. Clements, A Framework for Software Product
Line Practice, Version 5.0,
http://www.sei.cmu.edu/productlines/frame_report/index.html,
December 2011.

[13] P. Clements, L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[14] E.S. Almeida, RiDE: The RiSE Process for Domain
Engineering, PhD Thesis, UFPE, Brazil, 2007.

[15] K.C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product
line engineering”, IEEE Software, vol. 19, pp. 58–65,
July/August 2002.

[16] L. Chen, M.A. Babar, and N. Ali, “Variability management in
software product lines: a systematic review”, SPLC 2009, pp.
81-90, 2009.

[17] M. Balbino, E.S. Almeida, S. Meira, “An Agile Scoping Process
for Software Product Lines”, SEKE 2011, 2011.

226

Domain Analysis in Combination with Extreme Programming to
Address Requirements Volatility Problems

Andrea Janes1, Sarunas Marciuska1, Alessandro Sarcia2, Giancarlo Succi1
1Free University of Bozen-Bolzano, Piazza Domenicani 3, Bozen-Bolzano, Italy

2University of Rome “TorVergata”, Via del Politecnico 1, Rome, Italy
andrea.janes@unibz.it, marciuska@inf.unibz.it,

sarcia@disp.uniroma2.it, giancarlo.succi@unibz.it

Abstract

It is of interest for practitioners as well as academics
to apply Agile software development practices in high
ceremony environments.

This paper presents the challenges a software devel-
opment team faced when developing software for the
Italian Army in a contracting environment.

We used action research as the research methodology
to first identify the challenges and then make improve-
ments. The identified challenges are volatile require-
ments, low domain knowledge, and unclear responsibil-
ities. To address the challenges, the team applied Ex-
treme Programming in combination with domain anal-
ysis techniques. Moreover, the team customized a re-
quirement management system to increase visibility to
show the causes of delays.

The overall feedback from the team was that the pro-
posed practices improved managing the requirements.

1 Introduction

In a contracting environment, user requirements are
typically predefined and deadlines already in place. To
obtain the acceptance of the bid, a company has to
make an upfront estimate of the costs to build it and
offer a better bid than the competitors. The project
finishes successfully if the company meets its estimates.

This paper reports about a team that was involved
in the development of a customized governance soft-
ware system for the Italian Army in a contracting en-
vironment, but adopting single practices recommended
by Extreme Programming [1].

One of such a practice is “Reflection”, i.e., to reflect
regularly about past successes and failures to institu-
tionalize the lessons learned from these experiences.

During such a reflection meeting, 1 month after the
start of the project, the development team identified
the following major challenges during the development:
1) requirements volatility, 2) low domain knowledge,
and 3) the delay in the predefined schedules.

According to the programmers, those problems
arose from the fact that the estimate of the plan was
based on a poor upfront requirements analysis. The
description of some of the requirements was abstract
and incomplete. Therefore, the team expected to have
a high volatility in the requirements. In addition, the
requirements document was written using domain spe-
cific terms that were not familiar to the developers.
Therefore, the fear was that the predefined schedule
would not be met.

To address these problems, the team investigated
how to address these issues. This paper reports about
the experiences made in this effort: to deal with the
abstract and evolving requirements, the team adopted
Extreme Programming practices; to understand the
domain specific terms and to obtain other missing in-
formation of the domain, it performed a domain anal-
ysis; to address the problem with upcoming dead-
lines, it customized a requirement management system
that keeps track who—the development team or the
customer—is responsible for the delay of the project.

This paper is structured as follows: section 2
presents related works, section 3 the project environ-
ment and the decisions that the team made to solve
the identified problems in the contracting environment,
section 4 a brief description of the adopted research ap-
proach, section 5 the summary of the results.

2 Related work

It is hard to use Agile methods within a traditional
software development environment. Three attempts to

227

do so are summarized below.
Alleman et al. [2] present how Agile can be used in

conjunction with earned value management in a con-
tracting environment. The authors show that earned
value analysis provides means to overcome one short-
coming of Agile: the inability to forecast the future
costs and schedule of a project beyond the usual short
releases approach. Their work focuses more on the plan
estimation in a contracting environment than on deal-
ing with requirements volatility.

Fruhling et al. [3] present a case study about how
Extreme Programming was applied in a US Govern-
ment system development project. The authors present
the practices that they applied in the project and the
lessons learned while applying those practices. They
report that it was difficult to follow the Extreme Pro-
gramming practices during the all software develop-
ment phase. In addition, the tasks were not re-
prioritized and the development plan was not modified
when the scope of the project changed substantially.
The authors suggest that the problems can be solved
through a better management.

Domain analysis methods [4] help to collect and
store the knowledge of a domain expert and identify
commonality and variability within the domain. In a
high ceremony software development process, the do-
main analysis is performed upfront and it requires a
large amount of resources. In this paper we report how
an iterative domain analysis helped to enhance the flex-
ibility provided by an Agile development process.

3 The faced problems and the adopted
solutions

To provide the context of the project we studied, we
briefly summarize the requirements given by the Ital-
ian Army. The initial meetings revealed that the de-
velopment team would have to design and implement
an application for the Italian Army to manage, define,
monitor, and execute tasks and their respective bud-
gets. The system had to provide an efficient, traceable,
and repeatable method to evaluate the performance of
tasks. In addition, the system had to respect the hier-
archical structure of the Italian Army. Moreover, the
system had to allow to create and visualize a predic-
tive analysis during the strategic planning and financial
management. The first meetings showed that the Ital-
ian Army representatives had a high-level idea of the
final system and that the requirements would refine and
eventually change and evolve during the development.

The project was carried out by a team of eleven de-
velopers that had Java development skills with an aver-
age of 5 years of experience, a strong algorithmic back-

ground, and experienced to work in an Agile environ-
ment. During the development, since the priorities for
the company changed, three members were replaced by
other developers and were assigned to another project.

We now describe three problems identified during
a reflecton session, describe the undertaken solutions,
and present the effect of the solutions on the develo-
ment project.

3.1 The volatiliy of requirements

The requirements documents and meetings with the
customer revealed that there was a clear target for the
final product, but some of the required features (as
well as their prioritization) were unclear. Due to the
imprecision found in the requirements and due to the
complexity of the envisioned system, the team decided
to adopt a customized version of Extreme Program-
ming [5]. The team excluded “the planning game”
practice from the development process, because of al-
ready predefined deadlines (see [6] for a comparison
of project management in plan-based and agile com-
panies). The developers were aware that “the plan-
ning game” is one of the core practices in the Extreme
Programming software development, but they assumed
that by applying the remaining practices they would re-
duce the complexity of the project and would be able
to follow the predefined deadlines [7].

The Extreme Programming practices applied by the
team are summarized in table 1, together with the ex-
pected benefits. In the last column we report the feed-
back (i.e., the opinion of the team) whether the ma-
jority of the team members considered a practice suc-
cessful, i.e., having a positive impact on the outcome
of their project (marking it with a +), or not (marking
it with a –).

To evaluate the effect of the adopted practices, the
team discussed about the impact of those Extreme Pro-
gramming practices that were applied on the project, of
those that were not applied on the proejct, and about
the reasons why those practices were not applied. The
discussion showed that the team observed the positive
impact of the Extreme Programming practices when
they started to develop the software. Small releases,
continuous integration, pair programing, and unit tests
helped the development team to identify and fix bugs
efficiently. Collective ownership of the code allowed de-
velopers easily to modify code of their team members.

Predefined coding standards helped to train and in-
tegrate new developers into the project. The team ob-
served that simple design and refactoring helped de-
velopers easier extend the system with the new fea-
tures, or to update existing ones. However, the ap-

228

Table 1. Extreme Programming practices in the contracting environment

Practice Expectations Impression

Whole team The fast feedback of the customer help to reach the predefined deadlines. –
Acceptance tests Acceptance tests help to make sure that developers implement the features as required.

This practice helps to avoid the time spend to re-implement unclear requirements.
–

Small releases Small releases expose the problems in the system early. +
Continuous
integration

A continuously built and tested system reveals existing problems sooner than one that
is built and tested before shipment.

+

Collective
ownership

Unexpected problems can be addressed more efficiently if several team members are
familiar with the code and we practice common code ownership.

+

Coding standards Standards help to modify the system faster. +
Sustainable pace A sustainable pace helps the quality of the system design and code high. –
Pair programing Pair programing helps the development team to keep the continuous attention on tech-

nical excellence and good design. Also, it supports the knowledge transfer.
+

Test driven
development

Tests help the development team to be confident in their development effort by con-
stantly signaling if newly implemented code breaks previously developed functionalities.

+

Refactoring Refactoring helps the development team to decrease the complexity of the system. +
Simple design The design of the system has to be simple and understandable, otherwise it will become

difficult to implement new requirements later.
+

plication of other Extreme Programming practices was
more difficult than expected. First of all, the customer
was not part of the team. He attended meetings using
Skype1, but there were several cases when the devel-
opment team had to wait a few days for clarification of
the requirements. Another issue was related to the fact
that the team could not manage to convince the cus-
tomer to write the acceptance tests in a formal way.
This, because the writing of an acceptance test is a
time consuming process or the customer had only an
abstract understanding what the requirements suppose
to do.

An additional difficulty was to keep a sustainable
pace. This problem was particularly acute before the
predefined deadlines. There was a big pressure from
the managers to deliver as many features as possible
to get close to the plan as close as possible. The di-
rect outcome of such situation was that the developers
had to work overtimes and the simple design and the
refactoring was postponed. In total the development
became more and more costly, because the quick fixes
introduced before the deadlines had to be fixed after-
wards.

3.2 Delays

While the side effects of the absence of the sustain-
able pace practice was visible only for the short peri-
ods of time (particularly before deadlines), the missing

1Skype, http://www.skype.com

acceptance tests and the delayed responses from the
customer were adding uncertainty to the requirements
during the whole development process. Having uncer-
tainty in the user requirements made it difficult to fulfill
a release plan, especially if there were a high number
of unclear requirements that had to be delivered for an
upcoming deadline.

To have a global overview of the release plan, to al-
leviate the absense of the customer, and to force every-
body to state clear requirements, the team introduced
a ticketing system. For that purpose, the team used
the Trac ticketing system2, because the development
team was familiar with it.

The team discussed about the impact of the ticket-
ing system used in the project. The team reported that
some of the expected benefits could not be achieved.
The number of unclear tickets was increasing. In ad-
dition, a lot of times fixed tickets coming from that
group were reopened by the customer, because devel-
opers misunderstood the requirement. This was more
evident just before the deadline when developers tried
to deliver as many requirements as possible (including
the unclear ones), but the deliverables were returned
back by the customer. Such situation increased a ten-
sion between the customer and the development team:
developers were blaming the customer that he did not
know what he wanted; the customer was blaming the
developers that they were not able to deliver what he
asked.

2The Trac Ticket System, http://trac.edgewall.org

229

Table 2. Requirements life cycle

Responsible

Phase Description D
ev
el
o
p
er

C
u
st
o
m
er

Unclear The development team is miss-
ing some information from the
customer to proceed with the re-
quirement.

�

Analyze The requirement is clear, but de-
velopers are discussing how to im-
plement it.

�

Implement The requirement is clear, develop-
ers agreed how to implement it,
and it is being implemented.

�

Test The development team is test-
ing if the requirement was imple-
mented correctly.

�

Verify The client is verifying if the re-
quirement was implemented cor-
rectly.

�

Finally, developers delivered what was required us-
ing quick fixes and refactored large parts of the code
after the deadline. It was a short time solution, be-
cause the resources planned for the next deadline were
used.

To avoid such problems in the future the team mod-
ified the ticketing system. The main idea of the modi-
fication was to point out the people responsible for the
delays of the implementation of the requirements. The
increased visibility helps to coordinate the activities of
different stakeholders [8]. We introduced 5 phases that
a requirement typically traverses: unclear, analyze, im-
plement, test, and verify. The description of each phase
and who is reponsible if in that phase a delay occurs,
is described in table 2.

The team defined rules how the requirement can
move from one phase to another. A requirement leaves
the unclear requirement phase only if both the cus-
tomer and the development team agree on that. The
phases “analyze”, “implement”, and “test” were intro-
duced to monitor the internal requirement life cycle.
Only if a requirement passed the last phase it was con-
sidered as implemented as required.

The team discussed about the impact of the modi-
fied ticketing system used in the project. The outcome
was that the modified ticketing system added trans-
parency on the people responsible for the project de-

lays. The team observed that this modification added
additional pressure on the customer and the develop-
ers. As a result of this the customer was clarifying the
uncertainty in the user requirements faster, and the
developers were more focused and efficient.

3.3 Missing domain knowledge

In parallel to the problems related with volatile re-
quirements, the team had a lack of domain knowledge.
The detailed analysis of the requirements and the de-
velopment indicated that the development team as not
familiar with some domain specific terms used in the
requirements document. In some cases, to understand
a requirement, the domain context was needed. It also
happened that when a requirement changed, also the
scope of the project changed, which also increased the
necessary domain knowledge.

To address the uncertainty brought by the lack of
domain knowledge the team used three practices sug-
gested domain analysis [4]: the creation and mainte-
nance of a domain dictionary, of a feature diagram,
and to perform an iterative domain analysis.

The domain dictionary describes the terminology
and the necessary background to understand require-
ments for a particular domain. Feature diagrams show
dependencies between features, and document variabil-
ities. They are needed during domain analysis, a prac-
tice that aims to improve reuse studing systems to iden-
tify their common and variable parts [4].

The practices applied by the team are summarized
in table 3, together with the expected benefits. In the
last column we report the feedback (i.e., the opinion of
the team) whether the majority of the team members
considered a practice successful, i.e., having a positive
impact on the outcome of their project (marking it with
a +), or not (marking it with a –).

The team discussed about the impact of the applied
domain analysis practies on the project. The result
was that the application of domain analysis confirmed
the assumptions of the team. Since the system that
the developers were developing was complex and had
a specific vocabulary, the domain dictionary helped to
solve communication problems between the customer
and the software development team. Feature diagrams
created of competitor products helped developers to
understand the context of the domain and to recom-
mend additional features that the customer needed,
but he was not thinking about. Finally, the domain
analysis, performed in iterations, was useful when the
requirements exceed the scope of the initial domain and
developers needed to gather the missing information
about the extended domain. Iterative domain analysis

230

Table 3. Domain analysis practices in the contracting environment

Practice Expectations Impression

Domain dictionary Helps developers to understand the terms used in the requirements document. +
Feature diagram Is useful to capture the general picture of the expected requirements and help to

model the missing domain context.
+

Iterative domain
analysis

Provides the missing information when new requirements exceed the scope of the
considered domain.

+

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 2 3 4 5 6 7 8 9 10 11

Time spent for software
development

Time spent for
domain analysis

Figure 1. Time spent for the domain analysis

helped the team to understand the new requirements
and suggest possible extensions of the product. Some of
the suggestions led to solutions to choose COTS prod-
ucts. In such a way the overall resources needed for
the development were reduced.

From an agile perspective, domain analysis is not
recommended, since it requires effort and does not pro-
vide value to the customer. Nevertheless, in a context
in which the domain was completely new, it proved to
be of value to the customer since the team was able
to implement the desired solution faster than without
domain analysis.

During the first year of development, the team per-
formed 11 domain analysis iterations. The iterations
were performed once a month, because in this period
a reasonable amount of missing domain information
was accumulated. The biggest effort was invested at
the beginning of the project, because all of the domain
analysis deliverables had to be obtained from scratch.
Figure. 1 shows the effort dedicated to domain analy-
sis. In the middle of the year the team had a deadline,
so few resources where available for domain analysis.

The total effort spent for the domain analysis prac-
tices was ∼3% of the overall time spent for the project.
The activities took ∼150 out of ∼5,000 working hours
spent for the project in one year. The time spent on do-
main analysis activity was measured using automatic,
non-invasive measurement [9, 10, 11].

The study of the effects of the domain analysis prac-

tices showed that domain analysis was helpful to inte-
grate new team members into the project. The domain
analysis deliverables helped the new team members to
understand the context of the domain in a few days
instead of a few weeks that were spent by the core
developers at the beginning of the project when the
domain analysis was not yet performed.

4 Discussion

The here described experience was gained using an
action research approach, a research method in which
the researcher acts to accomplish something and at the
same time analyzes his and the actions of others to
learn from it. It is “action disciplined by enquiry, a
personal attempt at understanding while engaged in a
process of improvement and reform [12].” In fact, two
of the authors of this paper were part of the develop-
ment team described here.

The findings we report in this paper are the findings
and considerations that the development team made
during the project. The main validity threat of our
work is external validity, i.e., if our findings can be
generalized beyond the reported study. In this context,
“recoverability” plays an important role: one has to be
able to recover the research content and “appraise the
judgments being made by the researcher in the course
of the work [13].”

Due to space constraints, to improve recoverability,
for each of the introduced practices or modifications
we reported the considerations of the team before and
afterwards. In a detailed report, the reasons of dif-
ferent team members to consider a practice useful or
not should also be described, the particularities of the
contracting context, the exact way how the adopted
techniques where used, etc.

5 Conclusion

This paper reports how a team combined Extreme
Programming development practices, a clear assign-
ment of responsibilities during the requirement life cy-

231

cle, and domain analysis to overcome the problem of
unclear, volatile requirements within a contracting en-
vironment.

Both, the team and the Italian Army representa-
tives reported that the requirements management sys-
tem brought transparency to the project development
process. It helped to point out for each requirement
who is currently responsible for the progress of the
project. The team reported that the additional trans-
parency results in a more efficient work.

Whenever the project scope changed, the team had
to cope with new domain knowledge. Sometimes the
change required a large code refactoring, or brought a
new technology into the system. To alleviate this prob-
lem, the team performed the iterative domain analysis.
The team reported that the iterative domain analysis
helped to stay up to date with the domain knowledge.

Initially, the team thought that domain analysis con-
sumes a lot of resources and should not be applied in an
Agile development process when the requirements are
changing. However, the team learned that the biggest
effort was put in the initial iteration and that the suc-
cessive iterations—when the domain knowledge did not
change considerably—required a relatively low effort.

One problem that could not be solved was over-
optimistic planning: The team reported that before
deadlines managers were changing the development
plan to fulfill the predefined goals. This resulted in
sloppy development practices aimed to achieve short
term goals. The resulting system became complex and
required a lot of resources to refactor it after the dead-
lines. It became clear to the development team that the
adopted practices do not help to avoid over-optimistic
planning and that accumulated technical debt caused
further delays due to the necessary refactoring sessions
after the deadline and delaying the next iteration.

References

[1] K. Beck and C. Andres, Extreme Programming
Explained: Embrace Change, 2nd ed. Addison-
Wesley Professional, 2004.

[2] G. Alleman, M. Henderson, and R. Seggelke,
“Making agile development work in a government
contracting environment-measuring velocity with
earned value,” in Agile Development Conference,
2003. ADC 2003. Proceedings of the, 2003, pp.
114–119.

[3] A. Fruhling, P. McDonald, and C. Dunbar, “A
case study: Introducing extreme programming in
a us government system development project,” in

Hawaii International Conference on System Sci-
ences, Proceedings of the 41st Annual, 2008, pp.
464–464.

[4] P. Predonzani, G. Succi, and T. Vernazza, Strate-
gic Software Production with Domain-Oriented
Reuse, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2000.

[5] A. Sillitti and G. Succi, “Requirements engi-
neering for agile methods,” in Engineering and
Managing Software Requirements, A. Aurum and
C. Wohlin, Eds. Springer Berlin Heidelberg, 2005,
pp. 309–326.

[6] M. Ceschi, A. Sillitti, G. Succi, and S. De Pan-
filis, “Project management in plan-based and agile
companies,” Software, IEEE, vol. 22, no. 3, pp. 21
– 27, May-June 2005.

[7] A. Sillitti, M. Ceschi, B. Russo, and G. Succi,
“Managing uncertainty in requirements: A sur-
vey in documentation-driven and agile compa-
nies,” in Proceedings of the 11th IEEE Interna-
tional Software Metrics Symposium, ser. MET-
RICS ’05. Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 17–.

[8] A. Janes, A. Sillitti, and G. Succi, “Effective dash-
board design,” Cutter IT Journal, January 2013.

[9] A. Sillitti, A. Janes, G. Succi, and T. Ver-
nazza, “Monitoring the Development Process with
Eclipse,” in ITCC (2). IEEE Computer Society,
2004, pp. 133–134.

[10] ——, “Measuring the architecture design pro-
cess,” in Software Engineering Research and Prac-
tice, H. R. Arabnia and H. Reza, Eds. CSREA
Press, 2004, pp. 80–82.

[11] ——, “Measures for mobile users: an architec-
ture,” Journal of Systems Architecture, vol. 50,
no. 7, pp. 393–405, 2004.

[12] D. Hopkins and E. Ahtaridou, A Teacher’s Guide
to Classroom Research. McGraw-Hill, 2008.

[13] P. Checkland and S. Holwell, “Action research:
its nature and validity,” in Information Systems
Action Research: An Applied View of Emerging
Concepts and Methods, ser. Springer’s integrated
series in information systems, N. Kock, Ed. New
York, New York, USA: Springer-Verlag New York
Inc., November 2006, no. 13, pp. 9–21.

232

A Mutation Approach to Feature Testing of Software Product Lines

Johnny Maikeo Ferreira, Silvia Regina Vergilio

{jmferreira, silvia}@inf.ufpr.br

DInf-UFPR - Federal University of Parana

Brazil CP: 19081, CEP: 81531-970

Marcos Antonio Quinaia∗

quinaia@unicentro.br

UNICENTRO- State University of Central West

Guarapuava, Brazil CEP: 85040-080

Abstract

Diverse development methodologies use the feature
model (FM) to represent common and variable features
of a software product line (SPL). This model has also
been used to derive products for testing. However, the
test of all combinations of features (products) is infea-
sible in practice, due to the growing complexity of the
applications, and only a subset of products is usually
selected. Existing selection methods do not consider
faults in the FM. The application of a fault-based ap-
proach can increase the probability of finding faults and
the confidence that the SPL products match the require-
ments. Considering that, this paper introduces a muta-
tion based approach to help in the selection of products
for feature testing of SPLs. Mutation operators are in-
troduced and a testing process is also proposed. Results
from a case study are reported, and a comparison with
pair-wise testing shows that other kind of faults can be
revealed by the introduced approach.

Keywords: SPL; feature model; testing criteria

1 Introduction

A Software Product Line (SPL) is defined as a set
of software products that share common features. A
product of the SPL is then given by a combination
of its features. To represent such features and their
relationships, the feature model (FM) has been widely
used by different SPL development methodologies.

We can observe a growing SPL adoption in the in-

∗The authors would like to thank CNPq and Araucaria Foun-
dation for financial support.

dustry, and as a consequence, an increasing demand
and interest in SPL testing. This is corroborated
by the great number of existing surveys on this sub-
ject [6, 8, 13, 14] mentioning publications regarding to
general and specific aspects of SPL testing. All of them
emphasize variability and feature testing as a funda-
mental key aspect. An important question to be ad-
dressed is how to ensure that the products generated
from the SPL feature model match their requirements.

To answer this question, ideally, all products should
be validated. But, unfortunately, the space of possible
combinations in many cases is likely to be enormous
and the exhaustive test of all combinations is not al-
ways possible [5]. The increasing size and complexity
of SPL applications can make testing all functionality
combinations almost infeasible in practice. Variability
and testability are viewed as a trade-off [13]. This is
similar to what happens in the test of programs; it is
impracticable to test all the paths of a program, and
to deal with this limitation, testing criteria are used to
select the best ones. In the SPL context, the problem is
to select a subset of products for testing. According to
Oster et al [10], an adequacy SPL test criterion should
cover as many interactions among different features as
possible, increasing the probability of finding faults.

In the literature, we can find selection criteria based
on combinatorial testing [5, 7, 9, 10, 11, 15]. Most of
them are based on pairwise testing. The idea is to se-
lect products to cover all pairs of feature interactions.
The work of Cabral et al [3] generates a set of indepen-
dent paths (products) by applying the basis path test-
ing for control flow graphs in a feature inclusion graph
that represents the dependencies between features.

A limitation of these works is that they do not con-

233

sider common faults that can be present in the FM
to select the products. The proposed criteria are not
fault-based. Such kind of criterion, like mutation anal-
ysis, was experimentally considered the most effica-
cious to reveal faults in the context of program test-
ing [18]. This is a motivation to investigate the use of
such criterion in the feature testing of SPL, and this
is the goal of our work. To do this, this paper in-
troduces a set of mutation operators derived from a
FM meta model introduced in [2]. The operators de-
scribe mistakes associated to the features management
and that can introduce faults in the FM. A mutation
based testing process that uses such operators is also
described. Results of using this process in a case study
are also presented. They are compared with a pair-wise
approach based on the AETG algorithm [7] and show
that the mutation approach is capable to reveal faults
not revealed by the combinatorial approach. It can be
used in a complementary way to select and evaluate
the feature combinations (products) for SPL testing.

The paper is organized as follows. Section 2 re-
views FM concepts and adopted metamodel, as well
as related work. Section 3 introduces the mutation ap-
proach, describing the mutation operators, mutation
testing process, and examples. Section 4 describes the
evaluation case study showing some preliminary appli-
cation results. Finally, Section 5 concludes the paper
and points out future research works.

2 Background and Related Work

The feature model is a compact representation of
all the products of an SPL [12] and has been widely
used by different SPL development methodologies. The
model has been formalized to automatically perform
SPL analysis. FAMA [1]1 is the framework used in our
study. It adopts the metamodel of Figure 1, and an
XML representation to the FM [2].

To illustrate the model, consider the FM for the
car audio system (CAS) of Figure 2. CAS is the root
feature that has a set of constraints (depends and ex-
cludes, respectively RX and RY in the figure). CAS
is composed by an optional set of relations. Relations
can be of two different types: i) binary relations which
includes mandatory (e.g. R1), optional (e.g. R2) and
cardinality-based; or ii) set relations (e.g alternative
choice R10, and or-relation R11). A feature can be of

1http://wwwisa.us.es/fama. It allows automated FM analysis
to determine whether a feature model is void (case in which it
represents no products); whether it contains dead features (that
are not part of any product); whether a product is valid for a
FM (the product can be generated from the FM); the number of
SPL valid products for a FM; and so on.

Figure 1. FM metamodel (extracted from [2])

three different types and is composed by one or more
relations. A set relation is composed by at least two
grouped features (e.g. CD, Cassette and DVD). A bi-
nary relation is composed by one and only one solitary
feature. In addition to this, a solitary feature has a
cardinality. Only cardinalities n > 1 are represented
in the graph. The graph has no solitary feature that
is cloned a number n of times. The cardinality of the
solitary features Traffic Message Channel (not cloned
mandatory feature) and Wheel Control (optional fea-
ture) are respectively [1..1] and [0..1], which are not
usually represented in the graph [2].

Figure 2. Feature diagram of the car audio
system (adapted from [17])

Feature models have been used to instantiate prod-
ucts for testing [5, 11, 15]. The products are software
systems built by composing the software assets that
implement each feature, and are generally represented
in terms of their variabilities. An example of test case
for the FD of Figure 2 is (Navigation System, Map
Data via CD, Map Data via USB, USB, CD, WMA,
MP3). This test case is a valid product. But there may
be invalid test cases, such as (Navigation System, Map
Data via CD, Map Data via USB, USB, CD, Cassette,
WMA, MP3). According to the FD, USB and Cassette
can not be present at the same time in a product.

234

Ideally, all products should be validated. Unfortu-
nately the space of possible combinations in many cases
is likely to be enormous and exhaustive consideration
of all combinations is infeasible [5]. The increasing size
and complexity of applications can make testing of all
functionality combinations almost impossible in prac-
tice. Variability and testability is a trade-off [13].

To solve this problem we can find in the literature
many works, most of them based on combination test-
ing. McGregor [9] considers combinatorial interactions
methods (orthogonal arrays) to covering the space of
SPL variabilities. The work of Cohen et al [5] is based
on pairwise testing and covering arrays to select the
products to be tested. It uses as basis the OVM (Or-
thogonal Variability Model). The work of Oster et
al [10] combines combinatorial and model based testing
for pairwise feature generation. Uzuncaova et al [15]
transform the feature model into Alloy specifications
and uses this to generate test cases. The use of Alloy
formulae is also explored in [11]. This work investi-
gates two divide-and-compose strategies do deal with
scalability of t-wise testing.

The work of Lamancha and Usaola [7] proposes an
extension to the AETG algorithm (algorithm intro-
duced by Cohen et al [4] to perform t-wise testing)
to consider depends and excludes relationships2.

Differently, the approach of Cabral et al [3] is not
based on combinatorial testing. The approach named
FIG Basis Path, transforms the OVM in a feature in-
clusion graph that represents the dependencies between
features. The goal is to generate a set of independent
paths (or products) for the graph, analogous to the
basis path testing in control flow graphs of programs.

All the mentioned works offer a test criterion to
cover as many interactions among different features as
possible, since the test of all combinations is not prac-
ticable. However, it is not possible to ensure that the
subset of products selected is capable to reveal all the
feature management faults. To increase the probability
of finding faults and the confidence that the products
represented by the FM match their requirements, we
introduce in the next section a fault based approach
based on mutation testing. The approach introduced
can be viewed as complementary to the existing ones.

3 The Fault Based Approach

This section introduces the mutation operators
based on classes of possible FM faults, some examples
of mutants, and the mutation testing process applied
to the products selection.

2This algorithm is available in a tool named Combinatorial
Tool, http://161.67.140.42/CombTestWeb.

3.1 Mutation Operators

The operators are defined according to a formal
model based on the metamodel of Figure 1. A feature
model is denoted by FM = (F,C,R) where:

• F is the set of features, which is composed by the
subsets Root (root), S (solitary), and G (grouped). A
feature f ∈ F can be: (i) r ∈ Root; (ii) smin,max ∈ S
where the cardinality associated to the solitaire fea-
ture is represented by min and max, lower and upper
bounds respectively; and (iii) g ∈ G.

• C is a set of constraints composed by sets D (de-
pends) and E (excludes), such as d(fj , fk) ∈ D and
e(fj , fk) ∈ E.

• R is a set of relations composed by the sets Bin (bi-
nary) and Set (set). A binary relation b(smin,max) ∈
Bin is composed by a single solitary feature. A set
relation stmin,max(g1, ..., gn) ∈ Set is composed by
grouped features. Similarly to solitary features, this re-
lation comprises one or more cardinalities, represented
by min and max, for lower and upper bounds respec-
tively, with n > 1, min ≤ max, and max ≤ n.

Mandatory and optional features are represented re-
spectively as b(s1,1) and b(s0,1). A cardinality-based
relation (cloned feature) is represented as b(sn,m) |
m > 1, m ≥ n. The or-relation is represented by
stmin,max(g1, ..., gn) | 0 ≤ min ≤ max, and max ≤ n.
An alternative choice is given by: st1,1(g1, ..., gn).

To propose the operators, possible faults in the FM
were identified and grouped into the following classes:

1) Incorrect Cardinality of a Solitary Feature: a soli-
tary feature is mistakenly defined. Once solitary fea-
ture cardinality accepts different value ranges, a possi-
ble fault occurs if a required mandatory feature receives
cardinality values 0 and 1 for lower and upper bounds
respectively. In this case the feature was incorrectly
defined as optional;

• DFL (Decrease solitary feature lower bound, change
mandatory feature to optional): DFL(smin,max) =

smin−1,max, if min > 0;

• IFL (Increase solitary feature lower bound, change
optional feature to mandatory): IFL(smin,max) =

smin+1,max, if min < max;

• DFU (Decrease solitary feature upper bound):
DFU(smin,max) = smin,max−1, if min < max;

• IFU (Increase solitary feature upper bound):
IFU(smin,max) = smin,max+1 .

2) Incorrect Elements of a Grouped Relation: one
of the grouped features should not belong to the set
relation, or a solitary feature should be included into a

235

set relation;

• AFS (Add feature to a set re-
lation, solitary feature to grouped):
AFS(stmin,max(f1, ..., fk−1, fk+1, ..., fn), b(fki,j)) =

stmin,max(f1, ..., fk−1, fk, fk+1, ..., fn);

• RFS (Remove features from a set relation,
grouped to solitary and set relation to bi-
nary): RFS(stmin,max(f1, ..., fk−1, fk, fk+1, ..., fn)) =

stmin,max(f1, ..., fk−1, fk+1, ..., fn) and b(fk0,1);

3) Existence of a Set Relation: faults associated to
a wrong set relation. Some child features belong to a
set relation with an appropriate cardinality but they
should be defined as solitary features;

• RSR (Remove a set relation, create soli-
tary and new binary optional relations):
RSR(stmin,max(f1, ..., fn)) = b(f11,0), ..., b(fn1,0);

4) Incorrect Cardinality of a Set Relation: set rela-
tion allows that a certain number of grouped features is
part of a created product. Once cardinality is respon-
sible by defining this number, a mistake on setting the
max or min values can result in a diagram that allows
products with more or less features than required; and

• DRL (Decrease set relation lower bound):
DRL(stmin,max(f1, ..., fn)) = stmin−1,max(f1, ..., fn),

if min > 0;

• IRL (Increase set relation lower bound):
IRL(stmin,max(f1, ..., fn)) = stmin+1,max(f1, ..., fn),

if min < max;

• DRU (Decrease set relation upper bound):
DRU(stmin,max(f1, ..., fn)) = stmin,max−1(f1, ..., fn), if

min < max;

• IRU (Increase set relation upper bound):
IRU(stmin,max(f1, ..., fn)) = stmin,max+1(f1, ..., fn),

if max < n;

5) Incorrect Constraint: this class is associated to
depends and excludes constraints, and includes the fol-
lowing cases: (i) the two features of the constraint were
incorrectly selected; (ii) the constraint should not exist;
(iii) a constraint is absent in the FM.

• FDC (Change depends constraint):
FDC(d(fa, fb), fk ∈ F) = d(fb, fa)|k �= a, k �= b;

• RDC (Remove a depends constraint):
RDC(d(fa, fb)) = D − {d};
• REC (Remove an excludes constraint):
REC(e(fa, fb)) = E − {e};
• CDC (Create a depends constraint): CDC(f1, ..., fn ∈
F)|fk = s0,max ∈ S or fk = g ∈ G = d(fi, fj)|i, j ≤ n, i �= j

and c(fi, fj), c(fj , fi) /∈ C;

• CEC (Create a excludes constraint): CEC(f1, ..., fn ∈
F)|fk = s0,max ∈ S or fk = g ∈ G = e(fi, fj)|i, j ∈
[1, n], i �= j and c(fi, fj), c(fj , fi) /∈ C

Figure 3. Examples of mutants for FD of Fig. 2

Figure 3 presents two mutants generated by oper-
ators RFS and RSR for the FM of Figure 2. Due to
space restrictions the FMs are not complete.

3.2 Using the Operators

The operators can be used similarly to the mutation
testing of programs, following a process with analogous
steps: mutant generation, mutant execution with test
cases, and mutation score production.

First of all, mutants are generated by selecting op-
erators to be applied, as well as, a percentage of mu-
tants to be generated by each operator. For example if
DFL (decrease solitary feature lower bound) is selected
with 10%, only 10% of the existing solitary features will
be mutated. Observe that all mutants are valid FMs.
If an inconsistent mutant diagram is obtained by ap-
plying an operator, it is considered anomalous and is
discarded. An example of anomalous mutant in the
program testing is a division by zero produced in exe-
cution time. An example of anomalous mutant in the
feature testing is the production of a void FD, which
that does not produce valid products.

The test cases (products) are “executed” with a FM
analyser. A mutant is considered dead if the valida-
tion of a product by using the mutant produces a dif-
ferent result from the validation of the same product
against the original FM. At the end, a mutation score
is calculated, given by the number of generated and
non-equivalent mutants divided by the number of dead
ones. Equivalent and original diagrams generate the
same set of products.

Consider the test case (Navigation System, Map
Data via CD, Map Data via USB, USB, CD, WMA,
MP3). It kills the mutant of Figure 3b, generated by
operator AFS. The product is valid for the original FM,
however it is not valid for the mutant. This does not
happen for the mutant of Figure 3a, generated by op-
erator RSR. The product is valid for both diagrams,
hence, the test case is not capable to distinguish them.
The analysis of the valid and invalid products can point
out modeling faults. At the end a set of valid products
to be tested is obtained.

Uses to the approach are testing criterion uses. The
mutants can be used to 1) to guide the selection of
products, and 2) to evaluate the quality of the test set

236

(set of products). In the first use, no set T of products
is available, a task of test data generation is performed
to find products to kill the mutants, until the desired
score is obtained (ideally score = 1). In the second one,
the mutation score is used as an adequacy measure. In
such case the tester has a set T and wants to know
how good it is. It is also possible to use the score to
compare two test sets T1 and T2.

Notice that the uses are not exclusive. If a test set T
is available, and its score is not adequate, this set can
be improved with additional test cases. The use of such
initial test set allows effort reduction in the mutation
approach application. In this way, it can be considered
complementary to existing ones, such as pair-wise test-
ing. It improves efficacy in terms of revealed faults and
offers a coverage measure to evaluate sets of products.

4 Case Study

The approach uses for testing the SPL CAS [17] were
evaluated in a case study. We first analyse the applica-
bility of the mutation operators for products selection
according to the number of generated mutants and re-
quired test data. After this the approach is used to
evaluate a set of products generated by combinato-
rial testing. The pair-wise testing was applied using
the AETG algorithm and the framework Combinato-
rial Tool. The set produced is named here AETGSet.

To apply the fault based approach the mutants were
generated by using all of the operators with percent-
age of 100%. The operators associated to the cloned
features DFU and IFU were not used, since framework
FAMA, used to execute the mutants, does not work
with this kind of feature. The products to kill the
mutants were generated manually. The number of mu-
tants generated by each operator, as well as the number
of required products are presented in Table 1.

It was generated 268 mutants. We can observe that
the operators CDC, CEC, which create depends and
excludes constraints, generated the greatest number of
mutants, followed by IFL and DFL that change the
bounds of solitary features. In another hand, the op-
erators REC and RDC, which are also from the class
related to constraint faults, generated lower number of
mutants. The first ones, which deal with absent con-
straints, have a lot of possibilities. The last ones deal
with only the constraints that are present in the dia-
gram. Other operators that generated low number of
mutants are: IRL and DRU related to the cardinality
of a set relation. We find only 3 equivalent mutants, 2
generated by the operator CDC and 1 by IRL.

A total of 27 different products were generated. In
many cases there is a correspondence between the num-

Table 1. Mutants and required products

Opera- generated required dead m. required p.
tor mutants products AETGSet AETGSet

DFL 10 10 0 0

IFL 12 8 4 3

AFS 2 1 1 1

RFS 6 4 5 4

RSR 2 2 0 0

DRL 2 1 0 0

IRL 1 1 0 0

DRU 1 1 0 0

IRU 2 1 0 0

FDC 2 1 2 2

RDC 2 2 2 2

REC 1 1 1 1

CDC 150 26 127 7

CEC 75 1 75 1

Total 268 27 217 11

ber of mutants and necessary products. However, for
the operators that generated the greatest numbers of
mutants such relation does not exist. For example, the
operators CDC and CEC required only few test cases.
The number of test cases (products) does not grow pro-
portionally to the number of mutants, what makes the
application of the operators feasible in practice. How-
ever we intend to conduct other studies to better eval-
uate the cost according to the FM characteristics.

In a second step, the mutants were used to evalu-
ate AETGSet. The number of mutants (per operator)
killed is presented in Table 1. The set killed 217 mu-
tants, with a score of 0.819. This means that 18% of
the mutants could not be killed by the set, particularly
the mutants of nine operators. They are: DFL, IFL,
RFS, RSR, DRL, IRL, DRU, IRU and CDC. Most of
these operators are related to cardinality faults. This
points out that the pair-wise testing may not reveal
faults from such classes.

The number of AETGSet products used to kill the
mutants from each operator is presented in the last
column of Table 1. For example, 3 test cases from
AETGSet were used to kill 4 mutants generated by
the operator IFL. Any other product killed mutants
from this operator. This result was obtained, with
the evaluation order of products provided by Combi-
natorial tool. Product 1 was evaluated and the cor-
responding mutants killed. After this, product 2. If
such product 2 did not contribute to increase the score
it was not counted. It is noticeable that 11 (out 12)
AETGSet products were necessary to kill mutants, 7
of them were used to kill mutants generated by op-
erators CDC. Maybe faults revealed by pair-wise are
described by these operators.

237

5 Conclusions

This paper presented a fault based approach for fea-
ture testing of SPL. The idea is to use a mutation
based criterion to select products for testing, consid-
ering common faults in the FM related to feature man-
agement. These faults are described by mutant op-
erators. To apply the operators, a mutation process,
similar to the mutation testing of programs, is used.
A FM mutant is considered dead if it validates a test
case (product) in a different way that the original FM
does. At the end a mutation score is obtained that
can be used to guide the generation of products, or to
evaluate the quality of an available set of products.

The operators were used in a case study that shows
the approach applicability. The number of test cases
does not grow proportionally to the number of gener-
ated mutants. In addition to this, we observe that 18%
of mutants were not killed by the set of products gener-
ated with pair-wising testing. The pair-wising testing
was not capable to reveal faults associated mainly to
the cardinality of features. The main faults revealed
by this kind of test are related to the use of mandatory
and optional features. A conclusion of the study is
that the approach should be used in a complementary
way to the combination testing, revealing other kind of
faults and increasing the confidence that the products
of a FM are according to the specification.

The results obtained are limited to the LPS studied
and can not be generalized. We are now implementing
a tool to automatic generation of products. The tool
will allow evaluation experiments with large FMs to re-
fine the introduced operators and to evaluate scalabil-
ity. We intend to analyse the operators considering the
FM characteristics and factors such as cost, in terms
of number of mutants generated, and efficacy in terms
of revealed faults. Works on mutation test of programs
investigate ways to reduce mutation cost without de-
creasing the score, based on a set of sufficient operators.
Studies like this could be conducted in the FM context.

References

[1] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. FAMA: Tooling a framework for the auto-
mated analysis of feature models. In First Inter-
national Workshop on Variability Modelling of Soft-
wareintensive Systems, pages 129–134, 2007.

[2] D. Benavides, S. Trujillo, and P. Trinidad. On the
modularization of feature models. In First European
Workshop on Model Transformation, 2005.

[3] I. Cabral, M. B. Cohen, and G. Rothermel. Improving
the testing and testability of software product lines. In
International Conference on Software Product Lines:
going beyond, pages 241–255, 2010.

[4] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Pat-
ton. The combinatorial design approach to automatic
test generation. IEEE Software, 13(5):83–88, 1996.

[5] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and
adequacy in software product line testing. In ISSTA
2006 Workshop on Role of Software Architecture for
Testing and Analysis, pages 53–63, 2006.

[6] E. Engström and P. Runeson. Software product line
testing: a systematic mapping study. Information and
Software Technology, 53(1):2 – 13, 2011.

[7] B. P. Lamancha and M.P. Usaola. Testing product gen-
eration in software product lines using pairwise for fea-
tures coverage. In International Conference on Testing
Software and Systems, ICTSS’10, pages 111–125, 2010.

[8] B.P. Lamancha, M.P. Usaola, and M.P. Velthius. Soft-
ware product line testing, a systematic review. In In-
ternational Conference on Software Paradigm Trends,
volume 49, pages 78 – 81, 2009.

[9] J.D. McGregor. Testing a software product line. Tech-
nical report, Software Engineering Institute, Carnegie
Mellon University, CMU/SEI-2001-TR-022, 2001.

[10] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pair-
wise feature-interaction testing for SPLs: potentials
and limitations. In 15th International Software Prod-
uct Line Conference, pages 6:1–6:8, 2011.

[11] G. Perrouin, S. Sen, J. Klein, B. Baudry, and
Y. le Traon. Automated and scalable t-wise test case
generation strategies for software product lines. In 3rd
ICST, pages 459–468, 2010.

[12] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-
Cortés. Automated test data generation on the anal-
yses of feature models: A metamorphic testing ap-
proach. In 3rd ICST, pages 35–44, 2010.

[13] P.A.M. Silveira Neto, I.C. Machado, J. D. McGregor,
E. S. Almeida, and S.R.L. Meira. A systematic map-
ping study of software product lines testing. Informa-
tion and Software Technology, 53(5):407–423, 2011.

[14] A. Tevanlinna, J. Taina, and R. Kauppinen. Product
family testing: a survey. SIGSOFT Software Engineer-
ing Notes, 29(2):12–12, 2004.

[15] E. Uzuncaova, S. Khurshid, and D.F. Batory. In-
cremental test generation for software product lines.
IEEE Trans. Softw. Engin., pages 309–322, 2010.

[16] F. van der Linden, K. Schimd, and E. Rommes. Soft-
ware Product Lines in Action - The Best Industrial
Practice in Product Line Engineering. Springer, 2007.

[17] S. Weissleder, D. Sokenou, and B.-H. Schlinglo.
Reusing state machines for automatic test generation
in product lines. In 1st Workshop on Model-based Test-
ing in Practice (MoTiP 2008), June 2008.

[18] W.E. Wong, A. Mathur, and J. Maldonado. Mutation
x all-uses: An empirical evaluation of cost, strength
and effectiveness. In Soft. Quality and Productivity
Theory, Practice, Education and Training, 1994.

238

Scrum-based Approach for Analyzing Commonalities
and Variabilities in Software Product Lines

Ivonei F. da Silva

Informatic Center, Federal University of Pernambuco
and State University of Western Paraná

Cascavel, Brazil
ifs3@cin.ufpe.br

 Silvio R. L. Meira

Informatic Center, Federal University of Pernambuco,
Recife, Brazil

srlm@cin.ufpe.br

Tassio Vale
Software Engineering Lab, Federal University of Bahia

Salvador, Brazil
tassio.vale@dcc.ufba.br

Eduardo S. de Almeida
Reuse in Software Engineering (RiSE), Federal University

of Bahia, and Fraunhofer Project Center (FPC) for
Software and Systems Engineering

Salvador, Brazil
esa@dcc.ufba.br

Abstract— Management issues (e.g. long iterations, poor
feedback, and lack of adaptations) in the early stages of Software
Product Line (SPL) engineering can foster demotivation and
considerable effort, mainly in scenarios with volatile domain,
technology, or requirements. On the other hand, Agile Software
Development (ASD) fosters short iterations, rich feedbacks, and
adaptations in single-system development through values,
principles, and practices. We believe integrating Scrum practices
into SPL early stages to perform commonality and variability
analysis can bring a balance between agility and formalism when
creating SPL for existing systems. In this paper, we present an
outline of our approach to analyze commonality and variability
among the existing products based on Scrum practices to deal
with issues regarding iteration, feedback, and adaptation. A
feasibility study is also discussed describing the application of the
approach in the mobile domain.

Keywords- Scrum, commonality and variability analysis,
software product lines, agile software development

I. INTRODUCTION
Software Product Line (SPL) enables software development

to manage a set of similar systems through the commonality
and variability analysis [1] [2]. Traditionally, SPL engineering
aims a considerable upfront planning and design with a
heavyweight software process to achieve the organization
business goals. Management issues can emerge when
performing commonality and variability analysis for SPL
scoping and requirements in scenarios with volatility in the
domain, technology, or requirements. Examples of such issues
are long iterations, poor feedback, and lack of process
adaptations/improvements. In practice, there are not approaches
that provide commonality and variability analysis with a
systematic mechanism to foster iterations, feedbacks, and
adaptations [9].

On the other hand, Agile Software Development (ASD)
achieves the organization business goals through a set of
practices, principles, and values. ASD focuses on people and
interactions, working software, customer collaboration,
responding to change, and continuous improvement [3] [4].

Unlike SPL engineering, ASD aims a lightweight process and
low upfront planning and design. In addition, ASD deals with
issues regarding iterations, feedbacks, and improvements
through specific values, principles, and practices. These
practices are wrapped in agile methods. Scrum is considered
one of the most popular agile methods [5] and deals with those
issues.

This study deals with management issues when analyzing
the commonality and variability for the SPL early stages,
scoping and requirements. Thus, this paper presents an
approach that integrates Scrum practices into commonality and
variability analysis for software product lines. To integrate
Scrum on SPL early stages, we adopted a method engineering
that defines several ways for combining both approaches [6]
[7] [8].

The remainder of this paper is organized as follows: Section
2 describes related works. Section 3 presents the approach for
commonality and variability analysis in the SPL early
stages. Section 4 presents the Scrum practices applied on
commonality and variability analysis. Section 5 discusses our
feasibility study, and Section 6 presents a conclusion and
outlook of future work.

II. RELATED WORK
Recently, there is a growing interest in investigating the

possibilities of combining ASD with SPL engineering [9], [17],
since both approaches aim to increase the productivity of
teams, reduce the products time to market, reduce the
development costs, and improve customer satisfaction.

In this research, we are interested in how the ASD (in
particular, Scrum practices) can mitigate issues regarding the
long iterations, few feedbacks, and adaptations during the
commonality and variability analysis. Some previous studies
have addressed related problems.

Noor et. al [18] proposed a collaborative approach to
improve existing approaches for reengineering legacy products
in the product line planning. The approach aims to build with

239

speed an initial product map, foster the flexibility and non-
prescriptive nature of the process, promote the collaboration of
business and technical people with face-to-face interaction,
enable the ability to embrace changes during the process, and
focus on the technical excellence. Collaborative practices from
the area of collaboration engineering provide building blocks
for the approach codifying agile principles such as stakeholder
involvement and rapid feedback. Although the approach is well
complete and deals with an interesting strategy to foster the
collaboration among the stakeholders, it does not provide
systematic mechanism to specify, inspect, and validate the
features, as well as, analyzing the commonality and variability
deeper among them.

Carbon et al [19] reported the experience of adopting the
product line planning game to improve feedback from
application to family engineering. They use the planning game
agile practice as the main framework to handle the
communication between domain and application engineering.
They do not focus on commonality and variability analysis
activity, although the approach can be adopted to improve the
feedback between development teams.

Tourret [20] aimed to evaluate the feasibility of using an
agile method to develop a software product line. In particular,
he combines DSDM and XP into SPL engineering, where
DSDM is used to wrap XP. The approach seems to be complete
for two SPL life-cycles, however, there is not details about how
to analyze the commonalities and variabilities during the SPL
early phases.

Ghanam and Maurer [21] provided a framework that allows
agile organizations to incrementally and reactively construct
variability profiles for both existing and new systems. The
framework leverages common agile practices such as iterative
software development, refactoring, continuous integration and
testing to introduce variability into systems only when it is
needed. The approach is interesting for scenarios that use test-
driven development or intend to use it. The scope of this
approach begins when our scope end, i.e., the approaches could
be complementary to each other.

These works have provided inspiration for our study,
however, they do not address the issues mentioned in this
paper.

III. THE PROPOSED APPROACH

A. Development of the Approach
Some requirements were defined as input to build the

process. These requirements were based on basic needs [26] to
understand the SPL scoping and requirements through an
iterative and incremental strategy [9], [10], [17], [27]. The
requirements for the proposed approach are:

1. The approach must identify the features from legacy
systems, as well as, the new ones.

2. The approach must analyze the variability and
commonality for the identified features.

3. The approach must foster feedbacks among stakeholders.

4. The approach must foster iteration among activities.

5. The approach must be adaptative, when necessary.

6. The approach must foster effort reduction, when possible.

The two first requirements are investigated in the industrial
case study previously performed [10], which identified much
effort and demotivation with a traditional process for SPL early
stages without agility. The requirements 3, 4 and 5 are
investigated in several previous studies [9][17][27] that
combine SPL and Agile methods emphasizing the importance
of the frequent feedbacks, short-iterations, and adaptations in
the process for agile SPL. The requirement 6 is highlighted in
[26], which mapped sixteen approaches for SPL scoping and
identified future work, including case studies and approaches
that reduce the effort to perform the SPL early stages.

B. Approach Description
The proposed approach comprises roles, units of work

(activities and tasks), work products (artifacts), and iterations
(Scrum sprints). They are explained as follows:

1) Roles
All the tasks are performed through the collaboration

among stakeholders. In this approach six roles were defined,
representing the responsibilities of the stakeholders during the
process: business expert, domain expert, product expert,
scoping expert, SPL developer and inspector. The Business
expert plays a key role in analyzing of the market and defining
the marketing strategy. The Domain expert can be a user,
client, sponsor, business analyst, or any group of them. They
use a deep knowledge on the business to explain the system
tasks to the developers in various levels of details.

The Product expert has deep knowledge on product
business processes. This role is usually involved in training,
deployment, and user manuals of the products. The Scoping
expert aids in all the tasks of the approach. It has the vision of
the scope of the legacy products and their features as a possible
product line. The SPL developer develops reusable assets for
the SPL. This role is involved in all SPL tasks such as
commonality and variability analysis and commonality and
variability implementation. Finally, the Inspector verifies
whether the features, feature model and product map artifacts
are developed appropriately according to the templates
previously defined.

2) Units of work
Activities and tasks are units of work performed by the

roles with specific goals and define inputs and outputs. The
activity groups also the tasks with common goals. Each activity
or task is associated to some traditional scoping activities [26].
The units of work are organized in a workflow to perform
commonality and variability analysis on legacy systems. These
activities are: pre-analysis, develop product map, prioritize
major features, define sub-features and analyze
commonalities/variabilities.

The Pre-analysis activity comprises the analyze market to
evaluate the market regarding needs, characterization of the
users, legal cultural constraints and business opportunities.
Besides, identify marketing strategy task identifies the method
of product delivery to the customers. In [32], we have the
original proposal, which we based on for create this activity.

240

In the Develop product map activity, the identify products
task defines which products legacy and no-legacy will compose
the line. Identify major features task defines the main features
for those products. Group features task organizes the major
features to reveal sub-domains. Finally, the Develop product
map task produces the product map as a matrix of the products
and features that address them. In [33], we have an approach
for SPL scoping, which has steps that we considered essential
for this activity and the next one.

The Prioritize major features activity defines two tasks.
First, the Assess domain potential task evaluates each sub-
domain relevant for the business. This evaluation supports the
decision-making when prioritizing them in the second task,
Prioritize major features.

The Define sub-features, where the identify sub-features
and mine legacy assets tasks elicit and specify the sub-features
(legacy and no-legacy) of the product line. The Inspect sub-
features task verifies whether the sub-features are following the
templates previously agreed. The Validate sub-features task
reviews the sub-features with the product owner role. If the
product owner (for example, domain experts) specified the sub-
features, this task is not necessary. This activity is wrapped by
the Scrum practices (sprint planning, review, and
retrospective). During this activity, the daily meeting is
conducted as well. For this activity, we did not map it for any
other approach, however we were inspired on [34] and [35] for
defining features and analyzing their commonalities and
variabilities (next activity).

The Analyze commonalities and variabilities, where the
update product map task refines the product map with the sub-
features, as well as, new information such as priority and
binding time. The Develop feature model task produces the
feature model artifact. The Detect clone task aids by providing
details of similarities and variabilities between legacy products.
The Inspect models task verifies whether each model (feature
model and product map) is consistent, mainly after some
sprints, where the models are updated and can become
inconsistent. This activity is wrapped by the Scrum practices
(sprint planning, review, and retrospective) as well. During this
activity, the daily meeting is conducted.

3) Work products
The work products are artifacts produced, modified, or read

by the stakeholders when performing tasks and activities. Some
of the approach artifacts are: market analysis document,
product list, product map and feature model. The Market
analysis document that summarizes information about the
customer needs, user characteristics, cultural and legal
constraints, business opportunities, and the delivery method of
products. Other relevant information can be included such as
the business goals. If possible, this artifact should be the input
for the approach. The Product list that contains the legacy
products and new ones. Configurations of the products can be
considered a product as well.

Furthermore, the Product map that is a matrix of features
(major features and/or sub-features) and products. The
intersection between features and products indicates whether
the feature is present in the product (cell is marked) or not
present (cell is not marked). This artifact can provide

information about the priority and binding time of the feature
as well. The Feature model that contains the major features
and sub-features of all products. It is a hierarchical view of the
relationships among features. In this model, constraints on the
features and the indication whether it is mandatory (common to
all products) or optional (variability) are visible to the
stakeholders. In this model, the business and domain experts
can configure new products by selecting optional features.

IV. INCREASING AGILITY IN THE APPROACH
As stated earlier, we adopted Scrum practices since they

provide systematic mechanisms to foster the short iterations,
frequent feedbacks, and adaptations in the process, team,
artifacts, and so on. It is applied on the define features and
analyze commonality and variability activities, because they
need a considerable effort to be accomplished, and the
volatility in the domain, technology, or requirements can result
in uncertain when perform these activities. The following roles,
artifacts, and practices were adopted from Scrum:

• Roles. Scrum master is a role to help the team to achieve
the defined goals through the Scrum principles and
practices. Scope owner (analogy to the product owner)
are the roles that wrap the business and domain experts,
and legacy system developer roles. Product owner is part
of a scope owner through the product experts. Team
comprises the scoping and domain experts, SPL developer,
inspector, and any other role that defines features and
analyzes commonalities and variabilities.

• Work products. Scope backlog is the artifact that
represents the prioritized major features of the scope (all
products). Sprint backlog is the artifact, sub-set of the
scope backlog, which the team works during a sprint.
Dashboard is the artifact that represents the panel with
tasks that can be in one of the following states: to do,
doing, or done. In addition, the burndown chart and other
useful information can be put in the dashboard as well.

• Practices. Sprint planning is divided in two meetings. In
the first meeting, the scope owner and team review and
discuss the goals and the context for the high-priority
major features. They agree on the definition of “done”, for
this approach, the validated feature model, feature list, and
product map artifacts represent the idea of “done”. The
team selects the high-priority major features from the
scope backlog and they commit to complete them by the
end of the sprint. The team decides how much work they
will commit to complete it too. This first meeting focuses
on understanding what the scope owner wants. The second
meeting focuses on the detailed task planning for how to
analyze the commonalities and variabilities of the sprint.
Daily meeting is a short (15 minutes or less) meeting that
happens every workday at an appointed time, where the
team reports three aspects about the activities of the sprint:
(1) what they were able to get done since the last meeting;
(2) what they are planning to finish by the next meeting;
and (3) any impediments or problem found. Review is a
meeting where the team reviews the sprint with the scope
owner, addressing the key idea in Scrum (inspect and
adapt) about the produced artifacts. Retrospective is a

241

meeting where the team learns with the past experiences
(sprint) to improve to the next one, addressing the key idea
in Scrum (inspect and adapt) about the performed process.

Fig. 1 shows the main roles, work products, and activities
of the approach.

Fig. 1. Overview of the approach

V. FEASIBILITY STUDY: RESCUEME SPL
Our approach is evaluated by a feasibility study on an SPL

project, called RescueMe SPL
(https://itunes.apple.com/us/app/savi/id590385285?l=pt&ls=1&mt=8).
The RescueMe SPL comprises a set of mobile applications to
support users in an emergency situation. The basic
functionality of a RescueMe application is to send an alert
message from the user, in an emergency situation, to his
contacts. These emergency situations can be a kidnapping or
any other situation that put the user in danger. Based on the
message, the contacts can track the user on a Web Map in real
time.

One researcher, three Ph. D. students, two master students,
and one undergraduate student are conducting the project. The
work products are built using textual documents and
spreadsheets. All resulting work products of this project are
available on the web (Work products available at
http://tassiovale.com/rescueme-artifacts.zip).

Regarding implementation, the target platform of the
RescueMe SPL is iOS (http://www.apple.com/ios/). Thus, we are
using the XCode (https://developer.apple.com/technologies/tools/)
as Integrated Development Environment (IDE) and Objective-
C as programming language. The implementation of variability
in XCode is native, since it provides support for conditional
compilation through #ifdef preprocessor directives [30].

A. Results
 Some approach results (in terms of roles, activities and work
products) for the RescueMe SPL are presented as following.

The involved staff and respective roles are: Expert #1
(Business expert and Scope owner), Developer #1 (Business
expert, Domain expert, Product expert, Scoping expert, SPL

developer), Developer #2 (Scrum Master), Developer #3 and
#4 (Product expert and SPL developer), Developer #5 (Legacy
asset developer, Domain expert and Product expert), and
Inspector #1 (Inspector).

RescueMe SPL has started by developing a feature model,
product map (Fig. 2), and textual descriptions of these features.
So far, the product line is consisted of 28 features among five
products.

Fig. 2. RescueMe SPL – partial product map

The three first activities (pre-analysis, develop product
map, and prioritize major features) provided the major features
for the product map (Fig. 2). The scope backlog artifact was
stemmed from the product map artifact including priority
estimative for each main feature.

The last two activities (define sub-features and analyze
commonalities and variabilities) provided the feature model
and updated the product map (Fig. 2) during the first sprint
(named of sprint 0).

During the sprints (sprint 1 and 2), the team began the
implementation of the features (prototype). Although there
were some refactoring on the product map, the feature model,
and feature descriptions, they did not suffer considerable
changes.

According to the scope backlog, the sprint 1 involves the
implementation of four features: Contact, Import Contact, Add
Contact and Phone Import. Three features were selected in the
second sprint: Destination, SMS Destination and Location. In
addition, a set of test cases was specified for each of these
features. These features were selected based on the team
background with the technology for implementation of the
features and importance of the feature for the stakeholder.
However, for the future sprints, a prioritization on the other
features will performed to guide the choice of the backlog
sprint. Figure 4 shows a code sample of the feature-centered
variability implementation.

242

Fig. 4. RescueMe SPL - conditional compilation

B. Initial Discussion
The short iterations, with two-week sprints, have provided

faster and more frequent feedbacks and moments for
improvements. As an example, hidden variabilities could be
identified and communicated during the first two-sprints.

The team has not presented problems with the incremental
development of the product map and feature model yet.
Although, some refactoring will occur in future sprints, the
team has showed conviction on the commonalities and
variabilities implementation, since, in terms of scope, they
were identified and specified comprehensively.

Although new empirical studies are necessary to show that
the approach mitigates the management issues (long iterations,
poor feedback, and lack of process adaptation), it provided
continuous feedbacks and adaptations (improvements) through
daily meetings, retrospectives, and reviews. These feedbacks
are shared among all stakeholders of the project. For instance,
technical problems related to implementation were solved
faster and precisely during the daily meetings. The
retrospectives have provided sharing of problems and solutions
regarding the features for all products (commonalities), and the
reviews have provided the validation of the artifacts and
functional software. In Noor[18], rapid feedback also occur,
however they focused on the way to provide the feedback
through the collaborative practices from collaboration
engineering. In our case, we focused on the frequency of
feedbacks through the short-iterations (two-week sprints) with
daily meeting, retrospectives, and reviews.

In Carbon [19], planning game was adopted to deal with
feedbacks as well. We believe that there are software
development teams that need or prefer this practice than scrum-
inspired practices. However, as the scrum method has been
more popular [5], an approach with scrum would have more
attention. In any case, future works should be performed to
evaluate the feedbacks using planning game and scrum
practices.

We can contextualize the proposed approach in other
studies, as in Ganhan [21], where an output from our approach
can be an input for them. They mapped acceptance tests for leaf
features from a feature model. As future work, we could also
apply their approach in our sprints. In the same way that their
work, our approach iteratively and incrementally specifies what
are the variabilities in order to provide further configurations of

applications. The contrast with traditional upfront SPL
approaches, we identified the variabilities as well as the
possible variants incrementally. So far, we did not need to do
big refactors in the features and variabilities. We believe that in
future sprint some changes might emerge, then we might
evaluate better.

We did not consider the design and architectural disciplines
in the approach. The work of Carbon [31] provides discussions
and ideas for future adjusts in our approach. However, in this
case, we necessarily must consider other agile practices and
principles, such as continuous integration and automated
regression testing. As future work, we can try a specific task
for SPL platform design in the sprint mixed with those agile
practices.

Finally, this approach focuses on commonality and
variability analysis in terms of scope for a future SPL. Other
approaches [9] do not have the same target. They can address
some perspective of feedback, short-iteration, and adaptation,
but the focus does not combine the building of commonalities
and variability for scoping through the agile management
mechanisms for feedback, short-iteration, and adaptation.

An important limitation in this study can be highlighted.
The feasibility study is very small (only few variation points in
the features) and does not prove that management issues are
solved. For bigger scenarios using metrics to evaluate the
process, we need to make a new evaluation for the approach in
order to discuss the scalability and impact of the approach on
the management issues. Thus, we just faced this feasibility
study as an evaluation to verify whether the activities and its
workflow make sense.

VI. CONCLUSIONS AND FUTURE WORK
The use of Scrum practices into the proposed approach is

motivated by the fact that SPL traditional approaches do not
offer systematic mechanisms to deal with frequent feedbacks
among the stakeholders, short iterations in the process, and
adaptations in the approach. These aspects are considered, by
agile methodologies, essentials for software development.

This approach deals with frequent feedbacks, short
iterations, and improvements in the process, when necessary.
These characteristics are fundamentals to deal with volatile
scenarios in the domain, technology, or requirements, mainly
whether the volatility result in unnecessary effort and
demotivation when performing the process activities. As
consequence, the approach can reach benefits as less risky
(because it tries to see all steps for the development rapidly)
and faster return on investment (because it aims to delivery in
few sprints weekly). Moreover, this work also aims that the
integration between agile and SPL is possible.

As future work, we are performing new sprints to
implement the variability management mechanisms (the #ifdef
preprocessor directives). In addition, we are refining the
approach to formally evaluate it in an industrial context with
two companies working in the oil and education domains. We
believe that this kind of evaluation, using metrics for evaluating
efficiency of proposed approach, is very important to prove the
feasibility of this approach and increase the maturity of this
new research field (Agile and SPL). The evaluation of other

243

activities, such as design, evolution, and derivation of
applications, in the sprint cycles will be investigated as well.

ACKNOWLEDGMENT
This work was partially supported by the National Institute of

Science and Technology for Software Engineering (INES -
http://www.ines.org.br), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08 and CNPq grants
305968/2010-6, 559997/2010-8, 474766/2010-1 and FAPESB.

REFERENCES

[1] Clements, P. and Northrop, L.: Software Product Lines: Practices and

Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (2001)

[2] Pohl, K., Böckle, G., and Linden, F. J. v. d.: Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
Secaucus, NJ, USA (2005)

[3] Beck, K. and et. al.: Manifesto for agile software development,
http://agilemanifesto.org/ (2001)

[4] Larman, C. and Vodde, B.: Scaling Lean and Agile Development.
Thinking and Organizational Tools for Large-Scale Scrum. Addison
Wesley, Westford, Massachusetts, USA (2008)

[5] Version-One: The state of agile development: version one survey.
http://www.versionone.com/state_of_agile_development_survey/11/
(2012)

[6] Cossentino, M. and Seidita, V.: Composition of a new process to meet
agile needs using method engineering (2004)

[7] McGregor, J.: Agile software product lines, deconstructed. Journal of
Object Technology, 7(8), 7–19 (2008)

[8] McGregor, J.: Mix and match. Journal of Object Technology, 7(6), 7–16
(2008)

[9] Silva, I. F., Neto, P. A. S. M., O’Leary, P., Almeida, E. S., and Meira,
S. R. L.: Agile software product lines: a systematic mapping study.
Software, Practice and Experience, 41(8), 899–920 (2011)

[10] Silva, I.F., Neto, P. A. M. S., O’Leary, P., Almeida, E. S., and Meira, S.
R. L.: Characterizing software product lines scoping and requirements
engineering in a small company: An industrial case study, Journal of
Systems and Software (Under evaluation) (2013)

[11] Dybå, T. and Dingsøyr, T.: Empirical studies of agile software
development: A systematic review. Information Software Technology,
50, 833–859 (2008)

[12] Cockburn, A.: Agile software development. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (2001)

[13] O’hEocha, C., Conboy, K., and Wang, X.: So you think you’re agile? In
Agile Processes in Software Engineering and Extreme Programming,
11th International Conference, XP 2010, pages 315–324 (2010)

[14] Miller, G. G.: The characteristics of agile software processes. In
Proceedings of the 39th International Conference and Exhibition on
Technology of Object-Oriented Languages and Systems (TOOLS39),
TOOLS ’01, pages 385–, Washington, DC, USA. IEEE Computer
Society (2001)

[15] Abrantes, J. F. and Travassos, G. H.: Characterization of software
development agile methods (in portuguese). In Proceedings of
Workshop of Fast Development of Applications. Brasilian Symposium
of Software Quality (WDRA - SBQS 2007), Porto de Galinhas, PE,
Brazil (2007)

[16] Nerur, S., Mahapatra, R., and Mangalaraj, G.: Challenges of migrating to
agile methodologies. Communications ACM, 48(5), 72–78 (2005)

[17] Diaz, J., Perez, J., Alarcon, P. P., and Garbajosa, J.: Agile product line
engineering - a systematic literature review. Software: Practice and
Experience, 41(8), 921–941 (2011)

[18] Noor, M. A., Rabiser, R., and Grünbacher, P.: A collaborative approach
for reengineering-based product line scoping. In APLE ’06: Proceedings
of the 1st International Workshop on Agile Product Line Engineering in
conjunction with SPLC 2006. Baltimore, Maryland, USA (2006)

[19] Carbon, R., Knodel, J., Muthig, D., and Meier, G.: Providing Feedback
from Application to Family Engineering - The Product Line Planning
Game at the Testo AG. Software Product Line Conference, International,
180–189 (2008)

[20] Tourret, R.: Using Agile Methods to Develop Software Product Lines.
Master’s thesis, Computer Science - University of York, York, England
(2006)

[21] Ghanam, Y., Andreychuk, D., and Maurer, F.: Reactive variability
management using agile software development. In Agile ’10:
Proceedings of the international conference on Agile methods in
software development, pages 27–34, Orlando, USA (2010)

[22] IEEE: IEEE standard for developing software life cycle processes. IEEE
Std 1074-1997 (1998)

[23] Gilb, T.: Principles of software engineering management. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1998)

[24] Ghezzi, C., Jazayeri, M., and Mandrioli, D.: Fundamentals of Software
Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd
edition (2002)

[25] Boehm, B. W.: A spiral model of software development and
enhancement. Computer, 21(5), 61–72 (1988)

[26] John, I. and Eisenbarth, M.: A decade of scoping: a survey. In
Proceedings of the 13th International Software Product Line Conference,
SPLC ’09, pages 31–40, Pittsburgh, PA, USA. Carnegie Mellon
University (2009)

[27] Silva, I. F., Neto, P. A. M. S., Almeida, E. S., and Meira, S. R. M.:
Empirical findings in agile software product lines using a multi-method
approach to interpret the evidences. Information Software Technology,
(Under evaluation) (2013)

[28] Kang, K. C., Kim, Sajoong, Lee, J., Kim, K., Shin, E., and Huh, M.:
FORM: A feature-oriented reuse method with domain-specific reference
architectures. Annual Software Engineering 5 (January 1998), 143-168,
(1998)

[29] OMG-SPEM, O. M. G.: Software & systems process engineering
metamodel specification - spem. http://www.omg.org/spec/SPEM/2.0/
(2008)

[30] Gacek, C. and Anastasopoules, M.. 2001. Implementing product line
variabilities. In Proceedings of the 2001 symposium on Software
reusability: putting software reuse in context (SSR '01). ACM, New
York, NY, USA, 109-117, (2001)

[31] Carbon, R., Lindvall, M., Muthig, D., and Costa, P. “Integrating Product
Line Engineering and Agile Methods : Flexible Design Up-front vs .
Incremental Design,” in APLE 1st International Workshop on Agile
Product Line Engineering, pp. 1–8, (2006)

[32] Kang, Kyo C., Donohoe, Patrick, Koh, Eunman, Lee, Jaejoon, and Lee,
Kwanwoo. Using a Marketing and Product Plan as a Key Driver for
Product Line Asset Development. In Proceedings of the Second
International Conference on Software Product Lines (SPLC 2), Gary J.
Chastek (Ed.). Springer-Verlag, London, UK, UK, 366-382, (2002)

[33] Schmid, Klaus. A comprehensive product line scoping approach and its
validation. InProceedings of the 24th International Conference on
Software Engineering (ICSE '02). ACM, New York, NY, USA, 593-603,
(2002)

[34] Kang, Kyo; Cohen, Sholom; Hess, James; Novak, William; and
Peterson, A.. Feature-Oriented Domain Analysis (FODA) Feasibility
Study (CMU/SEI-90-TR-021). Software Engineering Institute, Carnegie
Mellon University, 1990. http://migre.me/er6Ny

[35] van Gurp, J.; Bosch, J.; Svahnberg, M., "On the notion of variability in
software product lines," Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on , vol., no., pp. 45-54, (2001)

244

Mining Features from the Object-Oriented Source Code of a Collection of
Software Variants Using Formal Concept Analysis and Latent Semantic Indexing

R. AL-msie’deen1, A.-D. Seriai1, M. Huchard1, C. Urtado2, S. Vauttier2, and H. Eyal Salman1

1LIRMM / CNRS & Montpellier 2 University, France, {al-msiedee, seriai, huchard, eyalsalman}@lirmm.fr
2LGI2P / Ecole des Mines d’Alès, Nı̂mes, France, {Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract

Companies often develop a set of software variants that
share some features and differ in other ones to meet spe-
cific requirements. To exploit existing software variants and
build a software product line (SPL), a feature model of this
SPL must be built as a first step. To do so, it is necessary to
mine optional and mandatory features from the source code
of the software variants. Thus, we propose, in this paper,
a new approach to mine features from the object-oriented
source code of a set of software variants based on Formal
Concept Analysis and Latent Semantic Indexing. To vali-
date our approach, we applied it on ArgoUML and Mobile
Media case studies. The results of this evaluation validate
the relevance and the performance of our proposal as most
of the features were correctly identified.

Keywords: Software product line engineering, software
variants, feature mining, FCA, LSI.

1 Introduction

A software product line (SPL) is ”a set of software in-

tensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment

or mission and are developed from a common set of core

assets in a prescribed way” [1]. A SPL is usually character-

ized by two sets of features: the features that are shared by

all products in the family, which represent the SPL’s com-
monalities, and the features that are shared by some, but not

all, products in the family, which represent the SPL’s vari-
ability. SPLs are usually described with a de-facto standard

formalism called feature model [1]. A feature model defines

all the valid feature configurations. In common software de-

velopment processes software product variants often evolve

from an initial product developed for and successfully used

by the first customer. Mobile Media Systems [2] is an ex-

ample of such a product evolution. These product variants

usually share some common features but they are also dif-

ferent from one another due to subsequent customization to

meet the specific requirements of different customers [3].

When variants become numerous, switching to a rigorous

software product line engineering (SPLE) process is a so-

lution to tame the increasing complexity of all the engi-

neering tasks. To switch to SPLE starting from a collec-

tion of existing variants, the first step is to mine a feature

model that describes the SPL. This implies to identify the

software family’s common and variable features. Manual

reverse engineering of a feature model for software vari-

ants is time-consuming, error-prone, and requires substan-

tial efforts [4]. Assisting this process would be of great

help. This paper proposes an approach to mine features

from a collection of software product variants in order to

define the feature model of the software family1. Our ap-

proach is based on the identification of the implementation

of these features among object-oriented (OO) elements of

the source code. These OO elements constitute the initial

search space. We use Formal Concept Analysis (FCA) to

reduce this search space by first separating common and

variable elements and, secondly, dividing the set of variable

elements in subgroups. We further use Latent Semantic In-

dexing (LSI) to define a similarity measure that enables to

identify subgroups of elements that characterize the imple-

mentation of each possible feature. Our approach is detailed

in the remainder of this paper as follows. Section 2 sketches

out a background of the used classification techniques. Sec-

tion 3 presents the principles and main concepts of our ap-

proach. Section 4 details the feature mining process step

by step. Section 5 describes the experiments that were con-

1This work has been funded by grant ANR 2010 BLAN 021902

245

ducted to validate our proposal. Section 6 discusses related

work. Section 7 concludes and provides perspectives for

this work.

2 Background: Techniques Used for Classifi-
cation

This section presents a quick overview of the two tech-

niques – Formal Concept Analysis (FCA) and Latent Se-

mantic Indexing (LSI) – we plan to combine to classify in-

formation on software variants in order to extract features

from their source code.

2.1 Formal Concept Analysis

Galois lattices and concept lattices [5] are core structures

of the Formal Concept Analysis framework (FCA), which

enables to extract an ordered set of concepts from a dataset,

called a formal context, composed of objects described by

attributes. A formal context is a triple K = (O,A,R)
where O and A are sets (objects and attributes respectively)

and R is a binary relation, i.e., R ⊆ O × A. Several ex-

amples of formal contexts are provided in the remaining of

this paper. A formal concept is a pair (E, I) composed of

an object set E ⊆ O and their shared attribute set I ⊆ A.

E = {o ∈ O|∀a ∈ I, (o, a) ∈ R} is the extent of the con-

cept, while I = {a ∈ A|∀o ∈ E, (o, a) ∈ R} is the intent

of the concept. Given a formal context K = (O,A,R) and

two formal concepts C1 = (E1, I1) and C2 = (E2, I2) of

K, the concept specialization order ≤s is defined by C1 ≤s

C2 if and only if E1 ⊆ E2 (and equivalently I2 ⊆ I1). C1

is called a sub-concept of C2. C2 is called a super-concept

of C1. Let CK be the set of all concepts of a formal context

K. This set of concepts provided with the specialization or-

der (CK , ≤s) has a lattice structure, and is called the concept

lattice associated with K. In our approach, we will consider

the AOC-poset (for Attribute-Object-Concept poset), which

is the sub-order of (CK , ≤s) restricted to object-concepts

and attribute-concepts (AOC-poset ignore concepts empty

of declared objects and attributes). AOC-posets scale much

better than lattices. Several figures in the remaining of this

paper show AOC-posets. For readability’s sake, in these

diagrams, extents and intents are presented in a simplified

form, removing top-down inherited attributes and bottom-

up included objects.

2.2 Latent Semantic Indexing

Several IR methods exist such as Vector Space Method

(VSM) and Latent Semantic Indexing (LSI) [6]. Both meth-

ods assume that software artifacts can be regarded as textual

documents. Occurrences of terms are extracted from the

documents in order to calculate similarities between them

and then to classify together a set of similar documents

as related to a common concept. LSI is an advanced IR

method. The heart of LSI is singular value decomposition

technique (SVD). This technique is used to mitigate noise

introduced by stop words like (the, an, above) and to over-

come two classic problems arising in natural languages pro-

cessing: synonymy and polysemy [6]. The effectiveness

of IR methods is measured by their recall, precision and

F-Measure. For a given query, recall is the percentage of

correctly retrieved results to the total number of relevant re-

sults, while precision is the percentage of correctly retrieved

results to the total number of retrieved results. F-Measure

defines a tradeoff between precision and recall with a high

value only in cases where both recall and precision are high.

All measures have values between [0, 1]. If recall equals 1,

all relevant results are retrieved. However, some retrieved

results might not be relevant. If precision equals 1, all re-

trieved results are relevant. However, relevant results might

not be retrieved [6]. If F-Measure equals 1, all relevant re-

sults are retrieved and only relevant results are retrieved.

3 Approach Basics

This section presents the main concepts and hypotheses

used in our approach for mining features from source code.

It also shortly describes the example that illustrates the re-

maining of the paper.

3.1 Goal and Core Assumptions

The general objective of our work is to mine the feature

model of a collection of software product variants based

on the static analysis of their source code. Mining com-

mon and variable features is a first necessary step towards

this objective. We consider that ”a feature is a prominent

or distinctive and user visible aspect, quality, or character-

istic of a software system or systems” [7]. Our work fo-

cuses on the mining of functional features. Functional fea-

tures express the behaviour or the way users may interact

with a product. As there are several ways to implement

features [8], we consider software systems in which func-

tional features are implemented at the programming lan-

guage level (i.e., source code). We also restrict to OO soft-

ware. Thus, features are implemented using object-oriented

building elements (OBEs) such as packages, classes, at-

tributes, methods or method body elements (local variable,

attribute access, method invocation). We consider that a fea-

ture corresponds to one and only one set of OBEs. This

means that a feature always has the same implementation

in all products where it is present. We also consider that

feature implementations may overlap: a given OBE can be

shared between several features’ implementation.

246

3.2 Features versus Object-oriented Building El-
ements: the Mapping Model

Mining a feature from the source code of variants

amounts to identify group of OBEs that constitutes its im-

plementation. This group of OBEs must either be present in

all variants (case of a common feature) or in some but not

all variants (case of an optional feature). Thus, the initial

search space for the feature mining process is composed of

all the OBEs in the existing product variants. For a source

code containing n OBEs, the initial search space is the pow-

erset of n deprived of the empty set. As the number of OBEs

is high, mining features entails to reduce this search space.

Several strategies can be combined to do so:

• separate the OBE set in two subsets, the common fea-

tures set – also called common block (CB) – and the

optional features set, on which the same search pro-

cess will have to be performed. Indeed, as optional

(resp. common) features appear in some but not all

(resp. all) variants, they are implemented by OBEs that

appear in some but not in all (resp. all) variants.

• separate the optional feature set into small subsets that

each contains OBEs shared by groups of two or more

variants or OBEs that are hold uniquely by a given

variant. Each of these subsets is called a block of vari-
ation (BV). BVs can then be considered as smaller

search spaces that each corresponds to the implemen-

tation of one or more features.

• identify common atomic blocks (CAB) amongst com-

mon block based on the expected lexical similarity be-

tween the OBEs that implement a given feature. A CB

is thus composed of several CABs.

• identify atomic blocks of variation (ABV) inside of

each BV based on the expected lexical similarity be-

tween the OBEs that implement a given feature. A BV

is thus composed of several ABVs.

All the concepts we defined for mining features are illus-

trated in the OBE to feature mapping model of Figure 1.

3.3 An Illustrative Example

As an illustrative example, we consider three text editor

software variants. Editor 1 supports core text editing fea-

tures: open, close and print a file. Editor 2 has the core text

editing features and a new select all feature. Editor 3 sup-

ports copy and paste features, together with the core ones.

In this example, the eventually mined features are presented

to better explain some parts of our work. However, we only

use the source code of software variants as input of the min-

ing process and thus do not know features in advance.

Figure 1: OBE to Feature Mapping Model.

4 The Feature Mining Process

The mapping model between OBEs and features defines

associations between these features and the corresponding

OBEs. To determine instances of this model, we describe

our feature mining process. This process takes the variants’

source code as its input. The first step of this process aims at

identifying BVs and the CB based on FCA (cf. Section 4.1).

The second step explores the AOC-poset of BVs to define

an order to search for atomic blocks of variation (cf. Sec-

tion 4.2.1). In the third step, we rely on LSI to determine

the similarity between OBEs (cf. Section 4.2.2). This sim-

ilarity measure is used to identify atomic blocks based on

OBE clusters (cf. Section 4.2.3). Figure 2 shows our feature

mining process.

Figure 2: The Feature Mining Process.

247

4.1 Identifying the Common Block and Blocks of
Variation

The first step of our feature mining process is the iden-

tification of the common OBE block and of OBE blocks of

variation. The role of these blocks is to be sub-search spaces

for mining sets of OBEs that implement features.

The technique used to identify the CB and BVs relies

on FCA. First, a formal context, where objects are product

variants and attributes are OBEs (cf. Table 1), is defined.

The corresponding AOC-poset is then calculated. The in-

tent of each concept represents OBEs common to two or

more products. As concepts of AOC-posets are ordered, the

intent of the most general (i.e., top) concept gathers OBEs

that are common to all products. They constitute the CB.

The intents of all remaining concepts are BVs. They gather

sets of OBEs common to a subset of products and corre-

spond to the implementation of one or more features. The

extent of each of these concepts is the set of products having

these OBEs in common (cf. Figure 3).

Figure 3: The AOC-poset for the formal context of Table 1.

4.2 Identifying Atomic Blocks

The CB and BVs might each implement several features.

Identifying the OBEs that characterize a feature’s imple-

mentation thus consists in separating OBEs from the CB or

from each of the BVs in smaller sets called atomic blocks.

Atomic blocks are identified based on the calculation of the

Table 1: The formal context for the Text Editor Variants.

Pa
ck

ag
e(

E
di

to
r.M

an
ag

m
en

t)

C
la

ss
(C

lo
se

E
di

to
r.M

an
ag

m
en

t)

C
la

ss
(O

pe
n

E
di

to
r.M

an
ag

m
en

t)

C
la

ss
(P

ri
nt

E
di

to
r.M

an
ag

m
en

t)

Pa
ck

ag
e(

E
di

to
r.C

op
y)

C
la

ss
(C

op
yT

ex
t

E
di

to
r.C

op
y)

M
et

ho
d

(C
op

yS
et

tin
gs

C
op

yT
ex

t)

Pa
ck

ag
e(

E
di

to
r.S

el
ec

tA
ll)

C
la

ss
(S

el
ec

tA
llS

et
tin

gs
Se

le
ct

A
ll)

Pa
ck

ag
e(

E
di

to
r.P

as
te

)

C
la

ss
(P

as
te

Te
xt

E
di

to
r.P

as
te

)

M
et

ho
d

(P
as

te
Se

tt
in

gs
Pa

st
eT

ex
t)

Editor 1 × × × ×
Editor 2 × × × × × ×
Editor 3 × × × × × × × × × ×

similarity between OBEs from the CB or a BV. These simi-

larities result from applying LSI. Atomic blocks are clusters

of the most similar OBEs built with FCA as detailed in the

following.

4.2.1 Exploring the BV’s AOC-poset to Identify
Atomic Blocks of Variation

As concepts of the AOC-poset are ordered, the search for

atomic blocks of variation (ABVs) can be optimized if ex-

ploring the AOC-poset from the smallest (bottom) to the

highest (top) block. Results (ABVs) obtained for a concept

are used in the exploration of next (i.e., upper) concepts:

if a group of OBEs is identified as an ABV, this group is

considered as such when exploring the following BV. For

Common Atomic Blocks (CAB), there is no such need to

explore the AOC-poset as there is a unique CB.

4.2.2 Measuring OBEs’ Similarity Based on LSI

OBEs of BVs or of the CB respectively characterize the im-

plementation of optional and mandatory features. We base

the identification of subsets of OBEs, which each consti-

tutes a feature, on the measurement of lexical similarity be-

tween these OBEs. This similarity measure is calculated

using LSI. We rely on the fact that OBEs involved in im-

plementing a functional feature are lexically closer to one

another than to the rest of OBEs. To compute similarity be-

tween each pair of OBEs in the CB and BVs, we proceed

in three steps: building the LSI corpus, building the term-

document matrix and the term-query matrix for each BV

and for the CB and, at last, building the cosine similarity

matrix.

Building the LSI corpus. In order to apply LSI, we

build a corpus that represents a collection of documents and

queries. In our case, each OBE in the block represents both

a document and a query. To be processed, the document

and query must be normalized (e.g., all capitals turned into

lower case letters, articles, punctuation marks or numbers

removed). The normalized document generated by analyz-

ing the source code of an OBE is splitted into terms and, at

last, word stemming is performed.

Building the term-document and the term-query ma-
trices for each block. All blocks (the CB and all BVs)

are considered and applied the same process. The term-

document matrix is of size m × n where m is the num-

ber of terms used in a normalized document corresponding

to an OBE and n the number of OBEs in a block. In the

same way, a term-query matrix is of size m× j where m is

the number of terms and j the number of OBEs. Each col-

umn in the term-query matrix represents a vector of OBEs.

Terms for both matrices are the same because they are ex-

tracted from the same block.

248

Building the similarity matrix. Similarity between

OBEs in each BV or in the CB is described by a cosine sim-

ilarity matrix whose columns and rows both represent vec-

tors of OBEs: documents as columns and queries as rows.

Similarity is computed as a cosine similarity given by Equa-

tion 1, where Qi is a query vector, Dj is a document vector

and Wi and Wj range over weights of query and document

vectors, respectively.

CosineSimilarity(Qi, Dj) =

n∑
i=1

Wi ∗Wj√
n∑

i=1

W 2
i

n∑
j=1

W 2
j

(1)

4.2.3 Identifying Atomic Blocks Using FCA

We then use FCA to identify, from each block of OBEs,

which elements are similar. To transform the (numerical)

similarity matrices of previous step into (binary) formal

contexts, we use a threshold. 0.70 is the chosen threshold

value (a widely used threshold for cosine similarity [6])

meaning that only pairs of OBEs having a calculated

similarity greater than or equal to 0.70 are considered

similar. Table 2 shows the formal context obtained by

transforming the similarity matrix corresponding to the

BV of Concept 2 from Figure 3. As an example, in the

formal context of this table, the OBE ”Method PasteSetting
PasteText” is linked to the OBE ”Class PasteText Paste”
because their similarity equals 0.99, which is greater than

the threshold. However, the OBE ”Method CopySettings
CopyText” and the OBE ”Class PasteText Paste” are not

linked because their similarity equals 0.18, which is less

than the threshold. The resulting AOC-poset is composed

of concepts the extent and intent2 of which group similar

OBEs.

Table 2: Formal context of Concept 2.

C
la

ss
C

op
yT

ex
tC

op
y

C
la

ss
Pa

st
eT

ex
tP

as
te

M
et

ho
d

C
op

yS
et

tin
gs

C
op

yT
ex

t

M
et

ho
d

Pa
st

eS
et

tin
g

Pa
st

eT
ex

t

Pa
ck

ag
e

C
op

y

Pa
ck

ag
e

Pa
st

e

Class CopyText Copy × × ×
Class PasteText Paste × × ×
Method CopySettings CopyText × × ×
Method PasteSetting PasteText × × ×
Package Copy × × ×
Package Paste × × ×

For the text editor example, the AOC-poset of Figure 4

shows two atomic blocks of variation (that correspond to

2Here, intents and extents are the same. This is because the similarity

matrix (and, consequently, the formal context) is symmetric.

Figure 4: Atomic Blocks Mined from Concept 2.

two distinct features) mined from a single block of varia-

tion (Concept 2 from Figure 3). The same feature mining

process is used for the CB and for each of the BV.

5 Experimentation

To validate our approach, we ran experiments on

two Java open-source softwares: Mobile Media3 and

ArgoUML4. We used 4 variants for Mobile Media, 10 for

ArgoUML. The advantage of having two case studies is that

they implement variability at different levels. In addition,

Mobile Media and ArgoUML variants are well documented

and their feature model is available for comparison to our

results and validation of our proposal. Table 3 summarizes

the obtained results for each software product variant. For

readability’s sake, we manually associated feature names

to atomic blocks, based on the study of the content of each

block and on our knowledge on software. Of course, this

does not impact the quality of our results.

Table 3: Features Mined from Mobile Media and ArgoUML

Softwares

Case Study Feature Evaluation Metrics

Mobile Media Features Common Optional K Precision Recall F-Measure

Album Management

Splash Screen

Create Album

Delete Album

Create Photo

Delete Photo

View Photo

Exception handling

Edit Photo Label

Favourites

Sorting

×
×
×
×
×
×
× ×

×
×
×

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.03

0.02

0.04

0.06

83%

71%

81%

80%

81%

78%

87%

100%

100%

100%

100%

62%

57%

58%

62%

52%

63%

68%

70%

77%

80%

78%

70%

63%

67%

69%

63%

69%

76%

82%

87%

88%

87%

ArgoUML Features Common Optional K Precision Recall F-Measure

Class Diagram

Diagram

Deployment Diagram

Collaboration Diagram

Use Case Diagram

State Diagram

Sequence Diagram

Activity Diagram

Cognitive Support

Logging

× ×
×
×
×
×
×
×
×
×

0.03

0.06

0.05

0.06

0.03

0.03

0.02

0.06

0.01

0.02

72%

100%

100%

100%

100%

100%

100%

100%

100%

100%

56%

80%

74%

67%

64%

69%

67%

63%

70%

60%

63%

88%

85%

80%

78%

81%

80%

77%

82%

75%

Results show that precision appears to be high for all op-

tional features. This means that all mined OBEs grouped

as features are relevant. This result is due to search space

reduction. In most cases, each BV corresponds to one and

only one feature. For mandatory features, precision is also

quite high thanks to our clustering technique that identi-

fies ABVs based on FCA and LSI. However, precision is

3http://homepages.dcc.ufmg.br/~figueiredo/spl/
4http://argouml-spl.tigris.org/

249

smaller than the one obtained for optional features. This

deterioration can be explained by the fact that we do not

perform search space reduction for the CB. Considering

the recall metric, its average value is 66% for Mobile Me-

dia and 67% for ArgoUML. This means most OBEs that

compose features are mined. We have manually identified

OBEs which should have been mined and were not. We

found that these non-mined OBEs used different vocabu-

laries from mined OBEs’. This is a known limitation of

LSI which is based on lexical similarity. Considering the

F-Measure metric, our approach has values that range from

63% to 88%. This means that most OBEs that compose fea-

tures are mined and shows the efficiency of our approach.

The most important parameter to LSI is the number of cho-

sen term-topics (i.e., Number of topics (K)). A term-topic is

a collection of terms that co-occur frequently in the docu-

ments of the corpus. We need enough term-topics to capture

real term relations. In our work we cannot use a fixed num-

ber of topics for LSI because we have blocks of variation

(i.e., partitions) with different sizes. The column (K) in Ta-

ble 3 shows the K value for each feature.

6 Related work

In our previous work [8] we present an approach for

feature location in a collection of software product vari-

ants based on FCA by distinguishing between the common
block (i.e., CB) and blocks of variation (i.e., BVs). In this

paper we extended our previous work by distinguishing be-

tween the common features that appear in the common block
and the optional features that appear in the same block of
variation based on the lexical similarity between OBEs.

An inclusive survey about approaches linking features and

sources code in a single software is proposed in [9]. The

approach proposed by Ziadi et al. [4] is the closest to ours.

They identify all common features as a single mandatory

feature. Moreover, they do not distinguish between optional

features that appear together in a set of variants. Their ap-

proach doesn’t consider the method body. Rubin et al. [10]

present an approach to locate optional features from two

product variants’ source code. They do not consider com-

mon features. They also are limited to only two variants.

Xue et al. [3] propose an automatic approach to identify the

traceability link between a given collection of features and a

given collection of source code variants. They thus consider

feature descriptions as an input.

7 Conclusion

In this paper, we proposed an approach based on FCA

and LSI to mine features from the object-oriented source

code of software product variants. We have implemented

our approach and evaluated its produced results on two case

studies. Results showed that most of the features were iden-

tified. The threat to the validity of our approach is that

developers might not use the same vocabularies to name

OBEs across software product variants. This means that

lexical similarity may be not reliable in all cases to identify

common and variable features. In future work, we plan to

combine both textual and semantic similarity measures to

be more precise in determining feature implementation.

References

[1] P. C. Clements and L. M. Northrop, Software product
lines: practices and patterns. Addison-Wesley, 2001.

[2] L. P. Tizzei, M. Dias, C. M. F. Rubira, A. Garcia, and

J. Lee, “Components meet aspects: Assessing design

stability of a software product line,” Inf. Softw. Tech-
nol., vol. 53, no. 2, pp. 121–136, Feb. 2011.

[3] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in

a collection of product variants,” in 19th WCRE Con-
ference. IEEE, 2012, pp. 145–154.

[4] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane,

“Feature identification from the source code of prod-

uct variants,” in 15th CSMR Conference. IEEE, 2012,

pp. 417–422.

[5] B. Ganter and R. Wille, Formal Concept Analysis,
Mathematical Foundations. Springer-Verlag, 1999.

[6] A. Marcus and J. Maletic, “Recovering

documentation-to-source-code traceability links

using latent semantic indexing,” in 25th ICSE
Conference. IEEE Computer Society, 2003, pp.

125–135.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,

and A. S. Peterson, “Feature-oriented domain analysis

(foda) feasibility study,” November 1990.

[8] R. AL-Msie’deen, A. D. Seriai, M. Huchard, C. Ur-

tado, S. Vauttier, and H. E. Salman, “Feature loca-

tion in a collection of software product variants us-

ing formal concept analysis,” in ICSR ’13 Conference.

Springer, 2013, pp. 302–307.

[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,

“Feature location in source code: a taxonomy and sur-

vey,” Journal of Software: Evolution and Process, pp.

1–54, 2012.

[10] J. Rubin and M. Chechik, “Locating distinguishing

features using diff sets,” in 27th ASE Conference, ser.

ASE 2012. ACM, 2012, pp. 242–245.

250

Model-Driven Generation of Context-Specific Feature Models

Thibaut Possompès∗, Christophe Dony∗, Marianne Huchard∗, Chouki Tibermacine∗
∗LIRMM, CNRS and Montpellier 2 University

Montpellier, France
{possompes, dony, huchard, tibermacin}@lirmm.fr

Abstract—Software Product Lines (SPL) aim at deriving
software architectures or systems from a software artifact
base. Configuring the SPL to derive a new product is now
usually done by selecting appropriate software features in
a kind of models, called feature models. In some situations,
a feature represents a software artifact associated to an
element e of a context the software product will manage.
Such a feature and its associated software artifact may
be cloned according to the number of occurrences of e in
the context and constraints have to be respected. Hence,
the feature model proposed to users for configuration
has to be adapted in a new dedicated phase according
to the context elements. We propose a model-driven
engineering approach for transforming a generic feature
model according to a context model that a derived software
product will manage. More precisely this paper describes
an original model transformation able to generate context
specific feature models including duplicated features, and
removing inappropriate features. Our transformation is
validated on a smart building optimization software case
study.

I. INTRODUCTION

Configuration options of a software product line

(SPL) to generate a new product are nowadays com-

monly represented with a feature model [9]. A feature

represents a component of a product derived from a

product line or a functionality that this product provides.

A feature model indicates which choices (features)

are mandatory or optional in some conditions, and

how one choice can impact another one (feature inter-

dependencies and constraints). Software products (ap-

plications) are built from an SPL by selecting features

from such a feature model. A set of selected features is

commonly called a product configuration.

In various situations, some features are semantically

associated to elements of a context generic model,

describing concepts, that can be present in the context in

which (or for which) the application will be deployed.

For example in the case of a smart building energy-

optimization software, the feature “solar optimization”

is semantically associated to the context generic model

concept Solar-panel and should only be proposed

in a configuration feature model if the building to be

optimized (described by a model, instance of the context

generic model) has some solar panels (instances of

Solar-panel). As a corollary, such a software could

be configured to manage differently each occurrence

of a given electronic appliance or physical infrastruc-

ture [3].

Hence, a product configuration depends, on the one

hand, on the product features, and on the other hand,

on the number of occurrences of the context concept

instances. In a feature model, cloning features and iden-

tifying inappropriate ones is a long and error prone task

because each context-specific feature must be checked

regarding each context concept instance.

Various approaches have been proposed to configure

a feature model according to a context [7], [8]. In

this paper we propose an original solution to automat-

ically generate an optimized feature model (called a

context-specific feature model), that conforms to a given

deployment context. A context-specific feature model

only includes features that make sense in the context.

The features are appropriately cloned depending on

the number of context elements. We propose a model

transformation algorithm which uses as inputs a generic

feature model (representative of a SPL global set of

functionalities), a model of context concepts and an

instance of the model of the context.

We validate our proposal in the context of the devel-

opment of a smart building management system soft-

ware product line (RIDER1 project [10]). The project

aims at creating a global intelligent system to perform

energy optimization.

Section II presents a motivating example from the

RIDER project. Section III presents a global view of

our approach. Section IV details the algorithms used for

performing the adaptation of feature models. Section V

discusses the related work, and Section VI concludes

this paper and gives several perspectives for this work.

1The RIDER project (“Research for IT as a Driver of EneRgy
efficiency”) – http://rider-project.com/ – is led by a consortium of
several companies and R&D laboratories, including IBM and the
LIRMM, interested in improving building energy efficiency.

251

II. MOTIVATING EXAMPLE – A SMART BUILDING

CASE STUDY

A RIDER software product purpose is to enhance

lighting, heating, ventilation and air conditioning usages

to save energy in buildings. A RIDER product is made

of interfaces with building management systems (BMS),

of several optional modules to add further functions

(physical simulation, optimization algorithms, visualiza-

tion tools, etc.), and a component allowing to orchestrate

input and output data. The data orchestration component

purpose is to decide how to manage incoming data and

energy optimization computation results. For example,

the physical simulation module requires data related

to spaces that are instrumented with temperature and

humidity sensors. A RIDER software product uses a

representation of the building it will drive. This rep-

resentation is also called building information model

(BIM). It is able to represent static (e.g., blueprints) as

well as dynamic (e.g., sensor measures) information.
An instance of the building model is used as a

cornerstone to leverage information from building man-

agers and energy optimization experts [2], [6]. It can

gather into a single model information such as: 1) 3D

geometric data for visualization, 2) electric, 3) Heating

Ventilation and Air Conditioning (HVAC), 4) blueprints,

5) various building components along with their size and

physical properties for simulation purposes, 6) cost and

project management-related information.
Each additional module function is modeled in the

RIDER feature model. Some of them are related to the

elements of the BIM. For example, 3D information is

required to provide 3D visualization features. If it is

missing then 3D visualization features are not available.

If the information is available on some parts of the

building, the visualization features are available only

on those parts. When configuring a new product, it is

important to know which parts of the building will be

properly optimized, and to know which new equipments

must be added to allow these features to properly work.

More generally, each feature requires to consider if it

can be duplicated, which context elements determine

how many times it can be duplicated, and which con-

straints must be satisfied by the context element to make

the feature available.
Next section introduces our approach and describes

the four models involved in this approach.

III. APPROACH OVERVIEW

Let us introduce in this section our terminology and

give a general overview of our approach. A generic
feature model (FM) of a software product line appli-

cation represents the features globally available in the

application (called generic features). Each generic fea-

ture can have a semantic relation (depends on) with one

or several context model concepts. A context-specific
feature model (CSFM) represents features relevant to

a given context model instance (called context-specific

features). Each context-specific feature (CSF) of such

a model relates to a generic feature of the FM and,

if this generic feature depends on a context concept,

to one context concept instance. Our purpose is to

automatically generate a CSFM, made of all possible

CSFs, by analyzing associations between features of a

generic feature model with concepts of a context model

(e.g., a building model) and their instances (elements of

a concrete building).

The obtained CSFM allows stakeholders to choose

CSFs for creating a product configuration adapted to

the environment.

Our approach integrates the four models shown in

Figure 1. The context model (CM) describes the context

information that a software product manages. It can

be presented by creating a domain specific language

(DSL) or a UML model. CM is a set of connected

concepts. In our case study, this model is the building

infrastructure model which contains concepts such as,

Building, Storey, Zone, Space, Sensor. It is created with

the help of context domain specialists. Some concepts

are hierarchically related with a specific relation. For

example, we have the hierarchical relation Building →
Storey → Space → Sensor.

Figure 1. Approach overview

The generic feature model (FM) is, for a given CM ,

a multiplicity-based feature model which is based upon

Czarnecki et al. [4] definition. We extended it to make

it possible to associate a feature to a CM concept. This

association has a multiplicity. It is composed of features

(denoted by f) organized in a tree. The root of this

tree is denoted by rf . A feature associated with context

concepts can be duplicated according to the instances

of those concepts and their multiplicity. In our case

study, it is used to describe all the possible features of

an energy optimization software. In our approach, this

model is not directly used to configure a new product.

This model must be first adapted to a specific context,

252

Figure 2. CSFM generation example

which is described by the context model instance.

A feature can be associated to none, one or several

concepts of the CM . It means that the feature can be

duplicated for each instance of an associated concept.

A constraint, associated to a feature, can be used to

determine which properties must have an instance to

duplicate a feature. For example, when CM is written

in UML, constraints are in OCL. A given feature f
can have a group g gathering its sub-features. A group

is used to specify how many grouped features can be

selected.

The context model instance (CMI) is an instance of

the context model. It describes instances of the concepts

of CM . If the CM is similar to a UML class diagram,

the CMI is similar to a UML instance diagram. The

elements of the CMI model are called instances. There

is also a hierarchical relation between the instances of

concepts hierarchically related. The CMI describes the

specific context that will be managed by a software

product. In our case study, it consists in modeling a

specific building that will be managed by a new energy

optimization software product, instance of the software

product line. It is created with the help of building

owners and managers.

The CSFM is a kind of feature model resulting from

the adaptation of FM to a given context CMI . It is

the set of context-specific features (CSF) that can be

chosen to build a new product to be used in a given

context. A CSF associates a feature f , to an instance i.
i must be an instance of one of the concepts associated

to f . If f is not associated to a concept then i = ∅.

The CSFs are organized as a tree whose root is denoted

by rϕ. A CSF ϕ can have a group gϕ gathering its sub-

features. gϕ must be related to an existing group g of

the feature f , f being associated to ϕ. In our case study,

a realistic CMI , of a building b, can have hundreds of

instances that have to be considered to create the CSFM

to configure the product for b. Our approach proposes

an algorithm to generate this model automatically.

The models CM, FM, and CMI are provided as

input of our adaptation process. The output of the

process is a CSFM to be filled to create a new product

configuration. Groups and multiplicities are also adapted

in the CSFM. The constraints associated to concepts are

checked after having generated the CSFM. We do not

detail constraints checking here due to space limitation.

Figure 2 depicts excerpts of a CM , CMI , FM , and

a CSFM . The features TempOptim, ScheduleOptim
and PresenceOptim are associated to the concept Space
(only one link is shown to simplify the diagram). The

CSFM generation algorithm duplicated the feature

sub-tree whose root is TempOptim two times. The

duplicated CSF sub-trees are associated respectively to

the instances s1 and s2.

The next section presents the algorithm generating

CSFMs.

IV. CONTEXT-SPECIFIC FEATURE MODEL

GENERATION ALGORITHM

The CSFM generation algorithm traverses the feature

model in depth-first order. We consider that the models

FM,CMI,CM, and CSFM (which is empty at the

beginning) are global data common to all following

algorithms.

Algorithm 1 initializes the CSFM generation algo-

rithm and returns the resulting CSFM. It creates the

root context specific feature and, for each sub-feature of

the root feature of the feature model, calls the recursive

procedure featureTreeTraversal to build the CSFM.

Algorithm 1: Main procedure of the CSFM gener-

ation algorithm
Input: The models CM, CMI, and FM
Result: A CSFM model built according to the CM,

CMI, et FM models

Initialize an empty CSFM.

rϕ is the root CSF of CSFM, it is associated to the

root feature rf of FM.

foreach sub-feature f of the FM root feature rf do
featureTreeTraversal(f, rϕ)

end

The procedure featureTreeTraversal builds the CSFM

recursively. It requires two parameters: A feature f for

which related CSFs will be created, a CSF ϕparent

which will be the parent of the created CSFs.

253

Procedure featureTreeTraversal(f , ϕparent)

Input: A feature f from which the FM is

traversed. A parent CSF ϕparent, such that

f parent feature is associated to ϕparent.

Result: Updates the CSFM according to the CM,

CMI, and FM models.

if f is not associated to a concept and ϕparent is
not associated to an instance then

ϕ = addSpecificFeature(f, ϕparent,∅)

foreach sub-feature f ′ of f do
featureTreeTraversal(f ′, ϕ)

end
if the CSF parent ϕparent is not associated to an
instance and f is associated to a concept then

foreach instance i that is an instance of the
concept associated to f do

ϕ =
addSpecificFeature(f, ϕparent, i)
foreach sub-feature f ′ of f do

featureTreeTraversal(f ′, ϕ)
end

end
if the CSF ϕparent is associated to an instance
and f is associated to a concept then

foreach instance i which is either the same
instance that is associated to ϕparent and that
is an instance of the concept associated to f ,
or an instance that is hierarchically below the
instance associated to ϕparent and that is an
instance of a concept associated to f do

ϕ =
addSpecificFeature(f, ϕparent, i)
foreach sub-feature f ′ of f do

featureTreeTraversal(f ′, ϕ)
end

end

The CSFs are created differently in three cases:

1) The evaluated feature f is not associated to any

concept and the parent CSF ϕparent is not asso-

ciated to an instance. Then, one CSF is created,

and the procedure is called recursively for each

sub-feature of f .

2) The parent CSF ϕparent is not associated to an

instance and the evaluated feature f is associated

to a concept. Then, a CSF is created for each

instance whose concept is associated to f , and the

procedure is called recursively for each instance

and for each sub-feature of f .

3) The parent CSF ϕparent is associated to an in-

stance and the evaluated feature f is associated

to a concept. A CSF is added either with the

same instance as ϕparent or with each context

concept instance which is hierarchically below the

instance associated to ϕparent. The procedure is

then called recursively for each sub-feature of f
and for each instance hierarchically below ϕparent

instance.

The function addSpecificFeature creates, and returns,

a new CSF in the CSFM. It requires three parameters:

the feature f which will be referenced by the CSF, the

parent CSF ϕparent, and an instance that will be also

referenced by the CSF. As seen before, a CSF references

a feature, and either an instance or nothing. First, a new

CSF ϕ is created. Its parent CSF is ϕparent, and it is

associated to f and i. The lower bound of its multiplicity

is equal to the maximum between the lower bounds of

the multiplicity on the relationship between the concept

whose i is the instance and f , and of the multiplicity

on f . The upper bound of its multiplicity is equal to the

minimum between the upper bounds of the multiplicity

on the relationship between the concept whose i is the

instance and f , and of the multiplicity on f .

Then, the procedure addNewCSFtoGroup is called to

add the new CSF to a group if f belongs to a group in

the FM . If the new CSF is associated to an instance,

it also must belong to a group whose multiplicity is

the same as the feature associated to the new CSF.

This group does not exist in the FM . Its purpose is to

transpose in the CSFM the multiplicity of the feature f
to guarantee that the number of CSF that can be chosen

in a configuration respects f multiplicity.

The procedure addNewCSFtoGroup updates the

CSFM by creating groups considering those existing in

the FM. It takes two parameters: the new CSF ϕ, and its

parent ϕparent. If the feature f associated to ϕ belongs

to a feature group g then ϕ must also belong to a group

gϕ related to g. The group is created only when there

is at least two CSF in it. Otherwise, the CSF is either

mandatory or optional according to f multiplicity.

V. RELATED WORK

Formal semantics of feature models have been de-

fined in [13] for many different kinds of feature models.

We chose a semantics based upon Czarnecki et al.

cardinality-based feature models [4] as described in ou

previous work [14]. They created a staged configuration

process [5] in which they specialize the feature model to

restrict the multiplicity of features. It is not applicable

to our situation, because a CSFM is not a specialization

of a generic feature model. Indeed, each context-specific

feature adds information about the context concept

254

Function addSpecificFeature(f , ϕparent, i) : ϕ

Input: a feature f , a CSF ϕparent, and an

instance i
Output: Updates the CSFM with a new CSF, and

returns the new CSF.

Creates a new CSF ϕ, sub-CSF of ϕparent,

associated to the feature f and the instance i.
The lower bound of its multiplicity is equal to the

maximum between the lower bounds of the

multiplicity on the relationship between the

concept whose i is the instance and f , and of the

multiplicity on f . The upper bound of its

multiplicity is equal to the minimum between the

upper bounds of the multiplicity on the

relationship between the concept whose i is the

instance and f , and of the multiplicity on f .

The procedure addNewCSFtoGroup(ϕ,ϕparent)
is called to add ϕ to a group is f belongs to a

group in the FM .

if ϕ is associated to an instance then
if there is no existing CSF group in ϕparent in
which there is other CSF associated to the
same feature then

Adds ϕ to the CSF group.

else
Creates a CSF-group with the same

multiplicity as f , and adds ϕ to this group.

end
end
return ϕ

Procedure addNewCSFtoGroup(ϕ, ϕparent)

Input: The CSF ϕ and ϕparent such that ϕ must

be a sub-CSF of ϕparent.

Result: Updates the CSFM to make ϕ a sub-CSF

of ϕparent.

Let f being the feature associated to ϕ.

if f belongs to a feature group g then
if there is a CSF group gϕ in ϕparent related
to g then

Adds ϕ to the group gϕ.

else
Creates a new CSF group related to the

group g, and adds ϕ and ϕ′ to this group.

end
end

instance it is associated with. Even if our case study

does not require it, we could use our work to automate a

staged-configuration process. The generic feature model

could be specialized into a refined generic feature model

before generating the CSFM, and the CSFM could be

specialized into a refined CSFM and configured through

a staged configuration process.

There are several solutions allowing to perform prod-

uct configuration choices according to a given context.

Voelter et al. [15] detail an approach where negative

and positive variability are used to remove or add

concepts to a custom DSL which seems to correspond

to our business model. However, their approach could

not solve our concerns because we needed to adapt the

feature model. We address the opposite concern, we

adapt the feature model to an imposed business model.

Acher et al. [1] work in the context of self adaptive

and dynamic systems. They bind a context model,

modeled with a feature model, with a feature model

describing the application. They are interested by run-

time adaptation while we are concerned by the design

time adaptation. Changes applied in the context feature

model are automatically reflected on the application

configuration model thanks to ECA rules [12]. We

propose to adapt the feature model rather than a con-

figuration model. In our case, the context is a business

model provided by some stakeholders. This model is

also used by the application to describe the managed

data and not specifically created for the product line

specification.

Quinton et al. [11] derive software products in the

context of applications for mobile phones. They con-

sider a feature model for the application and a feature

model for mobile devices. They configure and gener-

ate an application model using the application feature

model, and then check if the model is consistent with

a set of mobile devices represented by the mobile

device feature model. We address a different problem:

the business model (e.g., a building model) is imposed

and we have to propose to the stakeholders a feature

model adapted to the business model, in order to allow

them to configure an application consistent with their

environment.

VI. CONCLUSION

We presented in this paper an approach able to adapt

generic feature models to a business context. It allows

us to produce a CSFM according to a context model

instance representing the context in which the future

product will run. Our approach allows to automatically

determine whether each feature related to a context

concept can be cloned in a given context by checking

255

constraints against context concept instances. Hence,

each generated product configuration is specific to the

instance of the context model it has been made with.

Then, it enables us to generate software product ar-

chitectures and implementations specific to a context.

This approach automates a process that would otherwise

requires to compare hundreds of features with hundreds

of context concept instances.

Our methodology has been designed in a generic way

to be reused in different domains. The prototype has

been implemented with UML models and UML profiles,

for modeling the context model and the generic feature

model. We developed a tool as an Eclipse RCP platform.

The Eclipse RCP platform takes as input the XML files

representing the business model and the feature model.

They are generated by an XSLT transformation from

the XMI versions of the UML models.

We validated our approach in the RIDER project on

a building meta-model used to describe smart build-

ings. The building meta-model has been modeled as

a UML model on which classes and associations were

stereotyped to represent navigable elements. The feature

model was built with our UML profile for feature

models [14].

Next, we intend to create views on the CSFM to

facilitate feature selection. They could show features re-

lated to a stakeholder concern, or allow choosing several

features at the same time, e.g., all the clones of a feature.

In future work, we want to enable the configuration

of new products according to features existing in other

products to facilitate their interoperability.

REFERENCES

[1] M. Acher, P. Collet, F. Fleurey, P. Lahire, S. Moisan, and
J. P. Rigault. Modeling context and dynamic adaptations
with feature models. In 4th International Workshop
Models@ run. time at Models, volume 9, 2009.

[2] António Grilo and Ricardo Jardim-Goncalves. Challeng-
ing electronic procurement in the AEC sector: A BIM-
based integrated perspective. Automation in Construc-
tion, 20(2):107–114, Mar. 2011.

[3] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker.
Generative programming for embedded software: An
industrial experience report. In D. Batory, C. Consel,
and W. Taha, editors, Generative Programming and
Component Engineering, volume 2487, pages 156–172.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[4] K. Czarnecki, S. Helsen, and U. Eisenecker. Formal-
izing cardinality-based feature models and their staged
configuration. University of Waterloo, 2004.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration using feature models. In Lecture notes in
computer science, volume 3154, page 266–283, 2004.

[6] Daniel Kullmann and Henrik W. Bindner. Using rules
in high-level communication for the control of power
systems. In Proceedings of the 2nd International Con-
ference on Microgeneration and Related Technologies,
2011.

[7] P. Fernandes, C. Werner, and E. Teixeira. An ap-
proach for feature modeling of context-aware software
product line. Journal of Universal Computer Science,
17(5):807–829, 2011.

[8] Z. Jaroucheh, X. Liu, and S. Smith. Mapping features to
context information: Supporting context variability for
context-aware pervasive applications. In Web Intelli-
gence and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference on, volume 1,
pages 611 –614, 2010.

[9] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented
product line engineering. IEEE software, page 58–65,
2002.

[10] T. Possompès, C. Dony, M. Huchard, H. Rey, C. Tiber-
macine, and X. Vasques. Towards software product
lines application in the context of a smart building
project. Proceedings of the 2nd International Workshop
on Model-driven Product Line Engineering (MDPLE
2010), pages 73—84, 2010.

[11] C. Quinton, S. Mosser, C. Parra, and L. Duchien. Us-
ing multiple feature models to design applications for
mobile phones. In Proceedings of the 15th International
Software Product Line Conference, Volume 2, SPLC ’11,
page 23:1–23:8, New York, NY, USA, 2011. ACM.

[12] Raphael Romeikat, Bernhard Bauer, and Henning San-
neck. Modeling of domain-specific ECA policies.
In Proceedings of the 22nd International Conference
on Software Engineering and Knowledge Engineering
(SEKE 2011), pages 52—58, Miami Beach, USA, July
2011.

[13] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-
temps. Generic semantics of feature diagrams. Computer
Networks, 51(2):456–479, Feb. 2007.

[14] Thibaut Possompès, Christophe Dony, Marianne
Huchard, and Chouki Tibermacine. Design of a
UML profile for feature diagrams and its tooling
implementation. In Software Engineering and
Knowledge Engineering (SEKE 2011), pages 693—698,
Miami, FL, USA, 2011.

[15] M. Voelter and I. Groher. Product line implementation
using aspect-oriented and model-driven software devel-
opment. In Software Product Line Conference, 2007.
SPLC 2007. 11th International, pages 233–242. IEEE,
2007.

256

An ADM-based Method for migrating CMS-based
Web applications

Feliu Trias
Kybele Research Group
C/Tulipán, s/n, 28933,

Móstoles, Madrid (Spain)
(+34) 91 488 93 59
feliu.trias@urjc.es

Valeria de Castro
Kybele Research Group
C/Tulipán, s/n, 28933,

Móstoles, Madrid (Spain)
(+34) 91 488 81 18

valeria.decastro@urjc.es

Marcos López-Sanz
Kybele Research Group
C/Tulipán, s/n, 28933,

Móstoles, Madrid (Spain)
(+34) 91 488 82 34

marcos.lopez@urjc.es

Esperanza Marcos
Kybele Research Group
C/Tulipán, s/n, 28933,

Móstoles, Madrid (Spain)
(+34) 91 664 74 91

esperanza.marcos@urjc.es

Abstract— In the last years many organizations have
implemented their Web applications on Content Management
Systems (CMSs) because of their efficiency for managing huge
amount of digital content. Hence, these platforms have increased
their presence in the market and currently we can find a vast
number of different CMS platforms. In this context, it is very
easy to find organizations which experiment the necessity to
migrate their CMS-based Web applications to another CMS
platform which meets better their needs. This software migration
follows a complex and often very expensive, time-consuming and
error-prone process of reengineering. Hence, in the last ten years
many methods trying to minimize these disadvantages have
appeared in the literature, but none of them is focused in the
features of the CMS-based Web applications. To solve it, we
present a method for migrating CMS-based Web applications to
different CMS platforms in an automatic manner. This method
follows the principles of the Architecture-Driven Modernization
(ADM), the initiative proposed by the Object Management
Group (OMG). To show the feasibility of our method we present
a case study where we take a medium-size CMS-based Web
application implemented in Drupal and we migrate part of its
presentation aspect to Joomla!.

Keywords-Content Management System; Web application;
Architecture-Driven Modernization; Reverse Engineering and
Model-driven Engineering.

I. INTRODUCTION
Over the last years, the number of Web applications

developed by industry has increased dramatically. Furthermore,
the volume of digital content has also grown rapidly.
Therefore, organizations have experienced the need of using
strong management platforms to maintain their large-scale Web
applications and manage all their content in a robust and
reliable manner [1]. One of the most popular adopted solutions
has been the use of Content Management Systems (CMS) as
platforms to base their Web applications [2]. These CMS-based
Web Applications allow users to collect, manage and publish
content in an integral way. This new kind of Web applications
provides features that distinguish them from the traditional
Web applications. According to [3] some of these features are:
the dynamic creation of content; the explicit separation
between content and design; and, the flexibility of the
functionality extension.

CMS platforms are evolving continuously, so that we can
find a large number of them in the market offering diverse

facilities [4]. Organizations often need to migrate from their
legacy CMS-based Web application to another target CMS
platform because their current CMS platform has become
obsolete and it does not meet their needs. Therefore, they find
it necessary to start a software reengineering process.

The problem is that pretty often this reengineering process
is carried out following an ad-hoc manner that entails
expensive costs and high risks for the organization [5]. For this
reason, the Object Management Group (OMG) proposes the
Architecture-Driven Modernization (ADM) an initiative which
advocates for the application of MDA (Model-Driven
Architecture) [6] techniques and tools to formalize the software
reengineering process. ADM provides several benefits such as
reducing development and maintenance costs and extending the
life cycle of the legacy systems [7].

After the performance of a literature review, we realized
that there are software reengineering methods that try to
standardize and formalize the reengineering process, but none
of them is focused on the migration of CMS-based Web
applications [8] in spite of the specific features of these Web
applications and the clear increasing use of them in the market.
Although, it is possible to find in the literature methods
following the ADM principles, very few can be considered as
full-fledged ADM methods.

To solve this gap, in this paper we present a complete
ADM-based reengineering method for the migration of a CMS-
based Web application to a different CMS platform. Our
ADM-based method cope with the three classical reverse
engineering phases following a “horseshoe” process [9]: (a)
Reverse engineering phase, that consists of knowledge
abstraction, (b) Restructuring phase, to modify the system
taking into account the features of the target CMS platform. In
this phase we define the CMS Model, one of the cornerstones
of our method. This model conforms to the CMS Common
Metamodel presented in [10]; and (c) Forward engineering
phase, to address the generation of the new system containing
new features.

To show the feasibility of our method, we apply our method
over a medium-size Web application implemented in Drupal
[11] with the intention of migrating part of its presentation
aspect to Joomla! [10]. We focus in how to extract models
from its PHP code and from its configuration files as well as to

257

migrate the structure of directories and other software artifacts
to the target CMS platform.

The rest of this paper is organized as follows: Section II
provides an explanation of ADM principles focusing on the
standard metamodels. Section III explains the related works.
Section IV presents the features of Common CMS Metamodel.
Section V presents our ADM-based reengineering method.
Section VI shows the feasibility of our method with the
application to a medium-size case study and, finally, Section
VII presents the conclusions and future works.

II. ARCHITECTURE-DRIVEN MODERNIZATION
The Object Management Group (OMG) proposes the

Architecture-Driven Modernization (ADM) an initiative which
advocates for the application of MDA (Model-Driven
Architecture) [2] principles to formalize the software
reengineering process. ADM provides several benefits such as
reducing development and maintenance costs and extending the
life cycle of the legacy systems [3]. ADM develops seven
standard metamodels to represent the information involved in a
software reengineering process, but only three of them are
available: Abstract Syntax Tree Metamodel (ASTM) [4],
Knowledge Discovery Metamodel (KDM) [5] and Structured
Metrics Metamodel (SMM) [6]. These metamodels allow
developers to save time and effort creating their own
metamodels [7]. In this paper we focus on models which
conform to ASTM (ASTM models) and KDM (KDM models).

ASTM [13], is the metamodel which represents a low-level
view of the system. It allows the representation of the source
code’s syntax of a software system. To obtain an ASTM model
it is necessary to define text-to-model (T2M) transformations
that let the mapping between the code’s grammar and the
ASTM models. These models reduce the complexity to
generate models at higher abstract level, such as KDM models.

KDM [14] lets you represent semantic information about a
software system. It provides a common interchange format
intended to represent existing software assets, allowing tool
interoperability at PIM level. KDM comprises several packages
(e.g. core, kdm, source, code or action) to improve modularity
and separation of concerns. KDM models are generated by
using model-to-model (M2M) transformations that extract
information from ASTM models.

III. RELATED WORKS
After performing a literature review, we found a set of

model-driven methods related to the reengineering of Web
applications.

In [24] is presented a method to reverse engineer Web
applications in order to extract their conceptual models by
using WebML notation. This method extracts models from
ASP.NET web pages. In [25] we find a model-driven
reengineering method based on the Object-Oriented
Hypermedia Design Method (OOHDM) to personalize existent
Web applications. This method is applied over Web
applications developed over Web application frameworks
based on MVC pattern (such as struts, or blueprints: Java, JSP
and XML). In [26] is presented a model-driven method
allowing the migration between a traditional Web application

and a Rich Internet application. This method is applied over
Struts-based Web applications. [27] is a model-driven method
to reverse engineer user interfaces. It generates models
implemented by User Interface Description Language
(UsiXML). In [28] is proposed a model-driven semi-automatic
redesign method to improve the design of existing Web
applications. The method analyzes the client side HTML pages
to recover its conceptual model according to the Ubiquitous
Web Applications design methodology (UWA). This method
allows the migration of Web applications to a MVC-pattern.
Finally, [29] proposes a model-driven engineering method to
perform reverse engineering of Rapid Application
Development (RAD)-built GUIs, which is focused on
discovering the implicit layout, and produces a GUI model
where the layout is explicit. This method allows extracting
models from Oracle Forms and Borland Delphi code.

With this review we realized that ADM principles are
embodied in the existing reverse engineering methods since
they use models at different abstraction level (mainly at PSM
and PIM levels) and try to automate their processes using T2M
and M2M transformations, but they scarcely use the standards
metamodels proposed by ADM (ASTM and KDM). Just [26]
considers models at KDM level. Finally, it is worth noting that
[26] uses MoDisco to generate KDM models and [29]
implements T2M transformations using Gra2MoL.

IV. CMS COMMON METAMODEL
As it is said in the introduction, our method is focused on

CMS-based Web applications which provide with a set of
specific features that differ from traditional Web applications
according to [3]: (1) the dynamic creation of content, content is
created and added dynamically by non-technical users of the
Web, without requiring the intervention of the webmaster, (2)
separation between content and design, the page graphical
design is stored in a template and the content is stored in a
database or a separate document. and (3) functionality
extension, is in a CMS-based Web application among their
most valuable features, achieved through module addition. This
ensures quick content deployment and provides means for
flexible extension, besides promoting efficiency and reducing
development costs. In [10] we present the CMS Common
Metamodel which defines the key concepts for modeling CMS-
based Web applications. Therefore, the CMS Common
Metamodel captures elements such as, theme, vocabulary or
module, and other specific elements of the CMS domain. These
elements are classified in five different concerns: (1)
navigation, which considers the elements that define the
navigational structure of the Web application, (2) presentation,
which defines the structure and look-and-feel of the Web
pages, (3) content, that captures the data and data type of the
information managed by the CMS-based web application, (4)
user, defines the elements related to roles of the users and their
permissions and (5) CMS behavior, that contains the elements
that allow the definition of the different functions performed by
the Web application. For lack of space, we present in Figure 1
just an excerpt of the presentation concern.

At the restructuring phase of our ADM-based method we
define the CMS Model that conforms to the CMS Common
Metamodel. This CMS Model allows developers to represent

258

the knowledge extracted from the CMS-based Web application
in the CMS domain and it lets the refinement and restructuring
of this knowledge to a target CMS platform.

Figure 1. CMS Common Metamodel excerpt

V. ADM-BASED METHOD
The method proposed in this paper is defined as a

“horseshoe” process of reengineering composed of a set of
steps gathered in the three classical reverse engineering phases
as is shown in Figure 2: (1) reverse engineering phase, (2)
restructuring phase; and (3) forward engineering phase. In this
section, we present these set of steps:

A. Reverse engineering phase
This phase is composed of three steps: (1) knowledge

extraction, (2) the automatic generation of the KDM models
and (3) the automatic obtainment of the CMS Model.

1) Knowledge extraction: In this phase, we define the T2M
transformations which allow us to map the code to an ASTM
model. To perform these transformations we use Gra2MoL
(Grammar to Model Language) [15] and the Xtext framework
[16]. Gra2MoL is a rule-based Domain Specific Language
(DSL) [17] like ATL [18] that integrates a query language
specially tailored to construct models from source code
represented as a parse tree. We use Gra2MoL to extract an
ASTM model from the configuration files of the CMS-based
Web application. Otherwise, we use the Xtext framework to
define the code’s grammar, such as PHP grammar, from which
we obtain a tooling (a metamodel, a parser and an editor) that
allows us to implement in Java a model extractor to extract
ASTM models from the source code.

2) Automatic generation of KDM models: Mainly, the

KDM models are generated from the ASTM models by means
of M2M transformations. In our method these transformations
are implemented in ATL. The two KDM models that we
consider are: the Code Model and the Inventory Model. The
Code Model represents the software system’s source code at
PIM level. The Code Model is composed of elements from the
code and action packages of KDM so that it does not contain
elements representing specific statements or expressions of a
particular programming language. Otherwise, the Inventory
Model is a catalog of the system’s software artifacts (e.g.
source files, images, configuration files and directories) that

allow us to represent the architecture of the CMS-based Web
application. This model is composed of the elements from the
source package of KDM. We use the tool MoDisco [20] to
obtain automatically this model. Modisco is an Eclipse plug-in
for model-driven reverse engineering which lets generate the
Inventory Model directly from the source code.

3) The automatic obtainment of the CMS Model: In this

step we extract the knowledge captured in the Code Model and
Inventory Model and we generate automatically the CMS
Model, conforms to the CMS Common Metamodel. This CMS
Model allows us to represent the knowledge within the CMS
domain. To obtain automatically this model we define a set of
M2M transformations implemented in ATL.

B. Restructuring phase
The CMS Model can be manually restructured by the

developer taking into account the features of the target CMS
platform. As it is shown in Figure 2, we obtain a restructured
CMS Model. This CMS model conforms to the CMS Common
Metamodel which provides with the required and common
elements of the CMS domain.

C. Forward engineering phase
In this phase the top-down development process starts. We

can highlight three main steps: (1) the automatic generation of
the target KDM models, (2) the automatic obtainment of the
target ASTM model and (3) code generation. The M2M
transformations performed within this phase are implemented
in ATL. For clarity reasons, from now on, the models inherited
from the reverse engineering phase will be called as legacy
ASTM models (legacy Code Model and legacy Inventory
Model). On the other hand, the models obtained in this phase
will be called as target ASTM models (target Code Model and
target Inventory Model).

1) The automatic generation of the target KDM models:
From the CMS Model we generate automatically, by M2M
transformations, the target Code Model and the target
Inventory Model that represents the new implementation of the
CMS-based Web application. Moreover, it is necessary to
define horizontal M2M transformations at KDM level. These
transformations allow us to obtain extra knowledge to generate
correctly these target KDM models. As we can see in Figure 2,
M2M transformations are defined between the legacy KDM
models and the target KDM models.

2) The automatic obtainment of the target ASTM model: In

this task we generate automatically the target ASTM model
from the target Code Model and the target Inventory Model by
means of M2M transformations. As we can see in Figure 2, to
generate this target ASTM model is also necessary to obtain
extra knowledge from the legacy ASTM model at ASTM level
by means of horizontal M2M transformations.

3) Code generation: In this step we generate the software

artifacts (e.g. source files, images, configuration files and
directories) that compose the architecture of the target CMS-

259

based Web application. These artifacts are generated from the
target Inventory Model and the code that implements them are
obtained automatically from the target ASTM model. This
automatic generation of artifacts and code is carried out by
model-to-text (M2T) transformations implemented by
MOFScript [21] as is shown in Figure 2.

Figure 2. ADM-based method

VI. CASE STUDY
In order to illustrate our ADM-based method, we consider a

medium-size CMS-based Web application about health and
wellbeing called Websana that allows us to show the feasibility
of our method. It is implemented in Drupal and our intention is
to migrate part of the presentation aspect of the Web
application from Drupal to Joomla!. We have selected these
two CMS platforms because they are two of the most used
open-source CMS platforms in the market [4].

In Drupal the presentation aspect is represented by themes
which are directories located in the following path
drupal_project_name\site\all\themes within the Drupal project.
A theme is composed of a set of files and directories that
determines the structure and look-and-feel of the Web pages.
Two types of files composing a Drupal theme are: .info files
(which are configuration files defining the meta-information)
and php files (template.php).

On the other hand, the themes in Joomla! (in Joomla!
domain are called templates) are also represented by directories
located in the path joomla_project_name\templates. A theme in
Joomla! also provides with configuration files, called
templateDetails.xml and php files.

For lack of space, we focus this case study in the following
steps of our ADM-based method: (a) knowledge extraction, (b)
the automatic generation of the KDM models, (c) the automatic
obtainment of the CMS Model, (d) the automatic generation of
the target KDM models and (e) code generation.

A. Knowledge extraction
The main goal of this step is to extract the ASTM models

from the code of the .info files and the php files that

implements a theme. Firstly, to extract the ASTM model from
the .info files, we implemented a set of T2M transformations by
using Gra2MoL. Our first task was to define the grammar that
specifies the syntax of the code of the .info files using the
language ANTLR [22]. This code is composed of sentences
with the following structure: variable = value. Figure 3 shows
the transformation rule implemented in Gra2MoL that
transforms a set of statements of the .info file of the danland
theme into VariableDefinition elements of the ASTM model.

Figure 3. Gra2MoL transformation rule

Secondly, to extract the ASTM model from the php code
we implemented a model extractor in Java. To implement this
model extractor we carried out three activities: 1) definition of
the PHP grammar, 2) mapping of PHP grammar elements to
elements of ASTM, and 3) implementation of the model
extractor. For the definition of the PHP grammar we used the
Xtext framework. Using this framework we obtained
automatically three artifacts: 1) a metamodel, 2) a textual editor
and 3) a PHP parser that allow us to recognize the elements of
the PHP grammar from code written in php.

Figure 4. Parser to extract the ASTM model from PHP code

The PHP parser facilitated us the implementation of the
model extractor. In the second activity we defined the
mappings between the elements of the PHP grammar and the
elements of ASTM. At the time of defining these mappings we
realized that some elements from the PHP grammar cannot be
mapped to elements of ASTM. For that reason, we extended
the ASTM with the specific elements of the php code
(ASTM_PHP). Finally, in the third activity we implemented in
Java the model extractor to obtain ASTM models from PHP
code. For its implementation we use: 1) the PHP parser

260

obtained in the first activity and 2) the API in Java obtained
automatically from ASTM by using the Eclipse Modeling
Framework (EMF) [22], to generate the elements of the ASTM
models. Figure 4 shows the transformation of a function
definition contained in the template.php file (of the danland
theme) into a FunctionDefinition element in the ASTM model.

B. The automatic generation of the KDM models
For lack of space, we only show the extraction of the legacy

Inventory Model by using MoDisco. As it is said previously,
this model represents the architecture and software artifacts of
the CMS-based Web application. It is composed of
AbstractInventory elements, e.g. BinaryFile, ExecutableFile,
and AbstractInventory relationships. It is worth noting that all
the AbstractInventory elements are provided with an attribute
called path which contains the location of the element in the
project’s structure which is necessary to find out the directories
which represent themes.

Figure 5.a) shows an extract of the directory hierarchy of
Websana. In this case, we see the following themes: danland,
fusion, marinelli and tao. Figure 5.b) shows an excerpt to
indicate the correspondence with the legacy Inventory Model.

Figure 5. Legacy Inventory Model

C. The automatic obtainment of the CMS Model.
The next step was to generate automatically the CMS

Model from the legacy Inventory Model. The CMS Model
represents the extracted knowledge within the CMS domain
and allows developers the refinement of the CMS-based Web
application according to the features of the target CMS
platform. In this case study we select the directories located in
drupal_project_name\site\all\themes which represent themes
and we represent them as theme elements in the CMS Model.
To do this, we define M2M transformations implemented in
ATL. Figure 6 shows the CMS Model by using a hierarchical
editor where we can observe the four themes generated from
the legacy Inventory Model.

Figure 6. CMS Model

D. The automatic generation of the target KDM models.
In this step we obtained automatically the target Inventory

Model from the CMS Model. The target Inventory Model was

generated considering the architecture and the software
artifacts of the target CMS platform. We implemented in ATL
a set of M2M transformations to generate this Inventory
Model. Figure 7.a) shows an excerpt of the CMS Model and
Figure 7.b) is an extract of the target Inventory Model over
Joomla!.

Figure 7. Target Inventory Model

E. Code generation.
In this step we generated the architecture and the software

artifacts implementing the target CMS-based Web application
from the target Inventory Model. To do that, we defined M2T
transformations implemented in MOFScript. Figure 8 shows a
M2T transformation rule that generates the templateDetails.xml
file, one of the configuration files of a theme in Joomla!.

Figure 8. MOFScript transformation

VII. CONCLUSIONS
The use of CMS-based Web applications has grown in the

last decade because organizations have experienced the
necessity of using strong management tools to maintain their
large-scale Web applications and manage all their huge amount
of digital content in a reliable manner. Besides, these
organizations usually carry out migration processes to other
CMS platforms which meet better their needs. The problem is
that this migration processes are performed following an ad-
hoc manner that entails expensive costs and high risks for the
organization. In the literature, we find methods that address the
formalization of this migration process to reduce costs and
risks, but none of them is focused on the specific features of the
CMS-based Web applications.

To solve this gap, we present a method for the migration of
a Web application from a CMS platform to another one. Our
method is based on the ADM principles since it provides
powerful techniques to extract knowledge from legacy systems
and to automate the migrating process. This method cope with
the three classical reverse engineering phases following a
“horseshoe” process: (a) Reverse engineering phase, (b)
Restructuring phase and (c) Forward engineering phase.

In the reverse engineering phase we obtain the legacy
ASTM models and legacy KDM models. To extract the ASTM
models from the source code we define a set of rules in

261

Gra2MoL and we implemente a model extractor in Java. As we
present in the case study, we use Gra2MoL language to extract
the ASTM model from the code of the configuration files (.info
files) and we use the model extractor to extract the ASTM
model from php files. We have proven the effectiveness of
Gra2MoL and its ease of use. The only disadvantage is the lack
of documentation. Otherwise, the PHP parser obtained by
Xtext has facilitated us the implementation of the model
extractor. The two KDM models we use in our method are:
Code Model and Inventory Model. To obtain the Code Model
we define M2M transformations (implemented in ATL) from
the ASTM models and to generate the Inventory Model we use
MoDisco.

In the restructuring phase, we propose the use of the CMS
Model, which conforms to the CMS Common Metamodel,
which allows developers to adapt a CMS-based Web
application to a target CMS platform.

During the forward engineering phase, we have required to
define horizontal M2M transformations at KDM and ASTM
levels to obtain correct models. To generate code we use
MOFScript.

As future work we can consider the complete
implementation of our method to achieve the migration of all
the elements that compose a CMS-based Web application from
one CMS platform to another one.

ACKNOWLEDGMENT
This research has been partially funded by the Project

MASAI (TIN-2011-22617) from the Spanish Ministry of
Science and Innovation.

REFERENCES
[1] S. McKeever, “Understanding Web content management systems:
evolution, lifecycle and market,” Industrial Management & Data
Systems, vol. 103, no. 9, pp. 686–692, 2003.
[2] B. Boiko, “Understanding Content Management,” Bulletin of the
American Society for Information Science and Technology, vol. 28, no.
1, pp. 8–13, 2001.
[3] R. Vidgen, S. Goodwin, and S. Barnes, “Web Content
Management,” in 14th Bled Electronic Commerce Conference, 2001.
[4] R. Shreves, “Open Source CMS Market Share,” Bali, Indonesia,
2011.
[5] H. M. Sneed and A. Gmbh, “Estimating the Costs of a
Reengineering Project,” in 12th Working Conference on Reverse
Engineering, 2005.
[6] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-Driven
Architecture,” in Advances in Object-Oriented Information Systems,
2002, Lecture No., vol. 2426, pp. 233–239.
[7] R. Pérez-castillo, I. García, R. De Guzmán, D. Caivano, and M.
Piattini, “Database Schema Elicitation to Modernize Relational
Databases,” in 14th International Conference on Enterprise Information
Systems, 2012, pp. 126–132.
[8] F. Trias, V. De Castro, M. López-sanz, and E. Marcos, “A
Systematic Literature Review on CMS-based Web Applications,” in
ICSOFT, 2013.
[9] E. J. Chikofsky and J. H. Cross, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17.

[10] F. Trias, “Building CMS-based Web Applications Using a Model-
driven Approach,” in Sixth International Conference on Research
Challenges in Information Science (RCIS), 2012, pp. 1 – 6.
[11] “Drupal CMS.” [Online]. Available: http://drupal.org/.
[12] “Joomla! CMS.” [Online]. Available: http://www.joomla.org/.
[13] “Abstract Syntax Tree Metamodel specification of the OMG.”
[Online]. Available: http://www.omg.org/spec/ASTM/1.0.
[14] R. Pérez-Castillo, I. G.-R. de Guzmán, and M. Piattini,
“Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to
modernize legacy systems,” Computer Standards & Interfaces, vol. 33,
no. 6, pp. 519–532, Nov. 2011.
[15] J. L. Cánovas Izquierdo, J. Sánchez Cuadrado, and J. García
Molina, “Gra2MoL�: A domain specific transformation language for
bridging grammarware to modelware in software modernization,” in
MODSE, 2008, pp. 1–8.
[16] E. Moritz and H. Behrens, “Xtext - Implement your Language
Faster than the Quick and Dirty way Tutorial Summary,” in ACM
international conference companion on Object oriented programming
systems languages and applications companion, 2010, pp. 307–309.
[17] A. van Deursen and P. Klint, “Domain-Specific Language Design
Requires Feature Descriptions,” Journal of Computing and Information
Technology, vol. 10, no. 1, pp. 1–17, 2002.
[18] “Atlas Transformation Language.” [Online]. Available:
http://www.eclipse.org/atl/.
[19] R. Pérez-Castillo, I. G.-R. de Guzmán, and M. Piattini,
“Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to
modernize legacy systems,” Computer Standards & Interfaces, vol. 33,
no. 6, pp. 519–532, Nov. 2011.
[20] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco� : A
Generic And Extensible Framework For Model Driven Reverse
Engineering,” in International conference on Automated software
engineering - ASE ’10, 2010, pp. 173–174.
[21] A.-J. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., Berre,
“Toward Standardised Model to Text Transformations,” in Model
Driven Architecture – Foundations and Applications, 2005, vol. 3748,
pp. 239–253.
[22] T. J. Parr and R. W. Quong, “ANTLR: A Predicated-LL(k) Parser
Generator,” Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.
[23] F. Budinsky, “Eclipse Modeling Framework,” vol. 2nd Editio.
Addison-Wesley Professional, 2008.
[24] T. Katsimpa, Y. Panagis, E. Sakkopoulos, G. Tzimas, and A.
Tsakalidis, “Application modeling using reverse engineering
techniques,” in Proceedings of the 2006 ACM symposium on Applied
computing - SAC ’06, 2006, pp. 1250–1255.
[25] A. Martin, “A Model-Driven Reengineering Approach to Web Site
Personalization,” in Third Latin American Web Congress, 2005.
[26] R. Rodríguez-Echeverría, P. J. Clemente, J. C. Preciado, and F.
Sánchez-Figueroa, “Modernization of Legacy Web Applications into
Rich Internet Applications,” in International Conference on Web
Engineering, 2011, pp. 236–250.
[27] L. Bouillon, Q. Limbourg, J. Vanderdonckt, and B. Michotte,
“Reverse Engineering of Web Pages based on Derivations and
Transformations,” in Third Latin American Web Congress, 2005.
[28] M. L. Bernardi, G. A. Di Lucca, and D. Distante, “Improving the
Design of Existing Web Applications,” in Seventh International
Conference on the Quality of Information and Communications
Technology, 2010, pp. 499–504.
[29] Ó. Sánchez Ramón, J. Sánchez Cuadrado, and J. García Molina,
“Model-driven reverse engineering of legacy graphical user interfaces,”
in International conference on Automated software engineering -
ASE ’10, 2010, pp. 147–150.

262

BeMoRe: a Repository for Handling Models
Behaviors

Youness Bazhar
LIAS/ISAE-ENSMA

Futuroscope, FRANCE

Email: bazhary@ensma.fr

Yamine Aı̈t-Ameur
IRIT/INP-ENSEEIHT

Toulouse, FRANCE

Email: yamine@enseeiht.fr

Stéphane Jean
LIAS/University of Poitiers

Futuroscope, FRANCE

Email: jean@ensma.fr

Abstract—With the increasing size of models and their in-
stances, the management of models in databases becomes a
necessity. Persistent Model Management Systems (PMMS) aim
at providing a persistent environment for the management of
instances, models and metamodels. They consist of (1) a database
that stores metamodels, models and their instances, and (2) an
associated exploitation language for manipulating these different
abstraction layers. Several PMMS have been proposed in the
literature but they currently mostly focus on the structural
definition of models and metamodels in terms of (meta-)classes
and (meta-)attributes. The behavioral semantics that consists
of associating operations to models and metamodels elements
is currently mostly not supported or only partially supported
(by a set of predefined hard coded operations or by imposing
a single programming language). In this paper, we propose
an extension of PMMS to support the definition of behavioral
semantics of models and metamodels using a wide range of
programming possibilities. Our approach consists of introducing
dynamically user-defined operations that can have multiple and
heterogeneous implementations (e.g., external programs or web
services). As a consequence, this extension enhances PMMS giving
them more coverage and further flexibility. Our proposal has been
implemented in a PMMS called BeMoRe and several experiments
have been run to analyze the scalability of this PMMS.

Keywords—model management; meta-modeling; database

I. INTRODUCTION

Models are widely used in software engineering to design
software components such as database schemes or user inter-
faces. This involves operations on models such as code gener-
ation, transformation, archiving, versioning, etc. Following the
vision of Bernstein [1], several model management systems
(MMS) have been set up during the last decade to manage
instances, models and metamodels and support operations on
them (e.g., [2], [3], [4], [5]).

With the increasing size of data instances and models
in several domains (e.g., in genomics, the Uniprot dataset,
www.uniprot.org, gathers more than 200GB of protein se-
quence resources), the possibility of managing large scale
models and instances in MMS has raised a lot of interest. Two
main approaches have been followed to increase the scalability
of MMS. The first approach consists of connecting a MMS
to a database called model repository (e.g., EMFStore [6],
TERESA model repository [7]). This approach uses a loose
coupling between the MMS and the database and has two main
drawbacks: (1) most model management operations require
loading the whole model and instances in main memory and
(2) the database exploitation language does not support the

definition, manipulation and querying of models and meta-
models (it only supports basic SQL operations). To address
these problems, a second approach, followed in our work,
has been developed. It consists of extending databases for
the management of models and metamodels (e.g., [2]). These
systems called Persistent Model Management Systems (PMMS)
are composed of (1) a database that stores metamodels, models
and instances and (2) an exploitation language for manipulat-
ing models and metamodels.

If PMMS solve the two drawbacks of the loose coupling of
a MMS with a database, they currently do not support the same
flexibility concerning the definition of behavioral semantics
(procedural aspects) of models and metamodels. Indeed PMMS
focus mainly on the definition of the structure of metamodels
and models but provide a limited support for the definition
of operations on models and metamodels. For example, some
PMMS provide hard-encoded operators for model management
(e.g., Match, Merge, Union [8], [1]), or only give access to
the database procedural languages (e.g., PL/SQL) that do not
support the manipulation of models and metamodels (they
only manipulate relational tables). The most advanced PMMS
concerning the definition of metamodels and models behaviors
is ConceptBase [2]. Using this PMMS user-defined operations
can be defined on models and metamodels as deductive rules
implemented with a specific language (PROLOG). However
this PMMS lacks the possibility to integrate operations that
have already been implemented using a given programming
language or provided as an external web service.

In this paper we propose an extension of PMMS to
support the definition of behavioral semantics of models and
metamodels using a wide range of programming capabilities.
This extension has been motivated in a previous paper [9]
by presenting a complete state of the art, and applied in the
specific context of ontology-based databases in [10]. In this
paper we make the following new contributions:
• definition of a set of requirements for a complete PMMS;
• definition of a PMMS including the behavioral aspect;
• implementation of our approach: the BeMoRe PMMS;
• first experiments to study the scalability of BeMore.

The remainder of this paper is organized as follows.
Section II presents a set of requirements for a complete
PMMS justified on a motivating example. Section III gives
an overview of the state of the art by analyzing existing
PMMS using our requirements. Section IV presents the formal
definition of a PMMS handling behavioral semantics of models
and metamodels. Section V overviews the implementation of

263

our approach and Section VI shows the experiments done to
study its scalability. Finally, section VII concludes this paper
and discusses ongoing works.

II. REQUIREMENTS FOR A COMPLETE PMMS

���

���

Fig. 1: A motivating example

Figure 1 presents a simple class diagram metamodel (A)
and a model (B) conforming to that metamodel. Using this
example, we are capable to define the set of requirements
identified for a complete PMMS. Due to space limitation we
use a very simple example. The interested reader may refer
to [9] and [10] for more complex and real motivating examples.

Requirement 1 (extensible metamodel layer)
PMMS shall offer an extensible metamodel layer so that
multiple modeling formalisms can be defined.

Justification: in our example, we only have the UML class
diagram metamodel defined at the metamodel layer. However
sofware engineering uses a lot of different models (e.g., entity-
relationship, functional, state transition models).

Requirement 2 (structural and descriptive semantics)
PMMS shall support the definition of structural and descrip-
tive semantics of metamodels and models elements. For in-
stance, the PMMS shall provide constructors of classes, at-
tributes, inheritance and association relationships for defin-
ing models and metamodels.

Justification: following the MOF specification, most models
and metamodels (such as the ones of our example) can be
expressed with object-oriented constructors.

Requirement 3 (behavioral semantics)
PMMS shall support introducing operations (functions, pro-
cedures) on metamodels and models elements.

Justification: operations on models and metamodels elements
are important to accomplish advanced model management
tasks such as model transformation, code generation or con-
straints checking. For instance, in our example an operation
could be defined to export the UML models in XML, or to
compute the age of a student.

Requirement 4 (flexible programming environment)
PMMS shall provide an heterogeneous programming envi-
ronment to implement operations. Particularly, it shall be
able to use external programs written in any language (e.g.,
Java, C++) and remote services.

Justification: as it is better to reuse existing pieces of software
instead of rewriting them, a PMMS should be able to inte-
grate existing implementations of operations whatever is the
programming language used. For example, it is easy to find
an existing code that exports an UML model in XML. So a
PMMS should allow users to reuse this piece of software to
implement an operation that exports UML models.

Requirement 5 (hot-plug of implementations)
PMMS shall support an immediate usage of the implemen-
tations for an operation without restarting the system (warm
start).

Justification: restarting a database system must be avoided
for high availability applications. Thus the definition of an
implementation of an operation, even if it is a web service,
should not require restarting the PMMS (warm start).

III. RELATED WORK

Several PMMS have been proposed. This section analyzes
the most relevant PMMS according to our requirements.

ConceptBase [2] is a PMMS based on an object-oriented
and deductive database. It is based on the Telos language
that supports the definition of multiple abstraction layers with
a set of constraints, rules and queries using meta-formulas.
Furthermore, ConceptBase provides a set of predefined op-
erators to manipulate simple and complex data types, and
gives the possibility to introduce user-defined functions with
membership constraints and external implementations. Yet,
these implementation can only be done in the Prolog language.
Besides external programs have to be stored in a special and
internal file system, and requires restarting the server (cold
start) in order to support the function newly introduced [11].

GeRoMe [3] is an extension of ConceptBase to define new
operators from other ones by combining existing operators.
However, this extension does not introduce a more flexible
programming environment for these operations.

Rondo [4] is a PMMS that has a fixed and non extensible
metamodel layer. It provides conceptual structures to define
models and specify the behavioral semantics by providing a
set of primitive high-level operators for model management
and model mappings such as Match, Delete or Extract. More-
over, Rondo supports the definition of derived operators by
composing basic and other defined operators.

Clio [5] is a PMMS defined for facilitating the tasks of
heterogeneous data transformation and integration. These tasks
are facilitated by mapping a source schema to a target schema
with SQL statements.

DB-MAIN [12] is a PMMS designed for the management
of database evolution. It is based on a fixed hard-encoded
metamodel and offers a set of built-in high-level operators

264

for modifying the database structure and contents when an
evolution is required.

OntoDB/OntoQL [13] is a PMMS initially defined for the
management of ontologies and ontology models. It includes
the OntoDB model repository and the OntoQL meta-modeling
language. This PMMS is based on a fixed metametamodel
to define and modify metamodels. Concerning the behavioral
semantics, OntoDB/OntoQL uses only the PgPL/SQL proce-
dural language of its back-end database management system
(PostgreSQL). This language cannot manipulate complex types
(e.g., meta-classes or classes) and consequently cannot define
high-level operators.

As the previous overview of the state of the art shows, each
existing PMMS presents some strengths and some limitations
for the definition of structural and behavioral semantics of
models and metamodels. The identified limitations are pre-
sented in Table I. Hence next section introduces the formal
definition of an extension of PMMS to fulfill these require-
ments.

TABLE I: Synthesis of the state of the art

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5
ConceptBase Yes Yes Yes restricted No

GeRoMe Yes Yes Yes restricted No

Rondo No Yes hard-coded No No

Clio No No restricted No No

DB-MAIN No Yes restricted No No

OntoDB/OntoQL Yes Yes restricted No No

IV. PROPOSED EXTENSION OF PMMS

A PMMS is composed of a database data model and
an exploitation language. The proposed extension of these
two parts of a PMMS are presented in Subsection IV-A and
Subsection IV-B.

A. Proposed Extension of PMMS Data Model

���������	�

Fig. 2: The proposed data model for PMMS

Figure 2 gives an overview of the extended data model
of PMMS that we propose. For conciseness we only detail
the metametamodel layer but a similar extension has been be

done at the metamodel level to be able to define operations
at the different abstraction layers. Our model includes a set
of classes that are described by attributes, and single class
inheritance relationships are allowed. This part of our data
model is usually available in all PMMS that, as we have seen
in the previous section, focuses mainly on the structural and de-
scriptive semantics of metamodels elements. The dashed area
gives an overview of our proposed extension for the definition
of behavioral semantics of metamodels elements. Our model
supports the definition of operations with a list of input and an
output. Furthermore, an operation can be associated to multiple
implementations. Each implementation is itself described by a
set of descriptors (couples of key, value). With these generic set
of descriptors a new programming environment can be easily
integrated in our approach.

This extension of PMMS can be formally defined by the
following sets: MM , CL, ATT , DT , OP , IMP , DESC that
represent respectively sets of metamodels, classes, attributes,
data types, operations, implementations and implementation
descriptors. Table II gives the definition of these sets as well
as a subset of constraints concerning these sets.

TABLE II: PMMS formal model

A metamodel is described by a set of classes:
classes : MM → P (CL)
∀mmi ∈ MM ⇒ ∃!E ∈ P (CL)/classes(mmi) = E
∀(mmi,mmj) ∈ MM/i �= j ⇒ classes(mmi) ∩ classes(mmj) = ∅
A class may have a super class:
superClass : CL → CL
A class may have inherited attributes from its super class:
inheritedAttributes : CL → P (ATT)
∀cli ∈ CL ⇒ ∃!E ∈ P (ATT)/

inheritedAttributes(cli) = attributes(superClass(cli))
A class may be described by additional attributes:
definedAttributes : CL → P (ATT)
∀cli ∈ CL ⇒ ∃!E ∈ P (ATT)/definedAttributes(cli) = E
∀cli ∈ CL ⇒

definedAttributes(cli) ∩ inheritedAttributes(cli) = ∅
∀(cli, clj) ∈ CL/i �= j ⇒

definedAttributes(cli) ∩ definedAttributes(clj) = ∅
The set of attributes of a class:
∀cli ∈ CL ⇒ attributes(cli) =

inheritedAttributes(cli) ∪ definedAttributes(cli)
An attribute has a data type:
typeOf : ATT → DT
∀atti ∈ ATT ⇒ ∃!dtj ∈ DT/typeOf(atti) = dtj
An operation parameter has an order:
input : OP x N

+ → DT
∀opi ∈ OP ⇒ input(opi) ∈ DT
An operation can return a result:
output : OP → DT ∪ ∅
An operation can have several implementations:
implementations : OP → P (IMP)
∀opi ∈ OP ⇒ ∃!E ∈ P (IMP)/implementations(opi) = E
∀(opi, opj) ∈ OP/i �= j ⇒

implementations(opi) ∩ implementations(opj) = ∅
An implementation is described by a set of descriptors:
descriptors : IMP → P (DESC)
∀impi ∈ IMP ⇒ ∃!E ∈ P (DESC)/descriptors(impi) = E
∀(impi, impj) ∈ IMP/i �= j ⇒

descriptors(impi) ∩ descriptors(impj) = ∅

B. Proposed Extension of the PMMS Metamodeling Language

The exploitation language of a PMMS is composed of a
model and a metamodel definition, manipulation and query
language. Table III presents a subset of basic actions that a
PMMS definition language should fulfill. These actions are
defined by a signature (SIG), a precondition (PRC) and a

265

postcondition (POC). We only present in this table the create
operations but the other operations (alter, update and delete)
have been defined as well.

TABLE III: Main actions of the PMMS definition language

creation of a metamodel:
SIG: addMetaModel(mm) = MM ′

PRC: mm /∈ MM
POC: MM ′ = MM ∪ {mm}
creation of a class:
SIG: addClass : MM x C → MM
PRC: cl /∈ CL
POC: classes(mm) = classes(mm) ∪ {cl}
creation of an attribute:
SIG: addAttribute : CL x ATT → CL
PRC: att /∈ ATT
POC: attributes(cl) = attributes(cl) ∪ {att}
creation of an operation:
SIG: addOperation(op) = OP ′

PRC: op /∈ OP
POC: OP ′ = OP ∪ {op}
creation of an implementation:
SIG: addImplementation : OP x IMP → OP
PRC: imp /∈ IMP
POC: implementations(op) = implementations(op) ∪ {imp}

Concerning querying, most PMMS have a query language
whose algebra includes relational-like operators (e.g., projec-
tion or selection) for models and metamodels. These algebra
should be extended to be able to execute operations that can
be defined with our proposed extension. To fulfill this need,
we define the RUN operator. We only give the signature of
this operator in table IV since its semantics depends on the
processing done in the corresponding operation.

TABLE IV: Formalization of the RUN operator

RUN : OP x INPUT → OUTPUT
INPUT is an expression of input values.
INPUT = (IC ⊕ IIC ⊕ IDT)+ ⊕ ∅
instOf is a function that returns the set of instances of a concept.
IC = instOf(c1) ∪ instOf(c2) ∪ ... ∪ instOf(cn)
IIC = instOf(instOf(c1)) ∪ ... ∪ instOf(instOf(cn))
IDT represents simple types values (string, boolean, integer, etc.).

OUPUT is the output value.
OUTPUT = IC ⊕ IIC ⊕ IDT ⊕ ∅
⊕ is the sum of types operator.

Examples:

If we have an operation UMLClass2Table that trans-
forms an UMLClass to a Table, we can use it for instance
to transform the Student class to the T_Student table.
Thus, in this case, the RUN operator is invoked as follows:

RUN(UMLClass2Table, Student). It returns the table
T Student.

If we want to compute the age of an instance of the Student
class (Student1), the RUN operator is invoked as follows:

RUN(computeAge, Student1). It returns the value 26.

Next section presents the implementation of our approach
on the OntoDB/OntoQL PMMS.

V. PROTOTYPING: THE BEMORE PROPOSAL

Our implementation consists of an extension of the OntoD-
B/OntoQL PMMS. Let us first introduce this PMMS.

A. The OntoDB Model Repository

The architecture of the OntoDB repository consists of four
parts: one part for each abstraction level (data instance, models
and metamodels) and one part for the system catalog of the
database. These four parts consist of relational tables since this
PMMS is based on PostgreSQL. Figure 4 (except the dashed
box part) shows the main tables used to store metamodels,
models and data of our example in OntoDB. The metamodel
layer contains two main tables: Class and Attribute that
store respectively classes and attributes of metamodels. Each
class is associated to a corresponding table at the model level
where class instances are stored; and similarly, each concept
of a model is associated to a table at the data level to store
instances.

B. The OntoQL Meta-Modeling Language

OntoQL is a declarative and object-oriented language used
to create, modify, drop and query metamodels, models and
data. In this section we present the OntoQL statements used
for defining the different abstraction layers in OntoDB. Then,
in the next section we present the extension of this language we
have proposed and implemented for the definition and usage
of operations at these different abstraction layers.

1) Metamodel definition: the metamodel part of OntoDB
can be enriched to support new metamodels using the OntoQL
language. For instance, the metamodel of our example (Figu-
re 1) can be created with the following statements.

Listing 1: Statements for creating the metamodel (A)

CREATE ENTITY #UMLClass (
#name STRING ,
i s A b s t r a c t BOOLEAN,
s u p e r C l a s s REF (# UMLClass)) ;

CREATE ENTITY # UMLProperty (
#name STRING ,
i t s C l a s s REF (# UMLClass)) ;

In this statement the # prefix indicates that this element
definition must be inserted in the metamodel level of OntoDB
(an element of the model level does not have a prefix).

2) Model definition: once a metamodel is defined, we can
create models conforming to that metamodel. For instance,
the model of our example is created using the following
statements:

Listing 2: Statements for creating the model (B)

CREATE #UMLClass U n i v e r s i t y
PROPERTIES (name STRING) ;

CREATE #UMLClass S t u d e n t
PROPERTIES (f i r s t n a m e STRING ,

l a s t n a m e STRING ,
b i r t h d a y DATE,
i t s U n i v e r s i t y REF (U n i v e r s i t y)) ;

3) Instance definition: similarly to the previous step, once
models have been created with OntoQL and stored in OntoDB,
they can be instantiated to create classes instances with a
syntax similar to SQL. Next statements create instances of
our example.

266

Listing 3: Statements for creating instances

INSERT INTO U n i v e r s i t y VALUES (’ ISAE−ENSMA’) ;

INSERT INTO S t u d e n t
VALUES (’ Dupond ’ , ’ Durand ’ , ’ 0 6 / 2 1 / 1 9 8 6 ’ , 1 2 3) ;

�������	
�

���	

������ �	
��

����� �	
��

���	����

���

�	�	

���

��

���

Fig. 3: BeMoRe architecture

Now that we have presented the OntoDB/OntoQL, we can
describe the three main steps that we have followed to extend
it with our approach (Figure 3). The first step consists of
extending the model repository with structures and tables to
store operations signatures and implementations descriptions
and their dependencies. The second step consists of extending
the exploitation language to create and to use operations and
implementations. Finally, the third step consists of setting up
an application programming interface (API) to make a bridge
between the PMMS and the external programming environ-
ments. We detail each of these steps in next subsections.

C. Extending the OntoDB Architecture

Fig. 4: Representing different model layers in OntoDB

The dashed box part of Figure 4 shows the three main
tables resulting from the extension of the metametamodel
layer of the OntoDB model repository. The Operation,
Implementation and Descriptors tables store respec-
tively operations definitions (the operation name, input and
output), their associated implementations, and descriptions of
implementations.

D. Extending the OntoQL Meta-Modeling Language

1) CRUD for Operations and Implementations: firstly, we
have extended the OntoQL exploitation language with CRUD
operations (Create, Retrieve, Update and Delete) to create,
read, delete and update operations and implementations. For
instance, the syntax to create an operation that transforms an
UML class to a table is given below.

Listing 4: Statement for creating an operation

CREATE OPERATION # UMLClass2Table
INPUT (REF (# UMLClass))
OUTPUT (REF (# Tab le)) ;

Once an operation is defined, we can define one or many
associated implementations. The following statement creates
an implementation of the UMLClass2Table operation.

Listing 5: Statement for creating an implementation

CREATE IMPLEMENTATION # UMLClass2TableImp
DESCRIPTORS (t y p e = ’ j ava ’ ,

l o c a t i o n = ’ h t t p : / / . . . / p rograms . j a r ’ ,
c l a s s = ’ f r . ensma . l i a s . UMLClassUti ls ’ ,
method = ’ c l a s s 2 T a b l e ’)

IMPLEMENTS # UMLClass2Table ;

This statement creates an implementation of the
UMLClass2Table operation. It provides descriptors
of a Java program stored outside the database. In particular,
these descriptors specify the file location of the external
program, the java class where the method is defined and the
method to run.

2) Exploiting operations in Query: when an operation
and at least one associated implementation are defined, this
operation can be invoked in an OntoQL statement:

Listing 6: Example of an operation invocation

CREATE # Tab le T S tuden t AS
SELECT # UMLClass2Table (c) FROM #UMLClass AS c ;

This statement creates a Table (T_Student) from the
resulting transformation of the Student class. Let us explain
the process to answer this query. When we face an operation
invocation in an OntoQL statement, we look into the repository
to check the existence of the called operation, then we verify
the compatibility of the arguments types with the operation
parameters types. Next, if no implementation is specified
in the statement, we look at the default implementation in
the implementation table. After this process, we transmit the
arguments and the implementation descriptors to the behavior
API (see next subsection) in order to run the program and
return the result.

3) Choosing a default implementation: we have also ex-
tended the OntoQL language with the possibility to define
the default implementation if several implementations are
available for an operation. Next statement defines a default
implementation for an operation.

Listing 7: Specifying the default implementation for an oper-
ation

SET DEFAULT IMPLEMENTATION # UMLClass2TableImp
FOR # UMLClass2Table ;

267

4) Specifying an implementation: we can also explicit the
implementation that must be executed for an operation directly
in an OntoQL statement. The statement below shows an
example of this behavior.

Listing 8: Specifying the implementation to run in a statement

CREATE # Tab le T S tuden t AS
SELECT # UMLClass2Table (c) FROM #UMLClass AS c
USING IMPLEMENTATION #UMLClass2TableImp−>#UMLClass2Table ;

Our implementation requires to make a bridge between the
PMMS and external programming environments. The solution
we have adopted is presented in next subsection.

E. The Behavior API

An important part of our extension of the OntoDB/OntoQL
PMMS consists of defining a mechanism to make the mapping
between data types of the OntoDB/OntoQL system, and data
types of the external implementations. Thus, we have set up a
behavior API (Figure 3) that serves as an intermediate between
the OntoDB/OntoQL PMMS and the external programming
environments. In particular, it provides generic infrastructures
(1) to specify data types correspondences between the two
environments, (2) to execute remote programs and services,
and (3) to generate a wrap that can be plugged on the top of
the behavior API . For example, to support web services and
Java methods invocation, we have implemented primitives of
the behavior API and plugged on it the resulting wraps.

VI. PERFORMANCE EVALUATION

As stated before in Section I, we have performed multiple
applications of our work (e.g., [10]) in order to validate func-
tionally our approach. In this section, we focus on performance
evaluation only.

As a first step to study the scalability of our implementa-
tion, we compare the execution time of the following model
query (similar results were obtained for a metamodel query).

Listing 9: The query used for our experimentations

SELECT computeAge (s) FROM S t u d e n t AS s

We execute these queries using three types of implementations
of the computeAge function: native stored procedure (NSP),
external Java program (EJP) and local web service (LWS) on
three different sizes of data (1000, 100000 and 300000 in-
stances). These experiments were run on the OntoDB/OntoQL
PMMS based on PostgreSQL 8.2 installed on a standard Intel
Core Duo E6550 2.33 Ghz 3GB of RAM desktop machine.

The performance numbers for the query on the three data
sizes and for the three implementations are shown in Figure 5.
All times presented (in seconds) are the average of three runs
of the queries.

As expected the invocation of NSP performs a factor of 4-5
faster than EJP and largely faster than LWS. As the EJP and
LWS are called one time for each instance, the time of queries
increases nearly linearly with the size of data. To optimize
this process, this result suggests to design a Java method or
a web services that takes as input a set of data instead of
an individual data. A more complete study of the problem of
query optimization for PMMS is part of our future work.

1000 Instances

Q
ue

ry
T

im
e

 (s
)

100 000 Instances 300 000 Instances

0.17

13.3

0.15 3.99

1208

0.894 13.4 2.9

4230

Fig. 5: Performance comparison

VII. CONCLUSION

In this paper, we have presented an extension of PMMS
with a generic and flexible support of behavioral seman-
tics. Our approach consists of providing the capability to
introduce dynamically user-defined operations with multiple
and heterogeneous implementations (external programs, web
services, etc.). Our proposal has been implemented on the
OntoDB/OntoQL PMMS and we have run several experiments
to study the scalability of this implementation.

This work opens multiple perspectives. One of these per-
spectives consists of studying how derived operations could be
defined using existing ones. Our idea is to be able to combine
operations implemented with programs written in different
languages and stored in different locations while respecting
the order of the execution. Another perspective consists of
choosing automatically the more efficient implementations to
run when several implementations are available for a given
operation. This feature will be especially useful for external
web services that are not always available.

REFERENCES

[1] P. A. Bernstein, A. Y. Halevy, and R. Pottinger, “A vision of manage-
ment of complex models,” SIGMOD Record, pp. 55–63, 2000.

[2] M. Jarke, M. A. Jeusfeld, H. W. Nissen, C. Quix, and M. Staudt,
“Metamodelling with datalog and classes: Conceptbase at the age of
21,” in ICOODB, 2009, pp. 95–112.

[3] D. Kensche, C. Quix, M. A. Chatti, and M. Jarke, “Gerome: A generic
role based metamodel for model management,” J. Data Semantics,
vol. 8, pp. 82–117, 2007.

[4] S. Melnik, E. Rahm, and P. A. Bernstein, “Rondo: A programming
platform for generic model management,” in SIGMOD Conference,
2003, pp. 193–204.

[5] M. A. Hernández, R. J. Miller, and L. M. Haas, “Clio: a semi-automatic
tool for schema mapping,” in SIGMOD Conference, 2001.

[6] M. Koegel and J. Helming, “Emfstore : a model repository for emf
models,” in ICSE (2), 2010, pp. 307–308.

[7] “project teresa.” [Online]. Available: http://www.teresa-project.org/

[8] P. A. Bernstein and E. Rahm, “Data warehouse scenarios for model
management,” in ER, 2000, pp. 1–15.

[9] Y. Bazhar, “Handling behavioral semantics in persistent meta-modeling
systems,” in RCIS, 2012, pp. 1–6.

[10] Y. Bazhar, C. Chakroun, Y. A. Ameur, L. Bellatreche, and S. Jean,
“Extending ontology-based databases with behavioral semantics,” in
OTM Conferences (2), 2012, pp. 879–896.

[11] M. A. Jeusfeld, C. Quix, and M. Jarke, ConceptBase .cc User Manual,
Tilburg University, RWTH Aachen, February 2013.

[12] J.-M. Hick and J.-L. Hainaut, “Strategy for database application evolu-
tion: The db-main approach,” in ER, 2003, pp. 291–306.

[13] H. Dehainsala, G. Pierra, and L. Bellatreche, “Ontodb: An ontology-
based database for data intensive applications,” in DASFAA Conference,
2007.

268

Processing rhetorical, morphosyntactic, and semantic features from corporate
technical documents for identifying organizational domain knowledge

Bell Manrique Losada
Faculty of Engineering

Universidad de Medellín
Medellín, Colombia

bmanrique@udem.edu.co

Carlos Mario Zapata Jaramillo
Faculty of Mines

Universidad Nacional de Colombia
Medellín, Colombia

cmzapata@unal.edu.co

Abstract—During the requirements elicitation (RE) process,
transformations among languages occur from natural
language—in which the stakeholders express their domain
and needs—to a controlled language. One source of domain
information to be used by the transformation process is
related to technical documents belonging to the organizations
(e.g. technical reports, legacy documents, and procedure
manuals). Some properties of such documents are: different
representation formats, high degree of ambiguity, and
particular linguistics elements. The analysis and processing of
such documents becomes complex because of these properties
and, in turn, the complexity makes difficult both identifying
the domain knowledge and understanding the associated
processes. As a solution for an automated transformation, in
this paper we define linguistics features to enable
identification and composition of information units from a
procedure manual, as a central task for the language
transformation process in RE. The identified features are
classified into rhetorical, morphosyntactic, and semantic
features. Also, the features can be used to identify and
represent organizational domain knowledge.

Keywords-Natural language; Requirements elicitation;
Domain knowledge; Technical documents; Texts processing

I. INTRODUCTION
Requirements elicitation (RE) is a process from the

requirements engineering that involves seeking, uncovering,
capturing, and elaborating requirements, based on activities
of the business analysis initially performed. Such a process
covers functional, behavioral, and quality properties of the
software to be developed [1].

Several transformations among languages are needed in
the RE process, commonly from natural language (NL)—in
which the stakeholders express their domain, expectations,
and needs—to controlled languages (CL) in which an
analyst specifies the extracted information as models (e.g.,
domain, conceptual, logic, and process model). According to
Mitamura et al. [2] CL is used for improving the clarity of
expression of the source text and the quality of the analytical
process. The domain information expressed by the
stakeholders is used throughout the transformation process.
Such information can be extracted from documents
belonging to the organizations, usually from corporate
technical information (e.g. technical reports, legacy
documents, process manuals, and procedure manuals).
Corporate technical information can describe processes,
operations, regulations, guidelines, policies, and rules

belonging to a company. By using such information, the
analysts can understand the domain and business rules, in
order to analyze them and transform them into a controlled
discourse, useful in the RE process [3].

Organizational documents have some features like:
different formats, heterogeneous information, high grade of
ambiguity, and particular linguistics elements. Typically, by
processing such documents we can analyze texts and clearly
define the articulated information, but the big amounts of
information lead the analysts to invest much effort for
transforming it into explicit knowledge about organization
[4]. In this environment, complexity arises and makes
difficult the processing, when we are looking for
information related to domain and business processes [3].

As a solution for an automated transformation, in this
paper we define linguistic features to enable identification
and composition of information units from a procedure
manual, as a central task for the language transformation
process in RE. We identify linguistic features and we
classify them, as: rhetorical, morphosyntactic, and semantic.
Also, we use such features as means to identify and
represent organizational domain knowledge.

The remainder of this paper is organized as follows: in
Section 2 we describe the conceptual framework about
transformation process in RE, NLs and controlled
languages, and linguistics features of the texts; in Section 3
we review and discuss the state of the art related to our
approach; in Section 4 we propose a document pattern
defining linguistics features for the model of the procedure
manual; finally, in Section 5 we discuss conclusions and
future work.

II. CONCEPTUAL FRAMEWORK

A. RE process
RE is the initial phase of requirements engineering. The

main goals of RE are discovering, reviewing, documenting,
and understanding the user needs and the system
constraints. For achieving these goals, an analyst should
increasingly and iteratively develop tasks involving the NL
analysis and the language representation, respectively [5],
including: understanding the domain, capturing and
classifying requirements, and negotiating requirements [6].

RE is primarily concerned with the communication
between the analyst and the stakeholder (e.g., customer,
end-user) as a way to gather the relevant domain
information [7], considered the basis of requirements.

269

B. Transformation process in RE
In the RE process, the analyst should identify and

capture most of the information related to a specific domain.
The main source is the stakeholder discourse. Supported by
several techniques, the analyst obtains such information and
uses it to describe the problem domain, analyze the
information, and represent the software specifications by
using models. To build a model, the analyst identifies
conceptual elements, understands their relationships, and
represents them by using a controlled language [8]. This
process is a translation from a base language to another
different. The translator should recognize and understand
the NL-based symbols belonging to the domain and convert
them into a symbols defined in a lexicon. Inside the
translation process, the analyst—after capturing needs and
expectations of the stakeholders—represents them by using
technical models. The stakeholder validates the captured
requirements and recognizes them into those models [9, 10].

C. Natural and Controlled Languages

According to Berry [11], most of the requirements
specifications are written in NL. NL is used by humans and
it guides the interpretation of what we experience with other
senses (e.g., vision and hearing). The natural discourse is not
formal and it lacks a structured definition, hierarchy, or
external control. Commonly, NL is ambiguous and,
therefore, barely adequate for processing and specification
tasks, like machine learning [12]. The above reasons make
notoriously difficult for a computer to process and
understand NL, because a lot of relevant information is
neither usually nor explicitly stated. In such cases, either the
author or the speaker should imply such information [13].

Controlled languages (CL) restrict the vocabulary,
syntax and/or semantics of a NL for reducing its ambiguity
and complexity [14]. Rather than necessarily reflecting
natural discourse patterns, CL defines terms to be used
instead of other terms. Several fields, like knowledge
representation, ideally use a formal language, since it has
well-defined syntax, unambiguous semantics, and automated
reasoning. The CL is used to bridge the gap between a NL
and a formal language.

D. Analysis of linguistics features from texts

The linguistics analysis of discourses from documents
can be performed by using methods of linguistic discourse
analysis and corpus linguistics. We are focused on the
following methodologies, based on the usage of language
for constructing, interpreting, and exploiting documents.

1) Specialized Discourse Analysis: Specialized text
analysis requires a unique process on the discourse analysis
field [15, 16]. One way to address discourse analysis comes
from the gender point of view. According to Swales [17,
18] and Yates [19], Parodi [20] defines genders as
variations of a language which operate by means of
linguistic features present in a text. Likewise, they are
linguistically confined under their communicative purposes,
participants involved, production contexts, usage contexts,
and discourse organization modes, among others.

According to the above genre theory, we can analyze
specialized discourses, because they are written by members
of specific communities. According to Cabré [21], such
discourse is derived from variables related to the subject and
perspective of a topic, of which is important their analysis.

2) Rhetorical Analysis: Rhetorical analysis (RA) is
concerned with the discourse construction, giving priority
to the communicative intent of each gender [22].

From RA, the gender analysis is discussed in terms of
rhetorical moves [18], which refer to the functional parts or
sections of a genre. This approach for studying a particular
genre comprises the analysis of a text and its description in
terms of rhetorical structure (moves). This structure
influences and restricts the contents and style [23] and
allows the identification of linguistics features.

3) Corpus Linguistics: According to Parodi [20], the
corpus linguistics constitutes a set of methodological
principles for studying any language domain. Corpus
linguistics allows for the description, analysis, and teaching
of several types of discourse, from corpus pre-processed
with the assistance of information technologies. Sets of
linguistic features—operated by genders—can be identified
from representative corpus. In this discipline, a corpus is a
comprehensive collection of texts that are collected as sets
of linguistic data reflecting the actual usage of a language
[24]. Corpus-based approaches are focused on the word
usage, frequency, collocation, and concordance [25].

III. RELATED WORK

A. Processing of requirements documents in RE
O’Shea and Exton [26] use a content analysis for extracting
requirements from a corpus of bug reports. This technique
is suitable whenever categories can be defined prior to the
texts analysis and it requires a certain extent of domain
understanding. Fliedl et al. [27] analyzy requirements
documents and comparing them with gathering
requirements. This approach is good if lengthy texts are
available and structured. In Software Product Line domain,
authors like Clements [28] proposed processes for
reviewing an studying source documents, but only oriented
for defining the features surrounding products, instead of
including linguistics analysis.

Based on semi-structured documents we found
background as follows: RARE project [29] focused on
parse texts based on a semantic network assisted by a
thesaurus. They combine NLP with faceted classification
for analyzing and refining requirements. From texts of non-
functional requirements, Cleland-Huang et al. [30] work on
detection of viewpoints. Meanwhile, Bajwa et al. [31]
proposed mapping business rules to semantic business
vocabulary. The before approaches are based on documents
structured or semi-structured. We propose use techniques
like they used, but from corporate documents writen in NL.
B. Analysis of linguistics features from documents

We have found approaches from disciplines like spatial
analysis [32] trying to deal with designing agents for the
deeper semantic and pragmatic understanding. From

270

Semantic web, Lee and Bryant [33] use contextual NLP to
overcome the ambiguity and express the domain
knowledge, and Lévy et al. [34] present an environment
that enables semantic annotations of the document textual
units (e.g. words, phrases, and paragraphs) with ontological
ones (i.e. concepts, instances).
C. Identification of the knowledge domain and business

process from documents
In the frame of knowledge engineering Dinesh et al. [35]

proposed check the conformance to regulations with
organizational procedures texts; Aussenac-Gilles et al. [36]
apply the above on the ontological engineering domain;
Rösner et al. [37] use techniques to automatically generate
multilingual documents from knowledge bases. The
described techniques for knowledge acquisition from
documents are a good base for using in particular
knowledge structures. Compared with our approach, these
authors identify information that defines what stakeholders
are permitted to do by using phrases previously created.

IV. FEATURE IDENTIFICATION PROCESS

We define NL patterns as an abstraction of the
information statement within the texts. In this proposal,
features are part of the sentences appearing in certain
positions of the document structure. We characterize the
specialized discourse used in a specific corporate technical
document called procedures manual, for further definition
of patterns which guide the discourse.
A. Methodology of document analysis

a) Defining Guidelines. We use a methodology based
on corpus linguistics [38], e.g. the work of Parodi [39]. We
aim to carry out the descriptive and linguistic analysis of a
procedures manual. We choose a particular type of
corporate procedure manual called standard operating
procedures (SOP).

b) Establishing the corpus: We collect a range of
diverse SOP documents—taken from different contexts
such as medical, forestry, laboratory, and academic—and
perform a thorough analysis of the documents in the corpus
in terms of content and structure. The corpus used consists
of 50 documents written in in different English-speaking
countries, which were downloaded from several websites.
The SOP’s were collected looking for full texts produced,
created, or promoted in the real business environment. This
analysis was developed from the empirical point of view,
following the theory of gender analysis [20].

c) Analysing: The analysis was addressed by the RA
trend. We selected a corpus sample for analyzing and
defining a reference model, according to inductive method
from Burdiles [40]. As a result, we proposed an structural
pattern of SOPs in terms of macromoves (general structure
or major sections) and moves (specific strucutre inside the
macromoves).
B. Proposed Pattern

The proposed pattern includes the set of features in
several levels of linguistic analysis. The first stage is
described in the subsection a, corresponding to the
rhetorical analysis. The internal analysis of each textual

units corresponds with second stage and is presented in the
subsection b and c, corresponding to the morphosyntactic
and semantic analysis. Latter two analysis categories were
supported by the corpus analysis tools AntConc 3.3.5w®—a
freeware concordance program—[41] and
TermoStatWeb™ [42].
a. Rhetorical features. These features are reflected in
a reference model of rhetorical organization. Such model
acts as a pattern. In structural terms, the pattern describes
the organizational units of the SOP depending on the
macro-moves and moves. In functional terms, the function
patterns are related to the communicative purpose
expressed by the author in the text.

The preliminar model of rhetorical organization was
validated [43], and it changed in its internal structure, from
19 moves to 12 moves, as follows:
 Macromove 1: Preamble/Overview
o Move 1.1 Identifying SOP
o Move 1.2 Introducing the SOP
o Move 1.3 Documenting conventions
o Move1.4 Appointing regulations
o Move 1.5 Establishing purpose

 Macromove 2: Development
o Move 2.1 Defining procedure purpose
o Move 2.2 Defining roles and responsibilities
o Move 2.3 Identifying prerequisites
o Move 2.4 Specifying procedure

 Macromove 3: Closure
o Move 3.1 Adding supplementary information
o Move 3.2 Including references

b. Morphosyntactic features. The first analysis of the
documents is morphological, lexical, and syntactic.

The features involve morphosyntactic categories that can
take a word or group of words, related to the morphology
(depending on the word) or syntax (depending on the
phrase). The features are described for such categories
around of feature object (gender, number, person, tense,
verbal mode, type of pronoun, word lemma, and so on). In
the Table I, we present the preliminary morphosyntactic
features identified. The first column is specifying the
category (C)—morphological (M) or syntactical (S). The
second and third column presents the feature object and the
feature description. Numbers in last column correspond to a
move in which is present the feature object (according to the
number of move in previous section).

c) Semantic features. We present the semantic analysis
in Table II with the description for each feature identified.

d) Identification of Organizational Knowledge. Based
on the above preliminar features, analyzed for each move is
possible to identify knowledge about organizational
domain. A main analysis of this domain is in terms of
concepts, prioritized according to frequency of occurrence
(value in parentheses) as follows: Project 1004; information
(554), management (398), procedures (389), system (355), use
(329), review (303), report (277), process (271), operations (264),
data (262), staff (260), time (244), required (237), projects (236),
decision (230), manager (228), SOP (227), standard (226), plan
(217), personnel (216), implementation (215), manual (215),
request (209), activities (207).

271

We have identified the following information, which
is described in the respective category (first column) in
Table III. Its preliminary representation is in n-grams or
collocations as sequence of words or terms (T) with major
co-occurrence. In some cases we use A to define an actor-
term, S a state, or V a verb-term.
i. Roles and actors of procedure [2.2, 2.3, and 2.4 moves].

ii. Responsibilities of procedure actors [2.2, 2.3, and 2.4 moves].
iii. Objectives of organization [1.2, 1.5, and 2.1]
iv. Procedures or functions of agents [2.2, 2.4]
v. Conditions/requirements to develop procedures [1.4, 2.3]

Note, however, that this analysis only has to be
performed as part of the initial knowledge acquisition and
preliminary processing.

TABLE I. MORPHOSYNTACTIC FEATURES

C Feature
Object Feature Description Rethor.

move

M

Noun

Extensive use of abstract nouns (e.g.
Management, establishment)

1.2– 1.5 –
2.1- 2.2

Most common are uncountable nous (e.g.
information, process, data) 2.3 – 2.4

Adjec-
tive

Demostratives most mommons: this, that. 1.1-1.2-
2.1

No common using posesives, and scarcely
used its or his/her -

Undefined. They are rarely used (e.g. any) 2.3– 2.4
The qualifying most common are: required,
apropriate, Successful,complete. Their use is
mainly subjective, rather than descriptive

1.4– 2.2–
2.3

Verb

The copulative verb are the mode most used
in SOP. Among them be, is, are.

2.2 – 2.3
– 2.4- 1.5

Can conjugate in subjuntive mode,
commonly for describing steps (e.g. may). 2.4 – 1.4

Mainly are conjugated in indicative mode.
(e.g. use, review, report, describe)

1.1 – 1.5
– 2.1- 2.4

S

Subord
ina-
tion

Are common place and time subordinate
(using where, when, after…) 2.2 – 2.4

Adjective or Noun Subordinate Clause are
used, usually begins with a relative pronoun
(e.g. than, how) or using as, before, or until

2.2 – 2.4
– 2.3

Coordi
-nation

The most frequent are copulative coordinate
clauses to express adding one stamentent to
anocher and is introduced by conjunctions
(e.g. and, both, as well as)

1.4 – 1.5
– 2.2 –

2.3 – 2.4

The only explanatory coordinate clause
found was that is.

2.4 – 2.3
– 1.4

Syntac-
tic
clauses

Usage of adjective phrases (adjective+
noun) is common mainly in the roles and
responsibilities section, and then, in the
steps of the SOP (e.g. appropriate project)

2.2 – 2.4

Verbal
mood

Main moods: indicative and imperative,
used to express capacity or obligation. All

Mood in conditional steps: subjuntive
denoting positiblity/priority (e.g. is possible,
is important, was…)

2.4
2.3 – 1.4

Verbal
periphr
asis

Modal Periphrasis, indicating obligation
(e.g. may+verb, must+verb) and its negative
form, or indicating potencial mood (e.g.
Can+verb, Go to+verb…)

2.4
2.3 – 1.4

Aspectual Periphrasis occurs as: iniciation
(e.g. take); progresion (including
performing); habits (used to, used for);
duration (is/are +gerund); Completion (end
of + infinitive)

2.4

Person

Prevails first person of plural in the
sequence of procedures. In section ‘roles an
responsibilities’ is used third person of
singular. Exists low usage of pronouns.

All

TABLE II. SEMANTIC FEATURES
Feature
Object Feature Description

Langua-
ge
Function

It is representative or referential focusing in the message,
external reality, or referent.. The writer makes no judgments
about the information or processes.

Style or
narrative
mode

Clear language, accurate, and direct. In most of cases exists
clarity of ideas exposition. Descriptive style, due to names,
locations, and qualifying objects, people, or processes.
Narrative style, it may have actions in a temporal order
looking for a specific purpose.

Termino-
logy

Contains a large number of specific terms belonging to the
body of knowledge and a lot of information shared between
sender and receiver. Such information is produced by
individuals who possess specific knowledge of a subject.

TABLE III. IDENTIFCATION OF KNOWLEDGE

n-grams Examples

i
.Project director
.Staff
.The-ACRONYM

“Individual staff members are
encouraged…”

ii

.is-responsible-for-V

.a-shall-T-a-T

.will-be-V-for/to-T

the-use-of-a-T

“NAA is responsible for appointing
independent auditors”
“…Manager shall recruit a sufficient
number…”
 “…expense will be approved for
reimbursement…”
“…the use of a Flash Report process…”

iii
.the-purpuse-of
.to-address-the-T-V
.action/activity-V-by-A

“The purpose of the NISN Activity…”
“…to address the concerns expressed…”
“…activity approved by the Council.”

iv
.project-activities
.project-administration
.the-work-has/be/may

“…documents are properly maintained
and retained for project activities.”
“…the work has been authorized.”

v

.If-a-T-of-T

.If-a-T-of-V

.If-the-T-is-T,then-T-is

.When-T-S,

“…If a difference of opinion…”
“…If a patient requieres…”
“…If the stop is gradual, then X is…”
“…when dropping an instrument,…”

CONCLUSIONS

In this paper, we proposed a structural, functional, and
linguistics features of a SOP, as a corporate technical
document which can be processed as input for the
knowledge engineering process. Also, the usage of corporate
technical documents in requirements elicitation has an
incremental growth.
We present a first approach of a pattern, under the concept
of a rhetorical organization model. By using the rhetorical
analysis method, we show features in terms of functional
and structural aspects, based on macro-moves, moves, and
functions (communicative purposes). The proposed features
comprise three macro-moves, which serve an overall
communicative purpose, and 11 moves shaping the
organization units of SOP.
The identification of organizational knowledge is achieved
in terms of roles, actors and responsibilities of who are
involved in procedures, objectives of organization,
procedures or functions of agents, and
conditions/requirements for developing procedures.
The performed analysis is a part of the initial knowledge
acquisition and preliminary processing for understanding of
organization domain. The knowledge will then be readily
available for use by future applications in a specific
domains, to validate the findings and then to automate the
process.

272

ACKNOWLEDGMENT
This work is funded by the Vicerrectoría de

Investigación from both the Universidad de Medellín and
the Universidad Nacional de Colombia, under the project:
“Método de transformación de lenguaje natural a lenguaje
controlado para la obtención de requisitos, a partir de
documentación técnica”.

REFERENCES

[1] C. Castro-Herrera, C. Duan, J. Cleland-Huang and B. Mobasher,
“Using data mining and recommender systems to facilitate large-
scale, open, and inclusive requirements elicitation processes,” Proc.
of 16th IEEE Inter. requirements eng. conference, pp.165–168, 2008.

[2] T. Mitamura and E. Nyberg, “Controlled English for Knowledge
Based MT: Experience with the KANT System,” in Proceedings of
TMI95, Leuven, pp.158-172, 1995

[3] Z. Zhang, “Effective Requirements Development – A Comparison of
Requirements Elicitation techniques,” in INSPIRE2007, Tampere,
Finland, p.155-160, 2007

[4] S. Stein, Y. Lauer and M. El-Kharbili, “Using Template Analysis as
Background Reading Technique for Requirements Elicitation,”
Available in
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.7424

[5] K. Li, R.G. Dewar, and R.J. Pooley, “Requirements capture in
natural language problem statements,” Heriot-Watt University, 2003.
Available in http://www.macs.hw.ac.uk:8080/techreps/docs/
files/HW-MACS-TR-0023.pdf

[6] S.Robertson and J. Robertson, Mastering the Requirements Process,
2nd ed., New Jersey: Addison Wesley, 2008.

[7] C.M. Zapata and B. Manrique, “Transforming Natural Language into
Controlled Language for Requirements Elicitation: A Knowledge
Representation Approach,” in Knowledge Representation, Croacia:
Intech Ed., 2012.

[8] A. Gangopadhyay, “Conceptual Modeling from Natural Language
Functional Specifications,” Artificial Intelligence in Engineering,
vol. 15, Issue 2, pp. 207-218, 2001.

[9] B. Cheng, “Capturing the Requirements. Michigan State University,”
2006. Available in: http://www.cse.msu.edu/~chengb/RE-
491/Papers/atlee-chapter4.pdf

[10] C.M. Zapata and F. A. Villa, “La Gramática Básica de UN-Lencep
expresada en HPSG,” Revista Avances en Sistemas e Informática,
Special Ed., vol.5 No.1, pp. 81-92, 2008.

[11] D. M. Berry, “Natural language and requirements engineering -
Nu?,” in CSD & SE Program University of Waterloo, vol. 20, 2003.

[12] I. Čeh, S. Pohorec, M. Mernik, and M. Zorman, “Robot Learning of
Domain Specific Knowledge from Natural Language Sources,” in
Robot Learning, Croatia: Intech ed., 2010, p. 150.

[13] R. Schwitter, “Controlled Natural Languages for Knowledge
Representation,” in Proceedings from Coling 2010, vol. 1, pp. 1113–
1121, Beijing, 2010.

[14] S. Hoefler and A. Bunzli, “Controlled Natural Language for
Knowledge-Based Legal Information Systems,” Amsterdam: John
Benjamins, 2006.

[15] D. Bieber, “University Language: A Corpus-based Study of Spoken
and Written Registers,” Amsterdam: John Benjamins, 2006.

[16] C. Nickerson, “The usefulness of genre theory in the investigation of
organizational communication across cultures,” Journal of Research
and Problem Solving in Organizational Communication, vol.1(3),
pp.203-215, 1999.

[17] J. M. Swales, “Genre Analysis: English in Academic and Research
Settings,” Cambridge: Cambridge University Press, 1990.

[18] J. M. Swales, “Research genres. Exploration and applications,”
Cambridge: Cambridge University Press, 2004.

[19] J. Yates, “Control through communication: The rise of system in
American management,” Baltimore: Johns Hopkins Un. Press, 1989.

[20] G. Parodi, “Lingüística de corpus: una introducción al ámbito,” Rev.
de Lingüística Teórica y Aplicada, vol.46 (1), pp. 93-119, 2008.

[21] M.T. Cabré, “La Terminología: Representación y Comunicación.
Elementos para una teoría de base comunicativa y otros artículos,”
Barcelona: IULA Universidad Pompeu Fabra, 1999.

[22] A. Azaustre and J. Casas, “Manual de retórica española,” Barcelona:
Ariel, 1997.

[23] I. Askehave and J.M. Swales, “Genre identification and
communicative purpose: a problem and a possible solution,”
AppliedLinguistics vol. 22(2), pp. 195-212, 2001.

[24] M. Wynne, “Developing Linguistic Corpora: a Guide to Good
Practice,” Oxford: Oxbow Books, 2005.

[25] A. O’Keeffe’s, “Strangers on the Line: A Corpus-based Lexico-
grammatical Analysis of Radio Phone-in,” PhD Thesis, University of
Limerick, 2003.

[26] P. O’Shea and C. Exton, “The Application of Content Analysis to
Programmer Mailing Lists as a Requirements Method for a Software
Visualization Tool,” 12th International Workshop on Software
Technology Practice, pp. 30– 39, 2004.

[27] G. Fliedl, C. Kop, H.C. Mayr, A. Salbrechter, J. Vohringer, G.
Weber and C. Winkler, “Deriving static and dynamic concepts from
software requirements using sophisticated taggingstar,” Data &
Knowledge Engineering, vol,61(3), pp. 433–448, 2007.

[28] P. Clements and L. Northrop, “Software Product Lines: Practices and
Patterns,” Boston: Addison-Wesley, 2002.

[29] J. Cybulski and K. Reed, “Requirements Classification and Reuse:
Crossing domains boundaries,” in 6th Intl. Conf. on Software Reuse
(ICSR’2000), Vienna, Austria: Springer, 1998.

[30] J. Cleland-Huang, W. Marrero, and B. Berenbach, “Goal-Centric
Traceability: Using Virtual Plumblines to Maintain Critical Systemic
Qualities,” IEEE Transactions On Software Eng., vol. 34, No. 5,
2008.

[31] I. S. Bajwa, M. G. Lee and B.Bordbar, “SBVR Business Rules
Generation from Natural Language Specification,” Artificial
Intelligence for Business Agility, vol. 3, 2011.

[32] C. Kray and A. Blocher, “Modeling the basic meaning of path
relations,” Proceedings of the 16th International Joint Conference on
Artificial Intelligence, vol. 1, pp. 384–389, August, 1999.

[33] B. Lee and B. R. Bryant, “Contextual Natural Language Processing
and DAML for Understanding Software Requirements
Specifications,” in 19th International Conference on Computational
Linguistics, vol. 1, August, 2002.

[34] F. Levy, A. Guisse, A.Nazarenko, N., Omrane, and S. Szulman, “An
Environment for the Joint Management of Written Policies and
Business Rules,” 22nd Internat. Conference on Tools with Artificial
Intelligence. IEEE Computer Society, vol. 2, pp. 142-149, 2010.

[35] N. Dinesh, A. Joshi, I. Lee, and O. Sokolski, “Logic-based regulatory
conformance checking,” in 14th Monterey Workshop, Scholarly
Commons Penn, 2007.

[36] N. Aussenac-Gilles, B. Biébow, and S.Szulman, “Revisiting
Ontology Design: A Method Based on Corpus Analysis,” in
Knowledge Eng. and Knowledge Manag.. Methods, Models, and
Tools: 12th International Conference, vol. 1937, pp. 27–66, 2000.

[37] D. Rösner, B. Grote, K. Hartmann, and B. Höfling, “From Natural
Language Documents to Sharable Product Knowledge: A
Knowledge Engineering Approach,” Journal of Universal
Computer Science, vol. 3, No. 8, pp. 955-987, 1997.

[38] R. Simpson and J. Swales, “Corpus Linguistics in North America,”
Selections from the 1999 Symposium, Ann Arbor: University of
Michigan Press, 2001.

[39] G. Parodi, “Discurso especializado e instituciones formadoras,”
Valparaíso: Ediciones Universitarias de Valparaíso, 2005.

[40] G.A. Burdiles, “Descripción de la organización retórica del género
caso clínico de la medicina a partir del corpus CCM-2009,” Thesis in
Linguistics, Universidad Católica de Valparaíso –Chile, 2011.

[41] L. Anthony, “Issues in the design and development of software tools
for corpus studies: The case for collaboration,” in Contemporary
corpus linguistics , London: P. Baker Ed., pp. 87-104, 2009.

[42] P. Drouen, “TermoStat Web 3.0. Désormais utilisable qu'après
enregistremen,” 2003, Available in:
http://olst.ling.umontreal.ca/~drouinp/termostat_web/

[43] C.M. Zapata and B. Manrique, “Designing a structural and functional
pattern of a corporate technical document for requirements
elicitation: A first approach from corpus linguistics,” in Software
Eng.: Methods, Modeling, and Teaching, vol. 2, Chapter1, pp. 1–10,
2012.

273

Swimming Activity Recognition Based on Slow
Intelligence Systems

Wen-Hui Chen
Graduate Institute of Automation Technology

National Taipei University of Technology
Taipei, Taiwan

whchen@ntut.edu.tw

Shi-Kuo Chang
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

chang@cs.pitt.edu

Abstract—Automatic analysis of swimming activities in an
aquatic environment is useful but challenging due to the varying
complex background. This paper presents a framework for
swimmer motion analysis based on slow intelligence systems (SIS).
There are five main components in the proposed SIS-based
recognition framework: enumeration, propagation, adaptation,
elimination, and concentration. A potential application of the
proposed framework is the development of an early drowning
detection system based on the observations of abnormal
swimming activities.

Keywords: slow intelligence systems; component-based software
engineering; motion detection; digital image processing

I. INTRODUCTION
Automatic recognition of swimming activities from video

sequences has important applications, such as swimming stroke
analysis and drowning detection. The system for automatic
swimming activity recognition (ASAR) mainly contains three
distinct stages: swimmer detection, swimmer tracking, and
activity recognition. Swimmer detection has to be performed
before conducting the tracking and recognition process.
Accurately detect swimmers from image frames is crucial for
the development of a reliable ASAR system.

For computer vision, swimmer detection is the task of
separating swimmers from the background in a given image.
Background subtraction and temporal differencing are two
common approaches applied to object detection in image
processing. Background subtraction is suitable for static
background and easy to implement [1]. Temporal differencing
of the information computed from a sequence of image frames
can be employed to reduce the number of false detection [2].
However, these two approaches are not suitable for the
application of swimmer detection due to the dynamic and
complex background.

Fig. 1 shows an image frame taken from an indoor
swimming pool. It can be observed the background image of an
aquatic environment is complex with some components that
could make vision task become difficult, such as water splashes,
ripples, and light reflections. Past researchers have developed
some useful approaches to deal with this problem. The authors
in [3] utilized local motion and intensity information to detect
swimmers in each video frame. In [4], the authors developed a
statistical model to represent the background image using a

composition of dynamic background patches. The authors in [5]
represented the background model in terms of homogeneous
blob for an outdoor swimming pool to overcome the water
disturbance problem.

Figure 1. The background of an indoor swimming pool with complex

environment.

Once the swimmers have been detected, tracking
algorithms can then be initiated to compute the correspondence
from one frame to the next frame in the tracking process [6].
The dynamic changes of swimmer’s poses, occlusion, and
illumination variation are three major factors that cause
additional technical challenges for activity recognition.

To recognize different swimming activities, a robust
algorithm is required to keep track of the swimmers’ movement
in the tracked image sequence over time. This paper aims to
present a concept of applying a slow intelligence framework in
activity recognition. The rest of the paper is organized as
follows. Section II presents the framework for swimming
activity recognition. Section III describes the swimming
activity recognition based on SIS. Conclusions are drawn in
section IV.

II. THE FRAMEWORK FOR SWIMMING ACTIVITY
RECOGNITION

The proposed ASAR framework, as depicted in Fig. 2,
contains three main functional modules: swimmer detection,
swimmer tracking, and slow intelligence system (SIS) based
activity recognition. The functions of each module are
described in the following subsections.

274

Swimmer
Detection

Swimmer
Tracking

SIS-based
Activity

Recognition

Video Frames

Figure 2. A framework for an automatic swimming activity recognition
system.

Swimmer detection is the first stage in the ASAR system.
In this stage, a model for representing the background image is
required to segment swimmers. The background of a pool area
normally contains few limited type of objects, such as the
water object and the lane-marking object. Once the object in
the pool area that does not belong to the water object is
removed, a swimmer is easily to be detected.

Therefore, we need to build a computational model for
representing the background so that the swimmers can be
effectively separated from the swimming pool. The Gaussian
mixture model (GMM) was adopted to represent the water
object. The required parameters in GMM were estimated by
expectation maximization. Fig. 3 depicts a GMM for
representing the water area in a swimming pool.

Figure 3. A Gaussian mixture model for the water area.

To reduce the influence of lighting changes, the HSV color
space was used during computation as this color space can
separate image intensity from the color information. We
grouped each pixel of an image frame by intensity using the
mean-shift clustering algorithm [7] to divide the image into
groups.

Fig. 4 illustrates an example by using mean-shift clustering
on an input frame. As it can be seen the resulted image after
clustering is more suitable for classification as it contains
distinct type of objects.

(a) (b)

Figure 4. Mean-shift clustering: (a) an original input frame; (b) after mean-
shift clustering.

Then, we need to remove noisy components that can
undermine swimmer detection, such as splashes, ripples, and
lane marking. The splashes and ripples can be identified
through searching for high intensity values in the target image,
while the lane marking can be identified by using the Hough
transform technique. Once the noisy components are removed,
the swimmers can be detected. Fig. 5 shows the process of
removing noisy components. Note that the two blobs in the
resulted image, as shown in Fig. 5(c), are the detected
swimmers.

(a)

(b)

(c)

Figure 5. Swimmer detection: (a) an image frame with two swimmers; (b)
background segmentation using GMM; (c) swimmers detection by
remvoing splashes, ripples, and lane marking.

When swimmers are detected, an optimal estimator using
Kalman filter is applied to track swimmers. The basic idea
behind Kalman filter is to combine the system model and the
measurement model to obtain the best estimation of the

275

location of the swimmers at each frame [8]. The purpose of
swimmer tracking is to obtain the motion features and shape
features of the swimmers. Based on these features, the
recognition of swimming activities can be accomplished
through SIS-based activity recognition.

III. THE PROPOSED SIS-BASED RECOGNITION SYSTEM

A. Overview of Slow Intelligence Systems
A slow intelligence system is a new model for building an

intelligent system through a process involving enumeration,
propagation, adaptation, elimination, and concentration [9]. A
slow intelligence system can be considered as a general
purpose system characterized by being able to improve
performance over time. Fig. 6 shows a typical building block of
a slow intelligence system.

As shown in Fig. 6, an SIS is characterized by some
functional blocks. It possesses decision cycles in the inference
process to find the solution, which enables the SIS to cope with
the changes of the environment and achieve the long-term goal.

Processor &
Controller

Enumerator

Knowledge Base

Adaptor Eliminator Concentrator

Propagator

Environment

SolutionProblem

Figure 6. A typical building block of a slow intelligence system

B. SIS-based Activity Recognition
The process of recognizing swimming activities requires

observing a sequence of image frames. This is related to the
process of slow intelligence systems in their decision cycles
for recognizing activities. The proposed SIS framework for
swimming activity recognition is depicted in Fig. 7.

Captured by the overhead-mounted camera in a swimming
pool, the input video streaming data is stored in an archive and
is processed by the data processing unit. The function of the
data processing unit is to remove water splashes, ripples, and
land marking for swimmer detection. Compared with the
background model, the location of swimmers in the
foreground can be identified. Then a fitting ellipse is used to
represent the shape of a detected swimmer, as shown in Fig. 8.

The input video data can be modeled by a sequence of
observation states xi, representing as a vector x = {x1, . . . , xT}.
An observation state xi is characterized by a set of features
adapted from [10], including the coordinates of the fitting

ellipse, the size of the fitting ellipse, the angle of the ellipse’s
major axis, and the minor to major axis ratio.

A swimming activity spans a certain amount of time.
Therefore, we define an activity as a sequence of consecutive
observation states. The SIS-based recognition stage consists of
four stages: enumeration, adaption, elimination, and
concentration. When feeding into the recognition stage,
observation states are represented as a feature vector.

Propagation

Environment

Enumeration

Video Stream Input

Activity models

Background
Modeling

Controller

Adaption Elimination Concentration

Activity Recognition

Video archive

Data processing

Water models &
skin-color models

Swimmer
Tacking

Swimmer
Detection

Figure 7. The proposed slow intelligence framework for behavior recognition.

Figure 8. A swimmer is characterized by a fitting ellipse.

276

Acting as an autonomous entity, the SIS-based recognition
unit consistently analyzes observation states, and compares
them with activities defined in the activity model through the
following processes.

1) Enumeration
All possible swimming activities defined in the activity

model are enumerated for evaluation according to the current
observation state. The hidden Markov model (HMM) is well
suitable for modeling time series data, and is one of the widely
used approaches to behavior recognition. In this study, the
HMM is adopted to classify different activities.

In this study, five normal swimming activities (treading,
freestyle stroke, butterfly stroke, breast stroke, back stroke)
and one abnormal activity (drowning) were defined by the
trained hidden Markov model as distinct activity classes.

2) Adaptation
The system continuously analyzes and adapts observation

states according to the environment changes till one of the six
predefined swimming activities is identified. The process of
adaption is to suit and update the current states from observed
inputs. Six HMMs are constructed for evaluating the most
probable activity coincides with the observed inputs. All
possible activities will be ranked and adapted to the
environment according to HMM inference results.

3) Elimination
As each activity is represented by a set of feature sequences,

the recognition of swimming activities from the input video
stream can be considered as a pattern recognition problem. In
this stage, unsuitable activities are eliminated to narrow down
the search space so that more resources can be kept for the
concentration stage.

4) Concentration
After ruling out unsuitable activities according to the

evaluation of possible activity models, the inference of the SIS-
based recognition unit can be more concentrated on searching
for the most probable activity, which is beneficial to its
performance improvement. The learning and searching process
will continue until a solution is reach.

5) Propagation
The system constantly shares information with environment

through the propagation process. When a specific activity is
detected, such as drowning, a warning will be issued to the
lifeguard for providing timely support. A regular camera has its
limited viewing angle, so a single camera is usually not enough
to cover the whole pool area. Therefore, multiple cameras are
required to offer good coverage in practical applications. In this
situation, the propagation unit plays an important role to
communicate with other slow intelligence systems working
towards achieving their goal.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a framework of classifying

swimming activities from image sequences based on slow
intelligence systems. As there are various recognition
algorithms that can be selected to design the activity classifiers,
a simulation for testing and compare the performance is

required before putting it into practical application. As a future
study, a simulation will first be provided by using the SIS
simulator developed by the University of Pittsburgh [11].

An SIS is characterized by employing super components, in
the sense that multiple components can be activated either
sequentially or in parallel to search for solutions. We have
developed a visual specification approach using dual visual
representations, and the user interface to design a component-
based SIS system based upon the dual visual representations.
We have applied this approach to build a simulator to design
the Slow Intelligence System for Social Influence Analysis
(SIA) [11]. This SIS simulator can be adapted to classify
swimming activities from image sequences based on slow
intelligence systems. Then, a recorded video clip from a
practical indoor swimming pool will be employed to verify the
proposed approach.

ACKNOWLEDGEMENT

We would like to thank the National Science Council of the
Republic of China for financial support of this research under
contract numbers NSC 101-2221-E-027 -013.

REFERENCES
[1] R. Jain and H. Nagel, “On the analysis of accumulative difference

pictures from image sequences of real world scenes,” IEEE Trans. Patt.
Analy. Mach. Intell., 1979, 1: 2 206-214.

[2] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background
modeling and subtraction of dynamic,” IEEE International Conf. on
Computer Vision, 2003, 2 1305-1312.

[3] K. L. Chan, “Detection of swimmer based on Joint Utilization of Motion
and Intensity information,” Conference on Machine Vision Applications,
June 13-15, 2011, Nara, Japan.

[4] H. L. Eng, J. Wang, A. H. Kam, and W. Y. Yau, “ Novel region-based
modeling for human detection within highly dynamic aquatic
environment,” in Proc. IEEE Int. Conference on Computer Vision and
Pattern Recognition, 2004, vol. 2, pp. 390-397.

[5] H. L. Eng, K. A. Toh, W. Y. Yau, and J. Wang, “DEWS: a live visual
surveillance system for early drowning detection at pool,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 18, no. 2, Feb. 2008,
pp. 196-210.

[6] A. Yilmaz, “Object tracking: a survey,” Journal of ACM Computing
Surveys, vol. 38, no. 4, 2006, pp.1-45.

[7] D. Comaniciu, and P. Meer, “Mean Shift Analysis and Applications,”
IEEE Trans. Information Theory, 1999, 21:1 32-40.

[8] L. Jetto, S. Longhi, and G. Venturini, “Development and experimental
validation of an adaptive extended Kalman filter for the location of
mobile robots,” IEEE Trans. Robot. Automat., 1999, 15:2 219-229.

[9] S. K. Chang, "A General Framework for Slow Intelligence Systems,"
International Journal of Software Engineering and Knowledge
Engineering, vol. 20, pp. 1-15, 2010.

[10] W. Lu and Y. P. Tan, “A vision-based approach to early detection of
drowning incidents in swimming pools,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 14, no. 2, Feb. 2004, pp. 159-178.

[11] S. K. Chang, Yao Sun and Yingze Wang, “Component-based Slow
Intelligence System”, Journal of Internet Technology http://jit.niu.edu.tw,
January 2013.

277

Image Steganography Using Fuzzy Domain Transformation and Pixel Classification

Aleem Khalid Alvi
School of Computing
Queen’s University

Kingston, ON, Canada
aleem@cs.queensu.ca

Robin Dawes
School of Computing
Queen’s University

Kingston, ON, Canada
dawes@cs.queensu.ca

Abstract—Image steganography offers many techniques to hide
secret data from an eavesdropper. We use fuzzy logic and
image processing techniques to develop a robust and highly
imperceptible image steganography scheme. Our proposed
scheme uses fuzzy domain transformation of secret data. We
exploit image processing techniques for implementation of
fuzzy pixel classification for a selection of cover pixels during
the embedding of secret data. On the receiving end, un-
embedding is performed using stego keys.

Keywords: image steganography, data hiding, fuzzy logic,
fuzzy classification, image processing

I. INTRODUCTION
Digital information hiding was born with advent of

digital technology. Nowadays steganography techniques use
different types of digital media such as text, image, audio,
video, binary, or html files. Modern steganography
techniques rely on data hiding techniques using modern
media. Cryptography provides data security by applying
encryption/decryption techniques. An encrypted message is
susceptible to eavesdroppers' attacks if they know of its
presence. The best solution is to hide the message existence
by embedding it into cover media. Therefore, role of
steganography is clear and strong with use of cryptography.
Both techniques provide more secure communication
between sending and receiving ends. Furthermore, some MS
Windows operating system stores admin password in sam
(security access manager) hive file (%SYSTEMROOT%\
system32\config\sam) using a one-way-hash (e.g., NT LAN
Manager hash) [1]. The sam hive’s file location is
inaccessible to non-administrative users by default. However,
it is vulnerable to offline attacks. Tools are available that can
recover or simply reset/clear the password [2]. It is best to
encrypt the password and hide using steganography.
Therefore, combination of both techniques offers safety from
attackers [3-4]. In this paper, we propose a unique and robust
steganography method using fuzzy techniques. We transform
secret data from a spatial domain to fuzzy domain before
data hiding. The selection of a pixel from the cover media
(an RGB image) depends on fuzzy pixel classification.
Image processing techniques are employed for selection
process of cover pixels using fuzzy pixel classification.

The rest of the paper is organized as follows. In Section
II, we provide a survey on steganography that uses fuzzy
logic techniques. In Section III, we describe the experimental
setup for our proposed steganography technique. In Section

IV, we depict the implementation procedure for the
technique. In Section V, we discuss and analyze the results.
Finally, we conclude with future research.

II. RELATED WORK
Classification of information hiding methods is based on

many attributes such as cover objects, secret objects, hiding
techniques, and current technologies. Researchers attempt to
develop steganography systems with robustness, security,
undetectability, imperceptibility (invisibility or perceptual
transparency), and high capacity; however, every method has
its own advantages and disadvantages [5]. We measure the
capability and quality of steganography methods using these
characteristics. Our proposed technique is the combination of
domain transformation, data conversion, and substitution
based on image properties. It is a kind of private-key
steganography. Many steganography techniques can be
found in the literature [5-6, 8-10, 11-15, 18]. We discuss
steganography techniques that use fuzzy techniques as part
of their implementation. Khursheed and Mir [16, 17] were
the first to attempt to apply fuzzy logic for hiding data. They
endeavor to embed information in a fuzzy logic domain. The
advantages are lower computationally expense as compared
to other domain transformation methods. Their method
provides embedding versatility and safety from common
cover attacks, as well as appropriate imperceptibility and
payload capacity. However, the secret data is very sensitive
and easy to destroy by small changes in the cover without
changing any significant visibility.

Toony et al. [19] propose an image hiding method. They
hide a secret image by employing a fuzzy coding/decoding
method. A fuzzy coder compresses each block of the secret
image into a smaller block and utilizes model-based
steganography to hide the message in a cover image. This
causes less distortion in the image and the result is a high
quality stego image. The advantages are higher embedding
rate and security enhancement.

Hussain et al. [20] propose a novel hybrid fuzzy c-means
(FCM) and support vector machines (F-SVM) model for
image steganography. The F-SVM model provides the
capability for embedding the secret-message imperceptible
for human visual system (HVS) during payload increment.
This hybrid soft computing approach has advantages of
complementary features of clustering (using FCM) and
classification (using support vector machines).

Goodarzi et al. [21] propose a steganography scheme
based on the least significant bit (LSB) steganography

278

mechanism and utilize hybrid edge detector (HED). The
HED consists of canny edge detection and fuzzy edge
detection algorithms. This scheme resists the HVS, Fridrich's
methods, and steganalysis systems, which are based on
statistical analysis. In addition, it produces higher quality
stego images and high payload capacity.

Every steganography method has its limitations.
Petitcolas et al. [6] discuss the limitations of some
information hiding systems and attacks. Detection and
destruction of secret data in a cover medium are considered
attacks. They describe many attacks on information hiding
techniques. Craver et al. [7] describe three kinds of attacks:
robustness attacks, presentation attacks, and interpretation
attacks.

In Section III, we describe our steganography scheme
that utilizes a fuzzy inference system. The system exploits
image processing techniques.

III. EXPERIMENTAL SET UP

We use LSB steganography that employs fuzzy logic with
image processing techniques. The selection of a pixel for
embedding depends on two image properties: silhouette (i.e.,
edges) and texture (i.e., a pixel contains the entropy value of
the 9-by-9 neighborhood pixels around the corresponding
pixel in cover image). The process of steganography uses the
fuzzy inference system to embed the secret data (i.e., text or
image) into the cover image.

A. Fuzzy Image Representation and Domain
Transformation

An image is the combination of pixel values. These
values are represented in matrix form. An aggregation of
these values shows an image to HVS with image properties
such as brightness, homogeneity, noisiness, and edginess, etc.
In general, an image representation in spatial and fuzzy
domains is shown in (1) and (2), respectively as follows.

M

m

N

n
mns II

1 1= =

=

A relationship or transformation of a pixel from the spatial
to the fuzzy domain using membership function μmn is
shown below.

)(mnxmn Iμμ =
Hence an image in the fuzzy plane is

M

m

N

n
mnf

1 1= =

= μμ

M

m

N

n
mnxf I

1 1

)(
= =

= μμ

We use the general form of Gaussian membership function
for image transformation from the spatial domain into the
fuzzy domain as shown in Fig. 1. The specific image
transformation function with fuzzifier fh is shown below
taken from Khurshid and Mir [16]:

2

2
max

2
)(

h

mn

f
II

mn e
−−

=μ
Where fh = fuzzifier, Imax = maximum pixel value of an image,
Imn = any gray level pixel value of an image I. In Fig. 1, fh = ,
Imax= b, and Imn = x.

Figure 1. Simple Guassian function graph [23]

Analysis of (3) shows that the difference between Imax
and Imn changes the value of μmn significantly. If Imn
approaches Imax then μmn approaches 1. Similarly, when Imn
approaches 0 then μmn approaches a finite value c. Where c is
shown as follows.

2

2
max

2
)(

0 hf
I

mn ec
−

== μ
Therefore, values of μmn vary from c to 1. The fuzzifier (fh) is
the parameter that has effect on μmn. The inverse
transformation function is required to transform the image
back to spatial domain. In subsection B, we describe the
embedding process using fuzzy inference system (FIS).

B. Fuzzy Inference System (FIS)
We use Mamdani fuzzy interference system (FIS) for the

proposed steganography scheme [24]. Using the fuzzy
inference process, a given input (a crisp input) maps to an
output (a crisp output) using fuzzy logic methods. The fuzzy
inference process requires membership functions, logical
operations, and If-Then rules. We implement the FIS in
following steps.
Step 1: Fuzzify inputs

Take input as pixel values and determine the degree to
which they belong to each of the appropriate fuzzy sets. We
use the membership function shown in (4) to transform the
image pixel values from spatial domain to fuzzy domain.
Step 2: Apply fuzzy operator.

A fuzzy operator AND is used for combining the
antecedents. The purpose of the fuzzy operator is to obtain
one number that represents the result of the antecedents for
specific rule and then apply a number to the output function.
Step 3: Apply implication method.

We use fuzzy pixel classification using image-processing
techniques for LSB embedding in cover image [22]. We use
three fuzzy based implication rules as follows:

a) IF (cover pixel = silhouette) AND (cover pixel texture
value < M) THEN (Do not use cover pixel for
embedding)

 (1)

 (2)

 (3)

279

b) IF (cover pixel silhouette) AND (cover pixel texture
value M) THEN (Do not use cover pixel for
embedding)

c) IF (cover pixel silhouette) AND (cover pixel texture
value < M) THEN (Use cover pixel for embedding)

In rule (c) the antecedent says that “if cover pixel is a
regular pixel” then use this pixel for embedding secret data.
Further, M is the mean of all pixels' entropy in the image.
The input for the implication process is a single number
given by the antecedent, and the output is consequent as part
of a fuzzy set.
Step 4: Aggregate all outputs

We aggregate the output in the final cover image by
writing all pixels combined in matrix form and store as an
image.
Step 5: Defuzzify

Using HVS, visualize the cover image. The visualization
after embedding should not differ from the visualization of
the original cover image.

C. Using Image Processing Techniques in Fuzzy Pixel
Classification

In the step 3 of subsection B, we use fuzzy based If-Then
rules to apply fuzzy classification of potential cover pixels.
The classification is used to select the appropriate cover
pixel for embedding secret data. The purpose of cover pixel
selection is to produce less disturbance and distortion in the
embedded cover image with respect to HVS. We use texture
and silhouette (edge) properties of an image.

The texture property is a statistical measure for image
pixels. It provides information about the local variability of
the intensity values of pixels in an image. For example,
smooth texture in specific area of an image shows the range
of values will be a smaller in the neighborhood around a
pixel. The inverse is rough texture area where the range of
pixel values will be larger.

The HVS testing first detects the distortion in edges of
an image. Therefore doing no embedding in edges will
preserve the edges of the image and increase
imperceptibility against an eavesdropper’s attack and
decrease susceptibility to detection. We use the canny edge
detection algorithm for edge detection in images and
calculate entropy of each cover pixel by using a block of 9 x
9 neighborhood pixels around a selected pixel for getting
texture information. We do not embed in edges and high
texture areas to keep image more imperceptible for the HVS
testing. The selection can be changed based on the given
condition. For example in Fig. 2, we use rule based
selection dependent on comparison with the mean texture
value (M) of a cover image. Therefore, the capacity in the
cover image may be increased if we replace the mean
texture value (M) of the cover image with a texture value
greater than M. However, this may decrease imperceptibility
of the embedded cover image and may increase
susceptibility for the eavesdropper.

D. Methodological Steps
In subsection B, we describe the FIS for the proposed

steganography scheme. Fig. 2 provides step-by-step
methodological information using a flowchart representation
for embedding process on the sending end of the
steganography system.

IV. IMPLEMENTATION
We implement the sending and receiving end algorithms

using MATLAB. The stego keys for the receiver are original
cover image, extracting software, and size and location of
secret payload. It is easily possible to decrease susceptibility
and reduce the possibility of cover, statistical, histogram, and
profiler attacks if every time the sender communicates using
a new image as a cover object. Therefore, the cover image
should be unique and can use as a secret key. Similarly
starting pixel location for embedding and size of secret data
are combined to be used as a secret key.

The value of fh works as a tuner of the image for
embedding and extracting the secret image or data. The
value of fh can be adjusted based on the result of recovering
the image. Therefore, the sender must check the recovered
secret image before sending the embedded cover image to
the destination. In our experiment, we use two different
values of fh for embedding and extracting the secret image.
The value fh = 65 has better results than fh = 45 in HVS
testing. Interestingly, we embed data using fh = 65 and
extract using fh = 45 and fh = 95.

Figure 2. Sending end data embeding flowchart

280

The result is the successful extraction of secret image;
however, at fh = 45 the secret image has less perceptibility
then at fh = 95. Therefore, fh work like a tuner for achieving
good image quality in extraction process.

Fig. 3 shows the piece of MATLAB code for the
implementation of the image processing techniques for fuzzy
pixel classification. The embedding is LSB steganography
technique; nevertheless, the selection of a cover pixel is
based on fuzzy classification.

Figure 3. Image processing based fuzzy pixel classification algorithm

The use of fuzzy pixel classification creates unique
characteristic in steganography scheme. It develops
robustness in the steganography system.

Fuzzy transformation of an image provides the fractional
values of irrational numbers. For storing these values up to
significant number of decimal places needs excessive
storage. Therefore, we use only two decimal places of fuzzy
data (i.e., fuzzy singleton values) of an image for storing into
a cover image. We found that the round off of fuzzy
singletons to two decimal places is the maximum round off
position for the fuzzy data without losing pictorial
information. However, on the receiving end, the
transformation of secret data (image) into the spatial domain
does not show exactly as the original; however, the result is
always found to be appropriate and acceptable for visibility.

V. ANALYSIS AND RESULTS
We use ImageJ (ver. 1.46r) software for analysis of

results of the proposed steganography scheme. We have
selected two standard images of size 512 × 512 as cover
object (i.e., Lena and Baboon). The secret images are
Tomahawk missile and Spaceship with sizes 160 × 160 and
400 × 400, respectively.

We apply HVS, histogram (a statistical tool), and profile
testing for analysis the imperceptibility characteristics of the
results. These testing techniques select the best cover object
among Lena and Baboon with respect to texture and
silhouette (edge) properties. For this purpose, embed
Tomahawk missile image (160 × 160) into both cover

objects and use testing techniques. We have found the
Baboon is the best selection as cover object. After selection
of a cover image, we start testing of imperceptibility of the
cover object by embedding the secret images in increasing
capacity.

The selection process of cover pixels is shown in Fig. 2.
We find the number of pixels in the cover object that are
appropriate for embedding without producing perceptible
disturbance in the texture and silhouette properties of the
cover image. Therefore, before we start embedding, we
know the available capacity of the cover object. The
available capacities based on embedding criteria (shown in
Fig. 2) for the selected cover images, i.e., Lena.jpg and
Baboon.jpg are 145,313 and 138,518 pixels, respectively.

The available cover object capacity may vary by any
change in selection of texture value in an algorithm shown in
Fig. 2. Permitting embedding in more cover pixels provides
more capacity but on the other hand, it decreases
imperceptibility.

TABLE I. ANALYSIS OF PROPOSED STEGANOGRAPY ALGORITHM
USING LENA (COVER) AND TOMAHAWK MISSLE (SECRET) IMAGES

Type Images Histograms
O

rig
in

al
 C

ov
er

Im

ag
e

(L
en

a)

O
rig

in
al

 S
ec

re
t

Im
ag

e
(T

om
ah

aw
k

M
is

sil
e

)

St
eg

o
Im

ag
e

(E
m

be
dd

ed
 C

ov
er

Im

ag
e)

(f h

 =
 4

5)

Ex
tra

ct
ed

 S
ec

re
t I

m
ag

e

f h
=

45

f h
=

65

Table I shows embedding of the Tomahawk missile

image into Lena image. In this case, secret data (160 ×160 =

281

25600 pixels) is embedded in Lena (available capacity =
145,313) and uses 17.62% of the available cover object
capacity. HVS testing shows that original Lena image and
Lena stego image has significant difference. The HVS
testing uses zooming effect during comparison with the
cover image. The difference between cover and stego objects
is visible as light shades. This testing cannot be invoked
without original cover image.

The histograms for the original Lena and stego Lena
images look similar in shape. However, statistical testing
shows the difference between their statistical values (i.e.,
mean and standard deviation values). This can draw the
attention of an eavesdropper and increase the susceptibility.
The original secret image (i.e., Tomahawk missile) is
evidently visible after extraction; however, the extracted
image at fh = 65 has more visibility as compared to the
extracted image at fh = 45. The comparison of histograms of
“extracted secret image at fh = 65” with the “original secret
image” shows much similarity to each other.

Table II shows embedding of Tomahawk missile image
into Baboon cover image.

TABLE II. ANALYSIS OF PROPOSED STEGANOGRAPY ALGORITHM
USING BABOON (COVER) AND TOMAHAWK MISSLE (SECRET) IMAGES

Type Images Histograms

O
rig

in
al

 C
ov

er

Im
ag

e

(B
ab

oo
n)

O
rig

in
al

 S
ec

re
t

Im
ag

e
(T

om
ah

aw
k

M
is

sil
e

)

St
eg

o
Im

ag
e

(E
m

be
dd

ed

C
ov

er
 Im

ag
e)

(f h

 =
 4

5)

Ex
tra

ct
ed

 S
ec

re
t I

m
ag

e

f h
=

45

f h
=

65

In this case, secret data (160 ×160 = 25,600 pixels) is
embedded in Baboon cover image (available capacity =
138,518 pixels) and uses 18.48% available cover object
capacity.
 The histograms for the original Baboon and stego Baboon
images are approximately similar in shape. HVS testing
shows that the original Baboon image and Baboon stego
image has no difference in visibility. However, statistical
testing shows the difference between their statistical values
(i.e., mean and standard deviation values). However, this is
less susceptible to an eavesdropper in comparison to the case
shown in Table I, because humans use the HVS at first to
judge anything. The original secret image (i.e., Tomahawk
missile) is evidently visible after extraction; however, the
extracted image at fh = 65 shows more clear view as compare
to the extracted image at fh = 45. The comparison of
histograms of extracted secret image at fh = 65 with original
secret image shows more similarity among each other.
Therefore, it shows that Baboon is a more reliable and
imperceptible cover image and the value of fh can be used as
a tuning parameter for embedding and extracting a good
visible secret image.

TABLE III. ANALYSIS OF PROPOSED STEGANOGRAPY ALGORITHM
USING BABOON (COVER) AND A BIRD (SECRET) IMAGES

Type Images Histograms

O
rig

in
al

 C
ov

er

Im
ag

e

(B
ab

oo
n)

O
rig

in
al

 S
ec

re
t

Im
ag

e

(S
pa

ce
 sh

ip
 4

00
 ×

40

0)

St
eg

o
Im

ag
e

(E
m

be
dd

ed

C
ov

er
 Im

ag
e)

(f h

 =
 4

5)

Ex
tra

ct
ed

 S
ec

re
t I

m
ag

e

f h
=

45

f h
=

65

282

We use profile testing for Lena and Baboon original and
stego images and found it useless. Image profile testing
provides the graph of selected area of an image; however, the
differences between original and stego images are not visible
in the graphs (provided that the size of secret data is small).

In Table III, we use 100% cover capacity of Baboon
cover image for testing its strength in terms of
imperceptibility. We embed the Spaceship secret image of
size 400 × 400 pixels. In this case, secret data (400 × 400 =
160,000 pixels) is embedded in Baboon cover image
(available capacity = 138,518 pixels). Since secret data is
larger than available cover capacity; secret pixels are lost
after using all cover capacity in cover image. The lost pixels
are visible as a black strip in recovered images at fh = 45 and
65. The HVS testing shows that Baboon cover image is
highly imperceptible. However, histogram and statistical
results shows significant differences between original and
stego images.

VI. CONCLUSION AND FUTURE WORK
We proposed steganography algorithm based on fuzzy

inference system. Our fuzzy inference system uses fuzzy
transformation and pixel classification techniques. The fuzzy
pixel classification uses the image processing techniques by
exploiting texture and silhouette properties. The results show
that exploiting the image processing techniques with fuzzy
logic increase imperceptibility in stego image significantly.
In future work, more image properties can be considered for
a cover image to further strengthen imperceptibility.

ACKNOWLEDGMENT
The authors would like to thank Prof. Hamid R. Tizhoosh,

Faculty of Engineering, University of Waterloo for his online
image processing tutorial and thoughtful comments on fuzzy
representation for an image.

REFERENCES
[1] Windows Registry Security - Part One, visited on May 13, 2013,

http://www.registryon windows.com/registry-security-1.php.
[2] T. Fisher, "7 Free Windows Password Recovery Tools," About.com

guide, visited on May 13, 2013, http://pcsupport.about.com
/od/toolsofthetrade/tp/passrecovery.htm.

[3] Al-Najjar A.J., Alvi A.K., Idrees S.U., and Al-Manea A. M., “Hiding
encrypted speech using steganography,” In Proceedings of the 7th
WSEAS International Conference on Multimedia, Internet & Video
Technologies, Lang Congyan (Ed.), vol.7, World Scientific and
Engineering Academy and Society, pp.275-281, 2007.

[4] Raphael A.J., and Sundaram V., “Cryptography and steganography –
A survey,” International Journal of Compter Technology and
Applications, vol. 2, No. 3, pp. 626-630, 2011

[5] AL-Ani, Z.K., Zaidan, A.A., Zaidan, B.B., and Alanazi, H.O.,
“Overview: Main Fundamentals for Steganography,” Computer
Engineering, vol.2, pp.158-165, 2010.

[6] Petitcolas, F.A.P., Anderson, R.J., and Kuhn, M.G., “Information
hiding-a survey,” In Proceedings of the IEEE , vol.87, no.7, pp.1062-
1078, 1999.

[7] Craver S., Yeo B.-L., and Yeung M., “Technical trials and legal
tribulations.” Communications of the A.C.M., vol.41, no. 7, pp. 44-54,
1998.

[8] Anderson, R.J. and Petitcolas, F.A.P., “On the limits of
steganography,” IEEE Journal on Selected Areas in Communications,
vol.16, pp.474-481, 1998.

[9] Cheddad A., Condell J., Curran K., and Mc Kevitt P., “Digital image
steganography: Survey and analysis of current methods,” Signal
Processing, vol.90, pp.727-752, 2010.

[10] Johnson N.F. and Jajodia S., “Exploring steganography: seeing the
unseen,” IEEE Computer, vol. 31, no. 2, pp. 26–34, 1998.

[11] Bender W., Butera W., Gruhl D., Hwang R., Paiz F.J., and Pogreb S.,
“Applications for data hiding,” IBM Systems Journal, vol.39, no.3 &
4, pp.547–568, 2000.

[12] Petitcolas F.A.P., “Introduction to information hiding,” In:
Katzenbeisser S., Petitcolas F.A.P. (Eds.), Information Hiding
Techniques for Steganography and Digital Watermarking, Artech
House, Inc., Norwood, 2000.

[13] Miaou S., Hsu C., Tsai Y., and Chao H., “A secure data hiding
technique with heterogeneous data-combining capability for
electronic patient records,” in: Proceedings of the IEEE 22nd Annual
EMBS International Conference, pp. 280–283., 2000.

[14] Fujitsu Ltd., “Steganography technology for printed materials
(encoding data into images),” Tackling new challenges, Annual
Report 2007, Fujitsu Ltd., pp.33, 2007, Access at:
http://www.fujitsu.com/downloads/IR/annual/2007/all.pdf.

[15] Provos N. and Honeyman P., “Hide and seek: an introduction to
steganography,” IEEE Security and Privacy, vol.1, no.3, pp.32–44,
2003.

[16] Khursheed F. and Mir A.H., “Fuzzy logic based data hiding,” In
Proceeding of Cyber Security, Cyber Crime, and Cyber Forensics,
Department of Electronics and Communication, National Institute of
Technology, Srinagar, India, 2009.

[17] Mir A.H., "Fuzzy entropy based interactive enhancement of
radiographic images," In Journal of Medical Engineering and
Technology, vol.31, no.3, pp.220–231, 2007.

[18] Munirajan V.K., Cole E., and Ring S., “Transform domain
steganography detection using fuzzy inference systems,” In
Proceeding of IEEE Sixth International Symposium on Multimedia
Software Engineering, pp.286- 291, 2004.

[19] Toony Z., Sajedi H., and Jamzad M., “A high capacity image hiding
method based on fuzzy image coding/decoding,” In 14th
International ‘Computer Society of Iran’ Computer Conference
(CSICC’09), pp.518-523, pp.20-21, 2009.

[20] Hussain H.S., Aljunid S.A., Yahya S., and Ali F.H.M., “A novel
hybrid fuzzy-SVM image steganographic model,” In Proceeding of
International Symposium in Information Technology, vol.1, pp.1-6,
2010.

[21] Goodarzi M.H., Zaeim A., and Shahabi A.S., “Convergence between
fuzzy logic and steganography for high payload data embedding and
more security,” In Proceedings of 6th International Conference on
Telecommunication Systems, Services, and Applications, pp.130-138,
2011.

[22] Castiello C., Castellano G., Caponetti L., and Fanelli A.M., “Fuzzy
classification of image pixels,” In Proceedings of IEEE International
Symposium on Intelligent Signal Processing, pp.79- 82, 2003.

[23] Ibrahim A., “Fuzzy Logic for Embedded Systems Applications,”
Newnes, pp.213, 2003.

[24] Mamdani, E.H. and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller,” In Proceedings of
International Journal of Man-Machine Studies, vol.7, no.1, pp.1-13,
1975.

283

Smart Phone Based Indoor Pedestrian
Localization System

Lokesh Agrawal
Department of Computer Science and Engineering

Indian Institute of Technology Roorkee
Roorkee, India

lokesh_agrawal@ymail.com

Durga Toshniwal
Department of Computer Science and Engineering

Indian Institute of Technology Roorkee
Roorkee, India

durgatoshniwal@gmail.com

Abstract— Indoor Positioning Systems (IPSs) are emerging
computing systems that can locate objects or people inside indoor
environment. This technology shows assurance for future mobile
apps that can be used in malls, museums, hospitals, airports and
college campuses for self localization. Despite advances in Global
Positioning System (GPS) technology, indoor spaces are still out
of reach of satellites. GPS signals are not designed to penetrate
most construction materials. An IPS relies on nearby anchors or
landmarks, and uses various sensing schemes including artificial
vision, Wi-Fi, Bluetooth, Camera images etc. In this paper, we
present a system that leverages the camera and Wi-Fi present in
the smart phones carried by users, to track them as they traverse
in indoor environment. It makes use of a radio map of an indoor
environment. A significant challenge that our system surmounts
is to estimate user’s position without any prior user-specific
knowledge, such as the user's initial location. Results obtained
after conducting simulations demonstrate the validity and
suitability of the proposed algorithm to provide high
performance level in terms of position accuracy and scalability.

Keywords- Localization, Mobile Phones, Sensors, Probability

I. INTRODUCTION
In recent years, improved features of smart-phones like its

affordability, portability, better sensors and computational
power has made a room for number of useful mobile
applications. One such application is localization of an object
in an indoor environment. Indoor localization shows promise
for significant improvement in quality of living, especially for
the visually impaired. By tracking user’s location and
providing directions audibly, this could help to improve the
independence of the visually impaired [1]. Not only this,
indoor navigation systems are also needed in complex public
areas like shopping malls, museums, airports etc to provide
position indication of the user so that user can easily find out
where they are and can plan accordingly.

Global Positioning System (GPS) [2] is the most widely
used technology that provides directions and locate places of
interest anywhere on the earth where there is an unobstructed
line-of-sight to requisite number of satellites. However GPS
cannot be deployed for indoor use, because line-of-sight
between receivers and satellites is not possible in an indoor
environment. Hence comparing to outdoor environments
indoor environments are more complex and designing
applications for indoor navigation system raise new
challenges. Some technical report [3], [4], [5] provides an

overview of various available technologies that can be used
for the design of an Indoor Positioning System. Based on these
fundamental technologies, various IPSs have been developed
by different companies, universities and research centers [6].
There are several commercial IPS systems such as Cricket [7],
BAT [8], Active Badge [9], RADAR [10] etc.

We propose one such GPS-free Indoor Localization System
which uses camera and Wi-Fi equipped smart phones for
indoor positioning. The core idea involves combining the
current strength of smart phones to estimate the location of
user inside a closed premise. The key advantage of using our
approach is that it does not require any network infrastructure.
Neither any dedicated, specialized hardware is required. Users
do not have to carry any device apart from what they already
have, a smart phone. Our approach utilizes various Wi-Fi
RSSI measurements and camera images for position
estimation of an object. The remainder of this paper is
organized as follows. In section 2 we provide background on
previous localization work, followed by a discussion of our
system architecture and design in section 3 and section 4
respectively . The report on simulated experiments and the
results is discussed in section 5, followed by conclusions and
future work in section 6.

II. RELATED WORK
Extensive research has been done to make a mobile phone

application for indoor localization. A general survey is found
in [6]. Here we provide only a brief survey. There has been a
vast literature in pedestrian localization using custom
hardware and rigid mounts. Previously specialized footwear’s
[3], helmets, and other wearable modules [1] fitted with
various sensors have been used for the localization task.
Unlikely they did not enjoy same success as far as consumer
applications are concerned due to the expenses imposed for
acquiring specialized hardware and the inconvenience in
wearing them. Therefore smart phone implementable indoor
localization solution is required which is more likely to obtain
broad acceptance. The key advantage a smart phone offers are
in terms of no social stigma to use in public, a billion of
people already own one [11], easy distribution in the form of
an app etc.. Many positioning systems have been developed
over the years for indoor location estimation.

As an example GSM signal strengths have been used to
determine which floor of a building the user is in [12].

284

However, accurate tracking within a floor of a building has not
been achieved with GSM. Similarly, IR signals have some
limitations because of interference from florescent light and
sunlight [6]. A disadvantage of Bluetooth-based positioning
system is that the system requires installation of Bluetooth
tags. We chose to focus on a technique that uses camera
images and Wi-Fi RSS along with filters to overcome the
drawback of existing techniques.

III. SYSTEM ARCHITECTURE
Fig. 1 presents the overall architecture of our proposed

system. This is one of the possible architecture, not necessarily
the optimal one. We describe the high level flow of the
information with the help of this diagram, and present the
internal details in the next section. We begin with the
preprocessing step where fingerprints of the Wi-Fi RSSI
values are stored in a database. Next a user visits an unknown
store with mobile phone. The phone senses the ambience
automatically. The sensed values are recorded, matched and
filtered to estimate the location of a user.

Figure 1 Architectural Overview of Proposed System

IV. SYSTEM DESIGN
We have studied the possibilities offered by 2 available

resources in smart phones: Wi-Fi and camera. In this section
we present the two main components of our system:
Fingerprint Generation, Matching and Filtering.

A. Fingerprint Generation/ Training Phase
1) Fingerprinting Color Codes using Camera: Localizer

discussed is made to work inside smartly designed buildings
where each of the pillars inside a building is color coded with
a predefined (not necessary for each color to be unique) set of
colors. Just like modern metro stations and airports where
color lanes and footsteps are made, for showing way to
different platforms for the ease of passengers. We take
fingerprints of these color codes and store them for location
estimation.

2) Fingerprinting Wi-Fi : The consideration of Wi-Fi
radios along with filters represents the most reliable approach
for indoor localization in our experimental setup. RSSI values
from Wi-Fi beacons deployed within a building allow us to
obtain a fingerprint or radio map of different locations: the
separation between these chosen locations for indoor
environments is taken to be around a meter. We will estimate

locations through the comparison of the current RSSI
measurements with those stored in the radio map.

B. Fingerprint Matching / Online Phase
The mobile terminal infers its location through best

matching between the current measurements being received
and those previously recorded in the radio map.

1) FingerPrint Matching of Color Codes: Color coded
technique discussed here requires less computational overhead
as compared to real environment image matching in a map.
Because color coded technique requires identifying color of
any one pixel of the image captured.

In this approach user needs to sequentially capture few
images of color codes mounted on walls and after taking few
pictures device learns about its actual position inside the
building and acts as a guide to them.

Figure 2 Indoor Localizer DFA

 Fig. 2[15] shows the flow of methods inside our
localizer algorithm. Before proceeding we describe each of
these methods next and then finally describe how they are
interacting to form an Indoor localizer.

a) Initial Belief: Initial belief is an initial location
probability of an object in an indoor environment. Since
mobile device is completely clueless about its location, it
believes that every point in indoor environment is equally
likely to be its current position.

b) Sensing and Matching: Sense method takes an image
of color code mounted on nearby wall. Initially device senses
that it is near to a color code X, our algorithm assigns all
locations with color code X, a greater probability, whereas
assigns all of the other locations, a decreased belief. This
represents another probability distribution, called as posterior
belief where the function is defined after the device sense
measurements has been taken.

c) Filtering: Move method evaluates the belief once a
sense method is called and a motion is made. As soon as
device moves towards next color code our algorithm shifts its
belief according to the motion made. Algorithm adds motion
error too by flattening the beliefs to certain limit. This
flattening is due to uncertainty in motion. Shifting and
flattening of the belief is called as convolution [13]. The result
of this convolution is the shifted and flattened belief function.

Once a movement is made device senses itself again. Just
like the first measurement, sensing of color code will increase
the probability function by a certain factor everywhere where
there is corresponding sensed color code. So compared to first
measurement, when we were in a state of maximum
confusion, this time device have some idea of its location
before sensing. This prior information, together with the
second sensing measurement combines to give us a new

285

probability distribution. Therefore after second motion device
is comparatively sure about its location than it was having
after one or zero measurements. As a result after certain
number of these iterations device will learn about its actual
position in a building.

2) FingerPrint Matching of Wi-Fi RSSI: The approach
discussed in this section makes use of particle filters [14] used
in autonomous robotics for Indoor Pedestrian Localization.
We assume we have certain number of fixed Wi-Fi access
points inside a building where we will use our pedestrian
localizer.

We use a Wifi-based signal strength fingerprinting
approach and filter the result using particle filter. The signal
strengths to several Wi-Fi access points (APs) measured by
the phone at run time are compared with a signal strength map
generated earlier. The difference between the expected reading
for that position in the map and the actual signal strength
reading is used to adjust the weight of the particle.

Algorithm works as follows:

(a) (b)

Figure 3 Floor Plan of Indoor Environment

Consider a layout of an indoor environment as shown in
Fig. 3. We divide floor into set of various (1m x 1m) cells, the
corners of these cells act as an alias of an object (Person P)
which needs to get localized refer Fig. 3(b).

Cell corners are basically a guess to a location of a person.
These cells are represented as two tuple (X, Y) and are
mapped with vector containing RSSI value and corresponding
MAC address. These values together make a single guess.
However, this single guess is not sufficient to find out
approximate posterior of the person, but rather it is the set of
several guesses that together generate an approximate
representation for the posterior of the person. The goal of our
algorithm is to have these aliases guess where the person
might be moving. And also send them to test, a kind of
"survival of the fittest test" means cells that are more
consistent with the measurements are more likely to survive.
As a result, places having high probability will collect more
cells, and therefore are more representative of the person's
posterior belief. These cells together after certain iterations,
comes up with the approximate belief of the person.

The algorithm maintains set of some random guesses of
person location, each represented by a cell corner in Fig. 3(b).
Assuming closed smart building contains various access points
as L1, L2, L3… Ln and the device can measure the signal
strength from these. The Fig. 4 shows the person’s location
and the landmark location with the measurement noise. Noise
is included as there are chances of measurements being too
short or too long and its probability is governed by Gaussian.

 (a) (b)

Figure 4 Two Dimensional Representation of Landmark

Algorithm now builds a measurement vector with n
values that are the signal strength values from landmarks. At
this point if some cell corner derives that its coordinates (Cell
Cn in Fig. 4) are somewhere other than that of persons’ actual
coordinate (labeled person P in Fig. 4) our algorithm takes the
measurement vector from person’s location and apply it to that
cell corner. However, this finishes up being a poor
measurement for that cell corner Cn see Fig. 4(b). The grey
lines in Fig. 5(a) indicate the measurement vector we would
have predicted if the cell were a good match for the person’s
actual location.

 (a) (b)

Figure 5 Cells Forming Clusters

Here is the trick which is useful for us from particle filters
concept, the mismatch between actual and the predicted
measurement leads to an importance weight that tells us how
important that specific cell corner is. The larger the
importance weight is the more important that cell corner is.
When we have a bunch of cell corners, each having its own
importance weight; some are very likely, while others look
very unlikely as indicated by the size of the cell corners see
Fig. 5(b). Next these cell corners survive at random, but their
survival probability will be proportional to their weights. That
is, a cell corner with a larger weight will survive with higher
probability than a cell corner with a smaller weight. Next we
apply re-sampling. Re-sampling is a process of randomly
drawing new cell corners from the old ones with replacement
in proportion to the importance weight.

This means that after re-sampling, the cell corners having
higher importance weight will remain intact, while the smaller
ones will die out. This “with replacement” policy of selection
is very important because it allows us to choose the high
probability cells multiple times. This causes these cell corners
to cluster around regions with high posterior probability see
Fig. 5(b). By using a Gaussian, our algorithm measures how
far away the predicted measurements would be from the actual
measurements. And finally after certain motion, measurement
and re-sampling steps the actual location of the mobile device
is estimated.

286

V. EXPERIMENT AND RESULTS
The algorithm discussed were developed using python and

the experimental setup for test was simulation of real indoor
environment. Fig. 6 shows the floor plan. Eight pillars were
color coded (denoted ccn) for testing of first approach whereas
four landmarks(A, B ,C ,D) were installed at known positions
for the second algorithm test. Numbered black dots represent
various test locations. The number of cells used for
localization was set to 100 and resampling threshold was set to
0.7 times the number of cells.

Figure 6 Floor Plan

Fig. 7 shows the distribution of cells once the algorithm
converges for the test location 1 and 8.

 Test Point 1 Data Mining Lab Test Point 8 Room Number 2

 (a) (b)
Figure 7 Localization Results of Particle Filter Approach

 The results are plotted in Fig. 8 and 9. The error was
calculated using Euclidean distance between true and
estimated positions. It is clear that the first algorithm
convergence rate depends on the pattern of color codes
mounted and therefore it varies for different location.
Similarly second approach converges within 4-5 iterations and
the total time taken was about few milliseconds per iteration.

 Figure 8 Localization error for Monte Carlo Method

In Fig. 8 the horizontal axis corresponds to number of
pictures captured and vertical axis shows value of error in
meters. It can be easily seen that results varies in accordance
to location.

Figure 9 Localization Error for Particle Filter Approach

In Fig. 9 the horizontal axis corresponds to the number of
iterations and vertical axis corresponds to value of error in
meters. Results show that algorithm takes less than five
iterations to converge.

VI. CONCLUSION AND FUTURE WORK
In this paper we demonstrated that our system for indoor

localization can be implemented by using current state of the
art smart phones. We integrated the sensing capabilities along
with filters to deliver accuracy up to (1-1.5) meters without the
requirement for complex hardware and dedicated
infrastructure that other existing solutions need. In previous
section we discussed that we obtained favorable results in
terms of accuracy and complexity involved and in fact, to the
best of our knowledge, our application is the first one
delivering such accurate results by just using only the
hardware capabilities of existing smart phones.

There exist several other interesting directions which we
can explore in our future work. As an example this application
could be made more advantageous by adding an extra feature
of getting the shortest path to the destination once the person
is localized.

REFERENCES
[1] Nisarg Kothari, Balajee Kannan, and M Bernardine Dias, CMU-RI-TR-

11-27 August 2011. “Study on Robust Indoor Localization on a
Commercial Smart-Phone”. Technical Report Robotics Institute, CMU.

[2] B. Hofmann, H. Wellinhof, and H. Lichtenegger, “GPS: Theory and
Practice”, Springer-Verlag, Vienna, 1997.

[3] M. Vossiek, L. Wiebking, P. Gulden, J. Wiehardt, C. Hoffmann, and P.
Heide, “Wireless Local Positioning”, IEEE Microwave Mag., vol. 4,
Issue 4, December 2003, 77-86.

[4] J. Hightower and G. Borriello, “Location sensing techniques”,
Technical Report UW CSE 2001-07-30, Department of Computer
Science and Engineering, University of Washington, 2001.

[5] J. Hightower and G. Borriello, “Location Systems for Ubiquitous
Computing”, IEEE Computer Society Press, vol. 34, no. 8, 2001, 57-66.

[6] Gu. Yanying, A. Lo, I. Niemegeers, “A survey of indoor positioning
systems for wireless personal networks,” Communications Surveys &
Tutorials, IEEE, 11, 1(First Quarter 2009), 13-32.

[7] N. Priyantha, A. Chahaborty, and H. Balakrishnan, “The cricket
location-support system,” in Proc. the 6th ACM International
Conference on Mobile Computing and Networking, Boston, MA, Aug.
2000.

[8] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” in Proc. the 5th ACM
International Conference on Mobile Computing and Networking,
Seattle, WA, Aug. 1999.

[9] R. Want and A. Hopper, “Active badges and personal interactive
computing objects,” IEEE Trans. Consumer Electron., vol. 38, no. 1, pp.
10–20, Feb. 1992.

[10] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proc. IEEE International
Conference on Computer Communications, 2000, 775–784.

[11] R.K. Bivens "The internet, mobile phones and blogging." Journalism
Practice 2, no. 1 (2008): 113-129.

[12] M. Dru and S. Saada, “Location-based mobile services: The essentials”,
Alcatel Telecommunications Review, 2001, 71-76.

[13] www.en.wikipedia.org/wiki/Convolution.
[14] A. Doucet and N De Freitas. “ Sequential Monte Carlo methods in

practice.” Edited by Neil Gordon. Vol. 1. New York: Springer,(2001).
[15] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, "Monte Carlo

Localization for Mobile Robots", IEEE International Conference on
Robotics and Automation (ICRA), 1999.

287

A Formal Cost-Effectiveness Analysis Model
for Product Evaluation in E-Commerce

Ran Wei and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
{rwei, hxu}@umassd.edu

Abstract—Due to the inherent nature of e-commerce, customers
usually have to take certain level of risks while shopping online.
To deal with such risks and their associated uncertainty, most of
the e-commerce websites provide product review ranking services
to help customers to make purchase decisions. However, such
services are typically not reliable because the ranking results are
usually based on the averages of review scores given by different
reviewers without considering their reliability. In this paper, we
propose a formal cost-effectiveness analysis model for product
evaluation in e-commerce, which takes the reliability of each
review into consideration. We define four pieces of evidence,
namely positive reviews, the number of positive reviews, negative
reviews, and the number of negative reviews, and combine them
using the Dempster-Shafer (D-S) theory. Based on the belief
values about the product, we can calculate its effectiveness, and
further derive its cost-effectiveness value by considering its
minimal price. By ranking various products sold by different
vendors based on their cost-effectiveness values, our approach
can greatly help customers to make decisions on selecting the
most cost-effective products for online purchasing.

Keywords-E-commerce; product reviews; cost-effectiveness;
reasoning under uncertainty; Dempster-Shafer (D-S) theory.

I. INTRODUCTION
As e-commerce techniques are growing rapidly, people

today increasingly shop online instead of directly shopping in
physical stores. However, because of the inherent nature and
complexity of e-commerce environments, the evaluation and
selection techniques for purchasing favorable products that fit
a customer’s needs could be very sophisticated. Customers
typically lack the technical knowledge about the product to be
purchased. Furthermore, decision making on selecting online
products has become more complex due to the variety of
brands and tremendous number of similar products available
on the electronic market.

To help customers to select the favorable products, many
companies, such as Amazon, have attempted to develop
suitable and effective product evaluation mechanisms [1].
However, such mechanisms are typically not well employed as
expected because the information redundancy and complexity
on the review pages usually make customers lose patient or
even get confused. Due to this shortcoming, customers often
only check the average ratings rather than reading through all
the product reviews across multiple web pages.

We noticed that some review ranking services such as the
average star ratings were not always reliable. This is because

much information related to a product review (e.g., the
helpfulness of the review rated by other customers and the
qualification of the reviewer) was usually ignored by users,
which otherwise could be used as evidential knowledge for
evaluating the reliability of the product review. Thus, in our
research, we consider such information as hidden knowledge
that can be defined as multiple attributes. We first set up the
evaluation criteria for each attribute quantified using certain
scales. Then we propose a cost-effectiveness analysis model
based on the Dempster-Shafer (D-S) theory to rank product
alternatives. Note that the D-S theory is a mathematical theory
of evidence, which is a powerful tool to support reasoning
under uncertainty [2]. Using the Dempster’s combination rules,
we are allowed to combine various pieces of independent
evidence and reach a high-level degree of belief for specific
hypotheses. In this paper, we consider the hypotheses whether
a product is a favorable one that is worth buying or it is an
unfavorable one that is not worth buying. To verify these
hypotheses, we divide the available product reviews into two
sets, namely the positive reviews and the negative reviews. We
calculate the belief values for each set by combining the
weighted average review score of a set and its number of
reviews as independent pieces of evidence using the D-S
theory. Then the two sets’ belief values are combined again as
independent pieces of evidence to calculate the effectiveness of
the product, which can be used to further derive its cost-
effectiveness value by taking the product’s minimal cost into
consideration. By ranking various products sold by different
vendors based on their cost-effectiveness values, our approach
can greatly help customers to make decisions on selecting the
most cost-effective products in online shopping.

II. RELATED WORK

The D-S theory has been used in various areas to support
reasoning under uncertainty. Dong et al. proposed a practical
shill detection mechanism in online auctions using the D-S
theory of evidence [3]. The approach takes multiple pieces of
evidence from different information layers into account, detects
shilling behaviors and assists decision making on shill bidders.
Panigrahi et al. developed a fraud detection system in mobile
communication networks [4]. They utilized the D-S theory to
combine multiple pieces of evidence from the rule-based
component and compute an overall suspicion score to help
users filter suspicious incoming calls. Yang et al. presented an
evidential reasoning approach that could be used to solve
uncertain decision problem with both quantitative and

288

qualitative attributes [5]. They proposed an alternative way to
deal with hybrid multiple-attribute decision-making problems
with uncertainty. Different from the above approaches, in this
paper, we adopt the D-S theory to develop a cost-effectiveness
analysis model. Our approach can be used to combine multiple
pieces of evidence to evaluate the quality of a product by
calculating its effectiveness value based on the review ratings
and their associated information.

There are many previous research efforts related to our
approach for supporting decision making under uncertainty. Li
et al. proposed a grey-based decision-making approach to the
supplier selection problem [6]. Their approach employed the
grey theory, which was one of the methods for mathematical
analysis of systems with uncertain information. Denguir-Rekik
et al. developed a choquet integral-based decision-making
method for propagating possibility distributions using
generalized weighted mean aggregation operators [7]. They
emphasized on possibility distributions rather than precise
quantitative evaluations, and used uncertainty indicators to give
a user some idea about other people’s variability of the
evaluations. Herrera et al. proposed a fusion approach for
managing information evaluated in different linguistic term sets
[8]. The aim of their approach is to manage information
assessed in different linguistic term sets together in a decision-
making problem with multiple information sources. Huynh et
al. reanalyzed the evidential reasoning (ER) approach, and
proposed a general scheme of attribute aggregation in multiple
attributes decision-making problem under uncertainty [9]. They
showed that new aggregation schemes satisfied the synthesis
axioms, for which any rational aggregation process should
grant. Most of the above approaches are based on calculating
probabilities of certain events, thus they are not readily scalable
for decision making with newly acquired evidence. In contrast,
we use the D-S theory that is an evidence-based approach to
calculate the brief values about a product, which can be easily
refined and updated using Dempster’s rule of combination
when new pieces of evidence about the product are acquired.

In addition, there are some previous research efforts on
product analysis. Cho et al. developed a product taxonomy for
collaborative recommendation in e-commerce [10]. In their
approach, they used web usage mining technique to enhance
the quality recommendation and system performance. Sarwar
et al. proposed an analysis recommendation algorithm that
could produce useful recommendations to customers [11].
They used traditional approaches such as data mining and
dimensionality reduction techniques to handle large-scale
purchase and preference data. Although the above approaches
are useful in deriving product recommendations, they require
analysis of a large amount of data sets. In contrast, our
approach emphasizes on analyzing the review information
related to a specific product, thus it is much more efficient than
data mining based approaches.

III. DEMPSTER-SHAFER THEORY
The D-S theory is a probabilistic reasoning method, which

was developed to solve problems with uncertainty and
incompleteness of available information [2, 3]. Let be a finite
set of mutually exclusive possible hypotheses, called the frame
of discernment. For example, when we consider the domain of
product evaluation, each product is considered either favorable

or unfavorable for buying, depending on the nature of the
evaluated properties and the quantified values of the review
evidence. Thus, the frame of discernment for a product can be
defined as = {favorable, unfavorable}. The power set of
that contains all subsets of is defined as 2 = { ,
{favorable}, {unfavorable}, }.

In the D-S theory, a belief mass is assigned to each element
of the power set 2 in the interval between 0 and 1. Thus, the
basic mass assignment (BMA) function m is defined as

]1,0[2:m ,

which satisfies the following two requirements:
 0)(m (1)

2

1)(
A

Am (2)

In Eq. (1), the mass of the empty set represents the
measurement for zero state, thus it is defined as 0. Eq. (2)
represents that the sum of masses of the elements in the power
set equals 1. For example, in our product review example, since
m() = 0, we have m({favorable}) + m({unfavorable}) + m()
= 1. Note that m() represents the mass for conflicting states
(both favorable and unfavorable in our example, i.e., a
hypothesis says that a product is both favorable and
unfavorable), thus it can be interpreted as the measurement for
uncertainty. For clarification purpose, in the rest of the paper,
we use the notation m(U) to represent m(), where U
represents uncertainty.

Another important function for a set of states (or a
hypothesis) A is called the belief function, which is defined as
the sum of the masses of all subsets of A.

AB
BmAbelief)()((3)

Intuitively, any portion of the belief committed to the
hypothesis A must also be committed to any hypothesis that it
implies. To obtain the total belief in A, one must therefore add
to m(A) the quantities m(B) for B A. In our example, we
have two hypotheses, namely 1) the product is a favorable one;
and 2) the product is an unfavorable one, both of which do not
have any proper subset except for . Thus, according to Eq.
(3), we have belief({favorable}) = m({favorable}) and
belief({unfavorable}) = m({unfavorable}).

The Dempster’s rule of combination is a critical concept to
the original idea of the D-S theory. Given two masses m1 and
m2 for a hypothesis, the combination rule computes a joint
mass for the two pieces of evidence under the same hypothesis,
which can be calculated as follows,

0)(2,1m (4)

ACB
CmBm

K
AmAmAm)()(

1
1)()()(21212,1

 (5)

.)()(where 21
CB

CmBmK

Eq. (4) says that the combined mass for the empty set is
zero. In Eq. (5), K represents the measure of the amount of
conflicts between the two mass sets. This is determined by
summing the masses of any pair of sets B and C, where B ,
C , and the intersection of them is empty. Note that in Eq.
(5), 1-K is used as a normalization factor that has the effect of
ignoring conflicts between any pairs of states.

289

IV. A COST-EFFECTIVENESS ANALYSIS MODEL

A. A Conceptual Model
Our proposed formal cost-effectiveness analysis model for

product evaluation in e-commerce can help customers verify
the quality of a product, which is reflected by its effectiveness
value based on the information collected from an e-commerce
website, such as Amazon. We notice that Amazon offered a
flexible e-commerce platform, which contains a large amount
of useful information that can be used to evaluate the quality of
a product. More specifically, not only a customer who has
purchased a product online is allowed to give a review star
rating as well as review comments to the product, but also his
review can be further rated by other customers. Due to the page
size limitation, for most of the products, the review information
has to be distributed across multiple web pages, which are
typically ignored by most users except for the first few pages.
In order to support automatic analysis of such useful
information for decision making on online purchasing, we treat
all reviews and their associated properties as evidence that
supports a product as either favorable or unfavorable, and
derive our cost-effectiveness analysis model. The conceptual
model for cost-effectiveness analysis in e-commerce can be
formally defined as a 3-tuple (P, Bel, MinC), where

1. P = {p1, p2, …, pn} is a set of product alternatives to be
evaluated and ranked, which should have very similar
functionality and are within the same price range;

2. Bel: P [0, 1] is a belief function employed in our
model. Each product alternative has a degree of belief
quantifying that the product is worth buying or not;

3. MinC: P R+ is a cost function that maps a product
alternative to its minimal price, defined as a positive real
number. Note that for a particular product p, we can
calculate its cost-effectiveness value using Bel(p) and
MinC(p), which can then be used to rank the product
alternatives in P.

Each product p P can be further formally defined as a 6-
tuple (REV, S, PROP, Rel, EV, M), where

1. REV = {r1, r2, …, rn} is a set of product reviews for
product p, given by different reviewers;

2. S: REV {0.2, 0.4, 0.6, 0.8, 1} is the star ranking function
for product reviews, where the star rankings of 1 to 5 has
been normalized to a value between [0.2, 1];

3. PROP = {pr1, pr2, …, prk} is a set of review properties,
which contribute to calculating the reliability of each
review;

4. Rel: REV [0, 1] is a reliability function for product
reviews, which represents the importance and accuracy of
each review;

5. EV = {ev1, ev2, …, evl} is a set of evidence used to justify
a product as either favorable or unfavorable;

6. M = {m: EV [0, 1]} is a set of mass assignment
functions, which quantify and assess each piece of
evidence into a mass that supports a product as either
favorable or unfavorable.

In our research, we classify all available reviews for a
product p into two groups: 1) a supportive group with a set of
positive reviews that support the product as a favorable one

(i.e., worth buying); and 2) a non-supportive group with a set of
negative reviews that do not support the product as a favorable
one (i.e., not worth buying). For example, when the 5-star
rating mechanism is used, we would consider a review with 4
or 5 stars as a positive review; while a review with 1, 2, or 3
stars as a negative one. Furthermore, we consider the number
of reviews in each group as separate independent pieces of
evidence. Thus, we have four pieces of evidence in total that
can be used to justify a product is either favorable or
unfavorable. The four pieces of evidence are denoted as {PR,
NP, NR, NN}, where PR is a set of positive reviews, NP is the
number of positive reviews, NR is a set of negative reviews,
and NN is the number of negative reviews. Note that since each
group has two pieces of evidence to support its committed
hypotheses, we first combine the evidence in each group
separately (i.e., PR and NP for positive reviews, and NR and
NN for negative reviews, respectively), then the mass values
for the two groups of reviews are combined again to calculate
the belief values about the product.

Fig. 1 shows the framework for processing the review data
of a particular product. Once the review ratings and their
associated review properties are extracted, the reliability of
each review can be calculated. We classify the review data into
two groups of evidence, namely the supportive group and the
non-supportive group. The two pieces of evidence in the same
group are combined using Dempster’s rule of combination, and
derive the two sets of mass values for supportive evidence and
non-supportive evidence, respectively. We consider the two
pieces of combined evidence as conflicting evidence, and use
Dempster’s rule of combination again to calculate the belief
values about the product, and further derive its effectiveness as
defined in Section IV.C of this paper. Note that our approach
does not involve analyzing the actual review comments, but it
is envisioned as our more ambitious future research direction.

Product Data Review Ratings Reliability Calculation

Supportive Evidence

Supportive Group

Positive
Reviews (PR)

of Positive
Reviews (NP)

Negative
Reviews (NR)

of Negative
reviews (NN)

Non-Supportive Evidence

Evidence Combination

Evidence Combination Evidence Combination

classify

Non-Supportive Group

EffectivenessBelief Values

Figure 1. A framework for processing product review data

B. Calculation of Basic Mass Assignments
The first step to calculate the basic mass assignmnets for

product reviews is to compute the reliability of each review.
The reliability of a review is determined by a number of
factors, called review properties, which indicate the
trustworthiness of a review. We now use Amazon website as

290

an example to demonstrate how to calculate the reliability of a
review. Fig. 2 shows a snapshot of a review. As shown in the
figure, the Amazon’s website allows a review to be voted as a
helpful review by its customers. Such information is enclosed
in a box, which is labeled as Helpful Rate (pr1) in the figure.
The more votes as helpful reviews over the total number of
votes, the more reliabile the review is. Thus, we consider the
number of helpful votes and the number of total votes as major
factors to calculate the reliability of each review. Let the
number of total votes be total_votes and the number of helpful
votes be helpful_votes, we calculate the Helpful Rate (pr1) of
the review as help_votes / total_votes. Note that if total_votes
equals 0, we set pr1 = 0.

Figure 2. A snapshot of a product review with review properties

We further consider four additional review properties as
factors that contribute to computing the reliability of a review.
Those factors are Purchased (pr2), Date (pr3), and Badges
(pr4) as shown in Fig. 2, and Top Reviewer Ranking (pr5) as
shown in Fig. 3. Note that the properties pr2 , pr4 , and pr5 are
actually properties of the reviewer who wrote the review.
Since the reliability of a review is closely related to the
reliability of the person who wrote the review, in this paper,
we also call them review properties.

Figure 3. A snapshot of a reviewer’s personal profile

We now provide the detailed descriptions of the review
properties pr2 to pr5 as follows.

Purchased (pr2) is a label of a reviewer indicating that the
e-commerce company has verified the reviewer has purchased
the product. A reviewer who has bought and had a real
experience with the product can surely write more reliable
reviews than those who do not.

Date (pr3) is the date when the review was posted. For
simplicity, we convert the date into the number of months that
have passed since the review was posted. The more recent a
review was written, the more useful and reliable the review is.

Badges (pr4) is the number of badges that a reviewer has
been awarded. At Amazon website, there are totally nine types
of badges. For example, the REAL NAME badge indicates that
the customer used his real name from his credit card. The
more badges a reviewer owns, the better review history the

reviewer should have. Note that in Fig. 2, the reviewer has a
REAL NAME badge, but for privacy purpose, we have removed
the reviewer’s real name from the figure.

Top Reviewer Ranking (pr5) of a reviewer reflects the
opinions of other customers about the reviewer. A reviewer’s
Top Reviewer Ranking is determined by the overall
helpfulness of the reviewer’s reviews, factoring in the number
of reviews the reviewer has written.

Before calculating the reliability of a review, we first
normalize the property values into ones in the range [0, 1].
Table 1 shows the value ranges and the normalized values for
the five review properties pr1 to pr5.

Table 1. Review properties used to determine review reliability

Property Description Value Range Normalized Value

pr1 Helpful Rate [0, 1] helpful_votes / total_votes
0 (if total_votes = 0)

pr2 Purchased {0, 1} 0 0 (not purchased)
1 1.0 (purchased)

pr3 Date [0, +)

0~3 months 1.0
3~6 months 0.7
6~12months 0.4
> 1year 0.1

pr4 Badges [0, 9] no_of_badges / 9

pr5
Top Reviewer

Ranking [1, +)

< 1,000 1.0
1,000~10,000 0.7
10,000~100,000 0.4
>100,000 0.1

The reliability Rel(r) of a product review r can be

calculated as in Eq. (6).
)(5432211 prprprprwprwRel(r) (6)

where the weights w1 and w2 indicate the importance of the
review property pr1 and the other four review properties pr2 to
pr5, respectively. Since the review property Helpful Rate
represents the most important factor to determine the
reliability of the review, based on our experience, we set w1 =
0.6 and w2 = 0.1, which leads to a reliability in the range [0, 1].

To calculate the BMAs for both of the positive and
negative reviews, we compute the weighted average star
(WAS) for the two groups of reviews as in Eq. (7).

k
rRelrSrRelrSrRelrSWAS kk)()(...)()()()(2211 (7)

where S(r) and Rel (r) are the normalized star ranking and the
calculated review reliability for review r, respectively, and k is
the total number of reviews in the corresponding group.

Let F = {favorable} and ~F = {unfavorable}, we have U =
F ~F = {favorable, unfavorable}. Let WASPR and WASNR be
the WAS values for the groups of positive and negative
reviews, respectively, we can calculate the BMAs for both
groups as in Eqs. (8-9). Note that mPR(U) and mNR(U) refer to
the mass values of uncertainty for positive reviews and
negative reviews, respectively.

 (8) (9)

PRPR

PR

PRPR

WASUm
Fm

WASFm

1)(
0)(~

)(

NRNR

NRNR

NR

WASUm
WASFm

Fm

1)(
)(~

0)(

291

Since the number of reviews can serve as a good indicator
of the quality and popularity of a product, we consider the
number of reviews in each group of reviews as independent
evidence. To assess how the number of reviews has an impact
on either supporting that the product is a favorable one or an
unfavorable one, we first identify the maximum numbers of
reviews in both groups (denoted as NNP_max and NNN_max)
among the set of product alternatives P. Then we compare the
number of reviews in a given group with the corresponding
maximum number of reviews in order to assess its impact on
the belief value of the product. We realize that some popular
product may have an extremely large number of reviews
comparing to others. In this case, the result will be dominated
by such maximum number. To avoid this situation, we use
logarithm function to narrow down the gaps between the
numbers of reviews for different product alternatives. We use
the following simple example to illustrate the basic idea.
Suppose NNP_max = 2,000 among a set of product alternatives

, and for a certain product , nNP = 100. When we
compare nNP with NNP_max, the impact of nNP becomes very
small, although 100 positive reviews represent a considerable
amount of reviews. Now if we try to compare log10nNP with
log10NNP_max, the gap between them can be significantly
narrowed down, and the number of positive reviews, nNP = 100
in this case, can be properly taken into account as a piece of
evidence to support product as a favorable one.

The BMAs for the number of reviews in the supportive
group can be calculated as in Eqs. (10-12), where NNP_max > 0.

otherwise

Nnif
N

n
Fm

NPNP
NP

NP

NP

0

2/))1((log)1(log1
)1(log
)1(log2

)(

max_1010
max_10

10
(10)

otherwise

Nnif
N

n
Fm

NPNP
NP

NP

NP

0

2/))1((log)1(log
)1(log
)1(log21

)(~

max_1010
max_10

10
 (11)

)(~)(1)(FmFmUm NPNPNP
 (12)

Note that in order to deal with the special case when nNP =

1, in the above equations, we replace nNP and NNP_max with
(nNP+1) and (NNP_max+1), respectively. When log10(nNP+1)
(log10(NNP_max+1))/2, we consider it as a piece of evidence that
supports the product is a favorable one. As special cases, when
nNP = NNP_max, the mass equals 1, which means the evidence
fully support that the product is a favorable one. When
log10(nNP+1) = (log10(NNP_max+1))/2, the mass equals 0, which
means we do not consider the insufficient positive reviews as a
piece of evidence to support the product as a favorable one.
On the other hand, when log10(nNP+1) < (log10(NNP_max+1))/2,
we consider it as a piece of evidence that supports the product
is an unfavorable one rather than a favorable one due to a lack
of positive reviews. As a special case, when nNP = 0, the mass
equals 1. This means that when there is no positive reviews,
the product must be a low-quality one, which should not be
suggested to customers for purchasing.

Similarly, the BMAs for the number of reviews in the non-
supportive group can be calculated as in Eqs. (13-15), where
NNN_max > 0.

0)(FmNN
 (13)

)1(log
)1(log)(~ 10

max_10

 (14) NN
NN N

nFm
NN

)(~1)(FmUm NNNN
 (15)

Note that different from the positive reviews, the negative
reviews are always considered as a piece of evidence that
supports the product is an unfavorable one. As two special
cases, when nNN = NNN_max, the mass equals 1, which means the
evidence fully support the product is an unfavorable one; on
the other hand, when nNN = 0, the mass value equals 0, which
means that there is no evidence (in terms of negative reviews)
to show that the product is an unfavorable one.

C. Combination of Evidence

Once the basic mass assignments for each piece of
evidence are calculated, they can be combined in a systematic
manner to provide a more complete assessment on product
quality by reducing the uncertainty involved in individual
evidence. The evidence fusion procedure is carried out using
the Dempster’s rule of combination. As shown in Fig. 1, we
first combine the evidence of positive reviews (PR) and the
number of positive reviews (NP) into masses mSG for the
supportive group, and the evidence of negative reviews (NR)
and the number of negative reviews (NN) into masses mNSG for
the non-supportive group. The corresponding rules of
combining evidence for F and ~F are listed as in Eqs. (16-18)
and Eqs. (19-21) for the supportive group and the non-
supportive group, respectively.

)()()(FmFmFm NPPRSG
 (16)

)(~)(~)(~ FmFmFm NPPRSG
 (17)

)()()(UmUmUm NPPRSG
 (18)
)()()(FmFmFm NNNRNSG
 (19)

)(~)(~)(~ FmFmFm NNNRNSG
 (20)

)()()(UmUmUm NNNRNSG
 (21)

When the masses for both of the supportive group and
non-supportive group have been calculated, we can use
Dempster’s rule of combination again to combine them into
masses mPRODUCT for the product as in Eqs. (22-24).

)()()(FmFmFm NSGSGPRODUCT
 (22)

)(~)(~)(~ FmFmFm NSGSGPRODUCT
 (23)

)()()(UmUmUm NSGSGPRODUCT
 (24)

According to Eq. (3), the belief values for the product
hypotheses can be calculated as in the following Eqs. (25-27).

)()(FmFbelief (25)
)(~)(~ FmFbelief (26)

)()(UmUbelief (27)

We now use an example to show how the masses for
combined evidence can be calculated. Suppose we want to
calculate the mass values for the supportive group. According
to Eq. (5), we can calculate mSG(F), mSG(~F) and mSG(U) as in
Eqs. (28-30).

292

K
FmUmUmFmFmFm

FmFmFm

NPPRNPPRNPPR

NPPRSG

1
)()()()()()(

)()()((28)

K
FmUmUmFmFmFm

FmFmFm

NPPRNPPRNPPR

NPPRSG

1
)(~)()()(~)(~)(~

)(~)(~)(~ (29)

K
UmUmUmUmUm NPPR

NPPRSG 1
)()()()()((30)

where) ()(~)(~)(FmFmFmFmK NPPRNPPR

Note that since U F = F and U ~F = ~F, we have U
 F and U ~F as in Eqs. (28-29).
The other two sets of mass values {mNSG(F), mNSG(~F),

mNSG(U)} and {mPRODUCT(F), mPRODUCT(~F), mPRODUCT(U)} can
be calculated in the same way.

According to Eqs. (25-27), the belief value that indicates a
product is a favorable one equals m (F), and the value of
m (U) quantifies the uncertainty that the product is both
favorable and unfavorable. By taking the uncertainty into
consideration, we calculate the effectiveness of product by
summing the belief value for a favorable product and 50% of
the uncertainty value as in Eq. (31).

)(5.0)(
)(5.0)()()(

UmFm
UbeilefFbeliefBelessEffectiven (31)

By further taking the price factor into consideration, we
can calculate the cost-effectiveness value (i.e., E/C Ratio) of
product as in Eq. (32).

)(/)()(/ CostessEffectivenRatioCE (32)

where Cost() is the normalized cost of product . Let P = {p1,
p2, …, pn} be a set of product alternatives to be evaluated and
ranked, which have similar functionality and are within the
same price range. For P, Cost() can be calculated as in
Eq. (33).

))(),...,(),((/)()(21 npMinCpMinCpMinCMaxMinCCost (33)

where MinC() is the cost function (defined in Section IV.A)
that maps product to its lowest price offered by one of the
online sellers. With the E/C Ratio for each product in set P, we
can rank the product alternatives, and provide users useful
insights about the products in online shopping.

V. CASE STUDY

In this section, we demonstrate how our D-S theory based
analysis model can be used to analyze data sets collected from
Amazon. We use a case study to show how our analysis model
can provide more reliable and accurate results than the typical
product ranking based on average star ratings (ASR).

A. Data Collection
The data used in our case study was collected from recent

product records at the Amazon website, but note that the
product data such as star ratings, minimal price, and the
number of reviews may have changed by the time of this
publication. The product review information as well as the
reviewer’s profile information used in this case study (as
demonstrated in Fig. 2 and Fig. 3) can be accessed directly

from the product web pages. To ease our data collection task,
we developed a Java program that can automatically collect
the needed data items from the product web pages, and used
them as inputs to our cost-effectiveness analysis model.

Table 2 gives a few examples of our collected raw data,
where each row contains the star rating as well as the five
review properties. The normalized values for the star rating
and the review properties are shown inside the parentheses
along with the raw data, which can be calculated according to
the normalization rules described in Section IV.B as well as
the conversion rules defined in Table 1.

Table 2. Examples of collected raw data and the normalized values

Star
Rating

Helpful Votes /
Total Votes Purchased Date Badges Top

Ranking

5(1) 118/124(0.952) 1(1) 17(0.1) 1(0.11) 63,027(0.4)

5(1) 83/86(0.965) 1(1) 5(0.7) 2(0.22) 556(1.0)

2(0.4) 71/79(0.899) 0(0) 16(0.1) 0(0.00) 81,258(0.4)

4(0.8) 26/27(0.963) 1(1) 11(0.4) 3(0.33) 292,053(0.1)

3(0.6) 98/116(0.845) 1(1) 16(0.1) 0(0.00) 458,571(0.1)

Note that besides the data items listed in Table 2, we also

need to collect additional evidence, such as the number of
reviews in each category (positive reviews or negative
reviews) and the prices of the product offered by different
online sellers, which are all required in our analysis approach.

B. Case Study: Audio/Video Receiver
In this case study, we collected 10 A/V receiver products

in the price range $200~$300, which are different in brands,
series, star ratings and the number of reviews, but having their
average star ratings at least 4. Table 3 lists the 10 products
along with some raw data and the analysis results. Among the
raw data, “ASR” refers to the average star rating of a product
that is posted at its corresponding product page; “# of
Reviews” is the total number of reviews including both
positive (4 and 5 stars) and negative (1, 2, and 3 stars)
reviews; and “Price” refers to the minimal price of a product
that is offered by one of the online sellers. As shown in Table
3, the 10 A/V receiver products are sorted according to ASR.
Based on ASR, the first three product alternatives (No.1-3)
look like the best choices for purchasing. By further looking
into the number of reviews and prices, a customer may select
one out of the three options accordingly (e.g., if the customer
does not care about the price too much, he may choose product
No. 2 for purchasing).

Now with our analysis model, we can calculate the values
of Effectiveness and the E/C Ratio for all 10 product
alternatives, which are listed at the last two columns of Table
3. Since the effectiveness value quantifies the quality level of
the products, a customer who cares only about quality may
select products with the highest effectiveness values. The top
three choices are No. 8 with Effectiveness 0.845, No. 3 with
Effectiveness 0.789, and No. 6 with Effectiveness 0.768. On
the other hand, if the customer cares about both the quality and
cost, he may select products with highest E/C Ratio values. In
this case, the top three choices are No. 8 with E/C Ratio 1.056,

293

No. 10 with E/C Ratio 1.032, and No. 3 with E/C Ratio 0.913.
Note that the ranking results calculated using our analysis
model are different from the ranking results based on ASR, but
our ranking results are more accurate and reliable because our
model considers more evidential information before the
ranking results are calculated.

Table 3. Product information of ten A/V receivers and the analysis results

No. ASR # of
Reviews Price Product &

Brand
Effective-

ness
E/C

Ratio

1 5.0 1 199.99 Yamaha HTR-
3064 0.609 0.761

2 4.5 101 240.81 Harman Kardon
HK 3390 0.767 0.796

3 4.3 73 215.99 Onkyo HT-
S3500 0.789 0.913

4 4.3 62 228 Onkyo CS-445 0.642 0.704

5 4.2 18 199.99 Onkyo TX-
SR313 0.692 0.865

6 4.2 57 269 Onkyo TX-
8050 0.768 0.714

7 4.2 66 247.99 Yamaha RX-
V471BL 0.764 0.770

8 4.1 153 200 Sony STRDH
520 0.845 1.056

9 4.1 48 249.95 Yamaha RX-
V373 0.758 0.758

10 4.1 81 179.95 Yamaha RX-
v371BL 0.743 1.032

 To verify our analysis results, we look into the raw data

collected for our case study. For product No. 1, although it has
the highest ASR (5.0), but since it has only one positive
review, its effectiveness value becomes not high enough
comparing to the other product alternatives. For product No. 2,
although it has a very good ASR as well as a decent number of
product reviews, when looking into the review properties of
those reviews, we found that many of the reviews are not
reliable (e.g., having a very low Helpful Rate or even no
Helpful votes). On the other hand, product No. 8 has relative
lower ASR; however, it has the highest number of reviews, and
most of its reviews are ones with high Helpful Rates.
Consequently, product No. 8 has the highest effectiveness
value among the 10 product alternatives.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce a formal cost-effectiveness

analysis model for product evaluation in e-commerce, which
was developed using the D-S theory. In our approach, we
consider the product reviews as well as their review properties
as pieces of evidence to justify whether a product is a favorable
one or not. Product data from e-commerce websites such as
Amazon is quantified and evaluated using our formal approach.
By applying Dempster’s rule of combination, we can combine
difference pieces of evidence to derive more reliable belief
values about the hypotheses on the quality of the product. Due
to the nature of the D-S theory, our analysis model can handle
uncertain information and reduce the degree of uncertainty
appropriately. Thus, our approach produces more reliable and
accurate results than conventional ranking mechanisms such as

the one based on average star ratings. By ranking the product
alternatives properly, our approach can be very effective in
assisting customers to evaluate various products, and make
purchase decisions on the most cost-effective ones.

In future research, we plan to develop a trustworthy e-
commerce platform based on our formal cost-effectiveness
analysis model. In the trustworthy e-commerce model, product
reviews can be classified into more meaningful groups using
data mining approaches as we did in our previous work [12].
The groups of product reviews can then be used as independent
evidence for evidence combination using the D-S theory. With
more evidence, our approach can significantly reduce the level
of uncertainty, and lead to more accurate and reliable product
ranking results. In addition, we will consider deploying our
trustworthy e-commerce platform into cloud so that it would
work in a flexible way and can be more conveniently accessed
through the Internet. Finally, we plan to implement our
approach on mobile e-commerce platforms such as tablets and
smart phones, and provide customers with more friendly and
flexible interfaces for mobile commerce.

REFERENCES

[1] Amazon, Managing Reviews, Amazon.com Site Features, 2013.
Retrieved on January 1, 2013 from http://www.amazon.com/gp/help/
customer/display.html?nodeId=16465311

[2] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, 1976.

[3] F. Dong, S. M. Shatz, and H. Xu, “Reasoning Under Uncertainty for
Shill Detection in Online Auctions Using Dempster-Shafer Theory,”
International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), Vol. 20, No. 7, Nov. 2010, pp. 943-973.

[4] S. Panigrahi, A. Kundu, S. Sural, and A. K. Majunmdar, “Use of
Dempster-Shafer Theory and Bayesian Inferencing for Fraud Detection
in Mobile Communication Networks,” Lecture Notes in Computer
Science, Spring Berlin Heidelberg, Vol. 4586, 2007, pp. 446-460.

[5] J.-B. Yang and M. G. Singh, “An Evidential Reasoning Approach for
Multiple-Attribute Decision Making with Uncertainty,” IEEE
Transactions on Systems, Man, and Cybernetics (IEEE TSMC), Vol. 24,
No. 1, Jan. 1994, pp. 1-17.

[6] G.-D. Li, D. Yamaguchi, and M. Nagai, “A Grey-Based Decision-
Making Approach to the Supplier Selection Problem,” Mathematical
and Computer Modelling, Vol. 46, No. 3-4, 2007, pp573–581.

[7] A. Denguir-Rekik, G. Mauris, and J. Montmain, “Propagation of
Uncertainty by the Possibility Theory in Choquet Integral-Based
Decision Making: Application to an E-Commerce Website Choice
Support,” IEEE Transactions on Instrumentation and Measurement,
Vol. 55, No. 3, June 2006, pp. 721-728.

[8] F. Herrera, E. Herrera-Viedma, and L. Martínez, “A Fusion Approach
for Managing Multi-Granularity Linguistic Terms Sets in Decision
Making,” Fuzzy Sets and Systems, Vol. 114, No. 1, 2000, pp. 43-58.

[9] V. N. Huynh, Y. Nakamori, T. B. Ho, and T. Murai, “Multiple Attribute
Decision Making Under Uncertainty: the Evidential Reasoning
Approach Revisited,” IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, Vol. 36, No. 4, 2006, pp.
804-822.

[10] Y. H. Cho and J. K. Kim, “Application of Web Usage Mining and
Product Taxonomy to Collaborative Recommendations in E-
Commerce,” Expert Systems with Applications, Vol. 26, No. 3, 2004, pp.
234-246.

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of
Recommendation Algorithms for E-Commerce,” Proceedings of the 2nd
ACM Conference on Electronic Commerce, 2000, pp.158-167.

[12] B. J. Ford, H. Xu, and I. Valova, “A Real-Time Self-Adaptive Classifier
for Identifying Suspicious Bidders in Online Auctions,” The Computer
Journal (COMPJ), Vol. 56, No. 5, 2013, pp. 646-663.

294

On the Use of Bug and Predicate Signatures for Statistical Debugging

Yiwei Zhang (Amazon), Eric Lo (Hong Kong Polytechnic University), Ben Kao (University of Hong Kong)

This work is partly supported by the Research Grants Council of Hong Kong (GRF PolyU 525009, 521012, and HKU712712E.).

Abstract

Recently, data mining techniques have been applied
to mine software execution data in order to identify the
program statements that are relevant to program bugs.
While empirically effective, we observe that the effective-
ness of such techniques can be improved by isolating
the interferences between bugs using a “signature-based”
approach. Our proposed approach is evaluated using real
subject programs. Results show that we can pinpoint bugs
precisely and support more complicated scenarios than
existing work.

I. Introduction
Recently, data mining techniques have been developed

to mine software execution data in order to identify the

program statements that are relevant to program bugs

[8], [5], [6], [1], [4], [3], [2]. Once branch of such data

mining techniques is predicate-based-bug-mining (PBBM)

— a program is first instrumented by injecting extra code

that evaluates Boolean expressions (called predicates) at

various program points (called instrumentation sites) [5];

upon termination of an execution of the instrumented

program, a statistical report is generated that details how

often an instrumentation site has been visited and how

often a predicate has been evaluated true; various mining

techniques are then devised to rank the predicates accord-

ing to their estimated relevancy to bugs and return top-

ranked predicates to developers as debugging hints.
Most PBBM techniques [5], [6], [1] are iterative. First,

instrumented predicates are ranked according to their sta-
tistical relevancy to bugs. Top-rank predicates are consid-
ered good predictors of bugs and developers study those
predicates manually to locate the bugs. If a bug is really
found, it is fixed to produce a new program version. The
new version of the program is tested again and a new
statistical report is collected. In case the program still
contains bugs, the preceding procedure is re-applied. We
observe that their effectiveness can be further improved if
we first assign the predicates to different clusters based on
their signatures. Given a subject program G and a set of
execution runs R on G, the signature of a predicate P ,
denoted by Sig(P), is the set of runs in R in which P
is observed true. Suppose program G contains a certain
number of bugs. Let B be one of them. The signature of
bug B, denoted by Sig(B), is the set of failed runs in
R (i.e., those failed test cases) because of the existence

of bug B. Ideally, if predicate P is a perfect predictor of
bug B, then for each execution run Ri in R, predicate P
should be observed true in Ri if and only if Ri is a failed
run because of the existence of bug B. That is:

∀Ri ∈ R : (Ri ∈ Sig(P) ⇔ Ri ∈ Sig(B))

⇔ (Sig(P) = Sig(B)) (1)

Finding the perfect predicates can thus be done by

inspecting predicate signatures and collect the predicates

whose signatures match those of the bugs. There are two

issues with this signature-based approach: (i) If there were

only one single bug B in the program, Sig(B) is simply

the set of all failed runs in R, and thus can be determined.

However, if the program contains multiple bugs, the set of

failed runs in R only gives the union of the bugs’ signa-

tures; the signature of each individual bug is unknown. (ii)

Even if a bug’s signature, say Sig(B), is known, the perfect

predicate P for bug B could be a complex predicate. A

recent work [1] points out that complex-predicate predic-
tors (predictors composed by conjunctions and disjunctions

of simple predicates) can capture some kinds of bugs

better than simple-predicate predictors. However, since a

complex predicate is constructed from simple predicates

by conjunctions and disjunctions, if there are n simple

predicates, then there are about 2n complex predicates

considering conjunction alone. Therefore, searching the

perfect predicate P (either simple or complex) is chal-

lenging.

In this paper, we propose a signature-based bug

localization technique (SIGBOT) to solve these problems.

II. Background and Problem Definition

For a test suite of m test runs R1, R2, . . . , Rm, the

generated statistical report consists of m vectors in the

form 〈fi|ci,1, ci,2, . . . , ci,n〉. In the vector, fi is the failure-
bit which is set to ‘1’ if Ri is a failed run (e.g., the program

terminates abnormally or returns an incorrect result) and it

is set to ‘0’ if Ri is a successful run. ci,j is a counter that

records the number of times that predicate Pj is evaluated

true in Ri. For convenience, we say “Pj is observed true”

if predicate Pj is evaluated to be true at least once during

295

the execution of Ri; therefore, ci,j > 0 implies that Pj is

observed true in Ri. We say “Pj is observed” as long as

predicate Pj is evaluated, no matter whether it is true or

false. If Pj is never observed during the execution of Ri,

we set ci,j as “–”.

In LIBLIT05 [5], given a (simple) predicate P , two

conditional probabilities are computed:

Pr1(P) = Pr (G fails | P is observed), and
Pr2(P) = Pr (G fails | P is observed true)

The difference of the two probabilities Δ(P) =
Pr2(P) − Pr1(P) is taken as one of two measurements

of how much the observation of P being true increases

the likelihood that the subject program G fails. Intuitively,

the larger the probability increment (Δ(P)), the stronger

is this lift of likelihood, and therefore the stronger is P ’s

predictive power.
We observe that the notion of probability increment is

distorted by the interactions of bugs in the program. For
example, consider the program fragment:

...
b = a mod 2;//Predicate P:(b = 0) is instrumented here
c = 1/b; // Bug B1 here
...
d = 1/0; // Another bug B2 here

In this program, a predicate (b = 0) is instrumented

at the program line b = a mod 2;. So, whenever that

program line is executed during runtime, the program will

also count how many times the predicate (b = 0) is

evaluated to be true at that program point and write that

information into the statistical report. In this program,

if a is an even number, b will be 0 and the program

fails because of the existence of bug B1 (a division by

0). Otherwise, the program proceeds and eventually fails

because of the existence of bug B2. Let us assume that a
is even in half of the runs. The predicate P : (b = 0)
is therefore observed true half of the time. Since the

program always fails, we have Pr1(P) = Pr2(P) = 1 and

thus Δ(P) = 0. The zero probability increment implies

that P is not bug-relevant. However, if bug B2 is not

there, we have Pr1(P) = 0.5 and Pr2(P) = 1 and so

Δ(P) = 1 − 0.5 = 0.5. The significant increase in the

probability allows us to identify P as a bug-relevant pred-

icate. This example shows that the statistical inference of

LIBLIT05 could be affected by the interactions of bugs in

the program. Specifically, assume the program has m bugs

(m > 1), the statistical predictive power of each predicate

calculated in the i-th iteration of LIBLIT05 is affected by

the interactions of m − i + 1 bugs. For example, during

the first iteration of LIBLIT05, the statistical predictive

power of each predicate is affected by the interactions of m
bugs. After the first bug is fixed (the program still contains

m − 1 bugs), during the second iteration of LIBLIT05,

the statistical predictive power of each predicate is still

affected by the interactions of m − 1 bugs, and so on

until the last round where only one bug is left. In fact,

all iterative PBBM techniques [5], [6], [1] are affected by

bug interactions (except in their last iteration, where only

bug one is left).
ICML06 [8] is a PBBM technique that is resistant to

bug interactions. It is not iterative but are based on co-

clustering. Empirical results show that it is generally more

successful in locating bugs because its statistical inferences

are not influenced by bug interactions. However, it requires

the full set of predicates as input. Since the number of

complex predicates is exponentially large, it is not scalable

to handle complex predicates.
In ISSTA07 [1], complex-predicates are introduced and

empirical results show that they not only help developers

in locating bugs, they also provide additional information

for developers to fix the bugs. However, ISSTA07 is also an

iterative approach and thus its statistical inference process

may also be influenced by the presence of multiple bugs

in each iteration (except for the last iteration).
Now, we give the formal problem definition: Given a

faulty program G and its associated statistical report of

instrumented simple predicates P , for each bug Bi in G
(i ≥ 1), find a set of predicates XBi

, simple or complex,

such that XBi leads the developers to locate and to fix Bi.

III. SIGBOT

SIGBOT is a tool that carries out statistical debugging

through four steps:

A. Step 1/4: Extracting Pure Predicates

Definition 1 (Simple-predicate signature). Given a sim-

ple predicate P , and a set of execution runs R =
{R1, R2, . . . , Rm}, the signature of the simple pred-
icate P w.r.t. R is the set of execution runs in R in

which P is observed true. That is, Sig(P)R = {Ri ∈
R|P is observed true in Ri}.

Definition 2 (Complex-predicate signature). Given a com-

plex predicate P = (P1∧. . .∧Pc), which is the conjunction

of c simple predicates, let the signatures of P1, P2, . . .,
Pc w.r.t. the set of execution runs R be Sig(P1)R, . . .,
Sig(Pc)R, respectively. The signature of the complex
predicate P w.r.t. R is the intersection of all its simple

predicates’ signatures, i.e., Sig(P)R =
⋂c

i=1 Sig(Pi)R.

Definition 3 (Bug signature). Given a bug B, and a set

of execution runs R = {R1, R2, . . . , Rm}, the signature
of bug B w.r.t. R is the set of failed execution runs in R
when bug B is in the program. That is, Sig(B)R = {Ri ∈
R|Ri fails when B is in the program}.

In the following, we will drop the subscript R whenever

the context is clear. We define the size of a predicate as the

296

number of simple predicates that it is composed of. If a

predicate P is a perfect predictor of a bug B, then ideally,

Sig(P) = Sig(B). Since a bug’s signature contains only

failed runs, the signature of a good predicate should also

contain only failed runs.

Definition 4 (Purity). A predicate is pure if all execution

runs in its signature are failed runs.

The first step of SIGBOT is to extract pure predicates,

simple or conjunctive complex, from the test report. Here

we describe the procedure of collecting pure predicates.

Given the set of all simple predicates P , there are

O(2|P|) conjunctive complex predicates. Examining each

of them for purity is infeasible. SIGBOT uses two heuristics

to drastically reduce this exponential search space. The first

heuristic uses the following monotonicity property of pure

predicates: given two predicates P1 and P2, we say that P2

contains P1 if P2 contains all the simple predicates that

occur in P1.

Property 1 (Monotonicity). If predicate P2 contains a
pure predicate P1, then predicate P2 is pure as well.

Such a property holds because P2 contains P1 implies
Sig(P2) ⊆ Sig(P1), and so if P1 is pure, then the signature
of P2 contains only failed runs and hence P2 must be pure.

Let Q be a set of pure predicates (simple or com-

plex) that SIGBOT has collected at some point during its

predicate-collection procedure. SIGBOT begins by check-

ing all simple predicates for their purity. The set Q is

initialized to contain all of the pure simple predicates. Now

consider a pure predicate P1 ∈ Q and another predicate

P2 such that P2 contains P1. We note that P2 must be pure

because of the monotonicity property. Although P2 is pure,

it is generally less useful than P1 in identifying a bug. The

reason is that P2 infers only a subset of the failed runs that

are inferred by P1 (because Sig(P2) ⊆ Sig(P1)). So, if

P1 predicts a bug B, then it is likely that P2 characterizes

only certain special cases of B. For that reason, we call

P2 a sub-bug predicate. As a result, given any predicate

P1 ∈ Q, SIGBOT ignores all other predicates that contain

P1. This pruning strategy tremendously reduces the search

space of pure predicates.
The second heuristic concerns the coverage of failed

runs. Let the set of all failed runs in a test report be F ,
i.e., F = {Ri ∈ R|Ri fails}. We say that a failed run
Ri is covered by a predicate P if Ri is in Sig(P). Let
FQ denote the set of failed runs that are covered by the
predicates collected in Q. Since only pure predicates are
collected in Q, we have

FQ =
⋃

P∈Q
Sig(P).

The objective of SIGBOT here is to find a Q such that all

failed runs are covered, i.e., F = FQ. This mechanism is

used because if such a Q is found, SIGBOT has collected

enough predicates (in Q) to infer all the failed cases (bugs)

in the program. SIGBOT can thus terminate the predicate

extraction step.
Now, if F �= FQ, there exists a certain failed run

Ri that is not covered by any predicates in Q. We note

that any predicate P2 that contains a predicate P1 ∈ Q
cannot cover Ri. This phenomenon exists because by

the monotonicity property, Sig(P2) ⊆ Sig(P1) and so

Ri /∈ Sig(P1) ⇒ Ri /∈ Sig(P2). Hence, in order to cover

Ri, SIGBOT must compose complex predicates out of those

simple ones that have not already been collected in Q.

These simple predicates are given by the set L = P −Q.

SIGBOT then determines all pure size-2 complex predicates
that are conjunctions of some simple predicates in L. That

is, SIGBOT determines M = {P = P ′ ∧ P ′′|P ′, P ′′ ∈
L, and P is pure}. The predicates found in M are then

added to the set Q. If F−FQ remains non-empty, SIGBOT

determines all pure size-3 predicates that are conjunctions

of three predicates in P − Q, and so on. SIGBOT thus

extracts pure complex predicates incrementally and of

gradually increasing sizes.

B. Step 2/4: Clustering Predicates

The pure predicates collected in Step 1 may have great
similarity among themselves. For example, consider the
code fragment:

read (a);
b = 2*a;
...

We note that the predicates P1 : (a = 0) in line 2 and

P2 : (b = 0) in line 2 are equivalent conditions and so

they should have the same signatures. Moreover, if P1 is

a good predictor of a bug B, so is P2. The second step

of SIGBOT is to cluster the pure predicates collected in

the set Q into clusters such that predicates with the same

signature are put into the same cluster.

Definition 5 (Cluster signature). Given a cluster C, the

signature of C, denoted by Sig(C), is the signature of

any predicate in C. That is Sig(C) = Sig(P), where P
belongs to C.

Since all predicates in a cluster have an identical

signature, cluster signature is well-defined. The clustering

process serves the purpose of reducing a relatively large

number of predicates (in Q) into a relatively small number

of distinct clusters (signatures). This mechanism allows the

subsequent steps of SIGBOT to be executed efficiently.

C. Step 3/4: Evaluating and Filtering Predicates

The third step of SIGBOT measures the quality of the

collected predicates. In particular, SIGBOT addresses the

sub-bug problem and the “super-bug” problem in this step.

297

1 i n t d i s c r i m i n a n t (i n t a , i n t b , i n t c) {
2 re turn b ∗ b − 4 ∗ a ∗ c ;
3 }
4
5 void q u a d r a t i c e q u a t i o n s o l u t i o n (i n t a , i n t b , i n t c){
6 i n t d = d i s c r i m i n a n t (a , b , c) ;
7 i f (d < −1) { p r i n t f (”no s o l u t i o n ”) ; re turn ;}
8 i f (a != 0){
9 double x1 = (−1 ∗ b + s q r t ((double) d)) / (2 ∗ a) ;

10 double x2 = (−1 ∗ b − s q r t ((double) d)) / (2 ∗ a) ;
11 p r i n t f (”x1=%.2 f , x2=%.2 f ” , x1 , x2) ;
12 }
13 e l s e
14 p r i n t f (”x1=%.2 f ” , −1 ∗ c / b) ;
15 }
16
17 i n t main (i n t argc , char∗ a rgv []){
18 . . .
19 }

Figure 1. An Example Program

1) The sub-bug problem: We have reasoned that clus-

ters’ signatures characterize bugs. However, we note that a

cluster (and its signature) may be predicting only part of a

bug’s behavior. To illustrate this situation, let us consider

the program shown in Figure 1. The necessary condition

for “triggering” the bug is (d ≥ −1) ∧ (d < 0). Suppose

that we have instrumented the predicates (d ≥ −0.5) and

(d < −0.5). It is easy to see that both complex predicates

(d ≥ −0.5)∧(d < 0) and (d ≥ −1)∧(d < −0.5) are pure

predicates. However, each one of them is characterizing

only about half of the failed cases caused by the bug. We

call a cluster whose predicates characterize only part of a

bug a sub-bug cluster.

In a sense, we can consider the problem of PBBM an

example of classification analysis. In particular, we identify

features (predicates) that can accurately predict the failures

of the program. As in any classification technique, one has

to deal with the overfitting problem, which occurs when

the classification model is too specific such that it can

be used to classify only a small number of cases. The

problem of sub-bug clusters can be seen as an example of

the overfitting problem: the predicates of a sub-bug cluster

specify overly restrictive conditions that are applicable to

only part of the failed cases of a bug.
To deal with the overfitting/sub-bug cluster problem, in

SIGBOT, we can rank the clusters based on the sizes of
their signatures, measured in their generality:

generality(C) =
log |Sig(C)|

log |F| ,

where |Sig(C)| is the number of (failed) runs in Sig(C)
and |F| is the total number of failed runs in the test report.

A larger generality value implies a cluster whose signature

covers a larger portion of the failed cases — less likely be

a sub-bug cluster.
2) The super-bug problem: A predicate is a super-bug

predicate if it infers the failed cases of more than one

bug. A super-bug predicate is thus not specific enough in
helping developers to locate and to fix bugs. Interestingly,
the super-bug problem can also occur even if we do not
consider disjunctive complex predicates. To illustrate this
case, consider the code fragment:

unsigned int a;
...
b = 100/a; // Bug B1: a division by 0 if a=0
...
c = sqrt(a-2); // Bug B2: square root on a

// negative number if a = 1
...

In this program, variable a is a non-negative integer. The

program fails due to two individual bugs: bug B1 occurs

when a=0 and bug B2 occurs when a=1. We see that the

conjunctive complex predicate (a ≥ 0)∧ (a ≤ 1) is a pure

but super-bug predicate because it infers the failed cases

of both bugs B1 and B2. A cluster is called a super-bug
cluster if its predicates are super-bug predicates.

To deal with the super-bug problem, we make the

following observation. Consider a super-bug cluster C and

its signature Sig(C). If the predicates in C infer two

distinct bugs B1 and B2, then we should be able to find

two failed runs R1 and R2 in Sig(C) such that R1 and

R2 failed because of the existence of bugs B1 and B2,

respectively. Now, if there is a predicate P1 that predicts

only B1, then P1 is more specific and is thus a better

predicate than those in cluster C. We note that R2 should

not appear in the signature of P1 because P1 predicts only

B1 and R2 is a failed case due to B2. Similarly, if there

is a predicate P2 that only predicts B2, then R1 should

not appear in Sig(P2). Let C1 and C2 be the clusters

containing P1 and P2, respectively. If we consider the three

clusters, namely, C, C1 and C2, we see that runs R1 and

R2 co-occur in Sig(C) but they do not co-occur in either

Sig(C1) or Sig(C2). The correlation of the occurrences of

R1 and R2 in various clusters’ signatures is thus weak.
If C is not a super-bug cluster, then all of its predicates

predict only one bug, say B. In this case, runs in Sig(C),
say R1 and R2, should all be the failed cases of B. Now,

given another cluster C ′, if the predicates of C ′ predict B,

R1 and R2 should co-occur in Sig(C ′); otherwise, both R1

and R2 should not occur in Sig(C ′). The correlation of the

occurrences of R1 and R2 in various clusters’ signatures

is thus strong.
Based on the preceding observation, SIGBOT evaluates

whether a cluster C is a super-bug cluster by considering

the correlation of the runs in the signature of C: the higher

the correlation, the less likely is C a super-bug cluster.
Given two runs Ri and Rj , let Cp(Ri, Rj) be the set of

clusters such that a cluster C is in Cp(Ri, Rj) iff Sig(C)
contains both Ri and Rj . Also, we define Cn(Ri, Rj)
to be the set of clusters such that C ∈ Cn(Ri, Rj) iff

Sig(C) contains only one of Ri and Rj . So, each cluster

in Cp(Ri, Rj) is a positive example of Ri and Rj co-

occurring while each cluster in Cn(Ri, Rj) is a negative

298

example.
Given a cluster C in Cp(Ri, Rj), if the signature of

C contains only a small number of runs (i.e., |Sig(C)|
is small), then it is not likely that two random runs be
grouped into Sig(C) simply by chance. Hence, the fact
that Ri and Rj do occur together in Sig(C) provides a
strong evidence that the two runs are highly correlated.
In contrast, if |Sig(C)| is large, having Ri and Rj occur
together in Sig(C) gives only a weaker evidence that the
runs are correlated. Therefore, SIGBOT counts a weighted
number of positive examples with the following formula:

positive(Ri, Rj) =
∑

C∈Cp(Ri,Rj)

max

{(
1− |Sig(C)|

|F|
)
, ε

}

(2)

That is, each C ∈ Cp(Ri, Rj) is weighted by

max {(1− |Sig(C)|/|F|) , ε}. Note that a smaller (resp.

larger) |Sig(C)| gives a larger (resp. smaller) weight

1−|Sig(C)|/|F|. The ε in the formula is a small constant

that serves as a sanity bound so that positive examples of

very large clusters (with large Sig(C)) are not effectively

ignored.
Negative examples in Cn(Ri, Rj) are also weighted.

However, a large cluster C ∈ Cn(Ri, Rj) gives a strong
evidence that Ri and Rj are negatively correlated. This
evidence is strong because if one run, say Ri, is included
in Sig(C), then if |Sig(C)| is large, it is not likely that the
other run Rj is excluded from Sig(C) by chance. So the
fact that only one of the runs is included in a large Sig(C)
gives a strong evidence that the two runs are negatively
correlated. SIGBOT counts a weighted number of negative
examples by:

negative(Ri, Rj) =
∑

C∈Cn(Ri,Rj)

max

{ |Sig(C)|
|F| , ε

}
(3)

Again, a small ε is used as a sanity bound so that the
contribution of very small clusters are not ignored. The
correlation of a given pair of runs Ri, Rj is then computed
by:

correlation(Ri, Rj) =
positive(Ri, Rj)

positive(Ri, Rj) + negative(Ri, Rj)
(4)

To recap, our objective is to evaluate a cluster, say C,
on how specific its predicates are in identifying a bug. Our
approach is to measure the correlation of the runs in C’s
signature. We note that if a run Ri occurs only in Sig(C)
and not in any other clusters’ signatures, then Ri is very
specific to the bug associated with C. In this case, when
we measure how specific cluster C is, run Ri should be
given more weight. On the other hand, if Ri occurs in the
signatures of many different clusters, then its appearance
in a signature and thus its association with other runs does
not come as a surprise. We should therefore give it a lesser
weight in our measurement of specificity. To capture this
idea, we compute an inverse-cluster-frequency (ICF) score
for each run Ri by:

ICF (Ri) = log
|C|

|{Ck ∈ C|Ri ∈ Sig(Ck)}| , (5)

where C is the set of all clusters. ICF is similar to the

concept of inverse-document-frequency (IDF) used in tradi-

tional information retrieval (IR) systems, where frequently

occurring keywords are generally given smaller weights in

answering IR queries.

SIGBOT evaluates how specific a cluster C is in infer-

ring a bug by aggregating the correlation of every pair runs

Ri and Rj in C. These correlation values are weighted by

the significance of the runs as captured by their ICF. The

evaluation is summarized by the specificity value:

specificity(C) =

∑
Ri,Rj∈Sig(C) ICF(Ri) · ICF(Rj) · correlation(Ri, Rj)(|Sig(C)|

2

) .

(6)

Finally, SIGBOT evaluates the quality of a cluster C by

computing the harmonic mean of C’s generality score and

specificity score.

3) Pruning low-quality clusters: After a quality score

is assigned to each cluster, SIGBOT prunes the low-

quality ones. Since the number of bugs in the program

is unknown, the number of clusters to be retained is

unknown. SIGBOT’s approach is to retain as few clusters

as possible as long as the complete set of failed runs (F) is

covered. SIGBOT prunes low-quality clusters incrementally

and iteratively.

D. Step 4/4: Recommending Predicates

After the first three steps, SIGBOT has identified a small

number of clusters, each is likely associated with a single

bug of the subject program. The final step of SIGBOT is

to recommend one predicate for each such cluster. Since

the signature of a cluster is likely equal to that of a single

bug, the bugs in the program no longer interact with each

other and we can employ an existing PBBM technique to

select the best predicate from each cluster. In our current

implementation, we apply LIBLIT05 in this step.

IV. Empirical Study
In this study, we study the effectiveness of the tech-

niques when they are applied to programs with multiple

bugs. We use the program Space from the SIR Repository

as the subject program. Space has 9,564 LOC. In addition

to the original (bug-free) version, SIR provides 33 faulty

versions and a test suite of 13,585 test cases. Each faulty

version contains a single bug that has been discovered

during the program’s development.

To evaluate the various techniques under a multiple-bug

environment, we carried out a bug-scale-up experiment.

We synthesize q-bug versions of the subject program by

arbitrarily picking q bugs from the pool of 33 bugs and

manually inserting them into the original version. 10 q-bug

versions are created and the effectiveness of the various

299

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

1-
G

ra
nu

la
rit

y

Num. of Bugs

LIBLIT05
ICML06

ISSTA07
SIGBOT

 0

 0.2

 0.4

 0.6

 0.8

 1

1-Bug 2-Bug

1-
G

ra
nu

la
rit

y

Num. of Bugs

LIBLIT05
ICML06

ISSTA07
SIGBOT

(a) Varying the number of bugs (b) Effects of complex bugs

Figure 2. Controlled experiments on Space

techniques on these 10 versions are recorded and averaged.

In our experiment, we scale q from 1 to 6 (so a total of

60 program versions are generated).

Figure 2 shows the results our SIGBOT and the three

state-of-the-art PBBM techniques LIBLIT05, ISSTA07, and

ICML06, under the 1-Granularity distance metric [7]. This

metric is used to measure the effectiveness of a PBBM

technique by comparing the average distance between

buggy statements and the statements that contain the

predictor predicates in a graph-based representation of

the program. Lower 1-Granularity distance means the

technique is more effective.

Figure 2a shows that the effectiveness of SIGBOT is the

highest among all of the comparing techniques. LIBLIT05

and ISSTA07 are less effective when the number of bugs

in the program increases. SIGBOT and ICML06 have good

effectiveness when the program has multiple bugs. We

observe that the curves for them stay low and flat across

the range 2 ≤ q ≤ 6. On the contrary, ISSTA07 is much

less stable over this range. This result shows that the

effectiveness of the technique is very much affected by the

interaction of multiple bugs in the program. In summary,

when multiple bugs exist in the subject program, SIGBOT

and ICML06 perform much better than iterative PBBM

techniques. Between SIGBOT and ICML06, we see that

SIGBOT generally has an edge over ICML06 as reflected

by the fact that in many of the cases shown in Figure 2a,

the curve for SIGBOT stays below that of ICML06. This

advantage of SIGBOT is even more pronounced when the

program contains bugs that are best predicted by complex

predicates, which we are going to discuss next.

Though “complex bugs” exist, they happen less fre-

quently than “simple bugs” and they are difficult to be

synthesized. To evaluate SIGBOT on subject programs

with “complex bugs”, we generate program versions that

contain only complex bugs. To achieve that goal, we

analyze the pool of 33 bugs and retain only those complex

ones. To decide whether a bug is complex or not, we use

the following mechanism: as ISSTA07 considers complex

bugs but LIBLIT05 does not, we apply both LIBLIT05

and ISSTA07 to each bug B in the bug pool. If the

complex predicate (PISSTA) recommended by ISSTA07 is

significantly better in quality than the simple predicate

(PLIBLIT) recommended by LIBLIT05, we classify B
as a complex bug. In our experiment, by “significantly

better”, we require that 2 × 1-granularity(PISSTA, B) ≤
1-granularity(PLIBLIT , B), i.e., the complex predicate is

at least twice closer to the bug than the simple predicate.

With this screening, 2 complex bugs are retained in the

bug pool.

Figure 2b shows the results of the experiment. The

figure contains two sets of bars: one set for the 1-bug

version and another set for the 2-bug version of the

program. Let us first look at the 1-bug scenario. From

the figure, we see that ISSTA07, which returns complex

predicates in an iterative fashion, is effective. SIGBOT is

more effective than LIBLIT05 and ICML06. As we move to

the 2-bug scenario, the performance of ISSTA07 degrades

due to the fact that its statistical inference (in the first

round) is imprecise due to the presence of multiple bugs.

In this case, SIGBOT is the winner. When bugs are complex

ones, ICML06, which returns simple predicates, is much

less effective when compared with SIGBOT.

V. Conclusion

In this paper we propose SIGBOT, which is capable of

suggesting good simple and complex predicates to predict

bugs. Results show that SIGBOT performs well with the

existence of multiple bugs.

References

[1] Arumuga Nainar et al. Statistical debugging using compound
boolean predicates. In ISSTA, 2007.

[2] Chilimbi et al. Holmes: Effective statistical debugging via
efficient path profiling. In ICSE, pages 34–44, 2009.

[3] Hsu et al. Rapid: Identifying bug signatures to support
debugging activities. In ASE, pages 439–442, 2008.

[4] Jones et al. Debugging in parallel. In ISSTA, pages 16–26,
2007.

[5] Liblit et al. Scalable statistical bug isolation. In SIGPLAN,
Chicago, Illinois, 2005.

[6] Liu et al. Statistical debugging: A hypothesis testing-based
approach. IEEE TSE, 32(10):831–848, 2006.

[7] Zhang et al. Evaluation metric for multiple-bug localization
with simple and complex predicates. In APSEC, 2012.

[8] Zheng et al. Statistical debugging: simultaneous identifica-
tion of multiple bugs. In ICML, 2006.

300

BacterioORACLE: An Oracle suggester tool
Pedro Reales Mateo and Macario Polo Usaola

Alarcos research group
University of Castilla-La Mancha

Ciudad Real, Spain
{pedro.reales, macario.polo}@uclm.es

Abstract— One of the main challenges during testing is to design
good oracles. An oracle is one or more statements in a test that
evaluate the behavior of the system. This paper presents a tool,
BacterioORACLE, based on mutation testing that helps testers to
write good oracles. The tool generates oracle suggestions
automatically analyzing information obtained from killed
mutants. These suggestions are useful to discover errors and can
be translated into executable oracles easily. Thus, this tool can be
very useful during the testing process in order to create good
oracles.

Keywords- Bacterio; oracle; testing; mutation; tool;
suggestions.

I. INTRODUCTION
Software testing is one of the most important tasks in

software development process for ensuring quality. During
testing, a tester exercises the software under tests in order to
find faults. Simplifying the testing process, the tester has to
specify some test requirements in order to design test cases that
fulfill them. To define those test requirements, usually a testing
technique (such as decisions coverage [1], input space
partitioning [2] or mutation testing [3]) is used. These
techniques specifies some conditions (i.e. to cover all the code
statements of the system under test) that the tests must fulfill.

When the test requirements are stated, the tester has to
design the tests cases. To do it there are some options. One
option is to define a test as a set of interactions that must be
performed by a user. Thus, the tester has to interact with the
system to check its behavior. However, this option has a
important disadvantage, the tests are not automatic and cannot
be executed easily.

A better option is to use a XUnit framework, as for
instance, JUnit [4] for Java or NUnit [5] for .Net. These
frameworks provideƒƒ a set of features that allow testers to
automate tests, therefore tests can be executed automatically,
which is very important to reduce costs of testing and increase
its effectiveness (not only for testing during the development,
but also for maintenance and regression testing).

Typically, to make an executable test script for object-
oriented technologies, the tester has to define five things:

1. Set up the environment where the tests will be
executed.

2. Create an instance of the element under tests.
3. Exercise one or more functionalities.
4. Check with an oracle test passes or fails.
5. Clean up any change in the environment done by the

test.

Figure 1 shows an example of a JUnit test case written in
Java. This test evaluates the add method of a supposed
calculator. As Figure 1 shows, JUnit provides two special
methods to set up and clean up the environment (setUp and
tearDown methods). These two methods are executed before
and after each test. Also, JUnit provides a set of methods to
evaluate the operation of the calculator (assert methods).

Figure 1. JUnit test case example.

Two very important elements to make tests are:

1) To determine the test data of the method that will be
executed. There are several techniques (for instance, Pair-Wise
[6]) and tools (for instance, testooj [7] or CTWEb [8]) that
helps testers and automate this task.

2) To determine the oracles of the tests. The oracles are
the statements that check if the system works properly (assert
methods of Figure 1). Unlike the previous task, it is very
difficult to determine the oracles automatically since they
depend on the domain of the system and the test data used.
Therefore, in practice, oracles are designed by hand [9].

One of the main problems when oracles are defined is their
completion. Usually, the elements checked after the execution
of a method are not enough, i.e. some elements that should be
checked are not checked because the tester does not consider
them important or s/he just does not know they exist. Another
important problem related with oracles is their correction.
After the execution of a method, an oracle compares the value
of an element with the supposed value that should have. Thus,
if the element does not have the supposed value there is an
error in the system. However, the supposed value must be
provided by the tester that can make mistakes calculating it.

The tool presented in this paper, BacterioORACLE, is related
with the definition of oracles of the tests. This tool implements

301

a novel technique based on mutation testing that provides
suggestions to define oracles automatically.

The automatically generated suggestions try to solve the
completion problem, since they are based on killed mutants,
and try to reduce the correction problem, since they provides
some valuable information that should be checked by the tester.

The paper is organized as follows: Section 2 provides some
background of mutation testing. Section 3 describes briefly
how oracles suggestions are obtained. Section 4 presents
BacterioORACLE and its architecture. Section 5 shows how to use
the oracle suggested. And Section 6 shows some conclusions
and future works.

II. BACKGROUND ON MUTATION TESTING
Mutation testing is a very effective testing technique. With

mutation testing, a tester creates copies of the system under
tests with small syntactic changes (mutants) that can suppose
an error. Then s/he design tests cases that has to be able to
identify those syntactic changes (kill mutants). Thus, as more
mutants are killed, better are the designed test cases.

Typically, a mutation analysis is composed of three tasks:

1) Mutant generation. The tester creates copies of the
system and applies mutation operators (well-formed rules) to
introduce the syntactic changes.

2) Mutant executions. After design the tests, the tester
execute each test against the original system and each mutant
and annotate what mutants are killed (A mutant is killed when
a test obtains an output different from the original output).

3) Result analysis. The tester calculates the mutation score
(Figure 2) that gives the quality of the executed test suite.
Equivalent mutants (mutants which syntactic changes do not
suppose a fault, thus there are not any test able to kill them)
must be identified in order to calculate the mutation score.

Figure 2. Mutation score formula.

To perform a mutation analysis is costly task and automatic
tools are a must. There are several available mutation tools that
implement different mutation cost reduction techniques. These
tools can reduce costs of mutation testing and help testers to
perform mutation analysis.

The technique that implements the tool presented in this
paper, BacterioORACLE, is based on mutation testing. However,
the implemented technique does not use mutation testing to
evaluate the quality of a test suite, but to gather valuable
information that can be useful to design oracles.

III. ORACLE SUGGESTIONS BASED ON MUTATION
As commented in section I, during the oracle definition in

object orientation, the tester can commit two kinds of mistakes:

the oracles can be uncompleted and they can contain errors.
The technique implemented in BacterioORACLE tries to solve
automatically the first kind of mistakes: completeness.

Let’s suppose that a tester has to test the method add of a
supposed calculator (Figure 3) and s/he decides to exercise the
method with values 3 and 9, thus s/he writes the test of Figure
4. At this point, oracles have to be defined, thus the tester
writes an oracle to check that the result is 12 (the final test was
shown in Figure 1).

Figure 3. Calculator source.

Figure 4. JUnit test case without oracles.

Although this oracle looks right and enough, the tester
made an error because s/he did not check the field
operationsDone of the class Calculator, which counts the total
number of operations done (note the extreme simplicity of this
example; in a more complex system this situation can easily go
unnoticed). Therefore, if there is an error in the calculation of
the operationsDone value, this error would not be discovered
because the field is not checked.

To solve this completeness problem, BacterioORACLE uses
mutation testing to identify what fields and return values
should be checked after the execution of a method.

Fields and return values are identified with killed mutants.
BacterioORACLE uses strong mutation, but, unlike other mutation
tools like MuClipse [10], assertions are not used to consider a
mutant killed (since mutation is used to design assertion and
they are not available). Instead of assertions, BacterioORACLE
considers that the output of the system has two components:
the return value and the states of the objects that remain in
memory. Thus, a mutant is considered killed after the execution
of a method if the return value or any field value of any object
in memory is different from the values obtained when the
method of the original version is executed.

302

With this approach, when a mutant is killed, BacterioORACLE
is able to determine what element (a field value or the return
value) is responsible of the dead of the mutant. This
information indicates that the identified element is important
and must be checked.

Thereby, after the execution of a test against all the
mutants, BacterioORACLE can identify all the important fields
and return values that must be checked after each executed
method. Note that in this process only mutants that are killed
by the executed test are interesting, so it is not necessary to
identify equivalent mutants.

Figure 5 shows the code of two mutants of the calculator
(Figure 3). The first mutant calculates wrong the addition and
the second mutant calculates wrong the total executed
operations. Applying the approach implemented in
BacterioORACLE, after the execution of the test of Figure 1
against the original system and the two mutants, BacterioORACLE
will identify that: (1) mutant one is killed because of the return
value of the add method and (2) mutant two is killed because of
the value of the operationsDone field. Therefore,
BacterioORACLE would suggest to the tester that it is important to
evaluate the return value of add and the operationsDone field
of the called object.

Version Code

Mutant1

Mutant2

Figure 5. Mutants of Calculator.

The second kind of error that can appear during the
definition of oracles is related with the correction. To define an
oracle it is necessary to compare an observed value with the
supposed value. Thus, the supposed value must be calculated
and provided by the tester in order to define the oracle.
Unfortunately, most of the techniques to generate oracles of the
literature suppose that the original system is correct. Therefore,
the generated oracles must be checked by the tester in order to
determine if the generated supposed value is correct.

The technique implemented in BacterioORACLE has the same
disadvantage. BacterioORACLE not only identifies the fields that

must be checked, but also provides values (values observed in
execution of the original system) that can be easily used to
write oracles. However, the provided values must be checked
by the tester in order to determine whether they are correct.
Thus, although the correction problem is not solved, the
provided values joint to the fields that contain them help testers
to define correct oracles.

So, after the execution of the test of Figure 1 against the
original system and the two mutants (Figure 3 and Figure 5),
BacterioORACLE will identify that the result value of the method
add should be 12 and the value of the operationsDone field
should be 1. Now, the tester takes responsibility for
determining if 12 and 1 are correct values. If they are correct,
the oracle suggestions can be translated into executable oracles
and it means that the test did not find any error in the system. If
they are not correct, it means that the test found an error in the
system.

IV. BACTERIOORACLE TOOL
BacterioORACLE is an extension of the Java mutation testing

tool Bacterio [11]. This extension is composed by four
modules: first, a module to instrument test cases (this
instrumentation provides a new special implementation of
strong mutation based on return values and objects states);
second, a module to gather killing information from the
instrumented tests; third, a module to analyze the gathered
killing information to make the oracles suggestions; and fourth,
a module with a graphical user interface that shows the oracle
suggestions. Figure 6 shows the architecture of BacterioORACLE
and relations between modules.

A. Bacterio
Bacterio [11] is a standalone application written in Java. It

is designed to support mutation analysis at unit, integration and
system levels for Java systems and test cases written in JUnit or
UISpect4j format.

In order to reduce costs of mutation, Bacterio implements
several cost reduction techniques: selective mutation [12],
mutant sapling [13] and high order mutation [14] to reduce the
number of mutants; byte code translations [15], mutant schema
[16], MUSIC [17] and parallel execution [18] to reduce costs of
generating and executing mutants; and strong mutation [3],
weak mutation [19], flexible weak mutation [20] and functional
qualification [21] to reduce costs of execution and allow
different mutation types.

Bacterio automates the mutant generation and execution
tasks and calculates the mutation score automatically, the tester
only has to provide tests and identify equivalent mutants. For
the equivalent mutant identification, Bacterio helps testers
providing code comparisons of the original system and
mutants.

303

Figure 6. BacterioORACLE architecture

Bacterio is used by BacterioORACLE to create mutants and
execute instrumented test cases against them in order to obtain
information of the killed mutants.

B. Test Instrumenter
This module instruments test cases to store into the

execution results all the information relative to return and field
values. Later, this information is analyzed by other modules to
create the oracle suggestions.

Under strong mutation, a mutant is considered killed if its
outputs are different from the original outputs. With the
instrumentation, the mutant is killed if the return value or any
field value is different from the values of the original system.
Thus, the instrumentation of the tests must provide enough
information to compare all values of the original system and
each mutant at the end of the execution. Moreover, this values
comparison should be done after each method call in the tests,
since the final oracle suggestions are obtained for each call.
Therefore, the process of Figure 7 is followed to instrument a
test case.

Figure 8 shows the instrumentation done in the test case of
Figure 4. In the figure we can see that the called object and the
return value are analyzed and store. The arguments are not
analyzed because they are basic types, and therefore after the
execution of the method they will have the same value. Finally,
the Figure 8 shows that at the end of the test the field c of type
Calculator is analyzed. This last analysis is necessary
sometimes (in the example it is redundant) because there can be
static methods without arguments (or with only basic types
arguments) that do not return a value, thus they only change the
internal state of fixtures.

An important issue during the execution of tests is how
field values are analyzed and store (since a field value can be a
complex value, i.e. an object instance). BacterioORACLE creates
from each analyzed value (basic or complex value) a code
based in the EBNF grammar of Figure 9. This grammar
describes a value as a simple value or as a set of fields or a

matrix of values. This structure is able to translate into code an
object which fields are also objects.

For each method call in the test case, after the call:

1- If the called method belongs to an object, analyze the
field values of the object (note that static method does
not bellow to an object).

2- If the called method returns a value, analyze the value
(if the value is an object, analyze the field values of
the object).

3- For each argument,
If the argument is an object, analyze the field
values of the argument.

4- For each local variable and each field of the test class,
analyze the values (if the value is an object, store the
field values of the object).

Figure 7. Process to instrument test cases.

Figure 8. instrumented test case.

LOG := NL OA? ARGS? RE? EX? | NL L?
NL := Id_Method
ARGS := ARG | ARG ARGS
OA := # o OCA %
ARG := # a N OCA %
RE := #r OCA% | #r FCA%
EX := #e : id_ClassException FCA%
L := #l : id_Local OCA% | #l : id_Local FCA%
OCA := {IDO FS} | {m : IDO: OCAM} | {m : IDO:} |
 { IDO : n} | {m : IDO: FCAM} | {IDO}
OCAM := (pos OCA) | (pos OCA) OCAM
FCAM := (pos FCA) | (pos FCA) FCAM
FS := F | FS F
F := (idField OCA) | (idField FCA)
FCA := : tipo : N
IDO := id_Class_N
N := number

Figure 9. EBNF grammar to store analyzed values.

Figure 10 shows an example of the code generated form the
execution of the tests of Figure 8 against the original system.

tests.TestCal.testAdd$11#o{1_1(2:3:1)}%#r:3:12%
tests.TestCal.testAdd$4#l:5{6_1(7{1_1(2:3:1)})(8:9:10)}%

Figure 10. EBNF code generated from the original version.

304

C. Killed mutants information analyzer
When the EBNF codes are obtained from killed mutants,

they are compared with the obtained code from the original
system by the killed mutants information analyzer module. The
goal of this process is to determine the elements that are
responsible of the dead of each mutant. As commented in
section III, this information indicates what elements (result
values or field values) are important and, therefore, they should
be analyzed. In these comparisons there are two possibilities:

1- The compared elements are two primitive types. In this
case, if the observed values are different, the compared
elements are stored jointly the original value, since
they are responsible of the dead of the mutant.

2- The compared elements are two complex types. In this
case two complex observed values are different if one
of the next conditions is met: (1) if the types of the
elements are different, (2) if one of the compared
elements is null or (3) if any field is different.

Following this approach, BacterioORACLE is able to store
information like showed in TABLE I. The table contains the
differences obtained from the EBNF codes produced from the
test of Figure 8.

TABLE I. DIFFERENCES OBTAINED FROM KILLED MUTANTS

Mutant Method Element Value

mutant1 add return 12

mutant2 add CalledObject.operationsDone 1

In the TABLE I shows that mutant1 (Figure 5) was killed
because the return value of the method add was different from
the return value of the method add of the original system. Also,
the table shows that mutant 2 (Figure 5) was killed because the
value of the field operationsDone of the object that executed
the method add was different from the original value.

D. Oracle suggestions creator
When the killed information is analyzed and the elements

responsible of the dead of the mutants are identified, the oracle
suggestions are created by the oracle suggestions creator
module.

In this last step, all the elements related with the same
method are group and an oracle suggestion for each element is
created, thus in case of several mutants are killed because of
the same element, only one oracle suggestion is created from
the element.

Also, the proper comparison method is used in each oracle
suggestion. For example, if an element is an integer value, the
operator “==” is used, however, if the element is a String value
the method “.equals()” is used.

TABLE II shows the oracle suggestions obtained from
TABLE I. We can see that BacterioORACLE suggests that the
tester should compare the return value with 12 and field
operationsDone with 1.

TABLE II. ORACLE SUGGESTIONS.

Oracle suggestions

assertTrue (resultValue == 12);

assertTrue (CalledObject.operationsDone == 1);

E. Oracle suggestions GUI
This last module takes care to show oracle suggestions to

the user with a graphical user interface. Figure 11 shows the
interface showed with the oracles obtained in the TABLE II.
This graphical user interface allows testers to select the
executed tests and filter the showed oracles by types and by
mutation operator.

Figure 11. Grafical user interface to show oracle suggestions.

This final module is important to help tester to analyze the
oracle suggestions, translate them into executable oracles and
check the correctness of the suggestions.

V. USES OF THE ORACLE SUGGESTIONS
The information provided by BacterioORACLE is useful for

two tasks: (1) errors discovering, and (2) oracles writing.

A. Errors Discovering
As commented in section I, the goal of tests is to discover

errors. However, without oracles, a test cannot discover errors
(unless an exception is launched) because the behavior of the
system is not checked.

 The oracle suggestions provided by BacterioORACLE contain
information relative to the behavior of the system. Since the
proposed comparisons are created from the observed values of
the original system, they represent the actual behavior of the
system. Thus, if any suggestion is wrong (i.e. if a suggestions
says “return == 10”, but the result should be 12), it means that
there is an error in the system. Moreover, the tester has some
information to find the bug because the suggestion indicates the
element that has the wrong value (i.e. the return).

Figure 12. Hypotetical wrong suggestion.

For example, Figure 12 shows hypothetical wrong
suggestions for the test of Figure 8. The first suggestion says
that the operationsDone is 2, however the number of
operations done is one, therefore the field should contain 1.
This indicates to the tester that there is an error in the system
and this error is related with the field operationsDone.

305

B. Writing executable oracles
When the tester has evaluated all the suggestions and has

determined that all of them are right (so the test did not
discover any error in the system) the proposed suggestions can
be translated into executable oracles.

For it, the tester only has to copy the suggestions in the
correct place in the tests, and replace the name of each
compared element by the variable name used in the tests and
the access method when the element is a field. For example, the
suggestions of Figure 11 can be translated into executable
oracles as show the Figure 12.

Figure 13. Executable oracles obtained from suggestions.

VI. CONCLUSIONS
 This paper presents a tool, BacterioORACLE, which is able to

generate automatically suggestions to define oracles of the
tests. To obtain the suggestion, this tool uses mutation testing.
From the killed, the tool obtains some important information
relative to the elements that produces that the mutant die. Then,
this information is translated into oracle suggestions.

Although the suggestions must be analyzed by the tester
and translated into executable code, they are useful to discover
errors and write oracles.

As a future work, we plan to modify the oracle suggestions
creator module to create executable oracles directly and
improve the oracle suggestions GUI module in order to provide
better information to the tester.

The tool BacterioORACLE can be found at
http://alarcos.esi.uclm.es/per/preales/Pedro_Realess_Web_Pag
e/Tools.html.

ACKNOWLEDGMENT
This work and the BacterioORACLE tool are partially

supported by the Spanish FPU program (AP2009-3058) and by
the project GEODAS-BC (TIN2012-37493-C03-01) from
MEC.

REFERENCES
[1] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, Dec.
1997.

[2] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, Cambridge, UK, 2008.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, vol. 11,
no. 4, pp. 34–41, Apr. 1978.

[4] “JUnit. A programmer-oriented testing framework for Java.,” 21-Feb-
2013. [Online]. Available: http://junit.org/.

[5] NUnit, “NUnit, Testing Resources for Extreme Programming,” 2005.
[Online]. Available: http://www.junit.org.

[6] K.-C. Tai and Y. Lei, “A test generation strategy for pairwise testing,”
IEEE Transactions on Software Engineering, vol. 28, no. 1, pp. 109 –
111, Jan. 2002.

[7] M. Polo, M. Piattini, and S. Tendero, “Integrating techniques and
tools for testing automation,” Software Testing, Verification and
Reliability, vol. 17, no. 1, pp. 3–39, 2007.

[8] M. Polo and B. Pérez, “A framework and a web implementation for
combinatorial testing,” 2010. [Online]. Available:
http://alarcosj.esi.uclm.es/CTWeb.

[9] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” presented at the International Conference on Software
Engineering, 2007, pp. 85–103.

[10] B. H. Smith and L. Williams, “On guiding the augmentation of an
automated test suite via mutation analysis,” Empir Software Eng, vol.
14, no. 3, pp. 341–369, Jun. 2009.

[11] P. R. Mateo and M. P. Usaola, “Bacterio: Java Mutation Testing
Tool,” presented at the International Conference on Software
Maintenance (ICSM2012), 2012, pp. 646–649.

[12] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient mutant operators,” ACM
Trans. Softw. Eng. Methodol., vol. 5, no. 2, pp. 99–118, Apr. 1996.

[13] K. N. King and A. J. Offutt, “A Fortran language system for
mutation-based software testing,” Softw. Pract. Exper., vol. 21, no. 7,
pp. 685–718, Jun. 1991.

[14] P. R. Mateo, M. P. Usaola, and J. L. F. Alemán, “Validating 2nd-
Order Mutation at System Level,” IEEE Transactions on Software
Engineering, vol. 39, no. 4, 570-587.

[15] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class
mutation system,” Software Testing, Verification and Reliability, vol.
15, no. 2, pp. 97–133, 2005.

[16] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” in Proceedings of the 1993 ACM SIGSOFT
international symposium on Software testing and analysis, New York,
NY, USA, 1993, pp. 139–148.

[17] P. R. Mateo and M. P. Usaola, “Mutant Execution Cost Reduction,
through MUSIC (MUtant Schema Improved with extra Code),” IEEE
Fifth International Conference on Software Testing, Verification and
Validation, 17, 2013.

[18] P. R. Mateo and M. P. Usaola, “Parallel Mutation Testing,” Software
Testing, Verification and Reliability, 2012.

[19] A. J. Offutt and S. D. Lee, “An empirical evaluation of weak
mutation,” IEEE Transactions on Software Engineering, vol. 20, no.
5, pp. 337 –344, May 1994.

[20] P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at the multi-class
and system levels,” Science of Computer Programming, 78(4), 364-
387.

[21] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe,
“Functional qualification of TLM verification,” presented at the
Design, Automation and Test in Europe, DATE’09, 2009, pp. 190–
195.

306

Managing Corrective Actions to Closure
in Open Source Software Test Process

Tamer Abdou

CSE Department

Concordia University

Montréal, Québec, Canada

t moh@encs.concordia.ca

Peter Grogono

CSE Department

Concordia University

Montréal, Québec, Canada

grogono@encs.concordia.ca

Pankaj Kamthan

CSE Department

Concordia University

Montréal, Québec, Canada

kamthan@encs.concordia.ca

Abstract—In assessing test process maturity, one of the goals
is to manage disciplinary issues. Managing corrective actions to
closure is known to aid software quality assurance, in general,
and testing process activities, in particular. In this paper, a
framework for software testing assessment, namely OSS-TPA,
that aims to evaluate corrective actions in OSS test process, is
proposed. The OSS-TPA framework is based on earlier studies
and relies on a conceptual model for test process activities in
OSS development. Using success factors in OSS development,
the relationship between the maturity of managing corrective
actions and the adoption of OSS is investigated.

Index Terms—Open Source Software; Software Engineering;
Software Quality; Software Testing; Test Process Improvement.

I. INTRODUCTION

In the past couple of decades, there has been a notable

growth in the adoption of open source software (OSS), both by

organizations and by people. The increasing commitment to

OSS places ever more moral and ethical responsibility on the

developers to produce better software. This, in turn, impacts

the OSS development process, and calls for attention to OSS

quality, in general, and OSS testing, in particular.

In this paper, the interest is in the improvement of OSS

test process [1]. Indeed, process improvement (along with

automation and standardization) is regarded as one of the

major research directions in software testing [2]. To that

end, this paper proposes an OSS test process assessment

framework, henceforth abbreviated as OSS-TPA, that provides

guidelines, procedures, and metrics with the aim of evaluating

OSS projects.

In recent years, a number of maturity models have been

proposed for evaluating OSS projects. However, these models

do not focus on the underlying OSS development process,

and do not adequately address issues related to testing or the

maturity of the underlying testing process. This motivates the

need for evaluating the OSS testing process systematically, and

the OSS-TPA framework is a step in that direction. OSS-TPA

is based on the Test Maturity Model Integration (TMMi) [3].

Furthermore, OSS-TPA relies on a conceptual framework that

identifies OSS test process activities, such as Test Design and

Implementation, Test Execution, and Test Incident Reporting,

and aligns these activities with the ISO/IEC Standard for test

process [4].

The rest of the paper is organized as follows. Section 2

analyzes existing approaches for assessing and measuring OSS

projects, as well as examines related studies on the assessment

of OSS test process. Section 3 provides a description of the

OSS-TPA framework and its parts. Section 4 suggests avenues

for future research. Finally, Section 5 provides concluding

remarks.

II. BACKGROUND AND RELATED WORK

The approaches for investigating the OSS test process can

be classified into two categories, namely assessment and

measurement [5]. These are discussed in some detail in the

next two sections.

A. Assessment Approaches

An assessment approach is concerned with qualitative eval-

uation. In this approach, reasoning or subjective judgment is

taken to conclude whether the OSS or one of its software

components meet specified requirements.

A number of assessment models have been introduced over

the years to provide the basis for evaluating the test process

of software projects, as summarized in Table I [6]. TMMi
is a successor of these initiatives. It provides guidelines and

a reference model for test process improvement, and has

proven useful in practice [3] [7] [8]. The TMMi reference

model has sixteen process areas that include practices, ranging

from general to specific, related to test process improvement.

Furthermore, each process area is subdivided into a number

of goals to be achieved in order to reach a specific level of

maturity.

B. Measurement Approaches

A measurement approach is concerned with quantitative

evaluation. In this approach, direct measures are recorded and

compared to pre-established values to decide whether the OSS

or one of its software components meet numerical thresholds.

The metrics for test process allow managers to track,

understand, and control (and thereby improve) testing. For

example, the number of test cases, defect density, and other

similar metrics, provide an insight into different aspects of a

test process [9] [10].

307

Features TMM TIM TPI TMMi
Model Type Maturity Maturity Maturity Maturity

Year of Development 1996 1996 1997 2008

Approach Theoretical Practical Practical Theoretical

Number of Levels 5 5 14 5

Number of Key Process Areas 13 5 20 16

Assessment Type Questionnaire Questionnaire Checklist N/A

Assessment Foundation CMM, ISO, SPICE Practical Experience Practical Experience CMMI

Information about Model Articles, Thesis, Books Articles Articles, Books Articles, Books

TABLE I: An Overview of the Main Features of Existing Test-Process Improvement Models

In recent years, a number of maturity models have been pro-

posed for evaluating OSS projects, including OpenBQR [11],

OpenBRR [12], SQO-OSS [13], and FOCSE [14]. They aim to

help prospective adopters understand the features of an OSS,

and to assess the advantages and drawbacks of its selection

and use [15] [1].

However, these models are rather limited in their considera-

tion of process maturity, in general, and test process maturity,

in particular. For example, out of twenty-eight evaluation

criteria in OpenBRR, only two criteria (namely, the average

volume of the mailing list in the last six months and the

number of unique contributors in the last six months) are

relevant to process maturity [12]. In some maturity models,

criteria for test process maturity (such as, the criterion of

the availability of testing and benchmark reports in Open-

BQR [16]) are mentioned, but not considered in any detail.

Finally, these maturity models lack a standard basis [12], and

the process of capturing data that these models are derived

from is usually subjective [17]. The purpose of OSS-TPA is

to overcome some of these drawbacks.

III. THE OSS-TPA FRAMEWORK

The OSS-TPA framework consists of four modules, namely

Quality Model, Data Collection, Data Analysis, and Data

Interpretation, as shown in Figure 1.

A. OSS-TPA Quality Model

The OSS-TPA quality model is based on two comple-

mentary approaches to satisfy the definition of test process

evaluation [18], and thereby evaluate the OSS test process.

The first approach is the use of the Goal-Question-Metric

(GQM) framework [19]. It is known that GQM provides a

systematic approach towards software measurement via orga-

nization of relevant goals, questions, and metrics. The second

approach is the use of the TMMi framework. The TMMi
reference model specifies the test process area and provides

means for controlling the scope of the goals in the OSS-TPA

quality model. The attention in this paper is specifically on

the aspects related to the Test Monitoring and Control process

area of the TMMi framework.

The lack of time is among the frequently-cited reasons

for organizations to not adopt Capability Maturity Model

Integration (CMMI) [20].

OSS Repositories Data Collection

Extractor

Model Definition

Data Analysis

SCAMPI
Rate

Analysis

NA
[0 - 15%)

PA
[15% - 50%)

LA
[50%- 85%)

FA
[85% - 100%]

Analyzer

NA
[0 - 15%)

PA
[15% - 50%)

LA
[50%- 85%)

FA
[85% - 100%]]

Data Interpret.

1. An indicator
2. An answer
3. Goal

attained
4. Maturity

threshold
5. Guidelines

XML

Local DB

XML

XML
XML

XML XML
XML

XML

Report

NANANA

Fig. 1. A High-Level View of OSS-TPA Architecture

1) OSS-TPA Quality Model: Definition: The combination

of GQM and TMMi contributes to decreasing the time for

adopting a CMMI-based approach in an OSS project.

The measures for answering questions in the OSS-TPA quality

model were computed manually, as well as, automatically,

using a variety of tools.

The model definition module of OSS-TPA, as shown in

Figure 2, consists of three abstract phases:

1. The conceptual phase, which derives the goal of man-

aging the corrective actions to closure from the TMMi
reference model.

2. The operational phase, which specifies a set of questions

concerning the achievement of the goal stated in the

conceptual phase. These questions are based on the

relevant practices in the TMMi reference model.

3. The quantitative phase, which identifies a set of metrics

for each specified question. These metrics are based on

the work products associated with the test practices in

the TMMi reference model.

It is known that appropriate corrective actions should be

taken when test progress deviates significantly from the test

plan, or product quality deviates from expectations [3].

308

Model Definition

M
an

ag
in

g
Co

rr
ec

tiv
e

Ac
tio

ns
 to

 C
lo

su
re

P1. Analyze Tracking Issues

P2. Take Corrective Actions

P3. Manage Corrective Actions

M
an

ag
in

g
Co

rr
ec

tiv
e

Ac
tio

ns
 to

 C
lo

su
re

Does the OSS project team
collect and store test
tracking issues needed to be
corrected?

Number of
Tracking Issues

Does the OSS project team
take corrective actions on
the identified tracking
issues?

Number of Open
Tracking Issues

Percentage of
Corrected Issues

Does the OSS project team
analyze results of the
corrective actions to
determine their
effectiveness?

Number of
Developers

Number of
Downloads

Number of
Page Views

TMMi maturity levels and process areas

Fig. 2. A High-Level View of the OSS-TPA Quality Model

Indeed, managing these actions to closure is one of the goals

to be achieved in the Test Monitoring and Control process

area that, in turn, belongs to Level 2 Managed in the TMMi
framework, as shown in Figure 2.

2) OSS-TPA Quality Model: Measurement: The OSS-TPA

quality model has a single goal:

Goal Manage corrective actions to closure with the aim of

evaluating its maturity from a software manager’s point

of view.

To satisfy the aforementioned goal, the following questions

are derived and formulated:

Q1 Does the OSS project team collect and store test tracking

issues needed to be corrected?

Q2 Does the OSS project team take corrective actions on

the identified tracking issues?

Q3 Does the OSS project team analyze results of the cor-

rective actions to determine their effectiveness?

The OSS-TPA quality model includes three main quality

attributes for managing corrective actions to closure, namely

Analyze Issues, Take Corrective Action, and Manage Correc-

tive Action, as shown in Figure 2. Each quality attribute is

associated with a number of metrics. The selected metrics are

based on the TMMi guidelines, and help in obtaining objective

answers to the aforementioned questions.

The result, as shown in Table II, is a collection of 19 metrics,

of which 4 correspond to the first quality attribute, 12 to the

second quality attribute, and 3 to the third quality attribute.

It can be noted that the mapping between the set of quality

attributes and the set of metrics is not one-to-one.

The tracking issues in Table II are based on the classification

scheme from SourceForge.net, and are categorized accordingly

into four groups, namely Bugs, Feature Requests, Support

Requests, and Patches.

Metrics Q1 Q2 Q3

Number of Bugs x
Number of Patches x
Number of Feature Requests x
Number of Support Requests x
Number of Open Bugs x
Number of Closed Bugs x
Percentage of Corrected Bugs x x
Number of Open Feature Requests x
Number of Closed Feature Requests x
Percentage of Corrected Feature Requests x x
Number of Open Support Requests x
Number of Closed Support Requests x
Percentage of Corrected Support Requests x x
Number of Open Patches x
Number of Closed Patches x
Percentage of Corrected Patches x x
Number of Downloads x
Number of Developers x
Number of Page Views x

TABLE II: Metrics of interest

B. Data Collection

The source of data for this study is the SourceForge Re-

search Data Archive (SRDA) [21]. The SRDA is a repository

of SourceForge OSS research data and allows the execution

of SQL queries on tables exported from SourceForge.

The SQL query that follows has been used in this research

to extract information on one of the tracking issues, namely

bugs. For example, the following SQL query extracts the total

number of bugs and the number of open ones for each project

hosted on SourceForge in July 2010 for “sf0710” scheme:

SELECT g.group id, ag.name, ac.count, ac.open count

FROM sf0710.artifact counts agg ac, sf0710.artifact group list ag, sf0710.groups g

WHERE ac.group artifact id = ag.group artifact id AND g.group id = ag.group id

AND ag.name = ’Bugs’

The OSS projects with total issues (of the type bugs, feature

requests, support requests, or patches) of zero have been

excluded to get a valid number for the percentage of corrective

issues (that is, total number of corrected issues divided by

the total number of issues). Moreover, OSS projects that have

assigned a NULL value to an issue have been excluded, as

NULL cannot be considered as a valid number.

The data analysis module, as shown in Figure 1, deals

with interpreting the collected data involving the percentage of

issues for bugs, feature requests, and patches. This follows the

ISO/IEC 15939 methodology for specifying indicators [22],

and the ISO/IEC 15504 policy for rating indicators [23]. Each

corrective action is measured on a four-point rating scale as

follows:

NA: Not Achieved [0% - 15%)

PA: Partially Achieved [15% - 50%)

LA: Largely Achieved [50% - 85%)

FA: Fully Achieved [85% - 100%]

309

OSS Factor Description Indicator Concept
Downloads Total number of downloads of

the software package
Moving from alpha to beta
to stable; Achieved identified
goals

Physical attribute; Community
attribute

Developers Total number of developers on
the project

Activity level; User contribu-
tion; Knowledge sharing

Community attribute

Page Views Total number of views of any
of the project’s website

User acceptance Physical attribute; Community
attribute

TABLE III: OSS Success/Abandonment Factors

C. Data Analysis and Data Interpretation

This section aims to answer the questions Q1, Q2, and Q3

from Section III-A2. Figure 3 shows data related to the four

tracking issues, and whether the data related to those issues

was collected in an OSS project. For example, bugs were

collected and stored in 30,029 out of 335,562 OSS projects.

Fig. 3. Analyzing Tracking Issues

To answer the question Q2 from Section III-A2, the fol-

lowing was carried out. Figure 4 shows the SCAMPI rating of

OSS projects hosted on SourceForge.net. For example, 140

out of 1253 OSS projects failed to take corrective actions

towards fixing bugs, while 411 out of 1253 OSS projects took

corrective actions towards fixing bugs.

To answer the question Q3 from Section III-A2, the fol-

lowing was carried out. The dataset consisting of 1253 OSS

projects was categorized into four quartiles of 313 to 314

projects each. These were subsequently arranged in an ascend-

ing order of the applied factor of success, namely Number

of Downloads, Number of Developers, and Page Views, as

shown in Table III. These independent factors apply to the OSS

development process [24], and allow distinguising between

successful and abandoned OSS projects (for the majority of

those) in the SourceForge repository [25].

Next, assuming that the data collected is randomly dis-

tributed and is not normal, chi-square test [26] has been

applied to determine the effectiveness of the corrective actions

by investigating the dependency between these actions and the

success factors (specified later in Table V).

Fig. 4. Taking Corrective Actions

OSS
Quart.

Frequencies Not
achieved

Partially
achieved

Largely
archived

Fully
achieved

Totals

First Observed 19 53 128 114 314
Expected 35.08 65.41 110.51 103.00

Second Observed 42 72 103 96 313
Expected 34.97 65.20 110.16 102.67

Third Observed 31 73 112 97 313
Expected 34.97 65.20 110.16 102.67

Fourth Observed 48 63 98 104 313
Expected 34.97 65.20 110.16 102.67

Totals 140 261 441 411 1253

TABLE IV: Results of Chi-Square Test of Significance

The following conclusions can be drawn from the chi-square

test results, as shown in Table IV, at a 5% level of significance.

There is insufficient evidence to conclude that the maturity

of corrective actions towards fixing bugs, p-value > 0.05,

is dependent on the success of OSS, using the number of

downloads and the number of page views as success factors.

There is sufficient evidence to conclude that the maturity of

corrective actions towards fixing bugs, p-value < 0.05, and the

success of OSS, using the number of developers as a success

factor, is interdependent.

There is sufficient evidence to conclude that the maturity

of corrective actions towards fixing feature requests, support

requests, and patches, p-value < 0.05, are dependent on the

success of OSS, using the number of downloads, the number of

developers, and the number of page views as success factors.

310

Tracking issues Success factor Chi-Square P-Value Dependency
Bugs Number of downloads 13.938 0.125 No
Feature Requests Number of downloads 20.170 0.017 Yes
Support Requests Number of downloads 24.310 0.004 Yes
Patches Number of downloads 31.607 0.000 Yes
Bugs Number of developers 24.705 0.003 Yes
Feature Requests Number of developers 25.969 0.002 Yes
Support Requests Number of developers 35.291 0.000 Yes
Patches Number of developers 49.881 0.000 Yes
Bugs Number of page views 04.925 0.841 No
Feature Requests Number of page views 20.469 0.015 Yes
Support Requests Number of page views 29.262 0.001 Yes
Patches Number of page views 43.866 0.000 Yes

TABLE V: Results of Chi-Square Test of Significance

IV. SUPPORT FOR OSS-TPA

The results of the previous section are supported by an-

other empirical study [27]. In this study, six major OSS are

studied to set up a reliability model using the general Weibull

distribution. It is shown that widely-used measures, such as

page views and downloads, are not highly correlated with the

monthly bug arrival rate.

The results of the previous section also confirm the ob-

servations made in a study that has been applied on two

major OSS projects, namely the Apache Web server and the

Mozilla Firefox Web browser [28], namely that most bugs

were reported by a relatively small developer community and

not end-users. This signifies that, for most OSS projects, the

number of bugs is not highly dependent on the number of page

views or on the number of downloads.

V. DIRECTIONS FOR FUTURE RESEARCH

The work presented in this paper can be extended in a few

different directions.

For example, the OSS-TPA framework can benefit from the

support of further empirical studies. In particular, investigating

the maturity of the OSS test processes in repositories other

than SourceForge.net and/or with different process areas of

the TMMi framework, is of research interest.

The list of success factors for OSS projects stated in this

paper is not fixed, and can evolve. Indeed, other success factors

might result in a different perspective on the OSS test process,

and thereby constitutes another possible avenue of research

interest.

VI. CONCLUSION

The growing number of competing software systems pose

a challenge for their prospective adopters, and OSS are no

different. The visibility of steps taken towards assuring the

quality of an OSS is one of the most important factors towards

its selection as a potential candidate.

This paper builds a foundation for evaluating and improving

the OSS test process. In doing so, it presents a practical,

customizable, and extensible framework, namely OSS-TPA,

for understanding the management of corrective actions to

closure in OSS.

The OSS-TPA framework supports the evaluation of a

number of activities inherent in OSS test process, such as

analyzing tracking issues, taking corrective actions, and man-

aging corrective actions to closure, as shown by an empirical

study presented in this paper. Using variations of GQM, the

OSS-TPA framework can be customized to analyze the OSS

test process in different contexts. Finally, OSS-TPA can be

extended and applied to different maturity levels and relevant

process areas of the TMMi framework.

VII. ACKNOWLEDGMENT

The authors would like to thank Olga Ormandjieva for

discussions and comments on an earlier version of the paper.

REFERENCES

[1] S. Morasca, D. Taibi, and D. Tosi, “Towards Certifying the
Testing Process of Open-source Software: New challenges or Old
Methodologies?” in The 31st International Conference on Software
Engineering (ICSE09) - The 2nd Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development
(FLOSS09). Vancouver, Canada: IEEE, 2009, pp. 25–30.

[2] O. Taipale, K. Smolander, and H. Kalviainen, “Finding and Ranking
Research Directions for Software Testing,” in Software Process Im-
provement, ser. Lecture Notes in Computer Science, I. Richardson,
P. Abrahamsson, and R. Messnarz, Eds. Springer-Verlag Berlin
Heidelberg, 2005, vol. 3792, pp. 39–48.

[3] E. van Veenendaal and J. Jaap, “Testing Maturity - Where Are We Today:
Results of the first TMMi benchmark,” Testing Experience, vol. 3, no. 3,
pp. 72–74, 2012.

[4] T. Abdou, P. Grogono, and P. Kamthan, “A Conceptual Framework for
Open Source Software Test Process,” in The 36th Annual Computer
Software and Applications Conference (COMPSAC12) - The 4th IEEE
International Workshop on Software Test Automation (STA12). Izmir,
Turkey: IEEE, 2012, pp. 458–463.

[5] R. S. Kenett and E. R. Baker, Software Process Quality: Management
and Control. Marcel Dekker, 1999.

[6] R. Swinkels, “A Comparison of TMM and Other Test Process Improve-
ment Models.” Technical Report, Frits Philips Institute, Technische
Universiteit Eindhoven, Netherlands, 2000.

[7] M. Rasking, “Experiences Developing TMMi as a Public Model,” in
Communications in Computer and Information Science, ser. Communi-
cations in Computer and Information Science, R. V. O’Connor, T. Rout,
F. McCaffery, and A. Dorling, Eds. Springer-Verlag Berlin Heidelberg,
2011, vol. 155, pp. 190–193.

[8] International Organization For Standardization, “ISO/IEC WD 29119-
2:2010 - Software and Systems Engineering - Software Testing - Test
Process,” 2010.

[9] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Using In-Process
Testing Metrics to Estimate Post-Release Field Quality,” in The 18th
IEEE International Symposium on Software Reliability (ISSRE07).
Trollhattan, Sweden: IEEE, 2007, pp. 209–214.

311

[10] I. Burnstein, Practical Software Testing: A Process-oriented Approach.
Springer New York, 2003.

[11] D. Taibi, L. Lavazza, and S. Morasca, “OpenBQR: A Framework for
the Assessment of OSS,” in Open Source Development, Adoption and
Innovation, ser. IFIP The International Federation for Information
Processing, J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti, Eds.
Springer Boston, 2007, vol. 234, pp. 173–186.

[12] J.-C. Deprez and S. Alexandre, “Comparing Assessment Methodologies
for Free/Open Source Software: OpenBRR and QSOS,” in Product-
Focused Software Process Improvement, ser. Lecture Notes in Computer
Science, A. Jedlitschka and O. Salo, Eds. Springer-Verlag Berlin
Heidelberg, 2008, vol. 5089, pp. 189–203.

[13] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The
SQO-OSS Quality Model: Measurement Based Open Source Software
Evaluation,” in Open Source Development, Communities and Quality,
ser. IFIP International Federation for Information Processing, B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi, Eds. Springer
Boston, 2008, vol. 275, pp. 237–248.

[14] C. Ardagna, E. Damiani, and F. Frati, “FOCSE: An OWA-based
Evaluation Framework for OS Adoption in Critical Environments,” in
Open Source Development, Adoption and Innovation, ser. IFIP
International Federation for Information Processing, J. Feller,
B. Fitzgerald, W. Scacchi, and A. Sillitti, Eds. Springer Boston, 2007,
vol. 234, pp. 3–16.

[15] M. Michlmayr, “Software Process Maturity and the Success of Free
Software Projects,” in Software Engineering: Evolution and Emerging
Technologies, K. Zieliski and T. Szmuc, Eds. IOS Press Amsterdam,
The Netherlands, 2005, pp. 3–14.

[16] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas, V. Vlachos, and
D. Spinellis, “Software Quality Assessment of Open Source Software,”
in The 11th Panhellenic Conference on Informatics (PCI07), Patras,
Greece, 2007, pp. 303–315.

[17] M. Cabano, C. Monti, and G. Piancastelli, “Context-Dependent
Evaluation Methodology for Open Source Software,” in Open Source
Development, Adoption and Innovation, ser. IFIP The International
Federation for Information Processing, J. Feller, B. Fitzgerald,
W. Scacchi, and A. Sillitti, Eds. Springer New York, 2007, vol. 234,
pp. 301–306.

[18] Y. Wang and G. A. King, Software Engineering Processes: Principles
and Applications. CRC Press, 2000.

[19] V. Basili, G. Caldiera, and D. H. Rombach, “The Goal Question Metric
Approach,” in Encyclopedia of Software Engineering, J. Marciniak, Ed.
Wiley, 1994.

[20] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, and R. Murphy,
“An Exploratory Study of Why Organizations Do Not Adopt CMMI,”
Journal of Systems and Software, vol. 80, no. 6, pp. 883–895, 2007.

[21] G. Madey, “The SourceForge Research Data Archive, SRDA, University
of Notre Dame,” 2010.

[22] International Organization For Standardization, “ISO/IEC 15939:2007-
Systems and Software Engineering - Measurement Process,” 2007.

[23] H. V. Loon, Process Assessment and ISO/IEC 15504: A Reference
Book. Springer New York, 2007.

[24] K. Crowston, H. Annabi, J. Howison, and C. Masango, “Towards
a Portfolio of FLOSS Project Success Measures,” in The 26th
International Conference on Software Engineering (ICSE04) -
Collaboration, Conflict and Control: The 4th Workshop on Open
Source Software Engineering, 2004, pp. 29–33.

[25] C. M. Schweik, R. C. English, and S. Haire, “Factors Leading to Success
or Abandonment of Open Source Commons: An Empirical Analysis of
Sourceforge.net Projects,” South African Computer Journal, vol. 43, pp.
58–65, 2009.

[26] R. R. Johnson and P. J. Kuby, Elementary Statistics. Brooks/Cole,
2007.

[27] Y. Zhou and J. Davis, “Open Source Software Reliability Model: An
Empirical Approach,” The 27th International Conference on Software
Engineering (ICSE05) - Open Source Application Spaces: The 5th
Workshop on Open Source Software Engineering, vol. 30, no. 4, pp.
1–6, 2005.

[28] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla,” The ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309–346, 2002.

312

Comparing Collaborative Filtering Methods Based on User-Topic Ratings

Tieke He, Xingzhong Du, Weiqing Wang, Zhenyu Chen, Jia Liu∗

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
Software Institute, Nanjing University, Nanjing, China

∗liujia@software.nju.edu.cn

Abstract

User based collaborative filtering (CF) has been suc-
cessfully applied into recommender system for years. The
main idea of user based CF is to discover communities
of users sharing similar interests. However, existing user
based CF methods may be inaccurate due to the problem
of data sparsity. One possible way to improve it is to ap-
pend new data sources into user based CF. Tags which are
added and generated by users is one of the new sources. In
order to utilize tags effectively, user-topic based CF is pro-
posed to extract features behind tags, assign them to topics,
and measure users’ preferences on these topics. In this pa-
per, we conduct comparisons between two user-topic based
CF methods based on different tag-topic relations. Both
methods calculate user-topic preferences according to rat-
ings of items and topic weights. Experiments are conducted
on the data set of MovieLens. The results show that user-
topic based CF method is better than user based CF both in
computational efficiency and recommendation effect. The
effects are significant especially when each tag belongs to
multiple topics.

Keywords: Recommender Systems, Collaborative
Filtering, Topic Model, Tag

1. Introduction

Recommender systems [1] play an important role in E-

commerce. Amazon1, one of the most famous online re-

tailers, recommends products to customers. And Netflix2,

one of the biggest online movie renting service providers,

recommends movies to users. As one of the most impor-

tant parts, recommendation algorithms have also achieved

noticeable progresses.

Collaborative filtering (CF) [14] is one of the most com-

mon approaches of recommender systems. The main idea

1http://www.amazon.com
2http://www.netflix.com

of CF is that similar users may share similar user preference

patterns [6]. In CF method, user preference is represented

by a vector, in which each entry indicates user’s rating on

a specific item. Similarities between users could be defined

by the distances between user rating vectors. Such similar-

ities could be inaccurate due to the data sparsity problem.

And the rapid growth of the amount of items may lead to

low computational efficiency.

With the rapid development of Web2.0 techniques, so-

cial annotation systems are showing their effects both for

users and recommender systems. Researchers have intro-

duced many approaches on using tags in recommender sys-

tems [10, 8]. Certain tags are always related to a group of

relatively limited topics, and are related to item features.

Such as a movie about intelligent robots may relate to top-

ics on science fiction or high technology. Based on these

facts, we assume that a user likes some topics before he or

she likes some certain items. How much a user likes an item

could be measured by the related tag ratings and the corre-

lation of the topic and the item. Based on this assumption,

user-topic ratings could enhance CF method.

In user-topic approach, each item is treated as a docu-

ment, and collection of items as corpus. Tags are regraded

as the words for the documents. There are different ways to

improve CF by user-topic ratings: one tag to one topic – hi-

erarchical clustering and one tag to multiple topics – Latent

Dirichlet Allocation (LDA) [2, 16].

LDA could discover topics of items. It generates a series

of analysis results including document-topic proportions,

topic-words proportions and so on. LDA could regard the

document-topic proportions as the correlations of topics and

movies. With these data, user-topic ratings are inferred, and

then user similarity could be computed.

In this paper, we conduct experiments on two different

user-topic based CF, and compare them to user-based CF.

The sparsity of data set is controlled carefully, and results

are evaluated by classical metrics. Results show that keep-

ing other factors unchanged, either user-topic based CF is

better than user-based CF. In these two user-topic based CF

methods, LDA could improve CF better.

313

The main contributions of this article are summarized as

follows.

1. Based on inferred tag ratings, we choose two differ-

ent topic model – hierarchical clustering and LDA to

implement two different user-topic based CF.

2. We compare user-topic based CF to user based CF, and

show the effectiveness of user-topic based CF. We also

illustrate that LDA is better than hierarchical clustering

in user-topic based CF.

This paper is organized as follows. Section 2 gives

a brief introduction to user-based collaborative filtering

method. Section 3 introduces two methods to do topic ex-

traction, tag clustering and LDA model. Section 4 shows

our experiments and the analysis of experimental results. A

conclusion of our work is showed in Section 5.

2. User-Based Collaborative Filtering

Collaborative filtering (CF) has been widely used in

business situations. CF methods consist of User-Based CF,

Item-Based CF and other variations. The main idea of User-

Based CF is that similar users may share similar prefer-

ences. It calls for calculating similarities between users

by their ratings on items. A higher similarity between two

users means they are much more similar.

Given user list U = {u1, u2, . . . , un} and item list

{i1, i2, . . . , im}, a user u can be represented by his rat-

ing vector ru = (ru,1, ru,2, . . . , ru,m). ru,i(i ∈ (1,m))
stands for user u’s rating on the ith item. The similarity be-

tween user u and v can be measured by the distance between

ru and rv , known as the Pearson’s Correlation Coefficient.

Equation 1, which states the similarity between user u and

user v, denotes the computation of Pearson’s Correlation

Coefficient.

simu,v =

∑
g∈G

(ru,g − ru,G)(rv,g − rv,G)√ ∑
g∈G

(ru,g − ru,G)2
√ ∑

g∈G

(rv,g − rv,G)2
(1)

To note the items rated by both of u and v (known as

the co-rated items), G is used to stand for the set of co-

rated items of u and v. ru,G and rv,G represents u’s and

v’s average rating of G. A user may have personal bias on

rating, which means a user may always tend to give high or

low ratings. To alleviate this situation, each user’s average

rating is subtracted from his or her ratings.

pred(u, i) = ru,G +

∑
v∈Nsim

simu,v · (rv,i − rv,G)∑
v∈Nsim

|simu,v| (2)

Equation 2 demonstrates how to predict a user u′s rating

on an item i. When user u’s rating ru,i on an item i is

predicted, only a set of similar users to user u which are

denoted by Nsim are taken into prediction. Items can be

recommended to user u, if their predicting ratings are higher

than user u’s average rating.

However, there always exist a lot of items which user

u has rated but v has not, or vice verse. This could lead to

inaccuracy due to too few co-rated items. A new user has no

co-rated items with other users which makes it even worse.

3. User-Topic Based Collaborative Filtering

User-topic based CF is an improvement to the user-based

CF method. Instead of using the sparse user-item ratings,

we use inferred user-topic ratings to compute user similar-

ity. Traditional prediction methods are used to generate rec-

ommendations for users. This section presents a detailed

explanation of user-topic based CF.

3.1. Topic Extraction

The basic motivation behind user-topic based CF is to

measure to what extent a user likes a specific topic. The

most important is to extract the abstract topics, also known

as latent semantics inside the items. Social annotation sys-

tems provide a chance. In social annotation systems, users

use tags to express their personal viewpoints on items. This

makes it possible for us to extract topics from these tags.

There are two methods to carry out this work – tag clus-

tering and topic models. More specifically, hierarchy clus-

tering [13] and the Latent Dirichlet Allocation (LDA) model

[2]. Both methods are state-of-art algorithms. This section

gives the process and formulation of these two methods, in-

cluding mathematical notations.

3.2. Hierarchical Clustering on Tags

Hierarchical Clustering is a simple while useful cluster-

ing algorithm [13, 15]. In detail, there are two main types of

Hierarchical Clustering which are top-down approach and

bottom-up approach. We adopt the bottom-up approach in

this paper. Given a set of tags T = {t1, t2, . . . , tn}, ti de-

notes a certain tag. At first, each tag is placed in a single

topic, so the initial set of clusters is

C = {c1 = {t1}, c2 = {t2}, . . . , cn = {tn}}

In each iteration, two nearest clusters are picked out and

aggregated together. So the distance between two clusters

should be defined. In this paper, the distance between clus-

ters is computed by tags. [3] proposed a method named co-

occurrence probability. A tag z is denoted as an vector pz ,

314

which stands for its co-occurrence probabilities distribution.

Co-occurrence probability pz(t) means the probability that

tag t is tagged if tag z is tagged on one item. It is defined in

Equation 3.

pz(t) =
∑
m∈I

q(t|m)Q(m|z) (3)

q(t|m) =
number of times tag t on item m

overall number of tags on item m
(4)

Q(m|z) = number of times tag z on item m

number of times tag z on all items
(5)

z′s co-occurrence probabilities can be expressed in a

vector pz and its feature is described in Equation 6.

n∑
t=1

pz(t) = 1 (6)

Since tags could be represented as co-occurrence proba-

bility distribution, the distance between tags could be com-

puted by Jensen-Shannon divergence (JSD). A correct JSD

result is a finite value ranging from zero to one. Equation 7

is the computation of JSD.

JSD(A||B) =
1

2
D(A||M) +

1

2
D(B||M) (7)

M =
1

2
(A+B) (8)

D(A||B) =

n∑
i=1

A(i) ln
A(i)

B(i)
(9)

A and B are the co-occurrence distributions of two tags.

n is the dimension of A or B. In Equation 9, if A(i) and

B(i) are both 0 then we define
A(i)
B(i) as 1. We now can

define the distance between clusters based on the distance

between tags. Given cluster ci and cj with Ni and Nj tags

respectively. The distance between ci and cj is defined in

Equation 10.

Dis(ci, cj) =

∑
t1∈ci

∑
t2∈cj

JSD(t1||t2)

Ni ∗Nj
(10)

A set of clusters are generated after all the iterations ac-

complished. Next step is to compute each topic’s weight on

each item. Equation 11 describes the computation of tag z’s

weight on item m. Equation 12 describes the computation

of topic c’s weight on item m.

wm(t) =

∑
z∈Tm

n(m, z) ∗ pz(t)∑
z∈Tm

n(m, z)
(11)

wm(c) =
∑
t∈c

wm(t) (12)

In Equation 11, Tm stands for all tags applied to item m,

and n(m, z) denotes the times that tag z has been tagged

on item m. In Equation 12, topic weight is the sum of all

included tag weights.

3.3. Latent Dirichlet Allocation

This section introduces how to get the item-topic weights

by topic model. Topic models have been widely used in

many areas, especially in the area of NLP (Natural Lan-

guage Processing). [4] proposed the Latent Semantic Index

(LSI). They used the SVD method to do dimension reduc-

tion. Actually, LSI is not a style of topic model but the

basis of probabilistic latent semantic analysis(pLSI). pLSI

[7] does similar work with LSI, but pLSI is a generative

probability model.

Latent Dirichlet Allocation (LDA) is a popular topic

model. It performs well in many research works. In LDA,

each document is drawn from a distribution over a specific

group of topics, and these topics are shared by all the doc-

uments in the corpus. Each topic is a distribution over a

vocabulary which contains all the unique words in the cor-

pus. Given a set of items as a corpus, each item in the set as

a document and tags of the items as words, it is natural to

use the LDA model in our scenario. A basic assumption for

the LDA model is “bag-of-words”, which means the order

of a certain document’s words can be neglected. So the tags

are disordered in our scenario.

Original LDA is proposed by Blei based on the EM al-

gorithm. [5, 9] proposed a simple parameters estimation

method called the Gibbs Sampling. And [11] proposed

an implementation of the above method. It is applied in

our experiment for its usability. Although the LDA model

can infer both document-topic distribution and topic-word

distribution at the same time, the former is essential for

the following computation. The LDA model assumes that

document-topic distribution is drawn from a Dirichlet Dis-

tribution. The sum of all topic probabilities in a certain doc-

ument is 1 according to the definition of the Dirichlet Dis-

tribution. With this definition, it is unnecessary to normal-

ize the item-topic probabilities, they can be directly used as

item-topic weights.

In this paper, an implementation of LDA – GibbsLDA++

is applied. The input of the GibbsLDA++ is the corpus in

a text format, including each tag’s count in each item. It

also needs several input parameters: the number of topics,

hyper-parameter alpha and beta. We find that 100 is an

appropriate number of topics according to the experimen-

tal results, and alpha and beta are set as default value of
50

count of topics and 0.1 respectively. 2000 Gibbs Sampling

iterations were conducted. After that, GibbsLDA++ gives

315

the document-topic proportions and they could be trans-

formed into item-topic weights.

3.4. Inferred user-topic Ratings

Item-topic weights could be generated from the above

methods . Next step is to infer the user-topic ratings, which

is the foundation of user similarity computation. Each item

relates to the universal set of topics, but it has some out-

standing topics or known as high-weighted topics. If a user

rates high for an item means that he or she likes that item, he

would prefer higher-weighted topics to lower-weighted top-

ics of that item, which indicates that the user is attracted by

the item’s outstanding topics with a high probability. There-

fore, inferring user u′s rating on topic t could be calculated

by equation 13.

ru(t) =

∑
m∈Iu

w(m, t) ∗ ru,m∑
m∈Iu

w(m, t)
(13)

Iu stands for all the items that user u has rated. w(m, t)
denotes the weight of tag t on item m. ru,m represents u’s

rating on m. The user-topic ratings are denser than user-

item ratings, and applying user-topic ratings can well im-

prove recommendation accuracy. Finally, a vector ru is gen-

erated for each user to express his ratings on topics, which

will be used in the following steps.

3.5. Generate Recommendation

After the preivous steps, each user is denoted by a rat-

ing vector ru consisting of his user-topic ratings. In our

experiments we use the Pearson Correlation Coefficient to

compute user similarity. A modified edition is denoted in

Equation 14. Then Equation 15 is used to predict user rat-

ings on movies.

simu,v =

∑
t∈T

(ru,t − ru)(rv,t − rv)√∑
t∈T

(ru,t − ru)2
∑
t∈T

(rv,t − rv)2
(14)

predu,m = ru +

∑
v∈Um

simu,v · (rv,m − rv)∑
v∈Um

|simu,v| (15)

Each user u has a vector v which denotes his ratings on

topics. In practical, user u has ratings on all topics. In Equa-

tion 14, T stands for the set of all the topics. ru,t is u’s rat-

ing on topic t, while rv,t is for user v. The average ratings

of u and v on topics are denoted by ru and rv . In Equation

15, Um denotes the set of all the users that have rated item

m.

After getting the predicted ratings for u, it is easy to gen-

erate a recommendation list for u. By sorting the predicted

ratings and choosing k highest ratings, we can recommend

top k items to u.

4. Experimental Evaluation

4.1. Evaluation Metric

In this paper, we choose MAE(Mean Absolute Error)

and RMSE(Root Mean Squared Error) to evaluate the ex-

periments. These two metrics are often used to evaluate rec-

ommendation accuracy, especially for those recommender

systems which produce predicted ratings. They reveal the

average errors between real ratings and predicted ratings.

Equation 16 describes MAE’s computation, and Equation

17 describes RMSE’s.

MAE =

Npr∑
i=1

|ri − r̂i|
Npr

(16)

RMSE =

√√√√√
Npr∑
i=1

(ri − r̂i)2

Npr − 1
(17)

In Equation 16 and 17, Npr stands for the count of pre-

dicted ratings. ri and r̂i are real rating and predicted rating.

Given the same recommendation results, RMSE will always

be larger than or equal to the MAE. And the difference be-

tween them reflects the variance of the individual errors in

the recommendation results. In both metrics, a low value

means a high accuracy.

Table 1. Final Data Sets
T(r) n(u) n(r)

T(t):[15,∞)

n(m)=484

n(t)=1154

[75,79) 826 64022

[100,105) 749 77138

[155,165) 624 99985

[215,240) 595 134916

[280,∞) 543 174350

4.2. Data Set and Preprocessing

We choose the MovieLens data set which contains

both the user-movie ratings and tags. This data set con-

tains 10,000,054 ratings and 95,580 tags applied to 10,681

movies by 71,567 users of the online movie recommender

service MovieLens.

The original data set contains too many noisy records

which will interfere the experimental results. In that case,

316

Table 2. Experimental Results
T(t) [15,∞)

T(r) [75,79) [100,105) [155,165) [215,240) [280,300)

Sparsity 0.90 0.85 0.73 0.59 0.40

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CF 0.6672 0.7512 0.6402 0.7010 0.5947 0.6227 0.5809 0.5933 0.5734 0.5734

TC 0.6485 0.7153 0.6344 0.6883 0.5967 0.6235 0.5834 0.5989 0.5756 0.5769

LDA 0.6441 0.7068 0.6284 0.6762 0.5923 0.6134 0.5776 0.5877 0.5701 0.5667

we adopt certain rules to filter the noises. We will discuss it

in the following paragraphs. After preprocessing, we divide

the data set into samller parts by sparsity. This allows us to

compare these state-of-art algorithms in different sparsity.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

Sparsity

M
A

E

LDA
Clustering
CF

Figure 1. Comparisons in terms of MAE

We can divide tags into various kinds. Some of them

express user personal preference, such as amazing, wonder-

ful or nice. Other express item features, such as red, cubic

and so on. Tags that used by users to express their likes or

dislikes on movies are useless and will influence the exper-

imental results. Therefore, we have to remove this kind of

tags.

[12] proposed a method to do this job. The idea of their

method is that tags expressing user preference can be di-

vided into two types, the like tags and the dislike tags. If

a user u gives a rating higher than his average rating on a

movie m, then we say that movie m is a like movie for user

u. We can use the same way to define dislike movies for

users. So if a tag t only occurs in like movies, tag t is a like

tag. Now we can remove this kind of tags. We also need to

remove unpopular tags. Therefore, these tags used by less

than 2 users or have been assigned to less than 5 movies are

removed.

In order to compare experimental results under different

data sparsity, we have set several thresholds for count of

ratings and tags. Finally we got 10 different sub data sets.

Full description of each sub data set is shown in Table 1.

In Table 1, T (t) means count of each movie’s tags ranges

in that interval. T (r) means the amount of each user’s rat-

ings ranges in that interval. n(m) denotes the amount of

movies, while n(t) denotes the amount of tags. n(u) and

n(r) stand for the amount of users and the amount of rat-

ings respectively.

4.3. Experimental Results and Analysis

After preprocessing, we finally get ten data sets. Each

data set will be divided into two parts, the training set and

the test set. For each user, we randomly select 30 ratings to

construct the test set. And the remaining part is the training

set. For each data set we have tried all the three methods –

CF method, tag clustering and LDA. We also compare the

experimental results in MAE and RMSE.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Sparsity

R
M

SE

LDA
Clustering
CF

Figure 2. Comparisons in terms of RMSE

In Table 2, the computation of Sparsity S of the training

set is denoted by Equation 18.

S = 1− Count(Ratings)

Count(Users) · Count(Movies)
(18)

Figure 1 and 2 reveal that the LDA method always per-

forms better than CF method and tag clustering method.

But when the ratings become denser, its advantage over CF

method won’t be obvious. Actually this is a phenomenon

that could be explained – CF method suffers from data spar-

sity problem, but CF method could produce more accurate

recommendation results with denser ratings. The tag clus-

tering method only performs better than CF method with

sparse ratings.

317

Overall these two figures suggest that user-topic based

CF method are better than user based CF method. In user-

topic based CF, LDA is better than tag clustering. It is be-

cause a tag is assigned to multiple topics in LDA, but is

assigned to only one topic in tag clustering. In practice, a

tag could carry different meanings in different perspectives.

LDA extracts each topic from the distributions over the set

of tags, so its implementation is closer to reality.

Nevertheless, when ratings become denser, the dimen-

sion of user ratings vector increases. CF method becomes

inefficient due to computation complexity of user similar-

ity. But the LDA method will still be effective if the amount

of topics is defined. From the perspective of recommen-

dation effect and computation efficiency, LDA outperforms

the other two methods.

5. Conclusions

This paper presents comparisons between user-based and

user-topic based CF along with different sparsity. We use

tag clustering and the LDA model to do topic extraction

from items, then we compute user preferences on the la-

tent topics. As we did in user-based collaborative filtering,

we predict user ratings by user-topic preferences.

The results show that, when ratings are relatively sparse,

LDA model performs much better than user-based CF

method. When ratings become relatively denser, LDA

model still outperforms CF method and achieves better ef-

ficiency. We believe that each tag belonging to multiple

topics makes the user-topic based CF more accurate.

There still exist some insufficiency in our experiments.

Such as tags which represent users’ preference are directly

removed from the data set or the LDA model can also be

used to model users. We will try to relieve these issues in

the future.

6. Acknowledgments

The work described in this article was partially sup-

ported by the National Natural Science Foundation of China

(11171148, 61003024, 61170067).

References

[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of

the state-of-the-art and possible extensions. TKDE,

17(6):734–749, 2005.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet

allocation. JMLR, 3:993–1022, 2003.

[3] W. Christian, B. Rogier, and W. Martin. Using tag

co-occurrence for recommendation. In ISDA, pages

273–278, 2009.

[4] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Lan-

dauer, and R. Harshman. Indexing by latent semantic

analysis. JASIS, 41:391–407, 1990.

[5] T. Griffiths. Gibbs sampling in the generative model of

latent dirichlet allocation. Technical report, Stanford

University, 2002.

[6] S. Hoeffler and D. Ariely. Constructing stable prefer-

ences: A look into dimensions of experience and their

impact on preference stability. Journal Of Consumer
Psychology, 8:113–139, 1999.

[7] T. Hofmann. Probabilistic latent semantic indexing.

In SIGIR, pages 50–57, 1999.

[8] R. Krestel and P. Fankhauser. Language models and

topic models for personalizing tag recommendation.

In Web Intelligence, pages 82–89, 2010.

[9] G. T. L. and S. Mark. Finding scientific topics. PNAS,

101(Suppl 1):5228–5235, 2004.

[10] A. K. Milicevic, A. Nanopoulos, and M. Ivanovic. So-

cial tagging in recommender systems: a survey of the

state-of-the-art and possible extensions. Artificial In-
telligence Review, 33(3):187–209, 2010.

[11] X.-H. Phan and C.-T. Nguyen. Gibbslda++: A c/c++

implementation of latent dirichlet allocation (lda).

Technical report, 2007.

[12] Q. Qi, Z. Chen, J. Liu, C. Hui, and Q. Wu. Using in-

ferred tag ratings to improve user-based collaborative

filtering. In SAC, pages 2008–2013, 2012.

[13] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke.

Personalized recommendation in social tagging sys-

tems using hierarchical clustering. In Recsys, pages

259–266, 2008.

[14] X. Su and T. M. Khoshgoftaar. A survey of collabora-

tive filtering techniques. Advances in Artificial Intelli-
gence, 2009:1–20, 2009.

[15] W. Wang, Z. Chen, J. Liu, Q. Qi, and Z. Zhao. User-

based collaborative filtering on cross domain by tag

transfer learning. In Proceedings of the 1st Interna-
tional Workshop on Cross Domain Knowledge Discov-
ery in Web and Social Network Mining, pages 10–17,

2012.

[16] S. Xiance and S. Maosong. Tag-lda for scalable real-

time tag recommendation. JCIS, 6(1):23–31, 2009.

318

ABEY: an Incremental Personalized Method Based on Attribute Entropy for
Recommender Systems

Xingzhong Du, Tieke He, Zhenyu Chen, Jia Liu∗, Chengfeng Hui
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Software Institute, Nanjing University, Nanjing, China
∗liujia@software.nju.edu.cn

Abstract

Recording attribute frequencies and calculating user
preferences on attributes are generally used in current per-
sonalized method – user profile for recommender system. In
this paper, we propose a new personalized method, namely
ABEY, to do the personalization in another way. ABEY first-
ly uses attribute entropies to calculates user preferences on
attribute classes. ABEY refines these preferences by wip-
ing off some interferences, and allocates a group of such
preferences for each user at the end of measurement. ABEY
could re-rank given recommendations, according to aggre-
gate attribute class preferences for them. Experiments are
conducted on data sets collected from an E-commerce site
in real world. The effectiveness of ABEY, including accura-
cy, coverage and novelty, has been evaluated and the result-
s indicate that ABEY can be a superior alternative to user
profile on finding related items for individuals.

Keywords: Personalized Method, User Profile, User
Preference, Attribute Entropy, Recommender Systems

1. Introduction

User profile, built by the content-based filtering, contain-

s item attributes and user preferences. It could personalize

recommendations for individuals [6]. As a consequence,

user profile has been widely incorporated with other recom-

mending methods in recommender systems. In particular, it

is often combined with collaborative filtering (CF), which

provides accurate recommendations by calculating similar

users or items [1, 10, 2, 4, 3, 5], to help CF obtain more

personalized results.

Nonetheless, some new attributes belonging to recom-

mended items are not included in individual user profile

[8, 7]. In this situation, the measurement of user prefer-

ences is incomplete, which causes a invalidation in person-

alized recommending. For an instance, if a user has not met

any item of black color, the user profile could not reflect

his or her preference on black. When some black items are

recommended to the user, they would be filtered by the user

profile. To accommodate this situation, an available way is

to find substitutes for these unknown preferences.

In this paper, we propose a new personalized method

ABEY, which measures user preferences on attribute class-

es by attribute entropies. ABEY transforms the attribute

entropies into user preferences after wiping off the interfer-

ences of global attribute entropies. It allocates a group of

such preferences for each user. ABEY could be incremen-

tally implemented on the existing recommender systems.

It calculates user preferences for recommendations and re-

ranks the results by considering their original rankings and

preferences simultaneously.

The main contributions of this article are summarized as

follows.

1. We firstly introduce attribute entropy to measure user

preferences on attribute classes. It is believed to have

a positive impact on personalized recommending.

2. We propose a new personalized method based on At-

triBute EntropY (ABEY). ABEY is implemented as an

increment to CF, which operates similarly as user pro-

file. Therefore, it could improve the performance of

CF on finding related items for individuals without any

changes to original algorithm.

The rest of the paper is organized as follows: It begins

with introducing the details of ABEY in Section 2. Experi-

ments and their results are illustrated in Section 3. Finally,

Section 4 concludes our work.

2. ABEY Method

Similar to user profile, ABEY calls for the attributes of

all items collected and classified before user preferences

on attribute classes are calculated. With these detailed at-

tribute information, a user’s browsed item attributes could

319

be aligned by attribute classes as the example in Table 1.

For each attribute class, attributes and their frequencies con-

Table 1. A user’s item browsing history
aligned by attribute classes

Browsing history

Item Brand Color Price

item1 A red $3

item2 B blue $2

item3 C green $20

item4 D yellow $10

..
.

..
.

..
.

..
.

struct an attribute distribution. Then the attribute entropies

are derived from these distributions, which is calculated by

Equation 1. In Equation 1, e is the entropy of the specific

attribute class, n is the number of different attributes in this

class, fj is the jth attribute’s occurrence, ft is the sum of all

the occurrences. ABEY connects attribute entropies and us-

er preferences on attribute classes in this way: low attribute

entropies means high user preferences on attribute classes

and vice versa.

e = −
n∑

j=1

fj
ft
log

fj
ft

(ft =

n∑
j=1

fj) (1)

ABEY calculates a group of attribute entropies for a user ac-

cording to the amount of attribute classes after calculation.

Nevertheless, these attribute entropies are limited to reflect

user preferences on attribute classes to some extent. This is

because users are regarded free on attribute choosing while

they are influenced by external factors actually. For an ex-

treme example in Table 2, if all the items are of the same

color, the user preference on color is 0 without exception.

In this situation, user attribute entropy is forced to be low

by the offered monotonous attributes.

Table 2. Global attribute diversity will influ-
ence user entropy of colors

Item attributes

Items Brand Color Price

item1 A red $3

item2 B red $2

item3 C red $20

item4 D red $10

..
.

..
.

..
.

..
.

A user who has already visited A, B, C

Entropy of color 0

Thus, user preferences on attribute classes are also influ-

enced by the attributes the web sites offered, which we call

it global attribute diversity. The global attribute diversity

could be measured by Equation 1 as well. Such entropy is

called as global attribute entropy, and a high global attribute

diversity means a high entropy.

ABEY applies the global attribute entropy into the calcu-

lation of preference. It uses the differences between global

entropies and user entropies to represent user preferences on

attribute classes finally. The final preferences are calculated

by Equation 2, in which d is the difference, E is the glob-

al entropy, e is the user entropy, and c is an attribute class.

A high dc means the user has high preference on attribute

class c.

dc = Ec − ec (2)

Given an item g and a set of attribute classes C, ABEY

could calculate user preference for item i by Equation 3. In

Equation 3, M(i, c, g) is a variant of M(i, a). It returns 1

if i and g have the same attribute in class c, while returns 0

for other cases.

pu(i, g) =
∑
c∈C

dcM(i, c, g) (3)

3. Experiments

We conducted temporal experiments on a data set to

examine the effect of ABEY, comparing with user profile

(UP). These data were collected from an E-commerce site1.

Three metrics about accuracy, coverage and novelty were

used to evaluate the experiments respectively.

3.1. Comparisons

We set item-based CF as the base line, and compare

ABEY with user profile (UP):

CF: It is the item-based CF that was used in experiments.

It uses the co-browsing usages to compute the item-item

similarities and the most similar ones as recommendations.

Given an item, the detailed operations of item-based CF are

divided into following steps:

1. Searching a group of users who have visited this item.

2. For each user found in step 1, constructing a usage vec-

tor which includes all distinct visited items and their

usages.

3. For each distinct visited item, adding it to a recom-

mending list and counting its total amount of usages

over all usage vectors constructed in step 2.

4. Returning the recommending list ranked by items’ to-

tal amount of usages from high to low.

1To avoid business conflicts, we do not announce the URLs in this pa-

per.

320

UP: The incremental method is user profile. For each in-

dividual, recommending list is re-ranked by the preferences

calculated by user profile.

ABEY: The incremental method is ABEY, and the rec-

ommending list is re-ranked by the preferences calculated

by ABEY for individuals.

3.2. Data Set

The data set was collected from an E-commerce site

which sells eyeglasses. The data set consists of two part-

s. One is the user browsing history where each record con-

tains a timestamp, an item id and a user id. The other part is

item attribute information. It consists of the item attributes

which are shown on the item pages. The collected attribute

classes are shown in Table 3.

Table 3. The attribute classes of the glasses
Name Attribute Classes

glasses material, price, style, brand, color, gender

After the data collecting was finished, a user-item pair is

allocated the value 1 if the user had visited the item or 0 in

the contrary situation, which constructs the usage matrix in

the end. The basic information of glasses site is displayed

in Table 4.

Table 4. The basic information of the data set

Type # Users # Items

glasses 277781 3308

Those users who had visited at least 10 distinct items

were picked out to ensure that user profile could store more

user preferences. For each selected user, his or her distinct

visited items were ordered by the timestamps from early

to late. After that, the fourth latest timestamp was picked

out, and according to this timestamp these visited items are

divided into three sets:

Test set is used to test the recommending effect. It con-

tains the last three ones among the user’s distinct visited

items. We limit the size to 3, because it is enough to differ-

entiate the effects of different recommending methods.

Context set is used as the item which the user is visiting.

It contains the latest item which is browsed before test set.

Training set is used by item-based CF to generate rec-

ommendations. It contains all item visits of all users which

occur before the context set.

3.3. Evaluation Metrics

In this part, we introduce the metrics of accuracy, cover-

age and novelty, which were used in our experiments.

3.3.1 Accuracy

Accuracy describes the capacity of recommender systems

predicting users’ opinions over items or the probability of

usage. The metric of accuracy used in our experiments is

precision which has been widely applied by information re-

trieval [3, 9]. If the universal set of users is U, the size of U
is represented by —U—, as well as hitu and recu belong to

u respectively, the precision P of a recommending method

will be calculated by Equation 4.

P =

∑
u∈U |hitu|∑
u∈U |recu| (4)

The sets of hitting users – U(H), which contains the

users who are recommended the items included in their test

sets, are also collected in experiments. It reveals that how

many users are benefited from different methods.

3.3.2 Coverage

In our experiments, the catalog coverage was applied. We

divided the coverage into two aspects: one is recommending

coverage C(R), and the other one is hitting coverage C(H).
Recommending coverage is used to express the coverage of

the recommender method, while hitting coverage is a veri-

fication that the goal of increasing coverage is achieved. If

the universal set of items is I, these two kinds of coverage

to a recommender method are calculated by Equation 5.

C(R) =
|⋃u∈U recu|

|I| C(H) =
|⋃u∈U hitu|

|I| (5)

3.3.3 Novelty

Novelty is a capacity to recommend items which user may

be not aware of but will finally find on their own [5, 11].

In order to calculate an item’s novelty value, its popular-

ity value is calculated first by Equation 6 with the visited

frequency of the item v. A high popularity means a low

novelty, so an item novelty value n is calculated by Equa-

tion 7, in which popmax is the maximum popularity value

among all items.

pop =
v∑

k∈I vk
(6)

n = 1− pop

popmax
(7)

And with all items’ novelties, recommending novelty and

hitting novelty of a recommending method are calculated

by Equation 8 and 9.

N(R) =

∑
u∈U

∑
i∈recu

ni∑
u∈U |recu| (8)

N(H) =

∑
u∈U

∑
i∈hitu

ni∑
u∈U |hitu| (9)

321

3.4. Experimental Results

The results show that ABEY achieves an amazing pre-
cision of 0.0923. Its recommending and hitting coverage

are both 5% higher than others at the same time. It is also

interesting to see that UP fails to improve the amount of hit-

ting users at the moment, which leads a noticeable negative

influence (around -2%).

Table 5. Performance on glasses site. The
bold number indicates a maximum improve-
ment

Glasses Recommendation @ 5

Method N(R) C(R) P N(H) C(H) U(H)

CF 0.781 60.7% 0.082 0.837 38.5% 4889

UP 0.775 59.7% 0.080 0.834 37.5% 4809

ABEY 0.813 67.8% 0.092 0.862 45.4% 5409

3.5. Results Analysis

The results of glasses site reveal that ABEY improves

recommending effect in terms of accuracy, coverage and

novelty than UP. And since ABEY keeps a higher cover-

age and accuracy at the same time, it is also reasonable

that ABEY makes more individually preferred items rec-

ommended to users.

Overall the results suggest that, ABEY achieves higher

recommending coverage than other comparisons and con-

sequently makes the hitting coverage a rational increment,

which also occurs on novelty. What’s more, the results show

that all of these increments are not at the expense of accura-

cy. Therefore, we believe that, when recommendations are

offered on item pages, ABEY could substitute UP.

4. Conclusions

In this paper, we propose an incremental personalized

method – ABEY – to improve user profile on item pages

using attribute entropy. Based on attribute entropy, ABEY

generates users’ multiple preferences on attribute classes,

and calculates user preferences for recommendations by

them. As a result, recommendations on item pages are re-

ranked to meet what the users are concerning about.

We implemented ABEY and conducted temporal experi-

ments on data a set from a glasses site. Given item-based CF

as base line and compared to a classical incremental method

– user profile (UP), ABEY’s performances noticeably out-

perform it in most cases. As a consequence, we believe that

ABEY is useful for many application scenarios, because

item-based CF is widely used on item page recommenda-

tion in practice.

5. Acknowledgments

The work described in this article was partially support-

ed by the National Natural Science Foundation of China

(11171148, 61003024, 61170067).

References

[1] J. S. Breese, D. Heckerman, and C. M. Kadie. Empir-

ical analysis of predictive algorithms for collaborative

filtering. In AIED, pages 43–52, 1998.

[2] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explain-

ing collaborative filtering recommendations. In ACM
CSCW, pages 241–250, 2000.

[3] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and

J. Riedl. Evaluating collaborative filtering recom-

mender systems. TOIS, 22(1):5–53, 2004.

[4] G. Linden, B. Smith, and J. York. Amazon.com rec-

ommendations: Item-to-item collaborative filtering.

INTERNET, 7(1):76–80, 2003.

[5] S. M. McNee, J. Riedl, and J. A. Konsta. Being ac-

curate is not enough how accuracy metrics have hurt

recommender systems. In CHI Extended Abstracts,

pages 1097–1101, 2006.

[6] S. E. Middleton, D. D. Roure, and N. Shadbolt. Cap-

turing knowledge of user preferences: ontologies in

recommender systems. In ICKC, pages 100–107,

2001.

[7] J. Oh, S. Park, H. Yu, M. Song, and S.-T. Park. Rec-

ommendation based on personal popularity tendency.

In ICDM, pages 507–516, 2011.

[8] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Rec-
ommender Systems Handbook. Springer, 2011.

[9] B. M. Sarwar, G. Karypis, J. A. Konstan, and

J. Riedl. Analysis of recommendation algorithms for

e-commerce. In ACM EC, pages 158–167, 2000.

[10] J. B. Schafer, J. A. Konstan, and J. Riedl. Recom-

mender systems in e-commerce. In ACM EC, pages

158–166, 1999.

[11] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and

G. Lausen. Improving recommendation lists through

topic diversification. In WWW, pages 22–32, 2005.

322

STERS: A System for Service Trustworthiness Evaluation and
Recommendation based on the Trust Network

Yasha Wang1,2,3, Jiangtao Wang1,2, Yuxing Teng1,2, Junfeng Zhao1,2,3
1 School of Electronics Engineering and Computer Science, Peking University, Beijing 10087, China

2 National Engineering Research Center of Software Engineering, Peking University, China
3 Beijing Beida Software Engineering Development Co., Ltd., China

{wangys, wangjt10, yxteng, zhaojf}@sei.pku.edu.cn

Abstract—Along with the rapid development of the Internet,
more and more web services can be found and used. However,
service trustworthiness is one of the most critical factors to keep
the confidence of users in using them. In this paper, we propose a
novel approach to evaluate the trustworthiness of web services
using the Trust Network and give a mechanism for service
recommendation in consideration of the users’ different
preference and perspectives. We adopt the Trust Network to
estimate the important degree of subjective evidence from
different resources and filter the false or malicious evidence.
Then we calculate the trustworthiness of web services according
to both of subjective and objective evidence. In addition to this,
we put forward a preference template to recommend the proper
service to the users according to the users’ requirements. Finally,
we develop a system called STERS to evaluate the service
trustworthiness and recommend the service. Experiments
conducted on a large-scale real-world dataset show that our
method can effectively evaluate the trustworthiness of web
services, which helps users to select and use them.

Keywords-Web Service trustworthiness; Trust Network; QoS

I. INTRODUCTION
Along with the rapid development of the Internet, abundant

web services can be found and used. However, since most web
services are provided and/or hosted over the unreliable Internet,
a question arises that how to select web services to keep the
users’ satisfaction and confidence of the application in which
the web services are invoked? Trustworthiness evaluation of
web services and trustworthiness based web service selection is
a feasible solution to the above question.

Many approaches have been proposed to evaluate the
trustworthiness of web services [1]. For example, E.M.
Maximilien and M.P. Singh [2] present an automatic web
service trustworthiness evaluation method using decision
theory and ontologies.

However, there are still several points can be improved.
First, according to our literature review, there are two kinds of
evidences of trustworthiness: objective evidences including
QoS attributes like response time and availability, and
subjective evidences like reputation [3] [4]. Most of previous
approaches rely on only one kind of evidences, while it is more
reasonable to take both kinds into consideration [10] [5].
Second, most of the existing works, such as [1] and [2], just
consider the subjective evidence from different source equally

important. Considering that the subjective evidences are given
based on personal experiences and perspectives, we think that
the importance of these evidences should be consider
differently according to the trust relationship among users.
Third, we should recommend the services to the users
according to their different preferences of different service
properties.

The Trust Network [6] is adopted to model the trust
relationship among users in this paper. The trust between the
users in the Trust Network means: 1) trust each other’s
evaluation (i.e. the evidence) of the service; 2) trust the
individual that is trusted by the other users in the Trust
Network. The Trust Network is a directed graph, in which a
node represents a user, an edge represents the trust relationship
between two connected users, and the weight of the edge
represents the degree of the trust.

In this paper, we propose a novel approach to evaluate the
trustworthiness of web services using the Trust Network and
give a mechanism for service recommendation in consideration
of the users’ different preference. We adopt the Trust Network
to estimate the important degree of subjective evidence
provided by different users. In addition to this, we filter false
and malicious subjective evidence using the Trust Network to
make more rational use of the evidence. After dealing with the
subjective evidence, we can calculate the trustworthiness of
web services. Based on it, we put forward a preference
template to recommend the proper service to the users
according to the requirements of the users. Finally, we develop
a system called STERS (System for Service Trustworthiness
Evaluation and Recommendation) to evaluate the service
trustworthiness and recommend the service.

To study the effectiveness of our approach, we conduct
several experiments on a large-scale real-world dataset. The
experimental results show that: (1) with the evidence, our
method can effectively evaluate the trustworthiness of web
services; (2) the evaluated trustworthiness results are useful to
help users to select and use web services.

The rest of this paper is organized as follows: Section II
analyzes the related works. In Section III, we illustrated the
approach for service trustworthiness evaluation based on the
Trust Network. The service recommendation mechanism is
introduced in Section IV. The evaluation of the trustworthiness
evaluation approach is described in Section V. Finally, Section
VI concludes the paper.

323

II. RELATED WORK
Trustworthiness is of paramount importance for developers

to discover, select, and compose Web services [4].

G. Jennifer [7] made a lot of research on the Trust Network
via using the data from the web site for the movie
recommendation.

Various approaches have been proposed to evaluate the
trustworthiness of web services. E.M. Maximilien and M.P.
Singh [2] present an automatic web service trustworthiness
evaluation method using decision theory and ontologies. Both
the objective evidence and subjective evidence are important in
web services trustworthiness evaluation. However, most of
previous approaches leverage only one kind of evidence while
it is more reasonable to leverage both [5]. In this research, both
kinds of evidence are collected and used to evaluate a service’s
trustworthiness.

III. SERVICE TRUSTWORTHINESS EVALUATION BASED ON
THE TRUST NETWORK

According to the previous work in [3] [8], we can collect
abundant evidence, and evaluate the trustworthiness of services
based on them. In order to distinguish the importance of
evidence, we adopt the Trust Network to manage different
kinds of trust relationships among entities while evaluating
trustworthiness. To differentiate the importance of evidences,
we assign the higher weights to the more important ones.

A. The structure of the Trust Network
In this paper we regard each user as the node in the Trust

Network and the users comprise A = {a1, a2…. an}. The trust
between users makes trust matrix Trust that represents as the
Cartesian product of the users A.

A×A = {<ai,aj> | ai,aj A}

The value of <ai, aj> in the trust matrix Trust is an edge
with weight jitrust , between user i and user j. The jitrust , is
called trust value from i to j, it represents the degree of trust
and has the value of an integer of 0 to 100 (0≤ jitrust , ≤100).

We connect all the services O = {o1, o2…. on} and their
trustworthy attributes P= {p1, p2…. pn} with users. Another
matrix Score is used to represent the user’s subjective
evaluation of the trustworthy attribute of a certain service.

A×O×P = {<ai,oj,pk>| ai A,oj O, pk P}

We use integer koiScore ,, (0≤ koiScore ,, ≤100) to represent
the value of <ai, oj, pk>, which is the value of subjective
evaluation for the trustworthy attribute pk that the user ai
assigned to the service oj . The koiScore ,, will has a value
greater than 0 only if the user ai has used the service oj,
otherwise the koiScore ,, =0.

B. The initialization the Trust Network
There are two steps to initialize the Trust Network. In step

one, the trust values of already registered users are initialized.
In step two, the initial trust value of each new registering user
is calculated and assigned.

The initialization in the step one is very simple, we just
assign all the users’ trust value in trust matrix to 50
(0≤

ijtrust ≤100).

The initialization in the step two is more complicated.
Whenever a new user registers, a new node is added in the
Trust Network. We assume that the trust value between those
old nodes in the Trust Network has been completely evolved,
which means the convergence condition of the iteration for
evolving the trust values between old nodes has been met. We
adopt two strategies to assign the initial trust value of the new
node to the other old nodes take advantage of those completely
evolved old trust values.

1) The Average Strategy.
The trust value of the new user a to the old user b is

assigned as the following formula.

N
Trust

Trust bi
ba

,
,

In which biTrust , is the trust value of the user i to the user
b, N is the total number of users.

2) The Masses Strategy
For a given service s, many users provide evidences about

its trustworthiness. An evidence is an evaluation score of the
trustworthiness of s in the perspective of a given user. The
average of all scores is considered as the public opinion on the
trustworthiness of s.

N
Trustw

Trust bibi
ba

,,
, (1)

In which biw , is the weight of the trust value of user i to
user b, N is the total number of users.

C. The evolution of the Trust Network
With the increasing amount of evidence, we should adjust

the trust values in the Trust Network continuously. We call this
adjustment as the evolution of the Trust Network.

The developing of the Trust Network can be calculated by
the single-step Markov model as below:

),,/()1()(weighttagktfkt nn (2)

t(n-1) is the trustworthy value calculated by the last time. k
is the constant equal to the maximum value of the range of
trustworthiness value. tag is a variable parameter and the value
is {-1,1}, in which -1 represents the trust reduced and +1 is the
increase of the trust. weight (0≤weight≤1) is the changing
value of the trustworthiness. f can be computed by the

324

following formula, in which x represent kt n /)1(, t represent
tag, w represent weight in formula (2) :

Elsewtxx
wtx

wtxf
)1(

0< tIf)1(
),,((3)

From the formula we can know that under the same
amplitude of variation w, t has different value means:

If),,(0 wtxft >),,(0 wtxft , this shows that the user’s
trust value is reduced due to a malicious behavior. The value
needs more evolvement iterations to restore to the original
value. Thus it can monitor the truth of user’s evaluation
behavior.

In order to calculate the variation w, we proposed two
policies, namely “Mass Trust Policy (MTP)” and “Similar
Trust Policy (STP)”.

For a given user j,)_,(, strategyScoreScoreRw oj ,in
which

ojScore ,
is the latest score of user j to the service o, and

strategyScore _ has different means according to the two
strategies. In the MTP strategyScore _ is the average score
of all the users that evaluate service o. In the STP,

strategyScore _ is the score of the user’s evaluation of the
service o. R is the degree of correlation of the two scores. As
the evaluation of the user a to service o is a vector (sa 1,sa

2……sa,|p|), in which p is the set of the service’s trustworthy
attributes, R can be gained by calculating the cosine of the
angle between the two vectors. The formula is as follows:

||

1

2
,

||

1

2
,

||

1
,,

)(*)(

*
),(

p

k
kb

p

h
ha

p

j
jbja

ba

ss

ss
SSR (4)

The MTP is to identify those specific users whose
evaluations are different with what the most users had. The
STP is to find identical users by analyzing different users’
evaluations on the same service and build higher trust level
among them.

D. Turstworthness Evaluation
We can calculate the trustworthiness of user i to the service

o based on the evaluation of the user i to the service o, the trust
among users and their similarity. The trustworthiness is also a
multi-dimension vector where each dimension is an attribute in
the service trustworthiness model that given in [3].

n

nj
ji

n

nj
kojji

koi

Kw

KTw
Belief

1
,

1
,,,

,,
 (5)

ko,i,Belief represents the trustworthiness value of user i
to the service o on the dimension k. wi,j varies according to the

evaluation of dimension k which is either the subjective
evidence or the objective evidence. n is the number of total
users who used service o. As we know from section C,
subjective evidence can make the Trust Network derive to a
more accurate estimated value. Instead the objective evidence
is not generated by the users’ subjective evaluation, thus wi,j
can be any arbitrary constant. As we can see from the
following formula, wi,j will be the degree of trust between the
user i and j when the k is subjective evidence, otherwise wi,j
takes the constant 1. is the QoS value of user j to service
o on the dimension k. K is the number of that user j has used
service o.

evidenceobjectiveanisk
evidencesubjectiveaiskTrust

w ji,
ji 1,

 (6)

We can adopt following computing policies when some
special situations occur.

1) Believe in yourself.
Because the user uses certain services often and is familiar

with them. In such circumstance, wij is degrading to 0

2) Believe in the most.
Because the user is unfamiliar with certain services, the

historical majority evaluations must be used. The majority’s
wi,j1 is effective and the rest wi,j2 is 0.

 (7)

SVB is integer and the range is 0≤SVB≤100. The formula
can calculate the value Vk that is majority’s average score on
the dimension K. Thus we can find who scores Vk on the
dimension K and set these users’ trust value wi,j effectively.

3) Believe in the experienced.
In the formula of

ko,i,Belief , K represents the times that the
user had used the service. Under certain conditions, such as the
user believe other experienced users, the evaluation of the user
B is more convinced than A’s if B used the services for N (N>1)
times while A is just once.

IV. USER PREFERENCE AND SERVICE RECOMMENDATION
MECHANISM

There are many attributes to describe the trustworthiness
of service in the service trustworthiness model.

The model of the user preference template is the same as
the service QoS model in [3]. It contains the satisfaction
degree, executing time, performance compliance, function
compliance, etc. On each dimension has a user defined score
from 1 to 100. In the template, the users can assign the weight
to every trustworthiness attributes and calculate the Final
value of service trustworthiness via the trust value koiBelief ,, .
The formula is as follows:

)(
})({

max
,,

,,
, SVBT

vT

koi

kkoimajority
oi

325

K

i
kikoi

Trust
oi prefBeliefFinal

1
,,,,

 (8)

In which koiBelief ,, is the trust value that the user i to
service o on the dimension k, it is calculated by the formula in
section IV . kipref , is the weight on the dimension k. K is the
number of service trustworthy attributes.

Based on the approach we put forward, we develop the
STERS system to recommend the services to the user
according to the result of the value of oiFinal , in a sequence
of high to low. The system will evaluate the service after the
user finished using it and feedback the results to the Trust
Network. Thus the process of finding a required service is
finished.

V. EVALUATION
In order to verify the validity of the approach we proposed

for evaluating services trustworthiness, we compare 3
approaches.

Approach 1: Service trustworthiness is gained by simply
calculating the mathematical average of all evidences without
considering their importance degree.

Approach 2: First trusted users are selected by leveraging
the Collaborative Filtering (CF) method, and then the service
trustworthiness is gained by calculating the mathematical
average of evidences given by the selected users.

Approach 3: Service trustworthiness is gained by using the
Trust Networks based approach proposed in this paper.

 We have collected experiment data from August 1st, 2011
to April 1th, 2012 and the amount of data is over 900 sets per
service. We select the data of CDYNE IP2Geo1 web service.
The curves of the Estimated Accuracy of the three strategies
are shown in Figure 2. In which the AV represents the
approach 1, CF is approach 2 and TN is approach 3.

Figure 2. The evaluation results and comparison

http://ws.cdyne.com/ip2geo/ip2geo.asmx?wsdl

From the figure 2, there is a little difference in the
Estimated Accuracy E among the three approaches from
August 1st, 2011 to November 1st, 2011. However, as time
goes by, the Estimated Accuracy E of the Trust Networks and
CF method is gradually improved. But the improvement of CF
approach is not as significant as that of TN. To April 1st 2012,
the Estimated Accuracy E of the Trust Networks is 2.5% higher
than the CF’s and 3% higher than the average method. The
Estimated Accuracy E of the TN and the CF is continually
increasing, while that of AV was stably stayed in the range of
82% to 83%.

VI. CONCLUSION
Trustworthiness is of paramount importance to help users to

discover, select, and compose Web services in the computing
paradigm of Service-Oriented Computing. In this paper, we
proposed a novel approach to evaluate the trustworthiness of
web services using the Trust Network, give a mechanism for
service recommendation in consideration of the users’ different
preference. We also develop a system called STERS to collect
evidence, evaluate the service trustworthiness and recommend
services.

ACKNOWLEDGMENT
This work is supported by the Key National Science &
Technology Specific Projects under Grant NO. 2011ZX01043-
001-002, and High-Tech Research and Development Program
of China under Grant No. 2013AA01A605.

REFERENCES
[1] Y. Wang, J. Vassileva, “A review on trust and reputation for web service

selection,” 27th International Conference on Distributed Computing
Systems Workshops (ICDCSW'07), pp. 25-32. 2007.

[2] E.M. Maximilien, M.P. Singh. “Toward autonomic web services trust
and selection.” The 2nd international conference on Service oriented
computing, pp.212-221. 2004.(15)

[3] M. Li, J. F. Zhao, L. J. Wang, S. B. Cai, and B. Xie. “CoWS:
AnInternet-enriched and quality-aware Web services search
engine”.IEEE International Conference on Web Services (ICWS) ,
pp.419-427, 2011.

[4] L. Li, Y. Wang. “Trust evaluation in composite services selection and
discovery.” IEEE International Conference on Service Computing (SCC).
pp. 482-485. 2009.

[5] Y. Zhang, Z. Zheng, and MR. Lyu, “WSExpress: a QoS-aware search
engine for Web services,” IEEE International Conference on Web
Services, pp. 91-98.2010.(11)

[6] Matt Blaze, Joan Feigenbaum, Jack Lacy, “Decentralized Trust
Management”, Proceedings of the 1996 IEEE Symposium on Security
and Privacy, p.164, May 06-08, 1996

[7] Jennifer Golbeck, Matthew Rothstein.” Linking Social Networks on the
Web with FOAF: A Semantic Web Case Study”. Proceedings of the
Twenty-Third Conference on Artificial Intelligence (AAAI'08)

[8] M. Li, J. Jin, and J. F. Zhao. A propositional logic-based and evidence-
rich Web services trustworthiness evaluation framework. Software
Trustworthiness (SoTrust 2011), Workshop of International Conference
on Software Reuse (ICSR 2011), pp.26-33, 2011

326

Towards a Network Ecology of Software
Ecosystems: an Analysis of two OSGi Ecosystems

Klaus Marius Hansen and Konstantinos Manikas
University of Copenhagen

Department of Computer Science (DIKU)

Copenhagen, Denmark

{klausmh,kmanikas}@diku.dk

Abstract—“Software ecosystems” are gaining importance in
commercial software development; the iPhone iOS and Sales-
force.com ecosystems are examples of this. In contrast to tra-
ditional forms of software reuse, such as common platforms or
product lines, software ecosystems have a heterogeneous set of
actors sharing and collaborating over one or more technological
platforms and business model(s) that serve the actors. However,
little research has investigated the properties of actual software
ecosystems.

In this paper, we present an exploratory study of software
ecosystems using the formalizations and metrics of the “network
ecology” approach to the analysis of natural ecosystems. In doing
so, we mine the Maven central Java repository and analyze two
OSGi ecosystems: Apache Felix and Eclipse Equinox. In par-
ticular, we define the concept of an ecosystem “neighborhood”,
apply network ecology metrics to these neighborhoods (including
a keystone index that identifies the importance of elements in the
ecosystem), and compare the ecosystems.

Index Terms—software ecosystems; dependency structure; de-
pendency graphs; network ecology

I. INTRODUCTION

Software ecosystems (SECOs) arguably present an effective

way of constructing large software systems on top of a

software platform by composing components developed by

actors internal and external to the organization developing the

platform [1]. In this setting, software engineering also takes

place outside the traditional borders of software companies to

a group of companies, private persons, or other legal entities.
This differs from traditional outsourcing techniques in that

the organization developing the platform does not necessarily

own the software produced by contributing actors and does not

hire the contributing actors. All actors, however, coexist in an

interdependent way, an example being the iOS ecosystem in

which Apple provides a platform for applications and review

of applications in return for a yearly fee and 30% of revenues

of application sale1. This is a parallel to the natural ecosystems

where the different members of the ecosystems (e.g., the

plants, animals, or insects) are part of a food chain where

the existence of one species depends on the rest.
While examples of successful software ecosystems exist,

little empirical research in real software ecosystems exists [2].

In this paper, we study the software ecosystem created around

Apache Maven2, a build automation tool. A characteristic of

1http://developer.apple.com/programs/ios/distribute.html
2http://maven.apache.org/

Maven is that it automatically downloads project dependencies

from online repositories. One of the main repositories that

Maven consults is the Maven central repository3, Maven

Central, from which we have obtained the repository artifacts’

metadata. In particular, we investigate the subset of Maven

central that relates to these Apache Felix and Eclipse Equinox

OSGi software ecosystems [3].

In the analysis of the ecosystems, we take inspiration

from the analysis of natural ecosystems as graphs through

“network ecology” [4]. In particular, we investigate software

ecosystems using metrics from network ecology. Furthermore,

we apply the PageRank [5] algorithm to the structure of

software ecosystems.

Our research in this paper is exploratory; the underlying

research questions being:

• How can metrics and formalizations of the “network

ecology” approach to natural ecosystem analysis provide

insight into the structure of software ecosystems?

• How can we analyze and compare different software

ecosystems that may be subsets of a wider software

ecosystem?

While we do not answer the questions fully, this paper provides

initial insight into the answers.

II. BACKGROUND

A. Apache Maven

Apache Maven [6] is a project management tool, primar-

ily used for Java projects. A central concept in Maven is

the “Project Object Model” (POM) that models a project

among others allows Maven to build, package, upload to a

remote repository, and generate web pages. The main uses

of POMs are thus i) to enable building projects and ii) to

enable resolution of dependencies in projects. POM files define

artifacts (i.e., the software components of a project), versions
of artifacts, and groups containing artifacts.

Maven Central4 is a web service that collects artifacts

(e.g., JAR files) and their description in form of POMs. We

consider Maven Central as a software ecosystem (referenced

to as the Maven ecosystem) with Apache Maven as the

common technological platform. Because of the explicitness

3http://search.maven.org
4http://search.maven.org/

327

of the dependencies, the Maven ecosystem allows the study of

artifacts as a graph. In this paper, we study two ecosystems that

are subsets of the Maven ecosystem: Apache Felix and Eclipse

Equinox. Both ecosystems, as much as their artifacts, form

part of the Maven ecosystem with potential interdependencies.

In order to study each of the two software ecosystems, it is

necessary to define their size and borders. For this reason we

define and calculate the software ecosystem neighborhood for

each sub-ecosystem.

Given the artifacts in the groups of the OSGi frameworks

(“org.apache.felix” and “org.eclipse.equinox”), we follow their

dependencies and find artifacts that depend on these artifacts

to calculate an ecosystem neighborhood of increasing depth,

where for each depth level we add the artifacts depending on

artifacts already added or that artifacts already added depend

on.

We calculate the neighborhood, Ad = NEIGHBORHOOD(S,

d), of a set of artifacts, S, at distance d as follows based on

a seed, S := {s1, s2, ..., sn}, and distance, d:

1) A0 := S
2) Ai+1 := Ai∪{a | ∃b ∈ Ai : a depends on b}∪{b | ∃a ∈

Ai : a depends on b}
Concretely, we calculated NEIGHBORHOOD(F , i),

where F is the set of artifacts in the Apache Felix

group (org.apache.felix), i = 0, 1, ... and

NEIGHBORHOOD(E, i), where E is the set of artifacts

in the Eclipse Equinox group (org.eclipse.equinox) ,

i = 0, 1,

B. Network ecology

A common theme in ecology of natural ecosystems is a

focus on interactions and relationships among living individu-

als, between predator and prey. “Network ecology” [4], models

food webs as networks or graphs of species and interactions.

The networks are often directed to indicate, e.g., energy flow

between individuals (e.g., from prey to predator) and are

sometimes weighted. Figure 1 shows a simplified example of

a food web with one predator (A) and two prey (B and C).

Network ecology applies both classical graph/network metrics

(e.g., connectance) and novel metrics to food networks (e.g.,

keystone index); see Section III.

Of particular interest in ecosystems are keystone species
that have a large effect on their environment compared to the

number of members of the species in the environment. In the

example, species A may be a keystone since it has effect on

both B and C.

Fig. 1. Simple food web example

In our application of network ecology to the study of

software ecosystems, we draw a parallel between species in a

natural ecosystem and actors and software artifacts in software

ecosystems. Species prey on other species and in this way

energy flows from prey to predator. Actors produce software

artifacts and software artifacts consume other software artifacts

via usage dependencies. And just as the co-existence of species

in a natural ecosystem determines the health of the natural

ecosystem, the co-existence of actors and software artifacts

in a software ecosystem determins the health of the software

ecosystem. We thus apply energy flow analysis of natural

ecosystems to dependency analysis in software ecosystems.

In this our study, we analyzed software ecosystem actors only

in terms of their technical products, i.e., the software artifacts,

and thus our study is of software dependencies.

In our case, the species relationships from network ecology

are usage dependencies among software artifacts and, thus,

at runtime, control and data may flow from depender to de-

pendee. Furthermore, our networks are always directed (in the

direction of dependencies) and without weight (or equivalently

with equal weight).

III. CHARACTERIZING NETWORK ECOLOGIES

In this section, we present the characteristics of network

ecologies that we apply in our software ecosystem analysis.

We divide the characteristics into global characteristics that

we calculate for a complete network (Section III-A), and

local characteristics that we calculate for individual nodes.

Furthermore, we apply a page rank algorithm (Section III-C)

to the network to compare to network ecology characteristics.

A. Global network characteristics

Traditional graph metrics (e.g., number of nodes and edges)

can be applied to networks of ecologies. In particular, we

consider connectance, C = L
N ·(N−1) , where L is the number

of relationships in the network, dependencies in our case, and

N is the number of nodes in the network, artifacts in our

case. Connectance measures the proportion of all potential

relationships that are present in the network. Since our network

is directed and has no self-relationships, the maximum number

of relationships is N · (N − 1).
Applying the connectance metric to the Felix and Equinox

ecosystems would provide a view on the connected the whole

ecosystem is. This, apart from assisting in describing the

ecosystem, can measure similarity of the ecosystems as far

as connectance goes.

B. Local network characteristics

One of the basic properties of a node is the number

of connections this node has to its neighboring nodes, the

connection degree of the node. The connection degree D of a

node i is Di = Din+Dout where Din is the number or nodes

depending on node i and Dout the number of nodes that node

i depends on. The degree of a node is an elementary property

that shows how much a node is interacting with its neighboring

nodes. Similarly, if we take into consideration the dependency

328

direction, the orientation of a node is D′
i = Din−Dout. This

metric may be used to measure the interaction a node has with

its neighboring nodes in directed graphs. If an artifact has a

negative orientation, the number of artifacts that it depends is

larger than the number of artifacts that depends on it.

The clustering coefficient gives further insight into how

nodes connect in the graph. The clustering coefficient of a

node shows how close this node is to becoming a complete

graph with its neighbors. The clustering coefficient of a node

i is as follows:

CCi =
Li

Ni · (Ni − 1)

where Li is the number of links between the neighboring

nodes Ni of node i. The global clustering coefficient for the

whole graph is calculated from the clustering coefficient of

each node:

C̄ =
1

n

n∑
i=1

Ci

We use the clustering coefficient calculation in our study to

analyze the dependencies of the artifacts in each ecosystem.

Additionally, we use the calculation to of compare the two

ecosystems.

Jordán et al. introduced a reliability-theoretic approach to

characterizing keystone indices [7]. They base their keystone

index on the concept of a bottom-up keystone index and a

top-down keystone index. The bottom-up keystone index of a

species i, Kb(i), is a measure of secondary extinctions because

of bottom-up effects if the species i is removed. Here, “bottom-

up effects” refer to effects going from prey to predator if the

species is removed.

The bottom-up index is defined as:

Kb(i) =
∑

j∈P (i)

1

mi(j)
· (1 +Kb(j))

where P (i) are the direct predators of i, mi(j) the number

of direct prey of P (i), and Kb(j) is the bottom-up keystone

index for j. The top-down index, Kt(i) is calculated by

reversing the species relationships and calculating an index

similar to above. Finally, the keystone index is calculated as:

K(i) = Kb(i) +Kt(i)

Naturally, if species i have no direct predators, their bottom-

up keystone index Kb(i) is zero and the keystone index is

calculated only by the top-down approach. For the simple

example in Figure 1, the keystones indices are K(A) = 2
and K(B) = K(C) = 0.5.

We adapt the keystone index in the study of the two

software ecosystems where instead of a network of preys and

predators we have an artifact dependency graph. In this case,

the keystone index indicates the importance of an artifact, i.e.

what effect the removal of that artifact would have to the

software ecosystem.

C. PageRank
The PageRank algorithm [5] calculates the weight of a web

page pi by summing the weights of each page pointing to pi
normalized by the number of links pointing out of that page

and adjusted by a dumping factor constant d. PageRank can

be explained using the behavior of a hypothetical web surfer

who either i) chooses to follow a link at random from a web

page with probability d, or, ii) at random chooses any page to

go to with probability 1−d. The PageRank of a web page pi,
P (pi) is then the probability of being on that web page that

this iterative procedure converges to. The PageRank has the

following property:

P (pi) =
(1− d)

N
+ d ·

(
P (p1)

C(p1)
+ ...+

P (pn)

C(pn)

)
where p1 to pn are the pages pointing at page pi, C(pi) the

number of links going out of page pi and N the total number

of pages.
Apart from ranking webpages, PageRank, can be applied

to rank nodes in directed graphs. In this study we apply

PageRank to estimate weights of the artifacts in the studied

ecosystems, with the page links implying artifact dependency.

In that sense, an artifact with high PageRank would either have

a high number of artifacts or artifacts with high PageRanks

depending on it. Such an artifact, will arguably have a large

effect on the ecosystem compared with the total number

of artifacts. In doing so, we follow an approach close to

Bhattacharya et al. [8] who define a “NodeRank” for graph-

based representations of software based on PageRank.
Our hypothesis is, that the artifacts with high PageRank

would also be “keystone species” in the software ecosystem.

For the PageRank ranking of both Apache Felix and Eclipse

Equinox software ecosystems, we used a fixed damping factor,

d, of 0.85.

IV. DATA GATHERING AND PROCESSING

We processed the set of 286,922 POM XML files of Maven

Central as of 2012-01-24. In the processing, we identified

an artifact by group id and artifact id, i.e., we disregarded

version numbers of artifacts for reasons of scalability. For each

POM file, we output the group id and artifact id and for each

dependency declared, we output the relationship between the

processed artifact and its dependency.
In total, we extracted 155,127 unique artifacts in 5,676

groups and 495,020 unique dependencies among these arti-

facts. A number of POM files (36) were empty or contained

errors and a number of dependencies (93,455) were not found

in the repository.
For the complete set of artifacts and dependencies, we cal-

culated the neighborhoods of the groups org.apache.felix and

org.equinox.felix. Table I shows this together with summary

statistics of the neighborhoods.

V. RESULTS

In the following, we present the results of applying the

metrics of Section III to the neighborhoods of Felix and

Equinox. Table I shows the global metrics.

329

Felix Equinox

Distance # artifacts # dependencies connectance # artifacts # dependencies connectance
0 25 29 0.048333 19 7 0.020468
1 110 138 0.011510 80 69 0.010918
2 7772 8036 0.000133 635 679 0.001687
3 13638 25414 0.000137 9481 10037 0.000112
4 15629 28222 0.000116 14625 25082 0.000117
5 15923 28649 0.000113 15797 26778 0.000107
6 15983 28725 0.000112 15967 26983 0.000106
7 15984 28726 0.000112 15992 27008 0.000106
8 15984 28726 0.000112 15992 27008 0.000106

TABLE I
SUMMARY STATISTICS OF CALCULATED NEIGHBORHOODS

Analyzing the neighborhoods for both ecosystems, we no-

tice that the number of artifacts and dependencies remain the

same for distances greater than seven. This implies that the

minimum distance of any two indirectly connected artifacts

in the Felix or Equinox ecosystems is not more than seven.

Therefore, the neighborhood distance of seven is the border

of both ecosystems within the whole Maven ecosystem.

A. Network ecology metrics

In the figure 2, we show a log-log histogram for Felix for

connection degree D < 100, which is the majority of the

artifacts (for Felix 15,956 out of 15,984 and Equinox 15,965

out of 15,992). For the Felix degree distribution, the maximum

count appears in degree 1 with 7,950 artifacts while the highest

degree is 3932 with count of 1 artifact. The artifacts with

degrees 1, 2 and 3 account for 80% of the total number of

artifacts. For the Equinox group, degree 1 has the maximum

count of artifacts, 8,235, while the highest degree is 3,519.

Similarly, degrees 1, 2 and 3 account for 82% of the total

artifacts. In both groups, the artifact with the highest degree

is junit. The degree for the artifacts of Felix has an average of

3.59 and a standard deviation of 1,097.74, while Equinox has

an average of 3.38 and a standard deviation of 904.63. From

the degree distributions, we can verify the similarity in the

dependency relations noted for the connectance results of the

high distance neighborhoods, with Felix having slightly more

dependencies.

Tables II and III display the artifact that have top orientation

rankings for Felix and Equinox. In both groups, the top orien-

tation ranking is almost identical (the order for “testing” and

“maven-plugin-api” changes) for the top connection degrees.

Taking into consideration that the average orientation in both

groups is zero, the orientation metrics reveal a tendency in the

high ranked connection degree artifacts to have close to zero

dependencies to other artifacts, i.e. equally high orientation.

This supports the idea of certain artifacts being the center of

a cluster or the ecosystem with all the rest of the artifacts

depending on them. This enhances the interest of studying the

keystone and PageRank metrics.

The clustering coefficient analysis shows that there is a low

number of nodes that had a non-zero clustering coefficient (20

out of the 15,984 artifacts for Felix and 4 artifacts from the

total 15,992 for Equinox). Out of the 20 non-zero clustering

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9
Connection degree distribution for Felix(log−log)

Log connection degree

Lo
g

co
un

t

Fig. 2. Connection degree distribution for Felix (log-log;D < 100)

org.apache.felix

Group id artifact id degree orientation
junit junit 3932 3930
javax.servlet servlet-api 770 770
org.slf4j slf4j-api 489 489
org.easymock easymock 368 368
org.mockito mockito-all 320 320
commons-io commons-io 305 305
org.scala-lang scala-library 235 235
stax stax-api 234 234
xerces xercesImpl 202 198
org.apache.maven maven-plugin-api 196 196
org.testng testng 198 190

TABLE II
TOP NODES ACCORDING TO THEIR CONNECTION DEGREE AND

ORIENTATION FOR ORG.APACHE.FELIX

coefficients for Felix, only 4 artifacts do not belong to the Felix

group, while all 4 of the resulting artifacts for Equinox belong

to the Equinox group. We may interpret this as Felix having

a higher level of reciprocity and thus, according to [9], being

a more open software ecosystem than Equinox. However, the

findings are not adequate to fully support this statement. Table

IV shows the top clustering coefficient artifacts for the Felix

group and Table V shows the same for the Equinox group

. The global clustering coefficient is 0.0002047 for Felix and

330

org.eclipse.equinox

Group id artifact id degree orientation
junit junit 3519 3517
javax.servlet servlet-api 646 646
log4j log4j 568 558
org.slf4j slf4j-api 364 364
org.easymock easymock 354 354
commons-logging commons-logging 335 331
org.eclipse.core runtime 272 268
org.scala-lang scala-library 263 263
stax stax-api 262 262
commons-lang commons-lang 231 231

TABLE III
TOP NODES ACCORDING TO THEIR CONNECTION DEGREE AND

ORIENTATION FOR ORG.ECLIPSE.EQUINOX

0.0000377 for Equinox.

The fact that both ecosystems have little clustering is in

accordance with the numbers from the previous section where

the majority of the artifacts (80% for Felix, 82% for Equinox)

had a sum of 3 or less incoming and outgoing dependencies.

org.apache.felix

Group id artifact id CC
org.apache.felix org.apache.felix.ipojo.handler.white.board.pattern 0.5
org.apache.felix org.apache.felix.ipojo.handler.extender.pattern 0.5
org.apache.felix org.apache.felix.ipojo.handler.extender 0.5
org.apache.felix org.apache.felix.ipojo.arch 0.5
org.apache.felix org.apache.felix.ipojo.handler.temporal 0.25
org.apache.felix org.apache.felix.ipojo.composite 0.25
org.apache.felix org.apache.felix.ipojo.handler.whiteboard 0.167
org.apache.felix org.apache.felix.scr.generator 0.119
org.apache.felix org.apache.felix.ipojo.manipulator 0.119
org.apache.felix org.apache.felix.ipojo.arch.gogo 0.1

TABLE IV
TOP CLUSTERING COEFFICIENTS FOR ORG.APACHE.FELIX

org.eclipse.equinox

Group id artifact id CC
org.eclipse.equinox preferences 0.5
org.eclipse.equinox app 0.0833
org.eclipse.equinox registry 0.01818
org.eclipse.equinox common 0.00215

TABLE V
TOP CLUSTERING COEFFICIENTS FOR ORG.ECLIPSE.EQUINOX

Table VI and Table VII show the top 10 keystone indices

(cf. Section III-A). For both Eclipse and Equinox, JUnit and

Hamcrest (upon which JUnit depends) are outliers. For Felix,

3,931 artifacts depend on JUnit (6 on Hamcrest) and for

Equinox, 3,518 artifacts depend on JUnit (and 6 on Hamcrest).

Further down the list, and of interest, Eclipse-related artifacts

appear for both Felix and Equinox, indicating that these are

important in both ecosystems.

Scatter plotting of the keystone indices on a log-log scale

(not shown), indicates visually that the keystone indices follow

a power law distribution.

org.apache.felix

Group id artifact id K
org.hamcrest hamcrest-core 4285.85
junit junit 4262.06
javax.servlet servlet-api 662.97
org.slf4j slf4j-api 483.07
xml-apis xml-apis 396.62
org.easymock easymock 317.17
commons-io commons-io 288.47
org.eclipse.equinox common 264.29
org.testng testng 245.33
org.eclipse.core runtime 227.88

TABLE VI
TOP KEYSTONE INDICES FOR ORG.APACHE.FELIX

org.eclipse.equinox

Group id artifact id K
org.hamcrest hamcrest-core 4085.94
junit junit 4057.05
javax.servlet servlet-api 616.57
log4j log4j 445.58
org.slf4j slf4j-api 430.02
org.easymock easymock 336.70
org.eclipse.core runtime 305.49
org.eclipse.equinox common 273.20
commons-logging commons-logging 259.43
xml-apis xml-apis 251.65

TABLE VII
TOP KEYSTONE INDICES FOR ORG.ECLIPSE.EQUINOX

B. PageRank

Table VIII and Table IX show the top 10 PageRanks (cf.

Section III-C). The Jaccard index (i.e., the size of the set

intersection divided by size of the set union) of the sets of the

top 10 artifacts for Eclipse Equinox with respect to keystone

index and pagerank is high, 0.67, meaning that the sets are

similar. For Apache Felix the Jaccard index is even higher,

0,82.

org.apache.felix

Group id Artifact id PageRank
junit junit 0.0904794430569
org.hamcrest hamcrest-core 0.0773937500317
javax.servlet servlet-api 0.0143641067466
org.slf4j slf4j-api 0.0103344297076
xml-apis xml-apis 0.00711548141087
org.easymock easymock 0.00684332751987
commons-io commons-io 0.00616812512782
org.testng testng 0.00598292281005
org.mockito mockito-all 0.00474775877824
org.eclipse.core runtime 0.00460514855267

TABLE VIII
TOP PAGERANKS FOR ORG.APACHE.FELIX

VI. FUTURE AND RELATED WORK

Researchers have previously analysed networks and graphs

in the context of software engineering, in particular on social

networks [10]. One problem in this context has been incom-

plete data, something that we circumvent by obtaining a full

copy of the Maven Central POMs.

331

org.eclipse.equinox

Group id Artifact id PageRank
junit junit 0.0862679466078
org.hamcrest hamcrest-core 0.0739051502318
javax.servlet servlet-api 0.0132943226829
log4j log4j 0.00996111702211
org.slf4j slf4j-api 0.00894363970498
org.easymock easymock 0.00735198854011
org.eclipse.core runtime 0.00676022114354
commons-logging commons-logging 0.00574973950937
org.testng testng 0.00536452952305
commons-io commons-io 0.00486674036983

TABLE IX
TOP PAGERANKS FOR ORG.ECLIPSE.EQUINOX

We recently completed a systematic literature review of

research of software ecosystems [2] in which we categorized

research output according to the taxonomy of Shaw [11]

and found little research on empirical models of software

ecosystems. Yu et al. [12] studied symbiosis in software

ecosystem as a parallel to symbiosis in natural ecosystems, but

no research to our knowledge applied concepts from network

ecology to software ecosystems.

Future work includes the analysis of all of the Maven POM

data as a network rather than looking at subsets such as Apache

Felix and Eclipse Equinox. Similarly to adding additional ar-

tifacts in the analysis, an analysis that takes versions and time

series into account should also be performed. We made the

simplifying assumption of abstracting away version numbers

for reasons of scalability of the analysis which may impact

the validity of our results. Further, a goal of our research is to

find measures of health for software ecosystems, something for

which the identification of keystones is only one step towards.

In the future, we will also evaluate the use of social network

analysis to analyze the artifact dependencies.

Additionally, in this paper, we compared the finding from

a keystone index algorithm to the PageRank ranking using

a damping factor d of 0.85 for the PageRank algorithm.

Different values of the damping factor could enhance the

precision of the results.

Another interesting extension is to consider series and

dynamics of Maven POM data over time. In particular, Jordán

and Scheuring [4] also consider dynamics in their work on

network ecology. Extending the network ecology analysis to

other ecosystems such as the Eclipse Equinox ecosystem with

source code or other open source repositories [13] would also

be of interest.

VII. SUMMARY

In this paper, we presented an exploratory study of the

Apache Felix and Eclipse Equinox software ecosystems. The

Maven central repository stores artifacts belonging to the

ecosystems and we extracted descriptions and dependencies

based on Project Object Model (POM) files. In total, we

analyzed 286,922 POM files, extracting 155,127 artifacts with

495,020 dependencies for further analysis. We defined the

neighborhoods for both Felix and Equinox identifying the

neighborhood distance of seven as the fix point of both

software ecosystems in the Maven ecosystem in terms of

number of artifacts included.

For these neighborhoods of Felix and Equinox, we applied

concepts from “network ecology” that examines natural eco-

systems as networks of prey and predators. We calculated the

clustering coefficient for each artifact and the global clustering

coefficient for each neighborhoods and concluded that both

of the neighborhoods exhibit little clustering. We furthermore

defined and calculated a keystone index for the neighborhoods

and demonstrated that this index appears to follow a power law

distribution. Furthermore, we compared the keystone index

to the PageRank algorithm and found that for high-ranked

artifacts, there was a large overlap according to a Jaccard

index.

We have thus tentatively pointed to the use of the keystone

index as a way to identify keystone artifacts in a software

ecosystem, artifacts that are of particular importance in the

health of the ecosystem. Furthermore, by comparing the Felix

and Equinox ecosystems, we demonstrated that it is possible

to compare two software ecosystems in terms of size and

dependency characteristics.

ACKNOWLEDGMENTS

This work was funded by the Net4Care project. We thank

Sonatype for providing access to Maven Central POMs.

REFERENCES

[1] J. Bosch, “From software product lines to software ecosystems,” in
Proceedings of the 13th International Software Product Line Conference,
ser. SPLC ’09. Pittsburgh, PA, USA: Carnegie Mellon University, 2009,
pp. 111–119.

[2] K. Manikas and K. M. Hansen, “Software ecosystems – a systematic
literature review,” Journal of Systems and Software, 2013, in press.

[3] The OSGi Alliance, “OSGi service platform core specification, release
5,” http://www.osgi.org/Specifications, June 2012.

[4] F. Jordán and I. Scheuring, “Network ecology: topological constraints
on ecosystem dynamics,” Physics of Life Reviews, vol. 1, no. 3, pp.
139–172, 2004.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[6] T. O’Brien, M. Moser, J. Casey, B. Fox, J. V. Zyl, E. Redmond, and
L. Shatzer, Maven: The Complete Reference. Sonatype, 2011. [Online].
Available: http://www.sonatype.com/books/mvnref-book/reference/

[7] F. Jordán, A. Takács-Sánta, and I. Molnár, “A reliability theoretical quest
for keystones,” Oikos, pp. 453–462, 1999.

[8] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in ICSE
2012. IEEE Press, Jun. 2012, pp. 419–429. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337273

[9] J. te Molder, B. van Lier, and S. Jansen, “Clopenness of systems: The
interwoven nature of ecosystems,” in Third International Workshop on
Software Ecosystems (IWSECO-2011). CEUR-WS, 2011, pp. 52–64.

[10] R. Nia, C. Bird, P. Devanbu, and V. Filkov, “Validity of network analyses
in open source projects,” in Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on. IEEE, 2010, pp. 201–209.

[11] M. Shaw, “Writing good software engineering research papers,” Mini-
tutorial for Proc ICSE” 03, 2003.

[12] L. Yu, S. Ramaswamy, and J. Bush, “Symbiosis and software evolvabil-
ity,” IT Professional, vol. 10, no. 4, pp. 56 –62, july-aug. 2008.

[13] G. Robles, J. Gonzalez-Barahona, M. Michlmayr, and J. Amor, “Mining
large software compilations over time: another perspective of software
evolution,” in Proceedings of the 2006 international workshop on Mining
software repositories. ACM, 2006, pp. 3–9.

332

Revisiting the Performance of Weighted k-Nearest Centroid Neighbor Classifiers

Muhammad Rezaul Karim and Malek Mouhoub

Department of Computer Science
University of Regina, Canada

{karim20m,malek.mouhoub}@uregina.ca

Abstract

k-Nearest Neighbor (KNN) is one of the most funda-
mental classification techniques. KNN relies on the dis-
tances of the samples to select k neighbors. k-Nearest Cen-
troid Neighbor classification (KNCN) scheme, on the other
hand, takes into account both the distances and the dis-
tribution of samples to improve the performance of KNN.
In the past studies, with the help of two kernel functions,
it was shown that assigning weights to the neighbors in
KNCN further improve the performances of KNN based
algorithms. In this study, we revisit the performance of
Weighted k-Nearest Centroid Neighbor (WKNCN) method
with various voting schemes and perform extensive compar-
ison with other state-of-the-art KNN based algorithms. Un-
like the previous studies, our experimental results show that
weighted voting does not have any significant impact on the
performance of KNCN method. To validate our claim, we
design a new kernel for the WKNCN and perform statisti-
cal test on the experimental results. Our analysis with the
various kernels also show that only well-designed distance
based kernels like Inverse-distance kernel can exhibit com-
parable performance as the existing rank based kernels.

1. Introduction

k-Nearest Neighbor (KNN) [1] is a simple non-

parametric classification method. KNN is the primary

choice when there is little or no prior knowledge about

the distribution of the data. In KNN, classification is per-

formed by a majority vote of the neighbors of the test

data object, with the object being assigned to the class

most common amongst its k nearest neighbors. KNN

works very well when large numbers of training samples

are available, but its performance is not retained when the

training data is small. Over the years, researchers pro-

posed various techniques to improve the performance of

KNN [2, 5, 6, 7, 8, 10]. The k-Nearest Centroid Neighbor

(KNCN) algorithm introduced by Sanchez et al. [2] is an

extension to the KNN algorithm and is very effective when

the training data is small. KNCN is based on the nearest

centroid neighborhood concept proposed by Chaudhuri et

al. [3]. KNN takes into account the nearness of the neigh-

bors only; while KNCN takes into account both nearness

and spatial distribution of the neighbors.

KNCN assigns equal weight to each centroid neigh-

bor which is not always appropriate in classification.

Weighted k-Nearest Centroid Neighbor (WKNCN) classi-

fication method is a recently proposed extension to the

KNCN method and assigns different weights to different

neighbors [4]. It was shown that WKNCN improves the

performance of KNCN on six data sets. In WKNCN, kernel

functions are used to assign weight to each neighbor. In [4],

two kernel functions were proposed for this weighted ver-

sion of KNCN algorithm. One kernel function uses the dis-

tance of a neighbor to compute its weight, while the other

kernel assigns a weight based on the rank of the neighbor,

in other words, the order in which the neighbor was se-

lected. Unlike distance weighted KNN [5], both distance

and rank based kernels were shown to be equally effective

for WKNCN, which needs more investigation.

In this paper, we perform analysis on the existing dis-

tance and rank based kernels to shed more light on the im-

portance of weighted voting for KNCN. To determine the

appropriate kernel type, we also design and investigate the

performance of a new distance based kernel. Our results

and analysis show that assigning weights to the neighbors

do not significantly improve the performance of KNCN. We

also notice that a well-designed distance based kernel can

exhibit comparable performance as the existing rank based

kernels.

The rest of the paper is organized as follows: Section 2

provides an overview of KNCN. WKNCN method with ex-

isting kernels are summarized in section 3, while a new ker-

nel function for the WKNCN is proposed in section 4. In

section 5, the experimental settings are detailed, results are

reported and analyzed. The paper concludes in section 6

with a summary of the work done.

333

2. KNCN

KNCN [2] is a good alternative to KNN algorithm and

improves the performance of KNN. Classification in KNCN

is a two step process. In the first step, the algorithm finds

out the k nearest centroid neighbors of a test data object. In

the next step, the object is being assigned to the class most

common amongst its k neighbors. The basic idea of KNCN

is to use the neighbors that are as close to a query pattern as

possible, as well as, the neighbors that are distributed as ge-

ometrically around that pattern as possible. KNN takes into

account the nearness of the neighbors only; while KNCN

takes into account both nearness and spatial distribution of

the neighbors.

Let T = {(x1, y1), (x2, y2), ..., (xn, yn)} be a set of

points where xn ∈ Rm is a m-dimensional feature space

and yn ∈ {c1, c2, c3, ..., cM} is the class label for the train-

ing point xn. Given a set of points T and a test pattern p,

the KNCN classification scheme is defined as follows:

1. Find the k nearest centroid neighbors of the test pattern

p.

2. Assign the test pattern p the class with a majority of

votes among its k nearest centroid neighbors (resolve

ties randomly).

Chaudhuri et al. proposed an iterative way of searching

k centroid neighbors of p, which is as follows [3]:

1. The first centroid neighbor of p is its nearest neighbor,

N1.

2. The ith centroid neighbor Ni where i ≥ 2, is such

that the centroid of this point and previously selected

neighbors, N1, N2,..., Ni−1, is the closest to p.

The centroid of a set points S = {N1, N2, ..., Nq} can

be computed as follows:

Sc =
1

q

q∑
i=1

Ni (1)

3. WKNCN

KNCN classifier assigns equal weight to each of its

k centroid neighbors. In classification, the more reliable

neighbors of a test pattern should be assigned more weight

than the unreliable neighbors. A training sample that has

the same class as the test pattern is a reliable neighbor of

the test pattern, while a noisy sample is an example of un-

reliable neighbor. KNCN algorithm equally treats the unre-

liable and reliable centroid neighbors. This results in poor

classification accuracy and it can be improved by assigning

different weights to different centroid neighbors [4].

WKNCN

1: S : a set of training samples

2: NCN : a set of k nearest centroid neighbors

3:

4: Step 1: Compute distance to the test pattern p

5: For each training sample xi ∈ S, compute dist(xp, xi),

the distance to the test pattern p;

6: xr = min(dist(xp, xi)) {the training sample xr with

the minimum distance is the first centroid neighbor};

7:

8: Step 2: Determine centroid neighbors

9: NCN = ∅;

10: NCN = NCN ∪ {xr};

11: S = S − {xr};

12: repeat
13: For each sample xi ∈ S, find the centroid Ci of sam-

ples in the set NCN ∪ {xi};

14: Choose the sample xc such that Cc is the closest to p;

15: NCN = NCN ∪ {xc};

16: S = S − {xc};

17: until k-1 centroid neighbors have been generated

18:

19: Step 3: Compute weights for the centroid neighbors

20: Compute the weight wi of each centroid neighbor

xi ∈ NCN using a kernel function;

21:

22: Step 4: Predict the class

23: Predict the class represented by the majority

weighted vote of centroid neighbors;

Figure 1. Weighted k-Nearest Centroid Neigh-
bor Classification

Gou et al. proposed WKNCN method to improve the

performance of KNCN [4]. Unlike KNCN, in WKNCN,

the class of a test pattern or data object is represented by

the majority weighted vote of the k nearest centroid neigh-

bors. Two kernel functions were proposed in [4] to assign

weights to the centroid neighbors. The main idea was to

assign more weight to the highly reliable centroid neigh-

bors, while less weight to the less reliable centroid neigh-

bors. WKNCN classification scheme is given in Figure 1.

In [4], one of the kernel functions was referred to as the

Heat kernel and the other was referred to as the Uniform
kernel. These kernels can be classified into two groups

based on how weights are assigned to the neighbors: dis-
tance based and rank based. Kernels belonging to the first

category assign weight based on the dissimilarity or the dis-

tance of a neighbor to the test pattern, while the kernels in

the second category assign weight based on the rank or the

order in which a neighbor is selected.

334

The Heat kernel is a distance based kernel and is given

by:

wi = exp(−||xp − xi||2
width

), i = 1, 2, ..., k (2)

where width = 1
k2

∑k
i=1 ||xp − xi||2 and i refers to the

rank of each centroid neighbor. This kernel assigns a weight

to a centroid neighbor that is related to its distance from the

test pattern. The more the distance from the test pattern, the

less the weight assigned. The Uniform kernel, on the other

hand, is a rank based kernel and is given by:

wi =
1

i
, i = 1, 2, ..., k (3)

Here i refers to the rank of each centroid neighbor. The

Uniform kernel assigns weights to the centroid neighbors in

the order neighbors are computed, that is more weight to

the first centroid neighbor, least weight to the last centroid

neighbor. It does not take the into account the distance of a

centroid neighbor to the test pattern. For this kernel, weight

lies in the interval (0,1].

Gou et al. used six real data sets to perform experiments

with both Heat and Uniform Kernels [4]. They reported

that UHWKNCN and HWKNCN, the weighted versions

of KNCN using Uniform and Heat kernel, respectively,

outperform KNCN, KNN and distance weighted KNN [5]

across all values of the neighborhood size, k. Improvement

shown in that paper was significant for large values of k.

Their results also show that both kernel functions have equal

performances, which needs more investigation with diverse

data sets with different distributions.

4. Inverse-distance Kernel for WKNCN

In this paper, we design a new kernel function for the

WKNCN method and investigate its performance. This new

kernel function is given by:

wi =
1

1 + (dist(xp, Ni))2
i = 1, 2, ..., k (4)

where i refers to the rank of each centroid neighbor and

dist(xp, Ni) refers to the distance of the ith centroid neigh-

bor to the test pattern p. We refer to this kernel as Inverse-
distance kernel.

Inspired by the inversion kernel for KNN described

in [10], we investigate this kernel for the WKNCN. It is

worth noting that the popular distance weighted kernel for

KNN proposed in [5] cannot be applied to KNCN, as the

distance of a closer nearest centroid neighbor may be larger

than that of the farther one. Like Heat kernel, Inverse-

distance is a distance based kernel. In this kernel, weight

is based on the dissimilarity between the test pattern and

Table 1. Data Sets
Data Set Instances Classes Features

Wine 178 3 13

Sonar 208 2 60

Glass 214 6 9

Spect 267 2 22

Spectf 267 2 44

Liver 345 2 6

Ionosphere 351 2 34

Libras 360 15 90

Wdbc 569 2 30

Pima 768 2 8

Vehicle 846 4 18

Vowel 990 11 12

Cardio 2126 3 21

Image 2310 7 19

Optdigits 5620 3 21

a neighbor. The more the dissimilarity or distance, the less

the weight assigned to a neighbor. More dissimilarity means

that a centroid neighbor might not be of the same class of

the test pattern. In this case, the centroid neighbor is unre-

liable and is given less weight. In this kernel, distance is

squared to reduce the effect of the neighbor in the voting

process.

Unlike Heat kernel, Inverse-distance does not take into

account other neighbors distance. Heat kernel needs other

neighbors distance to compute kernel width, which is used

in the computation of weight of each centroid neighbor. For

Inverse-distance kernel, weight lies in the interval (0,1]. If

a centroid neighbor is exactly similar to the test pattern i.e.

dist(xp, Ni) = 0, weight assigned to the centroid neighbor

is 1, the highest possible weight.

5. Experimentation

In this section, we report and analyze the results of our

experiments for various algorithms. First, we introduce ex-

perimental settings and compare the performance of three

kernels for the WKNCN method in terms of classification

error. Then, we report the results for KNN and KNCN al-

gorithms and compare with the WKNCN.

5.1. Experimental Settings

In order to investigate the classification behavior of the

WKNCN and other methods, we performed experiments on

15 real data sets from the UCI Machine Learning reposi-

tory [9]. The summary of the data sets are given in Table 1.

The experiments for all data sets have been executed on a

cluster with 72 CPU cores and 144 Gb RAM.

335

We used Matlab [11] numerical computing software to

implement various algorithms. Our written code employs

the features in Matlab Parallel Computing Toolbox so that

a block of code, whenever possible, is executed in parallel

on a cluster of workers. We do pre-processing on a single

data set: Pima Indians Diabetes, as this data set has missing

values for a single attribute. As a pre-processing step, we

replace the missing attribute value with the average of the

existing values for that attribute.

We compare the performance of various methods in

terms of classification error. For each data set, we use the

first 80% of the data as training set, while the remaining

20% data as test set. We run the experiments 10 times to

obtain reliable estimate for a data set and the data is reshuf-

fled before each round to get different training and test set.

Knuth shuffle [12] algorithm is used to shuffle the data be-

fore it is used in a trial. For all the compared methods, we

use Euclidean distance as the distance measure.

For all data sets, each experiment is done with cross-

validation. We use leave-one-out cross-validation for data

sets with less than 750 instances, while for the others we use

10-fold cross-validation. For each experiment, the value of

the neighborhood size k is varied from 1 to 15. The value

of k for which a method obtains lowest validation error, is

later tested on the test set to get the generalization error of

the method. The final performance is achieved by averaging

classification errors over 10 runs. To compare two methods,

we determine the statistical significance of the differences

in classification errors using t-test requiring p < 0.05.

5.2. Comparison of Various Kernels

Table 2 presents pairwise comparison of the kernels for

WKNCN, while Table 3 shows the detail experimental re-

sults achieved for each kernel. In Table 2 and all the

subsequent tables, Inverse is the abbreviated name for the

Inverse-distance kernel.

The mean classification error computed from 10 runs

along with standard deviations are presented in Table 3. As

it can be seen in this table, when averaged over all data

sets, the performances of WKNCN with Inverse-distance

and Uniform kernel are comparable. For Inverse-distance

kernel the average classification accuracy is 17.28%, while

for Uniform kernel the average classification accuracy is

17.43%. Among all the tested kernels, WKNCN achieves

worst classification error when the Heat kernel is used,

yielding 19.06% average classification error.

In Table 2, the entry in the ith row and jth column gives

the number of data sets on which the difference between

kernel i and kernel j is statistically significant and also the

performance of kernel i is better than kernel j. The last col-

umn denoted by
∑

col provides the number of data sets for

which the corresponding kernel performs better than one or

Table 2. Pairwise comparison of various ker-
nels

Kernel Inverse Heat Uniform
∑

col

Inverse - 4 0 4

Heat 0 - 0 0

Uniform 0 4 - 4

ith row and jth column give the number of data sets on which method

i performs statistically significantly better compared with method j.∑
col denotes the number of data sets for which the corresponding

scheme performs better than other schemes

more of the other kernels. A larger value in the last column

corresponds to a better system.

From Table 2, it is clear that WKNCN performs worse

when the Heat kernel, a distance based kernel, is used to

assign weight to the centroid neighbors. It can be argued

that Heat kernel is the weakest among all the kernels as it

performs worse than any other kernel on several data sets.

This contradicts the finding in [4], where it was shown using

6 data sets that both Heat and Uniform kernels have same

performances. Our experimental results are based on 15

data sets where we have found that, for four data sets, Heat

kernel performs worse than any other kernel. Both Inverse-

distance and Uniform kernel perform better than Heat ker-

nel, but none of them surpass one another on any of the data

sets. It is evident that both kernel has comparable perfor-

mances, even though Inverse-distance is a distance based

kernel, while Uniform is a rank based kernel.

It is worth noting that both Heat and Inverse-distance

kernels are distance based kernels but the latter outperforms

the former. Our careful observation of the Heat kernel re-

veals that, for two centroid neighbors, if there is a small

difference between distances from the test pattern, it as-

signs unusually higher value to one neighbor than to the

other. Thus, Heat kernel may overemphasize the impor-

tance of a neighbor which might degrade classification ac-

curacy. Inverse-distance kernel does not have this problem

because of having better weighting scheme.

5.3. Comparison of WKNCN and Other Methods

In Table 4, we show the classification error for WKNCN,

KNCN and KNN, while in Table 5, we present a pairwise

comparison of those methods. When we compare WKNCN

with other methods, we only use the results of Inverse-

distance kernel. It is evident from our analysis in previous

section that Inverse-distance kernel is one of the best kernels

for WKNCN. As it can be seen in Table 4, when averaged

over all data sets, the best average performance is provided

by KNCN, while the worst result is achieved by KNN.

It is evident from the last column of Table 5 that KNCN

achieves best results among all the compared neighborhood

based algorithms. KNCN not only performs better than

336

Table 3. Comparison of kernels for WKNCN. A number shown before ± is the mean classification
error over 10 trials, while the number after ± is the corresponding standard deviation. Inverse is the
abbreviated name for the Inverse-distance kernel. ’*’ indicates that the difference between the two
specified methods as indicated by a column is statistically significant. ’-’ indicates that the difference
is not statistically significant

Data Set WKNCN Kernels Statistical Significance
Inverse Heat Uniform Inverse Vs. Heat Inverse Vs. Uniform Heat Vs. Uniform

Wine 25.88± 4.55 28.52± 6.94 25.00 ± 5.76 - - -

Sonar 16.56± 5.09 15.85± 5.54 15.61 ± 5.77 - - -

Glass 26.25± 3.77 26.25± 4.28 25.25 ± 4.63 - - -

Spect 18.49± 2.32 20.75 ± 3.3 20.38 ± 3.75 - - -

Spectf 23.02± 5.68 24.75± 5.5 24.34 ± 5.06 - - -

Liver 34.18± 4.99 40.60± 6.13 34.93 ± 5.32 * - *

Ionosphere 9.57± 1.79 12.43± 3.02 9.71 ± 2.59 * - *

Libras 13.83± 3.69 13.5± 2.88 13.16± 2.88 - - -

Wdbc 6.73± 1.97 8.41± 2.14 7.08± 2.00 - - -

Pima 27.39± 3.52 29.80 ± 3.35 27.12± 4.57 - - -

Vehicle 30.6± 4.08 35.45± 4.35 31.01 ± 4.58 * - *

Vowel 0.86± 0.48 0.86± 0.46 0.86 ± 0.48 - - -

Cardio 21.55± 1.30 24.14± 1.21 22.48 ± 1.2 * - *

Image 3.48± 0.93 3.63± 0.79 3.50 ± 0.82 - - -

Optdigits 0.84± 0.04 1.05± 0.27 1.034 ± 0.30 - - -

Average 17.28 19.06 17.43

Table 4. Comparison of WKNCN and non-weighted KNN based methods. A number shown before ±
is the mean classification error over 10 trials, while the number after ± is the corresponding standard
deviation. ’*’ indicates that the difference between the two specified methods as indicated by a
column is statistically significant. ’-’ indicates that the difference is not statistically significant

Data Set Methods Statistical Significance
Inverse KNN KNCN Inverse Vs. KNN Inverse Vs. KNCN KNN Vs. KNCN

Wine 25.88± 4.55 28.53 ± 8.32 24.71 ± 9.01 - - -

Sonar 16.56± 5.09 17.80± 4.01 18.04 ± 5.29 - - -

Glass 26.25± 3.77 25.5± 4.53 26.75± 4.57 - - -

Spect 18.49± 2.32 23.21 ± 5.27 17.74 ± 3.23 * - *

Spectf 23.02± 5.68 23.21 ± 5.26 21.89 ± 4.28 - - -

Liver 34.18± 4.99 34.03± 3.84 29.70 ± 4.53 - * *

Ionosphere 9.57± 1.79 15.86± 3.89 6.86 ± 2.92 * * *

Libras 13.83± 3.69 13.66± 2.70 14.17± 3.62 - - -

Wdbc 6.73± 1.97 6.81± 2.32 5.75 ± 1.78 - - -

Pima 27.39± 3.52 27.32 ± 4.12 26.21 ± 4.72 - - -

Vehicle 30.6± 4.08 35.75± 4.06 26.77 ± 2.62 * * *

Vowel 0.86± 0.48 0.86± 0.48 0.86 ± 0.48 - - -

Cardio 21.55± 1.30 24.45± 1.39 23.67 ± 2.12 * * -

Image 3.48± 0.93 3.61 ± 0.68 3.79 ± 0.36 - - -

Optdigits 0.84± 0.04 1.35± 0.38 1.16 ± 0.51 * - -

Average 17.28 18.80 16.54

its predecessor KNN, it also surpasses its weighted ver-

sion. KNCN performs statistically significantly better than

WKNCN on three data sets, whereas the latter surpasses

the former only on a single data set. It can also be seen that

KNN is the weakest method among all the methods com-

pared. WKNCN achieves significantly better results than

337

Table 5. Pairwise comparison of WKNCN,
KNN and KNCN

Method WKNCN (Inverse) KNN KNCN
∑

col

WKNCN (Inverse) - 5 1 6

KNN 0 - 0 0

KNCN 3 4 - 7

ith row and jth column give the number of data sets on which method

i performs statistically significantly better compared with method j.∑
col denotes the number of data sets for which the corresponding

scheme performs better than other schemes

KNN on five data sets, while KNCN performs better than

KNN on four data sets. Unlike [4] where weighted vot-

ing schemes were shown to improve KNCN performance,

from our experimental results, we can conclude that assign-

ing weights to the neighbors in KNCN do not improve its

performance.

It is important to figure out the reasons for the differ-

ences in classification errors among various methods. The

differences might be due to the distribution of the selected

neighbors or due to the selection of suboptimal neighbor-

hood size k. In our experiments, for each method, optimal

k value for a data set is selected using cross-validation, be-

fore the test set error is computed. Thus, we can argue that if

a method fails to achieve good result even after the selection

of the appropriate k value, it may be due to the distribution

of the selected k neighbors that fails to address a particular

type of data distribution. The effect of the distribution of

the selected neighbors on the performance of each method,

especially on the WKNCN, needs to be investigated.

6. Conclusion

In this paper, we have performed extensive analysis on

the KNN, KNCN and WKNCN methods. We have investi-

gated the impact of weighted voting schemes on the KNCN

as well as compared the various kernel functions for the

WKNCN. Apart from this, we have investigated the Inverse-

distance kernel, a new distance based kernel function for the

WKNCN.

From our analysis, based on classification error rate of

each method, it is evident that not all distance based kernels

are weaker than rank based kernels. We observe that Heat

kernel, the only existing distance based kernel has worse

performance than Uniform kernel, the existing rank based

kernel. This contradicts the results reported in the previous

studies conducted with small number of data sets. However,

well-designed distance based kernel like Inverse-distance

kernel, can exhibit comparable performance as the Uniform

kernel.

Our results and analysis also show that, even though

WKNCN outperforms KNN algorithm, weighted voting

schemes do not significantly improve the performance of

KNCN, as reported in the previous studies. In future, we

will perform more analysis to understand the reason why

weighted voting schemes do not work well for KNCN. In

addition to that, we will investigate the effect of the distri-

bution of centroid neighbors in WKNCN using diverse data

sets.

References

[1] Cover, T., Hart, P.: Nearest neighbor pattern classifica-

tion. IEEE Transactions on Information Theory 13(1),

21– 27 (1967)

[2] Sánchez, J., Pla, F., Ferri, F.: On the use of

neighbourhood-based non-parametric classifiers. Pat-

tern Recognition Letters 18(11–13), 1179 – 1186

(1997)

[3] Chaudhuri, B.: A new definition of neighborhood of a

point in multi-dimensional space. Pattern Recognition

Letters 17(1), 11 – 17 (1996)

[4] Gou, J., Du, L., Xiong, T.: Weighted k-nearest cen-

troid neighbor classification. Journal of Computa-

tional Information Systems 8(2), 851–860 (2012)

[5] Dudani, S.A.: The distance-weighted k-nearest-

neighbor rule. IEEE Transactions on Systems, Man

and Cybernetics SMC-6(4), 325 –327 (april 1976)

[6] Ahn, H., Kim, K.j., Han, I.: Global optimization of

feature weights and the number of neighbors that com-

bine in a case-based reasoning system. Expert Systems

23(5), 290–301 (2006)

[7] Altincay, H.: Improving the k-nearest neighbour rule:

using geometrical neighbourhoods and manifold-

based metrics. Expert Systems 28(4), 391–406 (2011)

[8] Denoeux, T.: A k-nearest neighbor classification rule

based on dempster-shafer theory. IEEE Transactions

on Systems, Man and Cybernetics 25(5), 804–813

(1995)

[9] Frank, A., Asuncion, A.: Uci machine learning repos-

itory (2012), http://archive.ics.uci.edu/
ml

[10] Hechenbichler, K., Schliep, K.: Weighted k-nearest-

neighbor techniques and ordinal classification. In:

Discussion Paper 399, SFB 386 (2006)

[11] MATLAB: version 7.10.0 (R2010a). The MathWorks

Inc., Massachusetts, USA (2010)

[12] Knuth, D.E.: The Art of Computer Programming, Vol.

2. Addison-Wesley, Reading, MA, second edn. (1981)

338

Mining Software Repository to Identify
Crosscutting Concerns Using Combined Techniques

Ingrid Marçal, Rogério Eduardo Garcia, Ronaldo C. M. Correia, Celso Olivete Junior
Departamento de Matemática e Computação – Faculdade de Ciências e Tecnologia

Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP
in.marcal@gmail.com, {rogerio,ronaldo,olivete}@fct.unesp.br

Abstract

Modularization is a goal difficult to achieve in software
development. Aspect mining aims to identify crosscutting
concerns in non aspect oriented software allowing orga-
nizing them into aspects and, thus, improve the modular-
ization. Several techniques have been proposed to identify
crosscutting concerns from software repositories, usually by
analyzing static data or execution traces. In this paper we
present an approach on mining crosscutting concerns us-
ing combined results from two techniques: Frequent Closed
Itemset Mining and Commit Frequency Analysis, which is
presented in this paper as well. We evaluated our approach
and observed that combining both techniques lead to better
sets of crosscutting concerns candidates.

Keywords: code evolution, aspect mining, mining soft-

ware repositories, software maintenance.

1 Introduction

Modularization is a goal difficult to achieve in software

development. Some requirements, named crosscutting con-

cerns (CC) [10], cannot be clearly mapped to isolated units

of code, and their implementation tend to be scattered.

Thus, modifying one piece of functionality might require

changing scattered code leading to maintenance problems

(e.g., entanglement, scattering and lack of legibility) [10].

Aspect Oriented Programming [10] offers mechanisms to

mitigate problems caused by CC in software systems [13],

allowing refactoring these CC into aspects. However, be-

fore the refactoring process, it is necessary to identify exist-

ing CC in software artifacts (aspect mining).

Software analysis can be static, dynamic and historical
[4]. In this paper we focus on historical analysis of data

extracted from software repositories, which allows us to in-

vestigate how an artifact was modified over time, when it

was changed, why it was changed, who changed it, and

what change had another as a side effect (changed together).

Canfora et al. [4] pointed out that mining software reposito-

ries opens challenging research directions. Breu and Zim-

mermann [2] argue that CC might emerge along the soft-

ware development, which means that some of them are no

longer identified by static or dynamic analysis. Mulder and

Zaidman [12] focused on mining items that are frequently

changed together using a technique named frequent closed
itemset mining [17], but they pointed out that it is necessary

to improve the results, i.e., by combining with other.

Our main interest is to obtain results from different min-

ing aspect techniques using the historical perspective of

software development and investigate whether their com-

bination improves their individual results. For this work,

each source file (file name) in software repository is consid-

ered an item and each revision (version committed) a trans-

action. Our approach is based on how frequently source

files are committed (Commit Frequency Analysis) and how

frequently they are committed together (Frequent Closed
Itemset Mining). We suggest filters to refine the results and

evaluate the proposed approach using the JHotDraw project

repository, which allow comparing results with other ap-

proaches in literature. Finally, we combine results from

both mentioned techniques and observed an improvement

on their individual results.

To present our approach, this paper is organized as fol-

low: Section 2 presents a review of related works and the

background required to analyze results; Section 3 presents

the CF Analysis; Section 4 shows the used methodology;

we present a discussion about our results in Section 5; at

last, Section 6 presents final remarks about strengths and

weaknesses of our approach, and future works.

2 Background and Related Work

Object-Oriented Programming (OOP) is a paradigm that

aids Software Engineering, since the underlying object

model provides a better fit to real domain problems, but

339

OOP techniques are not sufficient to clearly capture impor-

tant design decisions about different concerns implemented

in a software system [10, 13]. Aspect-Oriented Program

(AOP) tackles this so-called crosscutting concerns (CC)

problem supporting the definition of implementation units

(aspects) that cut across the system units, composing the

expected behavior [10].

Aspect mining aims at creating and studying new meth-

ods and tools to identify CCs present in non aspect oriented

software, thus they can be reorganized into aspects. Breu et

al. [2] research opened a new perspective for aspect mining

exploring software repositories to search for CCs. When

applied to software repositories, aspect mining can be done

basically in three steps: data acquisition, processing and

presentation [12]. Data acquisition and presentation aim at

collecting data from software repositories and presenting re-

sults, respectively. The core consists in applying a mining

algorithm to process acquired data in order to extract and

derive information. There are techniques and algorithms

available in literature to process data from software reposi-

tories [2, 5, 14, 15]. Software repositories can be used for

aspect mining purpose using different approaches, and in

this paper we explore Frequent Closed Itemset Mining [15].

Mulder and Zaidman [12] applied Frequent Closed Item-
set Mining in software repositories. Frequent Closed Item-
set Mining is a constrained Frequent Itemset Mining, which

is usually applied to discover association rules [3]. Fre-
quent Itemset Mining describes the frequency of simulta-

neous appearance of related elements, using the following

definitions summarized from [12].

2.1 Definitions for Frequent Itemset Mining

Let I = {I1, I2, ..., Im} a set of items, X ⊆ I an itemset,
D a data base with a set D = {t1, t2, ..., tn} of transactions,

where ti = {Ii1, Ii2, ..., Iik} | Iij ∈ I . Let also, t(X) a set

of transactions that contains an itemset X , so t(X) = {Y ∈
D | Y ⊇ X}.

The support of an itemset X is defined as the ratio be-

tween the number of transactions on the data base that con-

tains X and the total number of transactions on the data

base, so

support(X) =
| t(X) |
| D |

An itemset X is frequent if it’s support is greater than

or equals to a given minimum support: support(X) ≥
minsupport. The set of all frequent itemsets is denoted

by FI and is a subset of all possible itemsets generated by

I: FI ⊆ 2I [1][8].

We are not interested in subsets with the same support
of their superset – they are considered irrelevant due to re-

dundant information. In order to ignore irrelevant itemsets
we have to look for frequent closed itemsets. A frequent

itemset is considered closed if there is no supersets with

the same support [15, 12]. Formally, an itemset X is closed

if: I(t(X)) = X , where I(S) =
⋂

T∈S and T ,S ⊆ D [15].

Frequent closed itemsets integrates a larger set of fre-

quent items. Let FCI the set of all frequent closed itemsets,

so: FCI ⊆ FI
The most common metrics to measure results in data ex-

traction algorithms are precision and recall (and we used

the same metrics to compare results [12]). Precision (P) is

defined as the ratio of items predicted correctly and the to-

tal number of items predicted. Recall is defined as the ratio

of items predicted correctly and the total number of items

that can be selected. The F1-measure is a combination of

Precision and Recall, defined as:

F1 =
2(P ×R)

P +R

F1 assumes values ranging from zero to one, where 0
is the worst case. For aspect mining purposes, on Precision
metric items predicted correctly refers to the number of files

confirmed as a CC, and the total number of items predicted
is the number of items that composes the final result. Fi-

nally, on Recall metric the total number of items that can be
selected refers to total number of known CCs.

Mulder [12] applied Frequent Closed Itemset Mining in

two granularity levels: file-level and method-level. For file-

level only file names were considered and for method level

the author performed syntactic analysis on each file, to iden-

tify added and modified methods. It was observed that ap-

plying Frequent Closed Itemset Mining results in low pre-

cision, indicated by low F1-value on final results. The F1-

value is provided by the F1-measure.

3 Commit Frequency Analysis

We have made some assumptions to propose the Commit
Frequency Analysis. Kiczales et al. [10] have stated that:

“In general, whenever two properties being programmed

must compose differently and yet be coordinated, we say

that they cross-cut each other. Because GP1 languages pro-

vide only one composition mechanism, the programmer

must do the co-composition manually, leading to complex-

ity and tangling in the code”. Such “co-composition manu-

ally” is done using the mechanisms offered by languages,

that is, methods and their callings or spread code across

multiple source files.

Zimmermann et al. [17] pointed out that “every change

in a method implies a change in the enclosing class”, what

supports the rationale for searching changes in the enclos-

ing files or packages to identify patterns like ‘this change

1Generalized-Procedure languages for the purposes of the discussion,

which is simpler to focus on what is common across several programming

languages, including Object Oriented ones.

340

implies another change in this package’. Instead of method

level, such search at file level might be less precise in locat-

ing modifications, but provide higher confidence [17]. Also,

they pointed out that “the revision history can also tell us

which parts of the system are coupled by common changes

or co-changes”. Other evolutionary couplings and patterns

are presented and discussed by Kagdi et al. [9]. Addition-

ally, Van Rysselberghe and Demeyer [16] have introduced

the concept of Frequently Applied Changes (FACs), defined

as changes occurring multiple times in the system version

history. They analyzed source code changes and suggested

that FACs may be used to identify recurring change patterns

and, in turn, identification of refactorings.

Based on that, we propose the Commit Frequency Anal-
ysis technique and its metric to analyze potential CCs. We

proposed a top-down approach focusing on files (classes).

The rationale considers each commit as a group of files with

some coupling degree, and coupled files (classes) might be

considered as CC candidates for further analysis. So, we

do not focus on creating groups of related files (classes),

we already have grouped files and focus on eliminated files

(classes) that can be discard as candidates to aspect. As

metric, Commit Frequency represents the number of com-

mits across multiples versions.

The approach proposed consists in a sequence of steps:

1) Compute the Commit Frequency (CF) for each file; 2)

Discard files with CF equals to one, that are isolated com-

mits (only groups of files must be considered as potential

candidates); 3) Perform statistical analysis to obtain the

shape of distribution and descriptive data; 4) Define an in-

terval of interest for analyzing by establishing minimal and

maximal thresholds; 5) Apply those thresholds and obtain

a list of files with CC candidates; 6) Obtain the list of ver-

sions where each file was updated; 7) Each file versions list

is manually analyzed to verify whether there is a concern

that matches; 8) Compute the F1-value for each group and,

then, the average of F1-value to obtain an overall score. We

have used a heuristic to define the interval of interest that is

presented in the following, along with the application and

the results obtained.

4 Methodology

The framework proposed by Marin et al. [11] was used

to state our approach on applying individually both tech-

niques and combining them. Thus, our approach fits in the

following: Search goal: CCs represented by files that are

frequently and simultaneously modified – we do not restrict

our investigation to unique sorts of concerns (e.g, Consis-
tent Behavior and Contract Enforcement [11]) because our

intent is to investigate all possible resultant sort of concerns;

Results Format: A list with file names that are frequently

and simultaneously modified – this behavior is a charac-

teristic of identifying CCs candidates; Results Interpreta-
tion: The resultant file names are entities names containing

methods that are CC candidates; Validation Metrics: we

manually compare our results to known sets of CCs for the

subject analyzed, then, the F1-measure is used to precise

how the results match with these known sets of CCs.

The approach proposed is depicted in Figure 1. Each step

is supported by modules implemented in our own mining

tool. We used SVNKit library to develop a module for ac-

quiring data from software repository (Data Acquisition).

Hence, we collected all entries from the history of develop-

ment database that consists in: revision identification num-

ber, date, log message and the names of entities modified,

added or excluded. Data collected from software reposi-

tory are stored using Apache Commons Collection (hash

table) using a format accepted by the algorithms developed

(Pre-processing). As Processing, the LCM algorithm [15]

was chosen to apply Frequent Closed Itemset Mining due its

high performance with large amount of data; also, we cre-

ated an algorithm to perform the Commit Frequency Anal-
ysis. Regarding the Filtering, a filter to Data Acquisition
was defined, and the data set obtained has been used on both

techniques; also, other filters were used on each technique,

and their parameters are discussed in the following. After

the experiments with Frequent Closed Itemset Mining and

Commit Frequency Analysis, we combine the results from

both (Combining). Thus, it is possible to analyze whether

combining the results from both techniques improves their

individual results. Finally, the results are presented to the

user in a list of entities names representing the CCs candi-

dates identified (Presentation).

Data Acquisition

Pre-processing

Commit Frequency
Analysis

Frequent Closed
Itemset Mining

Commit Frequency Analysis
Final Results

Frequent Closed Itemset Mining
Final Results

Combining

Combined ResultsCombined Results

Figure 1: Schema proposed to combine results

5 Evaluating the approach

To validate the proposed approach and discuss our re-

sults, it is necessary to compare the obtained CCs candi-

dates with known sets of CCs (oracle). However, there are

few known crosscutting concerns documented and publicly

available, which makes difficult to compare results. Marin

341

et al. [11] proposed a web forum2 where aspect mining re-

searchers can exchange and discuss aspect candidates found

in (open source) software systems. Despite their effort, only

their own results are available there, obtained mainly from

fan-in analysis. Therefore, our validation and discussion

are based on information found in aforementioned forum

and on a list of known CCs from other works [2, 5, 14].

Also, Frank Mulder kindly provided us with his results (list

of CCs). The JHotDraw – a java framework to support

graphical applications development – has been used in as-

pect mining literature. We chosen it to enable the validation

of results by comparing to aspect mining results from pre-

vious works. All concerns identified in literature applying

Dynamic Analysis, Identifier Analysis, Fan-in analysis and

Frequent Closed Itemset Miningwere compiled and are pre-

sented in Table 1.

Table 1: Known CC compiled from literature [5, 11, 12, 14]

Add text Add URL to figure
Bring to front Command executability
Connect figures Connect text
Manage figure changed event Figure update
Get attribute Move figure
Manage handles Manage figures outside drawing
Set Attribute Send to back
Undo Manage view rectangle
Visitor Adapter
Consistent Behavior Composite
Decorator Exception Handling
Command Observer
Persistence Activation
Command Execution Producer-Consumer
Event Handling File Handling
Handling Mouse Events Area Tracking
Background Drawing Managing Display Boxes
Chopping Figures Clearing Figures
Finding Figures Color Choosing
Constraining Points Figure Inclusion
Menu Handling Managing Views
Font Handling Image Handling
Create Drawings Desktop Management
Invocation Manipulating Figure Handles
Finding Connection Dealing With Selections
Inserting Figures Layout Calculation
Moving Figures Handle and Figure Enumeration
Resource Management Performing Actions
Iterating Over Collections Working With Maps

5.1 Experiments and Results Discussion using
FREQUENT CLOSED ITEMSET MINING

The first step (Data Acquisition) was executed to extract

data from repository. For that, we used a filter applied to

establish the minimum interval between commits by au-

thor – we considered that developers usually commit related

2http://swerl.tudelft.nl/amr/

changes in different revisions in short period and, thus, in

this work we decided consider such revisions as a single

commit to reduce noise on final results. After analyzing

meta-data about the commits, we empirically decided to use

a threshold of 1700 seconds between commits performed by

the same author. So, we obtained a data set of 15747 files

across 660 versions committed.

We have run several experiments applying Frequent
Closed Itemset Mining to acquired data, using two parame-

ters to compare their results. The first parameter is the min-

imum changeset size: very large and very small changesets

can be ignored, since they rarely indicate CC [12]. And

Support, the second parameter, is a measure that indicates

the frequency of an itemset: high frequencies means possi-

ble presence of CCs. In this paper we related the frequency

of an itemset with its size.

As initial experiment, Frequent Closed Itemset Min-
ing was applied to JHotDraw repository considering only

java source code – file names with .java extension, using

Support = 2.0. A set of 493 changesets was obtained, and

its F1-value is 0.35. Next, the filters were applied to inves-

tigate their influences.

A set of experiments focused on investigating the rela-

tion between the precision and the changeset size. Thus,

experiments were executed using changeset size as a con-

straint, and we established different changeset size empiri-

cally, keeping Support = 2.0. Initially, we used change-

set size limited to 5, increasing this value at intervals of 5

for next 20 experiments running. We repeated a sequence

of experiments using the initial changeset size limited to

10, and then increasing at intervals of 10. For experiments

with changeset size less than 40, we observed low F1-values

reaching the minimum value of 0.2. For experiments using

changeset size equal to 40, the F1-value obtained is 0.449.

Thus, we observed that the changeset size influences the re-

sults precision only for size values at the interval [2, 40].
Furthermore, experiments showed that few itemsets have

high cardinality – usually itemsets with low cardinality are

frequent – that is an important lesson learned used on eval-

uating Commit Frequency Analysis. It is important to note

that the F1-value is not the same pointed out by Mulder and

Zaidman, since they used JHotDraw version 5.4b1, and we

considered all entries from JHotDraw repository.

Other experiments were conducted using different Sup-
port values (Support = 3.0 and Support = 4.0), but the

results obtained were worse – even empty itemsets were ob-

tained. Our best result (F1-value = 0.449) was better com-

paring to no filter result. However, we considered that it

can be improved, especially taking into account that the F1-

measure ranges at interval [0,1]. In order to explore alterna-

tives to improve aspect mining precision, we investigate the

application of Commit Frequency Analysis using software

repository.

342

5.2 Experiments and Results Discussion using
COMMIT FREQUENCY

To apply Commit Frequency Analysis we used the same

data set previously obtained in Data Acquisition – 660 ver-

sions with 15747 files committed. The file list consists in

3358 files with no repetition across 660 versions. The Com-
mit Frequency was computed for each file (step 1). We ap-

plied the filter established as step 2, selecting only files with

CF greater than 1. At this point, 2236 files were selected

across 212 versions.

The statistical analysis was performed according [7]

(step 3). The measurements of location and variability are

presented in Table 2. Also, we analyzed the frequency

distribution and the normal probability curve3, and we ob-

serve a concentration of commits at low CF values. At first

glance, we considered the minimal and maximal thresholds

around the mean value – mean ± standard deviation. How-

ever, considering the distribution of normal probability plot

(omitted due page restriction), we decided to be more re-

strictive, focus on interval 2 ≤ CF < 10 (step 4). It is

important to note that there is no rule defined to choose the

intervals, but statistical data description was used as param-

eter to make a decision. The heuristic is a greedy approach,

trying to select more potential candidates, but we are aware

that some CCs candidates can be out of the range, specially

considering the Kurtosis value [6].

Table 2: Location and variability Measurements

Measure Value

Mean 6,540698

Median 5

Standard Deviation 5,825551

Variance 33,93705

Kurtosis 17,3149

The filtering on step 5 (considering interval 2 ≤ x <
10 to CF-values) resulted in 1838 files. So, we selected

reviews where such files appear, and such reviews represent

changesets with potential CCs candidates (step 6). We did

not use any changeset filter. Each changeset was manually

analyzed: we compared items implementation (file) to the

concerns listed in Table 1 to verify whether the group items

(files) can be refactored into aspect, or not (step 7). We

considered the best matches to obtain the F1-value. To get

an overall score for the groups, we take the average of these

F1-values (step 8). We get F1-value = 0.448.

One may observe that the F1-values obtained using both

techniques were quite similar, what lead us to evaluate not

only the measures, but also the data set obtained. Frequent
Closed Itemset has generated data sets with less elements

3Omitted due to page restriction

and, consequently, the F1-value reach such result by avoid-

ing false positives, which increase the measures of precision

and recall, but several CCs are ignored as well. The Commit
Frequency Analysis, on the other hand, has generated data

sets with greater number of elements, but reach similar F1-

value because it increases the number of false positive as

well. The increasing of false positive requires (and wastes)

time and effort on unnecessary analysis.

5.3 Combining Results

According to schema depicted in Figure 1, we aimed

at improving individual results dealing with the limitations

observed in Commit Frequency Analysis. We proposed to

combine the results by taking the intersection of their in-

dividual results. For that, we used results from Frequent
Closed Itemset Mining to compare to those files excluded

from Commit Frequency Analysis due to filtering. We fol-

lowed the steps: 1) Take the list of files excluded from pre-

vious Commit Frequency Analysis; 2) Compare the item-

sets obtained from Frequent Closed Itemset Mining, cre-

ating a set of intersections S; 3) For s ∈ S, obtain the

version which updated s; 4) Each file in version list must

be manually analyzed to verify whether there is a concern

that matches; 5) Compute the F-1-value for each group and,

then, the average of F1-value to obtain an overall score.

As first step, we filtered CF-values ≥ 10 getting 398 files.

We compared those files to itemsets from Frequent Closed
Itemset Mining – 44 files matched, but 33 was previously

considered related to files that have CF-value less than 10

– grouped in some version and, therefore, considered in a

changeset (step 2). So, 11 different files with CF-value in

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 31 should be submitted

to a new Commit Frequency Analysis, what helps on dealing

with the effect of filtering values in a distribution with high

Kurtosis value. For that, a list of versions where those files

were updated was created (step 3).

Each file in version list was manually analyzed, trying

to use the best matching (step 4), resulting in 65 different

CCs. The F1-value was computed (step 5) and overall F1-

value was 0.590. This result seems better, but it was reached

due to low cardinality on changeset (version) analyzed: the

first Commit Frequency Analysis had average of change-

set cardinality equal to 59.57, and for this analysis 9.47.

Even with smaller number of CCs identified, the reduction

of false positives has influenced to increase F1-value.

6 Conclusion

In this paper we present an approach for mining cross-

cutting concerns using results from two techniques: Fre-
quent Closed Itemset Mining and Commit Frequency Anal-
ysis, which is presented in this paper as well. Both tech-

343

niques deal with the same granularity level (files). Commit
Frequency Analysis is described step by step, its applica-

tions was presented, and we showed how to combine the re-

sults. In order to evaluate our approach, we chose a known

open source project used on several researches. The results

found in literature [2, 14, 5] were used as parameter to eval-

uate which crosscutting concern candidate would be clas-

sified as aspect. Also, this decision was based on practical

judgments rather than concepts and principles, as found in

literature, as well. We considered the best matches to not

introduce any bias. It was observed that combining results

leads to better sets of crosscutting concerns candidates. The

greater F1-values and the increased number of crosscutting

concerns identified are evidences of improvement.

Important observations were made about aspect mining

using software repository and the chosen techniques for this

paper, they are: a) the F1-values from both techniques are

quite similar, but obtained from sets with different charac-

teristics; b) the rate of false positives obtained along Fre-
quent Closed Itemset Mining experiments is lower than ones

obtained from Commit Frequency Analysis; c) we identified

more crosscutting concerns applying Commit Frequency
Analysis than applying Frequent Closed Itemset Mining; d)

applying filters on both techniques improves their final re-

sult significantly; e) results from Commit Frequency Anal-
ysis are improved by combining Frequent Closed Itemset
Mining results.

Our approach was validated with only one project soft-

ware repository, which is a known benchmark on aspect

mining research. However, we intent to conduct other ex-

periments using other software projects repositories, for ex-

ample, Eclipse4 and Tomcat5. Also, we intent to investigate

how other techniques that deal with mining repositories at

Method-Level Granularity can be used in a complementary

way to our work at file-level analysis.

Acknowledgment

We would like to thank Frank Mulder for sending us a

CSV file, sharing with us his results.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-

tion rules between sets of items in large databases. In SIG-
MOD ’93: Proceedings of the 1993 ACM SIGMOD interna-
tional conference on Management of data, pages 207–216,

New York, NY, USA, 1993. ACM Press.
[2] S. Breu and T. Zimmermann. Mining aspects from ver-

sion history. In Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering,

4www.eclipse.org
5http://tomcat.apache.org

pages 221–230, Washington, DC, USA, Nov. 2006. IEEE

Computer Society.
[3] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal

frequent itemset algorithm for transactional databases. In

D. Georgakopoulos and A. Buchmann, editors, Proceedings.
17th International Conference on Data Engineering, pages

443–452. IEEE Computer Society, 2001.
[4] G. Canfora, M. Di Penta, and L. Cerulo. Achievements and

challenges in software reverse engineering. Commun. ACM,

54(4):142–151, Apr. 2011.
[5] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and

T. Tourwe. A qualitative comparison of three aspect mining

techniques. In Proceedings of the 13th International Work-
shop on Program Comprehension, IWPC ’05, pages 13–22,

Washington, DC, USA, 2005. IEEE Computer Society.
[6] L. T. DeCarlo. On the meaning and use of kurtosis. Psycho-

logical Methods, 2(3):292–307, 1997.
[7] J. L. Devore. Probability & Statistics For Engineering And

The Sciences. Cenage Learning, Boston, MA, 2012.
[8] M. H. Dunham. Data Mining: Introductory and Advanced

Topics. Prentice Hall, 2002.
[9] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and tax-

onomy of approaches for mining software repositories in the

context of software evolution. Journal of Software Mainte-
nance and Evolution: Research and Practice, 19(2):77–131,

March 2007.
[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J. marc Loingtier, and J. Irwin. Aspect-oriented

programming. In Proceedings of the European Confer-
ence on Object-Oriented Programming, pages 220–242.

SpringerVerlag, 1997.
[11] M. Marin, L. Moonen, and A. van Deursen. A common

framework for aspect mining based on crosscutting concern

sorts. In Proceedings of the 13th Working Conference on
Reverse Engineering, WCRE’06, pages 29–38, Washington,

DC, USA, 2006. IEEE Computer Society.
[12] F. Mulder and A. Zaidman. Identifying cross-cutting con-

cerns using software repository mining. In Proc. of the Joint
ERCIM Workshop on Software Evolution and Int. Workshop
on Principles of Software Evolution, IWPSE-EVOL ’10,

pages 23–32, New York, NY, USA, 2010. ACM.
[13] E. F. Robert, E. Tzilla, C. Siobhan, and A. Mehmet. Aspect-

Oriented Software Development. John Wait, 2005.
[14] P. Tonella and M. Ceccato. Aspect mining through the for-

mal concept analysis of execution traces. In Proceedings
of the 11th Working Conference on Reverse Engineering,

WCRE’04, pages 112–121, Washington, DC, USA, 2004.

IEEE Computer Society.
[15] T. Uno, T. Asai, Y. Uchida, and H. Arimura. Lcm: An ef-

ficient algorithm for enumerating frequent closed item sets.

In In Proceedings of Workshop on Frequent itemset Mining
Implementations, 2003.

[16] F. Van Rysselberghe and S. Demeyer. Mining version con-

trol systems for facs (frequently applied changes). In Inter-
national Workshop on Mining Software Repositories, pages

48 – 52, Edinburgh, Scotland, UK, 2004. IEE.
[17] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.

Mining version histories to guide software changes. IEEE
Trans. on Software Engineering, 31(6):429–445, june 2005.

344

The Layered Architecture revisited: Is it an
Optimization Problem?

Alvine Boaye Belle1, Ghizlane El Boussaidi1,Christian Desrosiers1, Hafedh Mili2
1Department of Software and IT engineering, École de technologie supérieure

2 Department of Computer Science, Université du Québec à Montréal
Montréal, Canada

Abstract—In this paper we present an approach to reconstruct
the layered architecture of software systems. We revisit the
layered architectural style to extract a minimum set of
fundamental principles. These principles are used to specify a set
of constraints that a layered system must conform to. Recovering
the layered architecture of a system is then translated to an
optimization problem that we solve using a heuristic search
algorithm. Preliminary experimentations with the approach
yielded interesting results.

Keywords-reverse-engineering; architecture reconstruction;
layered architecture; layered principles; optimization

I. INTRODUCTION
The evolution process of a software system can span from

maintenance, to modernization, to an entire replacement of the
system [1]. Various other disciplines are considered as part of
this process including assessment, restructuring and refactoring
of the system’s architecture. There are many definitions of
software architecture in the literature (e.g., [3, 7, 8, 11]).
However, there is a consensus on the following: 1) architecture
represents a judicious partitioning of the system into parts with
specific relations among these parts [7]; and 2) architecture
aims at satisfying a set of functional requirements and quality
attributes [3, 8, 11]. Software architecture is commonly defined
as a set of components and connectors (i.e., interactions
between components). When designing software architectures,
an architect relies on a set of idiomatic patterns, commonly
named architectural styles or patterns, which describe families
of systems [3]. An architectural style determines the
vocabulary of components and connectors that can be used in
instances of that style, together with a set of constraints on how
they can be combined. Many common architectural styles are
described in [3, 7, 11]. Examples of such styles include layered,
pipes and filters, client-server and service-oriented styles; each
of these styles has its own vocabulary and constraints and
promotes some specific quality attributes.

Software systems are practically built by combining and
composing architectural styles. However many researchers
observed that the as-built architecture does not conform to the
initial style that guided its design (e.g., [4, 5]). This is mainly
due to: 1) the conceptual gap between the abstract elements that
define a style and the concrete source code constructs that
implements the system [5]; 2) violations of the style constraints
due to their misinterpretation; and 3) the continuous and
cumulative changes undergone by the system, which increases
its complexity and leads to a deviation from its initial design
[1]. Furthermore, the as-built architecture is often insufficiently

and inaccurately documented [4]. Hence to appropriately
support the evolution and maintenance of an existing software
system, a software architecture reconstruction process is
required to reconstruct and document its architecture. The
reconstructed architecture enables to understand the system, to
restructure it as needed, and to constrain its future evolution.

Many approaches were proposed to support architecture
recovery using various techniques and producing different tools
that support them [4]. The technique used is generally
dependent on the way the system’s data is represented. In [14],
techniques were classified into three automation levels: quasi-
manual, semi-automatic and quasi-automatic. In the context of
large and complex systems, we need a quasi-automatic
technique that alleviates the burden of reconstructing these
systems architectures. One such technique is clustering, which
is a common used technique to reconstruct architecture (e.g.,
[9, 10, 12, 13]). However, these approaches target specific
languages and systems and do not use a standard representation
of the data of the system under analysis. As a consequence,
resulting tools do not interoperate with each other [2]. To
tackle this problem, the OMG introduced the Knowledge
Discovery Metamodel (KDM) [6]. The KDM defines a meta-
model for representing—at various levels of abstraction—all
aspects of existing legacy systems. This meta-model provides a
common interchange format to ensure interoperability between
tools. Although the KDM specifies concepts and relations to
describe software architecture of existing systems, it does not
specify or suggest a way of inferring these high-level
representations from low-level data that were extracted from
these systems. Furthermore, most of existing approaches to
reconstruct architecture do not enable to build architectural
views as the ones commonly used in a forward design process
(e.g., a layered style [11]).

To address the issues mentioned above, we propose an
approach that makes use of the KDM standard to reconstruct
and document software architectural views of existing systems.
In this paper, we focus on systems built according to the
layered style which is a widely used pattern to structure large
software systems. We analyzed the layered style to establish a
minimal set of principles that can guide the recovery of a
layered architectural view of software systems. These
principles were used to define a set of metrics and constraints
that a layered software system should satisfy. The problem of
recovering layers of software systems is then translated into an
optimization problem that we solve using a heuristic search
algorithm. The main contributions of this paper are: 1) a
minimal set of principles and metrics that guide the layering

345

recovery process; 2) the translation of the layering recovery
problem to an optimization problem; and 3) a layering recovery
approach that is language and platform independent.

The paper is organized as follows. We first discuss the
layered style in section 2. Section 3 introduces the layering
principles that we retained from our analysis of this style. In
section 4, these principles are used to define metrics and
constraints that enable to formalize the layering recovery
process as an optimization problem. We describe our layering
reconstruction algorithm in section 5. Section 6 presents and
discusses the experimentation results. Related works are
discussed in section 7 and we conclude and outline some future
works in section 8.

II. BACKGROUND: THE LAYERED STYLE
The layered style is one of the most used styles to depict a

structural view of a software system. It was described in many
reference books and papers (e.g., [3, 11, 7, 19]). The layered
style is a technique for decomposing a software system into
groups of subtasks where each group of subtasks is at a
particular level of abstraction [11]. In other words, a layered
architecture is an organized hierarchy where each layer is
providing services to the layer above it and serves as a client to
the layer below [3]. The OSI reference model [17] is one of the
most known layered architecture system. In OSI, a layer uses
services provided by lower layers and adds value to them to
provide services needed by higher layers.

The layered style promotes a set of quality attributes which
include reuse, portability, maintainability, understandability,
and exchangeability ([11], [3], [7]). Different strategies can be
used to partition a software system into layers while
guaranteeing these quality attributes. The most common
layering strategies are the responsibility-based and the reuse-
based layering strategies [19]. The responsibility-based strategy
aims at grouping components of the system according to their
responsibility and assigning each responsibility group to a
layer. The reuse-based layering strategy aims at grouping
components of the system according to their level of reuse and
assigning the most reusable components to the bottom layers.
The OSI model [17] and the e-learning systems [21] are
respective examples of these two strategies.

The various layered style descriptions given in the books
and papers we analyzed imply that, in an ideal layered
architecture, a layer may only use services of the next lower
layer. This is referred to as strict layering in [11] and as closed
layering in [18]. This strict ordering relation is often violated in
practice; i.e., very often, layered systems allow a layer to use
services provided by any lower layer. Not restricting the
dependence of a layer to its lower adjacent layer is considered
as a regular feature in the open layering [18] and the relaxed
layering [11]. However, it is considered as a violation named a
skip-call violation in [20] and layer bridging in [7].

Exceptionally, a layer may need to rely on a service offered
by an upper layer. These dependencies are called back-calls in
[20] and are discussed in [7] under the name “upward usage”.
However, the quality attributes promoted by the layered style
are no longer supported when layers are allowed to use services
of higher layers without restriction [7]. Accordingly, the

structure of a layered architecture must be a directed acyclic
graph or at least a directed graph with very few cycles
connecting different layers.

Another important characteristic of a layered architecture is
its number of layers. A layered system must be structured into
an appropriate number of layers; this number depends on the
abstraction criterion [11] used to order the systems’
responsibilities. Different criterions may be used depending on
the system under analysis and the layering strategy. While the
OSI reference model has 7 layers [17], most of web-based
applications have three layers. In [22], it is recommended to
define some 4 to 6 layers of subsystems.

III. EXTRACTING PRINCIPLES FOR DISCOVERING SOFTWARE
LAYERS

Based on the analysis of several definitions and
descriptions of the layered style, we identified two important
dimensions of reasoning when it comes to applying this style:
responsibility and abstraction. Indeed, applying the layered
style means partitioning the system into a set of components
(i.e., responsibilities) and appropriately assigning these
components to a set of abstraction levels. We hence retain two
principles that will be used to specify the metrics and
constraints that will guide the reconstruction process of
software architectural layers. These two principles are
discussed below.

A. The Responsibility Principle
This principle states that each layer of the system must be

assigned a given responsibility [19], so that the topmost layer
corresponds to the overall function of the system as perceived
by the final user and the responsibilities of the lower layers
contribute to those of the higher layers [11]. The concept of
responsibility is defined in [8] as “the functionality, data, or
information that a software element provides”. Thus, the logic
of a software system is divided into several responsibilities.
Each responsibility is implemented by a set of interacting
components that need to be cohesive and specific to a given
domain [7]. In this context, each component of the system
should be designed to implement a specific service and must
belong to a single layer. Therefore, each component of the
system contributes to the realization of the principle of
responsibility.

This principle is related to the notion of modularity that has
already been subject to a lot of studies. Most of work on
architecture recovery using clustering techniques focused on
decomposing systems into components while minimizing the
coupling between resulting components and maximizing the
cohesion of each component (e.g., [16, 13, 10, 23]). In the
context of this paper, we analyze object oriented systems and
we rely on existing decomposition of these systems into
packages. Hence, we focus on the abstraction principle
discussed in the following subsection.

B. The Abstraction Principle
This principle states that the layers of a system must be

ordered according to the abstraction criterion that rules the flow
of communication between components of the system. The
abstraction principle encompasses two properties:

346

1) The Layer abstraction uniformity property: this
property has two facets. The first facet is related to the fact
that each layer must have a precise meaning [19]. This
characteristic is closely related to the responsibility principle.
The second facet corresponds to the fact that components of
the same layer must be at the same abstraction level. The level
of abstraction of a component often refers to its conceptual
distance from the “physical” components of the system [11],
i.e. hardware, database, files and network. Components at the
highest levels are domain specific [22], they generally contain
the visible functionalities provided by the system [11].
Somehow, this property led to several layering algorithms
based on a depth traversal of dependency graphs built from
existing software systems (e.g., [20, 23]).

2) Incremental layer dependency property: this property is

related to the “ideal layering property” that states that a
component in a layer (j) must only rely on services of the layer
below (j-1). As discussed above, this principle is the one that
is mostly violated, either through back-call or skip-call
dependencies between layers. Our analysis of the various
descriptions of the layered style and several open source
projects led us to conclude that the incremental dependency
property should be stated in a way that allows—to some
extent—the skip-call and back call violations. Hence, we
formulate this property as “components of layer j-1 are mainly
geared towards offering services to components of layer j”.
This means that in the event when there are some skip-call and
back-call dependencies between layers, the number of these
dependencies must be insignificant compared to the number of
downward dependencies between adjacent layers.

IV. THE LAYERED STYLE AS A COMBINATORIAL
OPTIMIZATION PROBLEM

In the following, we define a set of metrics and constraints
based on the abstraction principle as discussed above. These
metrics and constraints are then used to formalize the layering
principles as an optimization problem. In the context of our
paper, we focus on object oriented systems and we work at the
package level; i.e., we rely on existing decomposition of object
oriented systems into packages. Thus, we assume that these
packages have been designed in concordance with the
responsibility principle.

A. Extracting Metrics and Constraints from the Layered
Principles
To ensure the layer abstraction uniformity property, the

packages of the same layer should be at the same distance from
the “physical” or lowest layer packages. However, the
existence of back-call and skip-call dependencies introduces a
discrepancy between the packages’ distances, even when they
belong to the same layer. Hence, compliance with the layer
abstraction uniformity property derives largely from
compliance with the incremental layer dependency property.
To formalize the later property using constraints, we introduce
a number of metrics related to the dependencies between
layers.

We define the relative index of use of a layer j by a layer i
as the number of dependencies directed from layer i to layer j.
This index is obtained by summing the weights of the
dependencies directed from each package of layer i to each
package of layer j. The dependency between two packages
derives from the dependencies between their respective classes
and it includes class references, inheritance, method invocation
and parameters. In what follows, this relative index is labeled
as:

 IndexOfUse(i,j) when j = i-1. IndexOfUse(i,j) denotes
the number of dependencies directed from layer i to its
adjacent lower layer j.

 SkipUse(i,j) when j < i-1. SkipUse(i,j) is the number of
skip-call dependencies directed from layer i to layer j.

 BackUse(i,j) when i < j. BackUse(i,j) is the number of
back-call dependencies directed from layer i to layer j.

 IntraUse(i) (when i=j). IntraUse(i) is the number of the
dependencies inside layer i.

Figure 1 illustrates the calculation of the layer dependency
metrics for a system made of three layers where all
dependencies have the same weight (i.e., a weight of 1).

Figure 1. Example of the calculation of the 4 types of layer metrics.

In accordance with the incremental layer dependency
property, we want to minimize the number of skip-call and
back-call dependencies. This means that, apart from the upper
layer adjacent to layer j, we must minimize the relative index of
use relating other layers to layer j. However, we consider the
skip-calls as a necessary evil (i.e., skip-calls are often used for
performance reasons [11]) and tolerate them more than the
back-calls which lead to a poorly structured system. These
restrictions are formalized by the following constraint:

For all i, j, k | j<i and k<j-1, BackUse(j,i) ≤ SkipUse(j,k) ≤
IndexOfUse (j, j-1) (1)

Constraint (1) may be certainly satisfied when the number
of the layers of the system is very small (i.e., when layers are
merged). However, dependencies between packages of the
same layer are not recommended unless otherwise stated [24]
or when some concerns as portability need to be addressed [7].
Accordingly, we subjoined to constraint (1) the following
constraint that limits the number of intra-dependencies of a
layer:

IntraUse(j) ≤ IndexOfUse(j, j-1) (2)

347

B. Translating The Layering into an Optimization Problem
The reconstruction process that we propose aim at

rewarding the adjacency between layers while keeping their
intra-connectivity quite low and minimizing the skip-calls and
back-calls. Hence, we will use the metrics defined in the
previous section to guide the process of assigning the packages
of a given system to a set of layers. For this purpose, we define
the individual layering cost (ILC) of a given layer i of the
system as follows:

ILC(i)
 (3)

Where α is the cost of adjacent dependencies, β is the cost
of intra-dependencies, γ is the cost of skip-call dependencies
and δ is the cost of back-call dependencies. For instance, in
figure 1, ILC(3) = 2α + γ.

In order to penalize the undesired dependencies and satisfy
the two constraints defined before, the cost α must be lower
than the other costs.The global layering cost LC of assigning
the packages of a system to a set of n layers is then computed
by summing the individual layering cost for each layer i of the
system.

LC

The lower LC is, the better the assignment of packages to
layers is. Attempting to reconstruct a layered architecture while
minimizing its LC, is a problem that can be solved by adapting
optimization algorithms that rely on heuristic search to reduce
the search space.

V. RECONSTRUCTING THE LAYERED ARCHITECTURE USING
A HEURISTIC SEARCH ALGORITHM

In order to build the optimal layering of software systems,
we choose to adapt the hill-climbing technique [10] using our
LC as a fitness function. We focused on the hill-climbing
algorithm because it performs well in the context of large
systems and it has been successfully used in several
approaches. The algorithm works in an iterative way. It starts
by an initial partition of the system’s modules into a set of
clusters; usually a randomly generated partition as in [10].
Modules are then moved between clusters to improve the
partition according to some criterion. This criterion is based on
maximizing or minimizing a fitness function.

A high-level view of our adaptation of hill-climbing to the
layering problem is given in figure 2. It starts with an initial
partition consisting of a set of n layers in which the uppermost
one is constituted by the packages having no incident
dependencies; the lowermost layer of this partition contains the
packages having no outgoing dependencies; and the remaining
packages are randomly assigned to other layers. The so-called
initial system is then considered as the current solution of the
algorithm (line 1). In the following iterations (lines 3 to 20), all
the neighboring solutions are created (line 6) and evaluated
using their cost (line 8). A neighbor solution is computed by
moving a single package from a layer A to a layer B of the
current solution, provided these two layers are different. The
neighbor having the lowest value of LC is considered as the
best neighbor of the iteration (lines 9 to 12) and accepted as the

current solution if its cost is lower than the one of the current
solution (lines 14 to 17). The algorithm stops if the current
solution cannot be improved anymore (lines 18 and 19). In
order to compute the cost of each neighbor, we set the values of
α, β, γ and δ prior to the application of the algorithm.

Figure 2. A high level view of our layering algorithm.

The algorithm generates the best layering solution which is
generally made of 3 to 4 layers according to our experiments.
So, in order to refine the resulting layering solution, the user
can repeatedly re-execute the algorithm, selecting a given layer
that should be further partitioned into layers. The algorithm
will then be executed on a new partition constructed using only
the packages of the selected layer.

VI. EXPERIMENTS WITH THE APPROACH
We implemented a tool supporting our approach within the

EclipseTM environment. This tool is made of two modules. The
first module was built on top of the MoDisco open source tool
which enables to analyze source code files of the system under
study and to generate a KDM representation of the system.
This KDM representation is then used by our module to extract
the system’s packages and their dependencies which are used
to generate a module dependency graph. The latter allows the
creation of the initial partition that is the input of the second
module of our tool. The latter implements our layering
algorithm.

We carried out preliminary experimentations of our
layering algorithm on four open source projects. Some
characteristics of these projects are shown in Table I. Table II
summarizes the results of executing the algorithm on these
systems using three different setups. We indicate for each setup
the values of the cost parameters that were used and the
number of layers (3 in this case). Notice that the adjacency cost
(α) is set to 0 for all these setups; we reward downward
adjacent dependencies. Table II displays for each setup the
global layering cost (LC) for the solution returned by the
algorithm. It also shows, for each returned solution, four values
(Adjac, Skip, Intra, and Back) corresponding respectively to
the sum of the four metrics (IndexOfUse, SkipUse, IntraUse
and BackUse) of all layers of the given solution.

348

TABLE I. ANALYZED PROJECTS

Project Number
of files LOC Number of

packages
Package

dependencies
JReversePro 1.4.1 85 18 238 11 31
JHotDraw 7.0.6 310 51 801 24 89
JUnit 4.10 162 10 402 28 104
JFreeChart 1.0.14 596 209711 37 207

TABLE II. LAYERING RESULTS

 JReverseP. JHotDraw JUnit JFreeCh.

Setup 1
α =0, β =1,
γ = 2, δ = 4

LC 115 385 153 1069
Adjac 72 632 229 995
Skip 7 8 3 64
Intra 101 353 111 629
Back 0 4 9 78

Setup 2
α =0, β =2,
γ = 1, δ = 4

LC 185 816 277 1508
Adjac 91 523 218 1024
Skip 29 152 61 164
Intra 42 312 38 484
Back 18 10 35 94

Setup 3
α =0, β =2,
γ = 1, δ = 8

LC 209 600 297 1945
Adjac 72 647 229 997
Skip 7 106 3 67
Intra 101 243 111 623
Back 0 1 9 79

Interestingly, most executions of our algorithm on these
projects yield the best results for the setups 1 and 3. This has a
different explanation depending on the quality of the system’s
design. For projects including several cyclic dependencies
(e.g., JReversePro), the best results are obtained when the
packages involved in a cyclic dependency are assigned to the
same layer; this is possible only when the intra-dependencies
cost β is kept low (i.e., setup 1) or when the back-calls cost δ is
set to a high value (e.g., setup 3). Presence of several cyclic
dependencies reveals a poor structure of the system resulting

from its poor design or evolution. For properly designed
systems, we expected that our algorithm would yield the
optimal layering using the third setup which largely penalizes
back-calls and intra-dependencies with respect to skip-calls.
This was the case of the JHotDraw project whose optimal
layering is shown in Figure 3. In order to refine this layering,
we decided to further partition its lowermost layer into 2 layers.
The algorithm then generated a 4-layered system. This allowed
us to move from a solution costing 600 (see LC of the third
setup for JHotDraw in Table II) to a 4-layered solution costing

582. Provided that the layering cost does not increase, the user
may decide to further decompose the resulting layers. The
resulting layering for JHotDraw was corroborated by a manual
analysis of its source code. Another interesting fact we found
during experimentation is that beyond a given value of the
back-calls cost δ, the layering returned by the algorithm is the
same; i.e., for each of the four analyzed projects, the layering
solution is the same for all the values of δ that are greater or
equal to a given value (e.g., 8 for JHotDraw and JUnit)
provided that the other cost parameters are not altered.

VII. RELATED WORKS
Several software architecture reconstruction approaches

were proposed in the literature. Many of these approaches use
clustering techniques. Various clustering-based approaches are
discussed in [12] and [15]. Most of these approaches aim at
finding a clustering of the system that optimizes the modularity
of resulting components (e.g., [10, 13, 16]). Our work is more
related to the approaches proposed to recover or analyze
layered architectures (e.g., [20, 25, 26, 27]). In [25], a
framework is proposed for analyzing layered systems to assess
the coherence between the description of the architecture given
in design documents and the structure of the source code. The
framework relies on a set of questions for evaluating the
properties of a layered system and a set of metrics that help
answering these questions. This empirical study has shown that
strict layering is not enforced in layered systems as skip-calls
are made extensively however there are no back-calls. Though
the framework does not support the recovery of the layered
architecture, its results helped us adjust our skip-call cost
parameter compared to the intra and back-call cost parameters.

Laval et al. [26] propose an approach, called oZone, which
handles undesired cyclic dependencies and decomposes a
system into layers. They proposed two heuristics to find
dependencies that belong to cycles and impede the finding of
layers of a system. These dependencies are tagged by the
proposed algorithm as removable and they are ignored when
building layers of the system. In [20], the authors proposed 3
layering principles (skip-call, back-call and cyclic dependency)
and a set of metrics that measure the violation of these
principles. Although these principles are focused on detecting
violations, they are related to the abstraction uniformity and
incremental layer dependency properties proposed in this
paper. However, contrary to both [26] and [20], we do not rely

Figure 3: A 3-Layered solution returned by the algorithm for JHotDraw.

349

on any heuristic to resolve the cyclic dependencies problem. In
[27], a semi-automatic approach is proposed to identify
software layers. Classes that are used by many other classes are
grouped in the lowest layer while classes that rely on many
other classes are grouped in the highest layer. The remaining
classes are assigned to a middle layer. In both [26] and [27], it
is assumed that a module that does not have fan-out
dependencies belongs to the lowest-level layer and conversely
a module that does not have fan-in dependencies belongs to the
highest-level layer. However, when a module represents a
common subtask exclusive to components of a middle-level
layer, this module will not have any fan-out dependency but
still belongs to this middle-level layer. Likewise, a module that
starts some specific service of a middle-layer may not have any
fan-in dependency but still belongs to this middle-level layer.

VIII. CONCLUSION
The process of reconstructing the architecture of existing

systems remains a difficult task and an active research field in
software engineering. This process is mandatory in various
contexts, spanning from the re-documentation and the
understanding of existing systems to their restructuring and
migration. In this paper, we presented an approach that
reconstructs the software architecture of layered systems. To do
so, we defined a set of layering principles, metrics and
constraints. These elements enabled us to formalize the
layering recovery problem as an optimization problem that was
solved using a heuristic search method. Preliminary
experimentations on four open source projects yielded
interesting results from the approach. The approach is language
and platform independent since it relies on the KDM
specification standard. In addition, it supports the interaction
with users and domain experts to refine the layering results.

While we continue to refine the principles and metrics of
our approach, we need to perform more experiments and
analyses to properly tune the cost parameters used by our
algorithm. In the near future, we are planning to experiment our
approach on larger open source systems (e.g., Mozilla and Ant)
and compare our results with other approaches. We also intend
to explore the usage of domain-specific knowledge information
to improve the results; although using domain-specific
knowledge is known to confine the scope of the approach.

REFERENCES
[1] R. C. seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy

Systems: Software Technologies, Engineering Process and Business
Practices. Addison-Wesley Longman Publishing Co., 2003.

[2] W. Ulrich and P. Newcomb, Information systems transformation :
Architecture-Driven Modernization Case Studies, OMG Press, 2010.

[3] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

[4] C. Stoermer, L. O'Brien, and C. Verhoef, “Moving Towards Quality
Attribute Driven Software Architecture Reconstruction,” In Proceedings
of the 10th Working Conference on Reverse Engineering, 2003.

[5] D.R. Harris, H.B. Reubenstein, and A.S. Yeh, "Recognizers for
Extracting Architectural Features from Source Code," The 2nd Working
Conference on Reverse Engineering, 1995 (WCRE’95), pp.252-261

[6] OMG Specifications: http://www.omg.org/ [accessed in March 2013]
[7] P. Clements, et al., Documenting Software Architectures: Views and

Beyond, Addison-Wesley, 2003.
[8] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice,

Addison-Wesley, 2003.
[9] V. Tzerpos and R. C. Holt, “ACDC: An Algorithm for Comprehension-

Driven Clustering,” In Proceedings of the Seventh Working Conference
on Reverse Engineering, 2000 (WCRE'00), pp. 258-267

[10] B. S. Mitchell and S. Mancoridis. 2007. On the Evaluation of the Bunch
Search-Based Software Modularization Algorithm, Soft Comput., 2007,
vol. 12, Issue 1, pp. 77-93

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, John
Wiley & Sons, 1996

[12] O. Maqbool and H.A. Babri, Hierarchical Clustering for Software
Architecture Recovery, IEEE Transactions on Software Engineering,
2007, vol.33, no.11, pp.759-780

[13] C-H. Lung, M. Zaman and A. Nandi, Applications of Clustering
Techniques to Software Partitioning, Recovery and Restructuring, The
Journal of Systems and Software, 2004, vol. 73, pp. 227–244

[14] D. Pollet, et al., “Towards A Process-Oriented Software Architecture
Reconstruction Taxonomy,” The 11th European Conference on Software
Maintenance and Reengineering, 2007 (CSMR '07), pp. 137-148

[15] M. Shtern and V. Tzerpos, Clustering Methodologies for Software
Engineering, Advances in Software Engineering, 2012.

[16] Q. Zhang, D. Qiu, Q. Tian, L. Sun, “Object-oriented software
architecture recovery using a new hybrid clustering algorithm,” The 7th
Int. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD), 2010.

[17] Zimmermann, H., "OSI Reference Model--The ISO Model of
Architecture for Open Systems Interconnection," IEEE Transactions on
Communications, vol.28, no.4, pp.425,432, Apr 1980.

[18] Clemens A. Szyperski. Component Software. Addison Wesley, 1998.
[19] Eeles, P. “Layering Strategies”, Rational Software White Paper, TP 199,

08/01, 2002.
[20] S. Sarkar, G. Maskeri, S. Ramachandran, “Discovery of architectural

layers and measurement of layering violations in source code”, Journal
of Systems and Software, Vol. 82 (11), 2009, pp. 1891-1905

[21] Paris, M., "Reuse-based layering: a strategy for architectural frameworks
for learning technologies," IEEE Int. Conf. on Advanced Learning
Technologies, 2004, pp.455-459

[22] P. B. Kruchten. “The 4+1 View Model of architecture”. IEEE Software,
12(6), Nov. 1995, pp. 42 – 50.

[23] G. El Boussaidi, A. Boaye-Belle, S. Vaucher, H. Mili, "Reconstructing
Architectural Views from Legacy Systems", in the 19th Working
Conference on Reverse Engineering (WCRE'12), 2012.

[24] Bourquin, F., Keller, R.K,.”High-impact Refactoring Based on
Architecture Violations”, In the 11th European Conference on Software
Maintenance and Reengineering (CSMR '07), 2007, pp. 149-158.

[25] Lague, B.; LeDuc, C.; Le Bon, A.; Merlo, E.; Dagenais, M.; , "An
analysis framework for understanding layered software architectures,"
Proc. of the 6th IWPC '98, pp.37-44, 1998.

[26] Laval, J., Anquetil, N., Bhatti, M.U., Ducasse, S., “OZONE: Layer
Identification in the presence of Cyclic Dependencies”, submitted to
Science of Computer Programming, 2012.

[27] G. Scanniello, A. D'Amico, C. D'Amico, T. D'Amico,“Architectural
layer recovery for software system understanding and evolution”,
Software Practice and Experience, 2010, vol. 40(10), pp. 897-916.

350

Towards the Establishment of a Reference Architecture
for Developing Learning Environments

Ellen Francine Barbosa, Maria Lydia Fioravanti, Elisa Yumi Nakagawa, José Carlos Maldonado

University of São Paulo (ICMC/USP)
São Carlos (SP), Brazil

email: francine, fioravanti, elisa, jcmaldon@icmc.usp.br

Abstract—Learning environments are moving away
from monolithic applications towards more open, flexible
components, capable of interoperating with other learning
components. In spite of the diversity of learning environments,
there is a lack of uniformity regarding their basic
functionalities. Thus, the establishment of core functionalities
represents an issue to the development of these environments.
In a different but related perspective, reference architectures
have emerged as an alternative for promoting reuse of
design expertise and facilitating the development of systems.
Aspect-Oriented Software Development (AOSD) has also
arisen as a promising software development approach,
contributing to a better Separation of Concerns (SoC).
Motivated by this scenario, in this paper we discuss the
establishment of EDUCAR, an aspect-oriented reference
architecture for developing learning environments. EDUCAR
has been constructed by means of a systematic development
process. As a consequence, architectural requirements,
concepts and crosscuting concerns regarding the learning
environments domain have been established as well. The
results achieved from a preliminary evaluation of EDUCAR
suggest the adequacy of the proposed architecture with respect
to the learning environments domain.

Keywords-learning environment; reference architecture;
aspect-oriented software development

I. INTRODUCTION

The Internet and advances in Information and

Communication Technologies have changed the educational

setting, both in traditional and distance learning. As a

result, there has been a change in the way that educational

content is designed, developed and delivered to learners.

Faced with these transformations, in recent years there is

an increasing demand for open, scalable and flexible learning

environments [1]. In short, a learning environment consists

of a software application that automates the administration,

tracking and reporting of training events. Good examples are

Moodle1, Sakai2 and dotLRN3.

According to Ellis [2], a robust learning environment

should be able to: (i) centralize and automate administration;

(ii) use self-service and self-guided services; (iii) assemble

1http://moodle.org
2http://sakaiproject.org
3http://dotlrn.org

and deliver learning content rapidly; (iv) consolidate training

initiatives on a scalable web-based platform; (v) support

portability and standards; and (vi) personalize content

and enable knowledge reuse. Each environment has also

specific features concerning pedagogical, technical and

management issues. More important, learning environments

should integrate with other enterprise application solutions

used by human resources and accounting, enabling the

management to measure the impact, effectiveness and overall

cost of training initiatives.

Despite the diversity of existing learning environments, a

common weakness observed is the lack of uniformity

regarding their basic functionalities. Actually, the

establishment of core functionalities constitutes a significant

issue to the development of such environments.

Reference architectures can play a fundamental role in

this perspective, aiming at guiding the building of learning

environments. Basically, a reference architecture refers to

a special type of software architecture that captures the

essence of the architectures of a collection of systems in

a given domain [3]. Its purpose is to provide guidance for

the development, standardization and evolution of system

architectures of a specific domain.

In a different but related perspective, Aspect-Oriented

Software Development (AOSD) has also arisen as a

promising software development approach, contributing to

a better Separation of Concerns (SoC), resulting in more

reusable, maintainable and evolvable software systems [4].

Motivated by this scenario, in this paper we discuss the

establishment of EDUCAR – an aspect-oriented reference

architecture for developing learning environments. The main

goal of EDUCAR is to provide guidance for the architectural

design of new versions of learning environments as well as

promoting a better reuse, evolution and maintenance of the

existing ones. EDUCAR has been constructed by means of a

systematic process, referred to as ProSA-RA [5]. ProSA-RA

focuses on how to deal with architectural aspects as well as

on how to represent and evaluate these architectures.

The remainder of this paper is organized as follows. In

Section II, related work is briefly presented. In Section III

we provide an overview of ProSA-RA. In Section IV, we

351

describe EDUCAR, focusing on its development through the

application of ProSA-RA. In Section V, we summarize our

contributions and the main perspectives for further work.

II. RELATED WORK

Arch-int et al. [6] proposed a reference architecture

to promote interoperability of existing learning systems

by means of web services. Still regarding interoperability,

Habraken [1] described a reference architecture in which

learning components from different suppliers could be

integrated into one e-learning solution for a customer.

Anido et al. [7] proposed a reference architecture that

identifies common, standardized software services for

distributed e-learning systems. In the same perspective,

Palanivel and Kuppuswami [8] designed a service-oriented

reference architecture for personalized e-learning systems.

In Schmidt’s work [9], a layered reference architecture

for context-aware learning support systems was defined. Li

et al. [10] also presented a layered reference architecture

for learning environments, aiming at building scalable

environments to support an arbitrary number of users, while

providing them with a personalized environment.

It is important to point out that reference architectures

for developing learning environments are still very specific,

sometimes considering only one type of environment,

for instance, e-learning systems. Besides that, SOA

(Service-Oriented Architecture) [11] has been the basis

for almost all architectures, such as [6], [8], [9]. Also,

the SoC provided by Aspect-Orientation approach has not

been widely investigated for the learning domain. Last

but not least, none of the proposed architectures was

developed by using a process for designing, representing

and evaluating them. Thus, addressing such issues by

adopting a systematic process to the establishment of a

more general, aspect-oriented reference architecture for

developing learning environments is the focus of our work.

III. PROSA-RA: AN OVERVIEW

ProSA-RA is a process that systematizes the design,

representation and evaluation of aspect-oriented reference

architectures [5]. The process comprises four basic steps.

Firstly, the main information sources are selected and

investigated (Step RA-1). These sources must provide

information about processes, activities and tasks that can

be supported by software systems of the target application

domain. ProSA-RA highlights people, sofware systems,

publications and domain ontologies as the most relevant

information sources to be considered.

Secondly, the architectural requirements of the reference

architecture are identified, describing the common

functionalities and configurations presented in systems

of the target domain (Step RA-2). To do so, four main tasks

are performed: (i) identification of the system requirements

(functional and non-functional); (ii) establishment of

the reference architecture requirements (architectural

requirements); (iii) identification of the domain concepts,

i.e., each requirement is associated to a concept that better

addresses it; and (iv) classification of domain concepts in

crosscutting or non-crosscutting concerns.

The third step consists of establishing the architectural

description of the reference architecture (Step RA-3).

To build this description, well-known architectural styles

and patterns (e.g., client-server, three-tier architecture

and MVC) as well as a combination of them and

other styles can be considered. Besides that, ProSA-RA

proposes some architectural views to describe reference

architectures: (i) module view: shows the structure of the

architecture in terms of packages, classes, containment,

specialization/generalization and relationships; (ii) runtime

view: shows the structure of the systems (that will be built

based on the reference architecture) when they are executing;

(iii) deployment view: describes the hardware, the software

system or subsystems that are installed on that hardware, and

the network connections, if they exist; and (iv) conceptual

view: describes the understanding of each domain concept

or term used in the reference architecture.

Finally, an evaluation of the resulting architecture

is conducted by means of a checklist-based inspection

approach (Step RA-4). The checklist is composed of 32

multiple choice questions. The main idea is to guide

reviewers on detecting defects in the documents related to

the reference architecture design.

ProSA-RA has been applied in the establishment of

reference architectures for several domains, such as visual

mining, software engineering environments, mobile robotics,

computer games and marine systems. Next, we discuss its

use in the learning environments domain.

IV. ESTABLISHMENT OF EDUCAR

In this section we present EDUCAR, focusing on its

development according to ProSA-RA. The establishment

of EDUCAR involved different skills from four specialists:

one domain expert, one system analyst and two software

architects.

RA-1: Information Sources Investigation

We began the establishment of EDUCAR by choosing

a set of learning environments to be considered as

information sources in this domain. Our selection was

based on the following criteria: (i) the first initiatives on

learning environments, such as WebCT/Blackboard4; (ii)

environments widely adopted currently, such as Moodle

and Sakai; and (iii) environments with specific features,

such as IWT5 (which explores the use of ontologies) and

AdaptWeb6 (which addresses adaptive issues on learning).

4http://www.blackboard.com
5http://www.didatticaadistanza.com
6http://adaptweb.sourceforge.net

352

Experts’ knowledge was also considered. Both proprietary

and open source initiatives were investigated. At the end, 12

learning environments were considered. The complete list of

systems selected is available at [12].

Additionally, we also conducted a systematic review in

order to identify publications addressing characteristics,

functionalities and requirements of architectures of learning

environments. In the first round of the systematic review, 60

research works were retrieved. Then, based on the inclusion

criterion defined, a subset of these works was selected. In

the end, 40 works were considered for full reading. Table I

summarizes the systematic review protocol.

At the end of Step RA-1, we were able to get considerable

knowledge about the learning environments domain. This

knowledge acts as a basis for the development of EDUCAR.

RA-2: Architectural Requirements Establishment

Based on the knowledge obtained from Step RA-1, we

were able to identify 13 categories of functionalities with

respect to learning environments: (i) Content: addresses

issues of authoring and presentation of the educational

content; (ii) Learner’s Assessment: addresses issues of

authoring, presentation and feedback of the learner’s

assessments; (iii) Communication: addresses issues of

communication and collaboration among users of the

learning environment; (iv) Adaptation: deals with adaptive

issues on learning; (v) Documentation: deals with course,

user and system documentation; (vi) Course Coordination:

addresses coordination issues related to the course; (vii)

System Administration: deals with administrative issues

related to the system; (viii) Storage: deals with the storage

of course and user information; (ix) Standards Adequacy:

addresses issues of adequacy to learning standards (such as

IMS, SCORM and LOM); (x) Multilanguage: deals with

the system support for different languages; (xi) Interface:

deals with the different available interfaces provided by

the system; (xii) Interaction Mechanisms: deals with the

interaction mechanisms provided by the system; and (xiii)

Access Mechanisms: deals with the mechanisms provided by

the system to access user and course information.

Each category was divided in subcategories and, for each

of them, a set of functionalities was identified. Consider,

for instance, the Learner’s Assessment category. Authoring
of questionnaires, Delivery of exercises and Performance
reports are functionalities addressed by the subcategories

Authoring, Presentation and Feedback, respectively. Table

II shows the subcategories and functionalities identified for

Learner’s Assessment. Altogether, 18 functionalities were

identified for this category.

Based on the set of functionalities established, 123

system requirements for learning environments were

identified. Table III shows a small part of them. Then,

1http://portal.acm.org
2http://ieeexplore.ieee.org

a detailed analysis of such requirements was conducted

to identify the architectural requirements. For instance,

system requirements related to the authoring of assessment

were mapped to a single architectural requirement (Allow
authoring of assessment). The 123 system requirements were

mapped to a set of 18 architectural requirements (Table IV

(column 2)).

Table III
EXAMPLES OF SYSTEM REQUIREMENTS AND

ARCHITECTURAL REQUIREMENTS

Nr System Requirement Architectural Requirement
...

39 Allow authoring of tasks Allow authoring of assessment

40 Allow automatic authoring of assessments Allow authoring of assessment

41 Allow authoring of quizzes Allow authoring of assessment

42 Allow authoring of questionnaires Allow authoring of assessment

43 Allow authoring of online assessments Allow authoring of assessment

44 Allow authoring of multiple choice tests Allow authoring of assessment

45 Allow authoring of exams Allow authoring of assessment

...

From the architectural requirements, we were able

to determine the main concepts related to the learning

environments domain (Table IV (column 3)). For instance,

architectural requirements 3 and 4, related to synchronous

and asynchronous communication, were mapped to the

concept Communication; architectural requirements 6 and 7,

related to authoring of learning materials and assessments,

were mapped to the concept Authoring; and so on.

Finally, we identified which of these concepts had

crosscutting characteristics (Table IV (column 4)). Among

all concepts analyzed, Personalization was the only one

that presented a crosscutting characteristic, i.e., it is

a crosscutting concern. Indeed, functionalities related to

personalization are generally spread for several parts

(modules) of a learning environment and personalization

can occur as needed by the user (no matter if he/she is

an administrator, instructor, monitor or learner). At the end,

13 concepts were established, one of them presenting a

crosscutting characteristic.

RA-3: Reference Architecture Design

Considering the architectural styles and patterns found in

the learning environments previously analyzed, we chose

to build EDUCAR based on well-known and consolidated

architectural styles of interactive systems and Web systems:

the architectural pattern MVC and the three-tier architecture.

To adequately represent EDUCAR, we built its architectural

views (module view, runtime view and deployment view)

using UML. For the sake of space, only the module view

(Figure 1) is discussed herein.

The module view is composed of three tiers/layers. The

persistence layer corresponds to the set of data that needs to

be stored by the learning environment. A database (managed

by a DBMS), a repository (a central place in which an

aggregation of data is kept and maintained in an organized

353

Table I
SUMMARY OF THE SYSTEMATIC REVIEW PROTOCOL

Name Description

Research Question Which features, functionalities and requirements of architectures of learning environment are found in the literature?

Keywords learning management system, course management system, personal learning environment, requirement, feature, characteristic

Search String (“learning management system” OR “course management system” OR “personal learning environment”) AND (requirement OR characteristic
OR feature)

Publication Database ACM Digital Library1 and IEEEXplore2

Inclusion Criterion Does the publication describe a characteristic, a functionality and/or a requirement of architectures of learning environments?

Table II
SUBCATEGORIES AND FUNCTIONALITIES OF THE Learner’s Assessment CATEGORY

A
d

ap
tW

eb

A
te

n
a

A
u

la
N

et

C
o

L

D
o

tl
ea

rn

E
u

re
k

a

IW
T

M
o

o
d

le

S
ak

ai

T
el

ed
u

c

T
id

ia

W
eb

C
T

Authoring
Authoring of tasks � � � � �

Automatic authoring of assessments � � �

Authoring of quizz � �

Authoring of questionnaries � �

Authoring of online assessments � � � � � � �

Authoring of multiple choice tests � �

Authoring of exams �

Presentation
Delivery of exercises � � � � � �

Nook study � � � �

Feedback
Assessment research �

Opinion research �

Peer assessment �

Access statistics � � � � � �

Tracking systems � � � � � �

Grades � � �

Performance reports � � � � �

Participation reports � � � � � � �

Frequency reports � � � � �

Table IV
DOMAIN CONCEPTS FOR LEARNING ENVIRONMENTS

Nr Architectural Requirement Concept Cc

1 Deliver course information Course Documentation N

2 Deliver system information System Documentation N

3 Allow synchronous communication Communication N

4 Allow asynchronous communication Communication N

5 Allow content adaptation Adaptation N

6 Allow authoring of learning material Authoring N

7 Allow authoring of assessment Authoring N

8 Allow learner’s assessment Assessment N

9 Deliver learning material Presentation N

10 Provide feedback of assessment Assessment N

11 Manage course Course Management N

12 Manage users Users’ Management N

13 Manage system System Management N

14 Allow adequacy to learning standards Standards Adequacy N

15 Provide support for multilanguage Personalization Y

16 Provide support for templates Personalization Y

17 Provide system security System Administration N

18 Manage learning material Presentation N

way) or a file system (set of files and where they are placed

logically for storage and retrieval) can be used.

The presentation layer refers to server side modules which

are responsible for the user interface presented in client side.

This layer is composed of: (i) the Controller element,

which processes events (typically user actions) and invokes

the functionalities implemented by the Model element; and

(ii) the View element, which contains the user interface.
The application layer contains the Model element, which

aggregates the functionalities related to the core of learning

environments. This layer comprises six modules:
– content_authoring: One of the core modules

of EDUCAR, it is responsible for the development of

educational content (i.e., materials and assessments). Issues

addressed in this module are related to: (i) structuring

and modeling of content: involves the identification and

representation of concepts and their inter-relationships, and

instructional activities (exercises, practical assignments, lab

tasks, and so on.); (ii) editing of content: involves the

creation of documents and media (e.g., texts, slides, images,

and videos); (iii) automatic generation of content: relevant

when the content is represented in a machine-readable

format; (iv) sharing, reuse and integration of content: they

354

Figure 1. EDUCAR: Module View

refer to the use of domain ontologies, dictionaries of terms,

glossaries, among others, as supporting mechanisms to the

development and evolution of content; and (v) capture of

content: refers to the capture and storage of the discussions

and experiences that occurred during classes and later

integration and synchronization of the multiple streams of

information captured (e.g., audio, video, and notes).

– education: Another core module of EDUCAR, it is

responsible for the presentation and delivery of educational

content as well as the learners’ assessments. It also covers

issues related to the content adaptation. According to

parameters such as background, objectives, interests and

learning profile of each learner, different ways of structuring

and navigating for the same content is established.

– collaboration_communication: Gathers

supporting tools for synchronous and asynchronous

communication (e.g., chats, web conferences and e-mails)

and for collaborative work (e.g., wikis and forums).

– administration: Covers administrative issues,

focusing on the management of users and courses.

Regarding the management of users, it addresses issues

of authentication and establishment of access levels to

the users, as well as inclusion, exclusion and update of

the users’ information. Reports of learners’ performance,

participation and frequency are also considered. In terms of

course management, the module covers topics such as course

inclusion, exclusion and update, generation of statistics, and

course backup, among others.

– documentation: Responsible for providing

mechanisms for the management and storage of documents.

Thus, documentation on the learning environment (e.g., help

and FAQ), users and courses (e.g., objectives, lesson plans,

schedule of classes and course FAQ) must be considered.

Other types of documentation and/or relevant information

to the environment can also be considered in this module.

– personalization: Personalization was classified

as a crosscutting concern. So, this module must encapsulate

a crosscutting concern and, therefore, it is an architectural

aspect. It establishes mechanisms for the creation

and use of templates, support of multilanguage and

adequacy to standards (such as IMS, SCORM and

LOM). As a crosscutting concern, it affects all other

modules (represented by dashed lines and stereotype

<<crosscuts>>). Indeed, the functionalities implemented

in this module impact other modules, changing their

behavior to address functionalities related to personalization.

To compose an integrated learning environment,

communications among modules/packages must also

be established. Regarding relationships among the

packages/modules, the module content_authoring
communicates with the module education to make the

content available to learners. It also communicates with

the module administration to get information about

the users’ access levels for determining, for example,

if a given user is allowed to create content in some

course. The module education communicates with

the module collaboration_communication since

collaborative and communication tools can also be used

to support the learning activities. Finally, the modules

administration and documentation communicate

each other since documentation is also responsible

for documenting the information about users and courses

managed by the module administration.

To promote SoC in the learning environments built

from EDUCAR, each module in the application layer

was designed as separated as possible, enabling that each

one can be designed and implemented as an independent

tool (or subsystem). They can be further aggregated in

a learning system, composing an integrated environment.

Particularly, the module personalization, which

aggregates a crosscutting concern, can be also developed

as an independent tool.

Notice that during the development of all independent

tools but for personalization, the principle of

obliviousness [13], proposed by the AOSD community, can

be considered. This principle implies that these tools could

be oblivious from the fact that their semantics may be

modified at some later stage through the introduction of a

tool that implements a crosscutting concern; in this case, a

tool that automates personalization.

Additionally to the modules in the package

model, we have also foreseen the package

crosscutting_services. It is composed by other

architectural aspects that automate services considered

crosscutting concerns, such as persistence and access

control. Observe that this package is not directly related

355

to learning environments domain, but considering the

crosscutting nature of the services it provides, it was

inserted into EDUCAR aiming at improving the SoC.

RA-4: Reference Architecture Evaluation

Aiming at evaluating EDUCAR, we conducted an

inspection on its architectural views using the 32 questions

of the checklist provided by ProSA-RA. We evaluate quality

characteristics of the reference architecture: maintainability,

performance, security, usability, portability and reuse.

Examples of questions are: Are the interfaces among
modules well-defined? and Is it easy to remember how the
modules are organized and are related among them? We also

evaluate the architectural description through identification

and elimination of defects related to omission, ambiguity,

inconsistency, as well as strange and incorrect information.

Examples of questions are: Is the reference architecture
develop based on the domain terms that are widely used and
well-understood? and Are the architectural views sufficient
and adequate to represent all elements of the domain?

The results achieved from this preliminary evaluation

suggest the adequacy of EDUCAR with respect to the

learning environments domain. The consistence among the

architectural views of EDUCAR was also verified. Details

regarding the evaluation conducted can be found at [12].

V. CONCLUSIONS AND FURTHER WORK

In this paper we described an aspect-oriented reference

architecture for learning environments. The main

contribution of EDUCAR lies on providing guidance

for architectural design of new learning environments as

well as for evolution and maintenance of the existing ones.

As a further work, we point out the need of conducting

a more complete evaluation of EDUCAR. This evaluation

has been planned and will require efforts to develop

a considerable set of learning environments. Quantitative

studies involving detailed experiments to measure the effort

required to use EDUCAR have to be conducted as well.

Moreover, the architectural description of EDUCAR has

been currently completed through creation of the conceptual

view using thesauri, what will contribute to its easier

understanding and dissemination.

As a final remark, we highlight that knowledge about

any domain emerges, evolves and consolidates over time.

Reference architectures must encompass this new knowledge

and must also be continually updated. So, EDUCAR must

also be continually evolved, inserting these new types of

knowledge in order to not deteriorate.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding

agencies (FAPESP, CAPES, CNPq) and INCT-SEC (CNPq

573963/2008-8, FAPESP 08/57870-926) for their support.

REFERENCES

[1] J. Habraken, “Reference architecture for e-learning solutions,”
Master’s thesis, Open University, UK, Jan. 2008.

[2] R. K. Ellis, “Field guide to learning management systems,”
ASTD, Tech. Rep., 2009.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice. Addison-Wesley, 2003.

[4] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes,
C. Maeda, and A. Menhdhekar, “Aspect-oriented
programming,” in 11th Eur. Conf. on Object-Oriented
Programming, Jyväskylä, Finland, 1997, pp. 220–242.

[5] E. Y. Nakagawa, F. Ferrari, M. M. F. Sasaki, and J. C.
Maldonado, “An aspect-oriented reference architecture for
software engineering environments,” The Journal of Systems
and Software, vol. 84, no. 10, pp. 1670–1684, 2011.

[6] N. Arch-int, C. Lursinsup, and P. Sophatsathit, “A
reference architecture for interoperating existing e-learning
systems using metadata and web services model,” in
CIMCA-IAWTIC’05, 2005, pp. 891–896.

[7] L. Anido, M. Llamas, M. J. Fernández, J. Rodrı́guez,
M. Caeiro, and J. Santos, “A standards-driven open
architecture for learning systems,” in ICALT’01, Madison
(WI), Aug. 2001, pp. 3–4.

[8] K. Palanivel and S. Kuppuswami, “Service-oriented
reference architecture for personalized e-learning
systems (SORAPES),” International Journal of Computer
Applications, vol. 24, no. 5, pp. 35–44, Jun. 2011.

[9] A. Schmidt, “Impact of context-awareness on the architecture
of learning support systems,” in Architecture Solutions for
E-learning Systems, C. Pahl, Ed. Idea Group Publ., 2007.

[10] Q. Li, R. W. H. Lau, E. W. Leung, F. Li, V. Lee, B. W.
Wah, and H. Ashman, “Emerging internet technologies for
e-learning,” Internet Computing, pp. 11–17, jul/aug 2009.

[11] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: A research roadmap,”
International Journal of Cooperative Information Systems,
vol. 17, pp. 223 – 255, 2008.

[12] E. Y. Nakagawa, E. F. Barbosa, M. L. Fioravanti, and
J. C. Maldonado, “ProSA-RA: A process for the design,
representation, and evaluation of aspect-oriented reference
architectures,” University of São Paulo (ICMC-USP), São
Carlos, SP, Tech. Rep., Nov. 2012.

[13] R. Filman and D. Friedman, “Aspect-oriented programming
is quantification and obliviousness,” in OOPSLA 2000,
Minneapolis, MN, 2000, pp. 21–35.

356

Testing Configurable Architectures For Component-Based Software Using an Incremental
Approach*

Chuanqi Tao1, Bixin Li1∗, Jerry Gao2

1School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
2School of Computer Engineering, San Jose State University, San Jose, CA, USA

Abstract—Configurable software lets users customize applications
in many ways, such as different configurable environments, diverse
functions, and various configurable architectures. As the advance of
software component technology, engineers encountered different issues
and challenges in testing and automation of configurable components
and component-based programs. In previous work, we proposed an
approach to configuration testing based on a semantic tree, to model,
present, and analyze diverse composite components and configurable
software. Various configurations are modeled based on the spanning
tree, which is a subtree of semantic tree. For realistic component-based
software, there might exist a number of configurable combinations, i.e.,
the number of subtrees can be unimaginably high. Thus configuration
testing becomes very complex and not cost-effective. In this paper, we
propose an incremental approach to testing configurable architectures
of component-based software based on the semantic tree model.
Compared to our existing work, the new approach could reduce the
testing complexity significantly. The initial study results indicate the
proposed approach is feasible and effective in testing configurable
architectures for component-based software.

Keywords-test modeling and analysis; component-based software;
configurable testing; test complexity

I. INTRODUCTION

Today, component-based software engineering is a widely-used

approach in software construction. Many modern software systems

are constructed based on reusable components, such as third-party

components and in-house built components. Hence, testing and

retesting components and component-based systems has been a

very hot research subject in the past decade [1–5]. As the advance

of software component technology, the complexity of modern soft-

ware and complex components increased from functional compo-

nent box, frameworks/middleware, and configurable/customizable

complex components. Software users (or clients) are allowed to

configure, select, and customize them based on their functional

requirements, desirable environments, and architectures. Now en-

gineers lack well-defined test process, adequate test models and

criteria, as well as test automation solutions for configurable

components and systems. Our previous paper [6] used a semantic

tree model-based approach to to assist engineers to perform test

modeling and analysis for configurable component-based systems.

This model can be used to present diverse software component

configurations statically or dynamically. However, testing systems

of this kind presents significant challenges to practitioners in the

*Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and No. 60973149, and partially Sup-
ported by Doctoral Fund of Ministry of Education of China under Grant
No. 20100092110022, and partially by National High Technology Research
and Development Program under Grant No. 2007AA01Z141 and No.
2008AA01Z113.

*Correspondence to: bx.li@seu.edu.cn

field, due to the large number of possible combinations. Currently,

it is infeasible to completely test configurable systems before

release [3, 7]. In our previous work, various configurations are

modeled using the spanning tree model, which is a subtree of

semantic tree. In realistic component-based software, the variety

of configurable architectures can increase to an unacceptable level,

resulting in configuration testing with high complexity.

In this paper, we focus on the configurable architectures which

allow users to select different organization and composition struc-

tures based on available components and building parts. Therefore,

the main research question in this paper is how to effectively testing

configurable architecture, while the testing complexity can be

reduced. A new approach to testing configurable software systems

is presented in the paper, specifically aiming at modeling config-

urable architectures. In this approach, we do not test architecture

thoroughly using diverse configurations modeled by spanning trees.

Instead, we use an incremental approach to modeling configuration

testing of system architecture. The new approach can reduce testing

complexity significantly, yet achieve adequate test coverage. The

paper has two primary contributions in software component testing.

Firstly, it provides an incremental approach to modeling, presenting

and analysis of diverse configurations in configurable components

for configurable selective architectures. Secondly, it can reduce test

complexity for configurable architectures compared with previous

work.

The paper is structured as follows. The next section discusses the

basic backgrounds. Section IV presents the incremental approach

to configuration testing. Section V reports the results of empirical

study. The related work is provided in Section VI. Conclusion and

future work are summarized in Section VII.

II. BACKGROUNDS

A. Configuration Testing

Configurable software is a program supported with a capability

that allows users to make various configuration decisions statically

or dynamically to generate different deployment instances based

on their desires. Many modern frameworks and component-based

software allow users to make configuration decisions such as

environment configuration, function configuration, and architecture

configuration.

Configuration testing is utilized to validate configurable compo-

nents and programs to achieve adequate test criteria and support test

automation. Configurable component refers to a composable com-

ponent, which not only provides a specified contracted interface,

domain-specific service function and development solution with

necessary artifacts. Similarly, configurable software is a program

357

Table I
THE NOTATIONS OF SEMANTIC RELATIONS IN THE SEMANTIC TREE

Relations Semantic descriptions
(P is a parent node, and Ci is its child node)

EOR(P, 〈C1, C2〉) P-Node must be configured with
two child nodes C1 and C2 exclusively

AND(P, 〈C1, ..., Cn〉) P-Node must be configured with
all of its child nodes C1,..., Cn

SELECT − 1 P-Node must be configured with one
(P, 〈C1, ..., Cn〉) of its selective child nodes C1,..., Cn

SELECT − M P-Node must be configured with M selective
(P, 〈C1, ..., Cn〉) nodes from its child nodes C1,..., Cn

Figure 1. A Sample Semantic Tree and Its Selected Semantic Spanning
Trees

supported with a capability that allows its users to make configura-

tion selection. Also various components can be selected configured

or customized by Software users. There are numerous models

in software testing but very few are exactly suitable to present

diverse configurations. In a configurable component based system

the program can be configured by using selective components

and parts to form different architectures. In this case software

testing must address and cover these diverse architectures to make

them adequately covered wherever they are required. Although in

the past decades there are numerous published papers addressing

on testing software components and component-based systems,

most of them only focus on basic component testing issues and

solutions without considering configurable software architectures

and organizations, configuration functions and services in modern

components and component-based software.

B. Semantic Tree and Semantic Spanning Tree

In previous work [6], we introduced a sematic tree model to

test configurable component-based software. The tree nodes present

configurable parts (or elements), such as configurable components.

The links present different semantic relations between nodes.

A semantic tree model GST can be formally defined as 3-tuple

= (N, E, R), where

• N is a set of tree nodes. There are three types of nodes: a) a

single root node, b) intermediate nodes (or parent nodes), and

c) leaf nodes.

• E is a set of links between nodes. Each link connects a parent

node and one of its child nodes in a tree. Each link show a

part of a semantic relation between a parent node and its child

nodes.

• R is a set of relations, and each item in R has a semantic

label that presents a semantic relation between a parent node

and its child nodes. There are four types of semantic relations

with labels: EOR, AND, SELECT-1, and SELECT-M. Their

detailed semantics are given in Table I.

We adopted Semantic Tree to model diverse configurable envi-

ronments, architectures, and functions respectively [6]. To support

the model-based analysis, we introduced a concept of semantic

spanning trees based on the semantic tree model to present the

various configurations. A semantic spanning tree GSPT is a sub-

tree of a given semantic tree GST . Unlike regular spanning trees, a

semantic spanning tree GSPT for GST only can be derived based

on the given configuration semantic properties. As shown in Figure

1, (a) is a semantic tree model, and its two sample spanning trees

are shown in (b) and (c).

III. AN INCREMENTAL APPROACH TO MODEL
CONFIGURATION TESTING ON SYSTEM ARCHITECTURE

In previous work [6], we proposed a semantic spanning tree

model to present the diverse configurable functions, environment,

and architectures. However, we discovered in our empirical studies

that the configuration testing could be very complicated due to the

large amount of configuration choices. Thus, exhausting configura-

tion testing is time-consuming and not cost-effective. Hence, cost-

effective methods are needed for configurable component-based

software testing.

From our observations and experiences, a large amount of

semantic spanning trees need to be generated for configurable

architecture with various configurations, especially in retest con-

text. In addition, the test complexity for configuration can be

extremely high. As shown in Figure 1, there exists two semantic

spanning trees for the component configuration in terms of our

previous approach. These two trees have similar architecture except

the configuration for component A, where one is configured with

A1, and the other is configured with A2. According to previous

approach, these two spanning tree need to be tested respectively.

In our empirical studies, we have used the semantic tree model to

present the different configurable architectures for a configurable

component-based elevator simulation system, which is developed

by SJSU students using modern component-based technology

[6, 8]. This system provides a set of configurable components,

including Floor Panel, Door, User Panel, and Car components. A

user interface is provided to its customer to support a user to select

and build diverse elevator system instances based on their need.

Figure 2 shows the semantic tree model for the ’lift’ component

(known as a ICar) of the elevator system.

The semantic spanning tree usually refers to most of the nodes

and links in semantic tree, which causes configuration testing

with high complexity. In addition, if failures are encountered, all

components might be subjected to the possibility of hosting faults.

Here, Inspired from the traditional integration testing method, we

propose a bottom-up configuration testing method, which integrates

configurable elements such as architectures and conducts config-

uration testing incrementally. Compared to our existing work, the

new approach could reduce the testing complexity significantly yet

358

Figure 2. The integrated semantic tree for incremental configuration testing

achieve the testing coverage requirement. During testing of config-

urable architecture for component-based software, each semantic

relation and its corresponding parent nodes, and child nodes could

form a configurable unit (or sub-tree). Those configurable units are

independent from each other from the system architecture view.

In other words, we can perform configuration testing for each

configurable unit separately, and then integrate them together to

finish the whole configurable architecture testing for component-

based system.

In a configurable component-based system, the program can

be configured by using selective components and parts to form

different architectures. software testing must address and cover

these diverse architectures to make they are adequately covered

whenever they are required. For instance, in Figure 2, a user

can configure the door component with two models: single door

and double door. For each configurable factor in the semantic

tree model, the configuration relation could be independent, i.e.,

regardless of the configuration relation of parents and children. In

Figure 2, if the door component is configured with single door
and double door, then we do not need to test door configured with

each component respectively. Thereby we propose an incremental

configuration testing approach, which starts from the leaves of the

semantic tree and works up towards the top level.

Algorithm 1 Incremental Configuration Testing

Declare: GST : semantic tree; GST − relation: relation in GST ; GST −
node: nodes in GST ;
Declare: CITO (Configuration-Incremental-Test-Order)
Begin
Postorder GST − node in terms of GST − relation R;
Add the traversed GST − relation nodes (configurable unit) in CITO;
for each configurable unit in CITO do

Semantic-Spanning-Tree(GST − node, NSP T)
perform configuration testing on NSP T ;

end for

Unlike the previous semantic and spanning tree method, the

new approach integrates configurable elements like architectures

and conducts configuration testing incrementally, i.e., it starts from

the leaves of the semantic tree and works up towards the top

level. Here, each semantic relation and its corresponding parent

nodes, and child nodes form a configurable unit (or sub-tree). From

the bottom level to top level of the semantic tree model, each

configurable unit can be tested incrementally.

Each semantic relation and its corresponding parent nodes, and

child nodes form a configurable unit (or sub-tree). From the bottom

level to top level of the semantic tree model, each configurable unit

can be tested incrementally. An incremental configuration testing

algorithm is given in Algorithm 1. In the algorithm, we firstly

perform postorder traversal for the semantic tree in order to obtain

the testing sequence. Each configured node can be constructed

with its child nodes to form a configuration unit. Then, we use

the spanning tree algorithm proposed in previous work [6] to do

configuration testing for each unit.

For instance, a sample configuration testing order is shown

in Figure 2, where S1, S2,..,S11 represent the configurable unit

with increasing test order of incremental approach. For example,

configurable unit S1 is tested firstly, i.e., door component is

configured with single door and double door respectively. Then,

we continue testing unit S2, i.e., idoor is configured with door
configuration, door factory, and door. Sequenced unit S3,...,S11

can be performed in a similar way. For each configurable unit in

the order, configurable semantic relations are based on the notations

described in Table I.

IV. TEST COMPLEXITY ANALYSIS FOR CONFIGURABLE
ARCHITECTURE

The existing research indicates that complexity can be used

to estimate the cost or effort required to design, code, test, and

maintain software, as well as predict errors or faults that might

be encountered during testing [9, 10]. In addition, complexity

measurement provides a guideline and cost indicator for software

maintenance. Moreover, through the complexity comparison, we

can select a cost-effective configuration testing approach.

For any configurable node NCi in NS of GS in semantic

tree model, its test complexity can be computed based on its

semantic relation with child nodes. Let T − complexity(NCi) be

the configuration complexity for its architectures. To support the

evaluation of test complexity of diverse configurable architectures,

we provide a detailed computation method for test complexity

below.

• Suppose the node NCi having EOR semantic relation with its

child nodes, then it has two different architectures, thus, its

configuration complexity will be 2.

T − complexity(NCi) = 2 (1)

• Suppose the node NCi having AND semantic relation with

its child nodes, then its configuration complexity will be 1.

T − complexity(NCi) = 1 (2)

• Suppose the node NCi having a SELECT-1 semantic relation

with its child nodes, then its configuration complexity will be

n if we assume that n components are allowed to be selected.

T − complexity(NCi) = n (3)

• Suppose the node NCi having a SELECT-M semantic relation

with its child nodes. Assuming each architecture can be

configured with selected m nodes from a total of n nodes,

its configuration complexity will be n!/(m!(n-m)!) .

T − complexity(NCi) = n!/(m!(n − m)!) (4)

Following these formulas, engineers can easily implement an

automatic solution to compute the test complexity for diverse

359

Figure 3. Complexity Computation Based on the Semantic Tree Model

configurable architectures in any given configurable component-

based software. Figure 3 presents the detailed test complexity

of different configurable architectures for component Elevator

Controller (IUserPanel), which is a composite component in the

elevator simulation system. Figure 3(a) presents the complexity

of incremental approach, and Figure 3(b) shows the complexity

of spanning tree approach from our previous work. In previous

approach, the test complexity of parent node is affected by its

child nodes. In other words, the complexity relation between parent

node and its child nodes is a kind of propagating relation. For

example, the IAlarmSwitch component with an AND relation to

its three child nodes. Hence, its test complexity is 1 according

to the incremental approach. However, in previous approach, the

complexity of IAlarmSwitch is affected by its child nodes. Since

the complexity of AlarmSwitch is 2, the complexity of its parent

node IAlarmSwitch should be 2, as shown in Firure 3(b).

Figure 4. The Configuration Interface of The Elevator Simulation System

V. CASE STUDY

We report our case study by applying the proposed incremen-

tal testing approach and complexity analysis into a configurable

component-based elevator simulation system. We have used two

software testing classes and three master project teams to conduct

the related experiments in San Jose State University, California,

USA. In this study, we primarily focus on the following items:

• Model configurable architecture using the proposed incremen-

tal approach based on the semantic tree model.

• Identify and analyze the test complexity of configurable

architecture in component-based systems.

• Compare the approach with previous work in terms of com-

plexity analysis.

The system is a well-designed component-based elevator sim-

ulation system. It consists of several components, which are car,

user panel, door, door panel, userpanel queue, car controller, floor
panel, adminconsole, and metacontroller. In previous work, we

have adopted this system as our empirical testing or retesting object

[6, 8, 11]. We have modified the original system and enhanced the

functions in new versions. Here is the latest version. The existing

elevator system has been updated with three additions: a)Internal

Alarm in the user panel, b) The external alarm status on the floor

panel, and c) New algorithm (Least recently used). Figure 4 shows

the configuration interface for the elevator system.

A. Study Results and Discussion
Table II presents the detailed complexity of the semantic tree

model of the changed components and the entire Elevator Simu-

lation System. For example, the complexity value of component

user panel is 6, which presents the number of different configured

architectures for the component. For another changed component

algorithm, the complexity value is 5. The total test complexity

value for the system is 30, which presents the total number of

different configured architectures for the elevator system. Hence,

360

Table II
THE SEMANTIC TREE AND ITS COMPLEXITY USING THE INCREMENTAL APPROACH

Semantic Tree for No. of No. of No. of Max No. of No. of No. of Testing
Configurable architectures Nodes Leaves Links Height EOR AND Select-1 Complexity

User Panel 13 8 12 3 2 2 0 6

Algorithm 8 6 7 2 0 1 1 5

System 65 44 64 5 6 14 1 30

while validating this software, a vendor’s engineers must test

its deployed instances to cover its configurable architectures. In

practice, they can achieve the defined adequate test criteria in an in-

cremental approach. For example, whenever a customer is deployed

one instance, its configured system architectures (or component

composition structure) will be recorded. For this system, we found

that we need to develop 30 scripts to set up and cover different

architectures so that the deployed system instance can be tested

with certain adequate test set using the existing test methods.

B. Study Comparison with Previous Work

To investigate the effectiveness of our approach, we conducted a

comparison study with the previous work. We utilize configuration

complexity as the metrics for comparison. Figure 5 and 6 shows

the corresponding complexity value in component user panel
and algorithm respectively. We recorded the number of semantic

relations, the max height, the links and nodes, the leaves, and the

spanning tree in the semantic tree model and incremental semantic

tree model. As shown in Figure 5 and 6, the semantic tree and

incremental semantic tree have the same number of elements, like

leaves and nodes. However, the complexity value of spanning tree

approach is more than that of incremental approach. Figure 6

shows the comparison result in modified component algorithm. We

also discover that the complexity value of spanning tree approach

is more than the incremental approach semantic tree model. In

addition, we found that at system level the previous spanning

tree approach is much more complicated than the incremental

approach, as shown in Figure 7. The complexity value is 327 and

30 respectively.

Through the comparison study of these two approaches, we find

that in case of highly complex components like Elevator system as a

whole, the complexity value is significantly greater in the spanning

tree approach as against the incremental approach. We discover

that we need to construct a huge semantic tree for configurable

architecture in realistic component-based software. Therefore, the

proposed incremental approach can less the complexity of config-

uration testing and achieve cost-effectiveness to some extend.

C. Threats to Validity

There are several potential threats to the empirical studies. We

only consider the configurable architecture for testing. How to

effectively conduct other aspects of configuration testing is still an

open issue. In addition, we did not consider the GUI change and

impact, external environment software and hardware changes. The

component-based system in the case study is built for academic

use, hence, the size of the system is relatively not large enough

in complex industrial environment. The proposed measurement

here is not the only possible measurement for testing complexity.

Measurement factors such as human cognitive complexity, manual

analysis complexity are not considered in this paper.

Figure 5. Complexity Comparison for User Panel

Figure 6. Complexity Comparison for Algorithm

VI. RELATED WORK

A number of papers addressed the testing or re-testing problems

existed in component-based software [4, 5, 12–17].

Based on our recent literature survey, there are only a few of

papers addressing testing issues and challenges in configurable

components. The existing work can be classified into two groups:

• Testing configurable system constraints using combinatorial

interaction testing (CIT) [3, 7] - CIT is a method to sample

configurations of a software system systematically for testing.

Figure 7. Complexity Comparison for The Entire System

361

Many algorithms have been developed to create CIT samples.

A general constraint representation and the related solving

technique are presented in [3]. It focuses on this problem

by examining two highly configurable software systems to

quantify the nature of constraints in real systems. CIT can

provide an effective way to sample configurations for testing.

Based on CIT, Qu et al. in [1] introduced an approach to

configuration testing using prioritization, which aims at earlier

detection of defects.

• Regression testing of system with configurable features -

For instance, Robinson et al. proposed a firewall method for

regression testing of user-configurable software [2, 18]. Those

papers focused on user-centered tests for system configuration.

They constructed a firewall to identify the impacted area in

system based on setting changes and configurable element

changes respectively, then created or selected test cases to

cover the impacts. Some case studies are reported.

Our previous work [6] provided a semantic tree to address issues

in test modeling, test adequacy, and test complexity analysis.

VII. CONCLUSIONS

Although there are numerous papers addressing how to construct

configurable software and components, only a few papers discussed

how to test configuration features and architectures of component-

based software. This paper uses an incremental approach to dis-

cussing the relating issues, challenges, and test process. It applied

a semantic tree model as a test model to present and analyze

the diverse configurable architectures in component-based systems.

In addition, the detailed complexity analysis and computation is

presented to facilitate the study comparison. Furthermore, some

case study results are reported demonstrate its effectiveness and ap-

plication in test modeling and test complexity analysis. Compared

with previous work, the new approach can reduce testing com-

plexity effectively. Currently, we are developing a test automation

solution to support automatic testing of configurable component-

based software. The future extension of this research is to study

how to use a model-based approach to addressing regression testing

issues and challenges in configurable features and services in web

services or cloud-based applications.

ACKNOWLEDGEMENT

We thank the students of SJSU’s CMPE 287 course who par-

ticipated in our study, and the support of Computer Engineering

Department in San Jose State University of California.

REFERENCES

[1] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-

aware regression testing: an empirical study of sampling and

prioritization. In International Symposium on Software Testing
and Analysis, pages 75–86, 2008.

[2] B. Robinson and L. White. Testing of user-configurable

software systems using firewalls. In International Symposium
on Software Reliability Engineering, pages 177–186, 2008.

[3] M. B. Cohen, M. B. Dwyer, and J. F. Shi. Interaction testing

of highly-configurable systems in the presence of constraints.

In International Symposium on Software Testing and Analysis,

pages 129–139, 2007.

[4] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L.

Soffa, and H. Do. Using component metacontents to support

the regression testing of component-based software. In IEEE
International Conference on Software Maintenance, pages

716–725, 2001.

[5] Y. Wu, D. P, and M. H. Chen. Techniques for testing

component-based software. In The 7th International Con-
ference on Engineering of Complex Computer Systems, pages

222–232, 2001.

[6] J. Gao, J. Guan, A. Ma, C. Q. Tao, X. Y. Bai, and D. C. Kung.

Testing configurable component-based software-configuration

test modeling and complexity analysis. In International
Conference on Software Engineering and Knowledge, pages

495–502, 2011.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.

Patton. The aetg system: An approach to testing based

on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–444, 1997.

[8] C. Q. Tao, B. X. Li, and J. Gao. A model-based approach to

regression testing of component-based software. In Interna-
tional Conference on Software Engineering and Knowledge
Engineering, pages 230–237, 2011.

[9] A. E. Hassan. Predicting faults using the complexity of

code changes. In International Conference on Software
Engineering, pages 78–88, 2009.

[10] A. P. Nikora and J. C. Munson. An approach to the measure-

ment of software evolution. Journal of Sosftware Maintenance
And evolution: Research and Practice, 17(1):65–91, 2005.

[11] J. Gao, K. Kwok, and T. Fitch. Model-based test complexity

for software installation testing. In International Conference
on Software Engineering and Knowledge Engineering, 2008.

[12] J. Gao, D. Gopinathan, Q. Mai, and J. S. He. A systematic

regression testing method and tool for software components.

In Proceedings of the 30th Annual International Computer
Software and Applications Conference, pages 455–456, 2006.

[13] J. Zheng, B. Robinson, L. Williams, and K. Smiley. Applying

regression test selection for cots-based applications. In

Proceedings of International Conference on Software Engi-
neering, pages 512–522, 2006.

[14] Y. Wu, D. Pan, and M. H. Chen. Techinques of maintaining

evolving component-based software. In IEEE International
Conference on Software Maintenance, 2000.

[15] C. Y. Mao. Regression testing for component-based software

via built-in test design. In ACM Symposium on Applied
Computing, 2007.

[16] J. Gao, R. Espinoza, and J. S. He. Testing coverage analysis

for software component validation. In The 29th Annual In-
ternational Computer Software and Applications Conference,

pages 463–470, 2005.

[17] E. J. Weyuker. Testing component-based software: a caution-

ary tale. IEEE Software, 15(5):54–59, 1998.

[18] B. Robinson and L. White. On the testing of user-configurable

software systems using firewalls. Journal of Software Testing,
Verification, and Reliability, 22(1):3–31, 2010.

362

Using Architecture to Support the Collaborations in
Software Maintenance

Yanchun Sun, Hui Song, Wenpin Jiao
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Key laboratory of High Confidence Software Technologies, Ministry of Education
Beijing 100871, P.R.China

E-mail: {sunyc, songhui06, jwp}@sei.pku.edu.cn

Abstract—Software maintenance is inherently a social activity
because large systems typically involve the participation of many
stakeholders throughout the software lifecycle. The
collaborations in software maintenance not only need
maintainers and different developers to achieve common
understanding on a large number of shared artifacts but also
require awareness support to ensure the maintainers and
developers aware of the activities of others in order to coordinate
their work, identify potential problems and prevent conflicts.
This paper puts forward an approach using software architecture
to support the collaborations in software maintenance across the
whole lifecycle. In the approach, software architecture is used to
organize various software artifacts in software development
process from a high level perspective, and maintainers cooperate
with one another or other developers and coordinate their
maintenance activities based on their observations on the
modifications taking place over the software architecture. In the
end of this work, a case is studied in detail to illustrate how the
approach works.

Keywords-software maintenance; software architecture;
collaborative software development

I. INTRODUCTION
Software maintenance is inherently a social activity, large

systems typically involve the participation of many
stakeholders throughout the software lifecycle [1].
Collaborations in software maintenance of large and complex
software systems not only need maintainers and different
developers to achieve common understanding on a large
number of shared artifacts but also require awareness support
to ensure the maintainers and developers aware of the activities
of others in order to coordinate their work, identify potential
problems and prevent conflict. But until now, there has been
limited research on how methods and tools support
collaborative software maintenance [2]. How to support both
shared understanding software artifacts based collaboration and
activity awareness among maintainers and different developers
efficiently within a large software maintenance process
becomes a big challenge. This is the main concern of this
paper.

For collaboration based on software artifacts, the version
control systems are frequently used to manage the software
artifacts, such as CVS (Concurrent Versions System),
SVN(Subversion), etc. [3, 4] These tools are very important for

collaborative development among software engineers, because
people could easily view what other people change on the
source code. However, the artifacts managed by these tools are
all in the code level, and lack a reasonable organization from
the global viewpoint of software maintenance process.

For activity awareness support, one way is to use software
process models [5,4], which attempt to help teams deal with the
complexity of activities. But this requires that the collaborative
maintainers and developers reach a consensus on the global
view (i.e. the software process model). Moreover, the
awareness support based on software process models, more or
the less, is a kind of centralized control on the whole process,
and lacks of the support for distribution and coordination
during the collaborative software maintenance. Another way to
provide awareness is to build it into a common repository, such
as CVS, which monitors the changes made to artifacts and uses
the data as the basis for awareness provision. But this method
has the similar drawbacks as the software artifacts based
collaboration aforementioned.

To support software artifacts based collaboration and
activity awareness among maintainers and developers together
in the whole software lifecycle, it is necessary to provide
software maintainers with an appropriate model to organize
various software artifacts in software maintenance process
from a high level perspective in a distributed way. At the same
time, models can provide awareness support to ensure different
maintainers and developers aware of the activities of others so
that they can coordinate their work and collaboratively
maintain software. In order to utilize the models from different
perspectives on the same system, a key challenge is how to
synchronize the different models, and make sure the changes
on one model could be propagated correctly to the others. To
achieve this, a coordination model that captures the key
information from all the different views plays an important
role.

Software architecture is widely used as such a coordinator
model. With software becoming large and complex, software
architecture (SA) becomes a blueprint to guide the
development and maintenance of software systems. The
inherent high-level abstract, coarse granularity and
comprehensibility of SA make it an ideal base for collaborative
development and maintenance. Now, some SA-centered
development methods have been put forward [7,8,9,10,11,12],

363

but they do not use the semantics of SA adequately, while just
support simple collaboration for several authors based on the
management of authority. Moreover, they support collaborative
development just in special phases rather than in the whole
lifecycle.

In this paper, we put forward an approach using
architecture to support the collaborations in software
maintenance, which extends our previous approach [13, 23]
from supporting collaborative design to collaborative
maintenance in the whole lifecycle. First, based on version
control tool and semantic information of SA, we abstract the
information of fine-grained modifications into SA in order to
support the collaborative design of software architecture among
designers in the design phase of software systems. Then we
enlarge this collaboration mechanism from collaborative design
to collaborative maintenance during the whole lifecycle
because SA is a core artifact in the whole software lifecycle.
By introducing bi-transformation technologies [14], we can
transform the modification manipulation of other artifacts to
the modification manipulation of the central SA model, so as to
support the collaborative maintenance among maintainers and
different developers. This approach supports the distribution
and coordination of the maintainers in the whole software
lifecycle through several part views when collaborative
software maintenance has no global view.

The rest of this paper is organized as follows. Section 2
presents some related work. In Section 3, we put forward an
architecture-centric approach to supporting collaborative
software maintenance. Section 4 illustrates the approach by
studying one case in detail. Section 5 presents concluding
remarks and future work.

II. RELATED WORK
Until now, there has been limited research on how methods

and tools support collaborative software maintenance.

Collaborative software maintenance asks maintainers and
different developers to achieve common understanding on
multiple software artifacts such as requirements specifications,
architecture description, design models, testing plans, and so
on. For the collaboration based on software artifacts, the
version control systems (CVS, SVN, etc.) are often used to
manage the software artifacts [4,15]. But the artifacts stored in
these tools has their own semantics, ranging from nature
language to semi-formal semantics of UML, or formal
semantics of a program language, they lack a reasonable
organization from the global viewpoint of software
maintenance process. As a result, software artifacts based
collaboration almost concentrates on special phases and is short
of support for the software maintenance goals throughout the
whole software lifecycle.

How to assist developers in knowing each other’s work
status (i.e., awareness) is a key issue in collaborative
development [16]. Some researches show that configuration
management technologies can provide developers with a view
of each other’s activities [15,17,18]. They achieve this goal by
obtaining the low-level information of modification and
displayed in a direct way. Compared with showing different
detailed information from several views of these work, we

organize the detailed information of modification in multi-
views of software architecture for the whole collaborative
maintenance lifecycle. Another difference is that this visualized
view in our approach is the threshold of collaborative
maintenance and not just a static visualized display.

Even with a complex configuration management system
available to them, developers still conduct a good deal of
communication and monitoring in order to maintain a broad
collective understanding of team activities [19]. Formal
software process models can provide activities awareness for
the developers [6], but this requires that the collaborative
developers have general knowledge on the collaborative
development process and reach a consensus on the global view
(i.e. the software process model). Our approach focuses on
non-general knowledge on the collaborative maintenance
process, and tries to support distribution and coordination
through multi-views of software architecture for the whole
software lifecycle.

Software architectures are considered more and more
important because they blueprint the target products and
determine the system-wide qualities. Many SA-based
technologies have been developed to support collaborative
work. In the academy, Richard Taylor and David Garland
present their own Architecture Description language (ADL)
and propose the SA-centered development method based on the
ADL [7,8]; ArchStudio from UCI [10] and ACMEStudio from
CMU [20] typically support collaborative authoring by
versioning architecture description files. MolhadoArch system
from University of Wisconsin is integrated with a fine-grained
version control tool to afford the collaboration at the level of
individual model elements [11]. In the industry, Siemens’s
Hofmeister et al. describe a set of architecture views and put
forward a corresponding software development method from
requirement to implementation [9]. Researchers in IBM also
focus on SA-centered development method and “Rational
Software Architect” is an UML modeling tool focused on
software architecture [12]. Developers work collaboratively on
diagrams with collaboration mediated via the configuration
management system.

Compared with our approach using architecture supporting
the collaborations in software maintenance for the whole
software lifecycle, most of the collaborative supports provided
by these tools above are fine-grained. Moreover, they are just
limited in the special phases instead of the entire software
lifecycle.

III. APPROACH OVERVIEW
Figure 1 illustrates an approach using architecture to

support the collaborations in software maintenance. Our
approach is based on a software reuse methodology called as
ABC (Architecture Based Component Composition) [21]. ABC
method regards that SA should play a centric role in the whole
software lifecycle, that is, SA description is used as the
blueprint and middleware technology as the runtime scaffold
for component composition, maintenance and evolution. We
define a model as the abstraction of the software architectural
information, and maintain this model throughout the whole
software maintenance process. The specific artifacts can be
regarded as the different views of this central architecture

364

model and different developers’ manipulating the specific
artifacts can be considered as operating the model from their
own views. Developers in different roles operate on their own
views, and our maintenance environment will synchronize the
specific views with the unique architecture model. In this way,
maintainers could cooperate with the other developers upon a
consistent basis, but through the specific artifacts with which
they are more familiar.

Figure 1. Approach overview

Specifically, the architects design the original version of the
software architecture. Programmers implement the system
according to the architecture, based on the decided platform
and techniques. After that, deployers install the system and

configure it for good performance. In the post-development
phase, the maintainers may reconfigure the system when
needed. Since the maintainers’ change usually focus on a part
of the whole system, they also doubt if the changed system
violate some designed properties, or violate architects’ or
programmers’ intention. And thus, an efficient communication
mechanism between them is needed. Considering the different
perspective between developers and maintainers, we introduce
a system model as a “runtime view” for the maintainers, and
maintain a causal connection between runtime view and the
software architecture, based on model synchronization. The
maintenance environment produces the runtime view from
software architecture to help maintainers understand the
original design and development decisions. After the
maintainers make changes, the maintenance environment
transforms the runtime view back to the software architecture
to ask for the opinions from architects or developers, and
accept their further reconfiguration.

A. Software Architecture Model
By referencing the typical architecture description language

(ADL) [22], we define the meta-model of software architecture
by using Eclipse Ecore. Figure 2 describes the core elements in
the meta-model. The core concept is Component, which is also
a basic block with a specific concern of the system. We
introduce the concept of InnerStructure, to organize the whole
system as a hierarchical structure for supporting the distributed
maintenance, i.e., maintainers with different concerns could
work together inside a specific component. Based on the meta-
model, we construct a software architecture modeling
environment by using Eclipse GMF, named as ABCTool, in
order that we could assist designers to record their design
decisions by recording their manipulations such as additions
and deletions of elements and modifications of properties and
relationships of elements. The entire architecture model is
recorded in the form of XMI in several files.

Figure 2. Software Architecture Model

365

B. Architecture recovery for maintenance
The some of the architecture views in Figure 1 are

constructed from raw artifacts, via different architecture
recovery techniques, including code analysis and runtime
synchronization.

For implementation view, if there is not an existing link
between the architecture model and the source code, we
employ the code analysis to recover such an architecture model
that describes the code structure. The recovery starts from
identifying the key elements in the code hierarchy, such as
classes, methods, fields, etc. In order to construct the
association between these elements, we utilize simple static
code analysis techniques, such as data flow tracing, to infer the
invocation relation.

For deployment and runtime view, we utilize our previous
work on runtime model construction to recover and maintain a
runtime architecture model [24]. Such a runtime architecture
view describes the elements that constitute the running system,
such as the objects of classes. Each element contains a set of
states, which keep changing during runtime. Our architecture
construction approach maintains a causal connection between
the model and the system, so that the system changes will cause
the corresponding model changes, and the modification on
models will trigger the system change immediately.

C. Low-level implementation of modification management
One core function of our maintenance environment is the

management of modification. We implement the low-level
version control based CVS. Since the architecture models are
stored as XMI files, which are pure text files, CVS could
provide enough fine-grained version control capabilities.

We integrate the Eclipse CVS plug-ins inside our
maintenance environment. During the maintenance process, we
record the modifications, including the original and modified
contents and the information about by whom and on which file
the modifications are made and the short rationales of the
modifications. Thanks to the well implementation of the
Eclipse CVS, we can get such information through convenient
APIs, and represent on architecture levels, which will be
discussed in the next section.

D. High-level representation of modification management
Our maintenance environment retrieves the low level

information about modifications from the CVS API, and
represents such text-level modifications in the architecture
level. It also provides high-level management operations along
with the architecture model.

When a model is changed, maintainers can select to accept,
reject or add new modifications. The maintenance activities for
modifications can be mapped to the operations in the CVS.
During the maintenance, different stakeholders can use the
modification information retrieved from the CVS to identify
the intentions of modifications. When necessary, they also need
to contact the developers who made the modifications to
discuss their goals. We provide a support mechanism for peer-
to-peer communication in ABCTool. Different developers will
deliver different artifacts, but most of these artifacts record
some core information of SA. In other words, some

transformation relationships exist between these artifacts and
SA model. Thus, through transforming the core information in
SA and adding special information in a given phase, the
artifacts in the given phase can be constructed. Using those
research fruits in the bi-transformation field [14], we can use a
set of transformation rules to reflect the modifications of SA
model into other models, and also reflect the modifications of
SA level information in other models to SA model. Thus, we
can utilize the approach above to assist with the collaborations
among a variety of developers participating in software
maintenance.

IV. CASE STUDY
We use a simple news subscribing system as a sample, to

show how maintainers and different developers maintain the
system collaboratively with the help of software architecture.

The architecture of this sample system is shown as Figure
3. The users logging on to the system through a user interface
component, which calculates the user’s authority through the
Logon component, with the help of user information retrieved
from the UserInfor component. If the logging on succeeded, the
user could use the UI component to browse the news provided
by the NewsRetailer component. This architecture model is
designed by the architects (as the design view) and directly
used as the central software architecture. According to the
above design architecture, programmers compose the system as
Figure 4, upon the JEE techniques. Currently, all the
components are implemented as EJBs. This implementation
implies a simple transformation rule from design to
implementation: A component is implemented as an EJB, and
the connectors are implemented as EJB references. As a simple
example, the running system complies with the
implementation, and thus Figure 4 actually acts as both the
implementation and the runtime view.

Figure 3. Original Design View

After running a while, the maintainers find that the
userInfor component (emphasized in Figure 4) is a bottle-net of
the whole system, because every time, the logon component
retrieves all the user information. But actually, for logging-on,
we only need the user id and the password. To use the user
information more efficiently, they split the user information
retrieving logic into two EJBs, a simple one for logging-on, and
a detailed one for showing the user profile. In the meantime,
they also refactor the newsMaker component, reusing the
existing XML generator. After the evolution, the

366

implementation is changed into Figure 5. To make the changes
known to the architects, they transform back the runtime view
into the architecture model (design view) as shown in Figure 6.
Since the change on userInfor does not introduce more
functions in the architecture level, the transformed architecture
still contains only one UserInfor component, but one of its
interfaces is also linked to NewsRetailer. This scenario shows
how the maintainers propagate their system level evolution to
the architects.

Figure 4. Original Runtime View

Figure 5. Modified runtime view

Figure 6. Modified Design View

Figure 7. Final Design View

 Obtaining the new architecture, the architects need to
commit it and do more changes when needed. They first notice
that the NewsRetailer actually does two kinds of work:
producing the news and revealing the user information. This is
not a good design. So they decide to introduce an independent
component for revealing the user profile, as shown in Figure 7.
This architecture is transformed into a new implementation
view as shown in Figure 8, with a new EJB for formatting the
user information as RSS seeds. The programmer implements
the new EJB according to the implementation view, and
deployers deploy the system again. Finally, the maintainers get
back a new system as shown in Figure 8.

Figure 8. Final Runtime View

V. CONCLUSIONS AND FUTURE WORK
In this paper, we present an approach using architecture to

support the collaborations in software maintenance. The key
information throughout the whole development process is
abstracted into a unique architecture model. Developers in
different roles operate on their own views, and our maintenance
environment synchronizes the specific views with the unique
architecture model. In this way, maintainers could cooperate
with the other developers upon a consistent basis, but through
the specific artifacts with which they are more familiar.

Our work is still an initial attempt. Currently, synchronizing
runtime view and central architecture model needs to be
fastened. We are considering adding more assistant around the
central architecture model and runtime view, e.g. assist
maintainers in recording maintenance process and the rationale

367

behind maintenance activities, and reuse them to improve the
efficiency of software maintenance.

ACKNOWLEDGMENT
This effort is sponsored by the National Basic Research

Program of China (973) under Grant No. 2009CB320703, the
Joint Fund of the National Natural Science Foundation of
China under Grant No. U1201252, the National Natural
Science Foundation of China under Grant No. 61073020, and
the Science Fund for Creative Research Groups of China under
Grant No. 60821003.

REFERENCES
[1] J. Sillito and E. Wynn. “The social context of software maintenance”, in

Proceedings of IEEE International Conference on Software Maintenance
(ICSM07), Oct. 2007, pp. 325–334.

[2] Storey, M.-A., Bennett, C., Bull, R.I., German, D.M., “Remixing
visualization to support collaboration in software
maintenance”, Frontiers of Software Maintenance 2008(FoSM 2008),
pp.139 - 148.

[3] J Froehlich, P Dourish, "Unifying Artifacts and Activities in a Visual
Tool for Distributed Software Development Teams", in Proceedings of
the 26th International Conference on Software Engineering (ICSE
2004), May 23-28, EICC, Scotland, UK,2004.

[4] Grady Booth, IBM Rational, "Introducing Collaborative Development
Environments", Dec 2006, http://www.alphaworks.ibm.com/contentnr/
cdepaper.

[5] Boehm, B. and Bose, P. A Collaborative Spiral Software process Model
based on Theory W, Proceedings of 3rd International Conference on the
Software Process (Reston, VA), IEEE, New York, 1994, 59-68.

[6] Sutton, S. and Osterweil, L. The Design of a Next Generation Process
Language. Proc. Sixth European Software Engineering Conf. (Zurich,
Switzerland), Springer, 142-158, 1997.

[7] Nenad Medvidovic, David S. Rosenblum, Richard N. Taylor, "A
language and environment for architecture-based software development
and evolution", in Proceedings of the 21st international conference on
Software engineering, Los Angeles, California, United States, 1999.

[8] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl,
Peter Steenkiste, "Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure" Computer, vol. 37, no. 10, pp. 46-
54, Oct., 2004.

[9] C Hofmeister, R Nord, D Soni, Applied Software Architecture, Addison
Wesley, 2000.

[10] UCI Software Architecture Development Environment, 2007,
http://www.isr.uci.edu/projects/archstudio.

[11] T.N.Nguyen and E.V.Munson, Object-oriented Configuration
Management Technology can Improve Software Architectural
Traceability”, in 3rd ACIS International Conference on Software

Engineering Research, Management and Applications(SERA’05),
Mount Pleasant, Michigan, USA, 2005, pp.86-93.

[12] IBM, "Rational Software Architect Overview," 2007, http://www-
306.ibm.com/software/awdtools/architect/ swarchitect/.

[13] Yanchun Sun, Hui Song, Xinghua Wang, Wenpin Jiao. Towards
Collaborative Development Based on Software Architecture. In the 20th
International Conference on Software Engineering and Knowledge
Engineering (SEKE'2008), Redwood City, CA, USA. July 1 - July 3,
2008, 250-254.

[14] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato
Takeichi, Hong Mei, "Towards Automatic Model Synchronization from
Model Transformations", in Proceedings of 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2007), Atlanta, Georgia, November 5-9, 2007.

[15] Grinter, R. Using a Configuration Management Tool to Coordinate
Software Development. Proc. Conf. Organizational Computing Systems
COOCS’95 (Milpetas, CA), ACM, New York, 1995, pp.168-177.

[16] C. Gutwin, R. Penner, and K. Schneider, "Group Awareness in
Distributed Software Development," in Computer Supported
Cooperative Work Chicago, Illinois, USA.: ACM Press, 2004, pp. 72-
81.

[17] Finkelstein, A., Kramer, J., Nuseibeh, B. Software Process Modelling
and Technology. RSP Ltd, 1994.

[18] Sarma, A., Noroozi, Z., and van der Hoek, A. Palantír: Raising
Awareness among Configuration Management Workspaces. Proc. Intl.
Conf Software Engineering, ICSE 2003 (Portland, OR, May), pp.444-
454.

[19] de Souza, C., Redmiles, D., and Dourish, P., Breaking the Code: Moving
between Private and Public Work in Collaborative Software
Development. Proc. Conf. Supporting Group Work GROUP 2003,
ACM, New York, 2003.

[20] Kompanek, "Modeling a System with Acme", 1998,
http://www.cs.cmu.edu/~acme/html/WORKING-
%20Modeling%20a%20System%20with%20Acme.html.

[21] Hong Mei, “ABC: Supporting Software Architectures in the Whole
Lifecycle”, In: Proceedings of the Second International Conference on
Software Engineering and Formal Methods (SEFM’04), 28-30
September 2004, Beijing, China, IEEE Computer Society 2004.

[22] Medvidovic and R. N. Taylor, "A Classification and Comparison
Framework for Software Architecture Description Languages", IEEE
Transactions on Software Engineering, pp. 70-93, 2000.

[23] Yanchun Sun, Hui Song, Wenpin Jiao Towards Architecture-centric
Collaborative Software Development. In the 21th International
Conference on Software Engineering and Knowledge Engineering
(SEKE 2009), Bosten, USA. July 1 - July 3, 2009.

[24] Hui Song, Yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang Hu,
Hong Mei: Generating Synchronization Engines between Running
Systems and Their Model-Based Views. In ACM/IEEE 12th
International Conference on Model Driven Engineering Languages and
Systems (MoDELS'09), 2009.

368

Reverse Engineering of Sequence Diagrams by
Merging Call Trees

Seonghye Yoon
Dept. of Comp. Sci. and Eng.

Sogang University
Seoul, South Korea

seonghye@sogang.ac.kr

Sunghyun Min
Software R&D Center

Samsung Electronics Co., Ltd.
Suwon, Korea

shmin02@gmail.com

Sooyong Park
Dept. of Comp. Sci. and Eng.

Sogang University
Seoul, South Korea

sypark@sogang.ac.kr

Soojin Park
Graduate School of

Management of Technology
Sogang University
Seoul, South Korea

psjdream@sogang.ac.kr

Abstract—A software system is continuously changing even after
development. Thus, most of documents which are written at the
end of development phase cannot reflect the current software
system. It is a very tedious work for maintainers to understand
how the software is implemented by reviewing source code. So,
several reverse engineering techniques and tools have been
introduced to generate sequence diagrams from source code or
behaviors of the software at runtime. However, the legacy
techniques have limits not to provide sufficient coverage and
readability with the generated sequence diagrams. We propose a
method to merge call trees from static and dynamic analysis
results to enhance the coverage of reversed sequence diagrams.
This paper introduces five rules for merging call trees. The
evaluation result explains how our rules effectively generate
compact and understandable sequence diagrams without any loss
of control flows which are implemented in source code.

Keywords – reverse engineering, sequence diagram, static
analysis, dynamic analysis

I. INTRODUCTION

Software is continuously changing during development
phase and even after each release. It is very hard to guarantee
that change to the software is reflected by a corresponding
update to the document. As time goes on, the gap between
software itself and the document becomes wider and wider.
Thus, it requires lots of time for maintainers to understand the
current state of the software when a change on the software is
requested for any reason. According to the survey of [1],
around 30% of total maintenance cost is spent on just
understanding legacy software system. A method to help
maintainers to grasp current software without tedious reviews
on source code should be provided to reduce whole cost of
software maintenance.

In this background, there has been some work on
addressing techniques to extract behaviors of software from
source code to sequence diagrams [2][3][4], named as a static
analysis based reverse engineering. It is useful to understand all
alternatives of software behavior. In object-oriented programs,
however, when the concept of dynamic binding or
polymorphism is implemented in the source code, it is difficult
to understand a whole flow of system behavior using pure static
analysis result. Thus, much recent researches focus on
generating sequence diagram from the execution traces

[5][6][7][8]. It is generally called as a dynamic analysis based
reverse engineering method. While the methods can solve the
slicing problem due to the late binding or polymorphism, there
exists another inherent problem. Execution trace can be
captured only if a system behavior is executed in runtime. In
other words, unexecuted flow cannot be captured in execution
traces. Thus, it can cause the coverage issue on reverse
engineering besides several well-known problems of dynamic
analysis such as the execution trace explosion problem or
infinitely repeated messages appearing in sequence diagrams.
To overcome those limits on static or dynamic analysis, a few
literatures [9][10] propose hybrid methods utilizing both static
and dynamic analysis. However, they do not address the key
way to enlarge coverage of reverse engineering because they
just focus on generating more compact sequence diagrams by
reducing loops or abstracting messages.

To address the above issues, we present a reverse
engineering method utilizing information which is captured
from source code and execution traces. At first, we generate a
static call tree from source code and a dynamic tree from
execution trace logs. The two call trees have the root node
representing the same starting method of a flow. Then, an
integrated call tree is incrementally completed with
continuously comparing each node in the static call tree and the
dynamic tree. According to the comparison result between two
nodes in the static and dynamic call tree, a proper merging rule
is selected and applied to add a new node in the integrated call
tree. In this paper, we introduce five rules for merging call trees.
To demonstrate the application of the rules, we make use of
REQ Modeler [11], a UML modeling tool. We evaluate the
effectiveness of the method by quantifying merging rules
contributions to the generated sequence diagrams, which shows
promising results.

The rest of the paper is organized as follows: Section 2
describes an overview of related works on reverse engineering.
Section 3 presents the method for generating sequence diagram
including call tree merging rules. Section 4 demonstrates a case
study using a UML modeling tool and Section 5 discusses the
results of evaluation. Section 6 concludes the paper with future
work.

369

II. RELATED WORK

According to literatures dealing with reverse engineering
issues, the proposed approaches can be classified by three
categories: static analysis, dynamic analysis and hybrid
analysis.

At first, [2], [3], [4] introduce static analysis based reverse
engineering methods. [2] proposed a technique for generating
sequence diagrams. The technique captures all of control flows
and loops from source code. [3] suggested a control flow
analysis technique. The research invents a UML extension to
capture general flows of control and makes an algorithm for
mapping a reducible exception-free intraprocedural control-
flow graph to UML. [4] introduced a technique for extracting a
structural hierarchy of GUI, attributes of the widgets and their
values. The extracted information helps maintainers to
understand the structure of GUI programs. However, these
techniques cannot prevent that a single flow of event is split
into several meaningless sequence diagrams due to the
implementation of several mechanisms of object oriented
programming like polymorphism.

On the other hand, there are several reverse engineering
techniques [5][6][7][8] using dynamic analysis information
from execution traces which are logged at runtime. [5]
introduced a technique which defines two meta models for
reflecting execution traces and sequence diagrams, then it
defined mapping rules between the two models using the
Object Constraint Language (OCL) [12]. The captured
execution traces are transformed into sequence diagrams
through the mapping rules. [6] proposed a mining technique for
identifying groups of core functions that implement software
features. The result of the mining technique can be used for
program comprehension. [7] suggested a method to reverse
sequence diagrams using rules to compact repetitive parts of
the execution traces. [8] proposed a formal method to focus on
mapping between externally visible behaviors of a system and
relevant parts of source code. Those dynamic analyses based
reverse engineering methods succeeded in solving the problem
of meaningless slicing of a diagram, which is the limit of static
analysis methods. However, only executed operations during
run time could be logged as an execution trace and transformed
as messages in a sequence diagram through the dynamic
analysis methods. There exists a coverage issue in capturing
execution traces. In other words, the completeness of generated
sequence diagrams cannot be guaranteed. The other inherent
limit in dynamic analysis based methods is that the messages in
a sequence diagram can explode due to repeated messages
according to loops. [7] has tried to compress the repetitive parts
of execution traces by utilizing predefined repetitive patterns.
Nevertheless, there still exists a limit on removing all kinds of
the repetitive parts by the pattern matching.

To overcome the limitations of static and dynamic analysis
methods for reverse engineering, there have been a few
literatures proposing hybrid techniques[9][10]. [9] proposed an
algorithm which combines data from source code, execution
traces, and debug information in order to reduce the number of
messages of a sequence diagram. And [10] introduced a
method that abstracts the history of object interactions using
Pree’s meta patterns[13]. By grouping strongly correlated

objects, the sequence diagram can be simplified to focus on
representing intergroup interactions. The two techniques based
on the hybrid analysis focus on compacting enormous amount
of information, which causes scalability issues. On dealing with
the exploded number of messages in a sequence diagram, they
utilize the information from the results of static analysis. It is a
different point in comparison with existing dynamic analysis
based methods. However, the coverage issue on unexecuted
traces is not discussed in the previous work.

III. REVERSE ENGINEERING METHOD FOR GENERATING
SEQUENCE DIAGRAMS FROM EXECUTION TRACES AND

SOURCE CODE

We propose a reverse engineering method for generation of
sequence diagrams from implementation model (static code
analysis results) and execution model (execution trace logs),
which is composed of the following five steps; (A) limiting
classes, (B) generating call trees, (C) filtering call trees, (D)
merging call trees and (E) generating sequence diagram as
shown in Figure 1.

Limiting
RE Scope

Generating
Call Trees

Filtering
Call Trees

Merging
Call Trees

Generating
Sequence Diagram

Execution
Trace Log

Source
Code

Static
Call Tree

Dynamic
Call Tree

Static
Call Tree Dynamic

Call Tree

Integrated
Call Tree

A B C
1

2

3
4

Sequence
Diagram

[Filtered]

Figure 1. Overview of Reverse Engineering Method

A. Limiting the Scope of Reverse Engineering
Before starting the generation of sequence diagram from

source code, we can designate the packages which are excluded
from reverse engineering scope. In general, external library
packages and the utility packages are excluded. Besides them,
if a maintainer decides that interactions with a specific package
are not necessary in understanding system behavior, the
package can be excluded from the scope of reverse engineering.

B. Generating Call Trees
After limiting the scope of reverse engineering, a static call

tree is generated from source code that is corresponding to the
selected scenario by maintainer. The static call tree which we
work on is based on the Abstract Syntax Tree (AST) [14] that
is generated by the Eclipse [15] AST parser. Then, execution
traces are captured from the sequence of calls in the
executable files which are compiled from the designated
source code. The execution traces are sources of a dynamic
tree. To get a dynamic call tree, a dynamic tracing tool,
BTrace [16] is used in this work.

370

Figure 2 shows an instance of the suggested static call tree.
Each node is represented by a rectangle. A.a is a node for
representing method a() which belongs to class A. The AST
does not explain which class is the owner of a method. Thus,
we extract the ownership information from the tree structure of
Eclipse Project Explorer and annotate it on each node. The
relationship between classes and the signature of a method is
contained as a property in each node. Besides following the
general call tree representation rules, two additional ways is
invented for representing repetition of methods and reducing
duplicated method calls. A repetition of method(s) is outlined
with a rectangle and annotated with a recursive arrow, named
as a “repeated method block”. If a method node is appeared
more than twice in a call tree, the duplicated child nodes is
omitted and an asterisk (*) is denoted on the node from the
second appearance of the node. In Figure 2, the node C.c and
the node F.f are repetitive methods. On the other hand, the node
B.b is appeared twice in the call tree. Thus, the child nodes of
the second appearance of node B.b (the node D.d and E.e) are
omitted in the tree to make more compact sequence diagram.

A.a

B.b C.c

D.d E.e

B.b
*

F.f

Figure 2. An Example of Static Call Tree

C. Filtering Call Trees
The initially generated static/dynamic call tree still includes

trivial method nodes such as getter or setter. In the previous
Limiting the Scope of Reverse Engineering step, packages
which do not give valuable information to understand system
behaviors have been already excluded. In this step, the kind of
methods that should not be participated in a sequence diagram
can be selectively designated.

D. Merging Call Trees
Through the previous steps, the filtered static call tree and

the filtered dynamic call tree which have the same root node
are obtained. In this step, the two call trees are merged into an
integrated call tree according to five different rules. The
presenting rules are designed to utilize benefits from both static
analysis and dynamic analysis. Thus, the method nodes in both
trees are selectively added to the integrated call tree according
to given conditions. Basically, two method nodes located in the
current order of both call trees are reviewed in sequence. A
preorder depth-first traversal algorithm is used to visit each
method nodes. To describe the rules more simply, several
abbreviations are used as described below:

: a dynamic call tree
: a static call tree
: an integrated call tree

M(i, d): the ith method node of dth depth

The five merging call tree rules are explained in the
following.

R1.Identification of Common Method Node

If the current method node M(i,d) in and the current
method node M(j,d) in are same methods, add M(i,d) to
the .

R2. Deletion of Repetitions in Message Call Sequences

1. If the current method node M(j,d) in is a member of a
repeated method block, search for the same repeated
sequence of method nodes in dth depth of .

2. If there exists an equivalent repeated sequence of method
nodes, the whole repeated method block defined in is
added to .

As shown in Figure 3, there exists a repeated method block
(C.c and D.d) in and the same repeated sequence of methods
(C.c D.d C.c D.d) is appeared in According to the rule
R2, has the repeated method block. As shown in Figure 3(c),
the repeated method block will be represented as a loop frame
in the generated sequence diagram. Consequently, the
application of R2 can help to make more compact sequence
diagram.

R3. Identification of a Real Participating Object

1. If the current method node M(i,d) in T and the current
method node M(j,d) in T have same signature but the
owner classes of the two nodes are different ones, search
about the relationship of the two nodes.

2. If the owner of M(i,d) in T is a child class of the owner
of M(j,d) in , add M(i,d) in T to T .

As depicted in Figure 4, the method d() in the node D.d of
and the node E.d of is identical. And, the class E is a

child of the class D. Thus, the node E.d of is added
according to the rule R3. Consequently, the callee of the
message d() is the class E instead of the class D in the
generated sequence diagram. Compared with the sequence
diagram from T , the sequence diagram from T is more clear
to understand system behavior by designating the real
participating class in execution time.

R4. Identification of an Unexecuted Method

1. Compare with the current method node M(j,d) in and
the current method node M(i,d) in .

2. If M(i,d) is null, the node M(j,d) in is added to .
3. If M(i,d) is not null and it is different with the node

M(j,d), compare with the M(j,d) in and the next
neighbor node M(i+1,d) in again.

4. If the node M(i+1,d) is also different with the node
M(j,d) or null, the node M(j,d) is added to .

loop

A.a

B.b C.c

A.a

B.b C.c D.d D.dD.d C.c

A.a

B.b C.c D.d

A B C D A B C D
b() c()

d()
c()

d()

b()

c()
d()

(a) Proceeding of Merging T and T

(b) The Generated Sequence Diagram from T (c) The Generated Sequence Diagram from T

Figure 3. Applying Deletion of Repetitions in Message Call Sequences Rule

371

A C D

A.a

C.c D.d

A.a

C.c E.d

A.a

C.c E.d

A C E

D

E

c ()
d ()

c ()
d ()

(a) Proceeding of Merging T and T

(b) The Generated Sequence Diagram from T (c) The Generated Sequence Diagram from T

Figure 4. Applying Identification of a Real Participating Object Rule

A B C

A.a

B.b C.c

A.a

B.b C.c D.d

A.a

B.b C.c D.d

A B C D

b ()
c ()

b ()
c ()

d ()

(a) Proceeding of Merging T and T

(b) The Generated Sequence Diagram from T (c) The Generated Sequence Diagram from T

opt

Figure 5. Applying Identification of an Unexecuted Message Rule

A.a

B.b C.c

A.a

B.b C.c D.d

A.a

B.b C.c D.d

(a) Proceeding of Merging T and T

E.e F.f

A.a

B.b C.c D.d

E.e F.f G.g

A.a

B.b C.c D.d

E.e F.f

E.e F.f G.g

(c) The Integrated Call Tree T(c)()()() T

'

(b) Proceeding of Merging T + and T

Figure 6. Applying Identification of a Late Binding Behavior Rule

5. The method node M(j,d) is marked as the message
included in an option(OPT) frame to denote
alternatives in the generated sequence diagram.

Figure 5 depicts a situation for applying R4. The method
node D.d in does not exist in the corresponding dynamic
tree . It means that the method d() in the class D is
implemented but it is not captured in the execution trace logs.
According to the rule R4, the method node D.d is added to the
integrated call tree . Consequently, the missed d() method
call in the sequence diagram from is captured in the
sequence diagram from the integrated call tree . As shown in
the example, the application of R4 can help to get wider
coverage of reverse engineering.

R5. Identification of a Late Binding Behavior

1. Compare with the current method node M(i,d) in
and the current method node M(j,d) in .

2. If M(j,d) is null, generate a new static call tree
which has the method node M(i,d) as a root from
source code. And the root node of to the original
call tree as the next neighbor of the node M(j,d).

3. If M(j,d) is not null and it is different with the node
M(i,d), compare with the M(i,d) in and the next
neighbor node M(j+1,d) in again.

4. If the node M(j+1,d) is different with the node M(i,d)
or null, generate a new static call tree which has the
method node M(i,d) as a root from source code. And
the root node of to the original call tree as the
next neighbor of the node M(j,d).

5. Continue the next node comparison from M(i,d) in
and M(j,d) in . Application of the five merging rules
is restarted.

As depicted in Figure 6, the method d() in the node D.d
of is not identified in . From this comparison, the dynamic
binding of the method d() can be captured and reflected to the
integrated call tree . Without referencing the dynamic call
tree , the generated sequence diagram from will have only
three method calls (A.a, B.b, C.c). By applying R5 in
construction of the integrated call tree, however, the extended
static call tree can have the method call D.d and its successive
method calls (E.e, F.f, G.g) as nodes. By continued comparison
between the extended static call tree and the dynamic call tree,
R1 and R4 are applied to construct an integrated call tree .
Figure 6(c) shows the final integrated call tree. Application of
R5 results in broadening the coverage of reverse engineered
messages in common with R4.

E. Sequence Diagram Generation
To generate a sequence diagram from the integrated call

tree, each method node in the integrated call tree is traversed
according to a pre-order of depth-first traversal algorithm in the
same way as merging call trees. Each method in the integrated
call tree is mapped to each message in the sequence diagram.
We also implement a tool for supporting the sequence diagram
generation with the integrated call tree.

IV. CASE STUDY

In this section, a case study is presented using REQ
Modeler [11], which is open source software for drawing a
UML model. A flow thread of the REQ Modeler is
demonstrated to show the application procedure of several
proposed merging rules. Figure 7 depicts the proceeding of an
integrated call tree construction for Delete a Package flow of
events.

The first method call in the selected flow is execute() of
DeletePackage class. At first, the DrawableNode.delete
FromDiagram() method node in depth 1 is identically defined
in both of the static call tree and the dynamic call tree. Thus,
the DrawableNode.deleteFromDiagram() method node is
added in the integrated call tree according to the rule R1. At
second depth, there exists the RCanvas.removeChild() method
node in the dynamic call tree . However, the DrawableNode.
DeleteFromDiagram() method node is the last one in the static
call tree . The merging rule R5 is applied for adding the
successive methods after dynamic binding of the RCanvas.
removeChild() into the integrated call tree. With the extended

372

static call tree(+) in Figure 7(a), the comparison from the
RCanvas. removeChild() method node at second depth is
restarted. The RCanvas. removeChild() method node is added
to the integrated call tree because it is identically defined in
both trees(R1). With the same reason, RCanvasPart.Property
Change () method at third depth is also added to the integrated
call tree. The next method node RCanvasTreeEditPart.
propertyChange () in the static call tree is not defined in
the dynamic call tree . In this case, the merging rule R4 is
applied to add the unexecuted method into the integrated call
tree. The method nodes at fourth depth have the same
conditions with the nodes at third depth. In other words, the
identically defined method node RCanvasPart.refreshChildren

() and the unexecuted method RCanvasTree EditPart.refresh
Children() which is defined in the static tree are added to the
integrated call tree by applying rules R1 and R4.

Figure 8 shows the sequence diagrams which are
respectively generated from the call trees in Figure 7. Besides
one to one mapping between methods in call trees and
messages in sequence diagrams, the pros and cons of each
reverse engineering method can be discussed through looking
at the generated sequence diagrams depicted in Figure 8. As
shown in Figure 8(a) and Figure 8(b), two separated sequence
diagrams for a single flow of event are generated from the
static call trees in Figure 7(a). On the other hand, in Figure 8(c),
the sequence diagram which traces only one thread of events is

1: execute()

2: deleteFromDiagram()

User

Delete
Package

Drawable
Node

1: execute()

(a) The sequence diagram
based on

(d) The sequence diagram based on

2: deleteFromDiagram()

User

Delete
Package

Drawable
Node

RCanvas RCanvas
Part

RCanvas
TreeEditPart

3: removeChild()
4: propertyChange()

6: propertyChange()

5: refreshChildren()

7: refreshChildren()

opt

User

(b) The sequence diagram
based on

Rcanvas RCanvas
Part

1: removeChild()
2: propertyChange()

3: refreshChildren()

RCanvas
TreeEditPart

4: propertyChange()

5: refreshChildren()

opt

2: deleteFromDiagram()

User

Delete
Package

Drawable
Node

1: execute()

RCanvas RCanvas
Part

3: removeChild()

4: propertyChange()

5: refreshChildren()

(c) The sequence diagram
based on

[IsVisible(RCanvasTreeEditPart)]

[IsVisible(RCanvasTreeEditPart)]

Figure 7. Reversed Sequence Diagrams for Delete a Package flow in REQ Modeler

(b) Dynamic call tree ()(a-2) Static call tree ()

DeletePackage . execute

DrawableNode . deleteFromDiagram

Rcanvas . removeChild

RCanvasPart .
propertyChange

RCanvasTreeEditPart .
propertyChanges

RCanvasPart .
refreshChildren

RCanvasTreeEditPart .
refreshChildren

DeletePackage . execute

DrawableNode . deleteFromDiagram

RCanvas . removeChild

RCanvasPart .
propertyChange

RCanvasPart .
refreshChildren

1.DeletePackage . execute

2.DrawableNode . deleteFromDiagram

3.Rcanvas . removeChild

4.RCanvasPart .
propertyChange

6.RCanvasTreeEditPart .
propertyChanges

5.RCanvasPart .
refreshChildren

7.RCanvasTreeEditPart .
refreshChildren

(c) Integrated call tree ()

d = 0

d = 1

d = 2

d = 3

d = 4

(a-1) Static call tree ()

Figure 8. Construction of an Integrated Call Tree: Delete a Package in REQ Modeler

373

generated from the static call tree in Figure 7(b). However, the
sequence diagram generated from the integrated call tree in
Figure 8(d) includes the whole main flow and the opt frame for
an unexecuted alternative flow for Delete a Package.

V. EVALUATION

To evaluate the effectiveness of the presenting method, we
applied the method to two different pieces of open source
software. One is the REQ Modeler which is already
demonstrated in the case study. The other one is TerpPaint [17]
which is a painting program. REQ Modeler is composed of 220
classes, 1266 functions and 20486 LOC. On the other hand,
TerpPaint is a comparatively small sized program. It is
composed of 65 classes, 644 functions and 16314 LOC. Both
programs are implemented by Java language. And they have
lots of user interfaces for authoring UML model or image
manipulation. Seven sequence diagrams of REQ Modeler and
five diagrams of TerpPaint are respectively generated. To
evaluate benefits from using the proposed method, we
compared the results from our method and other existing tools,
Together [18] and TPTP [19]. The former is a static analysis
based reverse engineering tool and the latter is a dynamic
analysis based reverse engineering tool.

We set three metrics for measuring the quality of generated
sequence diagrams. Table 1 shows comparison between the
results from applying the existing tools and the result of our
tool supporting the proposed method.

The number of messages in a sequence diagram
The first metric is the number of messages appeared in a

diagram for measuring the size of each sequence diagram. The
readability problem is caused by size explosion of sequence
diagram in dynamic analysis. Recently presented hybrid
reverse engineering method [7][9][10] have been tried to prove
their effectiveness by using compaction ratio. The compaction
ratio explains how much percentage of trivial messages or
repeated messages are removed. Thus, compaction ratio is
defined as in the following:

Compaction Ratio (%) =

[1
of message from our method(C)

of all messages from dynamic analysis(A + B)
] × 100

Our averaged compaction ratio is 86.39%. There is a little
bit wide deviation on the compaction ratio from two programs.
Whereas the averaged compaction ratio of REQ Modeler is
66.11%, the averaged compaction ratio of TerpPaint is 91.98%.
We investigated the reason why the compaction ratio of REQ
Modeler is much lower than TerpPaint. The reason why the
compaction ratio of REQ Modeler is much lower than
TerpPaint is investigated. At the result, it turned out that the
execution trace logs from REQ Modeler have inherently fewer
loops than the execution logs from TerpPaint.

The number of unintentionally sliced diagrams
The second metric is the number of unintentionally sliced

diagrams. It is general to slice a diagram into several fragments
to factor out some parts of a flow from the diagram for reusing
or other reasons. However, unintentionally sliced diagrams due
to polymorphism or late binding which is implemented in

source code can hinder in understanding the behaviors of a
system. According to the results in Table 1, there is no slicing
of diagram in REQ Modeler and TerpPaint. It shows that our
call tree merging rules worked well on resolving the
unintentionally sliced diagram problem in case of the two
programs.

TABLE 1. THE NUMBER OF SEQEUNCE DIAGRAM MESSAGES

Name of
Flow of
Event

Together
(Static) TPTP(Dynamic) The Call Tree Merging Method

message slicing message
(A)

missing
message

(B)

message
(C) slicing missing

message

Comp-
action
Ratio

R
E
Q

M
O
D
E
L
E
R

Open
Project 27 0 95 0 26 0 0 72.63

Open
Diagram 7 9 207 0 37 0 0 82.13

Add Class 70 2 407 0 41 0 0 89.93

Move Class 3 1 12 7 14 0 0 26.32

Delete
Class 26 2 50 5 14 0 0 74.55

Connect
Class 10 1 87 12 42 0 0 57.58

Save
Project 4 2 58 4 25 0 0 59.68

Average 21.00 2.43 130.86 4.00 28.43 0.00 0.00 66.11

T
E
R
P

P
A
I
N
T

Drag
Rectangle 2 2 358 0 13 0 0 96.37

Drag Eraser 4 2 551 0 16 0 0 97.10

Click
Pencil 5 1 18 0 12 0 0 33.33

Click Paint
bucket 11 1 46 0 15 0 0 67.39

Save File 52 0 286 1 45 0 0 84.27

Average 14.80 1.20 251.80 0.20 20.20 0.00 0.00 91.98

Average 18.42 0.92 181.25 2.42 25.00 0.00 0.00 86.39

The number of missing messages
The last metric is the number of missing messages. In

dynamic analysis result, an unexecuted method cannot be
grabbed as an execution trace. Consequently, it can cause
leakage of valuable information in reverse engineering. The
number of missing message is counted to measure the amount
of the information leakage. According to the results in Table1,
there is no missing message. It shows that the merging rule R4
works effectively in finding messages which cannot be
captured by execution trace logs by searching the
corresponding static call tree.

VI. CONCLUSION

We have presented a method for reverse engineering of
sequence diagram by applying rules for merging a static call
tree from source code and a dynamic call tree from execution
trace logs. Unlike other hybrid method in reverse engineering
where the contribution is focused only on the compaction of
messages captured by dynamic analysis by utilizing the
information form static analysis result, our method guarantees
the completeness of the generated sequence diagram besides
the compactness. To overcome the coverage problem of reverse
engineering, the proposed call tree merging rules are designed

374

to supplement the information leakage from both of a static call
tree and a dynamic call tree. We have demonstrated use of the
proposed method in generating sequence diagrams for REQ
Modeler. Besides the case study with REQ Modeler, the result
of applying the proposed method is also evaluated to the REQ
Modeler and another open source, TerpPaint. With the two
examples, the effectiveness of the presented rules is measured
for merging call trees in reducing the size of the generated
sequence diagram by measuring the compaction ratio. And the
completeness of the generated sequence diagram is also
measured from counting the number of unintentionally sliced
diagrams and missing messages. The proposed merging rules
contribute to provide readable sequence diagrams with
reasonable compaction ratio of messages and to broaden the
coverage of the reversed sequence diagrams.

However, there exist limitations in capturing a few types of
execution traces. At first, if a dynamic binding is occurred in an
unexecuted thread of method calls, it is still incapable to
capture the succeeding method calls after occurrence of the
dynamic binding. For the future work, we have a plan to find
more uncovered cases and add more merging rules to provide a
perfectly complete coverage of reverse engineering. The
second is to capture a single trace from the executions of a
multiprocessing system. But the separation of execution traces
according to each process is out of our research questions.
Furthermore, we will apply the proposed method to more cases
to check if the merging rules are biased in a specific system or
not.

ACKNOWLEDGMENT

This research was supported by Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology
(2012M3C4A7033348)

REFERENCES

[1] R. L. Glass, Fact and Fallacies of Software Engineering. Addison-
Wesley, 2002.

[2] J. Kern and C. Garrett, "Effective Sequence diagram generation,"
Borland white paper, 2003.

[3] A. Rountev, O. Volgin and M. Reddoch, “Static Control-Flow Analysis
for Reverse Engineering of UML Sequence Diagrams,” In Proceedings
of the ACM Workshop Program Analysis for Software Tools and
Engineering(PASTE), pp. 96-102, 2005.

[4] S. Staiger, “Reverse Engineering of Graphical User Interfaces using
Static Analyses,”. In Proceedings of the 14th Working Conference on
Reverse Engineering(WCRE), pp.189-198, 2007.

[5] L. C. Briand, Y. Labiche, and J. Leduc, "Toward the reverse engineerng
of UML sequence diagrams distributed java software," IEEE
Transaction Software Engineering, vol. 32, pp.642-663, 2006.

[6] H. Safyallah and K. Sartipi, “Dynamic Analysis of Software System
using Execution Pattern Mining,” In the proceedings of the 14th IEEE
International Conference on Program Comprehension (ICPC), pp.84-88,
2006.

[7] K. Taniguchi, T. Ishio, T.Kamiya, S.Kusumoto and K.Inoue, "Extracting
Sequence Diagram from Execution Trace of Java Program," In the
proceedings of the 8th International Workshop on Principles of Software
Evolution (IWPSE), pp.148-154, 2005.

[8] T. Eisenbarth, R. Koschke and D.Simon, "Aiding Program
Comprehension by Static and Dynamic Feature Analysis," In
proceedings of the IEEE International Conference on Software
Maintenance(ICSM), pp.602-611, 2001.

[9] D. Myers, M. A. Storey and M. Salois, "Utilizing Debug Information to
Compact Loops in Large Program Traces,” In the Proceedings of the
14th European Conference on Software Maintenance and
Reengineering(CSMR), pp.41-50, 2010.

[10] K. Noda, T. Kobayashi and K. Agusa, “Execution Trace Abstraction
based on Meta Patterns Usage,” In Proceedings of the 19th Working
Conference on Reverse Engineering(WCRE), pp.167-176, 2012.

[11] REQModeler,
http://sourceforge.net/projects/reqmodeler/?source=directory

[12] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MAD, Second Edition. Addison Wesley, 2003.

[13] W. Pree, Design Patterns for Object-Oriented Software Development.
Addison Wesley, 1994.

[14] AST, http://en.wikipedia.org/wiki/Abstract_syntax_tree
[15] EClipse, http://www.eclipse.org/
[16] BTrace, http://kenai.com/projects/btrace
[17] TerpPaint, http://sourceforge.net/projects/terppaint/?source=directory
[18] BorlandTogether,

http://www.borland.com/products/Together/default.aspx
[19] TPTP, http://www.eclipse.org/tptp/

375

Mining Architectural Patterns Using Association Rules

Cristiano Maffort, Marco Tulio Valente,
Mariza Bigonha

Department of Computer Science
UFMG, Belo Horizonte, Brazil

{maffort,mtov,mariza}@dcc.ufmg.br

André Hora, Nicolas Anquetil

RMoD Team
Inria, Lille, France

{andre.hora,nicolas.anquetil}@inria.fr

Jonata Menezes

Department of Computer Engineering
CEFET-MG, Belo Horizonte, Brazil

jonata@dri.cefetmg.br

Abstract—Software systems usually follow many program-
ming rules prescribed in an architectural model. However,
developers frequently violate these rules, introducing archi-
tectural drifts in the source code. In this paper, we present a
data mining approach for architecture conformance based on
a combination of static and historical software analysis. For
this purpose, the proposed approach relies on data mining
techniques to extract structural and historical architectural
patterns. In addition, we propose a methodology that uses the
extracted patterns to detect both absences and divergences
in source-code based architectures. We applied the proposed
approach in an industrial-strength system. As a result we de-
tected 137 architectural violations, with an overall precision
of 41.02%.

Keywords-Software architecture conformance; Frequent
itemset mining; Static analysis; Mining software repositories

I. INTRODUCTION

The architecture of a system prescribes the organization

of its components, their relationships, constraints, and

the principles that guide its design and evolution over

time [1]–[3]. An architectural model is a high-level re-

presentation of the software that documents and transmits

the major decisions and principles that should be followed

during the software development project.

However, during development of a software product,

programming anomalies regarding the proposed architec-

tural model are normally introduced. These anomalies are

classified in this paper as architectural violations [4], [5].

In practice, the introduction of architectural violations is

very common [6]. These violations usually make more

complex subsequent maintenance tasks since the concrete

architecture is not adhering to the planned and documented

architecture [7].

Therefore, in this paper we assume that the inception

of architectural violations in software products is a com-

mon task [8]. Moreover, we assume that some violations

are detected and corrected in future revisions through

inspection and/or quality assure activities. Furthermore,

programs usually follow architectural patterns of imple-

mentation. With this in mind, it is observed that, according

to software design best practices, classes belonging to the

same component follow similar programming conventions.

Based on these assumptions, this paper proposes a

method to detect architectural violations in software pro-

ducts. The proposed solution analyzes structural and his-

torical architectural patterns at the level of structural

dependencies between classes and considering the versions

stored in a version control repository. The ultimate goal

is to identify architectural violations from similar depen-

dency patterns. Particularly, a structural dependency de-

notes any syntactic relation between two classes, including

method calls, field and variables declaration, etc.
The proposed approach extracts architectural patterns

that can be used, for example, as documentation artifacts.

Furthermore, the detection method is statically performed

in a non-invasive way, so it does not impact normal system

programming activities. In order to evaluate our approach,

this paper describes its application in a real information

system used by a major Brazilian university. As result, we

identified 334 evidences of architectural violations in this

system. From such evidences, 137 were confirmed by a

senior software developer, which implies in a precision of

41.02%.
The remainder of this paper is organized as follows.

Section II presents an overview of the proposed approach.

Sections II-A and II-B describe the heuristics to detect ab-

sences and divergences, respectively. Section III presents

an evaluation of the proposed approach in a real system.

Section IV describes related work and Section V presents

the conclusions.

II. PROPOSED APPROACH

This paper proposes a technique for detecting architec-

tural violations in object-oriented software systems. The

proposed approach relies on data mining techniques over

historical dependencies between the classes of a target

system. This historical information is retrieved from the

version control system repository. Basically, the proposed

approach mines structural and historical dependencies

between the classes of the target system.
Figure 1 illustrates our approach for detecting archi-

tectural violations. Initially, a Code Extractor component

retrieves all source code versions from the version con-

trol system repository. Each revision is parsed by the

VerveineJ1 parser that extracts the dependencies from the

source code. Next, the extracted dependencies are stored in

a relational database. The Architectural Miner component

relies on two types of input on the target system: (a)

dependencies database and (b) high-level component spec-

ification. In our approach, we assume that classes are stati-

cally organized in modules (packages in Java terminology)

1https://gforge.inria.fr/projects/verveinej

376

and modules are logically arranged in coarse–grained

structures called components. The high-level component

specification is essentially a mapping from modules to

the defined components. Next, the Architecture Miner
generates a Prolog database describing the structural and

historical relations available in the source code. After that,

the Architectural Miner uses Prolog queries to convert the

Prolog database into a consistent frequent itemset mining

dataset. Next, an association rule mining algorithm is used

to detect structural and historical architectural patterns.

Finally, the Violation Detector uses such architectural pat-

terns to detect architectural violation evidences according

to the methodology described in Sections II-A and II-B.

Figure 1. Proposed approach

In the proposed component model, high-level compo-

nents are represented as simple regular expressions that

represent the mapping from modules to components.

Our approach is based on a data mining technique

called frequent itemset mining [9], which efficiently finds

frequent itemsets in a dataset. Basically, this technique

defines the support as the number of occurrences of a

subset of items (sub-itemset). A sub-itemset is considered

frequent if its support is greater than a specified threshold

called minimum support. Thus, support counts the number

of times a sub-itemset happens in the itemsets database.

After the frequent itemset has been mined, we can

compute association rules [10], [11]. From the association

rules, we make assumptions that two or more items occur

simultaneously or conditionally. Furthermore, association

rules can be used to discover causal relationships among

elements. Each association rule has a confidence, which

is a metric that represents the probability of a database

transaction covered by a antecedent term (pre-condition of

the rule) be covered by a consequent term (consequence

of the rule).

To calculate frequent itemsets and to generate asso-

ciation rules, we use a FP-tree-based mining algorithm,

called FPGrowth [10]. Instead of generating the complete

set of frequent sub-itemsets, this algorithm generates only

relevant itemset candidates. After the frequent itemsets are

mined, FPGrowth also generates association rules. The

proposed approach to architectural violation detection is

based on the idea that an architectural pattern is frequently

followed and violations represent a small percentage of the

cases.

The remainder of this section is organized as follows:

Section II-A presents the heuristics used to detect evi-

dences of absences; Section II-B describes the heuristics

for divergences.

A. Mining for Absences

An absence is a violation that occurs when a

BaseClass does not depend on a TargetClass, but a

dependency like that is prescribed by the planned architec-

ture. In other words, an absence is a violation that happens

with a dependency defined by the planned architecture but

that does not exist in the source code [4], [12]. Figure 2

illustrates an example of absence. In this case, the planned

architecture prescribes that classes located in a DTO
module must use services provided by a class located in

JPA module. In this case, an absence is counted for each

class in DTO that does not follow this rule.

Figure 2. Example of absence (DTO must use JPA)

In order to detect absences we initially search for

patterns of dependencies that frequently occur. Next, we

search for dependencies that violate such patterns, and

therefore denote minorities at the level of components. We

assume that absences occur in a small percentage of cases,

which are more likely to represent architectural violations.

Additionally, we use the history of versions to mine

for evolutionary architectural patterns. In this case, we

search for patterns in which dependencies are introduced

in classes originally created without such dependencies.

The proposed procedure for detecting absences relies

on two steps. First, we identify architectural patterns that

frequently occur in classes grouped as defined by the

component model provided as input. Second, from classes

in each component, we identify evolutionary architectural

patterns. For instance, considering the example in Figure 2,

we check how frequently classes in the component Model
that depend on Entity (a class of the JPA module) in

the current version of the system were initially created

without this dependency.

The main idea of the evolutionary architectural patterns

is to reinforce the violation evidences suggested by the first

step. The assumption is that absences are frequently de-

tected and fixed (i.e., classes created without a dependency

prescribed by the planned architecture are frequently fixed

in future revisions).

In order to find correlations among the dependencies,

initially it is necessary to compute the frequent itemset

377

mining dataset. For this purpose, we rely on a dataset

based on Prolog facts, which describes the dependencies

and historical information on the classes of the system

under analysis, as follows:

[component(CompId,CompName).]+
[module(ModId,CompId,ModName).]+
[class(ClassId,ModId,ClassName).]+
[dependency(DepId,BaseClassId,TargetClassId,

CreatedWith,ExistCurrently,AddAny).]+

The component predicate defines the components de-

fined by the architect of the system under analysis.

The module predicate defines the packages, in Java ter-

minology, of classes of the system. The class predi-

cate describes a class in the system. The dependency
predicate defines a dependency relation between two

classes (BaseClassId depends on TargetClassId). In

the dependency predicate, the attribute CreatedWith
informs whether the dependency was created together

with the BaseClassId, the attribute ExistCurrently
informs whether the dependency exists on the last version

of the system, and the attribute AddAny informs if the

dependency existed in some version of the system.

In the first step, each class and its dependencies in the

last version under analysis (attribute ExistCurrently =
true) are written as a row into the itemset database, as

follows:

BaseComponent(bcomp),BaseClass(bclass)
[,TargetModule(tmod),TargetClass(tclass)]*

By mining this itemset database using FPGrowth algo-

rithm, we can find the frequent sub-itemsets and generate

the association rules of the corresponding architectural
pattern, which represent dependencies that are frequently

used together. Moreover, the FPGrowth requires the defini-

tion of a support (Adps) and a confidence (Adpc) threshold.

For instance, suppose a pattern like that:

{BaseComponent(’domain’)}=>
{TargetClass(’Entity’)}

This pattern states that all classes on the component

domain (antecedent term of the association rule) should

depend on the class Entity (consequent term of the

association rule). Therefore, regarding this pattern, classes

in the domain component that do not depend on Entity
represent an absence violation.

The second step is used to reduce the amount of false

violations. For each component in the system, we select

the dependencies and the historical information from the

Prolog facts database. In this particular case, we select

the attributes CreatedWith and ExistCurrently. Each

dependency generates a row in the itemset database as

follows:

BaseComponent(bcomp),TargetClass(tclass),
CreatedWith([true|false]),
ExistCurrently([true|false])

We compute the association rules of the corresponding

dependency evolution patterns using the FPGrowth al-

gorithm, using a given support (Adeps) and confidence

(Adepc) threshold. The results are combined with the

results obtained in the first step. For example, suppose

that in the first step the classes in the Model component

that not depend on Entity were classified as evidences of

absences. Moreover, suppose that in the second step we

found that classes in Model created without a dependency

with Entity frequently (i.e., with a high confidence)

added this dependency during their evolution, which there-

fore reinforces the evidence detected in the first step.

B. Mining for Divergences

A divergence is a violation that happens when a

BaseClass depends on a TargetClass, although such

dependency is not prescribed by the planned architecture.

In other words, a divergence is a violation due to a

dependency that is not allowed by the planned architecture,

but that exists in the source code [4], [12]. Figure 3

illustrates an example of divergence. In this case, the

planned architecture prescribes that classes located in the

BO module must not directly depend on the JPA module.

In this particular example, a divergence is counted for each

class in BO which relies on services provided by the JPA.

Figure 3. Example of divergence (BO cannot use JPA)

Likewise the heuristic for absences, we assume that

divergences happen in a small percentage of cases. There-

fore, a standard frequent itemset mining technique is not

suitable for detecting minorities. However, divergences

frequently do not exist in most classes of a component.

More specifically, the divergences detection relies on two

steps. First, we identify the dependencies that frequently

do not occur in the classes of a given component. In

the second step, we identify how frequently classes in

this component have established and then removed a

dependency like that in the past.

In the first step, we initially select all classes in the

last version of the target system. For each BaseClass,

we select the dependencies that do not exist between

BaseClass and a TargetClass, where TargetClass is

a class used by the component that contains BaseClass.

Then, these items generate a row in the itemset database,

as follows:

BaseComponent(bcomp),BaseClass(bclass)
[,TargetModule(tmod),TargetClass(tclass)]*

Using FPGrowth algorithm, we compute the association

rules, according to a given support (Ddps) and confidence

(Ddpc). For instance, the following association rule states

that classes in the Model component frequently do not

depend on HttpServlet.

{BaseComponent(’model’)}=>
{TargetClass(’HttpServlet’)}

378

Therefore, the classes in Model that depend on

HttpServlet represent an evidence of divergence.

In the second step, we perform a historical analysis to

reduce the number of false positives. In this case, we select

dependencies from the itemset database including the at-

tributes ExistCurrently and AddAny. This information

generates an itemset in our database as follows:

BaseComponent(bcomp),TargetClass(tclass),
AddAny([true|false]),
ExistCurrently([true|false])

Applying the FPGrowth, using Ddeps and Ddepc as sup-

port and confidence respectively, we obtain the association

rules for the dependency evolution patterns. Then, these

results are combined with the results obtained in the first

step. For instance, suppose that it was previously mined

in the first step that the classes in the Model compo-

nent that depend on HttpServlet represent evidences of

divergences. Moreover, suppose that in this second step

we discover that such classes removed the dependencies

with HttpServlet during their evolution. In this case, the

evidence detected in the first step is reinforced by this

second finding.

III. EVALUATION

To evaluate our approach for detecting absences and

divergences, we performed a study in a information sys-

tem, called SGA, from a major Brazilian university. The

SGA system automates many administrative activities,

including human and material resource management, in-

comes/expenses, among others. The last revision con-

sidered in our study has 1,852 classes and interfaces,

organized in 104 packages, comprising around 127 KLOC.

The SGA system follows a Model-View-Controller

(MVC) architecture. The Model layer has three main

modules: domain, persistence, and service. The

domain module handles business objects, such as Stu-

dents, Professors, etc. The persistence module provides

database transactional methods, such as insert, update,

delete, etc, that are used to persist business objects in

a relational database. The service module handles the

state of the domain objects according to the workflow and

business rules required by the information system.

The V iew layer is implemented in Java Server Pages
and uses JavaServer Faces components. Basically, this

layer provides a way to interact with the system, receiving

and displaying results of the requests made by the users.

The Controller layer provides a bridge between user

interface and business-related components, transferring

and adapting the user inputs.

A. Dataset

To detect absences and divergences, initially we re-

trieved 4,923 revisions of the SGA system, which is

maintained in a Subversion repository. Each revision was

parsed by VerveineJ and the extracted dependencies were

stored in a relational database with 4.5 GB.

Next, an architect defined its high-level component

model. Finally, the high-level components and the dataset

of historical dependencies were used as input to generate

the Prolog facts. We executed our approach as described

in Sections II-A and II-B. Then, the architect of the SGA

system inspected the selected violations in order to classify

them as true or false positives.

B. Results for Absences

As reported in Section II-A, the detection of absences

relies on four thresholds: Adps and Adpc, the support

and confidence of the structural dependency architectural

patterns, and Adeps and Adepc, the support and confidence

of historical dependency evolution patterns. Table I shows

the values used for such thresholds:

Table I
ABSENCES THRESHOLDS.

Threshold Value
Adps 0.1
Adpc 0.9
Adeps 0.1
Adepc 0.6

Basically, we consider as an architectural pattern only

the rules that occurred in at least 10% of the classes

and that present a confidence of at least 90%. For the

architectural evolution patterns, we consider thresholds

of 10% for support and 60% for confidence. Therefore,

we consider as evidence of architectural violation classes

that violated a rule followed by at least 90% of the

other classes. Furthermore, only classes whose historical

evolution rules were higher than 60% were considered as

violations, i.e., at least 60% of the classes created with a

violations regarding the rule have been later refactored to

follow the rule.

C. Results for Divergences

The detection of divergences relies on four thresholds:

Ddps and Ddpc, denoting respectively the support and con-

fidence of the structural dependency architectural patterns,

and Ddeps and Ddepc, denoting respectively the support

and confidence of the historical dependency evolution

patterns. Table II shows the thresholds values used for

divergences.

Table II
DIVERGENCES THRESHOLDS.

Threshold Value
Ddps 0.1
Ddpc 0.9
Ddeps 0.1
Ddepc 0.25

Similarly to the absence detection, for divergences we

consider architectural pattern rules with support of 10%

and confidence of 90%. On the other hand, for the archi-

tectural evolution patterns, we consider the thresholds of

10% and 25% for support and confidence, respectively. In

this case, we select as divergences the classes that violate

379

both considered architectural patterns. More specifically,

we select classes that depend on a class when at least

90% of the classes in the same component do not follow

this rule. Furthermore, when in the past other classes

added this dependency, in at least 25% of the cases the

dependency was later removed.

D. Results

Our approach was applied in the SGA system using

the thresholds defined in Sections III-B and III-C. The

triggered violations were inspected by the SGA architect,

who classified them as true or false violations.

As we can observe in Table III, we detected 261

evidences of absence, and 101 were classified as true-

positives by the SGA architect. Furthermore, we triggered

73 divergence warnings, which 36 were classified as true-

positives. Thus, the precision was 38.7% and 49.32% to

absences and divergences, respectively. As total, the archi-

tect inspected 334 warnings, which 137 were considered

true-positives, resulting in a global precision of 41.02%.

Table III
ARCHITECTURAL VIOLATIONS OF SGA SYSTEM.

Absence Divergence Total
Warnings (E) 261 73 334
True-positives (TP) 101 36 137
False-positives (FP) 160 37 197
Precision (TP/E) 38.7% 49.32% 41.02%

IV. RELATED WORK

Lint [13] was one of the earliest and most successful

tool to detect bugs and bad smells in software products.

With the success achieved by Lint, many other static ana-

lysis tools to detect questionable programming strategies

have been proposed. FindBugs [14] and PMD [15] are

examples of tools inspired by Lint that highlight among the

most popular tools to detect anomalies on Java programs.

Null pointer dereferences, overflow in arrays, uncaught

exceptions and security vulnerabilities are examples of

suspicious programming constructs and events analyzed

by FindBugs and PMD. However, such tools are not

designed to detect architectural anomalies such as the

ones associated to violations in the planned architecture of

object-oriented systems. Moreover, in previous studies we

concluded that FindBugs present precision rates less than

50%, which are only achieved when the tool is properly

configured to raise particular categories of warnings [16].

In other study, we concluded that there is no static cor-

respondence between field defects and warnings raised by

FindBugs, although it seems to exist a moderate level of

correlation between warnings and such kinds of software

defects [17].

Several tools have been proposed to analyze version

control software repositories and extract programming pat-

terns. Zhou and Zhenmin present a tool, called PR-Miner

(based on the frequent itemset data mining technique)

for automatic extraction of programming rules [18]. The

proposed approach uses a formalism to extract depen-

dencies between functions that are heavily dependent on

procedural languages. The proposed strategy for detecting

violations only considers function call flows, independent

of the modular and/or architectural context in which these

calls occurred. On the other hand, the approach presented

in this paper is focused on the detection of architectural

violations. However, it is important to note that the preci-

sion values presented by PR-Miner were generally lower

than those reported in Section III. For example, from the

60 warnings with higher priority triggered during Linux

analysis, only 16 were true programming errors (bugs).

Mileva et al. conducted an analysis on evolution patterns

between two versions of a system to detect pending

changes in source code [19]. This study is supported

by a tool called Lamarck. Such tool mines evolution

patterns in software repositories by abstracting object

usage into temporal properties in order to detect pending

changes. From the pending changes, they recommend

fixes based on usage patterns. Similarly to the study of

Zhou and Zhenmin the approach used by Mileva et al.

also analyze dependencies between functions. Therefore,

it targets concepts of procedural languages, disregarding

typical object-oriented language dependencies, such as

inheritance. Moreover, in this paper, we take into account,

in addition to the present formalism of object-oriented

languages, the entire history of changes. Despite these

differences in focus and languages, it is important to

note that the approach described in this paper, in general,

was able to discover a greater number of violations. For

example, the approach of Mileva et al. was able to find

only six violations in a case study involving Eclipse 1.0

and 2.0 platforms.

Among architecture conformance techniques, reflexion

models currently highlight as the main technique based

on models. Such approach compares a high-level model,

manually created by the architect, with a concrete model,

automatically extracted from the source code [12], [20].

However, the application of reflexion models for architec-

ture conformance usually requires successive refinements

in the high-level model to reveal the whole spectrum of

absences and divergences. On the other hand, the approach

proposed in this paper is more lightweight, demanding a

simple high-level component specification.

Sarkar et al. [7] conducted a study aiming to discover

layered organization models of software systems. The

architectural model generated was used to detect archi-

tectural violations through dependencies among modules.

They have only detected calls violating layer hierarchical

structures. On the other hand, in this paper, we have also

presented a methodology to detect absences between two

layers and divergences between components, which do not

necessarily need to follow a hierarchical structure.

Besides reflexion models, another common solution for

architecture conformance is centered on domain-specific

languages. In this case, Terra and Valente proposed a

declarative language, called DCL (Dependency Cons-

traint Language), for constraint dependency that statically

380

checks the architecture of a software in relation to restric-

tions defined by an architect [8]. Therefore, DCL requires

an architect to define constraints, and a tool included in

the solution verifies only what the architect has prescribed.

On the other hand, in our approach the architect does not

need to manually specify architectural constraints, which

invariably tends to be a tedious and error-prone task.

V. CONCLUSION

Software systems frequently follow several program-

ming conventions. During software evolution, the develop-

ment team commonly uses programming strategies that do

not adhere to the planned architecture for the system.

This paper presented an approach that use frequent

itemset mining techniques to architecture conformance.

We consider both dependencies prescribed in the planned

architectural model but absent in the source code, as well

as dependencies presented in the source code but absent

in architectural model.

We evaluated the proposed approach with a large infor-

mation system. We detected 137 architectural violations,

divided in 101 absences and 36 divergences, with precision

of 38.7% and 49.32%, respectively, and a global precision

of precision of 41.02%.

As future work, we intend to extend the study evalu-

ating specific correlations between dependencies as well

as classifying the dependency type, such as attributes,

annotations, inheritance, etc. Additionally, we intend to

conduct a sensibility analysis in order to discover the

best combination of values for the thresholds used by

our approach. Finally, we plan to apply our study in

case studies involving systems using architectural patterns

different from SGA system. We also plan to integrate our

approach for architecture conformance with ArchFix [21],

which is a recommendation tool that suggests refactorings

for repairing architectural violations.

ACKNOWLEDGMENTS

This research has been supported by CAPES, FAPEMIG,

and CNPq. We thank the architect of the SGA system for

validating the warnings raised by proposed approach.

REFERENCES

[1] D. Garlan, “Software architecture: a roadmap,” in Confer-
ence on The Future of Software Engineering, ser. ICSE ’00,
2000, pp. 91–101.

[2] D. Garlan and M. Shaw, Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.

[3] M. Fowler, Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[4] L. Passos, R. Terra, R. Diniz, M. T. Valente, and N. Men-
donca., “Static architecture-conformance checking: An il-
lustrative overview,” IEEE Software, vol. 27, no. 5, pp. 82–
89, 2010.

[5] D. E. Perry and A. L. Wolf, “Foundations for the study
of software architecture,” SIGSOFT Software Engineering
Notes, vol. 17, pp. 40–52, 1992.

[6] J. Knodel and D. Popescu, “A comparison of static archi-
tecture compliance checking approaches,” in 6th Working
IEEE/IFIP Conference on Software Architecture (WICSA),
2007, p. 12.

[7] S. Sarkar, G. Maskeri, and S. Ramachandran, “Discovery of
architectural layers and measurement of layering violations
in source code,” Journal of Systems and Software, vol. 82,
pp. 1891–1905, 2009.

[8] R. Terra and M. T. Valente, “A dependency constraint
language to manage object-oriented software architectures,”
Software: Practice and Experience, vol. 32, no. 12, pp.
1073–1094, 2009.

[9] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” in 20th International
Conference on Very Large Data Bases, 1994, pp. 487–499.

[10] M. J. Zaki and W. Meira Jr., Fundamentals of Data Mining
Algorithms. Cambridge University Press, 2011.

[11] R. Agrawal, T. Imieliński, and A. Swami, “Mining asso-
ciation rules between sets of items in large databases,” in
International Conference on Management of Data, 1993,
pp. 207–216.

[12] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap between source and high-level
models,” in 3rd Symposium on Foundations of Software
Engineering (FSE), 1995, pp. 18–28.

[13] S. C. Johnson, “Lint: A C program checker,” Bell Labora-
tories, Tech. Rep. 65, dec 1977.

[14] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”
SIGPLAN Notices, vol. 39, no. 12, pp. 92–106, 2004.

[15] T. Copeland, PMD Applied. Centennial Books, 2005.

[16] J. E. Montandon, S. Souza, and M. T. Valente, “A study on
the relevance of the warnings reported by Java bug finding
tools,” IET Software, vol. 5, no. 4, pp. 366–374, 2011.

[17] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente,
“Static correspondence and correlation between field de-
fects and warnings reported by a bug finding tool,” Software
Quality Journal, vol. 21, no. 2, pp. 241–257, 2013.

[18] Z. Li and Y. Zhou, “PR-Miner: automatically extracting
implicit programming rules and detecting violations in large
software code,” in 13th Symposium on Foundations of
Software Engineering (FSE), 2005, pp. 306–315.

[19] Y. M. Mileva, A. Wasylkowski, and A. Zeller, “Mining
evolution of object usage,” in 25th European conference
on Object-oriented programming, 2011, pp. 105–129.

[20] J. Knodel, D. Muthig, M. Naab, and M. Lindvall, “Static
evaluation of software architectures,” in 10th European
Conference on Software Maintenance and Reengineering
(CSMR), 2006, pp. 279–294.

[21] R. Terra, M. T. Valente, K. Czarnecki, and R. Bigonha,
“Recommending refactorings to reverse software architec-
ture erosion,” in 16th European Conference on Software
Maintenance and Reengineering (CSMR), Early Research
Achievements Track, 2012, pp. 335–340.

381

Bug Prediction for Fine-Grained Source Code
Changes

Zi Yuan

Software Engineering Institute
Beihang University

Beijing, China
yuanzi@sei.buaa.edu.cn

Lili Yu
Software Testing Center

Second Artillery
Beijing, China

xueer-123@263.net

Chao Liu
Software Engineering Institute

Beihang University
Beijing, China

liuchao@buaa.edu.cn

Abstract—Software is constructed by a series of changes and each
change has a risk of introducing bugs. Building bug prediction
models for software changes can help developers know the
existence of bugs immediately upon the completion of the change,
which allows them to allocate more resources of testing and
inspecting on the current risky changes, and to find and fix the
introduced bugs timely. In this paper, we present a bug
prediction model for fine-grained source code changes based on
machine learning method, which takes a fine-grained source code
change as a learning instance and a series of properties of the
fine-grained change as features. This model has two desirable
qualities: 1) Compared with previous research work that
building bug prediction models for software changes at the file
level or commit level (including one or more files), this model can
predict bugs for changes at the statement level, which increases
the granularity of prediction and thus reduces manual inspection
efforts for developers. 2) This model can help developers or
managers gain better knowledge on key factors of bug injection
and provide guidance for software change of high quality. From
the experiments on 8 famous open source projects, we observe
that when using Random Forest as the classifier, the model
proposed in this paper achieves the best performance, which can
predict bugs for fine-grained source code changes with 78%
precision, 71% recall, and 75% F-measure on average.
Furthermore, among all the four feature groups (i.e. where, what,
who, and when) defined in this paper, where is most influential,
which has the strongest discriminative power in predicting bugs.

Keywords-bug prediction; fine-grained source code changes;
code metrics

I. INTRODUCTION
Software bug is the key risk and major cost driver for both

companies that develop software and companies that consume
software systems in their daily business [1]. Normally, if these
bugs are not removed from the software timely, they will affect
the software in three aspects negatively. Firstly, bugs that settle
in software for a long time may cause new bugs or subsequent
error modifications [2]. Secondly, if these bugs are reported
late, developers who introduced them must spend time to
reacquaint themselves with the changed source code, which
will increase the cost of bug fix effort. Thirdly, if these bugs
are reported by customers after software release, it will damage
the software reputation significantly. In order to remove
software bugs timely, we should firstly know the existence of
bugs as soon as possible. One effective way is to build bug
prediction models for software changes, which could remind
developers of bugs immediately upon the completion of a

change. In the past few years, several researchers have
proposed various bug prediction models for software changes
[3], [4]. Most of them built their bug prediction models on file-
level or commit-level changes. However, since there are
usually multiple statements modified in a committed file or
commit, it will be time-consuming to locate bugs exactly.

In this paper, we concentrate on exploring bug introducing
changes at a finer granularity and present a bug prediction
model for statement-level changes. We formulate bug
prediction as a classification problem and take a fine-grained
source code change as a learning instance. The properties of the
fine-grained source code change are deeply explored and taken
as features of the learning instance. There are four aspects
considered as constructing features of the prediction model,
namely where and when a fine-grained source code change
happens, what happens, and who manipulates it. Each aspect
corresponds to a feature group. We empirically evaluate the
performance of the model and the discriminative power of each
feature group with 8 famous open source projects. The
contributions of our work are summarized as follows:

Building bug prediction model for fine-grained changes:
the novel bug prediction model for changes at the statement
level increases the granularity of prediction and thus reduces
manual inspection efforts for developers. Our experiments
show that when using Random Forest as the classifier, the
model achieves the best performance. It can predict bugs with
78% precision, 71% recall, and 75% F-measure on average.
The results are encouraging, given that the granularity of
prediction is smaller than previous research work.

Exploring key factors of bug injection: In addition to
building model with high accuracy, we also explore the key
factors of bug injection by inspecting into the model. We
evaluate the discriminative power of each feature group defined
in this bug prediction model with 8 famous open source
projects and discover the most influential factors. These factors
give guidance for the software change of high quality.

The remainder of this paper is structured as follows. In
Section II, we formulate the bug prediction problem, define a
series of features considered in building our bug prediction
model, and introduce three famous classifiers used in this study.
We describe our experiments and evaluations in Section III and
discuss the threats to the validity of this study in Section IV.
We present work related to this paper in Section V and
conclude with possible future work in Section VI.

382

II. BUG PREDICTION FOR FINE-GRAINED CHANGES
In this section, we firstly present some necessary definitions

and a formal representation of the bug prediction problem, and
then elaborate the bug prediction model proposed in this paper,
including feature definition and classifier introduction.

A. Problem Definition
Fine-Grained Source Code Change (): This basic

conception is introduced by Fluri et al [5], which denotes
source code changes at statement level. They leveraged the
implicit structure of source code by comparing two different
versions of the abstract syntax tree (AST) of a program and
tracked source code changes down to statement level. Formally,
we represent a by a triple, which determines it uniquely:

 = < , , > (1)
where is from the taxonomy of fine-grained source code
changes proposed by Fluri et al. They defined 48 change types
with tree edit operations on AST (e.g. condition changes,
interface modifications, inserts or deletions of methods and
attributes, return type change, etc). The denotes the
type of the language constructs provided by an object-oriented
programming language, such as single and composed
statements as well as method or class declarations. It is the
object that the acts on directly. There are totally 104 kinds
of entities defined in [5]. The denotes the time
when happens. Fig. 1 shows an example of three
based on the AST comparison of three file revisions. One
denotes an if statement insert, another denotes a condition
expression update to if statement, and the other denotes a
parameter insert operation on method declaration.

Bug Introducing : In this work, each bug corresponds
one or more bug reports in the bug database, indicating one or
more fixed problems. We consider a as the bug
introducing if it leads to at least one bug report and later
fix during the software development process. Fig. 1 shows that
if statement insert is a bug introducing .

Indication Labeling: Given a set of fine-grained source
code changes = (, , … ,) , the label of (= 1, 2, … ,) is defined as: () { , } (2)

where denotes there is no bug introduced by , and
 denotes there is at least one bug introduced by .

Learning Task: Given a set of fine-grained source code
changes = (, , … ,) and their features = (, , … ,), our goal is to learn a prediction model to
predict whether a has bugs or not. Formally, we have: (| , , … ,) (), = 1,2, … , (3)

To build the prediction model, we have investigated and
constructed a series of relevant features = (, , … ,) by
taking four aspects (i.e. where, what, who, and when) into
consideration. Each aspect denotes a feature group, namely a
subset of . In this paper, the prediction model is named as
FWL. Here FW denotes the four important feature groups
whose names all begin with the letter W and L denotes the label
(i.e. clean or buggy) of .

Figure 1. An example of three fine-grained source code changes (i.e.
parameter insert, statement insert, and condition expression update) based on
the AST comparison of three file revisions as proposed in [5].

B. Feature Definition
In this paper, there are mainly four aspects considered as

constructing features of our prediction model FWL, namely
where and when a fine-grained source code change happens,
what happens, and who manipulates it. Each aspect
corresponds to a feature group. Each feature group consists of
one or more sub-feature groups, which is the refinement of it.
Fig. 2 shows this two-level structure.

1) Feature group where: In this paper, where doesn’t
indicate the exact location of a fine-grained source code
change but the context of it. The characteristics of source code
files that have been touched reflect context information
of . It is well understood that if it is difficult for a source
code file to be understood thoroughly, the risk of changing it
will be high. Hence, we assume that the context of may
correlate with the injection of bugs. A series of metrics
reflecting the complexity and activity of the touched file are
believed to be related to the difficulty of understanding the file
and used as features in bug prediction model FWL.

a) Halstead Metrics: Halstead Metrics were proposed by
Maurice Halstead, who argued that the harder the code to read,
the more bug prone the modules are [6]. Halstead Metrics are
measures of lexical complexity. There are four basic Halstead
Metrics (i.e. total number of operators, total number of
operands, unique number of operators and unique number of
operands) and two derived Halstead Metrics (i.e. volume and
programming effort) considered as features in bug prediction
model FWL.

b) McCabe Metric: Introduced by Thomas McCabe, the
idea behind McCabe Metrics is to capture the structural
complexity level of a code [7]. The assumption is that it is
more likely for the number of bugs to increase as the source
code gets more complex. McCabe Metrics include cyclomatic
complexity, design complexity and essential complexity. Only
cyclomatic complexity is considered as features in model FWL,
which is the most famous one among them.

383

Figure 2. Two-level structure of features groups

c) Network Metrics: The dependency graph of a software
system depicts the relational structure between individual
source code entities. As indicated by Zimmermann et al [8],
dependencies between software entities are crucial for their
successful operation. Hence, we assume that the dependency
between source code files may correlate with the injection of
bugs. In this study, we construct a weighted multiple type
dependency graph, in which nodes represent files, edges
indicate dependencies between two files, and weight of each
edge indicates the amount of dependencies. There are four
types of dependencies considered, namely method invocation,
field access, inheritance, and implementation. We extract the
dependency information of each file touched by and then
two Network Metrics weighted in-degree and weighted out-
degree are taken as features in bug prediction model FWL.

d) Topic Diversity: Recent studies propose that the
domain topics of a software system reflect the business logic
of the system and should not be ignored in building bug
prediction models [9]. In this study, it is assumed that if there
are too many domain topics existing in a file, it will be
difficult to understand and change it correctly. Topic Diversity
indicates domain breadth of source code files, which is
measured by the entropy of the file’s topic distribution:

() = (|)| | log (|) (4)

where denotes a source code file, = (, , … , | |)
denotes the set of topics and denotes the distribution of
topics in a source code file. Since each revision of the source
code files should be considered in our study, a topic evolution
model DiffLDA [10] that allows the documents to have time-
stamps and the corpus to be versioned is used to extract the
file's topic distribution.

e) History Metrics: Recently, researchers have shown the
usefulness of collecting History Metrics from software
repositories for bug prediction models [11]. It is assumed that
if a source code file has been changed or fixed many times by
many developers in the history, the risk of changing it in the
future will be high. Hence, three History Metrics are
considered in model FWL, namely the number of revisions, the
number of fixes and the number of developers in history.

2) Feature group what: In this paper, feature group what
has its specific meaning. It mainly denotes the actual content
of the , which can be described from three aspects:

a) Change Type: Some researchers [12] have proposed
that since the logic complexity of edit operation on AST, some
types of fine-grained source code changes (e.g. condition

expression change) are more likely to have bugs than others.
In this paper, the 48 types of fine-grained changes defined by
Fluri et al are considered as building prediction model FWL.

b) Entity Type: There are totally 104 types of entities
defined in Fluri’s work. We assume that entity type can not be
ignored in model FWL because some types of entities (e.g. if
statement) are more difficult to be modified correctly.

c) Topic Bug Prone Metric: As researchers observed,
source code responsible for functionality with simple domain
logic (e.g. I/O tasks) is likely to have fewer bugs than that
responsible for functionality with complicated domain logic
(e.g. compiler implementation details) [9]. In this paper, we
study the effect of domain topics on quality of fine-grained
source code change. We propose a metric to describe the bug
proneness of topics that are touched on by .

We firstly define the edits between two successive revisions
of the source code file as delta file and propose a metric
for each delta file (= 1,2, … ,), represented as follows: = (5)

where denotes the number of words in that
are located on the buggy lines. Here, a buggy line means the
line of code which have been modified by subsequent bug fix
changes. Length denotes the total number of words in .

Secondly, we use DiffLDA to extract topic distribution of
each delta file (= 1,2, … ,) and define the Bug Prone
Metric for each topic (= 1,2, … , | |) and each (= 1, 2, … ,). Formally, we have:

(,) = || | (6)

where denotes the distribution of topics in the delta file and
 denotes a set of indexes of delta files that correspond to

changes that precede .
We assume a fine-grained source code change (= 1, 2, … ,) touches on some words in the source code file,

denoted as = , , … , , and each word would be
assigned to a topic based on DiffLDA. All the topics related to

 are denoted as = , , … , . Finally, we get the
Topic Bug Prone Metric of by summing up the Bug
Prone Metric of each related topics. Formally, we have:

() = ,| | (7)

384

The Topic Bug Prone Metric can capture unstructured
semantic information hidden in source code effectively, which
can’t be acquired by considering the structure of AST alone.

3) Feature group when: The time when the fine-grained
change occurs can usually capture a developer’s habit and
work cycle (e.g. Some developers always introduce more bugs
after midnight). Inspired by the work of Eyolfson [13], we
take Time of Day and Day of Week as two primary features in
feature group when.

4) Feature group who: Some researchers have proposed
that the experience of developers may have effect on the
quality of software changes [13], [14]. In this paper, we use
the number of times that a developer changes a file and the
whole project to describe the developer’s experience on the
touched file and the whole project and take them as two
features File Experience and Project Experience respectively.

C. Classifiers
There are three classifiers (i.e. Random Forest, Bagging and

K-Nearest Neighbor) chosen in this paper, which have been
confirmed to have good performances and widely used by other
researchers in bug prediction area. The three classifiers are
constructed based on different learning mechanisms. Both
Random Forest and Bagging belong to ensemble classifiers and
K-Nearest Neighbor (KNN) is an instance-based classifier.

III. EXPERIMENTS AND EVALUATION

A. Dataset Description
We conduct our study on 8 famous open source projects

which are easily accessible to the full source code and entire
project history. Table I provides an overview of these projects,
including the range of revisions considered, the real world
duration of the range, the number of clean and buggy , the
percentage of buggy , and the average values for the
number of modified statements in a file-level change and in a
commit-level change. On average, the number of modified
statements in a file-level change is 9, while the number of
modified statements in a commit-level change is 27. For
example, if a model predicts bugs at the file-level change, it is
necessary to inspect 9 statements on average and if it predicts
bugs at the commit-level change, it is necessary to inspect 27
statements on average. The bug prediction model FWL
proposed in this paper helps developers know which modified
statement may have bugs exactly, which save their manual
inspection efforts significantly.

In this study, there are two criteria considered as choosing
the range of revisions: 1) Revisions in the relatively early stage
of software development process are chosen, which ensures
that bugs introduced in this stage can be found and fixed
adequately during subsequent software development process.
The adequacy of the bug finding and fixing can further ensure
the label quality of . 2) The range of revisions chosen in
this work is short considering the lifetime of each software
system, which ensures that during the duration of each range,
the underlying concept learned by the prediction model is
stable. The concept drift problem and incremental learning for
the long history of each project are not discussed in this paper,
which will be explored deeply in our future work.

B. Data Collection
In our study, the data collection process consists of two

parts, namely feature collection process and labeling process
(see Fig. 3).

1) Feature Collection: Feature collection mainly collects
features of four aspects mentioned in Section II. For aspect
where, the Halstead and McCabe Metrics are collected using a
software metrics analysis tool prest1. An incremental
dependency graph builder2 developed in our team is used to
collect Network Metrics for each revision of the touched files.
The Topic Diversity Metric is collected by following two steps
of file's topic distribution extraction and entropy computation.
The first step is mainly based on DiffLDA method and
implemented by the natural language processing package
mallet3. Three History Metrics are extracted by parsing the
change logs of Version Control System (VCS) directly. For
aspect what, Change Type and Entity Type are collected by a
fine-grained change extraction tool changedistller4 and Topic
Bug Prone Metric is extracted also via DiffLDA method and
mallet3 package. In addition, a series of calculations are
conducted based on (5), (6) and (7) in Section II. Metrics of
aspects when and who are extracted in a similar manner as
collecting History Metrics of aspect where.

2) Labeling Process: In order to label the as clean or
buggy, we draw lessons from the SZZ algorithm proposed by
Sliwerski et al [15], which can automatically identify file-level
changes that induce bugs. However, the SZZ algorithm could
not be applied directly to identify statement-level changes
because of two reasons. One is that annotation by VCS is
insufficient for labeling statement-level changes (line number
in bug-introducing revisions is missing). And the other is that
not all modifications are fixes (e.g. format, comment and
blank change). In order to solve the two problems mentioned
above, we improve the SZZ algorithm by using a statement
tracking tool sDiff5 instead of the VCS annotation command.
Not only can this tool track statements across multiple
revisions of source code, but they can also handling format
change (e.g. breaking a statement across many lines or re-
ordering methods), comment change, and blank change.

Figure 3. Data collection process

1http://svn.cmpe.boun.edu.tr/svn/softlab/prest/trunk/Executable/PrestTool.rar
2http://code.google.com/p/dependency-graph-builder
3http://mallet.cs.umass.edu/
4http://www.ifi.uzh.ch/seal/research/tools/changeDistiller.html
5http://code.google.com/p/sdiff

385

C. Performance and Feature Analysis
1) Performance analysis: The performances of the bug

prediction model FWL are evaluated using the 10-fold cross-
validation method and three standard evaluation measures (i.e.
precision, recall, and F-measure). The results are summarized
in Table II. Different classifiers have different performances in
our experiments. In general, Random Forest achieves the best
performance, which has the buggy recall ranging from
62.2 to 93.0 percent and the buggy precision ranging
from 71.5 to 93.1 percent. While, KNN has the worst
performance, which has the buggy recall ranging from
53.5 to 92.6 percent and the buggy precision ranging
from 61.0 to 91.8 percent. Random Forest has the best
performance because it is more robust to noise that exists in
our dataset. KNN has the worst performance because it merely
seeks the most similar neighbors, which only utilizes little
information from training data. As a whole, all the three
classifiers achieve encouraging performances, given that the
granularity of prediction is smaller than previous research
work. In order to further validate the effectiveness of the bug
prediction model FWL, we take a dummy model constructed
by random guessing as the baseline. Fig. 4 shows that the
model FWL always performs much better than the dummy
model, whichever of the three classifiers is used.

2) Feature group analysis: In this study, we examine the
discriminative power of each feature group in the first
abstraction level (i.e. where, what, who, and when) following
two steps: First, the Random Forest Classifier that has the best
performance in our study is trained using features from one
feature group and then its precision, recall, and F-measure are
measured. Following this, Random Forest is trained using all

feature groups except for the feature group using in the first
step and also evaluated by precision, recall, and F-measure.

Fig. 5 shows the F-measure collected by running the bug
prediction model (constructed by using only one feature group
each time) on 8 open source projects. On the whole, feature
group where is proved to have the strongest discriminative
power in predicting bugs. It is understandable that bugs are
likely to be introduced into certain source code files which
have some characteristics that make them difficult to be
changed correctly. Feature group what and who are also
significant and they are well-matched in discriminative power.
It means that the actual content of a fine-grained source code
change and the experience of the developer who implements
the change are related to the injection of bugs. Unexpectedly,
the discriminative power of feature group when is weak. The
cause for its weakness can be explained that in the 8 open
source projects used in this paper, developers’ habit and work
cycle have no significant influence on the injection of bugs. It
is desirable that all the 8 open source projects have consistent
performances with the feature group where having the
strongest discriminative power, what tied with who taking the
second place and when having the weakest discriminative
power. The results can reveal the important factors of bug
injection and provide guidance for developers.

Fig. 6 summarizes the F-measure of the 8 open source
projects collected by running the bug prediction model with the
corresponding feature group excluded from full feature
combination. The “~” mark indicates that the corresponding
feature group is excluded. For comparison, Fig. 6 also shows
the F-measure using full feature combination. It can be
observed that when the feature group what is left out from full
feature combination, we get the lowest F-measure and when all
the feature groups are used, the highest F-measure is reached.

TABLE I. SUMMARY OF STUDIED PROJECTS

Project Revisions Period
of

clean
SCC

of
buggy
SCC

% of
buggy
 SCC

Average # of modified
statements in

a file-level change

Average # of modified
 statements in

 a commit-level change
Eclipse JDT Core 1250-1500 12/2001-01/2002 1730 249 13 6 11
Eclipse UI Workbench 2750-3000 11/2003-12/2003 2384 415 15 8 25
JEdit 750-1000 11/2001-05/2002 6947 1774 20 9 39
Columba 1000-1250 06/2003-07/2003 2572 318 11 7 28
Argouml 2500-2750 01/2001-09/2001 3698 847 19 11 39
Scarab 500-1000 05/2001-08/2001 1613 537 25 7 19
JBoss 3750-4000 03/2002-05/2002 2173 332 13 15 34
Struts 2000-2500 06/2002-10/2002 1698 781 32 11 21

TABLE II. THE PERFORMANCE OF THE THREE CLASSIFIERS FOR FULL FEATURE COMBINATION ON 8 OPEN SOURCE PROJECTS

 Random Forest Bagging KNN
Project Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Eclipse JDT Core 0.749 0.622 0.680 0.668 0.631 0.649 0.676 0.586 0.628
Eclipse UI Workbench 0.715 0.622 0.665 0.654 0.598 0.625 0.610 0.535 0.567
JEdit 0.742 0.707 0.724 0.702 0.678 0.690 0.677 0.641 0.658
Columba 0.793 0.686 0.735 0.721 0.642 0.679 0.616 0.616 0.616
Argouml 0.733 0.653 0.691 0.796 0.527 0.634 0.707 0.633 0.668
Scarab 0.788 0.711 0.748 0.737 0.695 0.715 0.762 0.709 0.735
JBoss 0.827 0.750 0.787 0.785 0.726 0.754 0.755 0.726 0.740
Struts 0.931 0.930 0.930 0.936 0.905 0.921 0.918 0.926 0.922

386

Figure 4. the average performance collected by
running the dummy model and the bug prediction
model FWL (with each of the three classifiers) on
8 open source projects.

Figure 5. the F-measure collected by running the
bug prediction model (constructed by using only
one feature group each time) on 8 open source
projects.

Figure 6. the F-measure collected by running the
bug prediction model (with the corresponding
feature group excluded from the full feature
combination) on 8 open source projects.

3) Sub-feature group analysis: We further examine the
discriminative power of each sub-feature group in the second
abstraction level following the similar steps as used in the first
level and the results are presented in Fig. 7. It can be observed
that the absence of Topic Bug Prone Metric leads to the most
prominent decrease of performance. Topic Diversity, Halstead
and Topic Bug Prone are the three most powerful prediction
factors and followed by Project Experience and McCabe. Two
of the least powerful factors are Time of Day and Change Type.
Other sub-feature groups have the moderate performances.
The results indicate us that the information of business domain
topics which denotes the semantic functionalities of source
code should not be ignored in exploring the problem of bug
injection and the lexical complexity is also a key factor that
leads to bugs. It is easily explained that if a source code file
has complex lexical and semantic structure, it will be difficult
for developers to understand it thoroughly. Hence the risk of
changing it will be high. In addition, developers’ familiarity
with the whole project, to a certain extent determines the
quality of software changes. These results obtained by sub-
feature group analysis are very valuable. It can help
developers gain better knowledge on internal reasons of bug
injection and provide useful guidance for their further
improvement of software quality.

Figure 7. Performance comparison for sub-feature group analysis. Here, the
F-measure is an average value on the 8 projects. “Add” denotes the model is
trained with the sub-feature group alone and “Drop” denotes the
corresponding sub-feature group is excluded from the full feature combination.

IV. THREADS TO VALIDITY

A. The Construct Validity
How accurate we measure a particular concept, is mainly

threatened by the bug introducing identification process
(i.e. labeling process).

First, we identify the bug fix changes by searching for
references to bug reports and keywords (e.g. “bug”, “fix”, “PR”,
“issue” etc) in VCS commit messages. This method is only
reliable as projects have change logs with good quality (i.e.
most of references are manually recorded when committing).
However, analyzing commit messages to identify the bug fix
changes is a common procedure and does also reflect state of
the art [15], [16].

Second, we track the buggy introducing based on the
SZZ method and improve it by replacing the text comparison
with statement comparison, which could track and label
changed statements across multiple revisions of source code
and reduce some kinds of noises (e.g. format change, comment
and blank change). However, there are still two problems in
this step remained to be solved in our future work. One is that
the bug fix and bug introducing changes are at different
locations. The other is that some bug fix changes only add
several lines of code, which are missed by current approaches.

B. The External Validity
Only projects following the open source development

methodology have been examined in our study. It is possible
that the stronger deadline pressure, different personnel turnover
patterns, and different development processes used in industry
development could lead to different bug introducing
patterns. Nevertheless, all projects are independently developed
and come from different domains. Moreover, although open
source, the two projects from eclipse community (i.e. Eclipse
JDT Core and Eclipse UI Workbench) have the industrial
background.

V. RELATED WORK
Currently, several researchers have been exploring bug

introducing software changes and some of them have built
models to predict bugs for software changes.

387

Sliwerski et al [15] examined several properties of bug
introducing changes in Eclipse and Mozilla projects and found
that the larger a change was, the more likely it was buggy. He
also observed that changes on Fridays were buggiest. Eyolfson
et al [13] also discussed the time of change, and investigated
how the changes’ time of day correlates with the changes’
bugginess. In addition, they studied developer characteristics,
such as change frequency and experience, and found they also
correlated with the bugginess of changes. Rahman et al [14]
considered the impact of code ownership and developer
experience on bugginess of software changes. They found that
buggy change was more strongly associated with a single
developer’s contribution and developer’s specific experience in
the target file was more important than general experience.

Mockus et al [4] focused on several properties of software
changes and built a logistic model to predict the probability that
a change will cause a bug. The properties included size in lines
of code added, deleted, and unmodified; diffusion of the
change; several measures of developer experience; and the type
of change. The change in their work is defined at the commit
level. Kim et al [3] took the bug prediction for software
changes as a classification problem. The features used by the
classifier mainly included terms in the source code, the size in
lines of code modified in each change, and change meta-data
such as author and change time. In their paper, change is at the
committed file level.

Different from the related work mentioned above, we build
our bug prediction model for the fine-grained source code
change at statement level, which increases the granularity of
the prediction and thus reduces manual inspection efforts.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we present a novel bug prediction model FWL

for fine-grained source code changes, which can predict the
existence of bugs in source code changes at the statement level.
We formally formulate this bug prediction task as a
classification problem and build our prediction model utilizing
a series of relevant features and three different classifiers. From
our experiments on 8 open source projects, our model using
full feature combination and Random Forest Classifier achieves
the best performance. It can predict bugs with 78% precision,
71% recall, and 75% F-measure on average. Given the fine-
granularity, this result is encouraging. We also examine the
discriminative power of each feature group and sub-feature
group defined in this paper. For feature groups at the first
abstraction level, we have observed that feature group where is
the most influential aspect, which has the strongest
discriminative power in predicting bugs; feature group when
has the weakest discriminative power and feature groups what
and who have moderate performances. For sub-feature groups
defined at the second level, Topic Diversity, Halstead and
Topic Bug Prone are proved to be the three most powerful
prediction factors and followed by Project Experience and
McCabe. Two of the least powerful factors are Time of Day
and Change Type respectively. This work is the first to predict
bugs in source code changes at the statement level.

Although these experimental results are encouraging, there
are still several work remained to be done in the future,
including the following:

 Exploring more sophisticated labeling algorithm,
which can handle the problem that bug fix and bug
introducing changes are at different locations by dint of
control dependency, data dependency and logic
coupling dependency.

 Exploring the variation of influencing features with the
passing of time and construct incremental learning
algorithms to learn and update the bug prediction
model as the project progresses.

 Generating more new features for feature group when,
which is not restricted to the absolute time. Several
relative time metrics (e.g. after large-scale refactoring
or during the period of change bursts) will be
considered as features in our future work.

REFERENCES
[1] E. Giger, M. Pinzger, and H. Gall, “Comparing fine-grained source

code changes and code churn for bug prediction”, in Proc. MSR, 2011,
pp.83-92.

[2] Q. Song, M.J. Shepperd, M. Cartwright, and C. Mair, “Software Defect
Association Mining and Defect Correction Effort Prediction”, IEEE
Transactions on Software Engineering, vol. 32, pp.69-82, 2006.

[3] S. Kim, E.J.W. Jr., and Y. Zhang, “Classifying Software Changes:
Clean or Buggy?”, IEEE Transactions on Software Engineering, vol. 34,
pp.181-196, 2008.

[4] A. Mockus and D.M. Weiss, “Predicting risk of software changes”, Bell
Labs Technical Journal, vol. 5, pp.169-180, 2000.

[5] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction”, IEEE
Transactions on Software Engineering, vol. 33, pp.725-743, 2007.

[6] M. H. Halstead, Elements of Software Science. Elsevier, 1977.
[7] T.J. McCabe, “A Complexity Measure”, IEEE Transactions on Software

Engineering, vol. 4, pp.308-320, 1976.
[8] T. Zimmermann and N. Nagappan, “Predicting Subsystem Failures

using Dependency Graph Complexities”, in Proc. ISSRE, 2007, pp.227-
236.

[9] T. Chen, S.W. Thomas, M. Nagappan, and A.E. Hassan, “Explaining
software defects using topic models”, in Proc. MSR, 2012, pp.189-198.

[10] S.W. Thomas, B. Adams, A.E. Hassan, and D. Blostein, “Modeling the
evolution of topics in source code histories”, in Proc. MSR, 2011,
pp.173-182.

[11] T.L. Graves, A.F. Karr, J.S. Marron, and H.P. Siy, “Predicting Fault
Incidence Using Software Change History”, IEEE Transactions on
Software Engineering, vol. 26, pp.653-661, 2000.

[12] K. Pan, S. Kim, and E.J.W. Jr., “Toward an understanding of bug fix
patterns”, Empirical Software Engineering, vol. 14, pp.286-315, 2009.

[13] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess”, in Proc. MSR, 2011, pp.153-162..

[14] F. Rahman and P.T. Devanbu, “Ownership, experience and defects: a
fine-grained study of authorship”, in Proc. ICSE, 2011, pp.491-500.

[15] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?”, ACM sigsoft software engineering notes, vol. 30, pp.1-5, 2005.

[16] M. D'Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison”, Empirical
Software Engineering, vol. 17, pp.531-577, 2012.

388

An efficient QCL-based alert correlation process

Lydia Bouzar-Benlabiod

LCSI laboratory
Ecole nationale Supérieure d’Informatique

(ESI)
Algiers, Algeria
l bouzar@esi.dz

Salem Benferhat

CRIL-CNRS
Université d’Artois

Lens, France
benferhat@cril.univ-artois.fr

Thouraya Bouabana-Tebibel

LCSI laboratory
Ecole nationale Supérieure d’Informatique

(ESI)
Algiers, Algeria
t tebibel@esi.dz

Abstract—Intrusion Detection Systems (IDS) are important
tools for network monitoring. However, they produce a large
quantity of alerts. The security operator that analyses IDS
alerts is quickly overwhelmed. Alert correlation is a process
applied to the IDS alerts in order to reduce their number. In
this paper, we propose a new approach for logical based alert
correlation which integrates the security operator’s knowledge
and preferences. The goal is to present to the security operator
only the most suitable alerts. The representation and the
reasoning on these knowledge and preferences are done using
a new logic called Instantiated First Order Qualitative Choice
Logic (IFO-QCL). Our algorithm performs the correlation
process in a polynomial time. Experimentation are achieved
on data collected from a real system monitoring. The result is
a set of stratified alerts satisfying the operators criteria.

Keywords-IDS, alert correlation, QCL, preferences, knowl-
edge

I. INTRODUCTION

Intrusion Detection Systems (IDS) [1] [2] are important

network security tools. They filter traffic data searching for

malicious activities. A security operator has to supervise log

alerts emanating from different IDS. When the data traffic

is important and the number of suspicious activities is high

the security operator is quickly submerged by a huge number

of IDS alerts [3]. Alert correlation is a process that aims to

reduce the produced alerts number. It analyses IDS alerts,

gathers them into groups or clusters of similar alerts [4] and

provides intrusion reports to security operators.

Different alert correlation methods have been proposed

in the literature. We distinguish four main approaches:

(1) Alert correlation using alerts’ attributes similarity. (2)

Alert correlation approaches based on pre-defined attack

scenarios. (3) Correlation methods based on preconditions

and postconditions. (4) Data mining approaches to alert

correlation.

A new approach to alert correlation has been proposed in

[15]. This method uses an extension of the preferences logic,

called Qualitative Choice Logic (QCL) [16], to integrate the

security operator knowledge and preferences resulting from

his experience, to the correlation process. QCL increases the

propositional logic language with the ordered disjunction

operator:”×”. This operator expresses preference informa-

tion. A×B means that ”if possible A, otherwise at least B”.

Our aim is to define a new method for alert correlation

which consists of inserting a filter created by the operator

to the alert correlation process. The filter is based on the

operator knowledge and preferences related to the monitored

system, as well as his experience. The output of our model

is a set of alerts that satisfy the security operator’s criteria.

Our proposed algorithm is based on an extension of QCL

language. This paper contains three important contributions.

• We first propose a framework for dealing with prefer-

ences using IFO-QCL language.

Our framework is convenient for representing knowl-

edge and preferences on alerts.

• We then propose an algorithm for alerts correlation

that takes into account the security operator knowl-

edge and preferences. We simply view an alert as an

interpretation. Hence the satisfaction of an interpreta-

tion, with respect to the security operator preferences,

directly induces a ranking of alerts.

• Lastly, we present experimental studies on real alerts

issued from PLACID1 project.

The paper is organized as follows: Section II briefly de-

scribes existing alert correlation approaches. Section III

and IV detail our alert correlation model. Section V gives

the main steps of our approach. Section VI presents our

experimentation results. Section VII concludes the paper.

II. RELATED WORKS

Alert correlation is a multi-step transformation process.

The inputs are IDS alerts. Alerts are analyzed, gathered and

then returned to the operator as an intrusion report. One of

the main alert correlation objectives is the reduction of the

number of alerts. Among alert correlation methods, we can

distinguish:

• Correlation approaches based on similarity between

alerts’ attributes [5][6][7] and alert aggregation mecha-

nisms [17] [18] These approaches are based on the fact

that alerts belonging to the same attack have similar

1http://placid.insa-rouen.fr/

389

attribute values (source IP address, etc.). An alert-filter

is set up in order to determine the attribute values

similarities.

• Correlation by pre-defined attack scenarios [8][9][10].

It is an explicit correlation approach whose objective

is to detect complex attack scenarios. These scenarios

are stored in signature bases. The bases can be either

obtained from historical data or specified by users.

• Preconditions and postconditions alert correlation

methods [11] [12] [13]. Each action is associated with

a set of preconditions (needed for launching an action),

and a set of postconditions representing consequences

of the action. These methods correlate alerts if post-

conditions of present alerts may be correlated with

preconditions of some future alerts.

• Alert correlation as a classification process [14]

[19] [20]. An example of used classifiers tools are

the Bayesian networks ones. Bayesian classifiers are

graphical models that allow efficient treatment of un-

certain information. In [14], each intrusion objective is

modeled by a naive Bayes classifier which is obtained

from historical data. The resulting model is then used

for the prediction of the intrusion objectives.

In addition to these approaches, a correlation alert method

integrating security operator knowledge and preferences

was proposed in [15]. This approach is based on a logic

of preferences called Qualitative Choice Logic (QCL)[16].

This logic, and its extensions, have been used to represent

security operator knowledge and preferences. In [15], first

order logic predicate, denoted by ”show-to-operator (x)”,

has been introduced to indicate whether an alert x should be

presented to a security operator or not. The main problem

with this approach is its high computational complexity,

since the decision problem: ”should an alert be presented

to the security operator” is at least a Δ2
p complete problem.

Compared to the previous approach, we also propose

an approach based on expert knowledge and preferences.

We use a different modeling logical language from the

one used in [15]. This language is more flexible than

propositional QCL [16], and less expressive than the FO-

QCL used in [15]. The defined logic is called Instantiated

First Order Qualitative Choice Logic (IFO-QCL) and

is more appropriate for the purpose of our application.

Contrarily to the modeling proposed in [15], our approach

for alerts correlation can be achieved in a polynomial time.

The following section presents this language.

III. INSTANTIATED FIRST ORDER QUALITATIVE CHOICE

LOGIC IFO-QCL

QCL [16] is a compact logic for representing and dealing

with simple and complex knowledge and preferences. QCL

increases the expressive power of the propositional logic

with a new connective operator called ordered disjunction

operator denoted by: ×. This operator expresses users’

preferences. QCL allows the preference expression on every

kind of variable. It has several extensions: (Minimal QCL

”MQCL” [15], positive QCL ”QCL+” [15], prioritized

QCL ”PQCL” [15]). QCL is defined within a propositional

language whereas its extensions are defined within a first

order language.

The extension to full first order logic language is not

needed for alert correlation. As we will show, a small

extension (at least from the representation point of view) of

propositional logic is enough. More precisely, we propose

to use Instantiated First Order QCL (IFO-QCL).

In the following, we will present our language, which is

in fact built over three encapsulated languages:(1) IFO

formulas which will only be used to express knowledge

or pieces of information that each alert should satisfy in

order to be considered by a security operator. (2) IFO-BCF

formulas (BCF for Basic Choice Formulas) which will be

used to express simple forms of preferences. (3) IFO-GCF

formulas (GCF for General Choice Formulas) which will

be used to express general preferences. IFO (resp IFO-BCF

and IFO-GCF) formulas extend propositional formulas (resp

BCF and GCF formulas) used in QCL. Our framework is

parameterized with a normalized function that transforms

any IFO-GCF formula to IFO-BCF one, this transformation

can be achieved in a polynomial time.

The vocabulary used to define IFO formulas and IFO-BCF

formulas is defined by:

• A set of constant symbols: {c1, c2, . . . , cn}.

• A set of predicate symbols:P {P1, P2, . . . , Pn}. Each

predicate has an arity m representing the number of

arguments it can support.

• A set of propositional operators ¬,∨,∧ and new

connector called ordered disjunction ×.

• The usual separators (,).

In our application, the predicate symbols will represent

alerts’ attributes such as kinds of used IDS, operating sys-

tems, etc. Constants represent instances of alerts’ attributes.

A. Instantiated First Order (IFO) formulas
Let P be a set of predicate symbols. The following defines

the language composed of instantiated first order formulas

• (1) if P is a predicate symbol of arity m

and {c1, c2, . . . , cm} is a set of constants then

P(c1, c2, . . . , cm) is an IFO formulas.

• (2) if P and Q are IFO formulas then (P∧Q), (P∨Q),

(¬P) are IFO formulas.

• IFO formulas are only obtained by applying items (1)

and (2) a finite number of times.

In fact, IFO language is composed of instantiated first or-

dered formulas where all terms are constants. The following

extended languages allow the representation of simple and

complex preferences (respectively IFO-BCF, IFO-GCF).

390

B. IFO Basic Choice Formulas (IFO-BCF)

IFO Basic Choice Formulas (IFO-BCF) are ordered dis-

junctions of IFO formulas. They offer a simple way to order

available alternatives. The language composed of IFO-BCF

formulas is defined as follow :

• If φ is a IFO formula then φ is a IFO-BCF.

• If P and Q are two IFO-BCF formulas then P×Q is a

IFO-BCF.

• Every IFO basic choice formula is only obtained by

applying the two rules above a finite number of times.

Intuitively, P×Q means ”satisfy either P or Q with a prefer-

ence to P”. Namely, solutions where P is true are preferred

to the ones where ¬ P and Q are true. The language of

IFO-BCF formulas will be simply denoted by IFOBCF .

C. IFO General Choice Formulas (IFO-GCF)

IFO General Choice Formulas (IFO-GCF) allow to repre-

sent general forms of formulas. They are defined as follow

:

• If φ is a IFO-BCF then φ is a IFO-GCF.

• If P and Q are two IFO-GCF then (P∧Q), (P∨Q), (¬P),

(P×Q) are a IFO-GCF.

• Every IFO general choice formula is only obtained by

applying the two rules above a finite number of times.

As we will see later, every IFO-GCF can be reduced

to an IFO-BCF by some normalization function ”f”.

The language of IFO-GCF formulas, will be refered to by

IFOGCF .

Suppose that a security operator first prefers analyzing IDS

alerts which have a ‘high’ ‘severity’ value. He, afterwards,

chooses to analyze alerts having the ‘medium’ value and the

last option is to analyze ‘low’ severity alerts. This preference

is expressed using IFOBCF as follows:

Severity(high)×Severity(medium)×Severity(low)

The predicate symbol is ‘Severity’ and the constant symbols

are: ”high”, ”medium” and ”low”.

We can represent the above preference using QCL[16] and

MQCL[15]

1) Using QCL, We define three propositional vari-

ables: ”high-severity-alert”, ”medium-severity-alert”

and ”low-severity-alert”. Then we write the preference

formula: high-severity-alert × medium-severity-alert

× low-severity-alert.

2) Using MQCL, let define three propositional vari-

ables x, y, z, representing alerts, and four pred-

icate symbols ”severity-high”, ”medium-severity”,

”low severity” and ”show-to-operator”. The pref-

erence formula is written as follows: ∀ x, y, z

(severity-high(x) ∧ show-to-operator(x))× (medium-

severity(y)∧ show-to-operator(y)) × (low-severity(z)∧
show-to-operator(z)).

D. Normalization function: From IFOGCF to IFOBCF

Normalization functions transform instantiated first order

general choice formulas to instantiated first order basic

choice formulas. The advantage of such a transformation is

to reuse efficient definitions of satisfaction degree of IFO-

BCF for IFO-GCF.

fIFO−QCL is the normalization function which transforms

every IFO-GCF formula to an IFO-BCF one. This normal-

ization function considers that all preferences have the same

level of importance. It is defined using the following three

items:

1. If φ is a IFO-BCF then fIFO−QCL(φ) = φ.

2. fIFO−QCL is decomposable with respect to negation,

conjunction, disjunction and ordered disjunction. If φ and

ϕ are two IFO-GCF (but either φ or ϕ is not IFO-BCF)

then:

• (a) fIFO−QCL(φ ∧ ϕ) ≡ fIFO−QCL(fIFO−QCL(φ) ∧
fIFO−QCL(ϕ))

• (b) fIFO−QCL(φ ∨ ϕ) ≡ fIFO−QCL(fIFO−QCL(φ ∨
fIFO−QCL(ϕ))

• (c) fIFO−QCL(φ×ϕ) ≡
fIFO−QCL(fIFO−QCL(φ)×fIFO−QCL(ϕ))

• (d) fIFO−QCL(¬φ) ≡ fIFO−QCL(¬fIFO−QCL(φ))

3. Let φ = a1×a2× . . .×an and ϕ = b1×b2× . . .×bm be

two IFO-BCF formulas.

• (a) fIFO−QCL(φ ∧ ϕ) ≡ c1×c2× . . .×ck
ci =

∨
(aj ∧ bl) with 1 ≤ j ≤ n, 1 ≤ l ≤ m and

j + l = i+ 1.

• (b) fIFO−QCL(φ∨ϕ) ≡ c1×c2× . . .×ck where k=max

(m,n) and

ci =

⎧⎨
⎩

ai ∨ bi if i ≤ min(m,n).
ai if m ≺ i ≤ n.

bi if n ≺ i ≤ m.

• (c) fIFO−QCL(¬φ) ≡ ¬a1×¬a2× . . .×¬an
Property ”1” describes the fact that the normal form of an

IFO-BCF φ is the IFO-BCF φ. Property ”2” (from(a) to (d))

expresses that the normalization function is decomposable

with respect to negation, conjunction, disjunction and or-

dered disjunction. Property ”3” (from (a) to (c)) defines the

conjunction, disjunction and negation of IFO-BCF formulas.

Let φ: OS(Unix) × OS(Mac-OS) × OS(Windows) and

ϕ: Alert-Source(External) × Alert-Source(Internal), be two

IFO-BCFs.

fIFO−QCL(φ∧ϕ) ≡ (OS (Unix) ∧ Alert-Source (External))

× ((OS(Unix) ∧ Alert-Source (Internal)) ∨ (OS (Mac-OS) ∧
Alert-Source (External))) × (OS (Mac-OS) ∧ Alert-Source

(Internal)) ∨ (OS (Windows) ∧ Alert-Source (External)) ×
(OS (Windows) ∧ Alert-Source (Internal)).

IV. SEMANTICS AND SATISFACTION DEGREES

This section defines the concept of interpretation in our

framework and attributes a satisfaction degree to each pref-

erence with respect to an interpretation.

391

A. IFO-QCL interpretation

An interpretation is a pair I=(D,Iv) where D is the domain

of the interpretation and Iv is a function that assigns to each

constant C an element of D, and to each predicate symbol P

(of arity n) a subset of Dn. Intuitively, Iv(P) represents the

set of all n-tuples that make P true in I. Let I1 =(D,Iv) be an

interpretation with D={Unix, Mac-OS, Windows } and OS

be a predicate symbol with arity 1. Iv(OS)=Unix intuitively

means that within the interpretation I1 the Operating System

OS has the value UNIX.

B. Satisfaction relation in IFO-QCL

Let I=(D, Iv) be an interpretation, P and Q be two

predicates and {c1, c2, . . . , cm} be a set of constants. Let

φ and ϕ be two IFO formulas.

We now define the concept of satisfaction of each interpre-

tation with respect to a given IFO-BCF and IFO formula.

This satisfaction relation will be denoted by :I |=k φ
where I=(D,Iv) is an interpretation,φ an IFO or an IFO-

BCF formula and k is a positive integer that represents the

satisfaction degree of the formula φ in the interpretation I.

Let us start with the case of IFO formulas that do not involve

the preference operator ×. In this case k can only be either

equal to 1 or equal to 0.

C. Satisfaction of IFO formulas

If P is a predicate symbol of arity m and {c1, c2, . . . , cm}
are a set of constant then:

• I |=1 P {c1, c2, . . . , cm} iff

{Iv(c1), Iv(c2), . . . , Iv(cm)} ∈ Iv(P)
and I |=0 P {c1, c2, . . . , cm} iff

{Iv(c1), Iv(c2), . . . , Iv(cm)} /∈ Iv(P)
• I |=k φ∧ϕ iff I |=i φ and I |=j ϕ and k = max(i, j).
• I |=k φ ∨ ϕ iff I |=i φ and I |=j ϕ and k = min(i, j).
• I |=k ¬φ iff I |=1−k φ

In the following, for IFO formulas, we simply write I � φ
iff I |=0 φ, and I |= φ iff I |=1 φ.

D. Satisfaction of IFO-BCF formulas

The satisfaction degree of an IFO-BCF formula can be

greater than 1 since an IFO-BCF involves different choices

or options. More precisely, if φ = ϕ1×ϕ2× . . .×ϕn is an

IFO-BCF formula (ϕi’s are IFO formulas) then

I |=k ϕ1×ϕ2× . . .×ϕn iff ∃j, such that I |= ϕj and I � ϕi

for all i ≺ j.

When ∀ϕi, I � ϕi then we simply write I � φ
Let Severity and IDS-Type be two predicates, I1 =(D,

Iv1) and I2 =(D, Iv2) be two interpretations such that

D={high, medium, low, snort, Brother}, Iv1(IDS-Type) =

{Snort}, Iv1(Severity) = {high}, Iv2(IDS-Type) = {Bro}
and Iv2(Severity) = {Low}.

Let φ and ϕ be two preferences formulas: φ1 Severity

(high)∧ IDS-Type(snort)× Severity (low)∧ IDS-Tye(snort).

φ2 IDS-Type(snort)× IDS-Type(bro).

Figure 1. Main steps of the alert correlation process

I1 |=1 φ1, I1 |=1 φ2, I2 � φ1, I2 |=2 φ2.

In the proposed model, we rely on the reasonable assumption

that the input alerts are viewed as interpretations for the

IFO-QCL model. An alert is composed of a set of attributes.

The list of predicates P corresponds to the list of attributes

that are present in alerts plus the predicates that are present

either in knowledge or preferences bases. In order to avoid

heavy notations we will use the same symbols for attributes

and their associated predicate names.

The list of constants C is the set of all possible values that

alert attributes or predicates, used by the security operator,

may take.

In the rest of this paper we will assume that the domain

associated with each interpretation I=(D,Iv) is the set of

constants C. We also assume that for each constant c we

have:∀ c ∈ Dc, Iv(c)=c. This is in the spirit of what it

usually known as herbrand models [22].

Let A be an alert. IA is the interpretation associated with

A. If q is an attribute accepting n values, and x is a value

of q in the alert A, then IAv (q)=x.

V. MAIN STEPS OF THE PROPOSED APPROACH

The inputs, outputs and steps of our method are

enumerated below and illustrated in Figure. 1.

A. Set of alerts A

The input of our alerts correlation process is a set of alerts

A issued from different IDS. Alerts are provided in IDMEF

format (International Data Model Exchange Format) [21].

An IDMEF alert contains information about alerts such as:

source, target, analyzers, alert detection time, etc. In our

model, an alert will be represented as an interpretation where

the domain of each attribute is simply the list of the different

attribute values present in the alert. Each alert attribute is

in predicate form, for instance: Severity(medium), Analyz-

erID(27896), AnalyzerName(prelude-lml).

B. A knowledge base K

This knowledge base encodes the security operator’s

knowledge. It is a set of IFO formulas. The knowledge

392

formulas detail the attributes values that the operator does

not want to see in the resulting alert set. An example of a

knowledge formula is: OS (Windows)∧Classification (http-

Inspect).

It encodes the fact that if the Operating System of the

machine is ”Windows” then the security operator refuses

to consider the ”http-inspect” alerts.

C. A set of Preferences P

It is a set of the security operator’s preferences en-

coded using IFO-GCF formulas. An example of preference

can be: (AnalyzerName(snort) ∧ (Severity(high)∨ Severity

(medium))) × (AnalyzerName(snort) ∧ Severity(low)).

This formula means that: ”snort” alerts which have a high

or a medium severity are preferred to low severity ”snort”

alerts.

D. Output

The output of our application is a subset of the initial

alerts filtered by the knowledge and preferences sets. The

resulting alerts are stratified in accordance with the security

operator’s knowledge and preferences.

E. Algorithm

The inputs are: the set of alerts, the knowledge and

preferences sets (K and P). The results are given by the

following algorithm.

1) Eliminate alerts that satisfy the knowledge formulas.

We denote A’ the resulting alerts set.

2) Transform the preference formulas according to the

normalization function.

3) Compute the alerts satisfaction degree using the pref-

erence formulas.

4) Rank alerts according to their satisfaction degree.

5) Return the max preferred alerts to the security operator

(the alerts having the minimum degree of satisfaction).

Intuitively, we can deduce that the algorithm has a polyno-

mial complexity.

VI. EXPERIMENTATION USING REAL DATA

This section details the experimental studies on data

collected within the PLACID project. This set of data is

composed of more than 1,099,302 alerts.

The knowledge and preferences model used in tests is

shown below. This model is extracted from the analysis of

IDS returned alerts. This analysis showed the network weak

points. Tests are done using rather restrictive knowledge

and preferences set.

Knowledge base
Classification(successful) ∧ AnalyserName (prelude-lml)).

The knowledge expresses the fact that the security operator

assesses that alerts coming from the HIDS2 ”prelude-lml”

2Host IDS

initial Preferred Preferred
alert alert alert

number number rate

1099302 27810 2,53%

Table I
TEST RESULTS

with a classification value ”successful” are probably false

positive alerts. Indeed, ”prelude-lml” reports all the users

logins. Then such alerts must be eliminated.

Preferences base
p1 : Severity(high) × Severity(medium) × Severity (low);

p2 : AnalyserName(local-snort) × AnalyserName (public-

snort).

The security operator expresses two preferences formulas.

The first concerns the alert severity: alerts with a high

severity are more important to treat than medium severity

ones which are more important than low severity ones.

The second preference formula is about the IDS which

generates the alert. The security operator assesses that

”local-snort” alerts are more dangerous than the ”public-

snort” ones. Hence, ”local-snort” monitors the local network

traffic.

The interface of the developed application is intuitive for the

security operator. Thus, he just enters the attributes values

corresponding to his knowledge and/or his preferences in

their dedicated fields, and runs the IFO-QCL process.

The most preferred alerts are those having a high severity

value and coming from the local-snort IDS. The results are

summarized in the table. I:

We deduce from this Table that only 2.53 % of the initial

alerts are important for the security operator. This rate

can be explained by the fact that the security operator

knows well the monitored network, its weaknesses and the

most dangerous attacks. Thus he expresses knowledge and

preferences that allows to return only the most dangerous

alerts.

The remaining alerts are not lost, they are ranked in

decreasing order of importance (satisfaction). These alerts

are shown in a second result application window and can

be viewed by the security operator if necessary. Thus the

security operator is more efficient if he has to analyse 2.53

% of the issued alerts

Our algorithm efficiency depends on the security operator

knowledge and preferences, more they are restrictive less

the resulted alert set is voluminous.

The running time depends on the initial alerts number, the

knowledge/preference base, the preferred alerts number and

obviously the host computer characteristics. The example

above has a running time of 656 seconds.

393

VII. CONCLUSION AND PERSPECTIVES

We propose, in this paper, a new logic to deal with

preferences called Instantiated First Ordered Qualitative

Choice Logic (IFO-QCL). This logic treats the IDS alerts

using the security operator’s knowledge and preferences,

in a polynomial time. An algorithm was built upon the

defined logic. The application takes the security operator’s

knowledge and preferences and returns a set of stratified

alerts. We test our application on real data using the whole

PLACID dataset with a set of knowledge and preferences.

The result is a set of filtered alerts which represent 2.53%

from the initial ones. Other tests will be done with different

knowledge and preference sets (more restrictive and more

passive) in order to establish a link between the weakness

of these sets and the resulting alert number rate.

Our future work will deal with the incomplete alerts that

have some missed attributes. We also intend to extend the

proposed approach to the possibilistic logic domain.

REFERENCES

[1] J. Anderson, Computer security threat monitoring and surveil-
lance, Technical report, James P.Anderson Company, Fort-
Washington, Pennsylvania, April (1980).

[2] S. Axelsson, Intrusion Detection Systems: A Survey and
Taxonomy, Technical Report No 99-15, Dept. of Computer
Engineering, Chalmers University of Technology, Sweden,
March (2000).

[3] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz,
A Data Mining Analysis of RTID Alarms, Recent Advances
in Intrusion Detection Systems, Volume 34, Issue 4, pp. 571-
577, October (2000).

[4] P. Chifflier and S. Tricaud, Intrusion Detection Systems
Correlation: a Weapon of Mass Investigation, CanSecWest,
Vancouver, March (2008).

[5] F. Cuppens, Managing alerts in a multi-intrusion detection
environment, in: Proc. 17th Computer Security Applications
Conference, pp. 22-31,December (2001).

[6] K. Julisch, Clustering intrusion detection alarms to support
root cause analysis, ACM Transactions on Information and
System Security (TISSEC), volume: 6, n4, pp. 443-471,
November (2003).

[7] A. Valdes and K. Skinner, Probabilistic Alert Correlation,
Recent Advances in Intrusion Detection (RAID 2001), numro
2212, lecture Notes in Computer Science. Springer-Verlag,
pp.54-68, (2001).

[8] S.T. Eckmann, G. Vigna and R.A. Kemmerer, STATL: an at-
tack language for state-based intrusion Detection, in. Journal
of Computer Security, volume 10, n 1-2, pp.71-103, (2002).

[9] B. Morin and H. Debar, Correlation of Intrusion Symp-
toms: an Application of Chronicles,in Proceedings of the 6th
International Symposium on Recent Advances in Intrusion
Detection (RAID 2003), (Pittsburgh, PA), September (2003).

[10] F. Cuppens and R. Ortalo, LAMBDA: A Language to Model a
Database for Detection of Attacks, in Proceedings of the Third
International Workshop on Recent Advances in Intrusion
Detection, pp.197-216, October (2000).

[11] F. Cuppens and A. Miege, Alert Correlation in a Cooperative
Intrusion Detection Framework, in. Proceedings of the 2002
IEEE Symposium on Security and Privacy, pp.202, May
(2002).

[12] P. Ning, Y. Cui and S. Reeves, Constructing attack scenarios
through correlation of intrusion alerts. CCS ’02 : Proceedings
of the 9th ACM conference on computer and communications
security, New York, NY, USA, ACM, pp. 245-254, (2002).

[13] S.J. Templeton and K. Levitt, A requires/provides model
for computer attacks. NSPW ’00 : Proceedings of the 2000
workshop on New security paradigms, New York, NY, USA,
ACM, pp. 31-38, (2000).

[14] S. Benferhat, T. Kenaza and A. Mokhtari, A Naive Bayes
Approach for Detecting Coordinated Attacks, COMPSAC
2008, pp.704-709, July - August (2008).

[15] S. Benferhat and K. Sedki, Two alternatives for handling
preferences in qualitative choice logic, In Fuzzy Sets and
Systems Journal (FSS’08), vol. 159, n 15, pp. 1889-1912,
august (2008).

[16] G. Brewka, S. Benferhat and D. Le Berre, Qualitative Choice
Logic, in. Artificial Intelligence Journal (AIJ), vol. 157, n 1-2,
pp. 203-237, august (2004).

[17] F. Cuppens, Managing Alerts in a Multi-Intrusion Detection
Environment, In proceedings of Recent Advances in Intrusion
Detection, Davis, CA, USA, pp.22-31, October (2001).

[18] H. Debar and A. Wespi, Aggregation and Correlation of
Intrusion-Detection Alerts, In proceedings of Recent Ad-
vances in Intrusion Detection, Davis, CA, USA, pp.85-103,
October (2001).

[19] X. Qin and W. Lee, Attack Plan Recognition and Prediction
Using Causal Networks, ACSAC-O4, pp.370-379, (2004).

[20] C. Geib and R. Goldman, Plan Recognition in Intrusion
Detection Systems. In Proceeding of DARPA Information
Survivability Conference and Exposition (DISCEX), Volume
1, pp.46-55, June (2001).

[21] H. Debar, D. Curry and B. Feinstein, The Intrusion Detec-
tion Message Exchange Format (IDMEF), Network Working
Group, Request for Comments (RFC): 4765, Category: Ex-
perimental, SecureWorks, Inc. March (2007).

[22] J.W. Lyod, Foundation of logic programming. Spring-Verlag,
2nd Ed, ISBN-10: 3540181997, September(1987).

[23] M.J. Ranum, False Positives: A Users Guide to Making Sense
of IDS Alarms, ICSA Labs IDSC, white paper, 2003.

394

Security Metrics for Java Bytecode Programs

Bandar Alshammari
College of Computer and

Information Sciences

Aljouf University, Saudi Arabia

Email: bmshammeri@ju.edu.sa

Colin Fidge
Science and Engineering Faculty

Queensland University of Technology

Brisbane, Australia

Email: c.fidge@qut.edu.au

Diane Corney
Research Labs, Oracle

Brisbane, Australia

Email: diane.corney@oracle.com

Abstract—Although there are many approaches for developing
secure programs, they are not necessarily helpful for evaluating
the security of a pre-existing program. Software metrics promise
an easy way of comparing the relative security of two programs
or assessing the security impact of modifications to an existing
one. Most studies in this area focus on high level source code
but this approach fails to take compiler-specific code generation
into account. In this work we describe a set of object-oriented
Java bytecode security metrics which are capable of assessing the
security of a compiled program from the point of view of potential
information flow. These metrics can be used to compare the
security of programs or assess the effect of program modifications
on security using a tool which we have developed to automatically
measure the security of a given Java bytecode program in terms
of the accessibility of distinguished ‘classified’ attributes.

Index Terms—Object-Orientation, Security Metrics, Security
Analyser, Java Bytecode

I. INTRODUCTION

Security is a critical aspect of software development, and

there exist various approaches which aim to reduce secu-

rity risks and vulnerabilities either through careful coding

practices [1] [2] or through static analysis of the code’s

properties [3] [4] [5]. However, these techniques require

considerable skill and effort to apply successfully, and are

not always applicable to pre-existing programs. Alternatively,

security metrics which quantify the security level of a given

program [6] could offer a ‘pushbutton’ solution which can be

applied easily to given programs.

Most existing security metrics are based on high-level

code [6] which does not always give reliable results because

analysing source code does not take compiler-specific code

generation into account. On the other hand, low-level metrics,

e.g., those derived from Java bytecode instructions, could pro-

vide better information about the executable program [7] [8].

Dynamic metrics have been studied in many projects due

to their importance and reliability [7], including the relation-

ships between static and dynamic coupling metrics [8]. Java

dynamic metrics have also been studied extensively, including

Dufour et al.’s work [7] which defines a number of Java

dynamic metrics to evaluate compiler optimisations. Binder

and Hulass’ study into control flow metrics is also relevant [9].

In our previous work [10] [11] [12] we defined several

security metrics for UML class designs, and described a

tool for automatically evaluating such metrics [13]. These

metrics assess the potential flow of ‘classified’ information by

measuring the accessibility of selected data items based on the

security design principles of “reducing the size of the attack

surface” [14] [15] and “granting least privilege” [16] [17] [2].

They allow software developers to easily assess the impact of

code modifications on overall program security and to compare

the relative security of different versions of the same program.

In this paper, we describe our program code metrics in

detail, as an extension of our earlier metrics for UML de-

signs [10] [11] and use a large-scale case study, involving

multiple programs, to show how the metrics can accurately

measure changes in the security of program code.

II. PROGRAM CODE SECURITY METRICS DEFINITIONS

This section defines our security metrics for assessing the

security level of programs. Our approach is based on static

analysis of the program code. For instance, when we say that

a method ‘accesses’ or ‘interacts with’ a classified attribute, it

means that the method’s compiled code contains an instruction

that may read or write an attribute labelled by the programmer

as ‘classified’. Of course, if this instruction appears within a

conditional statement, there is no guarantee that the method

will do so every time the program executes. Thus, our metrics

are safely conservative and measure the potential flow of

classified data.

A. Data Encapsulation-Based Security Metrics

Code security metrics based on data encapsulation aim

to statically measure the potential flow of information from

classified attributes and methods from the perspective of access

modifiers. These metrics consider attributes annotated by the

programmer as ‘classified’ or ones which derive their values

from classified attributes, and methods which access classified

attributes. They also measure whether the program imports the

Java reflection library due to the risk that this library can be

used by new code to access the value of any classified attribute

in an existing security-critical part of the program [18].

We divide the metrics for this property into four kinds of

accessibility: classified instance attributes (CIDA); classified

class attributes (CCDA); methods which access classified

attributes (COA) and accessibility through reflection (RPB).

The metrics are defined so as to penalise programs that make

classified attributes more accessible. Higher values indicate

higher accessibility to classified attributes and methods, and

395

hence a larger ‘attack surface’. This means a higher pos-

sibility for confidential data to be exposed to unauthorised

parties. Aiming for lower values of these metrics adheres

to the security principle of reducing the size of the attack

surface [14], [18]. Here we define the security metric RPB

while the descriptions and definitions of the CIDA, CCDA

and COA metrics can be found elsewhere [10].

Reflection Package Boolean (RPB): This code-level met-

ric measures the accessibility through reflection of classified

data in a given program. It is defined as “A boolean value
representing whether the Java program imports the Java re-
flection package (1) or not (0)”. This metric is only concerned

with whether or not the application itself is importing the Java

reflection library (i.e., information flow within the program

itself) and does not consider an attacker reflecting on the

application code elsewhere. The reflection metric equals 1 if

the program imports the Java reflection library or 0 otherwise.

Importing the Java reflection library means a higher possibility

for confidential data to be exposed to unauthorised parties.

RPB(P) =
{

1, if reflection imported
0, otherwise (1)

B. Cohesion-Based Security Metrics

The property of cohesion measures the interactions between

attributes and methods within a given class [19]. We have

previously defined four cohesion-based security metrics to

measure the potential flow of classified information caused by

interactions between methods and classified attributes in an

object-oriented design [10]. Programs with higher interaction

between methods and classified attributes have stronger cohe-

sion, and hence are less secure. The previously-defined metrics

are divided into four parts: the interactions of mutators (setters)

with classified attributes (CMAI); the interactions of accessors

(getters) with classified attributes (CAAI); the weight of clas-

sified attributes’ interactions with methods (CAIW); and the

proportion of classified methods (CMW). In this paper, we

extend these design-level metrics to include the proportion of

classified writing methods in the program (CWMP).

Classified Writing Methods Proportion (CWMP): This

metric aims to measure the proportion of methods which write

classified attributes in a particular program. We define this

metric as: “The ratio of the number of methods which write
classified attributes to the total number of classified methods in
the program”. In our case, we assume a writing method in Java

is one which writes an attribute to outside its class by calling

a method from the java.io package. This includes methods

whose class name contains either ‘write’, ‘print’, or ‘out’.

Therefore, a ‘classified writer’ is a method which uses one of

these classes to write a classified attribute. Fewer such methods

adheres to the principle of granting least privilege [17].

Consider the set of classified methods in a program P as

CM = {cm1, . . . ,cmn} and the set of the classified writing

methods as CWM = {cwm1, . . . ,cwmn} such that CWM ⊆CM.

(Given a set S, let the magnitude operator |S| returns the size

of the set.) Then, CWMP is expressed as:

CWMP(P) =
|CWM|
|CM| (2)

C. Coupling-Based Security Metric

Our security coupling metric (CCC) for class designs [11]

measures the degree of potential flow of classified data caused

by the interactions between classes and classified attributes in

a given object-oriented design. This metric is adopted without

change for program code.

D. Composition-Based Security Metric

As explained previously [11], composition yields a (weak)

possibility of potential information flow for classified data.

In the case of programming in Java, it is possible to access

composed-part (inner) classes unless they are marked as pri-

vate. Hence, it is recommended to avoid using non-private

inner classes in security-critical code [20]. In our case, we

assume that using private composed-part classes should reduce

the potential flow of classified data, and hence produce more

secure programs. Our design-level composition-based metric

(CPCC) [11] is adopted for program code to measure this.

E. Extensibility-Based Security Metrics

To have more secure programs, classes and methods which

can access classified data should be prevented from being

extended by other classes and methods [20], [21], since doing

so makes classified data accessible in the new code. We have

identified two metrics (CCE and CME) which reward the use

of non-extended classes and methods [11].

Another such threat with regard to this property is code that

assigns classified values to a variable or parameter that is not

subsequently used, because this makes it possible to add code

to the program that accesses the classified data but has no

observable effect on the program’s behaviour. To prevent this

we need to identify classified values that are defined but not

used, classified methods that are declared but not called, and

critical classes that are never used. Thus, we define three new

code-level metrics which penalise unused classified attributes

(UACA), uncalled classified methods (UCAM) and unused

critical classes (UCAC) in a program.

These features could allow unauthorised parties to acquire

privileges on security-critical data without affecting the pro-

gram’s original behaviour. Making code inextensible elimi-

nates this risk, and hence reduces the possibility of information

flow from these attributes, methods and classes, which adheres

to the principle of granting the least privilege [17].

Unaccessed Assigned Classified Attribute (UACA): This

metric is define as “The ratio of the number of classified
attributes that are assigned but never used to the total number
of classified attributes in the program”. It measures those

classified attributes which are assigned, either directly by an

“=” assignment or by parameter passing through value or

reference, but never subsequently used.

Consider the set of classified attributes in a program P as

CA = {ca1, . . . ,can} and the set of classified attributes which

are assigned but never used in the same program as UCA =

396

{uca1, . . . ,ucan}, such that UCA ⊆ CA. Then, we define the

Unaccessed Assigned Classified Attribute metric as follows.

UACA(P) =
|UCA|
|CA| (3)

Uncalled Classified Accessor Method (UCAM): This

metric measures declared methods which access classified

attributes but are never called. It is defined as “The ratio of the
number of classified methods that access a classified attribute
but are never called by other methods to the total number of
classified methods in the program”.

Consider a set of classified methods in a program P as CM =
{cm1, . . . ,cmn} and classified accessors that are never called

by other methods UCM = {ucm1, . . . ,ucmn}, such that UCM ⊆
CM. Then, we define the Uncalled Classified Accessor Method

metric as follows.

UCAM(P) =
|UCM|
|CM| (4)

Unused Critical Accessor Class (UCAC): This measures

classes which contain classified accessor methods that are

never used in any other classes. It is defined as “The ratio of
the number of classes which contain classified methods that
access classified attributes but are never used by other classes
to the total number of critical classes in the program”.

Consider the set of critical classes in a program P as CC =
{cc1, . . . ,ccn} and classes which have classified accessors that

are never used by other classes as UCC = {ucc1, . . . ,uccn},

such that UCC ⊆ CC. hen, we define the Unused Critical

Accessor Class metric as follows.

UCAC(P) =
|UCC|
|CC| (5)

F. Design Size-Based Security Metrics

With respect to security, a program with a large amount

of security-critical code has a higher chance of potential flow

of classified information, and hence is less secure [6]. It has

also been shown that security-sensitive classes must avoid

serialisation since this allows the values of private fields to

be accessed from outside the program [18]. Our design size-

based security metric (CDP) defined previously [11] already

measures the proportion of the program that is devoted to

security-critical classes (CDP). For program code we define

another security metric devoted to security-critical serialisable

classes (CSCP).

Critical Serialised Classes Proportion (CSCP): This

metric measures the risk associated with critical serialisable

classes in a given program. We define it as “The ratio of the
number of critical serialised classes to the total number of
critical classes in the program”. It rewards programs with a

smaller percentage and number of such classes and penalises

the use of security-critical serialisable classes. Therefore,

lower values of the CSCP metric indicates a lower propor-

tion of security-critical serialisable classes, which can give

privileges over confidential data, and thus satisfies the least

privilege principle [17].

Consider the set of the critical classes in program P as CC =
{cc1, . . . ,ccn} and the set of critical serialised classes is CSC =
{csc1, . . . ,cscn}, such that CSC ⊆ CC. Then, we define the

Critical Serialised Classes Proportion metric as follows.

CSCP(P) =
|CSC|
|CC| (6)

G. Inheritance-Based Security Metrics

The earlier design-level metrics [11] which consider inher-

itance are equally-applicable to program code. The include

metrics which penalise classes (CSP and CSI), methods (CMI),

and attribute (CAI) hierarchies in which classified data appears

near the top and is thus more accessible.

III. PROGRAM CODE SECURITY METRICS EXPERIMENTAL

RESULTS

To demonstrate the validity of our code-level metrics, and

show the capabilities of our Java Bytecode Security Anal-

yser [13], we conducted an experiment with several large-scale

open source Java programs. We used the tool to assess the

relative security of different versions of the same program. Our

hypothesis was that a program’s level of security should, on

average, improve over time, as bugs are fixed and the program

code is improved, although the addition of new security-critical

functionality may cause a worsening of overall security levels.

A. Approach

We began with five existing open source Java security

projects which were chosen from the most frequently down-

loaded security projects on the SourceForge website [22]. The

chosen programs consisted of the following: Jacksum, jGuard,

Kasai, JSecurity, and JXplorer. They all mainly concentrate

on providing a framework for handling authentication, autho-

rization, enterprise session management, and cryptography ser-

vices [22]. For each project, we chose a specific version which

was modified in a number of subsequent updates, to fix bugs

found in the previous releases. In this way we could compare

different versions of each program with identical functionality

but (hopefully) improved code quality. All of these programs

are security-related, so we could reasonably expect successive

releases to be more secure than their predecessors.

B. Program Annotations

First, we manually annotated at the Java source code

level a number of attributes in each project to be ‘classi-

fied’, choosing attributes whose names and associated code

comments indicated that they are likely to store confi-

dential data. We annotated the same attributes for all the

different releases of the same program in order to make

our comparisons fair. For example, in the program JSecu-

rity, classified attributes were: username, password and

rememberme in the UsernamePasswordToken class.

In the Kasai project, login, password and superUser
in the User class and in class Role id and name were

397

Table I: Program Characteristics

Program Version Attributes Classified
Attributes Methods Classified

Methods Classes Critical
Classes

 0.9.0.A 384 3 1790 24 241 1
 0.9.0.B1 383 3 1822 24 245 1

 0.9.0.RC1 444 3 1996 24 261 1
 0.9.Stable 435 3 2028 23 309 1
 1.1.0.B1 86 5 498 49 51 2
 1.1.0.B2 86 5 506 54 51 2
 1.1.0.B3 86 5 506 54 51 2

 1.1.Stable 86 5 506 54 51 2
1.2 146 5 179 28 24 2
1.3 159 7 217 41 29 3
1.4 260 9 304 44 36 3
1.5 299 16 355 56 44 3

0.65.1 219 4 344 40 45 2
0.65.2 219 4 344 40 45 2
 0.65.3 219 4 344 40 45 2
 0.65.4 219 4 344 40 45 2
 3.2.B1 1985 96 3225 421 406 28
 3.2.B2 2075 113 3332 486 413 28
 3.2.B3 2072 142 3336 558 413 31

 3.2.Stable 2077 151 3345 518 415 31

JSecurity

Kasai

Jacksum

jGuard

JXplorer

Table II: Data Encapsulation and Cohesion-Based Security Metrics

 Program Version CIDA CCDA COA RPB CMAI CAAI CAIW CMW CWMP
 0.9.0.A 0 0 1 1 0.0228 0.0037 0.0225 0.0134 0

 0.9.0.B1 0 0 1 1 0.0226 0.0036 0.0223 0.0132 0
 0.9.0.RC1 0 0 1 1 0.0208 0.0032 0.0205 0.012 0
 0.9.Stable 0 0 1 1 0.0207 0.0032 0.0206 0.0113 0
 1.1.0.B1 0 0 1 0 0.031 0.028 0.115 0.09 0
 1.1.0.B2 0 0 1 0 0.033 0.03 0.125 0.11 0
 1.1.0.B3 0 0 1 0 0.033 0.03 0.125 0.11 0

 1.1.Stable 0 0 1 0 0.033 0.03 0.125 0.11 0
1.2 0.8 0 1 0 0.05 0.034 0.08 0.156 0
1.3 0.6 0 0.976 0 0.047 0.044 0.116 0.189 0.024
1.4 0.4 0 0.931 0 0.029 0.034 0.088 0.145 0.023
1.5 0.25 0 0.928 0 0.022 0.03 0.123 0.158 0.036

 0.65.1 0.5 0 0.85 0 0.026 0.026 0.036 0.116 0
 0.65.2 0.5 0 0.85 0 0.026 0.026 0.036 0.116 0
 0.65.3 0.5 0 0.85 0 0.026 0.026 0.036 0.116 0
 0.65.4 0.5 0 0.85 0 0.026 0.026 0.036 0.116 0

 3.2.B1 0.8 0.01 0.94 1 0.0025 0.0028 0.081 0.131 0.007
 3.2.B2 0.8 0.008 0.92 1 0.0025 0.0026 0.088 0.146 0.006
 3.2.B3 0.81 0.02 0.92 1 0.0025 0.0024 0.105 0.167 0.007
 3.2.Stable 0.83 0.019 0.92 1 0.0025 0.0024 0.109 0.155 0.008

jGuard

JXplorer

JSecurity

Kasai

Jacksum

annotated as classified attributes. In the Checksum project,

value, length, separator, and filename in class

AbstractChecksum, and val in class Crc16 were an-

notated as classified. In the JGuard project, name and

applicationName in the JGuardPrincipal class and

id and value in the JGuardCredential class were

annoated as classified. In the JXplorer project, uniqueID
and addressIP in the Name class and tag and name in

the ASN1Type class were annoated as classified.

C. Program Characteristics

Table I shows a number of static characteristics of the

studied programs after we annotated our choices of classified

attributes for each. The arrows show how each metric has

changed since the previous release. Upwards arrows (red) in-

dicate a worsening of security and downwards arrows (green)

indicate that security has improved. These characteristics are

one of the outputs of the JBSA tool. They include the total

number of attributes, classified attributes, methods, classified

methods, classes and critical classes for each program. In each

successive release of each project, most of these characteristics

either grew or stayed the same. For instance, the number of

classified methods, i.e., those which may access our annotated

attributes, either directly or indirectly, can be seen to grow

dramatically in successive revisions of Jacksum and JXplorer.
In order to show that our security metrics reflect the

program’s true security level, we inspected the code of some

of the analysed programs in this experiment. This inspection

aimed to show that our security metrics correctly mirror the

improvement or worsening of security caused by specific

changes to security-relevant code.
For instance, it was found that in program Kasai the second

release has added a number of additional methods some of

which contain a flow of classified information. One such

new method is overridePassword in class User which

interacts with the classified attribute password and does sim-

ilar operations to another existing method setPassword. It

thus creates an additional access point for classified attributes.

398

Table III: Coupling, Composition and Extensibility-Based Security Metrics

Program Version CCC CPCC CCE CME UACA UCAM UCAC
0.9.0.A 0.0111 1 1 1 0 0.75 0
0.9.0.B1 0.0109 1 1 1 0 0.75 0

0.9.0.RC1 0.0103 1 1 1 0 0.75 0
0.9.Stable 0.0054 1 1 1 0 0.75 0
1.1.0.B1 0.036 1 1 1 0 0.38 0
1.1.0.B2 0.04 1 1 1 0 0.36 0
1.1.0.B3 0.04 1 1 1 0 0.36 0

1.1.Stable 0.04 1 1 1 0 0.36 0
1.2 0.087 1 1 1 0 0.71 0
1.3 0.061 1 1 1 0 0.75 0
1.4 0.048 1 1 1 0 0.8 0
1.5 0.033 1 1 0.98 0 0.85 0

0.65.1 0.0625 1 1 1 0 0.6 0
0.65.2 0.0625 1 1 1 0 0.6 0
0.65.3 0.0625 1 1 1 0 0.6 0
0.65.4 0.0625 1 1 1 0 0.6 0
3.2.B1 0.0098 1 1 1 0.029 0.74 0.18
3.2.B2 0.0094 1 1 1 0.032 0.73 0.22
3.2.B3 0.0086 1 1 1 0.04 0.74 0.23

3.2.Stable 0.0082 1 1 1 0.037 0.76 0.23

JSecurity

Kasai

Jacksum

jGuard

JXplorer

Table IV: Design Size and Inheritance-Based Security Metrics

 Program Version CDP CSCP CSP CSI CMI CAI
 0.9.0.A 0.0041 0 0 0 0 0
 0.9.0.B1 0.0041 0 0 0 0 0

 0.9.0.RC1 0.0038 0 0 0 0 0
 0.9.Stable 0.0032 0 0 0 0 0
 1.1.0.B1 0.039 0 0 0 0 0
 1.1.0.B2 0.039 0 0 0 0 0
 1.1.0.B3 0.039 0 0 0 0 0

 1.1.Stable 0.039 0 0 0 0 0
1.2 0.083 0 0.5 0.174 0.722 0.8
1.3 0.103 0 0.5 0.232 0.722 0.8
1.4 0.083 0 0.5 0.2 0.722 0.8
1.5 0.068 0 0.5 0.221 0.75 0.8

 0.65.1 0.044 0.5 0 0 0 0
 0.65.2 0.044 0.5 0 0 0 0
 0.65.3 0.044 0.5 0 0 0 0
 0.65.4 0.044 0.5 0 0 0 0
 3.2.B1 0.069 0.036 0 0 0 0
 3.2.B2 0.068 0.036 0 0 0 0
 3.2.B3 0.075 0.032 0 0 0 0

 3.2.Stable 0.074 0.032 0 0 0 0

JSecurity

Kasai

Jacksum

jGuard

JXplorer

Similarly the second release of the Kasai program overloads

an existing security-critical method. Class KasaiFacade
has two methods called createUser that have a flow of

classified information. This means that there are more methods

in this release which interact with classified information than

in the previous release. In fact, these new methods have similar

responsibilities as existing ones and could have been avoided.

Another example was found in program Jacksum 1.3

which has a method getChecksumInstance that re-

turns classified information and is assigned to a new

non-classified attribute checksum. The method calling

getChecksumInstance thus exposes classified informa-

tion which could be exploited by unauthorised parties. There-

fore, we expect the security of Jacksum 1.3 to worsen due

to the additional vulnerabilities added to it and our security

metrics should reflect this change.

On the other hand, there are cases where a potential vul-

nerability has been removed from the program in a successive

release. This was found in program JSecurity where method

executeLogin in class FormAuthenticationFilter
that used to be a potential vulnerability in the third release

was deleted from the program’s fourth release. This has

resulted in reducing the number of insecure methods (i.e.,

those which interact with security-critical information). Such

changes could contribute to improvements in the program’s

overall security and therefore our security metrics should

reflect this improvement.

D. Programs Security Metrics Results
The results of calculating our code-level security metrics

(using our JBSA tool) for each release of each project are

summarised in Tables II to IV. Given that lower values of each

metric are considered more secure, programs whose metrics

decrease should be those whose security has improved. We

expected these security-related programs would improve their

overall security with each new release.
With regard to the results shown in the tables, two of

the five programs, JSecurity and Jacksum, show an obvious

improvement in their security metrics from previous versions.

399

An exception is jGuard whose metrics are unchanged for all

releases. This suggests that only insignificant changes were

made to the code which had no security impact at all. This

impression is confirmed by the characteristics in Table I which

reveal that no major changes were made to the code’s size

between releases. (Nevertheless, the program’s change log says

that a number of small bug fixes were made in each revision.)

The other exception is Kasai whose metrics in Table II

have slightly increased in value between releases 1.1.0.B1 and

1.1.0.B2, meaning a worsening in security, after which the

program was stable. From Table II this would appear to be

because the second release added eight new methods, five of

which were ‘classified’. These new methods account for the

slight increase in three of the cohesion and coupling-security

related metrics exhibited by the second version of the program.

A similar case is shown by the results of JXplorer where

some of its metrics often increased. The reason for this is

clearly shown by the program characteristics in Table I which

indicate that the program has had a significant amount of new

code added. Thus, the program has major increases in some of

its security metrics and worse security overall with regard to

those metrics. Nevertheless, some of the program’s metrics,

including COA, CAAI, CCC and CSCP, have managed to

decrease and thus its security has improved in this regard.

Comparing these results with the code inspections described

in Section III-C we see that our metrics for these programs

have accurately reflected the changes in the security of these

programs with regard to either removing or adding potential

security vulnerabilities. For instance, in Kasai’s second release

our security metrics that relate to measuring the security of

classified methods have shown that security has worsened in

this release as expected due to the addition of new security-

critical methods and attributes, which is the case for program

Jacksum 1.3 as well. On the other hand, security improved

for the JSecurity program’s fourth release as a potentially

vulnerable method was deleted. This change in the code

produced a corresponding decrease in metrics that measure the

proportion of classified methods (CMAI and CMW). However

because the deleted classified methods also interacted with

several non-classified attributes, the metric that measures the

proportion of classified interactions (CAIW) increased.

From this experiment, we can conclude that our security

metrics offer a simple, easy to apply and easy to interpret

approach to quantifying the security of a given program, once

it is properly annotated.

IV. CONCLUSION

In this work we have described a number of security metrics

for object-oriented programs which are measurable at the level

of bytecode instructions. Using this approach we capture the

exact behavior of a Java program in the Java Virtual Machine,

which gives accurate results. They provide developers with a

simple way of identifying and fixing security vulnerabilities

which might occur from the perspective of information flow

of confidential data. The security metrics were demonstrated

using a tool which analyses Java bytecode, applied to actual

large-scale Java projects. This case study produced results

which match our intuitions about the way a program’s security

changes as its code is extended or debugged.

REFERENCES

[1] M. Howard and D. LeBlanc, Writing Secure Code. Redmond, Wash.:
Microsoft Press, 2002.

[2] G. McGraw, Software Security: Building Security In. Upper Saddle
River, NJ: Addison-Wesley, 2006.

[3] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
Java applications with static analysis,” in SSYM’05: Proceedings of the
14th conference on USENIX Security Symposium, (Berkeley, CA, USA),
pp. 18–18, USENIX Association, 2005.

[4] G. Smith, Principles of Secure Information Flow Analysis, vol. 27,
pp. 291–307. Springer, 2007.

[5] D. Volpano and C. Irvine, “Secure flow typing,” Computers and Security,
vol. 16, no. 2, pp. 137–144, 1997.

[6] I. Chowdhury, B. Chan, and M. Zulkernine, “Security metrics for source
code structures,” in Proceedings of the Fourth International Workshop on
Software Engineering for Secure Systems, (Leipzig, Germany), pp. 57–
64, ACM, 2008.

[7] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic metrics
for Java,” SIGPLAN Notices, vol. 38, no. 11, pp. 149–168, 2003.

[8] Á. Mitchell and J. F. Power, “A study of the influence of coverage on
the relationship between static and dynamic coupling metrics,” Science
of Computer Programming, vol. 59, pp. 4–25, January 2006.

[9] W. Binder and J. Hulaas, “Flexible and efficient measurement of
dynamic bytecode metrics,” in Proceedings of the 5th International
Conference on Generative Programming and Component Engineering
(GPCE 2006), pp. 171–180, 2006.

[10] B. Alshammari, C. J. Fidge, and D. Corney, “Security metrics for
object-oriented class designs,” in Proceedings of the Ninth International
Conference on Quality Software (QSIC 2009), (Jeju, Korea), pp. 11–20,
IEEE, 2009.

[11] B. Alshammari, C. J. Fidge, and D. Corney, “Security metrics for
object-oriented designs,” in Proceedings of the Twenty-First Australian
Software Engineering Conference (ASWEC 2010), Auckland, 6–9 April
(J. Noble and C. J. Fidge, eds.), (California, USA), pp. 55–64, IEEE
Computer Society, 2010.

[12] B. Alshammari, C. Fidge, and D. Corney, “Security assessment of code
refactoring rules,” in WIAR’2012; Proceedings of the National Workshop
on Information Assurance Research, Riyadh, Saudi Arabia, April 18,
pp. 1–10, VDE, 2012.

[13] B. Alshammari, C. Fidge, and D. Corney, “An automated tool for assess-
ing security-critical designs and programs,” in WIAR’2012; Proceedings
of the National Workshop on Information Assurance Research, Riyadh,
Saudi Arabia, April 18, pp. 1–10, VDE, 2012.

[14] M. Howard, “Attack surface: Mitigate security risks by minimizing the
code you expose to untrusted users,” Microsoft MSDN Magazine, vol. 11,
2004.

[15] P. Manadhata and J. Wing, “An attack surface metric,” IEEE Transac-
tions on Software Engineering, vol. PP, no. 99, p. 1, 2010.

[16] J. H. Saltzer and M. D. Schroeder, “The protection of information in
operating systems,” in Proceedings of the IEEE, vol. 63, pp. 1278–1308,
1975.

[17] M. Bishop, Computer Security: Art and Science. Boston: Addison-
Wesley, 2003.

[18] Java SE Security, “Secure Coding Guidelines for the Java
Programming Language.” Sun Developer Network, Version 3.0.
http://java.sun.com/security/seccode guide.html [Accessed July 9,
2010].

[19] L. C. Briand, J. W. Daly, and J. K. Wuest, “A unified framework
for cohesion measurement,” in Proceedings of the Fourth International
Symposium on Software Metrics, IEEE Computer Society, 1997.

[20] G. McGraw and E. Felten, Securing Java: Getting Down to Business
with Mobile Code. New York: Wiley Computer Pub., second ed., 1999.

[21] M. Y. Liu and I. Traore, “Empirical relation between coupling and
attackability in software systems: a case study on DOS,” in Proceedings
of the 2006 Workshop on Programming Languages and Analysis for
Security, Ottawa, (Ottawa, Ontario, Canada), pp. 57–64, ACM, 2006.

[22] SourceForge, “SourceForge source code repository,” July 2010.
http://sourceforge.net/ [Accessed July 9, 2010].

400

An Empirical Study of an Improved Web Application
Fuzz Testing Technique

Lili Yu1, 2

School of Computer Science
and Engineering

Beihang University1

the Second Artillery Software
Testing Center 2

Beijing, China
xueer-123@263.net

Zi Yuan 1

 School of Computer Science
and Engineering

Beihang University1

Beijing, China

 Chao Liu 1
 School of Computer Science

and Engineering
Beihang University1

Beijing, China

Feng Chen 2
 the Second Artillery Software

Testing Center 2

Beijing, China

Abstract—Web application security vulnerabilities can be
defined as vulnerabilities in the design, the implementation and
the security policy of each component of a web system. Fuzz
testing, as a brute security vulnerability discovery method, has
gained more and more popularity in recent web application. In
this paper, an improved web fuzz testing technique is presented
and a tool named as Wfuzzer is accordingly designed and
implemented. Three aspects (i.e. automatic analysis, fuzz data
generation and vulnerability detection method) are enhanced.
An empirical study is performed to evaluate the performance of
the approach. The experiment results show certain advantages
of using Wfuzzer in the degree of automation and vulnerability
detection accuracy.

Keywords-Web application; fuzz testing; security vulnerability;
security testing

I. INTRODUCTION

With the development of the internet technology, the web
application plays more and more important role in life and
work. While there is no denying the fact that the potential
safety hazard brought by the openness of the internet has been
a serious threat to the user and the public information security,
among which, the web application own vulnerability is one of
the main reason causing the security problem [1]. Web
application security vulnerabilities can be defined as
vulnerabilities in the design, the implementation and the
security policy of each component of a web system (e.g., web
application, web server, database, etc.). Web application, as a
special kind of software, is faced with more complicated user
environments and more serious security threats than the
traditional stand-alone software. Web application security
vulnerabilities on the internet have become one of the most
serious security hidden dangers. According to a Report “the
Symantec Internet Security Threat Report”, more than 60% of
the software security vulnerability is about the web application
[2]. The reason that caused the web application security
vulnerability is, on the one hand, due to the web application

developers insufficient experience, even more important is that
during the web application testing process, testers pay more
attention to verify the normal function, but often neglect the
security needs.

In the web application field, the common detecting security
vulnerability methods are the static analysis technique and the
dynamic analysis technique [3]. Fuzz testing is recently to be
applied to the web application testing. In the web application
testing, the fuzz testing technique can purposefully construct a
large number of valid or invalid user input data submitted to
the web application, at the same time, monitor the behavior of
the web application by a variety of approaches, furthermore,
analyze the abnormal or collapsed reason, which can help to
discover security vulnerabilities existed in the web application.

In this paper, an improved web application fuzz testing
method is presented. The following aspects are enhanced: using
the web crawler method to implement the automation of
scanning and analyzing the target web application, aiming at
getting the input vector (e.g., URL, web form); constructing the
fuzz data according to the specific vulnerability type and
submitting to the target web application, at the same time,
using the case mix method or the coding method to deform the
fuzz data with the purpose of bypassing the validation and
filtering mechanism; designing to monitor and analyze the
target web application response behavior by a variety of
approaches, aiming at judging whether there are vulnerabilities.
Furthermore, based on the above-mentioned method, Wfuzzer,
a web application fuzz testing prototype tool, is designed and
implemented. Wfuzzer can perform the automation fuzz testing
on the target web application, supporting to detect the SQL
injection, the cross site scripting, the directory traversal and etc.
And an empirical study is performed to evaluate the
performance of the Wfuzzer. The obtained results prove certain
advantages of using Wfuzzer in the degree of automation and
vulnerability detection accuracy.

The remainder of this paper is organized as follows: section
II briefly presents the fuzz testing, and Web fuzz testing;

401

section III reports an improved web application fuzz testing
technique and key steps of designing the Wfuzzer tool; section
IV performs an empirical study to evaluate the performance of
our approach; finally conclusions are presented in Section V.

II. BACKGROUND

A. Fuzz Testing
Fuzz testing is a technique developed by Barton Miller at a

Wisconsin-Madison research project in 1989. The project
constructs a simple fuzzy unit to send a random string method
in order to test the UNIX application robustness [4]. After
twenty years of development, fuzz testing has become a
synonym of software testing methodology, and has been widely
used in various types of software and system testing in practice:
the network protocol testing [5] [6], the file format testing, the
memory data test, etc. The tool to realize the fuzz testing is
usually called as Fuzzer. According to the different fuzz data
generation method, Fuzzer can be divided into the two
categories: the mutation-based and the generation-based.
However, regardless of what kind of the fuzzy device, the
implementation is usually divided into the following stages:
identifying the target; recognizing the input; generating the test
data; implementing the fuzz testing; monitoring the abnormal;
determining availability of the abnormal [7].

B. Web Application Fuzz Testing
In recent years, web application fuzz testing technique

research has gained more and more attention. Hammersland [8]
has considered that the user input may make the web
application being in an uncertainty state, resulting in the
abnormal behavior of the web application. In his research, the
use of a semi-automatic fuzz testing method is proposed to test
the web application processing ability for dealing with all type
of the user inputs. Graaf [3] has considered Hammersland’s
fuzz testing method is not intelligent, and on Hammersland’s
research basis, Graaf has presented a more “intelligent” fuzz
testing method. In his research, the semi-legal fuzz data is
generated, aiming at using the specific web framework to
prevent it from being filtered or rejected by the input validation
module of the web framework.

About the open source web application fuzz tools,
WebScarab contains a basic fuzzy device and injects the web
application parameters into the fuzz data. WSFuzzer can realize
the web service communication parameters’ fuzzification
according to the WSDL documents provided by the user or the
XML files defining the service SOAP structure. SPIKE Proxy
identifies SQL injection and buffer overflow and XSS, and the
other type of vulnerabilities through capturing the web browser
requests, and allowing the user to run a series of predefined
audit for a target Web application. WebFuzz is a fuzz testing
tool based on windows platform graphical interface, which can
detect directory traversal, buffer overflow, SQL injection, and
the other type of vulnerabilities existed in the web application.
About the business tools, the representative is as follows:
WebInspect developed by SPI Dynamics Company, is a web
application test tool to provide the graphical SPI fuzzy device
in the form of the component. BeSTORM developed by
Beyond Security can generate the fuzz data set for multi-

protocols including HTTP, similarly including the HTTP test
tool developed by Codenomicon.

III. WFUZZER-A NEW WEB APPLICATION FUZZ TESTING

In this part, we first study the deficiency of the above-
mentioned current tools, then introduce our approach in detail
from three stages: identify the input goal, construct the fuzz
data and monitor the response behavior.

A. The Existed Shortcomings
The results of comparing the current web application fuzz

testing tool are shown in table I.

TABLE I. COMPARE OF WEB APPLICATION FUZZ TESTING TOOL

Tool name Language Visual
interface

Type of
vulnerability

Automation
degree

Scalability

WebScarab Java YES Single Normal Poor

WSFuzzer Python NO Single Low Poor

WebFuzz C# YES Multi Normal Poor

WfuSPIzz Python NO Single Low Good

SPI C# YES Multi Normal Poor

JBroFuzz Java YES Multi Low General

RatProxy C NO Single Normal Poor

ProxyStrike Python YES Single Low General

WFT C# YES Single Low General

There is a certain degree of shortage, mainly reflected in the
following:

Automation degree is not high. Some fuzzy tools need
personal participation in the web application analysis
and fuzz data generation process. Such as WebScarab,
fuzz data is generated according to the tester to provide
the normal request;

Omission of misinformation rate is high. The fuzz data
generation and the vulnerability detection method
provided by some fuzzy tools are relatively simple,
which causes the misinformation rate of the
vulnerability omission of test results is higher. Such as
WebFuzz, when generating the fuzz data, only the
request parameters using an attack payload (i.e., the
input data may lead to security vulnerabilities), is
replaced, and the vulnerability detection is also simply
by looking back to the web page for the presence of
specific content;

Scalability is poor. Most of the commercial fuzz tools
do not provide the extended function. WSFuzzer and
the other open source tools also have the high coupling
degree problem. On the basis of the redeveloped to
provide the support for the new type of vulnerabilities
has large cost.

402

B. An Improved Web Application Fuzz Testing Technique
1) Automatic analysis of web application: Using the web

crawler technique to automatically scan the target web
application, we can go through the web application which
contains all of the pages and analyze the user input data field of
the web application, mainly including the URL and the web
form.

2) Improving vulnerability explore methods: Improvement
of the vulnerability discovery method is mainly manifested in
the fuzz data generation and the vulnerability detection. The
fuzz data generation adopts the mutation-based method. Due to
the paper limitation, here we mainly introduce the SQL
injection discovery method and cross site scripting discovery
method in the following.

a) SQL Injection: The principle of SQL injection is that
the attacker injects the SQL statement into the input data. The
SQL statement may be submitted to the background database
and is considered to be a normal SQL statement for
implementation, which will cause data disclosure, manipulation,
etc. Our research adopts the method based on SQL grammar
mistakes injection and the method based on time blind injection:

Based on SQL grammar mistakes injection: The
method inserts special characters into a normal HTTP
request parameters, which will destroy the SQL query
syntax. If the web application does not carry on the
filtering and escaping, these containing errors grammar
SQL statements will eventually be submitted to the
background database, and result in the return error
message. The method to compare the pages containing
specific database error message with the normal
request page can determine whether the injection
succeeds or not.

Based on time blind injection: Under the condition of
no outputting background database error information
of the web application, the method based on the time
blind injection can be adopted. This method can inject
the SQL request statements containing the background
database delay returns results into the normal HTTP
request parameters. Setting the delay and the HTTP
response timeout time, and comparing the normal
request response time, can judge whether injection
successes.

b) Cross Site Scripting: The principle is that the attacker
embeds the malicious code into the input data. If the web
application does not validate these data and directly resolve
them to the HTML code, these malicious codes will be carried
out once the other users visit the page, such as the session
hijacking, the shielding and forging page information, the
breakthrough network security restriction, and etc. About the
cross site scripting vulnerabilities, the fuzz data generation
mechanism is relatively more complicated. According to the
different attack payload position, the cross site scripting can be
divided into two categories: the outside-site labels and the
inner-site labels. The former is directly injected against the
payload, such as<script>alert (“xss”)</script>. While the
latter shuts the incomplete HTML tags according to the actual

situation, then injects the attack payload, such as
</title><script>alert(“xss”)</script>. In addition to support
the pseudo agreement in the tag attributes, the pseudo
agreement can be injected into the attack payload, such as
javascript: alert (" XSS "). Therefore, to the cross site scripting
vulnerability testing, first of all the attacker need to inject a
unique KEY into the target web page, secondly analyze the
returned page for obtaining the KEY location, then construct
the corresponding fuzz data and implement the injection, at last
analyze whether the attack payload will occur at the specified
position of the returned page, thereby to judge whether there
are cross site scripting.

In addition, in view of part of the web application has set up
different levels of filtering mechanism, generating the fuzz data
needs to consider various forms of varieties (e.g., coding, case
mix, inserting blank characters).

3) Improve the scalability: Separating the fuzz testing
organization, scheduling, logic implementation from the fuzz
data generation, the vulnerability detection; designing more
than one module, and respectively implement the discovery
according to different type of vulnerabilities.

C. Wfuzzer
We design and implement a web application fuzz testing

tool named as Wfuzzer. The overall design is divided into the
web application analysis module, the fuzz testing execution
module and the test report generation module, the system
framework is shown in figure 1.

Figure 1. Architecture of Wfuzzer

The web application analysis module is used to scan and
analyze the target web application to get the input vector (e.g.,
the URL and the web form), so as to determine the fuzz data
injection point. The fuzz testing execution module can
construct the fuzz data by different type of vulnerabilities and
then send them to the target web application, based on the
injection point provided by the web application analysis
module. At the same time, the fuzz testing execution module
can monitor the response of the target web application and
determine whether there are vulnerabilities through the analysis
of the response information. The test report generation module
is used to provide the test results generated test report
according to the fuzzy test execution module.

403

 Web application analysis module: A simple web
crawler unit is contained, which can automatically
identify all accepted user input data of the target web
application, and store the results in the XML document.
The implementation is based on the breadth-first
strategy, providing some strategies to avoid analyzing
the results which contain a large number of redundant
data, and supporting to automatically skip some
specific pages in the scanning process.

Fuzzy testing execution module: This module is the
core of the Wfuzzer, which realizing the fuzz data
generation, injection, response analysis and
vulnerability detection capabilities. Due to the different
type of vulnerabilities are related to the different
methods, and considering the scalability problem,
Wfuzzer is designed that different type of
vulnerabilities are corresponding to different sub-
modules: all sub-modules are inherited from the same
parent class. The sub-module only need to implement
two abstract method fuzzingGET() and fuzzingPOST()
of the father class, corresponding to GET and POST
request execution fuzz testing.

 Test report generation module: WebFuzzer supports
the test results derived for XML and HTML, which can
directly show the vulnerability type, its location, the
fuzz data caused the vulnerability, the vulnerability
describe, the repair advice, the reference material and
the other various information of the measured web
application, with the purpose to help testers’ further
analysis and processing.

IV. EMPIRICAL STUDY

This section explains how we conducted our experiment.
To empirically investigate the use of our technique, we
performed three studies. Here we describe each study
individually and provide the experiment results.

A. Study1
1) Objectives: The objectives of our initial study were to

verify whether Wfuzzer can effectively detect kinds of
vulnerabilities.

2) Procedure: We respectively designed the simple Web
application which contained the corresponding bugs for each
type of vulnerabilities. At the same time, we modified part of
the software configuration items at the server-side. The purpose
is to make the fuzz testing can focus more on the target web
application itself and not affected by the other factors, thus
benefiting the verification of Wfuzzer vulnerability discovering
ability. Such as the change in php.ini configuration items:
display_errors = On, magis_quotes_gpc = Off,
allow_url_fopen = On, allow_url_include = On, safe_mode
= Off. In addition, in order to increase the difficulty of
vulnerability detection, in the experiment we also has
considered the input validation and filtering of part of the input
data.

3) Results: Experimental results are shown in the
following (due to the paper length, only part of the
vulnerability testing results is listed).

SQL injection vulnerability

Testing URL http://justfortest/sql_query.php
Request type: GET
Normal request http://justfortest/sql_query.php?id=100
Fuzz data
http://justfortest/sql_query.php?id=%BF%27%22%28&submit
=submit

Cross site scripting vulnerability

Testing URL http://justfortest/xss_comment.php
Request type POST
Normal request: comment=test & submit=submit
Fuzz data

comment=%3Cscript%3Evar%28%22u0tj1i2nz4%22%2
9%3C%2Fscript%3E&submit=submit

File containing vulnerability

Target URL http://justfortest/include.php
Request type: GET
Normal request: http://justfortest/include.php?file=test
Fuzz data:
http://justfortest/include.php?file=http%3A%22F%2Fwww.go
ogle.com%2F

Directory traversal vulnerability

Target URL: http://justfortest/path.php
Request type: GET
Normal request: http://justfortest/path.php?path=test
Fuzz data:

http://justfortest/path.php?path= ..%2F..%2F..%2F..%2F.
.%2F..%2F..%2F..%2F..%2F..%2Fetc%2Fpasswd

During the testing process, Wfuzzer output result is shown
in figure 2. The experimental results show that Wfuzzer can
effectively detect all supported vulnerability type of the target
Web application, meet the basic function of the fuzz testing
requirements.

Figure 2. Wfuzzer output result

B. Study2
1) Objectives: The objectives of our second study are to

verify Wfuzzer can execute the effective fuzz testing for a
certain scale, relatively complete web application.

2) Procedure: We choose WackoPicko and a few typical
web applications for testing. WackoPicko is designed by Adam
Doupe and Marco Covaa, a fragile web application including
safety hidden danger. It has the basic function (e.g., user
register, login, messages, file upload, comments, search, etc.),

404

and the artificial hidden sixteen security vulnerabilities,
covering cross site scripting, SQL injection, remote command,
file containing vulnerability and etc. The main purpose is to be
close to the real environment for testing all kinds of web
security testing tool vulnerability discovery effect. The similar
web applications include WebGoat, Web Security Dojo,
Vicnum, OWASP InSecure Web App Project, etc.

3) Results: Wfuzzer has detected the WackoPicko
vulnerabilities without omission and misinterpretation, listed
in table II. The whole process of fuzz testing takes 256
seconds, which proves Wfuzzer has the higher efficiency. In
addition, Wfuzzer has good stability without any collapse and
abnormality during the testing process.

TABLE II. WACKOPICKO FUZZ TESTING RESULT

Vulnerability type Vulnerability number

SQL injection 2

Cross site script 3

Remote command execution 1

File containing vulnerability 1

Directory traversal vulnerability 1

C. Study3
1) Objectives: The objectives of our third study are to

validate Wfuzzer’s automation degree and vulnerability
detection effect.

2) Procedure: We choose a few open source web
application fuzz testing tools (e.g., Wfuzz, WebFuzz,
JBroFuzz) for the contrast experiment. The test object is Damn
Vulnerable Web Application (DVWA) programs a web
application which contains various type of security
vulnerabilities. The initial purpose is to train testers’
vulnerability discovering ability and development personnel’s
understanding of all kinds of security vulnerabilities.

3) Results:
Table III lists the fuzz testing results of Wfuzzer and the

other testing tools, when implementing the DVWA project. We
find that Wfuzzer has effectively improved the accuracy of the
vulnerability detection and reduced the misinformation and
failing to report when implementing the fuzz testing on the
target web application, compared with the other three tools.

TABLE III. TESTING RESULT COMPARISON

Tool
name

SQL

inject

-ion

Cross
site
script

Remote
command
execution

File
containing

Directory
traversal

Testing
time(s)

Wfuzzer 3 2 1 1 1 324

Wfuzz 0 1 0 1 0 853

WebFuzz 2 1 0 1 0 1052

JBroFuzz 2 1 1 1 0 1206

V. CONCLUSIONS

In this paper, we have presented an improved web fuzz
testing technique and designed a tool (i.e., Wfuzzer). The
automatic analysis, the fuzz data generation and the
vulnerability detection method are respectively enhanced. Then
we have performed an empirical study to evaluate the
performance of the approach. The experiment results show
certain advantages of using Wfuzzer in the degree of
automation (mainly reflected in vulnerability quantity) and the
vulnerability detection accuracy (mainly reflected in testing
time).

There are also ways to extend this research work. The
further study needs to increase the other type of vulnerability
detection support, such as XPath injection, SOAP injection,
and so on. And the vulnerability detection method in this paper
is mainly based on the response analysis of the target web
application. But to cross site scripting vulnerability, because of
the diversity of the client script (e.g., JavaScript) call, the use of
this method to detect the injected script implementation may
have the missing problem. The further research needs to
improve the vulnerability accuracy. For example, we can
consider using the API Hooking method to increase the
monitoring and analysis of the client browser behavior.

REFERENCES

[1] Oehlert, P, “Violating assumptions with fuzzing”, IEEE Security and
Privacy Magazine. v3 i2. 58-62.

[2] Symantec Corporation, Symatec Internet Security Threat Report, Trends
for January-June 07, Volume XII, 2007.

[3] Hammersland, R, and Snekkenes, E, “Fuzz testing of web applications”,
1-6. http://rune.hammersland.net/tekst/fuzzing_article.pdf, 2010.

[4] Miller, B. P., Fredriksen, L., & So, B, “An empirical study of the
reliability of UNIX utilities”, Communications of the ACM, 33(12), 22,
December 1990.

[5] Kaksonen, R., Laakso, M., Takanen, A, “Software security assessment
through specification mutations and fault injection”, In: Proceedings of
Communications and Multimedia Security Issues of the New Century,
2001..

[6] D.Aitel, “The advantages of block-
based protocol analysis for security testing”, Immunity Inc., February
2002.

[7] Sutton M, Greene A, Amini P, Fuzzing Brute Force Vulnerability
Discovery, MA: Addison-Wesley. 2007:13-17.

[8] MARTIN, M., AND LAM, M, “Automatic generation of XSS and SQL
injection attacks with goal-directed model checking”, In Proceedings of
the USENIX Security Symposium, pp. 31-43, July 2008.

405

A Petri Net Model Specification for Delivering Adaptable Ads through Digital
Signage in Pervasive Environments

Frederico M. Bublitz1, Lenardo C. e Silva2, Elthon A. da S. Oliveira3

Saulo O. D. Luiz2, Hyggo O. de Almeida2, and Angelo Perkusich2

fredbublitz@uepb.edu.br, lenardosilva@copin.ufcg.edu.br, el7hon@gmail.com

saulo@dee.ufcg.edu.br, hyggo@dsc.ufcg.edu.br, perkusic@dee.ufcg.edu.br
1State University of Paraiba, 2Federal University of Campina Grande, 3Federal University of Alagoas

Abstract

Currently, there are environments in which public de-
vices are positioned at strategic points such as elevators,
hallways and showcases. Although these devices are visible
to a lot of consumers, advertisers have little information
about users who are present in the environment. However,
such information may be acquired from the users’ personal
devices in a Pervasive Environment, where computing de-
vices are seamlessly integrated to the users’ life. In this way,
Pervasive Advertising may be applied to maximize the rel-
evance of the advertised products by adapting to the group
of people in the environment. In this work, we present a
Coloured Petri Net model to verify how the symbiotic use
of the devices may be applied for creating a group-context,
and how Pervasive Advertising impacts on the relevance of
displayed advertisements.

1 Introduction

Advertising has a special role in marketing. It is the re-

sponsible for making the consumers aware of a product or

service. It allows consumers to recognize their needs in the

products and services announced, and it is a way of keeping

alive the brand name in the mind of the consumers [1].

There are several media that can be used to promote a

product or service. The printed media (e.g., newspapers,

magazines and pamphlets) is one of the best known and

widely used today. This kind of media also provides the use

of a form of advertisement very familiar to us, the outdoor

media, which had also adopted the use of neon signs. An-

other kind of media are the radio and the television, which

make use of audio and video broadcast.

The pervasive computing paradigm [2] allows deliver-

ing effective ads. This is because the pervasive computing

offers the possibility of adapting or customizing the ads ac-

cording to users’ context [3, 4]. An example is the use of

the locations information to provide relevant ads [5], which

is known as Location-based Advertising. Some other exam-

ples are the use of image recognition to adapt content [6];

the use of television for detecting the audience amount [7];

and the interactivity with a display as a means for customiz-

ing the ads [8].

Currently, devices such as smart televisions, are posi-

tioned at strategic points such as elevators, hallways and

showcases in universities, airports, and malls. These de-

vices are used with the purpose of promoting products and

services, although acting as a form of entertainment to the

people who frequent such environments. This form of ad

serving is also known as Digital Signage.

Although these devices are able to reach a lot of con-

sumers, the ads in such media have little relevance, because

advertisers have little information from the users in the envi-

ronment. For example, in a university it is common that top-

ics or products related to education are announced in these

displays. It is also common that classmates walk together.

So, for a group of students from a computer science course

an ad of a product that is related to the field of dentistry

probably has no relevance. Hence, the audience is going

to be small. It would be more interesting if it is shown an

advertisement related to technology.

That is one of the reasons that motivate the customiza-

tion of ads, thus offering products and services to the right

customers, at the right time [9]. We believe that the current

technological resources can enable this kind of media (i.e.,

the indoor media). In this way, it is possible to improve the

advertised products and services by adapting the ad serving

for the context of people who are in the environment. For

this, it is necessary to have information about the context

of the users. More precisely, it is necessary to know the lo-

cation of users, and their profile, because this can help to

know “who” is located nearby such a display. For this, it is

necessary a treatment of the context of the users, not only

406

individually, but as a group.

This means that applications must be group aware, i.e.,

they must be capable of dealing with the context of a group

of individuals as a new context. Notice that a group con-

text is more than a collection of individual contexts, be-

cause it is necessary to deal with conflicts that possibly

emerge from the composition. This is the first step in or-

der to achieve the Pervasive Symbiotic scenario proposed

by Narayanaswami [10], in which targeted ads are deliv-

ered on public displays by incorporating information from

personal devices.

In this work, we present a Coloured Petri Net model to

verify how the symbiotic use of the devices to create a group

context impacts on the relevance of the displayed advertise-

ments. Moreover we want to assure that the ads are ex-

hibited whenever there are consumers nearby the display.

Otherwise the display is turned off.

This paper is organized as follows: in Section 2, we

present some related works on pervasive advertising. In

Section 3, we present a theoretical background about Petri

Nets. In Section 4, we descried a Coloured Petri Net model

that enables the delivering of adaptable ads in pervasive en-

vironments. The verification of such model is presented on

Section 5. Finally, we present some conclusions and future

works in Section 6.

2 Related Works

There are a number of areas which are related to the work

presented here, such as Internet Advertising [11] and Mo-

bile Advertising [12]. But, in this section, we have pre-

sented works that are directly related to the use of public

displays for ad serving.

Müller et. al. [6] described in their work that, because

of the technological advances, there was a reduction in the

hardware cost, allowing the popularization of electronic dis-

plays and their use in public places as a means of replacing

the media on paper. In the environments where displays are

installed, there are sensors picking up signals from people

who are in transit. The content to be displayed is selected

based on these signals.

Roges et. al. [13] described the BlueScreen, which con-

sists of a system that tracks and detects users by means of

bluetooth devices. This system uses a decentralized mech-

anism for a multi-agent bidding and that can efficiently al-

locate specific time within each exposure of selected adver-

tisements. Each listing is represented by an individual ad-

vertising. The agent maintains a history of users who have

been exposed to some type of advertising, allowing to know

exactly to whom the ad was displayed.

Yin et al. [14] evaluated the effectiveness of the digital

signage advertisement. Face recognition was applied to de-

termine whether a consumer was watching advertisements.

The proposed solution was only used for tracking the view-

ing duration, but the ads were not customized according to

the face detection to allocate the ads.

More recently, Want and Schilit [15] emphasized that

Digital Signage will support communication in the 21st

century. According to those authors, to gain a perspective

on interactive Digital Signage, it is necessary to consider

the vision of ubiquitous computing. They have also stressed

that the opportunity for interfacing with mobile devices may

lead to useful personalization of information presented on

digital signs. This aligns with the purpose of this work.

Although these works represent significant advances, the

literature lacks on solutions that deal with the group context,

resulting in the decreased relevance of the advertisements.

Moreover we need to increase the autonomy of the display

by turning it off when the place is empty.

3 Coloured Petri Nets

To demonstrate that the above challenges can be over-

came we created a Coulored Petri Net model to verify the

effectiveness of the delivered advertisements and ensure

some properties. In this section we give an overview about

what is a Coloured Petri Net.

Coloured Petri Nets (CPNs) are a high-level Petri

Nets [16] that make it possible to represent complex data

types. A CPN specification is used to model concepts such

as concurrency, conflicts, synchronization and resources

sharing [17]. Figure 1 shows a simple CPN model and its

main elements, which are:

� place: represents a condition, an activity or a resource;

� transition: represents a certain event;

� arc: indicates the input/output place of a transition.

� token: represents the availability of a certain resource;

A state of the model, called marking, is represented by

a “picture” of the net at a certain moment: the amount of

tokens each place has. The firing of a transition generally

changes the net state. Such firing can happen if the transi-

tion is able to do so. Basic transition firing rules are:

� a transition will be able to fire in the case of each one

of all its input places has, at least, as many tokens as

the weight of the arc that connects them;

� the firing of a transition removes a certain quantity of

tokens from each one of its input places (according to

the weights of the arcs that connect them);

407

Figure 1. A simple CPN model and its ele-
ments.

� the firing of a transition produces a certain quantity of

tokens to each one of its output places (according to

the weights of the arcs that connect them).

In the net illustrated in Figure 1, only the T1 transition is

enabled to fire. Its input place has five tokens, what over-

comes the weight of the arc that connects them (three). The

firing of this transition removes three tokens from the P1
place and puts two tokens in the place P4. In the same fig-

ure, the transition T2 is not able to fire. The marking of the

place P2 overcomes the weight of the arc that connects it to

transition T2, but the same does not happen to the place P3
that has no token and is also an input place of that transition.

In a CPN model, all the net inscriptions are written in

a programming language that is a variant of SML named

CPN/ML 1.

4 Coloured Petri Net Model

In this section we expose the Coloured Petri Net Model

specification of the system. This model was conceived to

verify the following hypothesis:

Null hypothesis - H0: Our model bring advertisements

equal or less relevant than the random model. The rel-

evance, represented by the symbol Φ, in this work is

measured as match between the student and the adver-

tisement. Formally the null hypothesis is represented

by:

H0 : Φthis ≤ Φother (1)

Alternative hypothesis - H1: Using just a few information

about the people in the vicinity of a display is useful to

1http://wiki.daimi.au.dk/cpntools-help/cpn ml.wiki

determine the group-context and display more relevant

advertisements. More precisely we use the location,

i.e., if the student is close to the display; the gender;

the age; and the course. Formally:

H1 : Φthis > Φother. (2)

We also desire to guarantee that our system only display

advertisements if there is people to watch them, that is:

1. Always that the place has students advertisements will

be displayed;

2. When the place is empty the display is turned off.

4.1 Scenario

This petri net model is used to describe the ad alloca-

tion according to students’ movements inside the university.

The idea is that the students presence is detected through

their bluetooth devices. These devices were previously reg-

istered and their MAC address associated with a student.

When the presence of the students are detected a new con-

text, called group context, is formed and then the system

processes what ads are more suitable to the group of stu-

dents in the vicinity of the display, and the ads are exhibited,

as shown in Figure 2.

Figure 2. Scenario: the advertisements are
exhibited according to people in the vicinity
of the display.

4.2 Model Specification

The developed Petri Net Model is demonstrated in Fig-

ure 3. In the remaining of this section we are going do de-

scribe it.

The main colors defined to the model are presented in

the Listing 1. For instance, the Device is represented by

the color colset Device that contains its MAC; and the

student is represented by the color colset Student and

its attributes are the id, course, gender, age, and device.

408

ad rm ad ads

ads

(contStu(students),
 displayRand2())

(contStu(students),
 contAd(display(
 students,ads)))

ads

ads

display(students,ads)
ads2

students

students

st

ids
students

students^^[student]

ids

AdPlayer

input (ads);
output (ad);
action
List.nth(ads,
 discrete(0, length ads -1));

ProcessingAdManager

[length students > 0]
AdHistory

Ad

StatisticsLogRandom

EST

StatisticsLog

EST

Display

[] Ads

AdsDB adsDB

Ads

[] Students
[]

Ids

Student

[length students > 0
andalso
length ads2 < 2]

LivingRoom

fromLR

toLR

rm st students
student

University

Out

In

ListOfIds

[length ads > 0]

removeId(id,ids)

id::ids
[not(idInList(id,ids))]

input (students);
output (st);
action
List.nth(students,
 discrete(0, length students -1));

(id,co,ge,age,dev)

(id,co,ge,age,dev)

students

Figure 3. Coloured Petri Net Model describing the ad allocation according to the students movements.

Listing 1. Declarations of some of most im-
portant colors.

c o l s e t Device = MAC;
c o l s e t Gender = with m | f ;
c o l s e t S t u d e n t = p r o d u c t U s e r I d∗Course∗Gender∗Age∗Device ;
c o l s e t Ad = p r o d u c t Course∗Gender∗AgeMAX∗AgeMIN∗STRING
c o l s e t Ads = l i s t Ad ;
c o l s e t S t u d e n t s = l i s t S t u d e n t ;

When the net simulation starts, there are no students in

the system. In the places ListOfIds and Living Room, for

example, there is an initial marking to assure that there are

no students.

The place ListOfIds contains a list of identifiers of the

devices in the range of university (the Listing 2 shows the

ids generation). The transitions In e Out, when enabled,

add or remove students from the University place, which

represent any place inside the university where there is no

display. The guard in the In transition is used to avoid that

two different students have the same id in place ListOfIds.

On the other hand, the inscription in the output arc of Out
transition free the student, by removing its id, meaning that

the student get out of the university.

Listing 2. Function used to generate Ids.
fun i d I n L i s t (id , n i l) = f a l s e
| i d I n L i s t (id , h : : t) = i f (i d = h) then t r u e

e l s e i d I n L i s t (id , t) ;

The simulation of a student entering and exiting in the

places available at university, in this case Living Room, is

done by the transitions toLR and fromLR, respectively. After

some time, the net marking contains some students in the

places University and LivingRoom.

The allocation of ads is done when the transition Pro-
cessingAdManager fires. In order to fire, this transition re-

quires that there are students in the LivingRoom and that the

Display is turned off or it have at most one ad being ex-

hibited. This is necessary because the ProcessingAdMan-
ager fires groups of 3 to 5 ads according to the group con-

text in order to give time for a new processing of group

context. This was done due to the fact that we are using

Bluetooth devices, that requires a delay for device discov-

ery. These requirements are verified by the guard [length
students > 0 andalso length ads2 < 2].

When this transition fires, the SML function display
(students,ads) gets the list of students (see Listing 3);

process the group context; query the ad database repre-

sented by the AdsDB place; and a list of ads (represented

by the token “Ads”) is displayed on the Display place. In

this way, the ProcessingAdManager transition enables the

delivery of personalized content for available spaces at uni-

versity.

The group context is treated by each characteristic. In

Listing 3 the ads are selected according to the courses.

Listing 3. Function to select ads according to
the group context.

(∗ a l l o c a t e ads t o t h e d i s p l a y a c c o r d i n g t o t h e
group o f s t u d e n t s ∗)
fun d i s p l a y (n i l , n i l) = []
| d i s p l a y (s t , ad) = getAds (0 , # 1 (contCourseComp (s t)) , ad)

++ getAds (3 , # 2 (contCourseMed (s t)) , ad)
++ getAds (7 , # 3 (contCourseLaw (s t)) , ad)
. . . ;

(∗ r e t u r n a l i s t o f a d v e r t i s e m e n t s ∗)
fun getAds (x , y , n i l) = []
| getAds (x , y , h : : t) = i f x = 0 then getNAds (y , t)

e l s e getAds (x−1,y , t) ;

409

In this sense the the getAds function return the amount

of advertisements proportional the amount of students of

each course.

Notice that the transition ProcessingAdManager has

high priority (P HIGH), this means that whenever they are

enabled they should fire. This is a way of assure that the

Display will not to become off when there are people in the

LivingRoom.

The StatisticsLogRandom and StatisticsLog places are

used as data collectors based on the firing of ProcessingAd-
Manager transition. Both places maintain the history of ad

delivery, however the first intended to random approach and

the last inherent to the group aware model.

The AdPlayer transition is responsible for consuming the

tokens of Display place, simulating the exhibition of an ad.

The place AdHistory acts as historical, but the emphasis is,

respectively, in chronological order of what ads were fully

displayed to students and which were aborted before dis-

playing as a consequence of output students of the place

frequented.

Although this model is limited to only one place fre-

quented at university, it is possible to extend it to incorpo-

rate other places, such as library, restaurant and gymna-
sium, following the same logic presented.

5 Model Verification

The verification of the CPN model was made from the

analysis of the state space and based on reachability proper-

ties [18]. As this is an exhaustive search technique, it allows

us to answer certain questions that ensure the reliability of

the proposed model for the scenario under study.

The first aspect that we want to verify is concerning the

relevance of the exhibited ads for the students in the place.

Regard this issue our model obtained a level of relevance

better then the random selection, as showed in Figure 4.

Model Random

Model vs. Random

R
el

ev
an

ce
 (i

n
%

)
0

10
20

30
40

50
60

70

50.97

32.39

(a) Average relevance.

Model Random

0
20

40
60

80
10

0

Model vs. Random

Approach

R
el

ev
an

ce
 (i

n
%

)

(b) Distribution of relevance.

Figure 4. Ad Relevance: model vs. random.

This means that negotiation model is most efficient in

finding the appropriate ads for consumers, validating our

Alternative Hypothesis - H1 (Section 4, Equation 2).

Another aspect that we want to verify is that the CPN

model is designed in accordance with the specification of

requirements for proper operation of the ads delivery sys-

tem, the following properties were observed:

� PI: For all paths, there is an immediate successor state,

to the current state, so that the place LivingRoom is not

empty and at least one ad appears on the display?

� PII: When LivingRoom is empty the display is turned

off?

The ASK-CTL expressions used for this verification are

represented in Table 1.

Table 1. Model Checking Results.
ASK-CTL EXPRESSION RESULT

PI

fun PropertyI n =
(Mark.Model’LivingRoom 1 n <> [])
andalso
(Mark.Model’Display 1 n <> []);

TRUE

val myASKCTLformulaI
= FORALL NEXT(
NF(“PropertyI:”,PropertyI));

eval node myASKCTLformulaI
InitNode;

PII

fun PropertyII n = (length (hd
(Mark.Model’LivingRoom 1 n)) = 0)
andalso (length
(Mark.Model’Display 1 n) = 0);

TRUE

val myASKCTLformulaII
= EXIST UNTIL(
TT,NF(“PropertyII:”,PropertyII));

eval node myASKCTLformulaII
InitNode;

Such questions are formulated using a library that im-

plements CTL-like temporal logic called ASK-CTL, which

additionally contains a model checker [19]. From the model

checking results for both properties we can verify that they

are true. This means that the display only plays advertise-

ments when there are students in the environment.

6 Final Remarks

In this work, we described a Couloured Petri Net model

concerned with functional evaluation of a context-aware ad-

vertising approach. In this approach, specific ads are pre-

sented on a display based on the group of individuals which

are in its vicinity. We demonstrate a methodology to ob-

tain better and adapted ads to a specific group of students,

by means of simple context characteristics, such as gender,

age, and course, thus increasing the ads relevance.

The Coloured Petri Nets model was built to capture the

behavior of the system. By means of this Petri Net model, it

410

was possible to verify that Pervasive Advertising may be

successfully applied to maximize the relevance of adver-

tisements. Model checking was applied on the constructed

model to automatically verify some key properties, such as

the ads delivering only when there are users nearby. Oth-

erwise, the display is blanked, thus saving power and the

advertiser investment, because only the exhibited ads are

paid.

As future work, we are developing a model of a plat-

form that captures images from a video camera to identify

the users. In a first moment, it may estimate the age and

the gender of the users. In this way we will be able to ex-

hibit customized ads for most dynamic and heterogeneous

places.

References

[1] E. Bernays, Propaganda. Horace liveright, 1928.

[2] M. Weiser, “The Computer for the 21st Century,”

Scientific American, vol. 265, pp. 66–75, September

1991.

[3] F. Bublitz, H. Almeida, A. Perkusich, E. Loureiro,

E. Barros, and L. Dias, “An Infrastructure for Devel-

oping Context Aware Applications in Pervasive Envi-

ronments,” in SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, (New York, NY,

USA), pp. 1958–1959, ACM, 2008.

[4] F. Bublitz, H. O. de Almeida, and A. Perkusich, “A

Context Ontology Model for Pervasive Advertising:

a Case Study on Pervasive Displays,” in Proceedings
of the 24th International Conference on Software En-
gineering & Knowledge Engineering (SEKE’2012),
pp. 426–431, Knowledge Systems Institute Graduate

School, 2012.

[5] A. Kupper, Location-Based Services: Fundamentals
and Operation. Wiley, October 2005.

[6] J. Muller, J. Exeler, M. Buzeck, and A. Kruger,

“ReflectiveSigns: Digital Signs That Adapt to Audi-

ence Attention,” in Pervasive ’09: Proceedings of the
7th International Conference on Pervasive Comput-
ing, (Berlin, Heidelberg), pp. 17–24, Springer-Verlag,

2009.

[7] K. Maeda, M. Nishi, T. Yoshida, K. Suzuki, and H. In-

oue, “Digital Signage with Audience Detection Us-

ing TV Broadcasting Waves,” in Applications and the
Internet (SAINT), 2010 10th IEEE/IPSJ International
Symposium on, pp. 225 –228, 2010.

[8] A. Erbad, M. Blackstock, A. Friday, R. Lea, and J. Al-

Muhtadi, “MAGIC Broker: A Middleware Toolkit for

Interactive Public Displays,” in Pervasive Computing
and Communications, 2008. PerCom 2008. Sixth An-
nual IEEE International Conference on, pp. 509 –514,

march 2008.

[9] G. C. Bruner and A. Kumar, “Attitude toward

Location-Based Advertising,” Journal of Interactive
Advertising, vol. 7, no. 2, pp. 3–15, 2007.

[10] C. Narayanaswami, D. Coffman, M. C. Lee, Y. S.

Moon, J. H. Han, H. K. Jang, S. Mcfaddin, Y. S. Paik,

J. H. Kim, Lee, J. W. Park, and D. Soroker, “Pervasive

Symbiotic Advertising,” in HotMobile ’08: Proceed-
ings of the 9th workshop on Mobile computing systems
and applications, (New York, NY, USA), pp. 80–85,

ACM, 2008.

[11] Z. Wendan and W. Dingwei, “Study on Internet ad-

vertising placement problem,” vol. 3, pp. 1798 –1801,

jan. 2010.

[12] D. Drossos and K. Fouskas, “Mobile Advertising:

Product Involvement and Its Effect on Intention to

Purchase,” pp. 183 –189, jun. 2010.

[13] A. Rogers, E. David, T. R. Payne, and N. R. Jennings,

“An Advanced Bidding Agent for Advertisement Se-

lection on Public Displays,” in AAMAS ’07: Proceed-
ings of the 6th international joint conference on Au-
tonomous agents and multiagent systems, (New York,

NY, USA), pp. 1–8, ACM, 2007.

[14] K.-C. Yin, H.-C. Wang, D.-L. Yang, and J. Wu, “A

study on the effectiveness of digital signage advertise-

ment,” in Computer, Consumer and Control (IS3C),
2012 International Symposium on, pp. 169 –172, june

2012.

[15] R. Want and B. Schilit, “Interactive digital signage,”

Computer, vol. 45, pp. 21 –24, may 2012.

[16] T. Murata, “Petri nets: Properties, Analysis and Appli-

cations,” Proceedings of the IEEE, vol. 77, pp. 541–

580, April 1989.

[17] K. Jensen, Coloured Petri nets: basic concepts, anal-
ysis methods and practical use, vol. 2. London, UK:

Springer-Verlag, 1995.

[18] K. Jensen and L. M. Kristensen, Coloured Petri
Nets: Modelling and Validation of Concurrent Sys-
tems. Springer-Verlag, 2009.

[19] S. Christensen and K. H. Mortensen, Design/CPN
ASK-CTL Manual, Version 0.9. University of Aarhus,

1996.

411

An Approach for Analyzing Software Specifications
in Petri Nets

Junhua Ding
Department of Computer Science

East Carolina University
Greenville, NC, USA

dingj@ecu.edu

Dianxiang Xu
National Center for the Protection of

the Financial Infrastructure
Dakota State University

Madison, SD, USA 57042
dianxiang.xu@dsu.edu

Jidong Ge
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing 210093, China
gjd@nju.edu.cn

Abstract — In this paper, we present an approach for analyzing
software specifications in Predicate/Transitions (PrT) nets. The
approach is designed as a two-phase process to ensure it is not
only practical but also rigorous for analyzing formal software
specifications in PrT nets. In the first phase, a PrT net model is
analyzed using model based testing technique with tool MISTA.
Then the important properties defined in temporal logic formulas
for the PrT net model is further checked using model checking
technique with tool NuSMV to ensure the correctness of the
model. The errors found in the first phase and the counter
examples generated in the second phase can help developers to
find problems in the model. The analysis process is illustrated by
analyzing an Alternating Bit Protocol (ABP), and problems found
in one ABP model in PrT nets have demonstrated the
effectiveness of the approach.

Keywords- model-based software testing; model checking;
Software Specification; Petri net

I. INTRODUCTION

Formal specifications offer a solid foundation for
understanding and implementing software systems. Many
formal specification languages such as VDM, Z, and Petri nets
have been designed for specifying software systems, and many
verification techniques like theorem proving and model
checking have been developed for analyzing software
specifications. However, a rigorous and also practically useful
analysis technique for analyzing formal specifications is rare.
In this paper, we introduce a rigorous analysis approach for
analyzing software specifications in Predicated/Transition
(PrT) nets. The approach is developed through integrating
model-based software testing and model checking technique in
a two-phase analysis process that analyzes software
specifications by gliding from informal to formal analysis. In
this approach, the formal specification is first simulated,
verified and tested for a set of test adequacy criteria. If any
error is found, the formal specification will be iteratively
analyzed until the error is understood and the specification is
updated. As soon as the formal specification passes the first
phase testing, it is again checked using model checking tools
against a set of properties defined in temporal logic.

The main contribution of this paper is due to a two-phase
rigorous and practically useful approach for analyzing software
specifications. Through analyzing some errors found in a case
study, we believe it is important to provide an easy to use
technique such as simulation and testing for analyzing software

specifications when they are still in the early development
phase. In addition, we also understand testing is not enough to
ensure the correctness of a software specification. Model
checking is necessary for verifying a software specification in
the later development phase. In our approach, the model-based
testing assists ones to understand the specification, to check
simple assertions and test special scenarios for building correct
software specification and reducing the model checking tasks,
and the model checking ensures the correctness of the
specification. We have performed a case study on an
Alternating Bit Protocol (ABP) protocol, and the result has
shown the effectiveness of the proposed approach.

The rest of this paper is organized as follows: Section 2
presents a brief introduction to PrT nets, model-based software
testing and its tool, and symbolic model checking and its tool.
Section 3 introduces the proposed analysis approach that
integrates model-based testing with model checking for
analyzing software specifications in PrT nets. Section 4
reviews the related work, and section 5 concludes this paper.

II. BACKGROUND

A. PrT Nets

Predicate/Transition (PrT) nets, a high level Petri net, are
used for specifying software systems. The formal definition of
PrT nets used in this paper is same as the one defined in [15]. A
PrT net is a tuple (P, T, F, Σ, L, ϕ, M0), where: P is a finite set
of predicates (first order places), T is a finite set of transitions
and F is a flow relation. (P, T, F) forms a directed net. Σ is a
structure consisting of some sorts of individuals (constants)
together with some operations and relations. L is a labeling
function on arcs. ϕ is a mapping from a set of inscription
formulae to transitions, and M0 is the initial or current marking.

Figure 1 shows a PrT net model for the 5 dining
philosophers’ problem, which includes transitions Pickup, and
Putdown, places Phi, Chop and Down. Places Phi and Chop
include tokens that are nature numbers representing
philosophers or chopsticks, and each token in place Down
includes represents a philosopher and his/her two chopsticks.
Transition Pickup has two input places Phi and Chop, and one
output place Down. The guard condition in transition Pickup is
defined based on the relation between the tokens in place Phi
and Chop. The guard condition in transition Putdown is defined
based on the relation between the tokens in place Phi and
Chop.

412

B. Model-based Testing and MISTA

MISTA [14] is a model-based testing tool for automated
generation of executable test code in model level and program
level. It uses function nets (a type of PrT nets extended with
inhibitor arcs and reset arcs) [15] for specifying test models so
that complete tests can be automatically generated. It also
provides a language for mapping the elements in function nets
to implementation constructs, which makes it possible to
convert the model level tests into program level tests that can
be executed against the system under test. MISTA includes
several important components: model editor, model parser,
simulator, reachability analyzer, test generator, and test code
generator. MISTA support the step by step execution and
random execution of a function net, and the execution
sequences and token changing in each place are visualized for
inspection. The test generator generates model level tests (i.e.,
firing sequences of the function net) according to a chosen
coverage criterion such as transition coverage or state
coverage. The tests are organized and visualized as a transition
tree. MISTA supports a number of coverage criteria for test
generation from function nets, including reachability graph
coverage, transition coverage, state coverage, depth coverage,
and goal coverage. Test code generator generates test code in a
chosen target language like Java or C++ from a given transition
tree [14].

C. Model Checking and NuSMV

NuSMV [11] is a reimplementation and extension of
symbolic model checker SMV for checking finite state systems
against property specifications in temporal logic. To verify a
finite state system in NuSMV, it has to be described in NuSMV
input language. NuSMV then translates the description into a
system model and uses the symbolic model checking
algorithms to check if a given specification in temporal logic is
true or false. In the latter case, a counterexample is given when
possible. A NuSMV program consists of a definition of a finite
state transition system and a list of properties written in
temporal logic formulas. A transition system is defined in terms
of a state space, a transition relation, and a set of initial states.
Since NuSMV is intended to describe finite state systems, the
only data types in the language are finite ones such as
Booleans, scalars and fixed arrays. The complete syntax of
NuSMV language is described in [11]. A PrT net model has to
be converted in to NuSMV model before it is able to be
checked using NuSMV, and the properties to be checked have
to be written in NuSMV format. The translation of a PrT net

model to SMV input has been defined in [5], which is also
applied to NuSMV.

III. ANALYZING PRT NETS

In this section, we are going to discuss an approach for
rigorously analyzing a PrT net model using model-based
software testing supplemented with model checking. In order to
illustrate the basic idea and the process of the two-phase
analysis approach, we model and analyze an ABP model.

A. ABP

ABP is a protocol for reliable transmission of messages
over unreliable communication channels that may lose or
corrupt transmission messages. The protocol consists of a
sender, a receiver, and two channels: message channel and
acknowledgement channel. The main goal of ABP is to ensure
that the receiver will eventually deliver an accepted message
from the sender to the receiver. The channels can detect the lost
or corrupted messages. Messages are sent from the sender to
the receiver via the message channel. Each message from the
sender includes a data part and a one-bit sequence number. The
receiver includes a one-bit acknowledgement character for
checking the sequence of a received message and sending
acknowledgement to the sender. If a message is lost or
corrupted, the ack sent to the sender through the
acknowledgement channel will not match to the expected
sequence number, and then the message will be resent. If an
ack message is lost or corrupted, it will be resent. Next
message only can be sent from the sender to the receiver until
an expected ack is received by the sender. The protocol
guarantees that (1) an accepted message will eventually be
delivered, (2) an accepted message is delivered only once, and
(3) the accepted messages are delivered in order. We build a
PrT net model for ABP without a timeout mechanism, which
assumes that the channels may lose or corrupt but not duplicate
messages and the lost or corrupted messages are detectable. A
PrT net model is defined in Figure 2. Although the PrT net
model of ABP defined in Figure 2 includes 4 small nets, these
small nets have to be connected together via the common
places for execution and analysis. The model defined in Figure
2 may have some issues, which we will discuss in the
following sections.

B. The Approach

The approach we introduce in this paper for analyzing a
PrT nets is a two-phase analysis approach. First a PrT net is
checked using the model-based testing tool MISTA, and then
the PrT net is further verified using the symbolic model
checker NuSMV. The first phase of analysis using simulation
and testing can help model developers understand the model in
details and find problems that could be skipped by model
checking. As soon as a PrT model is passed through the first
phase checking, its properties are verified again using model
checker NuSMV to ensure the correctness.

The analysis functions in MISTA include simulation, model
level test generation, and verification of goal reachability,
deadlock states and simple assertions. The simulation is used to
execute the model with random inputs to check its running at
different scenarios. The simulation process can assist
developers to detect some unreasonable behaviors in the model

Figure 1. A PrT nets model for dining philosophers

413

and give them an intuitive understanding of the model. The
verification of goal reachability is used to check the
reachability of goal states defined in the PrT net model. If a
goal is known to be reachable (or unreachable), but the
verification reports that it is unreachable (or reachable), then
the PrT net or the set of initial states must be specified
incorrectly. A goal state is not limited to a specific marking.
Generally, it is specified by a logical formula P → Q. The
reachability analysis of P → Q checks to see if there exists a
reachable marking that satisfies P → Q. Verification of an
assertion P → Q is to check if the given assertion is satisfied by
all states reachable from the given initial states. Generally,
verification of goal reachability aims at the analysis of
existential properties (“there exists”) whereas verification of
assertions targets on analyzing universal properties (“for all”).
Verification of deadlock states is to check if the given PrT net
can reach any deadlock/termination state under which no
transition is enabled. If the verification result is different to our
expectation, the given net might be specified incorrectly. As
soon as the simulation and verification have been done, one or
more test coverage criteria are chosen for generating model
level tests, which are guaranteed to be adequate for each
selected criterion. Complex execution scenarios of the PrT net
model can be tested with selected tests using MISTA. The
model level tests can be used for generating program level tests
that are used for testing the model implementation.

In order to model check a PrT net model using NuSMV, we
need to translate the model into a NuSMV program and define
interesting properties in temporal logic. It is well known that a
finite state transition system is a special case of a Petri net [10].
It is also well known that a state based verification approach is
adequate to ensure general safety and liveness properties [8].
Therefore, restricting a Petri net’s behavior into interleaved
executions (i.e. firing one transition at each step) by translating
a Petri net into a state transition system does not affect the
satisfiability or validity of a property specification. To ensure
the system containing only finite states, we require the
boundedness of all places in a PrT net to be checked [5]. Some
properties are not feasible to be tested by MISTA, but they can
be checked using NuSMV. Interesting properties that haven’t
been checked in the first phase such as temporal properties AF
(“future”), AU (“until”) and EFAG (“exist future for all”) are
needed be checked using NuSMV. In practice, all interesting
properties of a PrT net model should be re-checked using
model checking to ensure the correctness. If a false is found for
a given property in the model, the counterexamples generated
from the model checking will be used for debugging the PrT
net model using MISTA thanks to the visualization of its
execution process.

C. Model-based Testing of PrT Nets

As soon as a PrT net model is created and successfully
compiled in MISTA, it is executed with random inputs (i.e.,
initial markings) to help developers to understand the model
and detect easily found problems. If the simulation result is
acceptable, we can start the verification of the goal
reachability, assertions and deadlock states. After that, a set of
tests can be generated based on selected testing coverage
criteria, and finally selected tests are performed to test the

model. Here we discuss the testing process through testing the
PrT net model of ABP shown in Figure 2.

2.1 PrT net models for ABP channels (left: message channel; right:
acknowledgement channel), where d is a message including a datum part m
and a sequence bit b, d’ is a corrupted or lost message, b is an ack bit, and
b’ is a corrupted or lost ack.

2.2 PrT net models for ABP Sender, where m is a datum to be sent, d is the
message to be sent out, d’ is a message with alternating bit to d, ack is an
ack bit. Guard for sendData is (d.ack = 1 –ack, belongsTo(ack, 0, 1), ack =
d’.ack), and guard for resendData is (ack <> d.ack).

2.3 PrT net models for ABP Receiver, where d is a message, m is the
datum part of d, b is an ack bit, and b’ is the alternating bit of b. Guard for
deliverData is (b.ack = d.ack, b’.ack = 1-b.ack), and guard for resendAck is
(d.ack <>b.ack).

Figure 2. A PrT net model for ABP

First, execute the PrT net model for ABP with some valid
initial markings using MISTA. For example, we assign an
initial marking for the PrT net in Figure 2 as:
Accept(“message1”), DataBuf(1, “”), AckIn(1), AckBuf(1).
Multiple transitions can be enabled under certain marking, but
only one transition can fire each time. Which transition will be
selected from multiple enabled transitions to fire is
nondeterministic. For example, when place DataOut has token
(1, “message1”), transitions corrupted, lost and transmitted are
enabled. MISTA allows users to select an enabled transition for
firing or let the system to randomly choose one for firing
during the running. MISTA also allows users to start the
random simulation of the whole model. During the random
simulation of the ABP model, we found the execution was
started and continued for several rounds, and then it stopped
running without delivering the accepted message, which is
conflict to the ABP specification. Something must be wrong in

414

the model. The initial marking was fairly simple, and we could
not find any problem in it. We executed the model step by step
with manually controlling the execution process to look for
problems in the model. A normal execution scenario for an
ABP should be like this: (1) when one message is accepted in
the sender, a sequence number is attached to the message to
form a datum package; (2) as soon as the package is
transmitted, the sequence number of the transmitted message is
compared to the expected sequence number in the receiver; (3)
if the two sequence numbers are identical, the message is
delivered, and the sequence number in the receiver is flipped
and stored in a buffer for checking next message; (4) after that,
an acknowledgement message ack, which is the previous
expected sequence number in the receiver, is sent to the sender;
(5) as soon as the ack message is transmitted to the sender, the
sequence number in the sender is flipped, and the next message
is ready to go.

The normal scenario can be easily checked. We started the
manual play with the same initial marking defined above. In
the beginning, only transition sendData was enabled. When it
was fired, transitions corrupted, lost and transmitted in the
message channel were all enabled. Transition transmitted was
selected for firing. After that, we found transition deliverData
was enabled, and it was the only enabled transition. Firing
transition deliverData would deliver the message to place
deliver, transmit acknowledgement message ack (i.e. put the
ack token in place AckOut), and flip the sequence number in
place AckBuf. Now, transitions corrupted, lost and transmitted
in the acknowledgement channel were all enabled. Transition
transmitted was selected for firing, and ack was successfully
delivered to place AckIn, which terminated the execution since
no any transition was enabled under the marking. The
simulation of normal scenario of delivering message
demonstrated that a message had a chance to be successfully
delivered in the model, and it narrowed the problem of the
model on handling the corruption of a message. Therefore, we
simulated the scenarios with corruption of a message or an ack.
In order to find subtle errors, we simulated the combination
execution scenarios that combine transmitted, lost, and
corrupted messages with transmitted, lost, and corrupted acks,
which generate 9 different execution scenarios for one trip of
execution. The first problem we found was when a message
was unsuccessfully delivered, and further the ack from receiver
was corrupted during the transmission, then the ack had to be
resent. However, the resending of ack had to be gone through
the sender side (see Figure 2.1, where the output place of
transitions lost, corrupted of the acknowledgement channel is
in the sender side), and then the resending ack from the
receiver to the sender couldn’t be accepted in the sender side
due to the expected sequence number in the sender had been
updated, which caused inconsistency of the sequence numbers
in both sides. Although the problem could be resolved by
adding new parameters into the places, it was unreasonable to
let the sender side to handle corrupted ack message from
receiver. Although we also can fix above issue with adding
more complex constraints into transitions, we found
duplication of messages could still happened due to other
problems. Therefore, we created a new model that could
properly handle the message corruption issue. Figure 3 shows
an updated PrT net model for ABP, which can pass the

simulation testing. We added 8 messages in place Accept, and
these messages were sequentially delivered to place Deliver
without duplication even when messages or acks were
corrupted or lost during the transmission.

Figure 3. An updated PrT net model for ABP. The sender handles the
resending of corrupted or lost message directly, and the receiver handles the
resending of the corrupted or lost ack itself. The transitions and labels defined
in this figure are slightly different to those in Figure 2 for technical
convenience, but they have exactly same meaning.

Second, verify the reachability of goal states, assertions and
deadlock states using MISTA. Under the initial marking
Accept(“message1”), Accept(“message2”), DataBuf(1,“”),
AckIn(1), AckBuf(1), we checked the reachability of several
goal states. Accepted messages message1 and message2 could
be delivered to place Deliver (i.e., GOAL Deliver(“message1),
Deliver (“message2”)); AckIn(0) was reachable, which means
an acknowledgement message ack for successfully delivering
an accepted message was acknowledged. Considering the
reachability of above goal states, we concluded that when an
acknowledgement of delivering of a message could cause the
sending of the next message in the sender. We also checked
whether an undesirable state was reachable in the model. If an
undesirable state was reachable, then something must be wrong
in the model. For example, messages should not be duplicated
during the transmission, which could be checked via checking
a goal state with duplicated messages in place Deliver. MISTA
is able to check deadlock states, reachability of transitions and
verify simple assertions of a PrT net. The only deadlock state in
the ABP model under above initial marking was the state when
all messages had been delivered, and all transitions are
reachable. The assertions like Deliver(“message1”) not
Accept(“message1”) was hold in the model defined in Figure
3, which means message1 will be removed from place Accept
when it is delivered. If MISTA found an assertion that was not
hold in a model, it generates counterexamples to show how the
assertion was violated in the model, which can help us to
understand and debug the model.

Third, generate adequate tests according to selected test
coverage criteria using MISTA. For the PrT net model defined
in Figure 3, we can generate model level tests covering all
states, all executable paths, all assertions, goal states, and
others. Since complex scenarios are not feasible to be checked
during simulation or verification using MISTA, these complex
scenarios can be rigorously tested with model level tests thanks
to the executable capacity of PrT nets. The model level tests are

415

also used for generating program level tests via mapping the
model to its corresponding program. The program level tests
will be used for testing the model implementation. Figure 4 is
a snapshot of the generated tests covering all paths for the ABP
model defined in Figure 3.

D. Model Checking PrT Nets

In order to ensure the correctness of a PrT net model, we
use model checking tool NuSMV to check the behavior model
specified in PrT nets against the important properties defined in
temporal logic. The main goal of model checking the ABP
model is to verify the three properties that should hold in a PrT
net model for ABP:

(P1) Liveness property: Accepted message will be
eventually delivered, whose CTL formula is: G(Accept(x) ->F
Deliver(x)).

(P2) Safety property: Messages will be delivered in order,
e.g. if message x1 is sent by the sender before message x2, x1
will be delivered by the receiver before x2, whose CTL formula
is: G((Accept(x1) U (Accept(x2) ∧ ¬Accept(x1))→
(¬Deliver(x2) U Deliver(x1))).

(P3) Safety property: Each message is delivered only once
(i.e., no duplication of messages) with the assumption that all
accepted messages are distinct, whose CTL formula is:
G(Deliver(x) ∧ Deliver(y) → x ≠y).

Following the same idea discussed in [5], a PrT net model
for ABP can be easily transformed into a NuSMV model. The
first NuSMV model translated from the PrT net model defined
in Figure 2 is similar to the one discussed in [5], and the second
NuSMV model translated from the PrT net model defined in
Figure 3 was rewritten based on an ABP example included in
the NuSMV distribution [11]. To make the underlying

transition system finite and to simplify the analysis, we assume
that there are eight distinct messages accepted initially.
Namely, there are eight distinct tokens in place Accept, and no
any other message is accepted. We verify that all eight
messages and only eight messages are delivered, and eight
messages are delivered in the order they are sent by the Sender.
The property part in NuSMV is defined as follows according to
the properties we intend to verify.

(1) All messages are eventually delivered. This formula
ensures property (P1): AF(Deliver = 8). 8 means the place
Deliver has received 8 messages.

(2) Messages are delivered in order and all delivered
message are distinct. This formula ensures properties (P2) and
(P3): AG(deliverData & !next(deliverData) → DataIn/2 =
Deliver +1). For modeling convenience, messages are encoded
as: its sending order (from 1 to 8) times 2 then plus bit number
1 or 0.

In addition, fairness constraints have to be added to the
NuSMV model to ensure the fairness. Otherwise, above
properties do not hold because a message could always be lost
or corrupted so that it will never be delivered, which is
inconsistent to the protocol specifications.

When we verified the three properties in the NuSMV model
for the PrT net defined in Figure 2, we found several interesting
problems. Although the three properties were evaluated as true
in NuSMV, we do find that one message could be duplicated
and delivered to the receiver, which has been confirmed in the
simulation. We change the property (1) as AF(Deliver = 9),
and then the formula was still evaluated as true. Since only 8
messages total have been accepted, 9 messages have been
delivered means some message has been duplicate. We
checked the PrT net model defined in Figure 2 and found that:
when a message was successfully delivered, the message in the
DataBuf was not removed. If the ack message is lost or
corrupted, the sender (but not the receiver!) in the model has to
tell the receiver to resend the ack. When the sender asks the
receiver to resend the ack, the message stored in place DataBuf
is also sent out, since the sequence numbers in both receiver
and sender were flipped when the original message was sent
and delivered (i.e., they are still consistent), so that the message
was delivered to place Deliver again.

What has happened on property (2), which should verify
the duplication of messages and the ordering of the delivery?
We checked the original NuSMV program, and found the
message sent from the sender was encoded based on the
formula defined in property (2). Therefore, if a message is
delivered, but its ack is lost, then the message is sent out with
the command for resending ack from the sender is different to
the original message (suppose it should be the same one, but it
is the next one) because the sequence number has been flipped
as soon as the message is delivered. In other words, duplication
of messages in the model did not really duplicate a message but
it causes additional messages were sent (i.e, 9 messages but not
8 messages had been delivered, and all of them were different).
Therefore, property (2) is still hold, but the model has bugs.

Although model checking is an excellent technique for
rigorously analyzing software specifications, it is fairly

Figure 4. Generated tests for ABP model defined in Figure 3

416

challenge to ensure the model checking quality when the model
become complex. The example we just investigated tells that
combing a lightweight analysis tool with model checking
technique is great help to understand a formal model and
ensure the analysis quality.

IV. RELATED WORK

Model checking has been widely used for analyzing
software specifications [2]. In [5], He and et. al. reported a
method for formally analyzing Petri nets using model checking
and formal proof techniques. Ding and He discussed an
approach for modeling checking a type of high level Petri nets
in [3]. Several other researchers have defined an executable
semantics for a software specification and supported some
analysis capabilities through simulation and or formal
verification [9]. For example, Rapide [7] supports simulation,
the Chemical Abstract Machine [6] and Wright [1] support
limited formal verification. Several researchers also explored
testing of software specifications [12]. Test generation is the
most important task for software testing. Software testing
mainly has four types of test generation methods: program-
based, specification-based, model-based and random test [13].
Model-based test generation generates model level tests from
formal specifications like Z or Petri nets of the program under
test, and then the model level tests are transformed into
program level tests to test the program [14][18]. The approach
discussed in this paper is different to existing work. Our
approach focuses on the process of analyzing software
specifications in particularly Petri nets via naturally combing
informal and formal analysis techniques in two-phase analysis.
The two-phase analysis approach bridges the gap between
formally modeling software systems and formally analyzing
software systems through injecting the model-based software
testing technique between them. The model-based testing
performed in the first phase of analysis uses the similar
techniques used in model checking, which is performed in the
second phase of analysis. The similarity of the techniques used
in two phases is important for sharing analysis results in both
phases so that to improve analysis effectiveness and efficiency.

V. SUMMARY AND FUTURE WORK

In this paper, we present an approach for analyzing software
specifications in PrT nets. The approach is designed as a two-
phase process to ensure it is not only practical but also rigorous
for analyzing formal software specifications in PrT nets. In the
first phase, a PrT net model is analyzed using model based
testing techniques including simulation, verification and testing
with tool MISTA. Then the important properties defined in
temporal logic formulas for the PrT net model is further
checked using model checking techniques with symbolic model
checking tool NuSMV to ensure the correctness of the model.
The errors found in the first phase and the counter examples
generated in the second phase can help developers to find
problems in the model. The analysis process is illustrated by
analyzing an ABP model in PrT nets. We created two versions
of PrT net model for ABP, but one of them has some issues.
The issues had not been found during the model checking
phase, but they had been easily detected during model-based

testing phase. In addition, we also discussed how to use the
model-based testing and model checking results to create a
correct model. The analysis results have demonstrated the
effectiveness of the approach. In the future, we are going to
investigate rules on guiding model checking with model-based
testing results and on directing model-based testing with model
checking results. We also plan to develop a guideline for
splitting analysis tasks in model based testing phase and model
checking phase.

ACKNOWLEDGMENTS

This work has been partially supported by NSF REU award
No. 1262933, and 2012 Open Fund of State Key Laboratory for
Novel Software Technology at Nanjing University.

REFERENCES

[1] R. Allen, D. Garlan. “A formal basis for architectural connection.” ACM
TOSEM 6 (3), 213–249, 1997.

[2] E. M. Clarke, O. Grumberg, D. Peleg. “Model Checking.” The MIT
Press, 1999.

[3] J. Ding, X. He. “Formal Specification and Analysis of an Agent-Based
Medical Image Processing System.” Intl. Journal of SEKE, Vol. 20, No.
3, pp. 1 – 35, 2010.

[4] J. W. Duran, S. C. Ntafos, "An Evaluation of Random Testing", IEEE
TSE, Vol. SE-10, No. 4, pp438-443, July 1984.

[5] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “Formally Specifying and
Analyzing Software Architectural Specifications Using SAM”, Journal
of Systems and Software, vol.71, no.1-2, pp.11-29, 2004, 1994.

[6] P. Inverardi, A. Wolf. “Formal specification and analysis of software
architectures using the chemical abstract machine model.” IEEE TSE, 21
(4), 373–386, 1995.

[7] D. C. Luckham, J. Kenney, et al. “Specification and analysis of system
architecture using rapide.” IEEE TSE 21 (4), 336–355, 1995.

[8] L. Lamport, “The temporal logic of actions.” ACM Transactions on
Programming Languages and Systems 16 (3), 872–923.

[9] N. Medvidovic, R. Taylor, 2000. “A classification and comparison
framework for software architecture description languages”. IEEE TSE
26 (1), 70–93, 2000.

[10] T. Murata, “Petri nets: properties, analysis and applications.”
Proceedings of the IEEE 77 (4), 541–580, 1989.

[11] NuSMV, http://nusmv.fbk.eu/, last accessed, March 2013.
[12] D. Richardson, A. Wolf. “Software testing at the architectural level.” In:

Proc. of the 2nd Intl. Soft. Architecture Workshop. pp. 68–71, 1996.
[13] L. Shan, and H. Zhu, “Generating Structually Complex Test Cases By

Data Mutation: A Case Study of Testing An Automated Modelling
Tool”. The Computer Journal, Vol. 52, No. 5, 2009.

[14] D. Xu, “A Tool for Automated Test Code Generation from High-Level
Petri Nets”. 32nd Int. Conf. on Apps. and Theory of Petri Nets ,
Newcastle, UK, June 20-24, 2011.

[15] D. Xu, D., K. E. Nygard, “Threat-Driven Modeling and Verification of
Secure Software Using Aspect-Oriented Petri Nets”. IEEE TSE. 32(4),
265–278, 2006.

[16] D. Xu, J. Ding, “Prioritizing State-Based Aspect Tests”. Proc. of ICST
2010, pp. 265-274, Paris, France, 2010.

[17] D. Xu, R. A. Volz, T. R. Ioerger, J. Yen, “Modeling and Analyzing
Multi-Agent Behaviors Using Predicate/Transition Nets”. International
Journal of Software Engineering and Knowledge Engineering 13(1),
103–124, 2003.

[18] H. Zhu, and X. He, “A methodology of testing high-level petri nets”.
Journal of Information and Software Technology. v44, pp. 473-489,
2002.

417

Abstract—Lately, a revolutionary method to synthesize
maximally permissive with fewest monitors has emerged. It relies
on reachability analysis to find minimal sets of legal and forbidden
markings. A number of linear constraints are constructed to forbid
all forbidden markings in the set, while guaranteeing all legal
markings reachable by solving an integer linear programming
problem (ILPP). Due to the state explosion problem, it cannot
handle very large systems. We propose earlier a method without
reachability analysis and minimal siphon extraction; hence it is
scalable to large systems. This paper illustrates such by applying
the method to very large k-th order systems.
Index Terms: Petri net, flexible manufacturing system (FMS),
deadlock prevention.

I. INTRODUCTION

ETRI nets have been popular [1, 4, 10] in modelling parallel
programs, flexible manufacturing systems (FMS), etc. The

fierce competition toward resources (such as data locks,
machines, robots, machines, etc) leads to deadlocks, thwarting
the usage of multiple processors and concurrent programming
paradigm.

Traditional optimal design [5,10] of a liveness- enforcing
supervisor strives for efficient computation, least cost, and
maximally permissiveness, but not concerning with minimal
structure complexity of employing fewest monitors.

Later on, Chen et al. [8] pioneer a linear programming
method (ILP) to allow a plant to forbid as many FBM (first met
bad markings) as possible to achieve the minimal configuration
or least structure complexity among all former approaches.
Cordone et al. [13] speeds up the method in [8] by the strategy
of branch-and-bound. Nazeem et al. [12] revise some linear
constraints in the iteration-based heuristic by replacing the
notorious big M with n and adding a small positive parameter .

We [7] discover that a single called unmarked pattern (UP)
of distribution of tokens in unmarked siphons unify all different
types of critical siphons. We propose a method to merge several
monitors into a single one while not losing states. It solves a
linear set of equations, resulting in some formula of some
parameters of the monitors of the controlled net. The total time
complexity is linear to the size of the net compared with the
exponential one of the current most advanced approaches. It
achieves the same best results in the literature while avoiding
the time-consuming reachability analysis and complete siphon
computation which does not scale well with the size of the nets.

This paper illustrates the above claim by applying the
proposed method to a k-th order system (a special case of
Gadara net employed by Nazeem et al. [11] in their approach),

Daniel Yuh Chao & T. H. Yu are with the Department of Management and
Information Systems, National ChengChi University, Taipei 116, Taiwan,
Republic of China. (e-mail: yuhyaw@ gmail.com.)

where MIP (mixed integer programming) [3] is employed and
hence cannot handle very large Gadara net.

Figure 1: The controlled model of a 3-rd order system (when a = b = c = 1). S1
={p3, p6, p9, p10}, S2 = {p4, p7, p10, p11}, S3={p4, p6, p9, p10, p11}, and S4 ={p12, p13,
p3, p7}.
Definition 1 A k-th order system is a subclass of S3PR (systems
of simple sequential process with resources) [9] with k
resource places r1 , r2, … , rk shared between two processes N1
and N2.

 M0(r1) = M0(r2)=…M0(rk) = 1.
N1 (resp. N2) uses r1, r2, … , rk (resp. rk, rk-1, … , r1) in that
order.

Each of N1 and N2 is an elementary circuit.
The net in Fig. 1 is an example of controlled 3-rd order

system. After removing all dashed objects (controlled arcs and
places) from the net, it is a 3-rd order system. In the sequel, all
the nets referred to are S3PR. In [1], we show that an SMS
(strict minimal siphons) in an S3PR can be synthesized from a
strongly connected circuit; such a circuit is called a core circuit.
Definition 2 An elementary resource circuit is called a basic
circuit, denoted by cb. The siphon constructed from cb is called
a basic siphon. A n-compound circuit c is a circuit consisting of
multiply interconnected elementary circuits cb1, cb2 ,…, cbn

extending between two processes and cbi cbj iff j = i+1, i =
1, 2, …, n-1. c = cb1 cb2 … cbn-1 cbn if cbi cbj ={ri}, ri PR;
i.e., cbi and cbi+1 intersects at a resource place ri. The SMS S
synthesized from compound circuit c using the
Handle-Construction Procedure in [1] is S = S1 S2 … Sn-1

Sn, where Si is the basic siphon synthesized from
ibc . Each

siphon S* such that [S*] [B] is called an n-dependent one,
where B = S1 or Sn and S*

R = R(S0) (the set of resource places in
S0). The set of n-dependent siphons is denoted as £(S0). An SMS
may contain both control and resource places; such an SMS is
called a mixture siphon. If a n-dependent siphon S* is a

A Best Method to Synthesize Very Large K-th Order Systems without Reachability Analysis
Daniel Yuh Chao & T. H. Yu

Department of Management and Information Science
National Cheng Chi University, Taipei, Taiwan, ROC

e-mail: yuhyaw@gmail.com; Phone: 886-2-29387694; Fax: 886-2-29393754

P

418

compound (resp. mixture) one, then S* is called a n-compound
(resp. n-mixture) siphon. The monitor for S* (resp. Si) is called
an n-monitor (resp. 1-monitor).

II. CRITICAL SIPHONS

We [14] propose to optimize the number of monitors (good
states as well) if one adds monitors in the normal sequence of
basic, compound, control, and other types of siphons. It is
shown that among all 2-dependent siphons (depending on two
component siphons), only one (called critical) siphon needs to
be controlled by adding a monitor. This avoids redundant
monitors and the unnecessary associated computational burden.
Neither reachability graph nor minimal siphon needs to be
computed achieving polynomial complexity-essential for large
systems. As a result, there is no need to enumerate all siphons
and the time complexity involved is polynomial.

We extend the result to n-dependent siphons with n > 2. It
shows that in the set B of n-dependent siphons, there is only one
emptiable (called critical) siphon (analyzed to be the one with
the minimal number of tokens in the unmarked set of operations
places) needs to be controlled while the rest of siphons are also
controlled accordingly.
Definition 3 Let S0 = S1 S2 … Sn-1 Sn be a compound siphon.
The token distribution (called unmarked) pattern M is as
follows: (1) For each singular place ri, M(ri) = 1, M(H(ri)
[S0]) = 0; and (2) For other r in S0, M(r) = 0, M(H(r) [S0]
(V)) = M0(r),where H(r) is the set of holder places of r (places

that use r) and V is a monitor or control place. The unmarked
n-dependent siphon S with the above unmarked pattern (UP) is
called a critical siphon.
Theorem 1 [7] 1) Once the critical siphon S for M in Def. 3 is
controlled, so are the rest of siphons S with M([S] M([S]) in
£(S0), and

2) when S is unmarked, M([S]) = M0(R(S0)) , where is
the number of singular places and R(S0) the set of resource
places in S0.

In Fig. 1, there are 3 SMS: S1= {p9, p10, p3, p6}, S2 = {p10, p11,
p4, p7}, R(S1)={p9, p10},R(S2)= {p10, p11}, S0 = S3 ={p9, p10, p6,

p11, p4}. R(S3)= {p9, p10, p11} R(S3) = R(S1) R(S2). S1 and S2
(resp. S0) are basic (resp. compound) siphons; both are
optimally controlled since M(VS1) = M(p12) = a + b 1 and
M(VS2) = M(p13) = b + c 1. M(S0) = a + b + c. S3 is
optimally-controlled (no need for control elements) iff
b=M(S1 S2) = M(p10) = 1 explained as follows:

If b > 1, S3 can become unmarked when the tokens at each
resource place are trapped in [S3]; i.e., M(p9) = M(p10) =
M(p11)=0, M(p3)>0 (S1 is controlled) and M(p7) >0 (S2 is
controlled), M(p2) = M0(p9), and M(p7) = M0(p10). We need to
add control elements for S3 to be optimally-controlled. Note that
in this case, all resource places are unmarked and
Mmax([S])=M0(R(S)) , with =0 consistent with Theorem 1.2.
A monitor V is added so that [V]=[S] and M(V) = M(R(S)) 1=a
+ b + c 1. This token distribution pattern in [S] is consistent
with Theorem 1. The 2-control or 2-mixture siphon does not
have such unmarked patterns and hence is not a critical one.

If b = 1, then M(VS1) = M(p12) = a and M(VS2) = M(p13) = c and
the control siphon S4 ={p12, p13, p3, p7} ([S4]={p2, p8}) generated
by circuit [p12t7p13t2p12] in Fig. 1 can be emptied when all

tokens in M(VS1) and M(VS2) sink to p2 and p8, respectively.
Thus, to avoid empty S4, we need to add control elements for S4.
This precludes S3 from becoming unmarked [i.e., M(p9) = M(p10)
= M(p11)=0, M(p3)=1 or M(p7)=1], then S1 or S2 is unmarked
against the fact that both are controlled.

Thus, S3 can never become unmarked if b = M(p10)=1. Also,
M(S1) = M(S2)=1 and both S1 and S2 remain controlled since
M(p10) = M0(p10)=1. All the rest of resource places are
unmarked to have all their tokens trapped in [S3] and Mmax([S3])
= M(R(S3)) 1 = M(R(S)) = a + c 1 with =1 consistent
with Theorem 1. This token distribution pattern in [S] is
consistent with Theorem 1. and Def. 3. The 2-compound or
2-mixture siphon does not have such an unmarked pattern and
hence is not a critical one.

On the other hand, if b > 1, one need not add control elements
for S4 to be controlled, since to empty S4, a and (b-1)>0 tokens
of M0(VS1) = a + b 1 must go to p2 and p7 respectively. Hence,
M(p7) = b 1 > 0 and M(S4) M(p7) > 0 and S4 can never be
emptied.

Please refer to [14] for critical siphons that are neither
control nor compound siphons.

III. CONTROL POLICY

This section reviews the control policy in [8]. Similar to [8],
only the tokens in operation places are considered to obtain a PI
to prevent an FBM from being reached since all places in [S]
are operation ones. By controlling the maximal amount of
tokens in these operation places, S can never become empty of
tokens. Following that in [8], NA is defined as NA = {i|pi PA},
where PA is the set of operation places. Thus, the relations
between different markings are simplified to study the number
of tokens in these operation places.

To forbid an FBM M , the plant is enforced to satisfy the
following P-invriant con straint:

(G(M
i NA

li· i) , i= M(pi) (1)

Where
=

i NA
li·M (pi)) 1 (2)

Constraint (1) is called the forbidding condition.
For maximally permissive control purpose, all legal

markings should be kept after a control place is added. To
ensure that every live marking M cannot be prevented from
being reached, coefficients li (i NA) should satisfy

i NA
li·M (pi)) , M ML (3)

where ML is the set of all legal markings. Constraint (3)
determines the feasible values for coefficients li (i NA). Thus,
for an FBM M, if coeffcients li (i NA) satisfy Constraint (3), a
PI designed for Constraint (1) can guarantee the reachability of
all the legal markings and forbid M. Therefore, a control place
computed for the PI can ensure all the legal markings be
reached. In this case, the control place is said to be optimal. By
setting

i NA
li· i)= , all M

i NA
li· i) are forbidden

too. This allows us to solve equations rather than inequalities.
Alternatively, one can assign a monitor to each critical siphon
and merge monitors as many as possible.

419

 Figure 2: Petri net model of an FMS.

Chen et al. [8] pioneer a technique to reduce the computation
burden by considering only a minimal covering set of legal
markings and a minimal covered set of FBM via a vector
covering approach. Similarly, one can select only one critical
FBM M =M*

F (S) among those associated with a critical siphon
S such that once M is forbidden, so are all the FBM related to S
(denoted by MF(Si)). One can also choose one critical live
marking M*

L(Sa, Sb) such that once M*
L(Sa, Sb) is not forbidden,

so are all the legal markings related to Sa and Sb (denoted by
£(Sa; Sb), which carries a different meaning than £(S0), the set of
set of n-dependent siphons derived from S0 defined in Def. 2).
Theorem 2 Let Va and Vb be two monitors added to control Sa
and Sb, respectively and M*

F (Si) (resp. M*
L (Sa, Sb)), the critical

FBM (resp. legal) defined above. Let L (li =0, pi [Sa] [Sb])
be the solution to the following equations.

L· M*
F (Si) = + 1= k, i = a, b, and (4)
L · M*

L(Sa, Sb)= = k 1. (5)
Then the PI

L · M M R(N,M0), (6)
does not forbid any live state and controls both Sa and Sb; that
is, Va and Vb can be merged into a single monitor.

This theorem allows to find the PI constraint by solving a set
of linear first order equations.

Example 1: In Fig. 1, S1 = {p3, p7, p9, p10} ([S1] = {p2,p6}), S2
= {p4, p6, p10, p11} ([S2] = {p3,p5}), and Control siphon S3 =
{V1(p12), p4, V2(p13), p7} ([S3] = {p2,p5}) is synthesized from
Control circuit [t2p12t7p13] where all places are monitor ones.
Control siphon S3 is a critical one (since S1 S2={p10} and
M0(p10) =1 based on the theory in [18]) in the sense that once S3
is controlled, S4 and the rest of siphons containing at least one
of V1 and V2 is also controlled.

Considering merging V1 and V3 (monitors for S1 and S3,
respectively) where [S1] [S3] ={p2 . [S] = [S1] [S3] =
{p2, p5, p6}. Hence, the constraint to control both S1 and S3 is: l2

2 + l5· 5+ l6· 6 < + 1=k, li = 0, pi [S]. S1 (resp. S3) is
unmarked at M1 = p2 + p6 (resp. M3 = p2 + p5), and M* = p5 +
p6=Md - p2 is a live marking since M*(S1) = M*(S3) = M*(S) = 1
where Md=p5 + p6 + p2 (=M in Eq. (2)) is an FBM to be
forbidden, Md(S) = 0. We have

l2 + l6 = k; (to forbid M3), and l5 + l6 = k 1
(to not forbid M*)

Solving the above two equations, we have l2 = 2; l5 = l6 = 1; k
= 3, and the constraint that controls the two siphons is

2 + 5 + 6 (7)
By Theorem 2 in [6], VS1 and VS2 cannot be merged (since [S1]

[S2] =). Thus, a separate monitor must be added for S2.
The resulting controlled model is shown in Fig. 1 and

maximally permissive.

IV. SUPERVISOR CONTROL

First, it is easy to see that a k-th order system is a special case of
-S3PR (defined below) and the initial markings of resource

places is one (Fig. 2a).
Definition 3 [6] An -S3PR is an S3PR where if any two basic
circuits cb1 and cb2 intersect, they must intersect at a single
resource place r.
The net in Fig. 1 is -S3PR (also a k-th order system, k=3)
defined above.
Theorem 3 [6] The number of monitors for an -S3PR obtained
using the methods in [10] is lower bounded by the number of
basic siphons .
Hence, a minimal configuration of a k-th order system has k
monitors, where k is the total number of basic siphons.

All control siphons are emptiable. There are 4 (k = 4) basic
siphons S1, S2, S3, S4 (Fig. 2a) with monitors VS1 VS2 , VS3 , and
VS4. There is a control circuit (Fig. 2b) containing every two
adjacent monitor places; e.g., VS2 and VS3. The corresponding
2-control siphons are critical ones. Monitors for these 2-control
siphons are shown in Fig. 2c

Again, there is a control circuit (Fig. 2c) containing every
two adjacent monitor places; e.g., V22[M0(V22)=1] and
V23[M0(V23)=2]. The resulting 3-control siphon is emptiable and
critical since the unmarked pattern is M(p8) = M(p13) = 0 and
M(p9) = M(p10) = 1.Monitor V32 is added with M0(V32)=2 and
[V32]={p2, p 6} as shown in Fig. 2d. Similar conclusion applies
to other level control or monitor places shown in Figs. 2d. and
2e, respectively.

In general, there are n basic siphons S1, S2, … , Sn (Fig. 2a),
n-1 2-control siphons V11 V12, V12 V13, … , V1(n 1) V1(n) (Fig.
2b), n-2 3-control siphons V21 V22, V22 V23 , … , V2(n 2) V2(n 1)

420

(Fig. 2c), … 1 n-compound siphon V(n 1)1 V(n 1)2 (Fig. 2d),
where Vij is the jth monitor in Level i. The total number of
emptiable siphons or monitors is also n + (n 1) + (n 2) + …
+ 1 = n(n + 1)/2. Based on Theorem 3, the minimal
configuration employs n monitors.

These monitors can be grouped into the following n sets and
each set can be merged into one monitor.

1. V1, V11, V12, V13, …, V1(n 1), V1(n) (n monitors),
2. V2, V21, V22, V23, …, V2(n 1), V2(n) (n-1 monitors),
3. V3, V31, V32, V33, …, V3(n 1), V3(n) (n-2 monitors),
4. …,
5. V(n 1)(n 1), V(n 1)(n) (2 monitors)
6. Vn, (1 monitor)
We now consider merging the first set based on Theorem 2.

The rest can be done similarly. First, the plant is enforced to
satisfy the following P-invariant constraint:

(G(M
i NA1

li· i
i NA2

l i· i , i=M(pi), i=M(p i) (8)

where NAj = {i|pi PAj}, j = 1,2. We are to solve li, l i , and .
L · FBM1 = l1MF (p1) + l 2 MF (p 2) = ,
……
L · FBM2 = l1MF (p1) + l 3 MF (p 3) = ,
L · FBMn = l1MF (p1) + l n+1 MF (p n+1) = , and
L ·ML = l 2ML (p 2) + l 3ML (p 3)+ …+ l n+1 ML (p n+1) = -1,

where pi N1 and p i N2 belong to the holder set of a resource
place r PR. Setting MF(p1) = MF(p 2) = MF(p 3) = … =
MF(p n+1) = 1 and l1 = a, l 2 = b2, l 3 = b3, …, l n+1 = bn+1, we have

a + b2 = ,
a + b3 = ,

……
a + bn+1 = , and
b2 + b3 + … + bn+1 = 1.

Solving the above equations, we have
b2 = b3 = … = bn+1 = 1, and a = 1 = n

The resulting constraint is
1 + 2 + 3 + … + n + n+1 n + 1. (9)

When n = 2, we have
a + b2 = ,
a + b3 = , and
b2 + b3 = 1.

Solving the above equations, we have
a = 2 and = 3 and the linear constraint is
2 1 + 2 + 3 3.

When n = 3, we have
b2 + b3 + b4 = 1; b4 is added to the left side compared with

the case of n = 3. Hence, is increased by one (to 4 from 3), so
is a based on the equation a + b2 = .
Similarly, for the second set, we have
(n 1) 2 + 3 + 4 + … + n-1 + n n.
Clearly, the time complexity involved is O(n), where n is the

total number of basic siphons. This is much faster than the
exponential amount of time to solve the ILP problem for the
current most advanced approaches.

V.CONCLUSIONS

We have illustrated a simple method to synthesize
supervisors for very large k-th order system which overcome
the state explosion problem involved in the reachability

analysis. Our method first identifies all critical siphons
(inferring from patterns M of unmarked siphons and the derived
markings necessarily evolving into M) and the associated
monitors. Second, we merge as many monitors as possible
without losing any legal states. For k-th order systems, this
amounts to solving a set of linear equation. The time
complexity is linear to the basic circuits (or elementary circuits
containing only resource places), much faster than the
exponential time for solving integer linear programming
problems.

REFERENCES
[1] D. Y. Chao, “Computation of elementary siphons in Petri nets for

deadlock control,” Computer Journal, (British Computer Society), vol.
49, no. 4, pp. 470-479, 2006.

[2] D. Y. Chao, “An incremental approach to extract minimal bad siphons,”
Journal of Information Science and Engineering, vol. 23, no. 1, pp.
203-214, Jan. 2007.

[3] D. Y. Chao, “Technical Note - MIP iteration -reductions for deadlock
prevention of flexible manufacturing systems,” International Journal of
Advanced Manufacturing Technology, vol. 41, no. 3, pp. 343-346. 2009,
doi:10.1007/ s00170-008-1473-x.

[4] Chao, D. Y., “Improved controllability test for dependent siphons in
S3PR based on elementary siphons,” Asian Journal of Control, vol. 12,
no. 3, pp. 377-391, doi:10.1002/asjc.217, 2010.

[5] D. Y. Chao, “Improvement of suboptimal siphon- and FBM-based control
model of a well-known S3PR,” IEEE Transactions on Automation
Science and Engineering, vol. 8, no. 2, pp. 404-411, 2011.

[6] Daniel Yuh Chao, “On the Lower Bounds of Monitor Solutions of
Maximally Permissive Supervisors for A Subclass S3PR of Flexible
Manufacturing Systems,” Interna tional Journal of Systems Science,
DOI:10.1080/00207721.2013.783946, 2013.

[7] Gaiyun Liu, Daniel Yuh Chao, and, Y. F, Fang, “A Control Policy for a
Subclass of Petri Nets without Reachability Analysis,” IET Control
Theory & Applications, 2013, doi: 10.1049/iet-cta.2012.0426.

[8] Y. F. Chen and Z. W. Li, “Design of a maximally permissive
liveness-enforcing supervisor with compressed supervisory structure for
flexible manufacturing systems,” Automatica, vol. 47, no. 5, pp.
1028-1034.

[9] J. Ezpeleta and L. Recalde, “A Deadlock Avoidance Approach for
Non-sequential Resource Allocation Systems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 11,
pp. 173-184, 1995.

[10] H. Hu, M.C. Zhou, Z. W. Li, “Algebraic synthesis of timed supervisor for
automated manufacturing systems using Petri nets,” IEEE Transactions
on Automation Science and Engineering, vol. 7, no. 3, pp. 549-557, July
2010.

[11] Yin Wang, Hongwei Liao, Ahmed Nazeem, Spyros A. Reveliotis,
Terence Kelly, Scott A. Mahlke, and Stephane Lafortune, “Maximally
permissive deadlock avoidance for multithreaded computer programs
(Extended abstract),” IEEE Conference on Automation Science and
Engineering, pp. 37-41 CASE 2009, Bangalore, India, 22-25 August,
2009.

[12] A. Nazeem, S. Reveliotis, “Designing maximally permissive deadlock
avoidance policies for sequential resource allocation systems through
classification theory,” IEEE Conference on Automation Science and
Engineering, pp. 405 - 412, CASE 2011, Tri este, Italy, Aug. 24-27, 2011.

[13] R. Cordone abd L. Piroddi, “Parsimonious monitor control of Petri net
models of flexible manufacturing systems,” IEEE Transactions on
Systems, Man and Cybernetics: Systems, vol. 43, no. 1, pp. 215-221,
2013.

[14] Y. Y. Shih and D. Y. Chao, “Sequence of control in S3PMR,” Computer
Journal, vol. 53, no.10, pp. 1691-1703, 2010.

421

Combining multiple stress identification algorithms
using combinatorial fusion

Yong Deng Zhonghai Wu*

School of Electronic Engineering and Computer Science
Peking University, Beijing, China

dengyong@pku.edu.cn, wuzh@pku.edu.cn,
*corresponding author

D. Frank Hsu*

Department of Computer and Information Science
Fordham University, New York, NY 10023, USA

hsu@cis.fordham.edu

Abstract—Sensor feature selection and combination algorithms
are important in the identification of stress level for human
activities and health. However, performance of each algorithm
may depend on physiological sensors, sensing modalities and
feature selection methods. Based on our previous work on feature
selection and combination, we study combination of five sensor
stress identification algorithms (SIA): C4.5, Naïve Bayes, Linear
Discriminant Function, Support Vector Machine and K Nearest
Neighbors across a variety of feature sets selected by C4.5, PCA,
Correlation-based Feature Selection (CFS) and Diversity-based
Feature Selection (DFS). Our experimental results demonstrate
that combinatorial fusion is a viable method to improve
identification of stress in human activities and health. Moreover,
we observe that the improvement is stronger when the cognitive
diversity between individual algorithms is bigger.(Abstract)

Keywords- Physiological sensor; stress identification algorithm
(SIA); combinatorial fusion, cognitive diversity; feature selection
and combination; combining multiple SIAs formatting (key words)

I. INTRODUCTION
Stress has become more and more pervasive in people’s

daily life and it can have a negative impact on people’s health.
According to the latest stress survey by the American
Psychological Association [2], more than half (56%) of the
Americans reported that stress is a main source of their
personal health problems. Also, more than 94% adults believe
that stress can contribute to the development of major illnesses
such as heart disease, depression and obesity, and that some
types of stress can trigger heart attacks, arrhythmias and even
sudden death, particularly in people who already have
cardiovascular disease (92%).To effectively detecting the
stress of human being in time provides a helpful way for
people to better understand their stress patterns and provides
physicians with more reliable data for intervention and stress
management, which will be much useful for people’s health.

In recent years, identifying the stress of human beings
using multiple physiological sensors has been a hot research
topic. Existing studies ([3, 4, 10, 11, 15, 22, 24]) have shown
that psychosocial stress can be recognized by the physiological
information of human being. The physiological information
can be acquired by biological or physiological sensors, which
usually include: ECG (electrocardiogram), GSR (galvanic skin
response), EMG (electromyogram), and RESP (respiration).

Healey and Picard [11] have conducted studies in stress
detection for real world driving tasks. In their experiment, the

participants first wore 5 sensors: 1 ECG sensor, 1 EMG
sensor, 2 GSR sensors (one for hand and the other for foot),
and 1 RESP sensor. Then they will drive on a fixed route
through downtown Boston covering three different driving
conditions: rest, highway and city road. During their driving,
the signals of the sensors were continually recorded. In the
signal analysis period, a total of 22 features were extracted
from the recorded signals, and Linear Discriminant Function
(LDF) was used as the feature combination method to predict
drivers’ stress level during their driving [10]. Their work did
not include the process of feature selection and combination.

The physiological signal data records used in Healey and
Picard’s experiment were partially published on the website
PHYSIONET [19]. Although the driver dataset did not contain
the complete data of all the drivers in Healey’s experiment, the
data allow others to further explore stress detection. Zhang, et
al. [27] presented a systematic approach using a structurally
learned Bayesian Network to fuse the sensor feature
information and concluded that good correct rate can be
acquired. Although a feature selection approach was
mentioned, neither original data segments from which features
were extracted are mentioned nor were the feature selection
results shown in detail. In the work of [7], PCA method is
applied to do feature selection. Five features are successfully
selected from total 22 features and the sensor number is also
reduced from 5 to 2.

Figure 1 shows a framework of multiple sensor fusion.
First, features were extracted from the raw physiological
sensor data using variant feature extraction techniques. Then
most sensitive features are selected and then the selected
features are combined to identify the stress level. Various
feature selection and combination techniques may be used in
this procedure and different decision results can be acquired
accordingly. Then, various stress identification results are
fused to improve the results of individual stress identification
algorithm. In the paper, we focus on combining decision from
various stress identification algorithms using a recently
developed information fusion paradigm called combinatorial
fusion analysis (CFA) ([12, 13]).

422

Figure 1. Procedure of multiple sensor combination

Combinatorial fusion analysis ([12, 13, 14]) treats each

stress identification algorithm (SIA) as a scoring system A.
Every scoring system A has a score function , which assigns
a score to each stress level, and a rank function derived
from by sorting the score function values. The rank-score
characteristic (RSC) function of A, , is defined to be the
composite function of and the inverse function of . By
harnessing the asymmetry between score function and rank
function, the diversity between two scoring systems A and
B, , is defined to be the difference between the two
RSC functions and .

The organization of this paper is as follows. In section II
we briefly review preliminary work. These include
combinatorial fusion, feature selection algorithms and results,
and feature combination. Using combinatorial fusion to
combine the decisions from various stress identification
algorithms is presented in Section III. Our experiment results
are described in Section IV. Finally, we provide conclusion
and future work of the paper in Section V.

II. PRELIMINARY WORK

A. Combinatorial Fusion
Combinatorial Fusion Analysis (CFA) ([12, 13, 14])

provides a new paradigm of information fusion in analyzing
the combination of multiple scoring systems (MSS). In this
framework, each scoring system contains two functions: a
score function and a rank function. Let D

be a set of candidates, such as
sensor data, genes, documents, image, locations or classes.
Assume A is a scoring system, which contains both a score
function and a rank function on the set D. A Rank-Score
Characteristic (RSC) function can be computed as

, where N={1,2,…,n} and R
is a set of real numbers ([13],[14]).

For a set of p scoring systems on the set D,
two different approaches can be used to combine them: Score
Combination (SC) and Rank Combination (RC) as the
following:

, (1)
, (2)

where d is in D, and and are score function and
rankfunction from D to R and N respectively.

Figure 2. Rank-Score Characteristic (RSC) function[13,14]

For a pair of two scoring systems A and B, the diversity

between A and B, , can be defined between their score
functions, rank functions, or RSC functions as the following:

, and are score functions of A
and B respectively;

, and are rank functions of A and
B respectively;

, and are rank-score characteristic
functions of A and B respectively.

Examples of the first two cases and are
the Pearson correlation and rank correlation respectively. The
third case was defined as cognitive diversity and has
been used in several application domains including information
retrieval, virtual screening, target tracking, protein structure
prediction, identification of degenerate motifs, and combining
multiple ChIP-seq detection systems ([12, 13, 14, 16, 17, 18, 23,
26]).

B. Feature Extraction
Feature extraction has been performed by Healey et al

([10, 11]) and 22 features (See Table I) have been extracted
from the driver stress dataset.

TABLE I 22 features and their corresponding symbols [8]

Sensor Feature Symbol (Feature Name)
EMG A(EMG_mean)

Foot GSR B(FGSR_mean); C(FGSR_std); (Fgsr_Freq);
E(Fgsr_Mag); F(Fgsr_Dur); G(Fgsr_Area)

Hand GSR H(HGSR_mean); I(HGSR_std); J(Hgsr_Freq);
K(Hgsr_Mag); L(Hgsr_Dur); M(Hgsr_Area)

RESP N(Resp_mean); O(Resp_std); P(Resp0~0.1);
Q(Resp0.1~0.2); R(Resp0.2~0.3);
S(Resp0.3~0.4)

ECG T(HR_mean); U(HR_std); V(Ihr_LR)

C. Feature Selection algorithms and results
Feature selection aims to reduce the dimensionality of the

input features and the number of sensors to wear and improve
prediction correct rate. In this paper, we consider results from
previous work on four feature selection algorithms: C4.5
decision tree, principal component analysis (PCA) [7],
correlation-based feature selection (CFS) and diversity based
feature selection (DFS) algorithms [8].

In reference [7], the decision tree is shown for driver
stress condition generated by the C4.5 algorithm using the
open source machine learning and data mining software
WEKA. The five features remaining as the branch node of the
tree are the feature selection result. The results of PCA feature
selection method are also depicted. It can be seen that, the first
component contributes about 80% of the original data set

Identify applicable sponsor/s here. (sponsors)

423

while the second and the third component contributes about 10%
and 7% respectively. All together, the first five components
can contribute to almost 100% of the whole original data set.
Therefore, the strategy is to select the features which have the
highest correlation with these five components.

Reference [8] shows the most significantly correlated
features and the correlation coefficient between the features in
our study. As shown, there are five groups of features (e.g.,
those extracted from RESP, FGSR, and HGSR) representing
five sensing modalities, so that within each group, features are
highly correlated with each other. In this case, maybe only one
feature from each subclass should be considered in the
evaluation. Reference [8] also presents the modalities as well
as the intra&inter modality diversity for the features. The
features are ranked in ascending order of the value of intra
diversity within each modality. The number on the edge of
two feature nodes represents the inter diversity of two features.
For example, the inter diversity between feature A and feature
E is 0.205.

Table II summarizes the initial feature selection results
from this study. Both C4.5 and PCA approaches select five
features while the features are different except FGSR_dur
feature, which is labeled as “F”.

TABLE II Summary of Feature Selection Results [8]

Method
No. of

Feature
Features Selected

C4.5 5 F,K,O,P,U
PCA 5 D,F,G,L,M
CFS1 5 A,E,J,P,T
CFS2 7 A,E,J,K,L,P,T
CFS3 9 A,E,J,K,L,M,P,R,T
CFS4 11 A,D,E,J,K,L,M,P,R,S,T
DFS1 5 A,E,M,P,T
DFS2 7 A,E,K,M,P,Q,T
DFS3 9 A,E,K,L,M,P,R,S,T
DFS4 11 A,D,E,K,L,M,P,Q,R,S,T

D. Feature Combination algorithms and results
Five feature combination algorithms are used: (a) C4.5,

(b) Naïve Bayes, (c) Linear Discriminant Function, (d) SVM,
and (e) k Nearest Neighbors.

Table III in Appendix presents feature combination results
using leaving-one-out cross validation approach. It can be seen
that Naïve Bayes performs best across most of the feature sets
with only four exceptions that C4.5, SVM, k-NN and SVM
perform best or equal to the best on the feature set (5 features)
selected by C4.5 and by PCA, the feature set (7 features)
selected by correlation, and the feature set (9 features) selected
by diversity respectively. It is interesting to note that the
feature combination algorithm C4.5 on the feature set (5
features) selected by C4.5 can achieve the highest result of
86.15%.

III. COMBINATION OF STRESS IDENTIFICATION ALGORITHMS

A. Multiple scoring systems
When a fusion method makes a decision for a group of

feature data, it will calculate the probabilities of this data

group belonging to different classes. The largest probability
will be selected and its corresponding class will be regarded as
the final combination result. We can view this combination
probability distribution generation scheme as a scoring system.
The probabilities that a fusion method calculate are the score
values. Table III gives the corresponding formulas. For every
testing case (a group of feature data), every scoring system
will produce three probability scores, which are the
probabilities the testing case belongs to three different stress
level classes (low level, medium level and high level). The
score formulas for C4.5, SVM, NB and k-NN are based on the
probability distribution function
Classifier::distributionForInstance(Instance inst) of Weka, a
popular machine learning software.

TABLE III. Score formulas for 5 fusion methods

Fusion
Method

Score Formula

C4.5
 is the number of cases belonging to class i on the resulting

leaf node based on the trained tree model. is the total
number of cases belonging to the resulting leaf node based
on the trained tree model.

SVM ,

NB

k-NN

LDF ;
;

The diversity between two algorithms A and B is

defined by the cognitive diversity ([12, 13, 14]).

. is the possible number of
stress levels for the stress identification algorithm. i is the rank
number. and are the score of rank number i for
algorithm A and feature B respectively.

We can use formula (1) to do score combination directly.
In order to do rank combination, firstly we will rank the three
scores that an algorithm produces for a testing case. Our rank
rules are as the following:
1) We sort the normalized n (in our test case, n=3 since there

are totally 3 classes) scores in decreasing order. The rank
value is assigned according to the decreasing value of the
score.

2) For the equal scores, their corresponding rank values
should be equal. We take the average of corresponding
rank values.
For example, if the scores are (0.2, 0.1, 0.7), their

corresponding rank values are (2, 3, 1). If the scores are (0.3,
0.3, 0.4) their corresponding rank values are (2.5, 2.5, 1). After
the rank value assignment, we can then do rank combination

424

using formula (2). The score values for No. t (t=10, 20, 50)
test case of feature set 5_C4.5 are shown in Table IV. The

corresponding Rank Score Graph of Table IV is shown in
Figure3.

TABLE IV Score and Rank value for test case #t (t=10, 20, 50)
Fusion
Method

Value
Type

Test Case #10 Test Case #20 Test Case #50
Low
Level

Middle
Level

High
Level

Low
Level

Middle
Level

High
Level

Low
Level

Middle
Level

High
Level

C4.5 Score 1.00 0.00 0.00 0 0.11 0.89 0.33 0.67 0.00
Rank 1 2.5 2.5 3 2 1 2 1 3

NB Score 0.14 0.10 0.76 0 0.33 0.67 0.08 0.58 0.34
Rank 2 3 1 3 2 1 3 1 2

LDF Score 0.00 0.88 0.12 0 0.36 0.64 0.05 0.00 0.95
Rank 3 1 2 3 2 1 2 3 1

SVM Score 0.00 0.67 0.33 0 0.67 0.33 0.00 0.33 0.67
Rank 3 1 2 3 1 2 3 2 1

k-NN Score 0.015 0.97 0.015 0.015 0.015 0.97 0.015 0.97 0.015
Rank 2.5 1 2.5 2.5 2.5 1 2.5 1 2.5

Test Case 10 Test Case 20 Test Case 50

Figure 3. Rank Score Graph for test case #t (t=10, 20, 50)

B. Combining stress identification algorithms using CFA
We treat each of the five stress identification algorithms

as a scoring system and perform 2-combination, 3-
combination, 4-combination, and 5-combination using
combinatorial fusion analysis. Score combination is to
calculate the average score value of the corresponding class
score values for the selected fusion approach. The class with
the maximum combination score value is the final decision
combination result. Rank combination is to calculate the
average rank value of the corresponding class rank values for
the selected fusion approach. The class with the minimum
combination rank value is the final decision combination
result. For example, if we select the results of C4.5 and NB in
Table IV to do combination. The score combination result is:
(Low, 0), (Middle, 0.22), (High, 0.78). The maximum score
value is 0.78, which belongs to High level class. So score
combination result is: High level. The rank combination result
is: (Low, 3), (Middle, 2), (High, 1). The minimum rank value
is 1, which belongs to High level class. So score combination
result is: High level.

IV. EXPERIMENTAL RESULTS

A. Combination results using CFA
In Figure 4 (see Appendix), the details of combining

stress identification algorithms using combinatorial fusion are
presented. In these figures, the meaning of each of the five
symbols is: A is C4.5, B is NB, C is LDF, D is SVM, and E is
k-NN. For the 5-feature set selected by C4.5, the rank

combination of A and B can result in the highest correct rate
92.31%. The score combination of A and E or A, B, C and D
can also result in the highest correct rate 89.23%.

In Table VI (see Appendix), we can see that combing
multiple stress identification results are better than results from
individual algorithm as compared with Table V. The maximum
decision result for all feature sets is larger than or equal to that
of just feature combination. The best result in decision
combination stage is 92.31%, which is obtained from the 5
features selected by C4.5 in the case of rank combination
(Combining A and B).

B. Comparison of Positive & Negative cases for 2-
combinations

Positive case is that the combination result is correct
while at least one of the two individual prediction result is
false. Negative case is that the combination result is false
while at least one of the two individual prediction result is
correct.

We analyze the positive cases as well as negative cases and
their relation to the corresponding cognitive diversity in the
combination of 2 sensor stress identification algorithms. In
Figure 4 and Figure 5, we can see that overall the number of
positive cases is larger than that of negative cases in each
cognitive diversity band. The ratio of Positive#/Negative#
increases according to the increasing of cognitive diversity.

C. Discussion
Overall, we see that combinatorial fusion of the five

stress identification algorithms on the various feature sets can
have best results equal to or higher than the best of each

425

individual algorithm except for two cases. Each of the two
stress identification algorithms C4.5 and Naïve Bayes on the
two feature sets (both 5 features) selected by C4.5 and by
diversity performs better than any other combinatorial fusion
by rank combination and score combination respectively.
Figure 8 demonstrates that the best result may not be the
combination of more or all individual systems.

Table IV exhibits that C4.5 and Naïve Bayes can acquire
the best result of all the decision fusion when using rank
combination. C4.5 and LDF can acquire the best result of all
the decision results when using score combination. It is
interesting to note that stress identification algorithm C4.5
plays an important role in combinatorial fusion on the feature
sets of 22 features and those selected by C4.5 and PCA. On
the other hand, algorithm NB plays similar vital role in
combinatorial fusion on feature sets selected by correlation
and by diversity. The ratio of Positive#/Negative# increases
according to the increasing of cognitive diversity in case of 2-
combination.

V. CONCLUSION AND REMARKS
In this paper, we showed how to use combinatorial fusion

to fuse various stress identification algorithm results from
physiological sensor information to detect people’s stress
levels. Our experimental results showed that combinatorial
fusion provides a good method to combine sensor information
at the decision level by combining multiple stress
identification algorithms.

As discussed in section IV.C, combinatorial fusion on the
five stress identification algorithms do achieve better results
than each individual algorithm. As also discussed is that C4.5
does not play any role in the best results for combinatorial
fusion on feature sets selected either by correlation or by
diversity except in the case on the feature set (5 features)
selected by correlation. On the other hand, algorithm NB is
instrumental in the best results for 19 out of the total 22
feature sets (see last two column or Table VI). This is due to
the fact that algorithm NB performs the best on 9 out of the 11
feature sets (see also last two column of Table III).

Comparing last two columns between Table III and Table
VI, we see that combinatorial fusion produces better results
than each individual algorithm in 8 out of 11 feature sets and
has equal result as the best individual algorithm in the
remaining 3 feature sets. These 3 feature sets are selected by
PCA (5 features), diversity (DFS 1 with 5 features) and
diversity (DFS 2 with 7 features) with individual best
algorithms by SVM, NB and NB respectively. More
significantly, the power of combinatorial fusion is reflected in
the combination of C4.5 with each of k-NN and NB to achieve
correct rate of 89.23% and 92.31% which is higher than the
best correct rate of each individual algorithm 86.15% by
algorithm C4.5. These improvements can be attributed to be
the cognitive diversity as demonstrated in Figure 9 and Figure
10.

One of our long term goals is to estimate the performance
of the combined algorithm P(** C) in terms of the average
performance of individual stress algorithms P(to the BAR)

and average diversity D(to the bar). In this regard, Chung et al
[5,6] have obtained general results with respect to multiple
classifier systems.

ACKNOWLEDGMENT

This research is supported by the State Key Program of
National Natural Science of China (Grant No. 61232005) and
National Science and Technology Major Project (No:
2012ZX03002022).

REFERENCES
[1] A. Akbas, Evaluation of the physiological data indicating the dynamic

stress level of drivers. Scientific Research and Essays 6(2) (2011), pp.
430-439.

[2] APA (American Psychological Association), Stress in America: Our
Health at Risk, (2012).URL:
http://www.apa.org/news/press/releases/stress/index.aspx

[3] F. Angus, and J. Zhai, Front-end analog pre-processing for real time
psychophysiological stress measurements, Proceedings of the 9th World
Multi-Conference on Systematics, Cybernetics and Informatics
(WMSCI), (2005), pp. 218-221.

[4] J. Bakker, M. Pechenizkiy and N. Sidorava, What’s your current stress
level? Detection of stress patterns from GSR sensor data, Proceedings of
the11th IEEE International Conference on Data Mining Workshops.

[5] Y. S. Chung, D. F. Hsu, C. Y. Tang: On the Diversity-Performance
Relationship for Majority Voting in Classifier Ensembles. MCS 2007:
407-420

[6] Y. S. Chung, D. F. Hsu, C.Y. Liu, C.Y. Tang: Performance evaluation of
classifier ensembles in terms of diversity and performance of individual
systems. Int. J. Pervasive Computing and Communications 6(4): 373-
403 (2010)

[7] Y. Deng, Z. Wu, C. Chu, and T. Yang, Evaluating Feature Selection for
Stress Identification. International Conference of Information Reuse and
Integration, (2012a), pp. 584-591.

[8] Y. Deng, D. F. Hsu, Z. Wu, C. Chu, Combining Multiple Sensor
Features for Stress Detection using Combinatorial Fusion. Journal of
Interconnection Networks, (2012), Vol 13, Issue 3n04, DOI:
10.1142/S0219265912500089.

[9] R. Duda, P. Hart, and D. Stork, Pattern Classification, (2nd ed.), Wiley
Inter-science (2001).

[10] J. A. Healey, Wearable and automotive systems for affect recognition
from physiology. Doctoral dissertation, Massachusetts Institute of
Technology, MA (2000).

[11] J. A. Healy, and R. W. Picard, Detecting stress during real-world driving
tasks using physiological sensors. IEEE Transaction on Intelligent
Transportation System, 6(2), (2005), pp. 156-166.

[12] D. F. Hsu, and I. Taksa, Comparing rank and score combination methods
for data fusion in information Retrieval, Information Retrieval, 8(3),
(2005), pp. 449-480.

[13] D. F. Hsu, Y. S. Chung and B. S. Kristal, Combinatorial fusion analysis:
methods and practice of combining multiple scoring systems, in: H.H.
Hsu (Ed.), Advanced Data Mining Technologies in Bioinformatics, Idea
Group Inc. (2006), pp. 32-62.

[14] D. F. Hsu, B. S. Kristal, and C. Schweikert, Rank-score characteristic
(RSC) function and cognitive diversity, Brain Informatics, LNAI 6334,
Springer, (2010), pp. 42-54.

[15] E. Jovanov, A. O’Donnell Lords, D. Raskovic, P. G. Cox, R. Adhami,
and F. Andrasik, Stress monitoring using a distributed wireless
intelligent sensor system, IEEE Engineering in Medicine and Biology
Magazine, (2003), Vol. 22, pp. 49-55.

[16] K. L. Lin, C. Y. Lin, C. D. Huang, H. M. Chang, C. Y. Yang, C. T. Lin,
C. Y. Tang, and D.F. Hsu, Feature combination criteria for improving
accuracy in protein structure prediction, IEEE Transaction on
NanoBioscience, 6, (2007), pp. 186-196.

426

[17] D. M. Lyons, D. F. Hsu, Combining multiple scoring systems for target
tracking using rank-score characteristics. Information Fusion, 10(2),
(2009), pp.124-136.

[18] C. H. Peng, J. T. Hsu, Y. S. Chung, Y. J. Lin, W. Y. Chow, D. F. Hsu,
and C. Y. Tang, Identification of degenerate motifs using position
restricted selection and hybrid ranking combination. Nucleic acids
research, 34(22), (2006), pp. 6379-6391.

[19] PHYSIONET, Stress Recognition in Automobile Drivers (drivedb),
(2010), URL: http://physionet.org/cgi-bin/atm/ATM/.

[20] I. Rish, An empirical study of the naive bayes classifier, Proceedings of
IJCAI-01 workshop on Empirical Methods in AI, (2001), pp. 41-46.

[21] S. Ruggier, Efficient C4.5.IEEE Transactions on Knowledge and Data
Engineering, 14(2), (2002), pp. 438-444.

[22] L. Salahuddin and D. Kim, Detection of acute stress by heart rate
variability using a prototype mobile ECG Sensor, International
Conference on Hybrid Information Technology, Proceeding in IEEE CS,
(2006),Vol. 2, pp. 453-459.

[23] C. Schweikert, S. Brown, Z. Tang, P. R. Smith and D. F. Hsu,
Combining multiple ChIP-seq peak detection systems using
combinatorial fusion, BMC Genomics, (2012). (in press)

[24] F. T. Sun, C. Kuo, H. T. Cheng, S. Buthpitiya, P. Collins and M. Griss,
Activity-aware Mental Stress Detection Using Physiological Sensors.
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, (2012), Vol. 76, Part 5, pp. 211-
230, DOI: 10.1007/978-3-642-29336-8_12.

[25] V. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag,
New York, (1995).

[26] J. M. Yang, Y. F. Chen, T. W. Shen, B. S. Kristal and D. F. Hsu,
Consensus scoring criteria for improving enrichment in virtual screen,
Journal of Chemical Information and Modeling, (2005),Vol. 45, no.4,
pp. 1134-1146.

[27] L. Zhang, T. Tamminedi, A. Ganguli, G. Yosiphon, and J. Yadegar,
Hierarchical multiple sensor fusion using structurally learned Bayesian
network, Proceedings of Wireless Health, (2010), pp. 174-183.

VI. APPENDIX
TABLE V Feature combination results for C4.5, NB, LDF, SVM, and k-NN[8]

Feature Set Feature Combination Results (%)
C4.5 NB LDF SVM k-NN Best result Algorithm

22_Full 72.31 75.38 70.77 70.77 64.62 75.38 NB
5_C4.5 86.15 80 75.38 72.30 72.31 86.15 C4.5
5_PCA 58.46 67.69 64.62 78.46 72.31 78.46 SVM
CFS1

(5 features)
69.23 69.23 67.69 56.92 64.62 69.23 C4.5, NB

CFS2
(7 features)

63.08 75.38 66.15 67.69 75.38 75.38 NB, k-NN

CFS3
(9 features)

64.62 78.46 66.15 72.31 69.23 78.46 NB

CFS4
(11 features)

63.08 75.38 69.23 72.31 70.77 75.38 NB

DFS1
(5 features)

61.54 73.85 70.77 67.69 61.54 73.85 NB

DFS2
(7 features)

60 72.31 66.15 63.08 63.08 72.31 NB

DFS3
(9 features)

53.85 70.77 69.23 73.85 69.23 73.85 SVM

DFS4
(11 features)

66.15 78.46 73.85 70.77 70.77 78.46 NB

Average 64.616 74.153 68.922 69.538 68.924 74.153 NB

Figure 4a. CFA results on 22-feature set Figure 4b. CFA results on feature set selected by C4.5 with 5 features

Figure 4c. CFA results on feature set selected by PCA with 5 features

427

CFA results on 5 features CFA results on 7 features

CFA results on 9 features CFA results on 11 features

Figure4d. CFA results on feature sets selected by CFS with 5 features, 7 features, 9 features, and 11 features

CFA results on 5 features CFA results on 7 features

CFA results on 9 features CFA results on 11 features

Figure 4e. CFA results on feature sets selected by DFS with 5 features, 7 features, 9 features, and 11 features
Figure 4. CFA results on the full 22-feature set (Figure 4a), 5-feature set selected by C4.5(Figure 4b) and by PCA(Figure 4c), and feature sets with 5,7,9 and 11

features respectively selected by CFS(Figure 4d) and by DFS(Figure 4e)

2-comb on full 22-feature set The Ratio of Positive#/Negative# 2-comb on C4.5 5-feature set The Ratio of Positive#/Negative#

Figure 5a. 2-comb on full 22-feature set Figure 5b. 2-comb on C4.5 5-feature set

2-comb on PCA 5-feature set The Ratio of Positive#/Negative# 2-comb on CFS feature sets The Ratio of Positive#/Negative#

Figure 5c. 2-comb on PCA 5-feature set Figure 5d. 2-comb on CFS feature sets

428

2-comb on DFS feature sets The Ratio of Positive#/Negative#

Figure 5e. 2-comb on DFS feature sets (*with 32 cases removed for the reason of 3 equal values)
Figure 5. Comparison of positive vs negative cases for 2-comb on full 22-feature set (Figure 5a), on C4.5 5-feature set (Figure 5b), on PCA 5-feature set
(Figure 5c), on CFS feature sets (Figure 5d) and on DFS feature sets (Figure 5e). Cognitive diversity between tow systems is depicted as x-coordinate.

2-comb on all feature sets The Ratio of Positive#/Negative#
Figure 6. Comparison of positive vs negative cases for 2-comb on all feature sets

TABLE VI. Combinatorial fusion results on t stress identification algorithms, t=2,3,4, and 5.

*A: C4.5, B: Naïve Bayes, C: Linear Discriminant Function, D: SVM, E: k Nearest Neighbors

429

eDOTS 2.0: A Pervasive Indoor Tracking System

Ryan Rybarczyk, Rajeev Raje, Mihran Tuceryan
Department of Computer and Information Science
Indiana University Purdue University Indianapolis

Indianapolis, Indiana USA
{rrybarcz, rraje, tuceryan}@cs.iupui.edu

Abstract— Designing tracking systems that cover large indoor
areas and encompass different sensor modalities pose many
significant challenges such as multi-sensor data fusion,
coordinate system handoff and associated transformations. In
this paper, we present the design and implementation of a
prototypical system that effectively tackles these challenges.
The proposed system is empirically validated in a laboratory
setup and results of these experiments are also presented in
this paper.

Keywords-pervasive tracking, indoor tracking systems, multi-
sensor data fusion, heterogenous tracking, sensor subset
selection

I. INTRODUCTION
Indoor tracking is of critical importance in many

futuristic application domains such as personalized health
care setups in homes and assisted living centers. Typically,
these application surroundings will contain deployments of
multiple types of sensors (e.g., vision-based, Wi-Fi, etc.),
each possessing different characteristics. Multiple types of
sensors are necessary in these setups as each type may
complement others, may provide a better coverage of a large
indoor area, and overcome partial failure of sensors.
Designing an effective pervasive indoor tracking system in
such heterogeneous sensor-based setups requires tackling of
following scientific challenges: a) the fusion of different
types of location data obtained from various sensor
modalities, b) a seamless handoff between different
coordinate systems and associated transformations, and c)
the dynamic nature of the indoor setup. This paper tackles
the first two challenges, while the third challenge is
considered as future work. Hence, specific contributions of
this paper are: a) a development of effective techniques to
tackle the first two challenges, and b) an empirical validation
of these solutions by creating a prototypical system. The
prototypical system is called the eDOTS (Enhanced
Distributed Object System) 2.0 and it is an improved version
of a preliminary prototype called eDOTS 1.0.

II. ENHANCING AN INDOOR TRACKING SYSTEM
The eDOTS 1.0 [9,17,18] was developed in an effort to

provide an indoor tracking framework made up of one type
of sensors, specifically, vision-based sensors. This
framework utilized web cameras and the ARToolkit API
[7,12,14] for the ability to track marker patterns. The eDOTS
1.0 made use of various data fusion techniques (e.g.,
averaging, Kalman filtering, etc.) to provide an estimate of
an object’s location from different location readings. Due to

the stringent time sensitive requirements of data fusion, the
underlying issue of clock synchronization was also addressed
in the prototype. More information regarding the eDOTS 1.0
can be found in [9,17,18], however, its architecture is briefly
described below to provide a basis for the discussion of the
eDOTS 2.0.

The design of the eDOTS 1.0 is made up of three
separate layers: Sensor, Middleware, and User Interface. The
sensor layer is responsible for providing a software
abstraction of the underlying physical sensor in the form of a
sensor service. The Middleware layer contains discovery and
the filter services that are responsible for locating available
sensor services and communication between the sensor
services and the user interface. The user interface layer is
responsible for providing a graphical interface to the
observer (i.e., entity interested in tracking an object of
interest) as well as communicating with the middleware
layer in order to retrieve data related to the tracking of an
object. The design of the eDOTS 2.0 reused some
components of the eDOTS 1.0 and enhanced the remaining
components. Figure 1 indicates the components that were
modified between version 1.0 and 2.0 of the eDOTS and
Figure 2 presents the sequence of activities occurring in the
eDOTS 2.0. A discussion of various components of eDOTS
2.0 is presented in next few subsections.

Figure 1. eDOTS 2.0 Enhancements

430

Figure 2. eDOTS 2.0 Tracking Overview

A. Multi-Sensor Data Fusion
Data fusion is defined as the process of combining a

collection of data results in an effort to present a single
representation of the data [21]. This process requires
identifying and merging data readings from a set of sensors,
within a given time frame, that are currently tracking an
object. Unlike the homogeneous sensor situation, the data
fusion in a multi-modal scenario has to tackle several
formats (e.g., varying degrees of freedom associated with
different classes of sensors). The data fusion process in the
eDOTS 2.0 begins when the Tracking Client (see Figure 2)
issues a request, on behalf of a user, for an object to be
tracked. This request is handled by the Filter Service. The
Filter Service is responsible for collecting data from various
sensors that are able to locate the object, pass this data set to
the Fusion Service, and then relay the fused result obtained
from the Fusion Service back to the Tracking Client. This
combining of data, carried out by the Fusion Service, can
either be through simple averaging of the data estimations
provided by different sensors or the use of more complex
methods such as a Kalman-based technique [5,23]. This
result provided to the Tracking Client by the Filter Service is
in the form of a tuple representing the X, Y, and Z
coordinates of the object and an associated time-stamp. This
result then can be graphically displayed to the user.

One implicit challenge in the fusion process is the
problem of subset selection – i.e., identifying a subset of
sensors out of the ones that are able to track the object at a
time instant. Once this subset is selected, the next task is to
tackle the heterogeneity (e.g., THE NUMBER OF degrees of
freedom) associated with the data readings of the selected
sensors. There are many possible approaches to the subset
selection problem – three alternatives are described below.

The first alternative is to take all of the data, regardless of
the sensor modality, and send it to the Fusion Service. In this
approach, the Fusion Service is responsible for deciding an
appropriate technique to combine heterogeneous data. The

second alternative is to separate the data by the sensor
modality type prior to sending it to the Fusion Service. In
this method, the Fusion Service can merge the data
belonging to each modality separately. This technique allows
a comparison between the readings provided by various
classes of sensors. This pre-filtering activity is done by the
Filter Service. The third alternative is to allow the Filter
Service to only send those results that meet a specific Quality
of Service (QoS) criterion as set by the Tracking Client. In
this situation, the type of sensor modality is not directly
examined but rather the selection of the data is based upon
the QoS that the particular sensor provides. Similar to the
first alternative, in this approach, the Fusion Service is again
responsible for identifying a proper technique to merge
heterogeneous data. The eDOTS 2.0 uses the third option
(i.e., based on the QoS), as many application domains are
susceptible to specific quality requirements and various
different QoS attributes (e.g., accuracy, lag time, resolution,
etc.) of sensors can be specified and used in the fusion
process. Also, past experiments with the eDOTS 1.0 have
identified the fusion process as the most time-consuming
task if such a QoS-based pruning is not performed [17,18].

TABLE I. PARTIAL KNOWLEDGE BASE – SENSOR CLASS RANKING

The eDOTS 2.0 uses a concept of Knowledgebase (KB),
shown in Figure 1, for storing information about sensor
classes, their dependencies, and the topology of an
environment. A starting point for this KB is to identify
different classes of sensors that are potentially deployed in
each environment. Each of these sensor classes is assigned a
rank based on their typical QoS attributes. For example, as
shown in Table I, Webcams with higher resolutions are
assigned a rank of 1, while the ones with lower resolution are
assigned a rank of 2. As the typical accuracy of Wi-Fi
sensors is lesser than that of any vision-based sensor, the Wi-
Fi class is assigned a rank of 3. Various other classes of
sensors (e.g., RFID), when added to the setup, can be
assigned different ranks similarly. When a sensor instance is
deployed in the indoor setup, it communicates with the
Filtering Service by indicating its QoS attributes. The
Filtering Service then is responsible for assigning an
appropriate membership and hence, a rank for each deployed
instance – a simple algorithm, indicated in Figure 3, can be
used to assign ranks to various sensor instances. The
Filtering Service is also responsible for gathering the
physical locations of deployed sensors and augmenting the
KB with this information. The Filtering Service can also
collect information associated with each sensor instance
based on the results received from that instance. It can use
this information to dynamically change the sensor class
membership and hence, the rank, of each instance during the
life cycle of the eDOTS 2.0.

Sensor Modality Rank

Vision (1) 1

Vision (2) 2

Wi-Fi 3

431

Figure 3. Ranking Algorithm

The KB method described above is a simple first-attempt
at addressing the issues associated with multi-modal tracking
and it is very static. The problems associated with multi-
modal tracking include handling of mismatched quality of
service properties such as different levels of spatial
resolutions, different or mismatched number of degrees of
freedom, and different accuracy characteristics. For example,
in vision-based trackers, even though the spatial resolution
tends to be high, inside-out trackers and outside-in trackers
have very different accuracy characteristics. The inside-out
trackers (i.e., a moving camera looking at statically placed
markers in the tracked space) typically are very accurate in
orientation estimation but not so good at location estimation.
The outside-in trackers (i.e., multiple cameras statically
installed around the tracked space, tracking a moving
marker) are, in contrast, very accurate in location estimation
of the marker and not very accurate in orientation estimation.
Wi-Fi based trackers lack the spatial resolution of vision-
based trackers, but can be more pervasive. The challenge
then is how to optimally utilize the subset selection and the
fusion processes so as to remove the poor performance
aspects of the particular trackers and have them complement
each other to provide a more accurate estimation of the
tracking parameters. In addition, it is desirable to do this in a
dynamic fashion. For example, markers may become
occluded in the camera views in vision-based trackers in
which case, it may be desirable to include less accurate
trackers such as Wi-Fi based trackers to bridge the gap. The
noise characteristics may also vary with time, in which case,
the use of more complex fusion methods such as Kalman
filter or particle filter would be more useful [1]. Utilizing
machine learning techniques may also help with the dynamic
aspect of subset selection [19].

B. Coordinate System Transformations and Handoffs
As any indoor tracking system encompasses sensors that

are geographically dispersed, each of these sensors may have
entirely different coordinate systems which they are utilizing.
For instance, in a typical office building there may be many

rooms on each floor. Each room may consist of a sensor that
may have an established coordinate system for its own
environment. This coordinate system is local to that
particular environment and thus, when an object moves from
one room to another a handoff and associated transformation
must occur between different sensors. To remedy this
problem, the eDOTS 2.0 uses the concept of the Spatial
Relation Graphs (SRG) as introduced in [16]. An example of
when a handoff and coordinate system transformation would
be needed is shown in Figure 4.

In addition to the need for handing off, a multi-modal
sensor-based setup is prone to an additional overhead when
attempting to provide a coordinate system handoff and
transformation between the various sensors. This additional
overhead is due to the fact that different sensor modalities
may have different characteristics, such as different degrees
of freedom, and thus, may need specialized adaptation before
applying the SRG principles as discussed in [17,18]. An
example of a situation in which such adaptation is required
would be if an object leaves the vision-based environment
and enters an adjacent environment that contains Wi-Fi-
based sensors. This handoff is required both due to the
difference between the two coordinate systems that each
sensor type is using and the physical movement from one
environment (such as a room) to another (such as an adjacent
room). In the case of the vision-based environment, a single
sensor can identify an object’s location, whereas in the Wi-Fi
environment, three access points are needed to identify an
object’s position based upon triangulation.

The eDOTS 2.0 borrows the concepts proposed in
[17,18] for the purpose of tracking handoff and
transformation. In the Wi-Fi and Vision infrastructure, as
used in the eDOTS 2.0, the transformation must be adapted
for inclusion of the Wi-Fi component. The adaptation
involves determining the location of the Wi-Fi access points
involved in the tracking process. This information is stored
in the KB when the Wi-Fi Service registers itself for
tracking. We can then use this information along with the
Vision-based information to begin the transformation
process. The Wi-Fi component only provides data for the X
and Y axis in the tracking environment and thus, the
transformation process in this instance only evaluates using
these data readings. Since we now know the estimated
location of the tracking objects position and the physical
location of the various sensors, we can now begin the
transformation process as described in [17,18]. This process
of adapting to a multi-modal sensor environment brings
about the challenges of determining the handoff point and
coordinating the transformation. In the eDOTS 2.0 we
address these issues by using the highest ranked sensor
environment precedence over the lower in determining this
handoff point, thus the highest ranked sensor environment
will dominate tracking and handoff will only occur when that
environment is no longer able to provide tracking estimates.
The information and coordinate information used by this
higher ranked sensor modality will then be used by the lower
ranked modality to perform the coordinate transformation.

432

Figure 4. Coordinate Transformation & Handoff Example

III. EXPERIMENTATION
For an empirical validation, the eDOTS 2.0 is deployed

in an experimental laboratory setup. The eDOTS 2.0
software is developed and run using the Eclipse IDE running
Java 6. The software of the system consists of twenty-five
classes and five interfaces. Software patterns were used in
eDOTS 2.0 with the Adapter pattern [8] being used for the
additional components involved with the Filter Service. JINI
is used as the network architecture of the system for
communication and discovery. The physical infrastructure
includes ten Dell OptiPlex GX620 Pentium 4 machines
running Windows XP SP3 with 1 GB of RAM. Each
machine has two inexpensive webcams (made by Logitech
and Micro Innovations) attached to it – one of the Webcams
is of a better quality than the other. Additional equipment
includes a HP Pavilion dv9000 Centrino Duo machine
running Windows XP SP3 with 2 GB of RAM. These two
devices allow for Wi-Fi tracking abilities for the eDOTS 2.0.
Finally, the existing wireless infrastructure provided by
Indiana University Purdue University Indianapolis (IUPUI)
is used for the purpose of Wi-Fi-based tracking. This
infrastructure consists of numerous access points mounted
throughout the building. Physical measurements were
manually taken of the locations of all stationary devices and
the Wi-Fi access points. These measurements were then used
to compare the accuracy of the results obtained from various
experiments. This information was stored in the KB and
could be accessed by the various sensors to determine their
individual physical location within the setup. As these access
points were physically present before the KB was developed,
gathering this data and providing it in the KB was carried out
as an offline activity. Through the availability of this
information, it allowed for all estimations provided by the
eDOTS 2.0 to be compared to the actual physical manual
measurements.

Two patterns (such as the Hiro pattern shown in Figure
4), and a Wi-Fi enabled device were used as the objects to be
tracked throughout the course of various experiments. The
two tracking patterns were printed on 8.5 x 11 pieces of
white paper and attached to a hard board. These objects
were moved through the environment by an individual that
entered and moved throughout the tracking environment
before exiting. This sample movement was used during our
experimentation and the path and types of movement were
random.

A. Experiments Related to Data Fusion In A Multi-
Modality Environment

Earlier fusion-related experiments using the eDOTS 1.0
are described in [9,17,18]. These earlier experiments with the
eDOTS 1.0 used only Webcams, while the eDOTS 2.0
experimentation utilized the Webcams along with Wi-Fi
sensors.

Experiment 1.1 consisted of moving the Wi-Fi enabled
device throughout the lab and the adjoining hallway and
tracking it only using the Wi-Fi sensors. This experiment
was done over a period of five minutes and was conducted a
total of ten different times. Each time the movement of the
device was random. The estimated tracking error associated
with an object’s position when using the Wi-Fi sensors was
expected to fall somewhere between 1 and 3 meters. This
benchmark was taken from [17,18] with regards to the
typical accuracy of current Wi-Fi based location tracking
applications. The results from the Experiment 1.1 are shown
in Table II. The average error in estimating the position of
the tracked object, for both the X and Y axes, is calculated
by comparing the physical and estimated positions,
determining the error between the two, and then calculating
the mean error of the collected data. These error values seem
to be consistent with the accuracy of similar systems that
provide Wi-Fi only location tracking such as that found in
[17,18]. The average time required to compute the location
of the tracked object using the Wi-Fi sensors was found to be
16 milliseconds. During the course of tracking the Wi-Fi
sensor service interacted with a total of five different access
points with three being required to perform the triangulation
for the position estimate. In these experiments no data
fusion was required since only a single set of tracking
estimates were produced.

TABLE II. RESULTS OF EXPERIMENT 1.1 - AVERAGE ERROR (METERS)

X-Axis Y-Axis

1.01 2.02

Experiment 1.2 was conducted to assess the ability of the

eDOTS 2.0 to handle multi-modal tracking. As the Wi-Fi
sensors only provide 2-dimensional readings, only these
were considered while fusing them with the vision-based
sensor readings. In this experiment simple averaging fusion
was used. Table III shows these results obtained by fusing
data from the Wi-Fi and the Vision sensors.

TABLE III. RESULTS OF EXPERIMENT 1.2 - AVERAGE ERROR (METERS)

X-Axis Y-Axis

1.63 1.50

As shown in Table III, the Wi-Fi sensor dominates the

overall estimation. This is consistent with the results
described in Table II. Experiments 1.1 and 1.2 were both
conducted without the invoking the ranking algorithm of the
eDOTS 2.0. The overhead of this particular experiment was
an additional 33 milliseconds. This overhead takes into
account the additional time required to retrieve the Wi-Fi
data from the tracking sensor as well the process of pruning

433

and streamlining the tracking data. This overhead was found
to be caused in the Filter Service. No additional time
overhead was found in the actual fusion process.

The goal of Experiment 1.3 was to evaluate if the
accuracy in a multi-sensor environment could be improved
through the use of the sensor ranking algorithm, which was
described earlier. As there are two different classes of
Webcams used in the setup, the better Webcam class (i.e.,
having a frame rate of 30 frames/sec and 640x480
resolution) was allocated rank 1, while the second Webcam
class (i.e., having a frame rate of 15 frames/sec and 320x240
resolution) was allocated the rank 2. As the Wi-Fi class
(based on the Experiments 1.1 and 1.2) provided a higher
average tracking error than the Webcam class, the Wi-Fi
class was given a rank of 3. Since this experiment focused
solely on accuracy, timing constraints were not taken into
consideration. Table IV shows the results of this experiment.
It is evident from these results that the ranking algorithm
improves the overall estimation when compared with the
results of the Experiment 1.2. Such an observation is evident
as the sensor selection process, when using the ranking
algorithm, always selects the sensors with the higher rank
and then uses their readings in the fusion process. In this
specific experiment, the Wi-Fi sensors are not selected for
the fusion process due to their lower rank and only the
Webcams are selected.

TABLE IV. RESULTS OF EXPERIMENT 1.3 - AVERAGE ERROR (METERS)

X-Axis Y-Axis

0.90 0.93

B. Experiments Related to the Coordinate System Handoff
& Transformation

Experiment 2.1 was conducted to assess the coordinate
systems handoff and associated transformations provided by
the eDOTS 2.0. This handoff process involves switching
from one coordinate system to another on the fly with a
minimal impact seen by the Tracking Client. For
Experiment 2.1, there were two possible avenues to take in
order to demonstrate handoff – split the existing sensors in
the lab setup into two separate “virtual” environments or to
physically move the object outside of the lab to provide two
physically different environments.

Initially, the lab setup was “virtually” separated into two
different environments by virtue of their coordinate systems
as shown in Figure 5. This meant classifying 10 of the Web
cameras to be members of Environment #1 and remaining 10
Web cameras to be in Environment #2. This particular test
did not include the Wi-Fi sensors in the tracking process.

Using the setup as shown in Figure 5 it was then
necessary to begin the tracking process to validate the
effectiveness of the eDOTS 2.0 to track an object accurately
as it moves from one environment to another.

For Experiment 2.1, the accuracy of the measurements
was compared with the physical measurements of the object.
A final comparison was done by plotting of the data points
using the graphical user interface shown in Figure 5.

Figure 5. Environmental Setup and Coordinate System Handoff

Figure 5 shows the graphical representation of the object as it
moves from one coordinate system to the next. In this
experiment, the object was brought into the environment and
moved in a circular pattern. This movement caused the
object to cross the established boundary between the two
coordinate systems, and thus forcing a handoff and
transformation between the two coordinate systems. The dots
plotted in Figure 5 show the track of the object as it is moved
through the environment.

Experiment 2.2 was conducted in order to examine the
feasibility of handoff between different classes of sensors.
This was achieved by moving from an environment that
made use of the vision-based sensors to an environment that
made use of the Wi-Fi-based sensors. As a result, we found
between 1 and 2 meters of error on both the X and Y axis
when conducting this experiment. The results of this test
were similar to that found with the Wi-Fi experiments
discussed in Experiments 1.1 and 1.2, as the overhead
created when transitioning from a more accurate Vision
based environment to that of a Wi-Fi based environment is
quite high and thus, the accuracy of estimation suffers.

In both experiments, the handoff and transformation from
one system to another introduced an additional error while
estimating the location of the tracked object. This was often
the case from improper sensor readings and the different
capabilities of the sensors used in the experimental setup.
While improper sensor readings are not specific to a
particular sensor modality we found that in the Wi-Fi
scenario the use and discovery of various different access
points could greatly affect the overall accuracy of the
tracking data. In order to examine the accuracy of the
handoff process, all of the estimated location data points
were compared to their actual measurements. Once the
accurate points were identified, the percentage of data points
that were within the expected mean error range (as specified
in [17,18]) were determined. The results of the handoff test
are shown in Table V.

TABLE V. HANDOFF ACCURACY

Total Data Points Accurate Data Points

86 73%

As shown in Table V, the accuracy of the handoff process
was such that 73% of the total number of data points was

434

deemed to be accurate estimations of the object’s location.
Points were determined to be accurate if they fell within the
bounds as indicated by the results of the Experiment 1.2.
This degree of accuracy, or inaccuracy, may or may not be
tolerated based upon the application domain. Future studies
to compare both the data fusion and transformation are
needed.

IV. RELATED WORK
In recent past, many indoor tracking systems have been
proposed, both homogenous [1,2,3,10,20,22,24] and
heterogeneous [6] in nature. The eDOTS 2.0 differs from
these exploratory systems in that it is designed with the goal
of effectively tackling heterogeneity between sensor classes.
We have also focused on the overall accuracy of the system
while attempting to meet real-time constraints of 30
milliseconds. Extensive work has been done in the area of
multi-sensor data fusion, such as [21]. In addition to this
work, studies have also been conducted on the Federated
Kalman Filter and its practical application [3] as it applies to
multi-sensor environments. Klinker et al. at the Technical
University of Munich have studied ubiquitous tracking in
distributed environments [4,11,13,16]. Our work is an
extension of this approach, as we have applied these various
techniques for the purpose of tracking in an indoor multi-
sensor environment. Finally, contributions have been made
with respect to using SRG and their application in various
different domains [15]. Our work has demonstrated the
feasibility and effectiveness of using SRG for the purposes
of coordinate system handoffs and associated
transformations in multi-modal sensor-based indoor setups.
Also, the selection of a subset of sensors, based on an
associated rank determined by their QoS attributes, is a
novel concept used by the eDOTS 2.0 for the purposes of
indoor tracking.

V. CONCLUSION
This paper has discussed the design, implementation, and

experimentation of an indoor tracking system. The
contributions of this work are: a) an ability to handle multi-
modal sensors, and b) a seamless handoffs and associated
transformations. Future work includes an experimentation
and analysis using additional sensor modalities, such as the
RFID tags and sensors on mobile devices, and investigation
of different algorithms for sensor selection and fault
tolerance of sensors services.

REFERENCES
[1] Arulampalam, M. S.; Maskell, S.; Gordon, N.,Clapp, T. A Tutorial on

Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking IEEE Transactions on Signal Processing, 2002, 50, 174-188.

[2] Bagci F, Kluge F, Bagherzadeh N, Ungerer T. “LocSens - An Indoor
Location Tracking System using Wireless Sensors.” In: Computer
Communications and Networks, 2008. ICCCN '08. Proceedings of
17th International Conference on , vol., no., pp.1-5, 3-7 (2008).

[3] Bahl P, Padmanabhan, V. (2000): “Radar: An In-Building RF-based
User Location and Tracking System”, Proceedings of INFOCOM
2000, IEEE Conference on Computer Communications, Tel Aviv,
Israel.

[4] Bauer, M.; Bruegge, B.; Klinker, G.; MacWilliams, A.; Reicher, T.;
Sandor, C., Wagner, M. An Architecture Concept for Ubiquitous
Computing Aware Wearable Computers Proceedings of the
International Conference on Distributed Computing Systems
Workshops, IEEE Computer Society, 2002, 785-790.

[5] Carlson N. "Federated square root filter for decentralized parallel
processors." Aerospace and Electronic Systems, IEEE Transactions
on 26, no. 3 (1990): pp. 517-525.

[6] Ching-Sheng W, Li-Chieh C. "RFID & vision based indoor
positioning and identification system," Communication Software and
Networks (ICCSN), vol., no., pp. 506-510, (2011).

[7] Dorner R., “Accuracy in optical tracking with fiducial markers: an
accuracy function for ARToolKit, Mixed and Augmented Reality,”
ISMAR 2004. Third IEEE and ACM International Symposium, 2004.

[8] Gamma E, Helm R, Johnson R, Vlissides J. "Design patterns:
Elements of reusable object-oriented design." (1995): 1-30.

[9] Girish G, Rajeev R., Mihran T. “Designing and Experimenting with a
Distributed Tracking System.” ICPADS 2008: 64-7.

[10] Gustafsson F, Gunnarsson F. (2005): “Mobile Positioning Using
Wireless Networks,” IEEE Signal Processing Magazine, vol. 22, no.
4, pp. 41–53.

[11] Huber, M.; Pustka, D.; Keitler, P.; Echtler, F. & Klinker, G. A System
Architecture for Ubiquitous Tracking Environments ISMAR '07:
Proceedings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, IEEE Computer
Society, 2007, 1-4.

[12] Kato H., Billinghurst M. “Marker Tracking and HMD Calibration for
a video-based Augmented Reality Conferencing System,” In
Proceedings of the 2nd International Workshop on Augmented
Reality (IWAR 99). October, San Francisco, USA.

[13] Keitler, P.; Pustka, D.; Huber, M.; Echtler, F. & Klinker, G. Dubois,
E.; Gray, P. & Nigay, L. (Eds.) Management of Tracking for Mixed
and Augmented Reality Systems The Engineering of Mixed Reality
Systems, Springer London, 2010, 251-273.

[14] Malbezin, P, Piekarski, W, Thomas, B. “Measuring ARToolKit
Accuracy in Long Distance Tracking Experiments,” In ART02, 1st
International Augmented Reality Toolkit Workshop; 2002.

[15] Nagpal, R, Shrobe, H, Bachrach, J. "Organizing a Global Coordinate
System from Local Information on an Ad Hoc Sensor Network,"
2003.

[16] Newman, J.; Wagner, M.; Bauer, M.; MacWilliams, A.; Pintaric, T.;
Beyer, D.; Pustka, D.; Strasser, F.; Schmalstieg, D. & Klinker, G.
Ubiquitous Tracking for Augmented Reality IEEE / ACM
International Symposium on Mixed and Augmented Reality (ISMAR
2004), IEEE Computer Society, 2004, 192-201.

[17] Rybarczyk R, Raje R, Tuceryan M. “Enhancing a Distributed
Tracking System.” In: Proceedings of 3rd International Joint
Conference on Information and Communication Technology (IJcICT-
2011). Mumbai, India; (2011). 7 p.

[18] Rybarczyk R, Raje R, Tuceryan M. “A Heterogeneous Indoor
Tracking System.” Indiana University Purdue University Indianapolis
– Computer Science Department; (2012). TR-CIS-0125-12.

[19] Tilak, O.; Mukhopadhyay, S.; Tuceryan, M., Raje, R. A Novel
Reinforcement Learning Framework for Sensor Subset Selection
2010 International Conference on Networking, Sensing and Control
(ICNSC), 2010, 95 -100.

[20] Varshavsky A. “The SkyLoc Floor Localization System.” In:
Proceedings of the IEEE PerCom, (2007).

[21] Varshney P. "Multisensor data fusion." Electronics & Communication
Engineering Journal 9.6 (1997): pp. 245-253.

[22] Want, R, Hopper, A, Falcão, V, Gibbons, J. (1992): “The Active
Badge Location System”, ACM Transactions on Information
Systems, vol. 10, no. 1, pp. 91–102.

[23] Welch, G., Bishop, G. An Introduction to the Kalman Filter
Department of Computer Science, University of North Carolina at
Chapel Hill, 1995.

[24] Xiang Z., Song S, Chen, J, Wang, H, Huang, J, Gao, X. (2004): “A
Wireless LAN-Based Indoor Positioning Technology”, Journal of
Research Development, vol. 48, no. 5/6, pp. 617–626.

435

436

•

•

•

•

437

438

439

440

441

Towards Quantifying Quality, Tactics and
Architectural Patterns Interactions

Mohamad Kassab
The Pennsylvania State University

Malvern, PA, U.S.A
muk36@psu.edu

Ghizlane El Boussaidi
École de technologie supérieure

Montreal, QC, CANADA
ghizlane.elboussaidi@etsmtl.ca

Abstract—Architectural design involves choosing the best design
solution that satisfies a set of requirements. During this process
the architect has to assess and compare multiple, and possibly
conflicting, criteria and decisions including quality attributes,
architectural tactics and patterns. While architectural patterns
embody high level design decisions, an architectural tactic is a
design strategy that addresses a particular quality attribute.
Tactics, in fact, serve as the meeting point between the quality
attributes and the software architecture. To guide the architect in
selecting the most appropriate architectural patterns and tactics,
the interactions between quality attributes, tactics and patterns
should be analyzed and quantified and the results should be
considered as decision criteria within a quality-driven
architectural design process. In this paper, we propose an
approach for a quantitative evaluation of the support provided
by a pattern for a given targeted set of quality attributes. Our
approach incorporates the mathematical based trade-off
technique: Analytical Hierarchy Process (AHP) to quantitatively
deal with ambiguities, trade-offs, priorities and
interdependencies among qualities, tactics and architectural
patterns.

Keywords- architectural patterns; architectural tactics; quality
requirements; architectural design, AHP.

I. INTRODUCTION
When designing software architectures, an architect relies

on a set of idiomatic patterns commonly named architectural
styles or patterns. A software architectural pattern defines a
family of systems in terms of a pattern of structural
organization and behavior [1]. More specifically, an
architectural pattern determines the vocabulary of components
and connectors that can be used in instances of that pattern,
together with a set of constraints on how they can be combined.
Common architectural patterns include Layers, Pipes-Filters,
Model View Controller (MVC), Broker and Client-Server.
Architectural patterns have been described using different
frameworks (see e.g. [1, 2, 3, 4, 5]).

A common framework to describing patterns includes the
name, the problem, the structure and the dynamics of the
solution, and the consequences of using a pattern expressed in
terms of its benefits and its liabilities. Hence the selection of an
architectural pattern is qualitatively driven by the properties it
exhibits [6] and the architect’s knowledge and experience with
patterns.

While architectural patterns embody high level design
decisions, an architectural tactic [7] is a design strategy that
addresses a particular quality attribute. Tactics are a special
type of operationalization that serves as the meeting point
between the quality attributes and the software architecture. In
[8], the authors define an architectural tactic as an architectural
transformation that affects the parameters of an underlying
quality attribute model. Implementing a certain tactic within a
pattern may affect the pattern by modifying some of its
components, adding some components and connectors, or
replicating components and connectors [9].

Dealing with decisions concerning the selection of an
architectural pattern for a software project or module involves
trade-off of some sort. This is mainly because one of the
primary goals of the architecture of a system is to create a
system design to meet the required functionality, while
satisfying the desired quality attributes. In fact, if we consider a
system’s architecture as a set of architectural decisions, the
most significant ones concern the satisfaction of quality
attributes [10]. Qualities, on the other hand, can often interact,
in the sense that attempts to achieve one quality attribute can
help or hinder the achievement of other quality attribute at
particular software functionality. Such an interaction typically
creates an extensive network of interdependencies among
quality attributes which is not easy to trace or estimate [11].

In this paper, we propose an approach for a quantitative
evaluation of the support provided by a pattern for a given
targeted set of quality attributes. The main research question
that we address in this paper is: “Given a set of software
qualities to be implemented within a system, what will be the
most accommodating architectural pattern to choose to design
the system?” Our approach incorporates the mathematical
based trade-off technique: Analytical Hierarchy Process (AHP)
[12, 13] to quantitatively deal with ambiguities, trade-offs,
priorities and interdependencies among qualities, tactics and
architectural patterns.

The remaining of this paper is organized as follows: Section
II provides the background on quality attributes, architectural
tactics, patterns, and the AHP technique. In section III we start
by the quantitative mapping of quality attributes into
architectural tactics; using AHP technique, where we consider
not only the positive contributions of tactics to implement the
qualities but also the potential conflicts among qualities due to
the introduced tactics. In section IV we relate the architectural

442

patterns to the tactics based on evaluations of the impact of
incorporating the latter within the former. We then propose; in
section V, the usage of the AHP technique again to quantify the
relations between software qualities and architectural patterns
using the results from sections III and IV. Section VI discusses
related work and finally, Section VII concludes the paper.

II. BACKGROUND

A. Quality attributes, tactics and patterns
Quality is “the totality of characteristics of an entity that

bear on its ability to satisfy stated and implied needs” [14].
Software Quality is an essential and distinguishing attribute of
the final product. Tactics on the other hand are measures taken
to improve the quality attributes [7]. For example, introducing
concurrency for a better resource management is a tactic to
improve system’s Performance. In [7], the authors list the
common tactics for the qualities: Availability, Modifiability,
Performance, Security, Testability and Usability. In this paper,
we will illustrate our approach via considering the
incorporation of Security and Performance qualities into a
software system along with their derived tactics as proposed in
[7] and shown in Table I.

TABLE I. TACTICS FOR SECURITY AND PERFORMANCE [7]

Security Tactics Performance Tactics
T1 Authenticate Users T9 Increase Computation

Efficiency
T2 Authorize Users T10 Reduce Computational

Overhead
T3 Limit Access T11 Manage Event Rate
T4 Limit Exposure T12 Control Frequency of Sampling
T5 Maintain Data

Confidentiality
T13 Introduce Concurrency

T6 Intrusion Detection T14 Maintain Multiple Copies
T7 Identification of Attacker T15 Increase Available Resources
T8 Restoration T16 Scheduling Policy

Typically, systems have multiple important quality
attributes, and decisions made to satisfy a particular quality
may help or hinder the achievement of another quality attribute.
The best-known cases of conflicts occur when the choice of a
tactic to implement certain quality attribute contributes
negatively towards the achievement of another quality. For
example, decisions to maximize the system Reusability and
Maintainability through the usage of “Abstracting Common
Services” tactic may come at the cost of the “Response Time”.

Tactics are considered as the building blocks from which
architectural patterns are composed [7]. While an architectural
pattern is commonly defined by its components, their
interactions and interrelationships and their semantic, its
implementation includes a combination of tactics depending on
the pattern’s objectives. For example, the Broker pattern
implements the Modifiability tactic “Use an Intermediary” by
introducing the Broker component which acts as an
intermediary between clients and servers to provide location-
transparent service invocations [8]. Nevertheless patterns can
impact individual tactics by making it easier or more difficult
to implement them [9]. Indeed the changes due to a tactic’s
implementation within a pattern may at worst-break the

pattern’s structure and/or behavior. Therefore, architects must
deal with tradeoffs, priorities and interdependencies between
qualities, tactics and patterns before selecting some patterns
and tactics that may achieve one quality and hinder another.

B. The AHP technique
The AHP technique [12, 13] was introduced by Thomas L.

Saaty in the 1970s. AHP is a technique for modeling complex
and multi-criteria problems and solving them using a pairwise
comparison process. Simply described, AHP breaks down a
complex and unstructured problems into a hierarchy of factors
that can be judged according to their relative importance to
determine which actions have the highest priority to achieve
the desired goal.

The AHP process starts by a detailed definition of the
problem; goals, all relevant factors and alternative actions are
identified. The identified elements are then structured into a
hierarchy of levels where goals are put at the highest level and
alternative actions are put at the lowest level. Usually, an AHP
hierarchy has at least three levels: the goal level, the criteria
level, and the alternatives level. This hierarchy highlights
relevant factors of the problem and their relationships to each
other and to the system as a whole [13]. Once the hierarchy is
built, involved stakeholders (i.e., decision makers) judge and
specify priorities of the elements of the hierarchy. To establish
the priorities of elements of the problem, a pairwise
comparison process is used. This process starts at the top of the
hierarchy by selecting an element (e.g., a goal) and then the
elements of the level immediately below are compared in pairs
against the selected element. A pairwise matrix is built for each
element of the problem; this matrix reflects the relative
importance of elements of a given level with respect to a
property of the next higher level. Saaty proposed the scale
[1...9] to rate the relative importance of one criterion over
another (See Table II). Based on experience, a scale of 9 units
is reasonable for humans to discriminate between preferences
for two items [13].

TABLE II. PAIRWISE COMPARISON SCALE FOR AHP [13].

Intensity of judgment Numerical Rating
Extreme Importance 9

Very Strong Importance 7
Strong Importance 5

Moderate Importance 3
Equal Importance 1

For compromise between the above values 2, 4, 6, and 8

In the next sections, we will illustrate our approach by
analyzing four common architectural patterns (Pipes/Filters,
Layered, MVC and Broker) for their accommodating to both
Security and Performance quality attributes while building a
credit-card system [11].

III. QUALITY – TACTICS INTERACTION
To evaluate the relations between qualities and tactics we

will first establish qualitative relations between them using the
five point scale that was proposed in [11]. That is if the impact
of implementing the tactic is strongly in favor of satisfying the
quality (make) then the interdependency relation is assigned

443

with double plus (“++”) sign; and if the impact of
implementing the tactic is moderately in favor of satisfying the
quality (help) then the interdependency is assigned with a
single plus (“+”) sign. On the other hand, if the impact of
implementing the tactic is strongly against satisfying the
quality (break) then the interdependency is assigned with
double minus (“--”) sign; and if the impact of implementing the
tactic is moderately against satisfying the quality (hurt) then
the interdependency is assigned with a single minus (“-”) sign.
If implementing a tactic has no positive nor negative impact
towards the quality in consideration, then the sign (“~”) is
being assigned.

In order to map these qualitative evaluations between
qualities and tactics into quantitative ones, we incorporate the
AHP technique. The steps towards applying the AHP technique
on quality – tactics relations are:

We start exploring the Quality-Tactics interaction by the
pairwise comparisons of qualities to be incorporated in the
system under development. Table III represents the
prioritization of the Security and Performance qualities in the
credit-card system under development.

TABLE III. PAIRWISE COMPARISON MATRIX FOR SECURITY /
PERFORMANCE IN A CREDIT-CARD SYSTEM.

 Security Performance Weights

Security 1 5 0.83
Performance 0.2 1 0.17

Next, we complete the comparisons of the tactics with
respect to each quality in consideration (Security and
Performance in our example). The qualitative knowledge
described in [11] is transformed into quantitative values during
the pairwise comparisons at this step. For each pairwise
comparison, the impact of the first tactic with respect to the
quality in consideration is to be compared against the impact of
the second tactic with respect to the quality in consideration
according to the scheme we propose in Table IV. For example,
the pairwise comparison for (T9: Increase Computation
Efficiency, T1: Authenticate Users) with respect to
Performance is mapped to numerical value 5. This is because
Increasing the Computation Efficiency helps satisfying the
Performance quality (+); while Authentication hurts the
satisfaction of Performance (As it hurts the response time of the
system) (-). The pair (+, -) is then mapped to value 5 according
to the proposed scheme.

TABLE IV. MAPPING THE QUALITATIVE IMPACTS FROM NFRS
FRAMEWORK INTO THE AHP MEASUREMENT SCALES

Impact of the 1st
tactic on a quality

Impact of the 2nd
tactic on a quality

Pairwise
comparison value

++ ++ 1
++ + 3
++ ~ 5
++ - 7
++ -- 9
+ + 1
+ ~ 3
+ - 5

+ -- 7
~ ~ 1
~ - 3
~ -- 5
- - 1
- -- 3
-- -- 1

Table XI (Appendix I) presents the pairwise comparisons
based on our analysis of the tactics with respect to Security
quality attribute in a credit-card system. Table XII (Appendix I)
shows the pairwise comparisons of the tactics with respect to
Performance quality attributes in a credit-card system.

Finally, the results of the two analyses from Steps 1 and 2
are synthesized to compute the relative value of the tactics with
respect to the goal of achieving both Security and Performance
together. This is accomplished in our example by multiplying
the weight of each Security tactic computed in Table XI by the
value of “0.83” which represents Security weight as calculated
from Table III (see the last column of Table XI); and the
weight of each Performance tactic computed in Table XII by
the value of “0.17” representing the Performance weight as
calculated from Table III (see the last column of Table XII).
Then the corresponding new weights for each tactic from the
two Tables XI and XII are summed up. We end up with the
synthesized weights for the tactics representing their relative
values towards satisfying both qualities in accordance with
their priorities in the credit-card system under development
(Table V).

TABLE V. SYNTHESIZED WEIGHTS FOR TACTICS

Tactic Synthesized
Weight

Tactic Synthesized
Weight

T1 0.118 T9 0.045
T2 0.118 T10 0.045
T3 0.07 T11 0.045
T4 0.07 T12 0.045
T5 0.118 T13 0.04
T6 0.066 T14 0.022
T7 0.066 T15 0.022
T8 0.064 T16 0.043

IV. TACTICS – ARCHITECTURAL PATTERNS INTERACTION
To study the relationship between tactics and patterns, we

analyze a pattern to evaluate the support it provides to help
implementing a tactic. In [16], the authors identified six types
of changes that a pattern’s structure or behavior might undergo
when a tactic is implemented within the pattern and they define
a scale to rate these changes. In this paper, we adopt a similar
five point scale from [16] to identify the impact magnitude of
incorporating tactics within architectural patterns, where “++”
presents “Good Fit” category, “+” presents “Minor Changes”
required for the incorporation, “-“ presents “Significant
changes” required for the incorporation, “- -“ presents “Poor
Fit” category and “~” presents that the tactic and the pattern are
basically orthogonal. The impact is defined as a function of
number of the pattern’s components impacted as listed in Table
VI.

444

Tables VII and VIII summarize our findings on the impact
of implementing Security and Performance tactics (using the
scale described above) on Pipes-Filters, Layered, MVC and
Broker patterns. For example, The Layers pattern structures an
application by decomposing it into groups of subtasks where
each group of subtasks is at a particular level of abstraction [3].
Because of Layers architecture organization, implementing the
“Authenticate users” tactic (T1) is relatively easier than in
Pipes-Filters. Indeed this tactic can be added as an additional
layer on top of the existing ones; changes to the existing
architecture are limited to its top layer and the new layer is
within the structure of the pattern [16]. This is an example of
(Add, in the pattern); and thus “+” was assigned as a sign. On
other hand, as Layered Pattern supports layers of access, this
limits the exposure by not placing all the logic and data into
one layer. The sign “+ +” was assigned for the difficulty of
incorporating Limit Exposure (T4) in Layered architecture. Our
detailed analysis of the impact of implementing Security and
Performance tactics on these four patterns is described in detail
in [17].

TABLE VI. IMPACT MAGNITUDE AS A FUNCTION OF NUMBER OF
PARTICIPANTS IMPACTED [16].

Change Type Number of Changes Impact Range
Implemented in 1 ++ or +

Replicates 3 or less ++ or +
More than 3 + or ~

Add, in the pattern 3 or less ++ or +
More than 3 + or ~

Add, out of the pattern 3 or less ~ or -
More than 3 - or --

Modify 3 or less ++ or -
More than 3 ~ or --

TABLE VII. IMPACT OF SECURITY TACTICS ON ANALYZED PATTERNS

 Pipes / Filters Layered MVC Broker

T1 -- + -- ++
T2 -- -- -- --
T3 + + + --
T4 ++ ++ -- -
T5 - - - ~
T6 ~ ~ ~ +
T7 -- -- -- --
T8 -- - ~ ++

TABLE VIII. IMPACT OF PERFORMANCE TACTICS ON ANALYZED
PATTERNS

 Pipes / Filters Layered MVC Broker

T9 - - + +
T10 - - + --
T11 - - + --
T12 + + + +
T13 ++ + + ~
T14 -- - + ~
T15 ~ ~ ~ ~
T16 - - + +

To complete the pairwise comparisons of the architectural
patterns with respect to each identified tactic, the qualitative
evaluation of patterns will be transformed into an ordinal scale
according to a scheme similar to the one we proposed in Table
IV. Table IX shows the pairwise comparison for the four
patterns (Pipes/Filters, Layered, MVC and Broker) with respect
to T1 (Authentication). For example, Broker scored “++” while
Pipes / Filters scored “- -”; thus the pairwise comparison was
mapped to 9. Due to the space constraints in this paper, we will
not show the other 15 tables with respect to the other tactics.

TABLE IX. PAIRWISE COMPARISON FOR ARCHITECTURAL PATTERNS
WITH RESPECT TO AUTHENTICATION

 Pipes /
Filters

Layered MVC Brok-
er

Weight 0.118 ×
Weight

Pipes /
Filters

1 0.14 1 0.11 0.05 0.006

Layered 7 1 7 0.33 0.37 0.043
MVC 1 0.14 1 0.11 0.05 0.006

Broker 9 3 9 1 0.53 0.062

V. SYNTHESIZING THE IMPACT OF ARCHITECTURAL
PATTERNS ON QUALITY ATTRIBUTES

We will now compute the quantitative impact of
architectural patterns on quality attributes combining the data
from the quality-tactic (section III) and tactic-pattern (section
IV) relations. To do so, the results of the two analyses from the
previous sections are synthesized to compute the relative
weight of each architectural pattern with respect to the goal of
achieving both Security and Performance qualities in the credit-
card system. This is accomplished in our example by
multiplying the weight of each architectural pattern in Table IX
by the corresponding tactic weight calculated from Table V (as
it is shown in the last column of Table IX); then the
corresponding weights for each architectural pattern from all
the 16 tables (i.e, corresponding to the 16 tactics) are summed
up. We end up with the synthesized weights for the
architectural patterns representing their value towards
accommodating both Security and Performance qualities while
considering the qualities’ priorities; derived tactics and the
interdependencies between the tactics and the qualities (See
Table X).

TABLE X. SYNTHESIZED WEIGHTS OF ARCHITECTURAL PATTERNS

Pattern Synthesized Weight
Pipes / Filters 0.22

Layered 0.22
MVC 0.26

Broker 0.3

The results from Table X reveal that when both Security

and Performance are to be considered as the key qualities of
the system, while prioritizing security over performance and
considering all their tactics as criteria, the Broker is the most
accommodating pattern for the credit-card system (it scored
the highest among the four patterns). Pipes/Filters and Layered
patterns are the least accommodating patterns for both
Security and Performance qualities while implementing all

445

their tactics in the credit-card system (they scored the lowest
among the four patterns).

VI. RELATED WORK
The need to deal with conflicting situations has become a

critical area in requirements engineering. Several authors have
detected the need to handle conflict resolution in requirements
engineering. For example, in [18] J.Karlsson, C Wohlin, and
B.Regnell have evaluated six different methods for
prioritization software requirements. In their work, the authors
have found that AHP technique to be the most promising
method. In an industrial follow-up study they used the AHP to
further investigate its applicability. They found that the process
is demanding but worth the effort because of its ability to
provide reliable results, promote knowledge transfer and create
consensus among project members.

Many patterns have been proposed and described in the
literature (e.g. [1, 2, 3, 4, 5]). However, patterns consequences
descriptions are incomplete, not searchable or cross-referenced
and, mostly qualitative [9]. They are often classified according
to the specific classes of systems they enable to construct.
Common approaches to architectural design (e.g., [7, 15])
propose a process to guide the architect in selecting
architectural tactics and patterns that satisfy the most important
quality attributes of a software system. However the
architectural decisions such as the selection of a pattern is
mainly based on a qualitative evaluation and the architect
expertise and knowledge. Our work is closely related to the
ones in [6] and [16]. Our analysis is partially based on the scale
introduced in [16] where the authors propose a framework that
relates patterns to tactics and quality attributes. The proposed
framework concentrates on the interaction between tactics and
patterns and especially how tactic implementations affect
patterns. Our approach may be seen as complementary to this
framework as we consider both the impact of a tactic on a
pattern and the impact of the tactic on other quality attributes.

In [6], Bode and Riebisch present a quantitative evaluation
of a set of selected architectural patterns regarding their support
for the evolvability quality attribute. They refine the
evolvability attribute into sub-characteristics and relate them to
some properties that support good design. The selected patterns
are used in a case study and the resulting design is assessed to
determine the impact of these patterns on these properties. Our
approach differs from Bode and Riebisch’s approach in the
way the analysis of the relationship between patterns and
quality requirements was carried out; they use a particular case
study and an evaluation by experts while our approach is based
on the analysis of the generic structures and behavior of tactics
and patterns. Besides, we consider more than one quality
attribute in our analysis.

VII. CONCLUSION
 In this paper, we proposed a quantitative approach to

selecting architectural patterns starting from a subset of quality
requirements. Our approach incorporates the mathematical
based trade-off technique: Analytical Hierarchy Process (AHP)
to quantitatively deal with ambiguities, trade-offs, priorities
and interdependencies among qualities, tactics and architectural
patterns. We illustrate the approach using four common

architectural patterns and assessing their support for both
Security and Performance quality attributes. Though this is a
preliminary quantitative investigation of the architectural
patterns when considering more than one quality attribute, we
believe that it’s a key step towards a quality-driven
architectural design process.

In the future, we plan to refine the approach in three ways.
First we would like to refine our analysis and results by
considering sub-characteristics of quality attributes and design
concerns (e.g. analyzing availability and confidentiality as sub-
characteristics of Security). Second, the numerical value that is
assigned to a pattern regarding its support for a quality attribute
depends on the selected subset of tactics to achieve the targeted
attribute. In this paper we derived this value by considering all
the tactics related to an attribute. However, in the future we
would like to give the opportunity to an architect to tune these
values by considering or discarding alternative tactics. This
will help to alleviate impacts of the pattern whose choice was
driven by a core of quality attributes on the other attributes.
Third, we will extend the proposed approach in the design of
systems involving multiple architectural styles in which styles
could not necessarily be evaluated in isolation from each other.

REFERENCES
[1] D. Garlan, M. Shaw, “An Introduction to Software Architecture”,

Technical Report, CMU, Pittsburgh, PA, USA, 1994.
[2] P. Avgeriou and U. Zdun, “Architectural Patterns Revisited– a Pattern

Language”, In Proceedings of EuroPLoP 2005, pp. 1- 39, 2005.
[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

“Pattern-Oriented Software Architecture: A System of Patterns”, John
Wiley & Sons, 1996.

[4] M. Shaw and D. Garlan, “Software Architecture: perspectives on an
emerging discipline”, Prentice Hall, 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software systems”, Addison-
Wesley, 1994.

[6] S. Bode and M. Riebisch, “Impact Evaluation for Quality-Oriented
Architectural Decisions Regarding Evolvability”, The 4th European
conference on Software architecture, pp.182-197, 2010.

[7] L. Bass, P. Clements, and R. Kazman, “Software architecture in
practice”, Addison-Wesley, 2003.

[8] F. Bachmann, L. Bass, and R. Nord, “Modifiability Tactics”, Technical
Report, SEI, CMU/SEI 2007-TR-002, September 2007.

[9] N. Harrison, P. Avgeriou, and U. Zdun, “On the Impact of Fault
Tolerance Tactics on Architecture Patterns”, In proceedings of 2nd
International Workshop SERENE, 2010.

[10] J. Jansen, J. van der Ven , P. Avgeriou, and D. K. Hammer, “Tool
Support for using Architectural Decisions”, In proceedings of the 6th
Working IEEE/IFIP WICSA'07, 2007.

[11] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-functional
Requirements in Software Engineering”, Kluwer Academic Publishing,
2000.

[12] T. L. Saaty, “The analytic hierarchy process”, New York: McGraw-Hill,
1980.

[13] T. L. Saaty, “Decision making for leaders”, Belmont, California:
LifeTime Leaning Publications, 1985.

[14] International Standard ISO/IEC 9126-1. Software engineering – Product
quality – Part 1: Quality model. ISO/IEC 9126-1:2001, 200.

[15] W. G. Wood, “A Practical Example of Applying Attribute-Driven
Design (ADD)”, Technical report CMU/SEI-2007-TR-005, 2007.

[16] N.B. Harrison and P. Avgeriou, P., “How do architecture patterns and
tactics interact? A model and annotation”, Journal of Systems and
Software, vol. 83, Issue 10, pp. 1735-1758, 2010.

446

[17] M. Kassab, G. El Boussaidi, H. Mili, "A quantitative evaluation of the
impact of architectural patterns on quality requirements", in the 9th
ACIS SERA Conference, 2011.

[18] J. Karlsson, C. Wohlin, and B. Regnell, "An Evaluation of Methods for
Prioritizing Software Requirements", Information and Software
Technology, Vol. 39, No. 14-15, pp. 939-947, 1997-98.

Appendix I

TABLE XI. PAIRWISE COMPARISONS FOR SECURITY AND PERFORMANCE TACTICS WITH RESPECT TO SECURITY

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 Weight 0.83 ×

Weight
T1 1 1 3 3 1 3 3 3 5 5 5 5 5 7 7 5 0.14 0.11

T2 1 1 3 3 1 3 3 3 5 5 5 5 5 7 7 5 0.14 0.11

T3 0.33 0.33 1 1 0.33 1 1 1 3 3 3 3 3 5 5 3 0.08 0.06

T4 0.33 0.33 1 1 0.33 1 1 1 3 3 3 3 3 5 5 3 0.08 0.06

T5 1 1 3 3 1 3 3 3 5 5 5 5 5 7 7 5 0.14 0.11

T6 0.33 0.33 1 1 0.33 1 1 1 3 3 3 3 3 5 5 3 0.08 0.06

T7 0.33 0.33 1 1 0.33 1 1 1 3 3 3 3 3 5 5 3 0.08 0.06

T8 0.33 0.33 1 1 0.33 1 1 1 3 3 3 3 3 5 5 3 0.08 0.06

T9 0.2 0.2 0.33 0.33 0.2 0.33 0.33 0.33 1 1 1 1 1 3 3 1 0.03 0.026

T10 0.2 0.2 0.33 0.33 0.2 0.33 0.33 0.33 1 1 1 1 1 3 3 1 0.03 0.026

T11 0.2 0.2 0.33 0.33 0.2 0.33 0.33 0.33 1 1 1 1 1 3 3 1 0.03 0.026

T12 0.2 0.2 0.33 0.33 0.2 0.33 0.33 0.33 1 1 1 1 1 3 3 1 0.03 0.026

T13 0.2 0.2 0.33 0.33 0.2 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1 3 3 1 0.025 0.021

T14 0.14 0.14 0.2 0.2 0.14 0.2 0.2 0.2 0.33 0.33 0.33 0.33 0.33 1 1 0.33 0.01 0.0099

T15 0.14 0.14 0.2 0.2 0.14 0.2 0.2 0.2 0.33 0.33 0.33 0.33 0.33 1 1 0.33 0.01 0.0099

T16 0.2 0.2 0.33 0.33 0.2 0.33 0.33 0.33 1 1 1 1 1 3 3 1 0.03 0.026

TABLE XII. PAIRWISE COMPARISONS FOR SECURITY AND PERFORMANCE TACTICS WITH RESPECT TO PERFORMANCE

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 Weight 0.17 ×
Weight

T1 1 1 0.33 0.33 1 1 1 3 0.14 0.14 0.14 0.14 0.14 0.33 0.33 0.2 0.02 0.003

T2 1 1 0.33 0.33 1 1 1 3 0.14 0.14 0.14 0.14 0.14 0.33 0.33 0.2 0.02 0.003

T3 3 3 1 1 3 3 3 3 0.33 0.33 0.33 0.33 0.33 0.2 0.2 0.2 0.04 0.008

T4 3 3 1 1 3 3 3 3 0.33 0.33 0.33 0.33 0.33 0.2 0.2 0.2 0.04 0.008

T5 1 1 0.33 0.33 1 1 1 3 0.14 0.14 0.14 0.14 0.14 0.33 0.33 0.2 0.02 0.003

T6 1 1 0.33 0.33 1 1 1 3 0.14 0.14 0.14 0.14 0.14 0.33 0.33 0.2 0.02 0.003

T7 1 1 0.33 0.33 1 1 1 3 0.14 0.14 0.14 0.14 0.14 0.33 0.33 0.2 0.02 0.003

T8 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1 0.14 0.14 0.14 0.14 0.14 0.33 0.33 0.2 0.01 0.002

T9 7 7 3 3 7 7 7 7 1 1 1 1 1 1 1 1 0.11 0.019

T10 7 7 3 3 7 7 7 7 1 1 1 1 1 1 1 1 0.11 0.019

T11 7 7 3 3 7 7 7 7 1 1 1 1 1 1 1 1 0.11 0.019

T12 7 7 3 3 7 7 7 7 1 1 1 1 1 1 1 1 0.11 0.019

T13 7 7 3 3 7 7 7 7 1 1 1 1 1 1 1 1 0.11 0.019

T14 3 3 5 5 3 3 3 3 1 1 1 1 1 1 1 1 0.07 0.012

T15 3 3 5 5 3 3 3 3 1 1 1 1 1 1 1 1 0.07 0.012

T16 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 0.10 0.016

447

Metrics-based Detection of Similar Software
Paloma Oliveira1,2

1Department of Computer, IFMG
Formiga-MG, Brazil

paloma.oliveira@ifmg.edu.br

 Hudson Borges2, Marco Tulio Valente2
 2Department of Computer Science, UFMG

Belo Horizonte – MG, Brazil
mtov@dcc.ufmg.br

Heitor Augustus Xavier Costa3
 3Department of Computer, UFLA

Lavras – MG, Brazil
heitor@dcc.ufla.br

Abstract - This paper presents a quantitative approach to identify
similarity among object-oriented systems. This approach has
three major contributions: a) a mechanism to derive thresholds
for a specific metric, considering different class profiles; b) a
mechanism to obtain a subset of similar systems from a portfolio
of systems according to one software metric and using well-
known clustering techniques; and c) a mechanism to obtain
subsets of similar systems according to a set of software metrics
and using concepts of graph theory. In this paper, we also present
a tool that supports our approach, called SQComp. Using
SQComp, we evaluated our approach in a corpus of 103 open-
source systems, comprising more than 16 MLOC. As a result, we
were able to found several groups of systems with strong
indications of similarity.

Keywords - internal quality; software metrics; thresholds.

I. INTRODUCTION
Object-oriented programming is the dominant software

development paradigm. However, after more than four decades
of the inception of the main OO abstractions, there is a
surprisingly modest quantitative knowledge on the internal
structure of object-oriented software [2]. Particularly, we still
lack thresholds to metrics when evaluating the internal quality
of OO systems. In other works, many metrics have been
proposed to quantify internal OO properties, such as, size,
coupling, cohesion, information hiding, and complexity [3].
However, we still lack a solid body of knowledge to effectively
support the use such metrics to assess software quality.

Although we have many OO methodologies, design
principles, and heuristics, we typically cannot answer some
simple questions, such as, “How many lines of code (LOC)
does the typical class have?” or “Is there such a thing as a
‘typical class’?”. What we would really like to know about
software is “Is it good?”, i. e., does it have quality attributes,
such as, high modifiability, high reusability, high testability, or
low maintenance costs [2].

There are some recent studies claiming that many software
metrics follow heavy-tailed distributions [2, 10]. If this is true,
it would have important implications on the types of empirical
studies that are possible. One issue is the fact that heavy-tailed
distributions do not have finite mean and variance. If this is the
case, the central limit theorem cannot be applied; so, the
sample mean and variance cannot be used as estimates of the
population mean and variance. Therefore, making any
conclusions on sample means and variances without fully
understanding the distribution is questionable at best.

Software can be analyzed according to several
characteristics, such as, static structure, dynamic execution,

available functionality, and lifecycle evolution. This paper
focuses on similarity of static structure, which includes many
different measures of source code. More specifically, we
present a quantitative approach based on a set of 19 software
metrics to assess the internal similarity of object-oriented
software. This set of metrics was selected because they are
related to relevant software quality factors, such as, cohesion,
coupling, and information hiding. This study involved 103
software from the Qualitas Corpus [10].

The paper is organized as follows. Section II describes the
background work and concepts. Section III presents our
approach. Section IV describes a case study carried out to
evaluate our approach. Section V discusses related work.
Concluding remarks are presented in Section VI.

II. BACKGROUND
The practical approach to verify similarity among object-

oriented systems presented in this paper uses concepts like
heavy-tailed distribution, clustering techniques, and graph
cliques. These concepts are briefly described in this section.

A. Heavy-tailed distribution
The analysis of the interaction among modules of a system has
been target of many researchers. Some studies indicate that
systems, in general, are in conformity with heavy-tailed
distribution. A characteristic of this distribution type is the
frequency of high and low values being low and high,
respectively, for the random variable. In such distribution, the
mean value is not representative, and so, there is no typical
value for random variables [5, 6, 9, 11].

There are several distributions with features of heavy-tailed.
In this paper, the EasyFit1 tool is used to fit the data. For each
metric, we considered the values extracted for the classes of a
given system as heavy-tailed when the “best-fit” distribution
returned by EasyFit is Power Law, Weibull, LogNormal,
Cauchy, Pareto or Exponential [11].

B. Clustering
Clustering is a technique for grouping of similar elements

of a sample to form mutually exclusive clusters [12]. There are
different methods of grouping, but the best known is the
Kmeans algorithm. This method carries out cluster analysis
though the partition of n observations (elements) into k
clusters. These observations are distributed in clusters
according to closeness to the mean value of each cluster, i.e.,
clusters are formed iteratively by rearranging the elements to
minimize the cluster center (average).

1 http://www.mathwave.com/products/easyfit.html.

448

C. Clique
A clique in an undirected graph, G = (V, E), is a complete

sub graph of G, G' = (V', E'), such that V' V, E' E, and
exists an edge between any two vertices in V' [4]. A maximal
clique cannot be extended by including an additional vertex.

III. IDENTIFYING SIMILARITY OF OBJECT-ORIENTED SYSTEMS
The approach presented in this paper aims to contribute for
establishing internal quality for object-oriented systems.
Basically, thresholds of metrics for class profiles of a system
are designed according to best practices. Such thresholds can
be used as indicators of internal quality. For example, suppose
two systems, S1 and S2. Suppose that S1 was developed in
accordance with the best principles/concepts of Software
Engineering. Moreover, it was developed by a team of skilled
developers, with high experience. Thus, the probability that S1
has a high degree of internal quality is high. Suppose also that
using the approach proposed in this paper, we identify that S2
and S1 are similar. Thereby, we claim that this similarity is a
strong indication that S2 also has high levels of internal quality.

Our approach has three principal mechanisms: A) A
mechanism to obtain thresholds to specify software metrics,
according to different profiles of classes; B) A mechanism to
obtain set of similar systems from a system repository using
clustering techniques and accordingly to thresholds of a
specific metric; and C) A mechanism to obtain sets of similar
systems, according to the thresholds of a set of metrics.

A. Obtaining Thresholds for Class Profiles
Defining threshold for software metrics at class level is not a
trivial task [1, 5]. For example, to obtain a threshold to the
LOC metric is complex. The main reason is that LOC follows a
heavy-tailed distribution. In other words, systems have many
classes with few LOC (e.g., less than a hundred lines) and few
classes with many LOC (e.g., in some cases, thousands of
lines). Therefore, the mean of LOC is unrepresentative, which
makes it more challenging to analyze these systems.

To overcome this difficulty, we used clustering –
specifically the Kmeans algorithm – to partition the classes into
groups (G1,...,Gn), automatically. The groups denote the
classes’ location in different positions in the curve of a heavy-
tailed distribution. For example, suppose three groups, G1, G2,
and G3, and a metric, M1. The classes in G1, G2, and G3 have
high, medium, and low values for M1, respectively. These
values represent the Euclidean distance between the value of M1
for a class in a given group and the threshold of this group. The
threshold for M1 for each group is obtained by considering the
mean value of M1.

B. Obtaining a Set of Similar Systems for One Metric
This mechanism is used to determine sets (clusters) of systems
with indications of similarity for a specific metric. Suppose a
set of systems, S, and a metric, M1. The thresholds for class
profiles of the systems in S are calculated for M1 and the groups
G1,..., Gn are generated (using the procedure described in the
previous section). For example, suppose two systems, S1 and
S2, one metric, M1, and one profile, P. For example, both

systems can have three profiles of classes (P=3): i) G1: classes
with high value for M1; ii) G2: classes with medium value for
M1; and iii) G3: classes with low value for M1.

In this mechanism we use the Kmeans algorithm again to
obtain groups of similar systems according to the profile of
their classes. In other words, classes of the systems in S are
clustering according to values of M1 in the groups generated.
The determination of the number of clusters is not trivial when
the Kmeans algorithm is used. Basically, we should run the
algorithm several times to different amounts of clusters until
the internal cohesion of the clusters exceeds 90%. Clusters of
similar systems in relation to the values of M1 are the output of
this algorithm.

C. Obtaining a set of similar systems for a set of metrics
This mechanism is an extension of the Mechanism B. It is

used to determine sets (clusters) of systems with similarity
indications regarding a set of metrics. It combines two or more
thresholds of distinct metrics as similarity criterion.

Suppose a set of systems, S, and a set of metrics, M. The
Mechanism B should be used for each metric in M. Systems
with similarity indications for metrics in M are represented by a
graph. The nodes are the systems and the edges represent the
minimum amount of metrics with similarity indications
between two systems. For example, suppose two systems, Si
and Sj. Suppose also that the number of metrics for detecting
similarity indications between Si and Sj is Qm(i,j), and the
minimum number of metrics that indicates that two systems
have similarity is Qmin. There is an edge between Si and Sj, if
Qm(i,j) Qmin. Systems with similarity indications for the
same set of metrics are represented by cliques. The resulting
graph can have several cliques, which characterizes systems
with similarity.

IV. CASE STUDY: QUALITAS CORPUS
We use the Qualitas Corpus (version 20101126r), which is a
repository with 103 open-source Java-based systems, specially
created for empirical research in software engineering [10].
These systems have around 115K classes and more than 16
MLOC.

We used 19 metrics related to classes for measuring
important factors to software quality, such as, size, complexity,
encapsulation, and cohesion. These metrics are: Number of
Lines of Code (LoC); ii) Number of Attributes (NoA); iii)
Number of Public Attributes (PubA); iv) Number of Private
Attributes (PriA); v) Number of Inherited Attributes (IA); vi)
Number of Methods (NoM); vii) Number of Public Methods
(PubM); viii) Number of Private Methods (PriM); ix) Number
of Inherited Methods (IM); x) Fan-Out; xi) Fan-In; xii)
Coupling between Object Class (CBO); xiii) Number of
Children (NoC); xiv) Total Number of Children (TNoC); xv)
Response for a Class (RFC); xvi) Weighted Methods per Class
(WMC); xvii) Number of Methods Overriden (NoMO); xviii)
Lack of Cohesion in Methods (LCoM); and xix) Hierarchy
Nesting Level (HNL).

449

A. SQComp - A Computational Support for Comparative
Evaluation of Internal Software Quality
A tool was developed for providing a graphical user

interface and to automate the proposed approach. This tool,
called SQComp (Comparative Evaluation of Internal Software
Quality), uses the Moose platform to compute the metrics
values for each class of each system [8]. To cluster and to find
cliques SQComp we used the R Platform2.

B. Methodology and Results:

 Mechanism A: Obtaining Thresholds for class profiles
Five groups, G1, G2, G3, G4, and G5, were defined to

represent threshold for class profiles. These groups correspond
to classes with small values for metrics, classes with values for
metrics ranging from small to medium, classes with medium
values for metrics, classes with values for metrics ranging from
medium to high, and classes with high values for metrics,
respectively.

To illustrate, the thresholds of LoC regarding the groups of
classes in the FindBugs system are presented in Table I. The
calculated thresholds, the number of classes, and percentage of
classes in each group are shown on the second, third, and
fourth rows, respectively. Therefore, there is a better
understanding of the class profiles of the FindBugs system
related to number of lines of code. Approximately, 73.84% of
classes are small (26.2 lines of code); on the other hand, 0.25%
of classes are large (23331.7 lines of code). The thresholds of
LoC for five other systems are presented in Table II.

TABLE I. THRESHOLDS FOR CLASS PROFILES IN THE FINDBUGS SYSTEM

 G1 G2 G3 G4 G5
Number of LoC 26.2 135.2 359.3 787.5 2331.7

Number of Classes 878 226 63 19 3
Percentage of Classes (%) 73.84 19.00 5.30 1.60 0.25

TABLE II. THRESHOLDS FOR LOC IN TEN SYSTEMS

Systems G1 G2 G3 G4 G5
Ant 19.64 92.18 217.49 448.91 916.92
Aoi 48.50 213.37 523.74 1130.36 2635.20

Argouml 26.04 163.69 478.88 1813.00 9122.00
Aspectj 56.38 382.73 1078.24 2719.89 6332.00
Cayenne 17.11 82.16 197.59 400.77 973.33

Mechanism B: Obtaining a set of similar systems for one
metric

The number of clusters of similar systems is obtained by
the kmeans(X, k) function of the R system, where X is equal
to 5 (groups) and k is number of clusters. This function was run
several times for different number of clusters until we obtained,
at least, 90% of internal cohesion of the clusters (as suggested
in Section IV-B). For example, considering LoC, the value for
k more appropriate was 5. This means that the systems ere
classified into five groups considering similarity indications for
LoC.

Most systems (33 systems ≈ 32.04%) were classified in the
cluster #3. These systems present the following values for LoC:
G1 = 23.77; G2 = 116.87, G3 = 286.43; G4 = 619.17; and G5 =

2 http://www.R-project.org/

1,525.36. In the other hand, three systems were classified in the
cluster #2 and have following values for LOC: G1 = 39.17; G2 =
226.43; G3 = 625.47; G4 = 1,887.83; and G5 = 6,147.33.

Mechanism C: Obtaining a set of similar systems for a set of
metrics

In our approach, the Mechanism B relies on a single metric and
the Mechanism C uses a set of metrics. Therefore, we used the
Mechanism B for each metric that SQComp provides (19
metrics). Besides, we decided to use k = 5 (kmeans(X, k)
function), because the internal cohesion was approximately
90%. Finally, we obtained a 103 x 103 matrix, where each cell
has the number of times that two systems were classified in the
same cluster (similar metric). A subset of this matrix with only
10 systems is shown in Table III.

TABLE III. NUMBER OF SIMILAR METRICS AMONG SYSTEMS

 Ant Aoi ArgoUML AspectJ Cayene
Ant 19 1 3 1 9
Aoi 1 19 9 10 2

Argouml 3 9 19 9 1
AspectJ 1 10 9 19 0
Cayenne 9 2 1 0 19

As it can be seen, the intersection cell between the Ant and
Cayenne has the value nine, meaning that these systems have
similarity indications for the same set of metrics (nine metrics).
Cells in the main diagonal have the value 19, because each
system is compared with itself. We decide to set Qmin = 9,
because it represents half the number of metrics. An adjacency
matrix was then used to represent pair of systems with Qmin ≥ 9,
where 1 and 0 represent the presence and absence of an edge,
respectively. The graph corresponding to this adjacency matrix
is shown in Figure . In this figure, there is one clique with three
vertices (AspectJ, AOI, and ArgoUML) and one clique with
two vertices (ant and cayenne).

 Evaluating 103 systems. We conducted some experiments by
changing Qmin. In one of these experiments, we used Qmin = 12
and we find out a maximum clique with three vertices (Quilt;
JUnit; JFinDateMath) and similar metrics were LoC, IA,
NoM, PubM, FAN-OUT, FAN-IN, CBO, NoMO, TNoC, WMC, RFC,
and LCoM. Besides this experiment, two experiments are shown
in Table IV. We can noticed that smaller the set of similar
metrics (Qmin), the higher is the number of similar systems.

Figure 1 - Adjacency Matrix in Table III

Discussion: Software quality can be measured by external and
internal factors [7]. Our approach evaluates internal software
quality by considering a set of metrics that includes several
features of object-oriented systems. Table IV shows the
systems with indications of high similarity in their internal
structure, considering coupling, cohesion, and complexity.
However, the approach is not able to explain this similarity,

450

which may be attributed to development processes,
programming patterns, same programmers’ team, or just for
being a coincidence.

TABLE IV. THREE EXPERIMENTS: MAXIMUM CLIQUE, SYSTEMS, AND
SIMILAR METRICS

Qmim Systems (Vertices) Similar Metrics (Edges)

12 Quilt; JUnit; JFinDateMath LoC; IA; NoM; PubM; FAN-OUT; FAN-IN;
CBO; NoMO; TNoC; WMC; RFC; LCoM

9 Quilt; JUnit; FitJava; JFinDateMath LoC; NoM; PubM; CBO; NoMO; TNoC;
WMC; RFC; LCoM

7 JUnit; CheckStyle; JGraph; Quilt;
JFinDateMath

NoM; PubM; NoMO; FAN-OUT; CBO; RFC;
LCoM

V. RELATED WORKS
In this section, we discuss work related with our approach.

Baxter et. al analyzed 17 metrics in 56 Java systems for
verifying their internal structure [2]. The authors reported that
most metrics follow power-laws. Louridas et al. analyzed
coupling metrics using 11 systems developed in multiple
languages (C, Perl, Ruby, and Java) [6]. The authors concluded
that most metrics are in conformity with heavy-tailed
distribution, independently of programming language. Studies
conducted by Taube-Schock et al. confirms such results, but for
coupling metrics [9].

In the context of thresholds, a study of Alves et. al [1] used
100 systems to obtain thresholds with the aim to classify them.
This study analyzed the quantile function for a set of systems
and attributed weight by LOC for calculating the threshold for
each metric. Ferreira et. al [5] has proposed thresholds for 6
metrics, considering 40 systems. As result, systems were
classified into 3 categories: Good, Regular, and Poor.

We can observe that there is not well-established thresholds
for software metrics that reflect real practices and projects of
development. In general, studies tend to recommend absolute
thresholds, such as, "the class is good if it has at most 20
methods" [5]. However, several studies indicate that software
metrics follow a heavy-tail distribution [2,5,6,9]. In other
words, software practice seems to reveal that is inevitable to
have software components with very high values of metrics
(the tail of the distribution). In this context, our approach aims
to provide thresholds respecting the heavy-tailed behavior
common in software metrics distributions.

VI. CONCLUSION
A approach to verify similarity among object-oriented

systems was presented in this paper. The approach includes
three mechanisms: i) obtaining thresholds for class profiles; ii)
obtaining a set of similar systems for a single metric; and iii)
obtaining a set of similar systems for a set of metrics.

The proposed approach helps to check the existence of
classes of distinct profiles in the systems analyzed in terms of
size, coupling, cohesion etc. This reinforces the result of some
authors that software metrics follows a heavy-tailed
distribution. The use of clustering is an interesting alternative,
because the mean of the elements in a cluster is more
representative and can be used as threshold for different class
profiles in the same system.

As future work, we suggest to use the approach in other
systems repositories and to discover why systems have a
specific similarity. We also aim to investigate the existence of
causality between the proposed thresholds and external
software quality metrics, such as number of bugs [13] and
number of warnings raised by bug finding tools [14,15].

Acknowledgments Our research is supported by CAPES,
FAPEMIG, and CNPq.

REFERENCES
[1] Alves, T.; Ypma, C.; Visser, J. (2010). Deriving metric thresholds from

benchmark data. In 26th Int. Con. on Software Maintenance, pp. 1–10.
[2] Baxter, G.; Frean, M.; Noble, J.; Rickerby, M.; Smith, H.; Visser, M.;

Melton, H.; Tempero, E. (2006). Understanding the shape of Java
software. In 21th Int. Conf. on Object Oriented Programming, Systems,
Languages and Applications. pp. 397-412.

[3] Chidamber, S..; Kemerer, C. (1994). A metrics suite for object oriented
design. IEEE Trans. on Software Engineering. 20(6). pp.476–493.

[4] Cormen, T.; Leiserson, C.; Rivest, R.; Cliford C. (2009). Introduction to
Algorithms. 3rd edition. MIT Press.

[5] Ferreira, K.; Bigonha, M.; Bigonha, R.; Mendes, L.; Almeida, H. (2011).
Identifying Thresholds for Object-Oriented Software Metrics. The
Journal of Systems and Software. 85(2). pp.244-257.

[6] Louridas, P.; Spinellis, D.; Vlachos, V. (2008) Power Laws in Software.
ACM Trans. on Software Engineering and Methodology. 18(1). pp.1-26.

[7] Meyer, B. (2000). Object-oriented Software Construction. Prentice-Hall.
[8] Oscar, N.; Stéphane, D.; Tudor, G. (2005). The Story of Moose: An

Agile Reengineering Environment. In: European Sof. Engineering
Conference. pp. 1-10.

[9] Taube-Schock, C.; Walker, R.; Witten, I.(2011). Can We Avoid High
Coupling”. In. 25th European Conf. on Object-Oriented Programming.
pp. 204-228

[10] Tempero, E.; Anslow, C.; Dietrich, J.; Han, T.; Li, J.; Lumpe, M.;
Melton, H.; Noble, J. (2010). The Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies. In: Asia-Pacific Software
Engineering Conference. pp. 336-345.

[11] Sergey Foss, Dmitry Korshunov, and Stan Zachary. An Introduction to
Heavy-Tailed and Subexponential Distributions. Springer-Verlag, 2011.

[12] Tufféry, S. (2011) Association Analysis, in Data Mining and Statistics
for Decision Making. John Wiley & Sons.

[13] Cesar Couto; Christofer Silva; Marco Tulio Valente; Roberto Bigonha;
Nicolas Anquetil. (2012) Uncovering Causal Relationships between
Software Metrics and Bugs. 16th European Conf. on Software
Maintenance and Reengineering, pp. 223-232.

[14] Joao Eduardo Araujo; Silvio Souza; Marco Tulio Valente. (2011) Study
on the Relevance of the Warnings Reported by Java Bug Finding Tools.
IET Software, v. 5, n. 4, pp. 366-374.

[15] Cesar Couto; Joao Eduardo Araujo; Christofer Silva; Marco Tulio
Valente. (2013) Static Correspondence and Correlation between Field
Defects and Warnings Reported by a Bug Finding Tool. Software
Quality Journal, v. 21, n. 2, pp. 241-257, Springer.

451

A Checklist for Evaluation of Reference
Architectures of Embedded Systems

José Filipe Marreiros Santos∗, Milena Guessi∗, Matthias Galster†, Daniel Feitosa∗ and Elisa Yumi Nakagawa∗
∗Department of Computer Systems

University of São Paulo - USP

PO Box 668, 13560-970, São Carlos, SP, Brazil

Email: joesantos@usp.br, {milena, fdaniel, elisa}@icmc.usp.br

† University of Canterbury

Department of Computer Science and Software Engineering

Private Bag 4800, Christchurch 8140, New Zealand

Email: mgalster@ieee.org

Abstract—Embedded systems are computers designed to per-
form specialized tasks. Examples of embedded systems include
printers, consoles and televisions. The software that controls
embedded systems usually present critical requirements, since,
many times, their failure may result in human harm or
environmental damage. Therefore, the design of such software
requires a quality driven approach. In software engineering,
reference architectures are reusable software engineering ar-
tifacts introduced to facilitate the design of software archi-
tectures of a given domain. The adoption of reference archi-
tectures in embedded systems design offers advantages that
could help improve their quality. To assure that the reference
architecture presents all required information and address
all concerns, it is important to have means of evaluating it,
but available evaluation methods for reference architecture
require adaptation and may have limitations. In this context,
this work introduces a checklist for evaluation of reference
architectures of embedded systems. We elaborate on a web
based tool that could support the checklist application. To
evaluate this checklist, we considered the opinion of experts
in software architecture and reference architecture. Also, we
successfully applied the checklist in an academic reference
architecture project. We expect that this work contributes to
the evaluation of reference architectures of embedded systems.
Finally, we intend that this work could open interesting, new
research perspectives in this direction.

I. INTRODUCTION

Embedded systems can be understood as devices that

include programmable computers but are not intended to

be general-purpose computers themselves [1]. Usually, their

development requires great effort due to stringent require-

ments that may exist. This includes not only technical

requirements, such as adaptability, maintainability, safety,

security, and dependability, but also business requirements,

like smaller time-to-market and lower cost [1].

In another context, reference architectures refer to soft-

ware architectures that encompass the knowledge about how

to design concrete architectures of systems in a given appli-

cation domain. Therefore, they must address all the concerns

and the software elements that support development of

systems [3] with a proper description and organization.

Given the diversity of requirements and the safety criti-

cality of embedded systems, their design usually demands

a quality driven approach. This can be achieved through

the use of reference architectures. In fact, their adoption for

the design of embedded systems can bring many benefits

such as integrability improvement, design decisions reuse

and basic software standardization [2].

One example of reference architecture of embedded sys-

tems is AUTOSAR (AUTomotive Open System ARchi-

tecture),1 a reference architecture for systems embedded

in cars. AUTOSAR was created by some of the main

manufacturers of car parts (e.g. BMW, Bosch, Toyota, Con-

tinental, Daimler, Ford, GM, Peugeot, Volkswagen) aiming

to standardize interfaces and stimulate innovation.

Considering that reference architectures will the basis for

the construction of a set of systems, their evaluation requires

special attention. According to Barcelos and Travassos,

evaluation methods for software architectures may present

issues, such as scope limitations, dependence on the eval-

uator’s knowledge, dependence on particular representation

techniques or high costs. All these, can be overcame by the

use of checklists [7]. In addition, although there are many

evaluation methods for software architectures, they cannot

be used without adaptations for reference architectures [5].

For instance, Graaf et al. tailored SAAM to evaluate an

industry reference architecture [6].

The objective of this paper is to present a checklist for

evaluation of reference architectures of embedded systems.

1Available at http://www.autosar.org/ (Accessed on 03/10/2013)

452

We believe that the checklist is a simple and flexible

method, which can be used alone or as a pre-evaluation

that may support other methods to discover mistakes at an

early stage of the reference architecture life cycle. We also

propose a web based tool to support the checklist applica-

tion. Finally, we identify future and important research lines

based on our results.

This paper is organized as follows. In Section II we

present the checklist and elaborate on a tool support for

its application. In Section III we present the results of

a qualitative evaluation of the checklist which consulted

experts in software architecture and reference architecture.

Finally, in Section V we summarize our contributions and

discuss perspectives for future work.

II. CHECKLIST FOR REFERENCE ARCHITECTURES OF

EMBEDDED SYSTEMS

The checklist construction was based on literature avail-

able on embedded systems, reference architectures, and

software architecture. At first, we adapted the checklist for

evaluation of software architectures presented in the work

of Clements et al. [8] for reference architectures. Then,

we extended the checklist with questions about quality

attributes presented in the work of Rozanski et al. [9]. These

quality attributes were determined by a systematic review

presented by Guessi et al. [11]. Finally, the checklist was

refined to cover the topics treated by Nakagawa et al. in their

RAModel [10], which stated the information that should be

presented in a reference architecture.

We kept the stakeholder considerations originally made

by Clements et al. [8], which divided the questions among

seven respondents: architects, domain experts, developers,

analysts, software manager, integrators, testers and quality

assurance stakeholders. Architects are the software en-

gineers that are responsible for designing the reference

architecture. The domain experts are, in this case, the ones

with knowledge on embedded systems. Developers are the

professionals responsible for implementing derived applica-

tion, that is, applications which the architecture is derived

from the reference architecture. Analysts are in charge of

the documentation i.e. requirements engineering and UML

diagrams. Software managers make the strategic decisions

of the project, such as resources and time management.

Integrators are responsible for the system consistency and

adaptation. Testers are in charge of finding defects on

the documentations and the developed application. Finally,

quality assurance stakeholders verify the project confor-

mance with the quality requirements. In addition, nine

concerns about embedded systems are considered: availabil-

ity, interoperability, maintainability, performance, security,

reliability, scalability, protection, usability.

Regarding standardization, ISO 42010 specifies how ar-

chitectural descriptions are expressed and organized. It also

specifies viewpoints, frameworks and description languages

for use in architectural descriptions [4]. Conformance with

this standard is one of the topics covered by the checklist

originally presented by Clements et al [8].

The checklist proposed in this paper is structured into

four stages, namely: (i) General Information, (ii) Raising

Discussions, (iii) General Analysis Conclusion and (iv)

Embedded Systems Specifics. These stages are divided into

one or more sets of questions.

Table I presents the topics by stage and Table II presents

a subset of questions from the checklist.

The first stage is divided into two sets of questions. The

first set includes questions about general information, e.g.

overview data, viewpoints, views and models, while the sec-

ond set contains questions about the reference architecture

construction e.g. if quality attributes were considered or if

the stakeholders are defined. The stakeholders to respond

to this stage are solely the architects. This stage has 25

questions, nine in the first set and 16, in the second.

The second stage has only one set. It intends to raise

discussions and improve rationale understanding. It has

52 questions, seven for all the stakeholders, 12 for the

architects, six to be answered by the domain experts, six

for the project manager, four for the developers, three

for integrators, three for the testers, nine for the quality

assurance managers and finally, two questions targeting

analysts.

The third stage has only one set about general analysis

conclusion, e.g. if the reference architecture fits its purpose.

It has three questions. These questions target all stakehold-

ers.

Finally, the fourth stage has two sets. There are 11

questions in the first set about embedded hardware and three

about embedded software. Both sets for domain experts.

The checklist was built to have a broad coverage. There-

fore, some questions might not be suitable for a specific

project. For example, some questions may be directed for

stakeholders that are unknown. In these cases, the questions

not relevant in a particular project can be simply dismissed.

We believe that the checklist application may produce

better results during the elaboration of the reference ar-

chitecture. At this point, discovered mistakes are easier to

identify and fix.

A. Supporting Tool

Currently, FERA-ES Web (Framework for evaluation

of reference architectures of embedded systems), an open

source web application designed to support the checklist is

under development. The goal of this tool is to provide an

online collaborative environment to control the evaluation

and help the results management.

The evaluation team will be able to create new projects

and use the checklist, either as we proposed, or customized.

453

TABLE I
TOPICS AND NUMBER OF QUESTIONS IN EACH STAGE

Stage Set Questions Subjects covered
1 1 9 overview information, viewpoints, views, models, stakeholders and concerns

2 16 legal regulation, ISO 42010 conformance, design and development issues, domain specific issues, conformance with
other artifacts, quality attributes

2 1 52 specific questions to stakeholders
3 1 3 conclusion of the general analysis
4 1 11 embedded hardware

2 3 embedded software

TABLE II
EXAMPLES OF QUESTION FROM THE CHECKLIST

Stage Set Respondent Question
1 1 Architect Does the reference architecture presents: overview information, release date, version, owner (e.g. organization),

change history, short description, scope, domain terminology, open decisions and supporting material?
2 Architect Does the detail level favors the reference architecture understanding?

Architect Does each view correctly represent its viewpoint?
2 1 All Stakeholders Do the selected viewpoints frame the concerns of all stakeholders (including domain-specific stakeholders)?

All Stakeholders For each viewpoint, are its models clear and well-defined? Do the models provide enough information for
determining whether the concerns framed by the viewpoint have been satisfied?

Architect Can you show how you produced the list of RA stakeholders and their concerns?
Domain Expert Are the domain goals the system must satisfy clearly articulated and prioritized?
Domain Expert Is there traceability between the domain goals and the requirements?

Manager Does the RA description allow an estimate of the effort for implementing it?
Manager Does the reference architecture description show what parts can be implemented using OTS or OSS

components?
Developer Can you identify the allowed and prohibited dependencies between parts of the RA?
Integrator Do you understand the adaptation points of the RA?

QA stakeholder Is there a process to ensure conformance with quality attribute requirements?
Tester For each partition of the RA, can you determine what is needed (e.g., data, special hardware, other units) to

test it?
Analyst If the RA is part of a life cycle or process that includes a procurement decision, does the RA contain the

appropriate information to support the procurement process?
3 1 Architect Is the current document complete in the sense that all information is documented? If not, are there placeholders

for what has yet to be documented along with descriptions of what still needs to be worked out?
4 1 Domain Expert How the power supply related decisions affect the reference architecture?

2 Domain Expert How embedded operating system considerations affect the reference architecture?

This checklist will be divided by stakeholders, that is, a re-

spondent will see only the questions that must be answered

by him/her. Checklist control will allow deadlines, editing

questions and specification of respondents. Considering the

respondent perspective, it will allow changes and reviews in

their answers. FERA-ES Web will also work as a questions

repository. Groups interested in contributing will be able

to submit new questions, which can be made availabe for

all users. The last feature included is the collaboration

support. Collaboration will be provided by comments in

each question. This feature is essential for the applicability

of FERA-ES Web since the checklist requires stakeholders

to discuss and collaborate with each other.

III. EVALUATION REPORT

To evaluate the checklist, we consulted experts. They

provided insights about the checklist during the checklist

construction, and later an evaluation was conducted with

the help of a team of experts from our research group.

These experts have been involved with software architec-

ture, reference architecture, and embedded system in their

research. Each one of them answered a questionnaire in

which each respondent answered about benefits they suspect

that the use of the checklist will offer, and also, to elaborated

on checklist characteristics.

The collected answers showed that the checklist questions

are clear and the support material along the checklist is

enough for the evaluation team to understand all the tech-

nical terms. Results also pointed out that the checklist has

a broad coverage. In addition, the experts suspect that this

checklist can help improve the quality of the documentation

of the reference architecture. One of the benefits cited by

them was flexibility, i.e., the checklist can be easily tailored

to fit in a project scope.

Regarding the downsides and disadvantages of using the

checklist, the experts pointed out that some questions target

stakeholders that may not be known at an early stage of the

reference architecture life cycle. However, these questions

could be discarded with no harm. Another pointed downside

was the difficulty to gather all stakeholders to apply the

checklist. FERA-ES Web should be able to overcome this

limitation by making these meetings asynchronous.

454

In addition to the experts evaluation, the checklist was

applied to evaluate the SiMuS reference architecture for

multi-robotic service systems. The goal of this reference

architecture is to support the architectural stage of the

development of service robots that will perform tasks as

a group [12]. The checklist was distributed among three

evaluators, each of which received a specific set of questions

based on their qualifications. The evaluation team did not

answer all the questions because some of them were not

considered suitable for the level of abstraction adopted by

the reference architecture. They conducted this evaluation in

separate, that is, the evaluators did not collaborate with each

other to understand the reference architecture and answer

the checklist. Despite the lack of collaboration, they had no

doubts regarding the reference architecture or the checklist.

The results of this evaluation pointed out mistakes in

the reference architecture. SiMuS description did not ex-

press the variation parts and how they would affect fixed

parts. The results also pointed out that the SiMuS included

no information about the relationship between views and

stakeholders. On the other hand, the results showed that the

abstraction level was adequate for the reference architecture

purposes. Finally, the inspection showed that the SiMuS

was ready for publishing but still needed reviews before

adoption.

IV. DISCUSSION

Results of our work point out that the checklist is a

flexible and direct approach for evaluate reference archi-

tectures of embedded systems. The amount of questions is

relatively small and the checklist requires minimum effort

to be understood and applied. The checklist also has a

broad coverage, that is, it treats all the concerns of reference

architectures of embedded systems.

Considering knowledge arisen from this work, it is possi-

ble to identify interesting and important research lines that

can be investigated in future work. For example, the appli-

cability of FERA-ES Web for the checklist application. This

tool could help the evaluation team to have a better control

over the checklist application and a good understanding

of the results. Another possibility is the adaptation of the

checklist to fit in other references architecture domain. This

adaptation can be accomplished by the replacement of the

fourth stage, which holds questions about the embedded

systems domain. Thus, the change to other domain should

not affect the remaining stages and, therefore, should allow

the application of the checklist to other domains.

Regarding limitation of this work, the checklist has only

been tested in a research environment, and a validation

in industry could help demonstrate the checklist validity,

applicability and pertinence. Also, the evaluation did not

use a quantitative evaluation approach. Such evaluation

would give a better idea of the improvement achieved by

this checklist in evaluation of reference architectures of

embedded systems.

V. CONCLUSIONS

This work presented a checklist for evaluation of refer-

ence architectures of embedded systems and demonstrated

its applicability. As main result, we showed that the check-

list is adequate for use, as considered by the experts, and

also demonstrated in the checklist application on SiMuS.

We also presented three future work possibilities: The

checklist could be used to validate FERA-ES, which is

currently under development, to assist its application. It

could be adapted to another domain to prove its flexibility.

Another possibility is to conduct a case study on a reference

architecture used in the industry. As a result we expect

to contribute to the quality of reference architectures of

embedded systems.

VI. ACKNOWLEDGMENTS

This work is supported by Brazilian funding agencies:

FAPESP, CNPq and Capes.

REFERENCES

[1] W. Wolf, Computers as Components Principle of Embedded Com-
puting System Design. Morgan Kaufman, 2008.

[2] U. Eklund, O. Askerdal, J. Granholm, A. Alminger, and J. Axelsson,
“Experience of introducing reference architectures in the develop-
ment of automotive electronic systems,” in International workshop on
Software engineering for automotive systems, ser. SEAS ’05. New
York, NY, USA: ACM, 2005, pp. 1–6.

[3] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference archi-
tecture and product line architecture: A subtle but critical difference,”
in ECSA, 2011, pp. 207–211.

[4] ISO/IEC/(IEEE), “ISO/IEC 42010 (IEEE Std) 1471-2000 : Systems
and Software engineering - Recomended practice for architectural
description of software-intensive systems,” 07 2007.

[5] S. Angelov, J. J. M. Trienekens, and P. W. P. J. Grefen, “Towards
a method for the evaluation of reference architectures: Experiences
from a case,” in ECSA, 2008, pp. 225–240.

[6] B. Graaf, H. W. van Dijk, and A. van Deursen, “Evaluating an
embedded software reference architecture – industrial experience
report,” in CSMR, 2005, pp. 354–363.

[7] R. F. Barcelos and G. H. Travassos, “Arqcheck: Uma abordagem
para inspeção de documentos arquiteturais baseada em checklist,” in
V Simpósio Brasileiro de Qualidade de Software, SBQS 2006, 2006,
pp. 175 – 188.

[8] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
P. Merson, R. Nord, and J. Stafford, Documenting Software Archi-
tectures: Views and Beyond, Addison-Wesley, Ed. Addison-Wesley,
2011.

[9] N. Rozanski and E. Woods, Software Systems Architecture - Working
with stakeholders using viewpoints and perspectives, Addis, Ed.
Addison-Wesley Professional, 2011.

[10] E. Y. Nakagawa, F. Oquendo, and M. Becker, “Ramodel: A reference
model for reference architectures,” in WICSA/ECSA, 2012, pp. 297–
301.

[11] M. Guessi, E. Y. Nakagawa, F. Oquendo, and J. C. Maldonado, “Ar-
chitectural description of embedded systems: a systematic review,”
in ISARCS, 2012, pp. 31–40.

[12] D. Feitosa and E. Y. Nakagawa, “Simus - uma arquitetura de
referência para sistemas multirrobóticos de serviço.” Master’s thesis,
University of São Paulo, 2013.

455

Empirical Evidence on Developer’s Commit Activity
for Open-Source Software Projects

Sihai Lin1, Yutao Ma2*, Jianxun Chen1

1. College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
2. State Key Lab of Software Engineering, Wuhan University, Wuhan 430072, China

*e-mail: ytma@whu.edu.cn

Abstract—The manner of development is an important factor for
the success of open-source software (OSS). Through mining the
information of developer’s commits, researchers within the
community of software engineering can investigate evolutionary
aspects of OSS projects and analyze developer’s behaviors and
collaboration. In this paper we conducted statistical analyses on
commit activity for four OSS projects, and found that (1) the
commit size in terms of new definitions roughly follows a power-
law distribution, and exhibits self-similarity in the temporal
dimension; (2) there are five common zones for the distribution
of commit activity across various releases in terms of our
indicator, and there exists an interesting “deadline effects” in the
last zone (i.e. so-called rushing deadline); and (3) developers do
prefer to fix bugs in the stage of rushing deadline, perhaps due to
deadline pressure. These findings may provide a new insight into
schedule planning, resource allocation and quality assurance of
OSS projects.

Keywords-open-source softare; commit; power law; release;
self-similarity

I. INTRODUCTION

Over the last two decades, open-source software (OSS) has
widely been used by individuals, companies, universities and
governments all over the world. For example, as one of the
prime examples of OSS, the Apache HTTP Server became the
most popular web server software in use in April 1996, and as
of December 2012 it was estimated to serve 63.7% of all active
websites on the Internet [1]. Usually, the first perceived
advantage of OSS is to lower software costs and simplify
license management. Hence, more and more enterprises began
to use OSS systems instead of commercial software to reduce
IT budgets. A Zenoss survey published in 2010 revealed that
98% of the survey respondents indicated usage of open-source
systems in their enterprises [2]. According to a report of the
Standish Group, the adoption of OSS models has resulted in
savings of about $60 billion per year to consumers [3].

OSS’s great potential to achieve success depends largely on
the manner of development. An OSS system or project is
typically built and maintained by a community of volunteer
programmers or developers with a decentralized self-
organizing organization structure. Since they are distributed
among different geographic regions in the world and work for
one or more OSS projects at different times, this demands for
software tools that can assist their collaborative software

development and facilitate source code management and
conflict resolution. As we know, revision control systems such
as Concurrent Versions System (CVS) and later Subversion
(SVN) and Git are well-known examples of such software tools,
which could help developers to centrally manage source code
files and the changes to those files in the repository of an OSS
project.

Apache SVN is such an OSS which can maintain current
and historical versions of various types of files in a repository,
and has been deemed as a compatible successor to CVS. Every
OSS project (on the SourceForge, Google Code, etc.) has a
history log for files’ each change and the related message ever
committed to its SVN repository. Thus, through mining OSS
developer’s commits, on one hand, researchers can investigate
evolutionary aspects of an OSS system as well as its
components; on the other hand, this could provide us a
statistical way to analyze developer’s individual behaviors and
teamwork, which might prove useful in quantifying and
understanding the dynamics of human behavior on a collective
scale [4]. Furthermore, such empirical evidence may offer new
insights into schedule planning, resource allocation and quality
assurance of an OSS system [5].

Although previous studies focused on commit size
distribution [6,7,8], commit classification [6,9,10], developer’s
contribution and expertise estimation [11,12,13], and task
assignment [11,14], as far as we know, it is surprising that there
are few representative statistical analyses on commit activity
for OSS projects across a certain number of successive releases.
To gain a deeper understanding of how an OSS project evolves,
in this paper we will analyze 4 projects on the Apache.org in an
attempt to answer the following questions: Are there any
general rules within the duration between two adjacent releases
(e.g. 2.1 and 2.2) that would be found in the whole lifecycle?
And, does such an activity within the community of OSS
developers have any characteristics similar to those found in
professional software companies?

So, the goal of this paper is to explore what distinct feature
commit activity possesses and how such an activity is
distributed over different releases. Based on case studies, our
research could provide empirical evidence for the evolutionary
rules of OSS projects. Moreover, this would offer dedicated
guidance for OSS developers to draw up project schedule and
release a new version better. The main contributions of this
paper are listed as follows.

456

(1) Investigating general statistical laws of commit activity
for OSS projects in the whole lifecycle as well as within the
duration between two adjacent releases;

(2) Identifying 5 common zones when analyzing the
distribution of commit activity across various releases in the
temporal dimension;

(3) Exploring the correlation between commit activity
within the above-mentioned zones and software bugs fixing
(and other types of development activities).

The remainder of this paper is structured as follows.
Section II introduces related work. Section III explains the
analysis method we followed, including research issues and
data processing. In Section IV, we present the results of our
sample of 4 OSS projects. Finally, Section V concludes this
paper and puts forward future work.

II. RELATED WORK

For an OSS project, developers check out a working copy
from its SVN repository, update files in the local workspace
with the latest ones from the repository, and commit their
changes to those local files to the repository. Commit is an
important activity for OSS development, so there are a growing
number of studies that offer some interesting findings on
developer’s commits to OSS projects during software lifecycle.

Commit size distribution describes the probability that a
given commit is of a particular size [8]. Hattori et al. found that
the commit size in terms of the number of files follows a Pareto
distribution [6], while Arafat et al. discovered that the commit
size in terms of source lines of code (SLOC) follows a power-
law distribution [7]. Such a distribution in terms of lines of
code (LOC) is confirmed to be best described by a generalized
Pareto model [8] similar to the finding in [7]. The commit size
distribution with a long tail shows that developers might
conduct large-size commits, though they are less likely to occur.
Compared with the previous work, in this paper we will
redefine commit size in terms of other indicators, and analyze
their statistical distributions.

Because there is no recognized characterization of commit
activity, its categorization is still vague. Hattori et al. proposed
a classification framework in two dimensions (i.e. commit size
and the comment of a commit) [6] to relate commits to certain
types of activities such as code management and development.
In [9], the research examined the version histories of 9 OSS
systems to characterize a typical commit according to the
number of files, the number of LOC, and the number of hunks
committed together, and the results showed that the size
categories of commits can be an indicator for the types of
maintenance activities being performed. In order to build a
categorization of commit types, Dragan et al. put forward an
automated method by means of the meta-data for the stereotype
information of methods added or deleted in a commit [10]. In
this paper we plan to explore some characteristic rules recurred
in various releases of an OSS project according to the proposed
categorization [6].

Besides the above-mentioned studies, recent related
research work focused on measuring developer contributions to

an OSS project, and on recommending appropriate developers
to tackle the changes to a specific file. Gousios et al. utilized
the LOC that a developer commits to a SVN repository as a
basic metric for development effort estimation [11]; Schuler et
al. mined usage expertise from version archives to recommend
experts for specific files [12], because developers who changed
a file most often have the probable implementation expertise;
considering that a developer who has actually contributed
changes to specific files in the past will probably be a good
choice of persons for their current or future changes,
researchers proposed some new approaches [13,14] to
assigning a task that performs software changes to a particular
file to an appropriate developer or a ranked list of developers
recommended. Actually, this paper has nothing to do with the
studies in this field.

III. ANALYSIS METHODOLOGY

A. Research Issues
Like commercial software, OSS always tends to evolve

through successive releases with incremental development. In a
new release, the system will be updated by adding new
functionality, removing redundant components or changing the
existing ones, to deliver a set of required functionality or non-
functionality such as performance, security and reliability.
Changes to specific files committed by developers become an
integral part of the system when a new release is delivered, and
no other changes will be allowed after the delivery. Then,
subsequent changes to files in the system’s SVN repository are
going to be integrated into future releases. Because there are
rarely previous studies taking release into account, in this paper
we want to explore the following questions.

Q1: Are there any general rules of commit activity recurred
both within the duration between two adjacent releases and in
the whole lifecycle? In particular, does the distribution of
commit size in terms of new indicators have some form of self-
similarity in the temporal dimension?

Q2: Are there any common zones for the distribution of
commit activity across various releases? That is to say, we
want to detect whether there are any similar zones in which
commit activities are active or inactive in terms of commit size.

Q3: If we do find such zones, are there any relationships
between certain types of development activities and them? In
other words, we are especially concerned whether these zones
are related to bug fixing, code refactoring, and other activities.

B. Data Collection
Our methodology is based on case studies, so we selected

four OSS projects written in Java on the Apache.org: Apache
POI, Tomcat, Struts2, and Derby. The purpose of Apache POI
is to create and maintain Java Application Programming
Interfaces (APIs) for manipulating various file formats. Tomcat
is an open source web server and servlet container developed
by the Apache Software Foundation (ASF). Struts2 is an
elegant, extensible framework for creating enterprise-ready
Java web applications, and it uses and extends the Java Servlet
API to encourage developers to adopt a model–view–controller
(MVC) architecture. Derby is a rational database management

457

system (RDBMS) developed by the ASF that can be embedded
in Java programs and used for online transaction processing.

TABLE I. OSS PROJECTS ANALYZED

Project Description Date Class Commits

POI APIs for manipulating
file formats

2012-10-12

2,438 8,588

Tomcat Servlet container 1,980 14,481

Struts2 Framework for web
applications 1,521 9,999

Derby RDBMS 2,974 21,529

Table I shows the brief introduction to the projects analyzed,
including the date we conducted our experiments, the number
of class files and the total number of commits analyzed. These
projects from different application domains were chosen to be
experimental subjects based upon that they have been active for
at least 2 years. For each project, we retrieved commit history
of class files (from their respective main trucks of SVN
repository) and release history for the whole system (from their
respective websites) till the analysis date, and built sets of
commit data within the duration between two adjacent releases
according to release history. Moreover, we mined and collected
bug information of these projects from Bugzilla and JIRA
issues (http://www.atlassian.com/software/jira/overview).

C. Data Processing
As for previous work about the distribution of commit size

[6,7,8], the size was defined in terms of the number of files,
LOC and other metrics. Here, we first present two new
definitions of commit size as follow.

Definition 1. After a class file was created in a SVN
repository, RC is defined as the number of revisions to the class
till its deletion. If a developer commits a change to a specific
class from his/her local workspace, the value of RC will
increase by 1.

Definition 2. From the perspective of a project, CN is
defined as the total number of commits per time unit (e.g. one
day, one week, or one month). It indicates the level of activity
of a project during a given unit of time.

To answer the first question presented in the subsection
III.A, we examined the distribution of commit size in terms of
RC and CN. Power function, exponential function, polynomial
function and logarithmic function were utilized to fit release-
level (i.e. the duration between two adjacent releases) and
lifecycle-level data sets so as to indentify the best fitting curve
and its corresponding function expression. Note that we used a
cumulative distribution function (CDF) to reduce noise levels
during the estimation of the scaling exponent of power function
with the method introduced in [15]. It represents the frequency-
of-occurrence of m with value greater than or equal to a given
number,

1() () () ~ (() ~).r r

m m

P m P m P m d m m P m m (1)

In order to answer the second question, we identified
common zones for the distribution of commit activity across
various releases according to two parameters, namely the

duration between two adjacent releases and CN. By
normalizing both the former and the latter, their different
values for the four OSS projects analyzed could be compared
on a notionally common scale. The formulae of such
normalization for these two parameters are described as follow.

() ,
tu tu

tu f tu
D tu

 (2)

where D is the duration between two adjacent releases, and tu
represents the ith time unit within D.

min

max min

() ,cn cn
cn g cn

cn cn
 (3)

where cn is the total number of commits during the ith time
unit, and cnmax and cnmin are the maximum and the minimum
value of cn within D, respectively.

However, for the projects analyzed, the distribution of tu is
uneven for different pairs of adjacent releases. Hence, we used
a simple partitioning method to cluster neighboring normalized
time units across various releases. Then, the normalized total
number of commits would be converted to another form of
expression, which is the sum of cn within a new unified time
unit for all releases of the 4 projects in question.

() ,
tu c

cn h cn cn (4)

where c is the unified time unit, and its value is equal to the
unified normalized D (whose value is 1 in this paper) divided
by the number of equal parts K (e.g. 100).

In addition, we analyzed the log message of commits within
the identified common zones by using Tf-idf (term frequency–
inverse document frequency) to answer the third question. Tf-
idf is a numerical statistic which reflects how important a word
is to a document in a collection or corpus [16].

2logij ij

N
w tf

n
, (5)

where wij is the weight of term Tj in document Doci, tfij denotes
the frequency of term Tj in document Doci, N indicates the
number of documents in corpus, and n is the number of
documents where term Tj occurs at least once. The document
Doci is the set of all log messages of commits within Di. Hence,
we attempt to know what kind of activities developers could do
within those common zones in terms of the terms in log
messages of commits.

IV. RESULTS AND DISCUSSION

A. Experimental results
Besides the lifecycle of these four OSS projects, we

analyzed 11, 10, 20 and 14 releases of POI, Tomcat, Structs2
and Derby, respectively. Due to space limitations, Table II
shows the fitting statistics of a small number of samples,
including lifecycle-level and two randomly-selected release-
level cases. The power exponents for all release-level cases are

458

presented in Figure 1, where X axis denotes Di and Y axis
represents power exponent. The results show that all cases for
RC roughly follow a power-law distribution, suggesting an
obvious self-similarity. The observation indicates that most of
classes are modified a few times, whereas the revisions to a
small number of classes are very large within either the
duration between two adjacent releases or the whole lifecycle.
So, we will pay more attention to these frequently-modified
classes in the evolutionary process of projects.

Then, we analyzed the distribution of commit size in terms
of CN by using the same fitting method, where the time unit is

set as day and week. L and R denote lifecycle and release,
respectively; D and W represent time unit (i.e. one day and one
week). Due to space limitations, Table III only shows the
fitting statistics of a small number of samples. For each project,
release-level cases are analyzed in terms of the same duration
between any two adjacent releases used for RC. The results
show that all cases for CN roughly follow a power-law
distribution, suggesting there is also an obvious self-similarity
between lifecycle and releases. The observation indicates that
the total number of commits in most of time units is small,
whereas few time units contribute a large number of commits
to its SVN repository.

TABLE II. FITTING CURVES FOR RC

Sample Logarithmic Polynomial Exponential Power
POI

(lifecycle)
y = -472.1ln(x) + 1527.100

R2=0.645
y = 0.987x2 -72.919x + 1112.100

R2=0.473
y = 474.06e-0.109x

R2=0.878
y = 8154.4x-1.730

R2=0.968
POI

(3.5beta4-beta5)
y = 0.908ln(0.166x)

R2=0.723
y = 0.031x2 - 0.397x + 1.135

R2=0.795
y =4.107e-1.414x

R2=0.889
y = 1.002x-2.236

R2=0.999
POI

(3.5beta5-beta6)
y = -0.343ln(0.153x)

R2=0.657
y = 0.023x2 - 0.319x + 0.986

R2=0.707
y = 5.664e-1.735x

R2=0.913
y = x-2.624

R2=0.999
Tomcat

(lifecycle)
y = -353ln(x) + 1396.600

R2=0.712
y = 0.161x2 - 25.095x + 820.030

R2=0.478
y = 437.76e-0.049x

R2=0.903
y = 11264x-2.011

R2=0.946
Tomcat

(7.0.5beta-7.0.6)
y = -0.237ln(0.092x)

R2=0.598
y = 0.003x2 - 0.096x + 0.593

R2=0.526
y = 3.075e-1.132x

R2=0.908
y = 0.999x-1.826

R2=0.978
Tomcat

(7.0.12-7.0.14)
y = -0.239ln(0.080x)

R2=0.680
y = 0.004x2 - 0.101x + 0.625

R2=0.585
y = 2.572 e-0.956x

R2=0.921
y = 1.003x-1.648

R2=0.995
Struts2

(lifecycle)
y = -418.6ln(x) + 1426.4

R2=0.838
y = 0.500x2 - 48.791x + 970.16

R2=0.644
y = 668.65e-1.107x

R2=0.895
y = 13708x-1.956

R2=0.918
Struts2

(2.0.6-2.0.8)
y = -0.744ln(0.127x)

R2=0.856
y = 0.178x2 - 0.397x + 1.135

R2=0.803
y = 3.659e-0.623x

R2=0.917
y = 0.973x-2.224

R2=0.969
Struts2

(2.0.9-2.0.11)
y = -0.277ln(0.153x)

R2=0.878
y = 0.095x2 - 0.544x + 1.872

R2=0.799
y = 2.676e-0.899x

R2=0.925
y = x-1.876

R2=0.989
Derby

(lifecycle)
y = -513.2ln(x) + 2036.2

R2=0.727
y = 0.134x2 - 28.427x + 1097

R2=0.656
y = 448.97e-0.042x

R2=0.806
y = 43448x-1.884

R2=0.978
Derby

(10.1.2.1-10.1.3.1)
y = -0.768ln(0.433x)

R2=0.748
y = 1.094x2 - 0.709x + 0.863

R2=0.622
y = 2.494e-0.181x

R2=0.923
y = 1.753x-1.963

R2=0.989
Derby

(10.5.1.1-10.5.3.0)
y = -0.665ln(0.565x)

R2=0.767
y = 1.345x2 - 0.168x + 1.213

R2=0.749
y = 3.875e-1.923x

R2=0.908
y = 1.877x-1.281

R2=0.998

TABLE III. FITTING CURVES FOR CN

Sample Logarithmic R2 Polynomial R2 Exponential R2 Power R2

POI (L-D) y=-65.04ln(2.764x) 0.791 y=0.002x2-0.959x+81 0.877 y=370.3e-0.078x 0.929 y=1.002x-2.236 0.999
POI (R-D) y=-5.870ln(2.023x) 0.820 y=0.002x2-0.234x+23.54 0.895 y=45.23e-0.096x 0.908 y=3.374x-1.485 0.979
POI (L-W) y=-27.5ln(2.345x) 0.899 y=0.001x2-1.045x+98.86 0.826 y=127.6e-0.024x 0.908 y=443.7x-0.631 0.987
POI (R-W) y=-1.342ln(2.177x) 0.899 y=0.002x2-0.763x+11.32 0.876 y=23.87e-0.075x 0.922 y=46.482x-0.130 0.989

Tomcat (L-D) y=-57.81ln(2.847x) 0.851 y=0.006x2-2.137x+ 124.2 0.653 y=302.8e-0.080x 0.912 y=3441x-1.36 0.991
Tomcat (R-D) y=-17.81ln(1.192x) 0.843 y=0.007x2-1.182x+ 23.18 0.687 y=28.27e-0.085x 0.902 y=201.7x-1.281 0.993
Tomcat (L-W) y=-15.17ln(0.874x) 0.902 y=0.001x2-0.429x+53.48 0.897 y=60.55e-0.013x 0.928 y=309.7x-0.619 0.989
Tomcat (R-W) y=-8.473ln(1.817x) 0.877 y=0.001x2-0.478x+13.47 0.875 y=6.945e-0.002x 0.931 y=32.79x-0.615 0.989
Struts2 (L-D) y=-72.04ln(2.544x) 0.798 y=0.021x2 -0.433x+90 0.865 y=289.3e-0.032x 0.912 y=45.85x-1.192 0.989
Struts2 (R-D) y=-32.17ln(0.817x) 0.768 y=0.014 x2-2.192x+ 13.58 0.797 y=56.45e-0.092x 0.879 y=310.65x-1.018 0.976
Struts2 (L-W) y=-33.5ln(1.945x) 0.889 y=0.013x2 -1.421x+120.61 0.866 y=134.6e-0.024x 0.919 y=376.7x-0.473 0.997
Struts2 (R-W) y=-10.28ln(1.234x) 0.788 y=0.006x2 -0.826x+10.14 0.878 y=16.181e-0.018x 0.920 y=47.35x-0.386 0.974
Derby (L-D) y=-104.23ln(2.413x) 0.867 y=0.065x2-1.871x+ 89.2 0.848 y=327.8e-0.092x 0.911 y=761.2x-1.181 0.981
Derby (R-D) y=-57.38ln(1.385x) 0.787 y=0.017x2-1.192x+ 43.46 0.864 y=35.67e-0.074x 0.899 y=413.5x-1.474 0.959
Derby (L-W) y=-37.65ln(0.801x) 0.799 y=0.008x2 -0.454x+33.48 0.834 y=148.55e-0.011x 0.918 y=276.7x-1.261 0.987
Derby (R-W) y=-25.23ln(1.983x) 0.857 y=0.007x2 -0.499x+27.28 0.895 y=8.967e-0.008x 0.911 y=56.43x-0.373 0.988

According to the results of the distribution of commit size
in terms of CN, we further processed release-level data (whose
time unit is one day) by normalizing and clustering to identify
common zones across various releases. The unified D was
evenly divided into 100 units, and CN was re-calculated based

on the formula (4). The result for 55 releases of the 4 projects is
illustrated by Figure 2, where X axis denotes time line, and Y
axis represents normalized CN. Taking into consideration the
observation that CN follows a power-law distribution, we set a
threshold to filter out trivial values of data points.

459

It is obvious from Figure 2 that commits within the zones I
and III are less active than those of other zones. On the other
hand, it is surprising that commits within the zone V are also
active; furthermore, the average of commits within this zone is
slightly larger than those of other active zones. This implies
that with deadline approaching developers are still busy in
preparing a new release, and the phenomenon what we found is
similar to software engineers’ working overtime before the
release of a new version to be delivered in professional
companies. That is to say, although the date of a new release of
an OSS project is not strictly fixed, within the zone V
developers are still rushing out a new release which should be
delivered in time, which is known as “deadline effects” [17].

Figure 1. Scatter plot of power exponents for release-level cases.

Figure 2. Scatter plot of commits after normalizing and clustering.

Hence, according to the common zones identified in Figure
2, the duration between two adjacent releases (or so-called the
period of a new release) could include 5 stages: preparation,
active development, interim, active development, and rushing
deadline. In the process of iterative and incremental
development of software systems, the functional requirements
for a new release should be validated and verified by software
testing. In order to assure quality, OSS developers often locate
and fix software bugs with the support of bug/issue tracking
software such as Bugzilla and JIRA issues. Then, we want to

explore the distribution of the activity of bug fixing over
different stages, and to confirm whether developers tend to fix
bugs in the stage of rushing deadline.

Figure 3. Box-and-whisker plot of bug fixing within various zones.

Because a box plot (also known as a box-and-whisker plot)
can display differences between populations without making
any assumptions of the underlying statistical distribution, we
made use of it to analyze the data of commit log messages
about bug fixing for the four projects in question. The result is
displayed in Figure 3, where X axis represents four zones (i.e.
II, III, IV and V) in Figure 2, and Y axis denotes the number of
bugs fixed within the zone. The plot is interpreted as follows:
the bottom and top of the box are the 25th and 75th percentile
(the lower and upper quartiles, respectively), and the band near
the middle of the box is the 50th percentile (the median); the
“red star” is the outlier; and p-value attached to the plot
expresses the probability that the observed difference in the
number of bugs fixed among four zones is expected by chance.

Obviously, the difference in the number of bugs that have
been fixed among zones is significant over the usual criterion
of 99% confidence, which is calculated by using the Kruskal-
Wallis test. Statistically significant differences illustrate an
interesting finding for OSS project developers who prefer to fix
bugs in the stage of rushing deadline, perhaps due to deadline
pressure. But for active zones, the difference does not seem so
significant. Besides bug fixing, what kinds of common
activities developers would perform within these zones?

TABLE IV. TERMS WITH HIGH TF-IDF WEIGHT WITHIN VARIOUS ZONES

POI Tomcat Struts2 Derby
avoid show misname compute
record import rename contribute
clash scan revert backup

typecast trim spend alter
eliminate replace change attach

mod complete build return
apply extend redesign boot

alleviate sync report prepare
import suggest inject grant

centralize break import import

Then, Tf-idf (see the formula (5)) was used to analyze the
problem. Because it is related to the kind of development
activities, we focus on verbs that have high weight in commit
log messages. After some highly-frequent terms were filtered

POI Tomcat

Struts2 Derby

I II III IV V

II III IV V

p<0.001

460

out, a ranked list of terms could be obtained with a simple
program. The result of top-10 terms with high weight is listed
in Table IV. Considering that these projects analyzed are
domain-specific and maintained by different developers, there
are no verbs except “import” recurred in all projects, which
demands for an elaborate investigation on the relationship
between development activities and these common zones.

B. Threats to validation
Although we tried to diversify the characteristics of projects

by carefully choosing four different OSS projects, some of our
findings may not be generalized to other projects. In addition,
these findings may not be suitable for industrial software
systems, since OSS projects have particular characteristics
different from those of commercial software.

In fact, an active OSS project evolves over time. The whole
lifecycle presented in this paper is an approximate estimation
of the real entire lifecycle. Even so, we argue that the power-
law distribution of RC and CN for the period of development in
the future still holds because of the well-known “Matthew
effect”. The number of partition units K for the unified duration
between two adjacent releases may influence the common
zones that have been identified in this paper. So, we will seek
to detect more accurate range and boundary of these common
zones by analyzing more OSS projects. Another issue concerns
the usage of log messages as the information of bug fixing,
because there is lack of standardization for commit log
messages. The method depending on the frequency of
keywords to analyze the bug information in our study may be
slightly biased.

V. CONCLUSION AND FUTURE WORK

Developers from all over the world can work together to
develop an OSS project with the support of revision control
systems such as CVS and SVN. Commit is an important
activity of such OSS development, which attracted increasing
attention from researchers within the community of software
engineering. In this paper we conducted statistical analyses on
commit activity for 4 OSS projects across a certain number of
successive releases, and uncovered the following findings:

(1) The commit size in terms of RC and CN roughly
follows a power-law distribution, within both the duration
between any two adjacent releases and the whole lifecycle,
implying an obvious self-similarity in the temporal dimension;

(2) We analyzed 55 releases of these 4 projects in question
in terms of CN at the scale of one day, identified 5 common
zones for the distribution of commit activity, namely
preparation, active development, interim, active development
and rushing deadline, and found an interesting “deadline
effects” in the stage of rushing deadline, though the date of a
new release of these projects is not strictly fixed;

(3) We mined commit log messages and bug information
from Bugzilla and JIRA, and found statistically significant
differences in the number of bug fixed among 4 common zones,
suggesting that developers do prefer to fix bugs in the stage of
rushing deadline, perhaps due to deadline pressure.

The future work is to detect more accurate range and
boundary of these common zones by analyzing more OSS
projects, and to relate the characterization of these common
zones to more types of development and maintenance activities
to facilitate evaluating the spread of bugs.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under grant Nos. 61272111 and 61100017.

REFERENCES

[1] http://en.wikipedia.org/wiki/Apache_HTTP_Server
[2] Zenoss Inc., “2010 Open Source Systems Management

Survey,” http://community.zenoss.org/servlet/JiveServlet/download/38-
3009/ OpenSourceManagement.pdf, 2010.

[3] Standish Group International, “The Trends in Open
Source,” http://www.marketwire.com/press-release/free-open-source-
software-is-costing-vendors-60-billion-new-standish-group-
international-844462.htm, 2008.

[4] A.-L. Barabási, “The origin of bursts and heavy tails in human
dynamics,” Nature, 435(7039): 207–211, 2005.

[5] B. O'Sullivan, “Making sense of revision-control systems,”
Communications of the ACM, 52(9): 56–62, 2009.

[6] L. Hattori and M. Lanza, “On the nature of commits,” In Proceedings of
the 4th International ERCIM Workshop on Software Evolution and
Evolvability at the 23rd IEEE/ACM International Conference on
Automated Software Engineering, Italy, 2008, pp. 63–71.

[7] O. Arafat, and D. Riehle, “The Commit Size Distribution of Open
Source Software,” In Proceedings of the 42nd Hawaii International
Conference on Systems Science, USA, 2009, pp. 1–8.

[8] C. Kolassa, D. Riehle, M. A. Salim, “A Model of the Commit Size
Distribution of Open Source,” In Proceedings of the 39th International
Conference on Current Trends in Theory and Practice of Computer
Science, Czech Republic, 2013, pp. 52–66.

[9] A. Alali, H. Kagdi, J. I. Maletic, “What’s a Typical Commit? A
Characterization of Open Source Software Repositories,” In Proceedings
of the 16th IEEE International Conference on Program Comprehension,
The Netherlands, 2008, pp. 182–191.

[10] [N. Dragan, M. L. Collard, M. Hammad, J. I. Maletic, “Using
stereotypes to help characterize commits,” In Proceedings of the 27th
IEEE International Conference on Software Maintenance, USA, 2011,
pp. 520–523.

[11] G. Gousios, E. Kalliamvakou, D. Spinellis, “Measuring developer
contribution from software repository data,” In Proceedings of the 2008
International Working Conference on Mining Software Repositories,
Germany, 2008, pp. 129–132.

[12] D. Schuler and T. Zimmermann, “Mining usage expertise from version
archives,” In Proceedings of the 2008 International Workshop on Mining
Software Repositories, USA, 2008, pp. 121–124.

[13] H. H. Kagdi, M. Hammad, J. I. Maletic, “Who can help me with this
source code change?” In Proceedings of the 24th IEEE International
Conference on Software Maintenance, China, 2008, pp. 157–166.

[14] H. Kagdi, M. Gethers, D. Poshyvanyk, M. Hammad, “Assigning change
requests to software developers,” Journal of Software: Evolution and
Process, 24(1): 3–33, 2012.

[15] A. Clauset, C. R. Shalizi, M. Newman, “Power-law distributions in
empirical data,” SIAM Review, 51(4): 661–703, 2009.

[16] http://en.wikipedia.org/wiki/Tf%E2%80%93idf
[17] C. Fershtman, D. J. Seidmann, “Deadline effects and inefficient delay in

bargaining with endogenous commitment,” Journal of Economic Theory,
60(2): 306–321, 1993.

461

The Impact of Confirmation Bias on the Release-
based Defect Prediction of Developer Groups

Gul Calikli and Ayse Bener
Ryerson University, Data Science Laboratory,

Department of Mechanical and Industrial Engineering
Toronto, CANADA

{gcalikli, ayse.bener}@ryerson.ca

Abstract—During software development life cycle (SDLC), source
codes are created and updated by groups of one or more
developers. Information about the defect rates introduced by
developer groups for the current release of a software product
might guide project managers to form developer groups in order
to manage defect rates for the next releases. In this research, we
use partial least squares regression (PLSR) and principal
component regression (PCR) to model the relation between defect
rates and a specific cognitive aspect of developers, namely
confirmation bias. In order to empirically estimate the
performance of our model, we use datasets from three industrial
software projects.

Keywords-software engineering; defect rates; software
psychology; confirmation bias; release management.

I. INTRODUCTION
In software development, managers need to make decisions
under uncertainty to allocate valuable resources effectively.
Prediction models are oracles to guide project managers in
taking these critical decisions. In empirical software
engineering literature, there are various decision-making
models that aim to predict pre-release defects so that
exhaustive testing is prevented and more defects are detected
in shorter times [1], [2]. This results in both increased
efficiency of the software testing phase and timely delivery of
the software product to the market. There are also models that
can be useful in the early detection of post-release defects
before the software is released to the market [3].

Learning based prediction models usually take static code
attributes (i.e. McCabe and Halstead metrics) as input to train
the algorithms. There are also prediction models that use other
metric types, such as design metrics that are extracted from
requirement documents, development history metrics (i.e.
churn metrics) [1], [4]. Combinations of different metric
types were also used to enhance performance of prediction
models. For instance, Nagappan and Ball [5] combined
dependency and churn metrics to predict post-release faults in
the binary files of Windows Server 2003. Misirli-Tosun et al.
[6] used network and churn metrics in order to build defect
predictors for different defect categories. Jiang et.al used
combination of static code and design metrics that were
extracted from requirements documents [4]. Turhan et al. [7]
reduced the probability of false alarms by supplementing static
code metrics by their call graph based ranking (CGBR)

framework
In order to enrich the content of input data, the above-

mentioned studies focused primarily on product and process
attributes. However, the thought processes of people may have
a significant impact on software defect density, as software is
developed and tested by people [8], [9]. Therefore, it is highly
likely that further progress in defect prediction performance
may be achieved by taking into account cognitive aspects of
people. Developers use some heuristics to solve the problems
they encounter during SDLC and these heuristics may lead to
cognitive biases, which are defined as the deviations of human
mind from the laws of mathematics and logic. In this research,
we focus on a specific cognitive bias type called confirmation
bias. There are empirical studies showing the existence of
confirmation bias among software engineers and programmers
[8].

The prediction model that we build in this research is
different than the ones in the literature in the following
aspects:

 Instead of predicting defect-prone parts of software, our
model predicts the defect rates of developer groups.

 Majority of existing prediction models use product and
process related metrics. There are few models that
employ people-related metrics [10], [11], [12].
However, they do not take into account people's
thought processes. Our model uses information
regarding developers' confirmation biases. In our
previous work [13], we used confirmation biases to
build models to predict defect prone parts of software.

 Our proposed model performs “release-based"
prediction. The model cumulatively learns from the
past releases to predict the next release. Most existing
prediction models in the literature perform 10 fold
cross validation regardless of the release information,
since they employ public data sets.

The rest of the paper is organized as follows. Section 2
gives background on prediction models in software
engineering and confirmation bias. Section 3 describes our
empirical work consisting of data, methodology, metric
collection, and prediction model. Section 4 discusses the
results of the study. We discuss threats to validity in Section
5. Section 6 concludes and mentions potential future
directions.

462

II. RELATED BACKGROUND

A. Prediction Models to Guide SDLC
Models for assessing software failure risk, in terms of

predicting defects in a specific module or function, have been
proposed in previous research [1], [2], [14], [15]. Software
testing is the most popular defect detection method, however,
when the size of projects grow in terms of both lines of code
and effort spent, testing becomes more computationally
expensive. Popular ways of detecting software defects prior to
testing phase are expert judgments and manual code reviews.
Although code reviews are accepted to be an effective solution
they are labor intensive [5]. Therefore, research in this area
has focused on finding cost-effective defect detection/
prediction methods [1] .

Software development is one domain in which remarkably
effective defect prediction models have been generated by
using learning-based models and data mining methods [1-7],
[14], [15] These models took into account product (static code
metrics, repository metrics, etc.), and process (organizational
factors, experience of people, etc.) attributes. However, in
software development projects people (developers, testers,
analysts) are the most important pillar, but very difficult to
model. In this research, we focus on a specific cognitive aspect
of people, namely confirmation bias.

B. Confirmation Bias in Cognitive Psychology
In cognitive psychology, confirmation bias is defined as

the tendency of people to seek for evidence that could verify
their hypotheses rather than seeking for evidence that could
falsify them. Wason used the term “confirmation bias” for the
first time, in his rule discovery task [16] and later in his
selection task [17].

The experimental procedure of Wason’s selection task can
be explained as follows: Initially, the subject is given a record
sheet on which the triple “2 4 6” is written and (s)he is told
that “2 4 6” conforms to this rule. In order to discover the rule,
the subject is asked to write down triples together with the
reasons of his/her choice on the record sheet. After each
instance, the examiner tells the subject whether the instance
conforms to the rule or not. The subject can announce the rule
only when (s)he is highly confident. If the subject fails to
discover the rule at the first attempt, (s)he can continue giving
instances together with reasons for his/her choice. This
procedure continues iteratively until either the subject
discovers the rule or (s)he wishes to give up. However, if the
subject cannot discover the rule in 45 min, the experimenter
aborts the procedure.

On the other hand, in Wason’s selection task, the subject is
given four cards, where each card has a letter on one side and
a number on the other side. These four cards are placed on a
table showing D, K, 3, 7, respectively. Given the rule “Every
card that has a D on one side has a 3 on the other side", the
subject is asked which card(s) must be turned over to find out
whether the rule is true or false.

C. Confirmation Bias in Relation to Software Development
Due to confirmation bias, developers may perform only the

unit tests that make their program work rather than breaking
the code. This may lead to an increase in software defect
density. In literature, there are empirical studies showing the
existence of confirmation bias among software developers [8],
[9].

There are similarities between Wason's rule discovery task
and functional (black-box) testing that are performed by
software developers to test the functional units of their codes
during unit testing [8]. According to the findings of Wason,
during the rule discovery task, subjects have a tendency to
select many triples (i.e., test cases) that are consistent with
their hypotheses and few tests that are inconsistent with them.
Similarly, program testers may select many test cases
consistent with the program specifications (positive tests) and
a few that are inconsistent with them (negative tests).
Moreover, the number of possible test cases is either infinite
or too large to be tested within a limited amount of time.
Consequently, a strategic approach must be followed that
covers both positive and negative test cases while trying to
make the code fail during testing in order to find as many
defects as possible.

Wason's selection task measures the extent of subject’s
logical reasoning skills. During unit testing when covering
possible scenarios, logical reasoning is required. Moreover,
testing the correctness of conditional statements in the source
code during white-box testing also requires logical reasoning
skills. Detailed explanation of the analogy between Wason's
selection task and white box testing by Stacy and MacMillian
can be found in [9].

III. METHODOLOGY TO QUANTIFY CONFIRMATION BIAS
In order to perform empirical analysis, it was necessary to

quantify/ measure confirmation biases of software engineers.
For this purpose, we developed a methodology to define a
confirmation bias metrics set and to extract metrics values.
Details of our methodology to define and extract confirmation
bias metrics can be found in our previous work [13] and it
mainly consists of the following steps:

A. Preparation of the Confirmation Bias Test
Confirmation bias test consists of written questions and an

interactive question. Interactive question is Wason's rule
discovery task itself [16], while written test is based on
Wason's selection task [17]. Written test consists of 7 abstract
and 16 thematic questions, 9 of which have software
development/testing theme. Abstract questions require logical
reasoning skills to be answered correctly, while real life
experience and/or memory cueing [19] can help to answer
thematic questions correctly. Both abstract and thematic
questions were prepared based on the psychological
experiments conducted to show the existence of confirmation
bias among people [16], [17], [19]. Initially, we administered
confirmation bias test to a pilot group consisting of 28
Computer Engineering PhD candidates, half of whom had at
least two years of commercial software product development
experience. After pilot study, we administered the test to
software engineers in various large-scale companies and Small
Medium Enterprises (SMEs). So far, we have administered the

463

test to 199 software engineers from 4 large-scale companies
and 3 SMEs.

B. Preparation of the Confirmation Bias Metrics Set
The initial metric suite was formed concurrently with the
preparation of the interactive question and the set of written
questions. Statistical analysis and feature selection techniques
helped to eliminate metrics that displayed a lower level of
significance in the measurement of confirmation bias. Our
metrics set evolved as our research progressed [20], [21], [22]
and our final set of metrics are summarized in [13].

IV. EMPIRICAL STUDY

A. Datasets
In this study, we used datasets from three different projects

as shown in Table 1. In order to build our prediction model,
we took into account only the source code files whose
development activities can be traced through the version
control system, since project managers needed information
about the performance of developer groups who
maintain/develop these files.

TABLE I. PROPERTIES OF DATASETS

Datasets Number of
Active Files

Number of
Releases a

Defect
Density

Number of
Developers

ERP 3199 7 0.07 6
Telecom1 826 4 0.11 10
Telecom2 1828 6 0.11 10

a. Defect density is the ratio of the number of defective files to the number of active files.

Dataset ERP belongs to a project group that consists of six

developers who are employees of the largest ISV (independent
software vendor) in Turkey. The software developed by this
project group is an enterprise resource planning (ERP)
software. The snapshot of the software that was retrieved from
the version management system dates from March 2011, and it
consists of 3,199 java files.

The remaining two datasets come from the largest wireless
telecom operator (GSM) company in Turkey. Dataset
Telecom1 consists of four versions of a software product that
is used to launch new campaigns. On average, 545 java files
exist in a single version, and they make modifications to 206
files per version (also on average).

Dataset Telecom2 comes from the billing and charging
system and it consists of source code files of the billing and
revenue collection systems, as well as the database transaction
system. On average, there are 1,092 java, JSP and PL/SQL
files in a single version of this software package. However,
maintenance, development and software testing activities take
place on only 284 of those files.

B. Methodology
1) Metric Collection Process: In order to collect

confirmation bias metrics in a controlled manner, we
administered the confirmation bias test under a predefined
standard procedure. After having conducted the test with

developers, we evaluated values for the metrics from the test
outcomes.

2) Identification of Developer Groups: For each project,
we mined the log file, that was extracted from the version
management system. Within each release of a project, for each
file, we identified developers, who committed that file before
the code freeze date of that release. As a result, we were able
to determine groups of developers who committed a common
set of files for each release.

3) Estimation of Confirmation Bias Metrics Values of
Developer Groups: After having extracted metrics values for
each developer individually, we used three different operators
(i.e. min, max and avg) in order to estimate confirmation bias
metrics values for developer groups.

Assuming that represents the confirmation bias metric
value of developer, means that developer is
among the group of developers who created and/or modified

 source file, and finally, represents the resulting
confirmation bias metric value of source file when operator

 is applied. can be one of the operators min, max and
avg, which are used to find minimum, maximum and average
values of the confirmation bias metric, respectively. We can
formulize the definition for the min, max and avg operators as
follows:

4) Estimation of Defect Rate for each Developer Group:
We defined the defect rate for each developer group as the
ratio of the total number of defective files created/updated by
that group to the total number of files that group
created/updated. Equation (4) gives the formulation of the
defect rate for th developer group, where
and stand for the number of defective files and
number of all files, respectively.

5) Construction of the Prediction Models: PLSR and PCR
are both methods to model a response variable when there are
large number of predictor variables, and those predictors are
highly correlated or even collinear. Our metrics set consists of
25 metrics as listed in our previous paper [13]. As a result of
applying min, max and avg operators, total number of
confirmation bias metrics for each developer group becomes
75. Moreover, these metrics are highly correlated. Therefore,
in this study we used Partial Least Squares Regression (PLSR)
and Principle Components Regression (PCR) methods to build
prediction models. Both methods construct new predictor
variables, known as components, as linear combinations of the
original predictor variables, but they construct those

464

components in different ways. PCR creates components to
explain the observed variability in the predictor variables,
without considering the response variable at all. On the other
hand, PLSR does take the response variable into account.

In our research, the predictor variables, which we employed
in both PLSR and PCR, are confirmation bias metrics values
of developer groups. The response variables employed for the
PLSR method are the defect rates of developer groups. In
order to calculate the regression coefficients for each release ,
where , such that is the total number of releases,
we used the data , which belong to the first releases (i.e.,
for releases, where). We later used the estimated
regression coefficients to predict the defect rates for the ith
release. We performed this procedure for all datasets/software
projects (i.e., ERP, Telecom1 and Telecom2).

V. RESULTS AND DISCUSSIONS
In this study, we used PLSR and PCR to build models in

order to predict defect rates of developer groups for the next
releases of the software. In order to measure the prediction
performance of our models, we used Mean Squared Prediction
Error (MSEP).

 (5)

In the above equation, is the total number of developer

groups, while and are the actual and estimated defect
rates of the developer group, respectively.

As mentioned previously PLSR and PCR, construct new
predictor variables, known as components, as linear
combinations of the original predictor variables. As a first
step in our analyses, we determined the total number of
components to be used in our models in order to minimize
MSEP values. For this purpose, we used all data, which we

Figure 1. Number of components versus estimated MSEP.

collected from three different software projects. As it can be
seen from Figures 1 and 2, using four components minimizes
MSEP value. Hence, we decided to use four components,

while employing both PLSR and PCR techniques to build our
models.

Figure 2. Number of components versus estimated MSEP (closer look).

Performance results of the prediction models are shown in
Tables I, II and III for datasets ERP, Telecom1, and Telecom3,
respectively. The release labels, which are listed in the first
column of each of the Tables I, II and III are the actual release
labels used by the software companies to name the releases of
their software product.

TABLE II. RESULTS FOR DATASET ERP

 MSEP
Releases Releases used for Model

Building
PLSR PCR

2010_R2 2010_R1 0.0421 0.0108
2010_R3 2010_R1, 2010_R2 0.0746 0.0730
2010_R4 2010_R1-2010-R3 0.0504 0.0127
2010_R5 2010_R1-2010_R4 0.0138 0.0061
2010_R6 2010_R1-2010_R5 0.0224 0.0182
2011_R1 2010_R1-2010_R6 0.0176 0.0011

Figure 3. Residual plots for the defect rates of the fourth release of the
ERP project.

465

As it can be seen from Tables I, II and II, both of our
results are promising, although PCR slightly outperforms
PLSR. This is due to the fact that within each release of each
software product (i.e., dataset), on average 65% of the defect
rate values (i.e., response variables) are 0.

TABLE III. RESULTS FOR DATASET TELECOM1

 MSEP
Releases Releases used for Model

Building
PLSR PCR

2.60 2.59 0.0525 0.0450
2.61 2.59, 2.60 0.0253 0.0078
2.62 2.59-2.61 0.0191 0.0054

Unlike PCR, PLSR considers the observed response values,
while finding the linear combinations of predictor variables.
Therefore, the slight degradation in the prediction performance
of PLSR-based models might be due to the high percentage of
response variables being equal to zero.
 In addition, for all three datasets the trend in the defect rate
prediction performance is improvement, while moving from
earlier releases to the more recent ones. This was an expected
result, since size of the data used to estimate the regression
coefficients increases for the recent releases. For instance, for
dataset Telecom1, in order to estimate the regression
coefficients of the model to predict defect rates of the release
2.60, only the data belonging to release 2.59 is used. On the
other hand, in order to build the prediction model for release
2.62, all data belonging to the previous releases 2.59, 2.60 and
2.61 are used. This also confirms our previous finding in
release based defect prediction model that the more
information content of the model is enriched the better the
prediction performance of the model [1].

TABLE IV. RESULTS FOR DATASET TELECOM2

 MSEP
Releases Releases used for Model

Building
PLSR PCR

2.92 2.91 0.0217 0.0272
2.93 2.91, 2.92 0.0552 0.0072
2.94 2.91-2.93 0.0398 0.0060
2.95 2.91-2.94 0.0148 0.0041
2.96 2.91-2.95 0.0081 0.0021

VI. THREATS TO VALIDITY
In order to avoid mono-method bias that is one of the

threats to construct validity, we used more than a single
version of a confirmation bias measure. In other words, we
defined a set of confirmation bias metrics.

Another threat to construct validity is the interaction of
different treatments. Before the administration of confirmation
bias tests to participant groups, we ensured that none of the
participants were involved simultaneously in several other
experiments designed to have similar effects.

Evaluation apprehension is a social threat to construct
validity. Many people are anxious about being evaluated.

Hence, participants may perform poorly due to their
apprehension, and they may feel psychologically pressured. In
order to avoid such problems, informed the participants that
the results would not be used in their performance evaluations
and their identity would be kept anonymous. Moreover,
participants were told that there was no time constraint for
completing the questions.

Another social threat to construct validity is the
expectancies of the researcher. Hence, the outcome of the
confirmation bias test was independently evaluated by two
researchers and one of these two researchers was not actively
involved in the study.

In order to avoid internal threats to validity, we set the test
dates for all project groups for a time when the work load of
the developers was not intense. No event took place in
between the confirmation bias tests that could have influenced
the performance of the subjects in any of the groups. Another
attempt to avoid internal validity was to administer the
confirmation bias test in environments that were isolated from
distraction factors such as noise.

To avoid external threats to validity, we collected data
from two different companies specialized in two different
software development domains. We also selected two different
projects within one of the companies.

VII. CONCLUSIONS AND FUTURE WORK
In this research by using the confirmation bias metrics, we

predicted which developer groups are likely to have defective
code in the next release. We built a release-based prediction
models by using PLSR and PCR. We compared the prediction
results with actual data and obtained promising results.

Our current models are capable of predicting the defect rates
of developer groups, which do not exist in previous releases of
the software product. In such cases, there are no actual defect
rates, which can be used to predict the performance of these
developer groups for the next releases. In this study, we used
the information about confirmation biases of such developer
groups to predict defect rates for the next releases.

As mentioned previously, confirmation bias metrics values
of individual developers can be estimated based on the
confirmation bias test outcomes. Using , and
operators, it is also possible to estimate confirmation bias
metrics values of any possible developer group combination.
Therefore, in the long run, enhanced form of our models may
guide project managers in task assignment issues (i.e., which
developers should touch the same source code files and which
developers should not, so that software defects rates are
minimized). For this purpose, we aim to replicate our results in
further studies. Moreover, our results only indicate the
correlation between confirmation biases of developers and
defect rates. In this study, we interviewed with the developers
and asked them about the unit testing strategies they adopt. In
order to strengthen our hypothesis regarding the connection
between confirmation bias and defect rates through unit testing,
as future work, our field studies will also include observational
techniques (e.g., think-aloud protocols, participant observation
and observation synchronized shadowing).

466

Going forward, we would also like to develop a web-based
tool to administer confirmation bias tests to developers. This
tool will also estimate confirmation bias metrics values from
developers’ test outcomes, as well as handling noise in the data.
Such a tool would make our method easier to use in practice.

REFERENCES
[1] A. Tosun, A. Bener, B. Turhan, and T. Menzies. “Practical

considerations in deploying statistical methods for defect prediction: A
case study within the turkish telecommunications industry.,” Information
and Software Technology, 52(11):1242-1257, November 2010.

[2] T. Menzies, C. J. Hihn, and K. Lum, “Data mining static code attributes
to learn defect predictors,” IEEE Transactions on Software Engineering,
vol. 33, issue 1, pp. 2-13, November 2007.

[3] N. Nachi, “Toward a software testing and reliability early warning
suite,” Proceedings of the 26th International Conference on Software
Engineering (ICSE 2004), pp. 60-62, May 2004.

[4] Y. Jiang, B. Cuki, T. Menzies, and N. Bartlow, “Comparing design and
code metrics for software quality prediction,” in Proceedings of the 4th
International Workshop on Predictor Models in Software Engineering,
2008.

[5] N. Nachi and T. Ball, “Using software dependencies and churn metrics
to predict field failures: an empirical study,” in the Proceedings of the 1st
International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pp. 364-373, September 2007.

[6] A. Tosun-Misirli, B. Caglayan, A. Miransky, A. Bener, and N. Ruffalo,
“Different strokes for different folks: a case study on software metrics
for different defet categories,” in Proceedings of the 2nd Workshop on
emerging Trends in Software Metrics, pp. 45-51, May 2011.

[7] B. Turhan, G. Kocak and A. Bener, “Software defect prediction using
call graph based ranking (CGBR) framework,” in Proceedings of the 34th
International EUROMICRO Software Engineering and Advanced
Applications Conference, pp. 45-51, July 2008.”

[8] B. F. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman. “Why
software testing is sometimes ineffective: Two applied studies of
positive test strategy,” Journal of Applied Psychology, vol. 79, pp. 142-
155, November 1994.

[9] W. Stacy and J. MacMillian, “Cognitive bias in software engineering,”
Communications of the ACM, vol. 38, pp.:57-63, November 1995.

[10] C. Bird, N. Nagappan, H. Gall, B. Murphy and P. Devanbu, “Putting it
all together: Using sociotechnical networks to predict failures,” in
Proceedings of the 17th International Symposium on Software
Rreliability Engineering, pp. 109-119, 2009.

[11] E. Weyuker, T. J. Ostrand and R. M. Bell, “Using developer
information as a factor for fault prediction,” Proceedings of the 1st
International Workshop on Predictor Models in Software Engineering,
pp. 1–7, 2007.

[12] A. Meneely, L. Williams, W. Snipes and J. Osborne, “Predicting failures
with developer networks and social network analysis’” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 13–23, 2008.

[13] G. Calikli and A. Bener, “Influence of Confirmation Biases of
Developers on Software Quality: An Empirical Study“, vol. 21, pp. 377-
416, Software Quality Journal, 2013.

[14] T. M. Khoshgoftaar, J. Van Hulse and A. Napolitano, “Supervised
neural network modeling: An empirical investigation into learning from
imbalanced data with labeling errors,” IEEE Transactions on Neural
Networks, vol. 21, pp. 813–830, 2010.

[15] T. M. Khoshgoftaar, “Building decision tree software quality
classification models using genetic programming,” In Proceedings of the
genetic and evolutionary computation conference, 2003.

[16] P. C. Wason, “On the failure to eliminate hypotheses in a conceptual
task,” Quarterly Journal of Experimental Psychology, vol. 12, pp.129–
140, 1960

[17] P. C. Wason, “Reasoning about a rule,” Quarterly Journal of
Experimental Psychology, vol. 20, pp. 273–281, 1968.

[18] B. Teasley, L. M. Leventhal, and S. Rohlman, “Positive test bias in
software engineering professionals: What is right and what’s wrong’” in
Proceedings of the 5th Workshop on Empirical Studies of
Programmers,1993.

[19] J. St. B. T. Evans, S. E. Newstead and R. M. Byrne, Human reasoning:
The psychology of deduction. East Sussex, UK: Lawrence Erlbaum
Associates Ltd., 1993.

[20] G. Calikli, A. Bener and B. Arslan, “An analysis of the effects of
company culture, education and experience on confirmation bias levels
of software developers and testers,” in Proceedings of 32nd International
Conference on Software Engineering, 2010.

[21] G. Calikli, B. Arslan and A. Bener, “Confirmation bias in software
development and testing: an analysis of the effects of company size,
experience and reasoning skills” in Proceedings of the 22nd Annual
Psychology of Programming Interest Group Workshop, 2010.

[22] G. Calikli and A. Bener, “Empirical analyses factors affecting
confirmation bias and the effects of confirmation bias on software
developer/tester performance” in Proceedings of 5th International
Workshop on Predictor Models in Software Engineering, 2010.

467

A Study on First Order Statistics-Based Feature Selection

Techniques on Software Metric Data

Huanjing Wang
Western Kentucky University

Email: huanjing.wang@wku.edu

Taghi M. Khoshgoftaar, Randall Wald, and Amri Napolitano
Florida Atlantic University

Email: {khoshgof,rwald1}@fau.edu, amrifau@gmail.com

Abstract—Software quality is an important attribute of software
products, especially for high-assurance and mission-critical systems. One
effective way to produce a high quality software product is to build
software quality prediction models which use software metrics collected
during the course of software development to identify potentially fault-
prone modules. Feature selection can be used to determine which software
metrics (which act as features) are most useful for constructing these
models. In this paper, we investigate seven first order statistics-based
feature selection techniques, evaluating both their stability (ability to
produce consistent feature subsets even in the face of changes to the data)
and classification performance (ability to select software metrics which
are useful for building accurate models) in the context of software quality
estimation by testing them on data from a very large telecommunications
software system. Our investigation considers four degrees of perturbation,
four different sizes of feature subsets, and three different classifiers.
The empirical results demonstrate that Signal-to-Noise is the most
stable ranker and also performs well in terms of model performance.
We also find that while for some rankers, stability and classification
performance are correlated, this is not true for other rankers, and
therefore performance according to one scheme (stability or model
performance) cannot be used to predict performance according to the
other.

I. INTRODUCTION

One major challenge in large-scale software development is the

inevitable problem of fault-prone software modules. Even in profes-

sional software development teams, these cannot be avoided entirely,

so quality assurance is necessary to review modules to catch potential

faults. However, there are limited resources for quality assurance, so

only a fraction of the total project can be reviewed. To help target

these quality-assurance efforts, software defect prediction models can

use software measurement data (e.g., software metrics) collected dur-

ing the course of software development to identify software modules

which are likely to be particularly fault-prone. However, many data

repositories have an overabundance of metrics (features) [1], [2].

In addition, studies also show that not all features make equally

important contributions to the problem at hand (in the case of software

quality prediction, whether the module is fault-prone (fp) or not-

fault prone (nfp)) [3]. Thus, the selection of software metrics that

are important for software defect prediction is critical. This can be

accomplished using feature selection, a collection of preprocessing

techniques drawn from the domain of data mining and machine

learning which choose an optimum subset of features for subsequent

analysis. Although feature selection uses a reduced feature subset

for building a classification model, it often creates models with

performance equal to or even better than models using all features.

During the past decade, numerous studies have examined fea-

ture selection with respect to classification performance, but very

few studies focus on the stability (robustness) of feature selection

techniques. Stability is a measure of how consistent a feature se-

lection technique is when faced with changes in the data. In this

study, we evaluate the stability of a feature selection method on

a dataset by measuring the changes between the subset chosen

using the full dataset and that chosen from modified datasets with

instances removed. One could also view this information as before

and after instances have been added to the dataset, and thus view

this evaluation as how relevant the chosen features will be after

more instances are collected. In addition to examining how choice

of feature selection technique, size of feature subset, and degree

of dataset perturbation can affect the feature subset stability, we

also evaluate the effectiveness of defect predictors that estimate the

quality of program modules, e.g., fault-prone (fp) or not-fault-prone

(nfp). After all, a feature selection technique must be both stable and

accurate (providing features useful for classification) in order for it

to be a good technique.

In this paper, we empirically investigate seven feature selection

techniques: Signal-to-Noise (S2N), Fold Change Difference (FCD),

Fold Change Ratio (FCR), Welch T-Statistic (WTS), Wilcoxon Rank

Sum (WRS), Fisher Score (FS), and Significance Analysis of Mi-

croarrays (SAM). We refer to these as First Order Statistics (FOS)

based feature selection, because they are all based on first order

statistics such as mean and standard deviation. We compared stability

and classification model performance of the feature subsets selected

by the seven feature selection techniques. Three different classifiers

(learners) are used to build our prediction models. The empirical

validation of the stability measure and model performance was

implemented through a case study of data from the development of

four consecutive releases of a very large legacy telecommunications

software system (denoted as LLTS). To our knowledge this is the

first study to group these seven feature selection techniques together

and examine both stability and classification model performance of

feature rankers in the software engineering domain.

Based on our results, we recommend the use of the S2N feature

ranker, as this ranker was found to have both the greatest stability and

highest classification performance across all levels of perturbation

(for stability) and number of features selected (for both stability

and classification performance). The WTS ranker sometimes showed

slightly greater stability at the smallest feature subset sizes and greater

classification performance at larger feature subset sizes, although this

does not change our recommendation. Interestingly, FCR sometimes

showed greater stability at larger feature subset sizes, but had the

worst classification performance across the board. Conversely, SAM

had the worst stability for all but one level of perturbation, but

was generally within 0.01 AUC (Area Under the Receiver Operator

Characteristic (ROC) Curve) of the top performer in terms of clas-

sification. Also, FCD had the top classification performance for one

of the three learners, but showed moderate to poor stability. These

last three results demonstrate that ranker performance for stability

and classification are not necessarily linked, and that these must be

examined separately to find a ranker which works well in terms of

both.

The rest of the paper is organized as follows. We review relevant

468

literature in Section II. Section III provides detailed information about

the seven FOS feature selection techniques. Section IV describes the

datasets used in the study, presents stability results and analysis, and

shows model performance results and analysis. Finally, in Section V,

the conclusions are summarized and suggestions are made for future

work.

II. RELATED WORK

Feature selection is the process of choosing a subset of features

(software metrics in our study) in order to reduce dimensionality and

potentially improve classification performance. Feature selection can

be broadly classified as feature ranking and feature subset selection.

Feature ranking sorts the attributes according to their individual

predictive power, while feature subset selection finds subsets of at-

tributes that collectively have good predictive power. Feature selection

techniques can also be categorized as filters and wrappers. Filters are

algorithms in which a feature subset is selected without involving any

learning algorithm. Wrappers are algorithms that use feedback from

a classification learning algorithm to determine which feature(s) to

include in building a classification model. In this study, we focused

on filter-based feature ranking techniques, because although these can

have reduced performance, they also avoid the larger computational

cost associated with wrappers and feature subset evaluation [2].

A number of works have evaluated the use of feature selection

and its role as part of a larger data mining and machine learning

process. Guyon and Elisseeff [4] outlined key approaches used for

attribute selection, including feature construction, feature ranking,

multivariate feature selection, efficient search methods, and feature

validity assessment methods. Hall and Holmes [5] investigated six

attribute selection techniques that produce ranked lists of attributes

and applied them to several datasets from the UCI machine learning

repository. Liu and Yu [1] provided a comprehensive survey of

feature selection algorithms and presented an integrated approach

to intelligent feature selection. Collectively, these have shown that

feature selection is an important preprocessing step prior to building

a classification model.

The stability (robustness) of a feature selection method is normally

defined as the degree of agreement between its outputs when applied

to randomly selected subsets of the same input data [6]. To assess

robustness of feature selection techniques, past works have used dif-

ferent similarity measures, such as Hamming distance [7], correlation

coefficient [8], consistency index [6], and entropy [9]. Among these

four similarity measures, consistency index is the only one which

takes into consideration bias due to chance. Because of this, in our

work the consistency index was used as stability measure. The term

consistency index was defined by Kuncheva et al. [6]. The consistency

index is a measure of similarity between two different feature subsets.

III. FIRST ORDER STATISTICS (FOS) BASED FEATURE

SELECTION

In this paper, we present seven related univariate feature selection

metrics: Signal-to-Noise (S2N), Fold Change Difference (FCD), Fold

Change Ratio (FCR), Welch T-Statistic (WTS), Wilcoxon Rank Sum

(WRS), Fisher Score (FS), and Significance Analysis of Microarrays

(SAM). Because all seven are based on first order statistics such as

mean and standard deviation, we collectively refer to these as First

Order Statistics (FOS) based feature selection. Although some of

these metrics have previously been studied, no previous work in the

domain of software quality modeling has collected these into a single

family and examined their behavior and performance relative to one

another. As these seven metrics are less often used in the context of

feature selection, we wrote our own implementation in the WEKA

data mining toolkit.

Each of these techniques work specifically with binary or two-class

datasets. For the datasets in this study, the positive class P (that is,

the class of interest) is fault-prone modules, which in this case is also

the minority class (class with fewer instances). The negative class N
is thus the majority class, containing the not-fault-prone instances.

Each of the seven techniques will be described below.

Signal-to-noise is a measure used in electrical engineering to

quantify how much a signal has been corrupted by noise. It is defined

as the ratio of signal’s power to the noise’s power corrupting the

signal. The signal-to-noise (S2N) ratio can also be used as feature

ranking method [10]. For a binary class problem, the equation for

signal to noise is:

S2N =
μP − μN

σP + σN
(1)

where μP and μN are the mean values of that particular attribute

in all of the instances which belong to a specific class, either P or

N (the positive and negative classes). σP and σN are the standard

deviations of that particular attribute as it relates to the two classes,

respectively. If one attribute’s expression in one class is quite different

from its expression in the other, and there is little variation within

the two classes, then the attribute is predictive. The larger the S2N

ratio, the more relevant a feature is to the dataset.

Fold Change Difference (FCD) and Fold Change Ratio (FCR) [11]

both use the mean value of the attribute across all instances in the

positive class and the mean value of the attribute across all instances

in the negative class. The difference between the two techniques is

how they use these two measurements. FCD takes the difference

between the mean of the attribute for the positive class and the mean

of the attribute for the negative class. FCR uses the ratio between

the mean of the attribute for the positive class and the mean of the

attribute for the negative class.

The Welch T-Statistic [12] (WTS) is a modified version of the

t-statistic which does not assume equal variance with each of the

classes. The modified equation is shown here:

WTS =
μP − μN√
σ2
P

nP
+

σ2
N

nN

(2)

where nP and nN are the number of instances in the positive and

negative classes respectively.

Wilcoxon Rank Sum [13] (WRS) is different from the standard

t-statistic in that it makes no assumptions on whether or not the

distribution is normal. The first step is to rank the all of the instances

based on the value of the attribute. The next step is to take the sum

of all of the rankings in the positive class which we will denote as

WP . Finally, the WRS is found as follows:

WRS =
(WP − nP (nP+1)

2
)− nPnN

2√
nPnN (np+nN+1)

12

(3)

Fisher score [14] (FS) is a feature selection technique that selects

each attribute independently according to their scores under the Fisher

criterion. The FS is calculated as:

FS =
nP [μP − μT]

2 + nN [μN − μT]
2

σ2
T

(4)

The variance σ2
T is the variance of the attribute across instances from

both classes collectively. Lastly, μT is the average of the attribute over

all instances.

469

TABLE I
SOFTWARE DATASETS CHARACTERISTICS

Data #Metrics #Modules %fp %nfp
SP1 42 3649 6.28% 93.72%

LLTS SP2 42 3981 4.75% 95.25%
SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

Significance Analysis of Microarrays [12] (SAM) is a statistical

technique borrowed from the domain of bioinformatics which de-

termines whether changes in attribute value (gene expression in the

bioinformatics application domain) are statistically significant. The

SAM technique identifies relevant attributes by performing attribute-

specific t-tests for each feature that measure the strength of the

correlation between each independent feature and the class attribute.

The equation of SAM is:

SAM =
μP − μN

σ∗ + σ0
(5)

where σ0 represents the exchangeability constant and σ∗ represents

an overall standard deviation. The role of σ0 is to prevent attributes

whose standard deviations are small from having large score. σ0

is a customizable factor which is generally the top 90th-percentile

of standard deviations. For this experiment we use this value. σ is

calculated as:

σ∗ =

√√√√ nT

nPnN (nT − 2)

(nP∑
j=1

[xj − μP]2 +

nN∑
j=1

[xj − μN]2
)

(6)

where
∑nP

j=1 and
∑nN

j=1 represent the sum across the instances of

the positive class and the instances of the negative class respectively.

Additionally nT is equal to the total number of instances in the

dataset.

IV. EXPERIMENTS

A. Datasets

The experiments were conducted to discover model performance

and the robustness (stability) of seven rankers and the impact of

dataset perturbation. Experiments conducted in this study used soft-

ware metrics and defect data collected from a real-world software

project, a very large legacy telecommunications software system

(denoted as LLTS) [15]. LLTS contains data from four consecutive

releases, which are labeled as SP1, SP2, SP3, and SP4. The software

measurement datasets consist of 42 software metrics, including 24

product metrics, 14 process metrics, and four execution metrics.

The dependent variable is the class of the program module, fault-

prone (fp), or not fault-prone (nfp). A program module with one

or more faults is defined as fp, and nfp otherwise. Table I lists the

characteristics of the four release datasets utilized in this work. An

important characteristic of these datasets is that they all suffer from

class imbalance, where the proportion of fp modules is much lower

than that of nfp modules.

B. Experiments - Stability

In order to test the stability of seven feature selection techniques

we employed four different software metrics datasets. With each

feature ranker and dataset combination, we used four different levels

of dataset perturbation along with four different numbers of features

chosen.

1) Dataset Perturbation: In this study, we consider stability based

on changes to the datasets (perturbations) at the instance level,

produced as follows: We chose a fraction c of instances to keep and

randomly removed 1 − c of the instances from both the majority

and minority classes separately, where c is greater than 0 and

less than 1. We removed from each class instead of just from the

dataset as a whole in order to maintain the original level of class

balance/imbalance for each dataset. For each c this process was

repeated thirty times giving us thirty new datasets for each original

dataset and level of c, with each new dataset having c×m instances

(m being the number of instances in the original dataset) and each

new dataset being unique, having been generated independently of

the others. In this study, c was set to 0.95, 0.9, 0.8, or 0.67. In total,

4 datasets ×4 levels of perturbation ×30 repetitions = 480 datasets

are generated.

2) Feature Selection: For each dataset and feature ranking tech-

nique, the features are ranked first according to their relevance to the

class. The rankings are applied to each combination of dataset and

level of perturbation. Therefore, (4 datasets × 7 feature rankers) +
(4 datasets × 4 levels of perturbation × 30 repetitions × 7 feature

rankers) = 3388 different rankings were computed. Then a subset

consisting of the most relevant ones (top k features) is selected. In

this study, four subsets are chosen for each dataset. The number of

features that is retained in each subset for each dataset are 3, 4, 5, and

6. These numbers were deemed reasonable after some preliminary

experimentation conducted on the corresponding datasets [16].

3) Stability Measure: Consistency index [6] is used to measure

the degree of stability between the two rankings from the same

ranker from different datasets (in our case perturbed vs. original).

In this paper, we use the consistency index because it takes into

consideration bias due to chance. We compute the consistency index

between two feature subsets as follows. Let Ti and Tj be subsets

of features, where |Ti| = |Tj | = k. The consistency index [6] is

obtained as follows:

IC (Ti, Tj) =
dn− k2

k (n− k)
, (7)

where n is the total number of features in the dataset, d is the

cardinality of the intersection between subsets Ti and Tj , and

−1 < IC (Ti, Tj) ≤ +1. If the two rankings are the same, then

the consistency index is 1. The greater the consistency index, the

more similar the subsets are.

For all choices of dataset, feature ranker, feature subset size, and

level of perturbation, we found the consistency index for comparing

the feature subsets from each reduced dataset individually with the

feature subset from the complete original dataset. Thus, 30 com-

parisons were made since there are 30 repetitions for each choice of

dataset, feature ranker, feature subset size, and degree of perturbation.

4) Results: The experiment was conducted using seven feature

selection techniques on four real-world software datasets. When we

apply the consistency index to compare feature subsets chosen from

the original dataset and one of the derivative datasets, we can use

the resulting consistency measurement to show the stability of the

feature ranker. Table II contains the average results of our stability

experiments across all four datasets, keeping the ranker, subset size,

and perturbation level static. The top value at each column is in

boldface and the smallest value is in italicized print.

In general, it can be observed that S2N shows the most stability,

followed by FS, and SAM shows the least stability. Beyond these

overall results, there are two main factors which can be examined to

observe their effects on stability: degree of perturbation and number

470

TABLE II
AVERAGE STABILITY ACROSS FOUR DATASETS

Ranker
Perturbation Level: 0.67 Perturbation Level: 0.8 Perturbation Level: 0.9 Perturbation Level: 0.95

Number of Features Number of Features Number of Features Number of Features
3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

S2N 0.7906 0.7951 0.8127 0.7829 0.8803 0.8503 0.8638 0.8461 0.9162 0.9171 0.9243 0.9157 0.9581 0.9586 0.9470 0.9336
FCD 0.7577 0.6592 0.6235 0.6500 0.8115 0.7260 0.7105 0.7440 0.8774 0.8089 0.7862 0.8201 0.9132 0.8526 0.8411 0.8752

FCR 0.7607 0.7513 0.7976 0.8056 0.7966 0.8020 0.8751 0.8671 0.8594 0.8618 0.9168 0.8979 0.8923 0.8826 0.9414 0.9222

WTS 0.8085 0.7490 0.7332 0.7164 0.8714 0.8135 0.8014 0.8120 0.9192 0.8849 0.8732 0.8752 0.9761 0.9148 0.9016 0.9190

WRS 0.6620 0.6592 0.6424 0.6938 0.7218 0.7076 0.7162 0.7569 0.7308 0.7513 0.7635 0.8007 0.7876 0.8112 0.8051 0.8606
FS 0.7368 0.7651 0.7673 0.7813 0.8295 0.8388 0.8184 0.8574 0.8983 0.8664 0.8581 0.8963 0.9252 0.9125 0.8789 0.9319

SAM 0.4526 0.3783 0.3530 0.3567 0.4915 0.4059 0.3814 0.3924 0.5154 0.4359 0.4286 0.4572 0.9162 0.9010 0.9054 0.9530

Fig. 1. Degree of Perturbation’s Impact on Stability

of features used. Figure 1 shows the effect of the degree of dataset

perturbation and feature subset size on the stability of feature ranking

techniques across all four datasets and all seven rankers. From this

figure, we can observe that the more instances retained in a dataset

(e.g., the fewer instances deleted from the original dataset), the more

stable the feature ranking on that dataset will be. This leads us to

state that after enough change any feature selection method becomes

unstable. The second trend visible in this figure is that in general,

stability increases as more features are used.

To validate these results, we performed an ANalysis Of VAriance

(ANOVA) [17] test to statistically examine the robustness (e.g.,

stability) of feature selection techniques. An n-way ANOVA can

be used to determine if the means in a set of data differ when

grouped by multiple factors. If they do differ, one can then use

another test to determine which factors or combinations of factors

are associated with the difference. In this study, we performed a one-

way ANOVA model with the single factor being the choice among

the seven rankers. For this ANOVA test, we only considered the

values with a feature subset size of four, and the results from all

four datasets were taken into account together. The ANOVA model

can be used to test the hypothesis that the stability for all rankers

are equal against the alternative hypothesis that at least one mean

is different. If the alternative hypothesis (i.e., that at least one mean

is different) is accepted, a multiple comparison test using Tukey’s

Honestly Significant Difference (HSD) criterion [17] can be used

to determine which levels (e.g., feature rankers) have statistically-

significantly different means. All tests of statistical significance in

this study utilize a significance level α of 5%, and all tests were

implemented in MATLAB.

The ANOVA results are presented in Table III. The p value for the

Ranker factor is 0, which indicates there was a significant difference

between the average IC values of the seven rankers. Thus, at least

two rankers are significantly different from one another. To find out

which rankers exhibit such a difference, Tukey’s HSD criterion was

used for multiple comparison analysis.

The multiple comparison results are presented in Figure 2, dis-

playing graphs with each group mean represented by a symbol (◦)

and the 95% confidence interval as a line around the symbol. Two

TABLE III
ANALYSIS OF VARIANCE FOR STABILITY RESULTS

Source Sum Sq. d.f. Mean Sq. F p-value

Ranker 40.657 6 6.77619 156.72 0
Error 144.977 3353 0.04324
Total 185.634 3359

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

SAM

FS

WRS

WTS

FCR

FCD

S2N

Fig. 2. Tukey’s HSD: Ranker – Stability

means are significantly different if their intervals are disjoint, and are

not significantly different if their intervals overlap. Results show that

we can divide the seven rankers into four groups, {SAM}, {WRS,

FCD}, {FCR, WFS, FS}, {S2N}, with the groups ordered by their

performances from worst to best. The rankers from different groups

produced significantly different results, while the rankers from the

same group performed similarly (were not significantly different from

one another). These results confirm our earlier observations about the

stability of the S2N ranker.

C. Experiments - Defect Prediction Model Performance

To evaluate a feature selection technique, the stability performance

of the feature selection may not be enough: we must also consider

classification model performance. The goal of software defect pre-

diction models is to improve the fault prediction and risk assessment

process. Finding faulty components in a software system can lead to a

more reliable final system and reduce development and maintenance

costs.

1) Classifiers: In this study, software defect prediction models are

built with three well-known classification algorithms: naı̈ve Bayes

(NB), support vector machine (SVM), and logistic regression (LR).

All three learners themselves do not have a built-in feature selection

capability and are commonly used in the software engineering and

other data mining applications. All classifiers were implemented in

the WEKA tool [18]. In this study, we used the default parameter

settings for the different learners as specified in WEKA unless

otherwise specified.

1) Naı̈ve Bayes classifier (NB) utilizes Bayes’s rule of conditional

probability and is termed ‘naı̈ve’ because it assumes conditional

independence of the features.

471

TABLE IV
AVERAGE CLASSIFICATION PERFORMANCE ACROSS FOUR DATASETS

Ranker
Learner: NB Learner: SVM Learner: LR

Number of Features Number of Features Number of Features
3 4 5 6 3 4 5 6 3 4 5 6

S2N 0.8129 0.8119 0.8085 0.8083 0.7154 0.6936 0.6856 0.6691 0.8217 0.8241 0.8247 0.8264

FCD 0.8081 0.8091 0.8088 0.8090 0.7013 0.6777 0.6803 0.6574 0.8274 0.8295 0.8307 0.8307
FCR 0.6526 0.6855 0.7128 0.7366 0.6075 0.6171 0.6305 0.6352 0.6382 0.6763 0.7094 0.7440
WTS 0.8072 0.8088 0.8105 0.8110 0.7033 0.6749 0.6725 0.6726 0.8255 0.8291 0.8289 0.8300

WRS 0.7928 0.7921 0.7896 0.7878 0.7030 0.6907 0.6734 0.6610 0.8087 0.8129 0.8141 0.8133

FS 0.7982 0.8012 0.8033 0.8056 0.6887 0.6739 0.6727 0.6636 0.8185 0.8184 0.8171 0.8193

SAM 0.8056 0.8059 0.8040 0.8060 0.7060 0.6848 0.6753 0.6679 0.8243 0.8276 0.8276 0.8289

2) Support Vector Machine (SVM), also called SMO in WEKA

[18], had two changes to the default parameters: the ‘complex-

ity constant c’ was set to 5.0 and ‘build Logistic Models’ was

set to true. By default, a linear kernel was used.

3) Logistic Regression (LR) is a statistical regression model for

categorical prediction by fitting data to a logistic curve.

2) Performance Metric: Because traditional performance mea-

sures such as F-measure and overall classification accuracy are

inappropriate to use on imbalanced data, we use the Area Under the

ROC (Receiver Operating Characteristic) Curve metric. The ROC

curve plots how the true positive rate and false positive rate vary

as the decision threshold is changed, and the area under this curve

shows how the model performs across all thresholds. This value can

vary from 0 to 1, with 1 being a perfect model.

When evaluating models, we employed a process known as cross-

validation. This involves dividing the data up into N folds, building

a model on N − 1 of these folds, and testing the model on the N th

fold. This process is then repeated until each fold is used as the

test fold once. Cross-validation avoids the problem of overfitting by

ensuring that the model is not tested on the same data used to build

the model, while making sure that each instance gets to be used as test

data. Note that in this study, feature selection was performed inside

the cross-validation step (that is, on the training folds separately).

3) Results: During the experiments, ten runs of five-fold cross-

validation were performed. First, we ranked the attributes using the

seven rankers separately. Once the attributes are ranked, the top K
attributes are selected to yield the final training data. After feature

selection, we applied the classifier to the training datasets with the

selected features, and then we used AUC to evaluate the performance

of the classification model. In total, 7 rankers × 4 datasets × 10 runs

× 5 folds = 1400 combinations of feature ranking techniques were

employed, and correspondingly 1400 rankings × 4 feature subsets ×
3 classifiers = 16800 classification models were built.

All the results are reported in Table IV. Note that each value

presented in the table is the average over the ten runs of five-

fold cross-validation outcomes across all four datasets. As with the

stability table, the highest value in each column is presented in

boldface, and the lowest value is in italics. From the table, we

can observe that although a given ranker might perform best in

combination with one learner, this may not be true when other

learners are used to evaluate models. For example, FCD performed

best, on average, in terms of AUC when the LR classifier are used.

However, this is not true when the SVM classifier is used; in that

case, S2N performed best. Using the NB classifier, S2N was best for

smaller feature subset sizes while WTS was best for larger feature

subset sizes. Thus, the results demonstrate that although no particular

ranker dominates the others, we can conclude that S2N and FCD are

most often the best techniques, while FCR is rarely optimal. For

the NB and SVM learner, the best model is built with three features

selected by the S2N ranker. For the LR learner, the best model is built

TABLE V
ANALYSIS OF VARIANCE FOR CLASSIFICATION RESULTS

Source Sum Sq. d.f. Mean Sq. F p-value

Ranker 1.78952 6 0.29825 153.5 0
Learner 1.90347 2 0.95174 489.83 0
Ranker × Learner 0.07663 12 0.00639 3.29 0.0001
Error 1.59131 819 0.00194
Total 5.36093 839

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

SAM

FS

WRS

WTS

FCR

FCD

S2N

Fig. 3. Tukey’s HSD: Ranker – Classification

with five or six features selected by the FCD ranker. In addition, LR

performed significantly better than the other two learners and SVM

performed worst. Our recent study [3] shows that the reduced feature

subsets can have better or similar prediction performance compared

to the complete set of attributes (original data set).

As with the stability experiments, we used ANOVA and multiple

comparison tests to evaluate the statistical power of our results. Here,

two-way tests were employed, with the first factor being the choice of

ranker and the second factor being the choice of learner; the response

variable was the classification performance. Table V presents the

ANOVA results, and we can see that for both factors individually and

for the two-way interaction term, the p-value is less than 0.05. This

indicates that for each factor, there are at least two levels (values

of the given factor) which have statistically-significantly different

means. In addition, the significance of the interaction term means

that these two factors do not operate fully independently, but rather

that the change in level for one factor will influence how the change

in the other factor’s levels affect classification performance.

To investigate which specific levels resulted in these statistically-

significant differences, we performed a multiple comparison test on

both factors. Due to space limitations, we only present Figure 3, the

multiple comparison results for the different rankers. As we can see

from this figure, the majority of rankers other than FCR produce

similar results, although S2N is the clear winner; FCD, WTS, and

SAM form a nearly-indistinguishable group following S2N, and WRS

and FS follow behind this group. Only S2N shows a statistically-

significant difference, however, and even here it is only different from

WRS and FS. Outside of this group, FCR is notable for having results

significantly worse than the other rankers; not only are these results

472

statistically significant, they show a difference of greater than 0.1

AUC. Overall, these results confirm what we observed from Table IV:

S2N is the best ranker overall, although FCD and WTS also perform

well (SAM is in this group, but never is the top performer), while

FCR is much worse than the other rankers.

V. CONCLUSION

Feature selection is an important preprocessing step when prepar-

ing software quality prediction models. In this study, we investigate

seven First Order Statistics (FOS) based feature selection techniques

(Signal-to-Noise, Fold Change Difference, Fold Change Ratio, Welch

T Statistic, Wilcoxon Rank Sum, Fisher Score, and SAM) in terms

of stability and model performance in the context of software mea-

surement data. The experiments were conducted on four consecutive

releases of a very large telecommunications software system. The key

conclusions are summarized as follows:

1) We tested the stability (robustness) of the rankers on four

different perturbation levels and four feature subset sizes. We

find that S2N is the most stable ranker regardless of level of

perturbation and feature subset size, followed by FS, WTS,

and FCR. SAM is the least stable ranker. Results also show

that, in general, the bigger the feature subset size, the more

stable the rankers are. Also, the number of instances deleted

from the dataset affects the stability of the feature ranking

techniques: the fewer instances removed from (or equivalently,

added to) a given dataset, the less the selected features will

change when compared to the original dataset, and thus the

feature ranking performed on this dataset will be more stable.

Our work provides guidance to software practitioners as to

which feature selection methods are more stable. This is also

useful for other domains in which feature selection is used for

preprocessing data.

2) We also built classification models with the selected feature

subsets using three different learners. The classification accu-

racy is evaluated in terms of the AUC performance metric. The

experimental results demonstrate that the S2N ranker performed

well in terms of robustness and was among the best rankers

in terms of model performance. The experiments demonstrate

that in our case study, on average, three software metrics are

sufficient to build effective software defect prediction models.

This is an important fact for software practitioners, since prac-

titioners prefer using fewer software metrics for data collection,

management, comprehension, and modeling. We also note that,

using a specific classification algorithm can yield different

results.

3) Comparing the results from our stability and classification stud-

ies, we see that although some rankers perform well in terms

of both metrics, others only perform well for one or the other.

S2N is a member of this first group, and is the best ranker for

both metrics. WTS was similar, showing good performance in

terms of both and sometimes beating S2N in certain scenarios.

SAM and FCD are more unusual, though, in that while SAM

is the worst ranker in terms of stability and FCD is the third-

worst ranker, both are statistically indistinguishable from S2N

in terms of classification performance. Likewise, FCR is the

absolute worst ranker in terms of classification performance,

but its stability was only middling compared with the other

rankers. These results show that if the goal is to find rankers

which perform well in terms of both stability and classification

performance, both tests must be run separately, because the

results of one do not necessarily predict the results of another.

Future work may include experiments using additional datasets

from other software engineering projects, and experiments with

other ranking techniques and classifiers for building software quality

classification models.

REFERENCES

[1] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[2] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting fault modules applying feature selection to classifiers,” in
Proceedings of 8th IEEE International Conference on Information Reuse
and Integration, Las Vegas, Nevada, August 13-15 2007, pp. 667–672.

[3] K. Gao, T. M. Khoshgoftaar, and A. Napolitano, “Exploring software
quality classification with a wrapper-based feature ranking technique,”
in Proceedings of 21st IEEE International Conference on Tools with
Artificial Intelligence, Newark, NJ, USA, Nov. 2-5 2009, pp. 67–74.

[4] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, March 2003.

[5] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 6, pp. 1437 – 1447, Nov/Dec 2003.

[6] L. I. Kuncheva, “A stability index for feature selection,” in Proceedings
of the 25th conference on Proceedings of the 25th IASTED International
Multi-Conference: artificial intelligence and applications. Anaheim,
CA, USA: ACTA Press, 2007, pp. 390–395.

[7] K. Dunne, P. Cunningham, and F. Azuaje, “Solutions to Instability Prob-
lems with Sequential Wrapper-Based Approaches To Feature Selection,”
Department of Computer Science, Trinity College, Dublin, Ireland, Tech.
Rep. TCD-CD-2002-28, 2002.

[8] A. Kalousis, J. Prados, and M. Hilario, “Stability of feature selection
algorithms: a study on high-dimensional spaces,” Knowledge and Infor-
mation Systems, vol. 12, no. 1, pp. 95–116, Dec. 2006.

[9] P. Křı́žek, J. Kittler, and V. Hlaváč, “Improving stability of feature
selection methods,” in Proceedings of the 12th international conference
on Computer analysis of images and patterns, ser. CAIP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 929–936.

[10] C.-H. Yang, C.-C. Huang, K.-C. Wu, and H.-Y. Chang, “A novel ga-
taguchi-based feature selection method,” in IDEAL ’08: Proceedings of
the 9th International Conference on Intelligent Data Engineering and
Automated Learning, Berlin, Heidelberg, 2008, pp. 112–119.

[11] I. Jeffery, D. Higgins, and A. Culhane, “Comparison and evaluation
of methods for generating differentially expressed gene lists from
microarray data,” BMC Bioinformatics, vol. 7, no. 1, pp. 359+, July
2006.

[12] V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of
microarrays applied to the ionizing radiation response,” Proceedings of
the National Academy of Sciences, vol. 98, no. 9, pp. 5116–5121, 2001.
[Online]. Available: http://www.pnas.org/content/98/9/5116.abstract

[13] R. Breitling and P. Herzyk, “Rank-based methods as a non-
parametric alternative of the t-statistic for the analysis of biological
microarray data.” Journal of bioinformatics and computational biology,
vol. 3, no. 5, pp. 1171–1189, oct 2005. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/16278953

[14] Q. Gu, Z. Li, and J. Han, “Generalized fisher score for feature selection,”
in Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence. AUAI Press, July 2011, pp. 266–273.

[15] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience, vol. 41, no. 5, pp. 579–
606, 2011.

[16] H. Wang, T. M. Khoshgoftaar, and N. Seliya, “How many software
metrics should be selected for defect prediction?” in Proceedings of
the Twenty-Fourth International Florida Artificial Intelligence Research
Society Conference, May 2011, pp. 69–74.

[17] M. L. Berenson, M. Goldstein, and D. Levine, Intermediate Statistical
Methods and Applications: A Computer Package Approach, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

[18] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 3rd ed. Morgan Kaufmann, 2011.

473

Software Effort Estimation using Regularized Radial Basis Function Neural Networks

 Khaled Shams Haitham Hamza Amr Kamel
Faculty of Computers and Information Faculty of Computers and Information Faculty of Computers and Information

 Cairo University Cairo University Cairo University

Abstract— The value of Artificial Neural Networks (ANNs)
methods in performing complicated pattern recognition and
nonlinear estimation tasks has been demonstrated across an
impressive spectrum of applications. ANNs methods has been used
extensively, in the software cost estimation process, due to the
complexity of the relations between the project’s attributes. ANNs
Radial Basis Function (RBF) networks have advantages of easy
design, and strong tolerance to input Noise. This paper, studies the
effect of using Regularized Radial Basis Function Networks in
improving the accuracy of the software cost estimation, using
different training algorithms like K-means method, Genetic
algorithm and Particle Swarm Optimizer (PSO). The relative
improvements were found to be around 40 %, by using the
Regularized Radial basis function with the PSO Algorithm.

Keywords-Software effort estimation; Estimation using ANN;
Survey on software estimation, Genetic algorithm, Particle Swarm
Optimizer

I. INTRODUCTION
In software engineering, effort is defined as the total time that
takes members of a software development team to perform a
given task. It is usually expressed in units such as man-day,
man-month, and man-year. This value is important as it serves
as basis for estimating other values relevant for software
projects, like Cost or Total time required to produce a software
product. The term “Cost estimation” and “Effort estimation” are
sometimes used interchangeably. This paper follows the
assumption that the two terms are synonymous. Software effort
estimation is different from software sizing. Sizing estimates,
the probable size of a piece of software while effort estimation
predicts the effort needed to build it. The relationship between
the size of software and the effort is that, the size is one of the
key attributes to estimate the required effort. For software effort
estimation, there are several models developed, which can be
grouped into two major categories:
(1) Parametric models, which are derived from the statistical or
numerical analysis of historical projects data
(2) Non-parametric models, Non-parametric models differ from
parametric models in that the model structure is not specified a
priori but is instead determined from data.
In this paper, we will focus on Radial Basis Function, as one of
the non-parametric model types, which is have high tolerance
to noise, and study the effect of Regularized Radial basis
function networks, and its training algorithms in Regularized
neural network in improving software estimation accuracy.

II. ANNS IN SOFTWARE ESTIMATION
There are several ANNs methods that has been used in

software estimation, bellow are the mostly common ANNs as
per our survey:

1. Feed-forward neural network
2. Recurrent neural networks

3. Radial basis function (RBF) network
4. Neuro-fuzzy networks

A. Feed-forward neural network
The Feed-Forward is the first and the simplest type of artificial
neural network. In these nets, neurons are arranged in layers,
and there are only connections between neurons in one layer to
the following. The feed-forward algorithm has several training
algorithms, the popular ones are Backpropagation [1][14][23]
and Marquardt algorithm [3].

A.1 Feed-forward neural backpropagation network in
software estimation

The Feed-Forward multi-layer perceptron with back-
propagation learning algorithm are the commonly used in the
software cost estimation. In these nets, neurons are arranged in
layers. The Feed-Forward backpropagation has been used in
several studies [24, 25, 26, and 27]. Venkatachalam [24]
constructed back-propagation network using the COCOMO
model [19], and used 22 input nodes and 2 output nodes. The
input nodes represent the distinguishing features of software
projects and the output nodes represent the effort required in
terms of person month and the development time required to
complete the project. Venkatachalam has suggests that the
neural network approach is a promising tool for accurately
estimating software costs and development time, but
Venkatachalam has not compared the performance of the back-
propagation with other models. Samson [26] used also the
COCOMO as Venkatachalam, and calculated the MMRE equal
428%. Wittig [25] used the ASMA database of 81 projects.
Wittig calculated the MMRE to be equal 17%. Srinivasan [27]
compared the performance of the back-propagation, with
standard models of software development estimation using
COCOMO’s database of 63 projects. Srinivasan used 22 input
units, 10 hidden units and 1 output unit. Srinivasan reported that
the back-propagation has better MMRE (%), the parametric
models

A.2 Feed-forward neural network using Levenberg-
Marquardt in software estimation

The Levenberg-Marquardt (LM) algorithm [4] is an iterative
technique that locates the minimum of a multivariate function
that is expressed as the sum of squares of non-linear real-valued
functions [5]. The Levenberg-Marquardt method is commonly
used to solve nonlinear least squares problems, but it is rarely
used in software estimation. As per our survey the, (LM)
algorithm has only been used by Aggarwal [28], to estimate the
development effort using ISBSG repository [50]. Aggarwal has
compared the LM with back-propagation, and showed that the
LM has better MMRE. The main problem with feed-forward
algorithm, is the local minima, that is due to either data
inadequacy or noise.

474

B. Recurrent Neural Networks
In Recurrent Network [21], additional to the Feed-Forward
connections, units have self-connections or connections to units
in the previous layers. This recurrency acts as a short-term
memory and lets the network remember what happened in the
past. This combines the advantage of the nonlinear
approximation ability of a multilayer perceptron with the
temporal representation ability of the recurrency, and such a
network can be used to implement any of the three temporal
association tasks, where the output sequence is given as output
after a specific input sequence. The input and output sequences
may be different. One of the most known recurrent neural
networks is Elman neural network [21]. Typical Elman network
has one hidden layer with delayed feedback. The Elman neural
network is capable of providing the standard state-space
representation for dynamic systems. Jagannath Singh [23] has
compared the development Time (DT) between Elman
Backpropagation Neural Network model and Feed Forward
ANN using NASA dataset, Jagannath Singh, shows that layer
recurrent neural network has the lowest MMRE.

C. Radial Basis Functions (RBF) neural network
RBF network are embedded in two layer neural network, where
each hidden unit implements a radial activated function. The
output units implement a weighted sum of hidden unit outputs.
The input into an RBF network is nonlinear while the output is
linear. Their outstanding approximations capabilities have been
studied in [6].Due to their nonlinear approximation properties,
RBF network are able to model complex mappings. A large
variety of training algorithms has been tested for training RBF
networks, like orthogonal least squares using Gram-Schmidt
algorithm [7], Backpropagation, and learning vector
quantization [8].

The RBF network, uses the bellow hypostasis for the
interpolation to estimate the development effort. The name
Radial came from the fact that the following function is used
for interpolation

 (1)

Where { i = 1, 2, ...,N} is a set of N arbitrary
(nonlinear) functions known as Radial-Basis Functions.
The most common Radial Basis Function is the Gaussian
function which takes the form

 (2)

Where is the center vector for neuron i, and is the width of
the RBF function. The most common techniques to calculate
the centers of hidden layer neurons and their width are K-
means method, Orthogonal least squares, Genetic algorithm [51]
and Particle Swarm Optimizer [16]. In this research, we will
make comparisons between some of these techniques.

Shin and Goel [17], described a detailed Radial Basis Function
modeling study for software cost estimation using NASA
dataset. Shin and Goel indicated that, the problem of developing
an RBF model can be seen as that of determining its parameters.

Shin and Goel studied effect of standard deviation on the
MMRE.

D. Neuro-fuzzy neural networks
Neuro-fuzzy refers to combinations of artificial neural
networks and fuzzy logic. The Neuro-fuzzy synergizes these
two the human-like reasoning style of fuzzy systems with the
learning and connectionist structure of neural networks. Neuro-
fuzzy combination is widely termed as Fuzzy Neural Network
(FNN) or Neuro-Fuzzy System (NFS). Neuro-fuzzy
hybridization [11], [12], [13] is done broadly in two ways: a
neural network equipped with the capability of handling fuzzy
information [termed fuzzy-neural network (FNN)] and a fuzzy
system augmented by neural networks to enhance some of its
characteristics like flexibility, speed, and adaptability [termed
neural-fuzzy system (NFS)]

D-1 Neuro-Fuzzy Systems
Xishi Huang et al [9] developed a Neuro-Fuzzy algorithm
(NFA) model for software cost estimation which uses the
desirable features of a neuro-fuzzy approach, such as learning
ability and good interpretability. In the NFA consists of the
following Components:

 Pre-Processing Neuro-Fuzzy Inference System
(PNFIS) used to resolve the effect of dependencies
among contributing factors of the estimation problem,
and to produce adjusted rating values for these factors.

 Neuro-Fuzzy Bank (NFB) used to calibrate the
contributing factors by mapping the adjusted rating
values for these factors to generate their corresponding
numerical parameter values,

 Module that applies an algorithmic model relevant to
the nature of the estimation problem to produce one or
more output metrics.

In NFA Fuzzy logic is used to calibrate Function Points (FP)
complexity degree to fit specific application. Neural network
calibrates unadjusted FP weight values to reflect the current
software industry trend by learning from ISBSG data. Xishi
Huang et al has been checked his model against the COCOMO
algorithmic model, and showed an improvement of 15%

D- 2 Fuzzy neural network
Chiu [29], proposes a Fuzzy Neural Network (FNN) approach
for embedding artificial neural network into fuzzy inference
processes in order to derive the software effort estimates. Chiu
[29], used artificial neural network to determine the significant
fuzzy rules. Empirical results by Chiu, showed that applying
FNN for software effort estimates resulted in slightly smaller
mean magnitude of relative error (MMRE) and probability of a
project having a relative error of less than or equal to 0.25 as
compared with the results obtained by just using artificial neural
network and the original model.

Bvanss [31], and Xia [14] have suggested Fuzzy neural
Networks, where the fuzzy logic part of the model calibrates the
Function point (FP) complexity weights to fit the specific
application context [2]. The neural network part of the model

475

calibrates the unadjusted FP [2] weight values to reflect the
current software industry trend. Xia [14] has validated the
empirical data repository (ISBSG Release 8). The experimental
validation results show a 22% improvement in software cost
estimation and demonstrate that FP need calibration and can be
calibrated. The problem with Fuzzy neural network, that it does
not consider the categorical environmental parameters like
development platform (PC, Main Frame, Midrange).

III. MODEL OVERVIEW
This section gives an overview for our recently published model
called “Enhanced Fuzzy Multiple Regression Neural Model for
Software Effort Estimation” [51]. This section is followed by
introducing enhancement techniques, to optimize the previously
defined model.

A. Model components overview
As shown in figure 1, the model is composed of four building
components, Data Preparation, Categorical Transformation,
Fuzzy Regression - Data filter, and Function formulation
components.

Figure 1: Block Diagram of Fuzzy Regression ANN model

 Data Preparation – Building Component

Data imperfections pose a problem for the estimation
models, which rely on historical data. These imperfections
can have unwanted impact on the effort estimation accuracy.
One form of these imperfections are random errors or
“noise”. Noise refers to incorrect or erroneous values in the
data. A common definition of an outlier is given by Barnett
and Lewis [13] as, an instance that appears to be inconsistent
with the remaining instances in the data. In our experiments
we, use the ISBSG dataset, and use the following steps as
preliminary noise removal: a) Only ISBSG data with quality
= “A”, are selected b) Remove records with missing data

 Categorical Transformation – Building component

There are a lot of environmental characteristics that cannot
be ignored, in the software estimation process, like the
Development Platform (Mainframe, Mid-Range, Personal
Computers), Development Type (Enhancements, New
development, New utility, Re-development) , Language
Type(3GL, 4GL, APG), bur it would be meaningless to use
these parameters in this form as a regression predictor
because the value of the numbers does not reflect its weight
during the estimation process. Thus, a transformation of the
these categorical data is done based on binary encoding [44].

This process is equivalent to function of the Neuro-Fuzzy
Bank in the sub-section D.

 Fuzzy Regression Data Filter Building Component

There are several filtering algorithms, to remove noise
from the data, other than the preliminary noise detection
illustrated in data preparation section like: K-means
clustering (K-means) [55], least trimmed squares, Genetic
Algorithm [50] and others.
In our model, we used the fuzzy regression as noise filter
as a new technique, where the least square method is
replaced by below membership function.

ui = (5)

and the fuzzy least squares method [14] is represented by
the following expression:

 (6)

Where: ui = (5)

 Function Formulation

We have tested several ANNs models, like Feed-Forward-
back propagation and others, but it has been found from the
experiments that the RBF is more tolerant to input noise. As
a continuation, for our work, we have worked for further
improving of estimation accuracy through the Regularization
Mechanism [53].

IV. MODEL OPTIMIZATION
In RBF network training for exact interpolation passing every
data point may leads to over fitting and poor generalization.
Regularization may improve the performance of network by
imposing smoothness constraints, such as adding a weight
penalty term to the sum-squared-error to construct cost function
(7) bellow:

 (7)

Where is the squared residual norm; is
regularized norm; λ is called the regularization parameter.
Regularization parameter λ suffers from a trade-off between the
“size” of the regularized solution and the quantity of the fit that
it provides to the given data. If λ is too small this, may cause
overfitting. If is too large, the network will not adequately fit
the training data. In this paper, we focus improving the
estimation accuracy through regularization, to minimize the
cost function (7), through the following steps: Differentiating
the cost function with respected to weights W, equating the
result to zero and rewriting it in compact form, which leads to
the following equation (8) :

 = (8)

476

Regularization parameter is optimal according to (8),

 Optimization Model Construction

Like other nonlinear networks, RBF networks face the same
controversy to adjust it’s parameter and the number of layers.
Incorrect adjustments may lead either to unacceptable
approximations or to expensive computation and may cause
over fitting problem [9], [12], [38].
To study effect of RBF regularization, the same dataset (ISBSG)
and tool - Matlab are used. To calculate the RBF network
weight, the following Matlab function is used:

,) (9)

Where:
 is the input data
 c is the is the center vector for neuron, determined

by the k-means
 is regularization parameters

Implementation steps:

1. Tune with start with 1 then fine tune it
2. start 1 then fine tune

V. CASES STUDIES

A. Effect of Regularization on MMRE

In this case study, we will measure the effect of the
regularization of the Radial basis function on the MMRE
Configuration:

Item Value
No. of hidden layers 2
Radial basis function
type

Generalized Radial
Basis Function &
Regularized

No. of data Records 640

MMRE at different stages
Model MMRE

RBF with outliers
(RBF)

0.4

RBF after removing
the outliers (RBF-
WO)

0.3

RBF after using the
Fuzzy regression filter

0.25

RRBF
(regularization)

0.1

Figure 2: MMRE Comparison between different Regularized and non-

regularized

Experiment 2.

B. Comparision on different techniques to calucate the
neurons centers and width

In this case study, we examined the effect of the training
algorithm, in the estimation accuracy. We have used the K-
means method, Genetic algorithm and Particle Swarm
Optimizer algorithms. The K-means was used in the
previous case study

 PSO-based GA-based K-means
RBF
(Regularized
RBF with
outliers)

0.25 0.32 0.4

RBF-WO
(Regularized
RBF without
outliers)

0.05 0.08 0.1

VI. CONCLUTION
Radial basis function (RBF) networks have advantages of easy
design and strong tolerance to input noise. Regularization
improves network generalization ability by adding penalty term
to original cost function, thus improving software estimation

477

accuracy MMRE. The RBF has embedded noise filer, which is
the K-means. Regularization RBF is not easy and implement,
and takes time for adjusting it, but it improves the accuracy in
for high scale and noisy data. The paper is aimed to recommend
Regularized RBF networks for large scale and noisy data.
Choosing the right training algorithm and adjusting the model
parameters are also important as choosing the right neural
networks. The PSO has shown better results than the Genetic
Algorithm and k-means clustering. As a continuation to this
work, more training algorithms need to be tested like
Orthogonal least squares and others.

REFERENCES
[1] Rumenhart D. E., G. E. Hinton and R. J. Wiliams, “Learning

representations by back-propagating errors” Nature, vol. 323, pp. 533-
536, 1986

[2] IFPUG, Function Point Counting Practices Manual, International
Function Point Users Group, 2004

[3] M. T. Hagan, M. B. Menhaj, "Training Feedforward Networks with the
Marquardt Algorithm," IEEE Trans. on Neural Networks, vol. 5, no. 6,
pp. 989-993, Nov. 1994.

[4] Andersen, Thomas J. and B.M. Wilamowski, “A. Modified Regression
Algorithm for Fast One Layer Neural Network

[5] D.W. Marquardt. An Algorithm for the Least-Squares Estimation of
Nonlinear parameters. SIAM Journal of Applied Mathematics, 11(2):431–
441, Jun.1963.

[6] J. Park, I. W. Sandberg, “Universal Approximation Using Radial-Basis-
Function Networks” Neural Computation, Summer 1991, Vol. 3, No. 2 ,
Pages 246-257

[7] Chen, S., Cowan, C. F. N. and Grant, P. M. (1991) Orthogonal least
squares learning algorithm for radial basis function networks. IEEE
Transactions on Neural Networks, 2, (2), 302-309

[8] kohonen, T. K., (1989) self-orgainsation and associative memory.
Berline: Springer-Verlag

[9] Ho, D., Capretz, L.F., Huang, X., Ren, J. Neuro-Fuzzy Algorithmic
(NFA) Models and Tools for Estimation, Twentieth International
Forum on COCOMO and Software Cost Modeling, University of
Southern California, Los Angeles, October 2005.

[10] Horikawa, T Furuhashi, Y Uchikawa, “On fuzzy modeling using fuzzy
neural networks with the back-propagation algorithm” IEEE Transactions
on Neural Networks (1992), Volume: 3, Issue: 5, Pages: 801-806

[11] S. K. Pal and S. Mitra, Neuro-fuzzy Pattern Recognition: Methods in Soft
Computing. New York: Wiley, 1999.

[12] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems—A Neuro–Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall,
1996.

[13] L. X. Wang, Adaptive Fuzzy Systems and Control. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[14] Wei Xia , Danny Ho2, .A Neuro-Fuzzy Model for Function Point
Calibration, WSEAS Transactions on Information Science and
Applications, Volume 5 Issue 1, January 2008

[15] Hao Yu; Tiantian Xie; Paszczynski, S.; Wilamowski, B.M.”Advantages
of Radial Basis Function Networks for Dynamic System Design” - IEEE
Transactions on Industrial Electronics, Dec 2011

[16] Eberhart, R. C. & Kennedy, J. (1995). A new optimizer using particle
swarm theory, Proceeding of 6th Int. Symp. Micro Machine and Human
Science, pp. 39-43

[17] Idri, A. , Mbarki, S. ; Abran, A. “Validating and Understanding Software
Cost Estimation Models based on Neural Networks” Information and
Communication Technologies: From Theory to Applications, 2004.
Proceedings.

[18] B.W. Boehm. Software Engineering Economics. Prentice- Hall, 1981
[19] Y-S Hwang and S-Y Bang. “An Efficient Method to Construct a Radial

Basis Function Network Classifier.” Neural Networks, vol. 10, no. 8,
1997, pp. 1495-1503

[20] He, Q. “Neural Network and Its Application in IR”. University of Illinois,
Urbana-Champaign 1999

[21] Elman, J.L., 1990 "Finding structure in time," Cognitive Science, Vol. 14,
179-211

[22] Jagannath Singh, “Software Effort Estimation with Different Artificial
Neural Network”, IJCA Special Issue on “2nd National Conference-
Computing, Communication and Sensor Network” CCSN, 2011

[23] Venkatachalam, A.R “Software Cost Estimation Using Artificial Neural
Networks”, 1993. Proceedings of 1993 International Joint Conference on
neural network, Nogoya

[24] Gerhard Wittig, Gavin Finnie “Estimating software development effort
with connectionist models”. Information and Software
Technology (1997)

[25] Bill Samson, David Ellison “Software cost estimation using an Albus
perceptron (CMAC)”. Information and Software Technology. Volume 39,
Issue 1, 1997, Pages 55 60

[26] Srinivasan, K. Fisher, D. “Machine learning approaches to estimating
software development effort” IEEE Transactions on Software
Engineering Feb 1995, 21 , Issue: 2 . Page(s): 126 – 137

[27] Arthur; Abhishek Bhowmick (2009). "A theoretical analysis of Lloyd's
algorithm for k-means clustering".

[28] Huang, S., Chiu, N., “Applying fuzzy neural network to estimate software
development effort”, in Proceedings of Applied Intelligence Journal, Vol.
30, No. 2, pp. 73-83 , Apr. 2009.

[29] Vivian Xia, Danny Ho “Calibrating Function Points Using Neuro-Fuzzy
Technique”. Information and Software Technology 50 (2008) 670–683

[30] Bvanss prabhakar Rao, P Seethe Ramaiah. IJCSI International Journal of
Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012

[31] Idri, A. "Can neural networks be easily interpreted in software cost
estimation?” Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the
2002 IEEE International Conference on Date of Conference: 2002

[32] Saleem Basha “Analysis of Empirical Software Effort Estimation
Models”. (IJCSIS) International Journal of Computer Science and
Information Security, Vol. 7, No. 3, 2010

[33] Chris Schofield, “Non-Algorithmic Effort Estimation Techniques”
Department of Computing Bournemouth University Talbot Campus
Poole, BH12 5BB England. Technical report 1998

[34] Moloekken-OEstvold, K. “A survey on software estimation in the
Norwegian industry”. Software Metrics, 2004. Proceedings. 10th
International Symposium on

[35] Wolverton, R.W., The Cost of Developing Large-Scale Software, IEEE
Transactions on Computers, Volume C-23, No 6, pp 615-636, June 1974

[36] Bente Anda, Hege Dreiem “Estimating Software Development Effort
Based on Use Cases-Experiences from Industry”. 01 Proceedings of the
4th International Conference on The Unified Modeling Language,
 Modeling Languages, Concepts, and Tools. Springer-Verlag London, UK
2001

[37] Sharareh Afsharian, Marco Giacomobono A framework for
software project estimation based on cosmic, dsm and rework
characterization Proceeding Proceedings of the 1st international
workshop on Business impact of process improvements ACM New York,
NY, USA ©2008

[38] M. van Genuchten and H. Koolen, "On the Use of Software Cost
Models," Information & Management, vol. 21, pp. 37-44, 1991.

[39] Heemstra, F.J., Software cost estimation. Information and Software
Technology, 1992. 34(10): p. 627-639.

[40] Kaczmarek J, Kucharski M, “Size and Effort Estimation for Applications
Written in Java,” Journal of Information and Software
Technology, Volume 46, Issue 9, pp 589-60, 2004

[41] Heiat A, “Comparison of Artificial Neural Network and Regression
Models for Estimating Software Development Effort,” Journal of
Information and Software Technology, Volume 44, Issue 15, pp 911-
922, 2002

478

[42] K. Srinivasan and D. Fisher, "Machine learning approaches to estimating
software development effort," IEEE Transactions on Software
Engineering, vol. 21, pp. 126-137, 1995.

[43] Musilek, P., Pedrycz, W., Succi, G., Reformat, M., Software Cost
Estimation with Fuzzy Models, Applied Computing Review, Vol.8, No.2,
2000, pp.24-29

[44] N. Fenton, S. Pfleeger, “Software Measurement: A rigorous and practical
approach”, International Thomson Computer Press, 1996.

[45] Manpreet Kaur “Using Bayesian regulation back propagation
algorithm for Software effort estimation and comparing with COCOMO
IRACST – Engineering Science, and Technology: An International
Journal (ESTIJ), ISSN: 2250-3498, Vol.2, No. 4, August 2012

[46] G. H. Subramanian, P. C. Pendharkar, and M. Wallace, "An Empirical Study
of the Effect of Complexity, Platform, and Program Type on Software
Development Effort of Business Applications," Empirical Software
Engineering, vol. 11, pp. 541-553, 2006.

[47] S. Kumar, B. A. Krishna, and P. S. Satsangi, "Fuzzy systems and neural
networks in software engineering project management,"
Journal of Applied Intelligence, vol. 4, pp. 31-52, 1994.

[48] Bhatnagar, R.; Ghose, M.K.; Bhattacharjee, V., “A novel approach to the
Early Stage Software Development Effort Estimations using Neural
Network Models: a Case Study”; Artificial Intelligence Techniques -
Novel Approaches & Practical Applications” of International Journal of
Computer Applications (USA), Number 3 - Article 5, 2011 pp 27-30.

[49] About ISBSG, International Software Benchmarking Standards Group,
2004.

[50] Yunfei, B. & Zhang, L. (2002). Genetic algorithm based self-growing
training for RBF neural Network, IEEE Neural Networks, Vol. 1, pp. 840-
845

[51] Khaled Shams, Amr Kamel "Enhanced Fuzzy Multiple Regression Neural
Model for Software Effort Estimation" DMS 2012 The 18th International
Conference on Distributed Multimedia Systems Knowledge Systems
Institute Graduate School, USA

[52] Federico Girosi, michael Jones "Regularization Theory and Neural
Network Architectures" . Artfical intellegence Laboratory Massachusetts
Institute of Technology, Cambridge AI Memo 1430 1993.

[53] C. R. VOGEL, Computational Methods for Inverse Problems, SIAM,
Philadelphia, PA, 2002.

[54] Dempster, er, A.P.; Laird, N.M.; Rubin, D.B. (1977). "Maximum
Likelihood from Incomplete Data via the EM Algorithm". Journal of the
Royal Statistical Society. Series B (Methodological) 39 (1): 1–38.

[55] Moddy, Y. & Darken, C. J. (1989). Fast learning in network of locally
tuned processingunites, Neural computation, Vol.1, pp. 281-294

479

Towards a Unified Framework for Measuring the
Properties of Class Diagrams Augmented with OCL

Mohamed Elshaarawy
Computer Engineering dept.
AAST
Cairo, Egypt

Abstract—There are several studies in the literature to assess the
properties of a class diagram without taking into consideration the
added complexity due to using object constraint language (OCL).
This paper presents integrated frameworks that consider class
diagram augmented with rules and constraints embedded in the
problem domain and encoded using OCL to investigate the benefit
and/or impact of using OCL. The proposed framework is
theoretically and empirically validated.

Keywords-component; Software measurement, Class diagram,
OCL, Metric

I. INTRODUCTION
 A great effort has been made in the field of software
measurement for the following; (1) assessing the properties of
class diagrams without considering the OCL (Chidamber &
Kemerer, Li & Henry, Brito e Abreu & Carapuça, Lorenz &
Kidd, Briand, Marchesi , Harrison, Bansiya, Genero, In, Rufai ,
Zhou, Kang and others [1], (2) measuring the structural
properties of OCL expressions in isolation, without considering
class diagrams on which these OCL are used, (Reynosa,
Genero, Piattini [2], Cabot and Teniente [3]).

In response to the great demand for metrics for measuring the
quality characteristics of class diagrams augmented with OCL
as a one chunk we have proposed a unified framework contains
a set of “Integrated” metrics for that purpose, a set of new class
diagram metrics, a set of new OCL metrics in additions to the
well-known class diagram and OCL metrics that have been
selected for their extensively use, relevant scope and validity.

The rest of this paper is organized as follows. In section 2 a
brief overview of the proposed framework has been presented,
Section 3 presents a brief overview of the empirical validation
of the proposed metrics. In section 4 some concluding remarks
and future work are presented.

II. THE PROPOSED FRAMEWORK

A. Philosophy of the Proposed Framework
The proposed framework follows some suggestions

provided by Briand about “how to define valid measures” [4].
Also, it follows the following principles: Metrics must be
defined pursuing clear goals (using for example the GQM
method), Metrics must be theoretically and empirically
validated. And we have followed what Fenton [5] suggested
that it is not advisable to define a single measure for capturing

different structural properties. For that reason we have defined
a set of metrics, each of which captures different structural
properties of class diagram augmented with OCL.

 The goal pursued for the definition of the metrics is
measuring the structural properties of class diagrams with its
OCL to find early indicators of such qualities’ external
attributes such as functionality, reliability, usability, efficiency,
maintainability and portability.

The structural properties will be measured are: size, length
and coupling. And, the scopes of measures are: class diagram,
OCL expressions and class diagram augmented with OCL
(integrated metrics).

So, the proposed metrics structured as follows: three
metrics suites (size measurement metrics suite, length
measurement metrics suite and coupling measurement metrics
suite). Each suite consists of class diagram scope, OCL
expressions scope and integrated class diagram _OCL metrics.

The acronyms for the metrics indicate what will be counted:
The first two letters indicates the scope of the metrics (Cd: The
class diagram alone and Oc: The OCL expressions).The
remainder of the letters indicates the goal of the metrics (NC:
Number of classes, NA: Number of attributes…), while the
integrated metrics will be expressed by natural language like
(Classes density).

B. Size Measurement Metric Suite
1) Class Diagram Size Scope Metrics:

a) The selected well known (existing literature)
metrics are [1]:CdNC(Class diagram number of
classes), CdNM (Class diagram number of methods),
CdNAss (Class diagram number of association
relationships) for uni directional and bi directional
association only, CdNAgg (Class diagram no. of
aggregation relationships), CdNDep (Class diagram
number of dependency relationships), CdNGen (Class
diagram number of generalization relationships),
CdNGenH (Class diagram number of generalization
hierarchies), CdNAggH (Class diagram number of
aggregation hierarchies).

b) The proposed metrics are: CdNA (Class diagram
number of attributes), CdNR (Class diagram no. of
relations) it can be calculated by: CdNR =CdNAss+
CdNAgg+ CdNDep+ CdNGen+ CdNGenH+ CdNAggH

Haitham S.Hamza
Information Technology dept.

FCI, Cairo University
Cairo, Egypt

Ismail Taha
Vice President,

AAST
Cairo, Egypt

480

2) OCL Expressions Size Scope Metrics:
a) The selected well known (existing literature)

metrics are : OcNoBj (the no. of objects in Bexp
where Bexp is the bag of objects accessed during the
evaluation of an expression) [5], OcWNM (OCL
expressions Weighted No. of Messages), OcWNN (OCL
expressions Weighted No. of Navigations) [6]

b) The proposed metrics are: OcNL (OCL

expressionsNo. of Lines),OcNC(OCL expressions No.
of constraints),OcNI (OCL expressions No. of
Invariants),OcNO (OCL expressions No. of Operations)
Including operations Boolean type, operations on
integer and real types, operations on string types,
operations on collection types and query operation,
OcNCond (OCL expressions No. of pre and post
Conditions), OcNV (OCL expressions No. of Variables
defined through <<Definition>> constraints included
number of variables defined by Let expressions in an
expression), OcNaA (OCL expressions No. of accessed
class diagram attributes),OcNaM (OCL expressions No.
of accessed class diagram Methods), OcNaR (OCL
expressions No. of accessed class diagram Relations),
OcNaC (OCL expressions No. of accessed classes)

3) Integrated Size Scope Metrics:
a) Classes' Density: The ratio of (total no. of

accessed classes in OCL expressions /total no. of
classes within class diagram= OcNaC/CdNC) this
represents the extra complexity added to CdNC
due to using OCL.

b) Attributes' Density: The ratio of (total no. of
accessed attributes In OCL expressions /total no.
of attributes within class diagram= OcNaA/CdNA)
this represents the extra complexity added to
CdNA due to using OCL.

c) Methods’ Density: The ratio of (total no. of
accessed method. In OCL expressions /total no. of
methods within class diagram= OcNaM/CdNM)
this represent the extra complexity added to
CdNM (no. of methods) due to using OCL.

d) Relations' Density: The ratio of (total no. of
accessed relations In OCL expressions /total no. of
relations within class diagram=OcNaR/CdNR) this
represents the extra complexity added to CdNR
due to using OCL.

4) Theoritcal validation:
Following the property based framework of Briand [4], it has
been assured that all of the size metrics suite fulfill all of the
following axioms that characterize size metrics:
PropertySize.1 (Non-negativity): This property is directly
proven because it is impossible to obtain a negative value for
all of the size metrics suites.
PropertySize.2 (Null value): Any system from the above
described three systems have no elements will lead to its
related metrics =0.

PropertySize.3 (Module Additivity): This property is directly
proven because the size of a system is equal to the sum of the
sizes of its modules.

C. Length Measurement Metric Suite
1) Class Diagram Length Scope Metrics:

a) The selected well known (existing literature):
CdMaxDIT (The maximum between the Depth of
Inheritance DIT values obtained for each class of
the class diagram, The DIT value for a class
within a generalization hierarchy is the length of
the longest path from the class to the root of the
hierarchy) ,CdMaxHAgg (The maximum between
the Hierarchical Aggregation (HAgg) values
obtained for each class of the class diagram ,The
HAgg value for a class within an aggregation
hierarchy is the length of the longest path from
the class to the leaves)Units.[1]

2) OCL Expressions Length Scope Metrics:
a) The selected well known (existing literature):

OcDN : Depth of Navigations (DN) is the maximum
depth of the navigation tree [6].

b) The proposed metric is: the added length to the
longest path from the class to others related
classes in the class diagram due to navigation tree
build after using OCL.

3) Theoritcal validation:
Following the property based framework of Briand [4], it has
been assured that all of the length metrics suite fulfill all of the
following axioms that characterize length metrics:
PropertyLength.1 (Nonnegativity) and Null Value are
straightforwardly satisfied, the depth of a tree can never be
negative, and an expression without navigation has an empty
tree.
PropertyLength.2 (Nonincreasing monotonocity)for connected
components: If we add relationships between elements of a
tree (classes or interfaces) the depth of the tree does not vary.
PropertyLength.3 (Nondecreasing monotonocity) for non-
connected components: Adding a relationship to two
unconnected components (two trees) makes them connected,
and its length is not less than the length of the two
unconnected components.
PropertyLength.4 (Disjoint modules): The depth of a tree is
given by the component that has more levels from the root to
the leaves.

D. Coupling Measurement Metric Suite
1) Class Diagram Coupling Scope Metrics:

CdNPCAIC (Number of coupling relationship to Parent
classes if there is a Class-attribute interaction between classes
of Import coupling type) , CdNOCAIC (Number of coupling
relationship to other classes if there is a Class-attribute
interaction between classes of Import coupling type),
CdNDCAEC (Number of coupling relationship to descendant
classes if there is a Class-attribute interaction between classes
of Export coupling type), CdNOCAEC (Number of coupling

481

relationship to other classes if there is a Class-attribute
interaction between classes of Export coupling type),
CdNPCMIC (Number of coupling relationship to parent
classes if there is a Class-Method interaction between classes
of Import coupling type),CdNOCMIC (Number of coupling
relationship to other classes if there is a Class-Method
interaction between classes of Import coupling type),
CdNDCMEC (Number of coupling relationship to descendant
classes if there is a Class-Method interaction between classes
of Export coupling type),CdNOCMEC (Number of coupling
relationship to other classes if there is a Class-Method
interaction between classes of Export coupling type)[4].

2) OCL Expressions Coupling Scope Metrics:

OcNPT (The OCL expressions Number of Parameters whose
types are classes defined in the class diagram),OcNAN (The
OCL expressions Number of attributes referred through
navigations in an expression, OcWNM (OCL expressions
Weighted No. of Messages), OcWNO (The OCL expressions
Weighted Number of referred Operations through
navigations)[2].

3) Theoritcal validation:
Following the property based framework of Briand [4], it has
been assured that all of the coupling metrics suite fulfill all of
the following axioms that characterize coupling metrics:
PropertyCoupling.1 (Non-negativity): Is directly proven, and it
is impossible to obtain a negative value for all of stated
metrics.
PropertyCoupling.2 (Monotonicity): Is directly verified,
adding import interactions - in this case, DU-interactions
(interaction from Data declaration to data Used in an OCL
expression)
PropertyCoupling.3 (Merging Modules): This property can be
expressed for our context in the following way: “the sum of
the import coupling of two modules is no less than the
coupling of the module which is composed of the data used of
the two modules”. The value of metrics for an expression
which consists of the union of two original expressions, is
equal to the metrics of each expression merged when the sets
of classes, methods, attributes and messages referred to in
each original expression are disjointed, otherwise is less than
metrics of each merged expression.

III. THE EMPERICAL VALIDATION SUPPORTED
CONTROLLED EXPERIMENT

A. Experiments Planning
1) Definition:

The purpose of this experiment is to analyze UML class
diagrams with its OCL expressions proposed framework
metrics and to evaluate the metrics results with the subjects’
ratings results indicating the impact of using OCL, combined
with UML class diagrams on the understandability and
maintainability degree.

2) Context & Material Selection:
The context of the experiment is a group related to the area of
Software Engineering in different seniority levels. They were
grouped into 4 groups (8 subjects per group) and each subject
worked individually on each of the two systems, using class
diagram+OCL in one case and only class diagram in the other.
They performed activities over 2 laboratories, as well as the
order of the activities, are summarized in Table 1.
Two comparable, in terms of complexity and size, class
diagrams with their OCL expressions representing (Royal&
Loyal system and Hotel management system) are used.

3) Hypothesis formulation:
The impact of using OCL will be assessed on two dependent
variables: Understandability (U) and Maintainability (M)
were measured according to the subjects’ ratings (of the
experiment’s designed questionnaires) targets the system
logic(U), and the ability of subjects to correctly specify the
affected system elements due to changes in requirements(M).
The other dependent variable is Maintenance time which is
comprises the time to comprehend the class diagram, analyze
the required changes and to implement them.
The null hypothesis (H0): There is no significant correlation
between the framework metrics and the above variables.
The alternative hypothesis (Ha): There is a significant
correlation between the framework metrics and the above
variables.

TABLE I. THE EXPERIMENT LAYOUT

 Group 1 Group 2 Group 3 Group 4
 (Lab1) R&L (no-ocl) R&L (ocl) Hmgmt

(no-ocl)
Hmgmt

(ocl)
 (Lab2) Hmgmt (ocl) Hmgmt (no-ocl) R&L (ocl) R&L

(no-ocl)

4) Instrumentation:

Besides the class diagrams with its OCL expressions separate
documents, other forms were used like a survey questionnaire
was distributed to obtain information about the subjects’
background. After the completion of both Understandability
and Maintenance tasks, forms were distributed that contains
specific questions about the system.
Maintenance questions address the Maintainability variable.
Figure 2 shows an example

Figure 1. Example Maintainace question

All of the questions were covered different parts of the
system, feasible to answer but not trivial and could be
answered with or without OCL.

In addition, another after-lab questionnaire was distributed

The hotel has decided to make a group reservation for the attendees of
the conference room and this will be an option to either reserve the
conference room or not.
a) Which class (es) should be added and/or modified?
b) Which modifications should be applied (additions, change in
attributes, operations) must be made in these class (es).

482

with questions addresses the selected variables.Those questions
were answered on a Likert scale from 1 (Strongly agree) to 5
(Strongly disagree).

5) Execution and Data Validation:

The operations were done successfully and all the data have
been collected including subjects’ answers obtained from the
responses of the experiment and the metrics value.

6) Analysis and interpretation

The data collected have been summarized and the metrics
values have been calculated to each class diagram with its
OCL. A simple statistical test (e.g., t-test) would do for that
purpose as the factor which has only two levels. Because most
of the subjects performed the same task with and without OCL,
the paired t-test can be used and gain additional statistical
power by removing individual differences. The ordering effects
which are impossible to avoid (e.g., learning effects) should be
considered and determine whether it interferes with the
presented analysis. The data of each Lab may have to be
analyzed independently.
As the ability of subjects has a strong effect on the task results,
so in order to refine the data analysis, a two-way ANOVA is
used considering Ability (Experience) as a factor as well.

All of the data have been collected were analyzed and
tested separately per each lab, per each attempt, per each
variable considering the tool (with or without OCL), subjects
ability and the ordering. The median, sum of squares, F-Ratio
and others were calculated to conduct the required testing’s and
making the required comparisons.

After applying the Kolmogrov-Smirnov test the data were non-
normal a nonparametric test like Spearman’s correlation
coefficient was used, with a level of significance α = 0.05,
which means the level of confidence is 95%. Using Spearman’s
correlation coefficient, each of the metrics was correlated
separately to the median of the subject's rating of the three
variables.
The computed Spearman's correlation coefficients are above
the cutoff, and the p-value < 0.01, the null hypothesis H0, is
rejected. Hence, there is a significant correlation between the
framework metrics and subject’s rating of the dependent
variables.

7) Threats to validity:

External validity threats like materials and tasks used. In the
experiment we tried to use class diagrams which can be
representative of real cases. Related to the tasks, the judgments
of the subjects are to some extent subjective.
In terms of internal validity, we have prevented any
confounding effect due to the system being used, the ability of
subjects and the order of performing the tasks.

To overcome the Fatigue effects. On average the experiment
lasted for less than one hour in each attempt (this fact was
corroborated summing the total time for each subject), so
fatigue was not very relevant. Also, the different order in the
tests helped to cancel out these effects.
In order to avoid persistence effects, the experiment was run
with subjects who had never done a similar experiment.

IV. CONCLUSION AND FUTURE WORK
This paper shows how we defined a metric suite for

measuring the overall Structural Properties of a class diagram
augmented with OCL. Also, it shows the best way from our
point of view to measure the Structural Properties of a class
diagram and the OCL expressions individually. We have added
the best metrics in the literature- in every scope- to provide the
best framework. We validated our framework theoretically by
using the property-based framework of Briand et al. and
classified it to size, length and interaction-based metrics for
coupling.

A controlled experiment was done to validate the proposed
framework empirically and shows that there are correlations
between the metrics and their tested variables. And also shows
that OCL, as a constraint language complementary to UML
class diagrams, is useful in helping understand system models
facilitate change and understanding. Obviously that the benefits
of using OCL may only be observed if subjects have sufficient
training and/or obtained sufficient experience in UML class
diagrams and OCL.

The extension of the proposed framework work to cover
other UML diagrams is very important to make a unified
framework for measuring the overall structural properties of
UML diagrams which augmented with OCL.

REFERENCES

[1] M. Genero, M Piattini, C. Calero: “A Survey of Metrics for UML Class
Diagrams”, in Journal of Object Technology, vol. 4, no. 9, November
December 2005, pp. 59-92

[2] Reynoso, L., Genero, M. and Piattini, M.: Towards a metric suite for
OCL Expressions expressed within UML/OCL models. Journal of
Computer Science and Technology, 4 (1). 38-44, 2004

[3] Cabot, J. and Teniente, E.: A metric for measuring the complexity of
OCL, MODELS’06, Genova, Italy, 2006

[4] Briand, L., Morasca, S. and Basili, V. : Defining and validating
measures for object-based high level design, In: IEEE Transactions on
Software Engineering. 25(5) pp. 722-743, 1999

[5] Fenton, N. and Pfleeger, S.: Software Metrics: A Rigorous Approach.
2nd.edition. Chapman & Hall, London 1997

[6] Reynoso, L., Genero, M. and Piattini, M.: Measuring OCL
expressions: a “tracing”-based approach. In: Workshop on Quantitative
Approaches in Object-Oriented Software Engineering. QAOOSE’2003,
Germany, 2003

483

Assessing RBFN-Based Software Cost Estimation
Models

Ali Idri, Aya Hassani

Department of Software Engineering
ENSIAS, Mohammed V –Souissi University

Rabat, Morocco
idri@ensias.ma, aya.hassani@gmail.com

Alain Abran

Department of Software Engineering
Ecole de Technologie Supérieure

Montréal, Canada, H3C IK3
Alain.abran@etsmtl.ca

Abstract— This paper is concerned with the design of the
neural networks approach, especially Radial Basis Function
Neural (RBFN) networks, for software effort estimation models.
The study firstly focuses on the construction of the RBFN middle
layer composed of receptive fields, using two clustering
techniques: hard C-means and fuzzy C-means. Thereafter, we
evaluate and compare the performance of effort estimation
models that use an RBFN construction-based either on hard or
fuzzy C-means. This study uses the ISBSG dataset and confirms
the usefulness of an RBFN-based on fuzzy C-means for software
effort estimation.

Keywords—Software cost estimation; RBF Neural Networks;
Hard and Fuzzy C-means; ISBSG dataset.

I. INTRODUCTION

Effort or cost estimation of the software project is one of
the most important activities in software project management.
To improve estimates and avoid gross mis-estimation, several
cost estimation techniques have been developed. Jørgensen and
Shepperd carried out a systematic review of software cost
estimation studies [1], identifying up to 11 estimation
techniques in 304 software cost estimation selected papers.
Those techniques may be grouped into two major categories:
parametric models, which are derived from the statistical or
numerical analysis of historical projects data [2], and non-
parametric models, which are based on a set of artificial
intelligence techniques such as artificial neural networks [3,4],
case-based reasoning [5] and decision trees [6]. Non-
parametric models have received increasing attention from
researchers; the systemic literature review of Wen et al. [7] has
identified eight types of machine learning techniques employed
in 84 selected studies. In particular, the CBR and ANN based
cost estimation models are the most frequently used, with 37%
and 26% respectively. Moreover, their study showed that the
CBR and ANN are more accurate, in terms of Pred and
MMRE, than the other machine learning techniques
(Pred(25)=64% and MMRE=37% for ANN, Pred(25)=46%
and MMRE=51% for CBR). This paper is concerned with the
neural networks approach, more specifically the Radial Basis
Function Neural (RBFN) networks for software effort
estimation models.

In our earlier works [4,8], two crisp clustering techniques,
APCIII and C-means, were empirically evaluated to design the
middle layer of RBFN for software effort estimation. These
studies used two datasets: the COCOMO’81 [2] and Tukutuku

[9]. It has been illustrated with these two datasets that the
RBFN designed with C-means performs better, in term of
effort estimates accuracy, than the RBFN designed with APC-
III algorithm. In addition, the results showed that the accuracy
of RBFN construction-based on C-means depends also on the
classification used in the hidden layer. For instance, the
classification obtained by minimizing the objective function J
leads to better estimates than that one obtained by maximizing
the Dunn index D1.

Thereafter, the fuzzy C-means clustering technique has
been applied in the design of RBFNs to estimate the
development effort of web hypermedia applications [10]. The
study used data on web applications from the Tukutuku dataset
which contains 53 web projects described using 9 numerical
attributes. The aim of the study was to evaluate and to compare
the accuracy of an RBFN construction-based on fuzzy C-
means with that one of an RBFN construction-based on hard
C-means. The results showed that an RBFN using fuzzy C-
means performs better, in terms of accuracy and tolerance of
imprecision, than an RBFN using hard C-means; however, the
importance of these findings is limited by the fact that it has
been proven that the accuracy of any estimation technique, for
instance RBFN, is highly depended on the characteristics of the
used dataset, especially its sample size [1].

This paper revisits these RBFN studies [10] using a larger
dataset, that is, the International Software Benchmarking
Standards Group repository- ISBSG release 8 [11] which
contains more than 2000 software projects described by several
attributes such as the number of function points, the
development platform and the programming language used in
the project. This study uses a set of cases and attributes
selection criteria to retain 151 projects described by 6
attributes. More specifically, the following research questions
were investigated: 1) Can RBFN networks be useful for
software effort estimation? 2) Will an RBFN construction-
based on fuzzy C-means tolerates imprecision and uncertainty
when dealing with numerical values? 3) Will an RBFN
construction-based on fuzzy C-means performs much better, in
term of MMRE and PRED, than that of an RBFN construction-
based on C-means?

The remainder of the paper is organized as follows. Section
2 presents the dataset description and evaluation criteria.
Section 3 describes how hard and fuzzy C-means are
incorporated in the construction of the hidden layer of the

484

RBFN networks. Section 4 discusses the results of this study
on the larger dataset. Finally, Section 5 discusses the findings.

II. DATA DESCRIPTION AND EVALUATION

CRITERIA

This section describes the data used to perform this study
and presents the evaluation criteria used to compare the
performance of the designed models.

A. Data Description

The data used in this study come from the International
Software Benchmarking Standards Group ISBSG release 8
[11].This ISBSG repository is a multi-organizational dataset
containing more than 2000 projects gathered from different
organizations in different countries. Major contributors come
from Australia (21%), Japan (20%) and United States (18%).
To decide on the number of software projects as well as their
descriptions, a data pre-processing phase is conducted. The
objective of this preprocessing phase is to select data (projects
and attributes) in order to retain projects with high quality data
for this study. It consists of three steps.

Step 1: Projects selection

This step consists on the selection of the software projects
with high quality data according to the following four criteria:
 Data Quality Rating field that contains an ISBSG rating

code of A, B, C or D applied to the project data by the ISBSG
quality reviewers [11]. This code denotes the soundness and
the integrity of the data of each project. The selected projects
for this study are those with rating code A or B.
 Ressource levels indicates the type of the data collected

about the people whose time is included in the work effort
data reported. Four levels are identified in the data collection
instrument: “1=development team effort. 2=development team
support. 3=computer operations involvement. 4=end users or
clients” [11].The selected projects are those with rating code 1
or 2: indeed, in the litterature of software effort estimation, the
development effort ony includes the efforts spent for the
activities of the development team as well as for its support.
• Unadjusted Function Points Rating indicates an ISBSG
rating code of A, B, C or D applied to the unadjusted function
point count data by the ISBSG quality reviewers [11]. This
code denotes the soundness and the integrity of the UFP count
data. The selected projects for this study are those with code
rating A or B.
• Development Type describes whether the development
was a new development, enhancement or re-development [11].
The selected projects are the new development because this
paper deals with software development effort.

TABLE I. DATA QUALITY CRITERIA FOR PROJECTS SELECTION

Criteria Selected Values Discarded Values
Data Quality Rating A or B C and D
Resource Levels 1 or 2 3 and 4
Unadjusted Function
Points Rating

A or B C or D

Development Type New Development Enhancement and
Redevelopment

Table I summarizes the quality criteria that had to be met
for the projects pre-selection. A total of 151 projects that
satisfied all conditions are selected for this study.

Step 2: Attributes Selection

The aim is to identify the attributes to be used as the inputs
(effort drivers) of a effort estimation model based on an RBFN
network. Selection attributes describing adequately software
projects is a complex task. The challenge is to detect a subset
of attributes that are relevant (exhibiting a significant
relationship with the effort), independent (to avoid multiple
uses of an attribute), operational (easy to measure), and
comprehensive (well defined). When the number of available
attributes is small, a brute force search of all possible subsets
may be applied; otherwise, it becomes an NP-hard search and
consequently is not a feasible solution. This is the case of the
ISBSG dataset in which the projects are described with more
than 50 numerical and linguistic attributes. Hence, the solution
adopted is to allow the estimators to use the attributes that
they believe best characterize their projects and are more
appropriate in their environment. Moreover, the use of hard or
fuzzy C-means requires numerical attributes. Consequently,
the selected attributes must be numerical. Six attributes have
been selected since they were usually considered in the
literature as relevant cost drivers. Table II contains the
descriptions of these six attributes.

TABLE II. SELECTED SOFTWARE ATTRIBUTES OF THE ISBSG
REPOSITORY

Software Attribute Description
Value Adjustment
Factor (VAF)

The adjustment of the function points

Unadjusted Function
Points (UFP)

The unadjusted function point count

Max Team Size The maximum number of people that
worked at any time on the project

User Base - Business
Units

Number of business units that the system
services

User Base – Locations Number of physical locations being serviced
by the installed system.

User Base -
Concurrent Users

Number of users using the system
concurrently.

Step 3: Data normalization

Due to the nature of selected software attributes, some of
continuous attributes show a larger range of values than others
which may make the effect of these attributes too important.
The solution is to scale continuous attributes into the same
range. To achieve this, all continuous attributes are normalized
applying the min-max normalization formula of the Equation
(1) such that all numerical variables are scaled within the
range of [0, 1].

485

B. Evaluation criteria

The accuracy of the estimates generated by the RBFN is
evaluated by the criteria of the Mean Magnitude of Relative
Error (MRE) and the Prediction level which are defined by
Equation (2) and Equation (3) respectively.

Where N is the total number of observations, K is the
number of observations with MRE less or equal to L. A
common value for L is 25%, which is used in the present study.
The Pred(25) represents the percentage of projects which MRE
is less or equal to 25%. The Pred(25) value identifies the
software effort estimates that are generally accurate whereas
the MMRE is fairly conservative with a bias against
overestimates.

III. RBFN NETWORK CONSTRUCTION

The use of an RBFN to estimate software development
effort requires the determination of its architecture parameters
according to the characteristics of the historical software
projects, especially the number of input neurons, number of
hidden neurons, centers cj, widths j and weights j. Figure 1
illustrates a possible RBFN architecture configured for
software development effort estimation.

Figure 1. An RBFN network architecture for software development effort
estimation.

The number of the input neurons is, usually and simply, the

number of the attributes describing the historical software
projects in the used dataset. Therefore, when applying RBF
networks to ISBSG dataset the number of input neurons is
equal to 6.

The construction of the hidden layer of the proposed RBFN
networks is achieved using two algorithms of hard and fuzzy
clustering techniques. Hard clustering methods are based on
classical set theory, and require that an object either does or

does not belong to a cluster whereas fuzzy clustering methods
allow the objects to belong to several clusters simultaneously,
with different degrees of membership. The role of clustering in
the design of RBFN is to set up an initial distribution of
receptive fields (hidden neurons) across the input space of the
input variables (effort drivers). In this work, the two clustering
algorithms used in designing RBFN are hard C-means and
fuzzy C-means algorithms [12,13].

For the widths j, many heuristics and techniques based on
solid mathematical concepts have been proposed in the
literature [14,15,16]. The main idea is to determine (j) in order
to cover the input space as uniformly as possible [17]. For
instance, two alternatives are considered [18,19]. Based on our
previous results [10] in which accurate estimates were obtained
when using the formula defined by Haykin [19], we adopt this
solution which consists in assigning one value to all (j).

Concerning the weights j, we may set each j to the
associated effort of the center of the jth neuron. However, this
technique is not optimal and does not take into account the
overlapping that may exist between receptive fields of the
hidden layer. Thus, we use the learning Delta rule to derive the
values of j.

IV. OVERVIEW OF EMPIRICAL RESULTS

This section presents and discusses the results obtained
when applying an RBFN network using either the hard C-
means or the fuzzy C-means to the sample from the ISBSG
dataset. The calculations were made using two software
prototypes developed with the programming language C under
a Microsoft Windows PC environment. The first prototype
implements hard and fuzzy C-means clustering algorithms,
providing both the clusters and their centers from the ISBSG
dataset. The second software implements an effort estimation
model based on an RBFN architecture where the middle layer
parameters were already determined by the first software
prototype.

To decide on the number of hidden units, several tests have
been performed with both hard C-means and fuzzy C-means
algorithms. Choosing the best classification to determine the
number of hidden neurons and their centers is not an obvious
task. For software effort estimation, we suggest that the best
classification is the one that provides coherent clusters which
have satisfactory degrees of similarity, and improve the
accuracy of estimates, in terms of MMRE and Pred(25),
produced by the RBFN.

A. Evaluation of RBFN-based on hard C-means

To measure the coherence of clusters, the objective
function J, rather than the Dunn’s validity index, is used.
Indeed, in our previous experiments, the use of J had led to
accurate estimates when applying an RBFN based on C-means
to the COCOMO’81 and the Tukutuku Datasets [2,9]. Several
experiments have been conducted with an RBFN using the
objective function J as a validity index for each number of
clusters c. The classification that minimizes J is taken. These
experiments use the ISBSG dataset for training and testing.

Figure 2 illustrates the relationship between the accuracy
(MMRE and Pred) of an RBFN architecture and the number of

Input layer Hidden layer Output layer

VAF

UFP

Business
Units

Locations

Concurrent
Users

Effort

βi

ci, σi

y1

y2

y3

yM

486

clusters generated by the hard C-means. We can notice that the
accuracy in terms of the Pred(25) criterion is, in general,
monotonous increasing according to c whereas it is
monotonous decreasing according to c when the MMRE
criterion is used. Hence, when c is higher than 134, the
estimates accuracy is higher (Pred(25)>70 and MMRE <30).
This is normal because when the number of clusters is higher
(tends towards 151) the clusters obtained are more coherent; in
particular if c is equal to 151, each cluster contains one project.
However, the aim is to reduce the number of clusters c and to
keep the estimates accuracy acceptable. Consequently, we are
concerned with the accuracy when the values of c tend towards
zero. It is noticed that when c is lower than 133, the RBFN
estimates accuracy in terms of Pred and MMRE is not
acceptable (Pred(25)<70% and MMRE>30%). We conclude
that the threshold value of c to use an RBFN based on C-means
for the ISBSG dataset is around 133. This is very high
considering that the maximum possible value is 151 clusters. It
may be due to the fact that software projects in the ISBSG
dataset are not sufficiently similar, taking into consideration
their description with the six attributes of Table II.

Figure 2. Relationship between the accuracy (MMRE and Pred) of an RBFN
construction-based on hard C-means and the number of clusters used in the
hard C-means, c.

B. Evaluation of RBFN-based fuzzy C-Means

To measure the coherence of clusters, the Xie-Beni validity
criterion is used [20]. A small value of XB means a more
compact and separate clustering. The goal should therefore be
to minimize the value of XB. Several tests have been
conducted with an RBFN-fuzzy C-means using the XB as a
validity index for each number of clusters C. The classification
that minimizes XB is taken. These experiments use the ISBSG
dataset for training and testing.

Figure 3 illustrates the relationship between the accuracy
(Pred and MMRE) of RBFN architecture and the number of
clusters c generated by the fuzzy C-means. We can notice that
the accuracy using the Pred(25) criterion is, in general,
monotonous increasing according to c whereas it is
monotonous decreasing according to c when the MMRE
criterion is used. Hence, when c is higher than 127, the
estimates accuracy in terms of Pred(25) is in general higher
(Pred(25)>70).

Figure 3. Relationship between the accuracy (MMRE and Pred(25) of an

RBFN and the number of clusters used in the fuzzy C-means, c

Regarding the MMRE criterion, it can be noticed that the
values obtained are higher than 30 even when the value of c
tends towards 151. This is due to the fact that the fuzzy C-
means, instead of C-means, allows the projects to belong to
several clusters and the MMRE is very sensitive to the outliers.
As in the case of RBFN using C-means, we are interested with
the accuracy when the values of c tend towards zero. It is
noticed that when c is lower than 127, the RBFN using fuzzy
C-means estimates accuracy in terms of Pred(25) becomes
unacceptable (Pred(25)<70%). According to the MMRE
criterion, the RBFN may be considered inaccurate for all
values of c (MMRE>30). Taking into consideration only the
Pred(25) as an indicator of the accuracy evaluation, we
conclude that the threshold value of c to use an RBFN based on
fuzzy C-means for the ISBSG dataset is around 127. This is
less than of RBFN based on C-means but still very high
regarding the maximum possible value of 151 clusters. It may
be due to the fact that software projects in the ISBSG dataset
are not sufficiently similar.

C. RBFN using C-means vs RBFN using fuzzy C-means

In this section, we compare in terms of accuracy and
tolerance of imprecision an RBFN based on fuzzy C-means
with the one when using hard C-means.

For the accuracy measured with the MMRE criterion,
Figure 4 shows that an RBFN using hard C-means is more
accurate than an RBFN based on fuzzy C-means for all values
of c. However, the MMRE is well known to be very sensitive
to the outliers. Hence, we only prefer to compare and evaluate
the accuracy by means of the Pred(25) criterion.

Figure 5 compares the Pred(25) of an RBFN using the
fuzzy c-means with that of an RBFN when using the hard C-
means. It can be noticed that when the number of hidden
neurons (number of clusters c) is higher than 127 and tends
towards 151, the accuracy of an RBFN based on C-means is
better than that one of an RBFN based on fuzzy C-means.
However, the aim is to reduce the number of clusters with
keeping a better accuracy. This is why it is very important to
consider the accuracy when decreasing the number of clusters
(c tends towards zero). From this point of view, the accuracy of
an RFBN based on fuzzy C-means is better than that of an
RBFN based on C-means when the number of clusters is lower
than 127 and tends towards 0. Indeed, an acceptable accuracy

487

of an RBFN-fuzzy C-means is still achieved until the number
of clusters is equal to 112; by contrast, it only was acceptable
until the number of clusters is equal to 127 in the case of an
RBFN based on hard C-means.

Figure 4. Comparison of MMREs

Figure 5. Comparison of Preds(25)

Regarding the tolerance of imprecision, an RBFN based on

fuzzy C-means is better than an RBFN based on C-means.
Indeed, the fuzzy concept allows the middle layer of an RBFN
to perform a fuzzy classification of each project and hence the
project may belong to several clusters. This is why even the
number of clusters is set to 151, an RBFN based on fuzzy C-
means avoid the well-known over fitting problem. By contrast,
when the number of clusters is set to 151 for an RBFN based
on C-means, its middle layer generates 151 clusters (e.g. each
cluster contains one project) and hence each project only
belongs to his cluster; so, there is a high risk of an overfitting.

V. CONCLUSION

In this paper, we have evaluated and compared RBFN
based software effort estimation models using the ISBSG
dataset. The RBFN construction is based on two clustering
techniques: hard and fuzzy C-means. The results obtained
confirms the findings with the COCOMO’81 and Tukutuku
datasets except for the MMRE criterion: (1) RBFN networks
based either on hard or fuzzy C-means are a promising
technique for software effort estimation; (2) RBFN using fuzzy
C-means generates more accurate estimates than an RBFN

using hard C-means especially when decreasing the number of
clusters; (3) An RBFN using fuzzy C-means better tolerates
imprecision than an RBFN using C-means and hence may
avoid the overfitting problem.

REFERENCES
[1] M. Jorgensen and M. Shepperd, “A Systematic Review of Software

Development Cost Estimation Studies”, IEEE Transactions on Software
Engineering, vol. 33, no. 1, 2007, pp. 33-53.

[2] B.W. Boehm, “Software Engineering Economics”, Prentice-Hall, 1981.

[3] G. R. Finnie, G. Witting, and J.M. Desharnais, “A Comparison of
Software Effort Estimation Techniques: Using Function Points with
Neural Networks, Case-Based Reasoning and Regression Models,
Systems and Software”, vol. 39, no. 3, 1997, pp. 281-289.

[4] A. Idri, A. Abran, and S. Mbarki, “An Experiment on the Design of
Radial Basis Function Neural Networks for Software Cost Estimation”,
2nd IEEE International Conference on Information and Communication
Technologies: from Theory to Applications, vol. 1, 2006, pp. 230-235.

[5] M. Shepperd and C. Schofield, “Estimating Software Project Effort
Using Analogies”, Transactions on Software Engineering, vol. 23, no.
12, 1997, pp. 736-747.

[6] R. W. Selby and A.A. Porter, “Learning from examples: generation and
evaluation of decision trees for software resource analysis”, IEEE
Transactions on Software Engineering, vol. 14, no. 12, 1988, pp. 1743-
1757.

[7] J. Wen, S. Li, Z. Lin, Y. Huc, and C. Huang, “Systematic literature
review of machine learning based software development effort
estimation models”, Information and Software Technology, vol. 54,
2012, pp. 41-59.

[8] A. Idri, A.Zakrani and A. Zahi, “Design of Radial Basis Function Neural
Networks for Software Effort Estimation”, International Journal of
Computer Science Issues (IJCSI),vol. 7,Issue 4, no 3, 2010,pp. 21-31.

[9] B. A. Kitchenham and E. Mendes, “A Comparison of Crosscompany
and Within-company Effort Estimation Models for Web Applications”,
8th International Conference on Empirical Assessment in Software
Engineering, 2004, pp. 47-56.

[10] A. Zakrani and A. Idri, “Applying Radial Basis Function Neural
Networks Based on fuzzy Clustering to estimate web Applications
Effort”, International Review on Computers and Software (I.RE.CO.S),
vol. 5, n.5, 2010.

[11] ISBSG, International Software Benchmarking Standards Group, Data
Release 8 Repository, 2003, http://www.isbsg.org.

[12] J. B. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations”, Fifth Berkeley Symposium on
Mathematical Statistics and Probability, 1967, pp. 281-297.

[13] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function
Algoritms”, Plenum Press, New York, 1981.

[14] F. Ros, M. Pintore, and J. R. Chretien, “Automatic design of growing
radial basis function neural networks based on neighboorhood
concepts”, Chemometrics and Intelligent Laboratory Systems, vol. 81,
Issue 2, 2007, pp. 231-240.

[15] N. Benoudjit and M. Verleysen, “On the Kernel Widths in Radial-Basis
Function Networks”, Neural Processing Letters, vol. 18, no. 2, 2003, pp.
139-154.

[16] F. Schwenker and C. Dietrich, “Initialisation of Radial Basis Function
Networks Using Classification Trees”, Neural Networks World, vol. 10,
2000, pp. 476-482.

[17] Y. S. Hwang and S. Y. Bang, “An Efficient Method toConstruct a
Radial Basis Function Network Classifier”, Neural Networks, vol. 10,
no. 8, 1997, pp. 1495-1503.

[18] A.Saha and J.D. Keeler, “Algorithms for better Representation and
Faster Learning in Radial Basis Function Networks”, Advances in
Neural Information Processing Systems 2, NIPS, 1989, pp. 482-389.

[19] S.Haykin, “Neural Networks: A comprehensive Foundation”, Prentice
Hall, 1998.

[20] X. L. Xie and G. Beni, “A validity Measure for Fuzzy Clustering”, IEE
Trans. Pattern Anal. Mach. Intell, vol. 13, 1991, pp. 841-847.

488

Proposal of an Automated Approach to Support the
Systematic Review of Literature Process

Jefferson Seide Molléri
UNIVALI – Universidade do Vale do Itajaí

Rua Uruguai, 458, Centro
Itajaí, Brazil

+55 47 30452242
jefferson.molleri@univali.br

Luiz Eduardo da Silva
UNIVALI – Universidade do Vale do Itajaí

Rua Uruguai, 458, Centro
Itajaí, Brazil

+55 47 30452242
linkz.ns@univali.br

Fabiane Barreto Vavassori Benitti
UNIVALI – Universidade do Vale do Itajaí

Rua Uruguai, 458, Centro
Itajaí, Brazil

+55 47 33417544 (#8057)
fabiane.benitti@univali.br

489

490

491

492

493

494

Automated Computation of Use Cases Similarity can
Aid the Assessment of Cohesion and Complexity of

Classes

Renato C. Juliano∗, Bruno A. N. Travençolo†, Michel S. Soares ‡, Marcelo de A. Maia§
∗†‡§Faculty of Computing - Federal University of Uberlândia - Uberlândia, Minas Gerais, Brasil

†travencolo@gmail.com, ‡mics.soares@gmail.com, §marcmaia@facom.ufu.br
∗Institute of Exact and Human Sciences - Centro Universitário do Planalto de Araxá - Araxá, Minas Gerais, Brasil

∗renatocorrea@uniaraxa.edu.br

Abstract—Use cases are widely used in early software devel-
opment phases such as requirements analysis. In this paper, we
investigate how use case similarity can impact the classes that
implement them. We studied whether the similarity of use cases
can have impact on the lines of code shared between them and on
metrics of classes that implement them, such as coupling, cohesion
and method complexity. We have also successfully applied an
automated approach to assess the similarity of use case names. We
found that there is a statistically significant correlation, although
not strong, between use case similarity and sharing of lines of
code. Interestingly, we have also found that classes that are
shared between different use cases tend to have lower cohesion.
Moreover, classes that are shared between similar use cases tend
to have higher method complexity in classes. We found no relation
between use case similarity and coupling.

Keywords—Use Case Similarity, Software Metrics, Software
Maintenance

I. INTRODUCTION

Software maintenance has been object of study for many
years [2], [10], [16], as it is well-established that software
needs to evolve in order to keep being useful. Software
maintenance accounts for up to 80% of software costs [8],
[18]. In addition, according to some studies, the faster an
error is discovered, the easier and less expensive and time-
consuming is to correct it [6]. Therefore, any activity that
facilitates the discovering of software errors or at least helps
in predicting future problems is useful for maintaining the
software. It is even more appropriate when this activity belongs
to initial phases of software development process, such as
during requirements analysis and design activities.

Use cases, which are commonly described using a tabular
approach or simple natural language and using the UML
use case diagram, are responsible for describing the external
activities of a software [11]. Use cases are useful to describe
the functions to be provided by the software, usually from an
actor point of view.

The proposal in this article is to describe a relationship
between the software metrics CBO, LCOM and WMC, pro-
posed in 1994 by Chidamber and Kemerer [3], with the level
of similarity between the items of a Use Case diagram. The
process to perform this task consists of two steps.

In the first step, we will study if it is feasible to use an
automated algorithm to assess use case similarity based on
algorithms for computation of string similarity. This step will
be evaluated by human experts. In the second step, we will
study how the similarity between two use cases can be related
to CBO, LCOM and WMC of the concrete software.

The reminder of the article is organized as follows. The
next section is about describing the literature basics to perform
this work. Among the topics, we described the analysis of
similarity between strings of use cases, software metrics and
the correlation between them. In section III, we describe the
approach to collect data, to extract software metrics, and to
relate software metrics with the level of similarity between
use cases. In Section V the results of the article are described,
and Sections VI and VII brings the threats to validity and
conclusion.

II. BACKGROUND

A. Similarity between texts in use case

In order to perform the analysis proposed in this paper, it
is necessary to find similarities between items in a use case
diagram. There are two ways in doing this analysis, one by
using a human specialist and other by automated techniques.

Human analysis has a series of advantages, specially
regarding the context awareness and interpretation of texts,
combined with the experience of the developer. However,
these advantages are only valid when the experience and the
knowledge about the problem are clearly defined, otherwise
the recognition will be compromised.

Automated computation of similarity can significantly re-
duce time of analysis. However, this is not a trivial task,
because defining the context of the used words is difficult
[5]. Several proposals were found in the literature in order
to evaluate similarity between texts [4]. In this work we use
the Jaro-Winkler [22] and Levenshtein [12] proposals.

In this work, we found a similarity threshold value that
balanced the precision/recall relation according to the analysis
of human specialists. Therefore, it is possible to automate the
process of similarity computation.

495

B. Software Metrics

Many studies have shown that the process of software
development can be significantly improved if the quantification
of involved process is adopted along all stages [3]. Several
metrics were proposed in order to quantify different features
of the software [1], [3], [13]. Among then, in this work we used
the set of metrics proposed by Chidamber and Kemerer [3].
This set of metrics, known as CK suite, is composed of six
metrics related to the object-oriented paradigm [9].

The use of CK metrics can indicate several character-
istics of the process of software development, as error-
proneness [15], [19], [21], bad smells identification [17], anal-
ysis of the effectiveness of refactoring [20] and assessment of
the maintainability of the process of software development [6].
In this work, three CK metrics were used, namely WMC, CBO
and LCOM:

• WMC - Weighted Methods Per Class : The WMC is a
measure defined by the sum of the complexity of the
methods of the class. The definition of the complexity
was not specified by Chidamber and Kemerer [9],
which suggested the use of a measure expressed by
a natural number. The WMC is related to the number
of methods of the class, and their complexity may
be proportional to the amount of time necessary to
develop and maintain the class (the greater the number
of methods of a class, the greater the impact on their
subclasses). Classes with a large number of methods
normally refer to specific applications, reducing the
possibility of reuse [3]. In this paper, for WMC, is
used the McCabe Cyclomatic Complexity [14].

• CBO - Coupling Between Object Classes: The CBO
metric represents the number of classes in which it
is coupled. One class is coupled to another when
at least one method of one of the class uses the
method or attributes of the other class. By using this
measurement it is possible to identify the level of reuse
of a class and its degree of modularity. The lower the
value of CBO is, more modularized is the class and,
as consequence, the possibility of reuse increases. In
addition, it is possible to analyze the rigor of software
testing, by means of the degree of importance, the
amount of time used and number of tests. The higher
the CBO is, more complex will be the testing [9].

• LCOM - Lack of Cohesion in Methods: The LCOM
metric quantifies the similarity between the methods
inside a class. Two or more methods are cohesive
when they share the attributes of the class. When the
value of LCOM is high, it means that the class does
not have well defined functionality, as several methods
modify the same attributes. On the other hand, if
LCOM is low, the methods of the class are cohesive
and, hence, less similar [9].

III. STUDY SETTING

The conduction of this study was organized in several steps
that will be described below.

Definition of the subject system

The system used in this study is a system in the educational
domain. The system has 17 use cases, which are implemented
with 3451 LOC, 34 classes and 181 methods. The system is
written in C#.

There are several reasons that justified the choice of the
system: it is a real working system with over 20 end-users, it
has well-documented use cases, the company that developed
the system has provided both the source code and developers,
which were allocated to recover the traceability of use cases
and classes that implement them and to assess the results of
the similarity algorithms.

Use cases

The use cases of the subject system used in this study are
shown in Table I. We decided to maintain the original names
in Portuguese (the language used in the specification), because
this was the actual input to similarity computation. We also
provided a translation of the terms to English.

TABLE I. USE CASES.

ID Description

uc1 Lançar Dados da Banca (Insert examining board information)
uc2 Visualizar TCC Postados (Visualize Final Project (FP) posted)
uc3 Disponibilizar Visualização do TCC no Site do Uniaraxá

(Provide visualization of FP on Uniaraxá’s Site)
uc4 Manter título do TCC (Keep title of FP)
uc5 Impressão da ata de defesa (Printing protocol of examining board)
uc6 Impressão da lista de presença (Printing presence list)
uc7 Impressão da lista de alterações/correções (Printing fix list)
uc8 Lançar nota(status) do TCC (Insert grades(status) of FP)
uc9 Escolha dos alunos que farão TCC (Choose students that will do FP)
uc10 Postar TCC (Post SCC)
uc11 Incluir título do TCC (Insert title of SCC)
uc12 Visualizar nota(status) do TCC (Visualize grades(status) of FP)
uc13 Lançamento do Status TCC para a disciplina (Insert status FP in discipline)
uc14 Relatório Gráfico por curso: alunos aprovados vs todos

(Report Chart by Course: approve vs reproved)
uc15 Relatório de alunos aprovados/reprovados por curso

(Report of students approved/reproved by course)
uc16 Lançamento da disciplina de TCC (Insert FP’s discipline)
uc17 Visualização do título do TCC (Visualize title of FP)

FP* : Final Project

Traceability recovery of use cases and classes

This step was conducted with the team that participated
actively in the development and documentation of the system.
The team consisted of four developers with at least three years
of experience. The result of this step was the definition of a
set of classes that implemented each use case. It is possible
that a class participates in the implementation of one or more
use cases.

Evaluation of similarity algorithms

This step was conducted to evaluate if algorithms to eval-
uate string similarity would be a substitute for human analysis
of use case similarity. The approach consisted in applying an
algorithm to compute the string similarity, which was tested
in a pairwise comparison of all pairs of use cases. The chosen
algorithms was Jaro-Winkler [22] and Levenshtein [12]. The
result of the algorithms is a number between zero (completely
dissimilar) and one (completely similar). The result of the
algorithm was assessed against a gold answer set, which

496

Fig. 1. Similarity values between pairs of use cases: (left) considered similar
by developers (right) considered dissimilar by developers.

was produced by the development team consisted of four
developers with three, seven, eight and ten years of experience,
respectively. The developers received the use case diagram
of the system and the following instructions to perform the
comparison:

• Consider similarity use case names (titles) that have
some semantic similarity between them that could
indicate the sharing of implementation classes.

• Select the pairs of use cases that you consider that
have some degree of similarity.

After the instruction phase, the developers produced their
set with pairs of similar uses cases. After that, they shared and
discussed their results to reach a consensus.

In order to define a threshold for the similarity algorithm
we used a ROC curve to assess precision and recall values
of the similarity algorithms. The area under the ROC curve
of Jaro-Winkler was higher than the area of Levenshstein,
so we decided to consider the algorithm Jaro-Winkler. Figure
1 depicts the similarity values for use case pairs that were
considered similar by the developers (right) and the similarity
values of the pairs that were not considered similar by devel-
opers (left). This figure presents the feasibility of automatic
similarity computation.

The next step was the definition of the threshold for
balanced precision/recall of the similarity algorithm. Table II
presents a inflexion point in the ROC curve that provide a
balanced threshold. For that threshold (similarity > 0.6409),
we get recall equals 60% and precision equals 87.93%.

TABLE II. PRECISION AND RECALL OF JARO-WINKLER BASED ON

EVALUATION BY DEVELOPERS.

Feature Value

Similarity > 0.6409
Recall 60,00
95% CI 36.05% to 80.88%
Precision 87,93
95% CI 80.58% to 93.24%
Likelihood 4.97

Classification of classes shared between use cases

In our study, our goal is to analyze if classes shared
between similar and non-similar use cases have special char-
acteristic concerning the metric values for LCOM, CBO and
WMC. Our criteria to classify similar use cases and to classify
shared classes between use cases is shown in Table III, where

X is the value of Jaro-Winkler metric and Y is the number of
lines of code (LOC) of classes that are shared between use
cases.

In order to assess the percentage of LOC sharing we will
use the following equation:∑

number of Nonshared LOC′s − number of SharedLOC′s∑
(number of Shared LOC′s)

TABLE III. CRITERIA FOR SIMILARITY OF USE CASES AND SHARING

OF CLASSES.

Classification Value

Dissimilar X < 0.6409
Similar X >= 0.6409
There is class sharing Y > 0
No class sharing Y = 0

Metrics extraction

In order to extract our chosen metrics we used the open
source library Mono.Cecil1. Using this library, we calculated
the values for WMC, CBO and LCOM.

A. Research questions

The main focus of our research is the analysis of the impact
of use case names similarity in the sharing of classes between
use cases and what kind of impact this sharing can have in the
metrics WMC, CBO and LCOM.

The justification for this study is that according to the
analysis of use cases, we would predict what impact the
similarity of use cases can have in software metrics that assess
the design quality. We suggest that this analysis can help
developers to prevent anomalies in software design, either in
early stages or during maintenance.

Research Question 1 (RQ1). In similar uses cases, do
the classes that implement them have higher percentage of
shared lines of code (LOC) compared to dissimilar use cases?
Our hypothesis is that if use cases u1 and u2 are considered
similar, then they will have shared lines of code because we
expect some reuse in the implementation of those use cases and
that sharing is supposed to be higher in classes that implement
similar use cases.

Research Question 2 (RQ2). In similar uses cases, do
shared classes that implement them have lower cohesion
compared to the other classes of the system? Our hypothesis is
that if use cases u1 and u2 are considered similar, then classes
that implement them have lower cohesion than the other classes
of the system because although they work in similar problems
they need to manage the variability of the use cases.

Research Question 3 (RQ3). In dissimilar uses cases,
do shared classes that implement them have lower cohesion
(higher LCOM) compared to the other classes of the system?
Our hypothesis is that if use cases u1 and u2 are considered
dissimilar and still have shared classes that implement them,
then those classes would have lower cohesion because they
have responsibility to provide specialized services to dissimilar
use cases.

1http://www.mono-project.com/Cecil

497

Research Question 4 (RQ4). In dissimilar uses cases, do
shared classes that implement them have higher complexity
(WMC) compared to the other classes of the system? Our
hypothesis is that if use cases u1 and u2 are considered
dissimilar and still have shared classes that implement them,
then those classes would have higher complexity because they
have to cope with the variability of different use cases.

Research Question 5 (RQ5). In similar uses cases, do
shared classes that implement them have lower coupling
compared to the other classes of the system? Our hypothesis is
that shared classes of similar use cases perform similar activity
and so use the same classes for that use cases, and this would
require lower coupling.

Research Question 6 (RQ6). In dissimilar use cases,
do shared classes that implement them have higher coupling
(CBO) compared to the other classes of the system? Our hy-
pothesis is that shared classes of dissimilar uses cases perform
different activities, and so, need to use different sources of
classes and thus would have a high coupling with those classes.

Research Question 7 (RQ7). Is the cohesion of classes
shared by dissimilar use cases lower than the cohesion of
classes shared by similar use cases? Our hypothesis is that
classes that implement dissimilar use cases would perform
distinct tasks, so they would have lower cohesion than classes
that, in principle, perform similar tasks.

IV. RESULTS

In this section we present the results that will support the
answers for the defined research questions.

The metrics collected from the subject system are shown
in Table IV.

TABLE IV. METRICS OF THE SUBJECT SYSTEM.

Variable Mean SD Min 1Q 2Q 3Q Max

LOC 101.5 112.7 14 30 58 127.3 596
WMC 23.5 15.4 4 12.3 19 28.5 72
CBO 5.4 5.5 0 0 4 11.3 20

LCOM 16.1 13.6 0 7 11 25.5 64

In order to answer the research questions the Mann-Whitney
U test was applied to analyze whether the value of a metric in
one data group is lower or higher than the other data group.

RQ1. According to the data shown in Figure 2, we applied
the Spearman correlation test to analyze if the similarity of
classes are correlated with the LOC sharing. The result is
shown in Table V. Although we have a weak correlation
(ρ = 0.1891), that correlation is statistically significant at p-
value 0.0086.

TABLE V. SPEARMAN CORRELATION BETWEEN USE CASE

SIMILARITY AND SHARED LOC.

Number of XY Pairs 192

Spearman ρ 0.1891
95% confidence interval 0.04460 to 0.3259

P value (two-tailed) 0.0086
Exact or approximate P value? Gaussian Approximation

Is the correlation significant? (alpha=0.05) Yes

Fig. 2. Use case similarity vs. shared LOC.

Fig. 3. Boxplot for RQ2 results.

RQ2. Figure 3 depicts the boxplot drawn for shared classes
of similar use cases compared to other classes. Table VI shows
that the cohesion of shared classes are lower than the cohesion
of the other classes.

TABLE VI. MANN-WHITNEY TEST FOR RQ2 - LCOM - SIMILAR.

Feature Value

P value 0.0167
One or two-tailed P value? one-tailed
Are medians signif. different? (P < 0.05) Yes
Mann-Whitney U 72.50

RQ3. Figure 4 depicts the boxplot drawn for shared classes
of dissimilar use cases compared to other classes. Table VII
shows that the cohesion of shared classes is lower than the
cohesion of the other classes.

RQ4. Figure 5 depicts the boxplot drawn for shared classes
of dissimilar use cases compared to other classes. Table VIII
shows that the complexity measured by WMC of shared classes
is higher than the complexity of the other classes.

RQ5. Figure 6 depicts the boxplot drawn for shared classes
of similar use cases compared to other classes. Table IX shows
that the there is no significant difference between the coupling
measured by CBO of shared classes and the coupling of the
other classes.

Fig. 4. Boxplot for RQ3 results.

498

TABLE VII. MANN-WHITNEY TEST FOR RQ3 - LCOM - DISSIMILAR.

Feature Value

P value 0.0317
One or tow-tailed P value? one-tailed
Are medians signif. different? (P < 0.05) Yes
Mann-Whitney U 64.50

Fig. 5. Boxplot for RQ4 results.

RQ6. Figure 7 depicts the boxplot drawn for shared classes
of dissimilar use cases compared to other classes. Table X
shows that the there is no significant difference between the
coupling measured by CBO of shared classes and the coupling
of the other classes.

Therefore, we can see that the coupling of shared classes
between use cases do not depend on the use case similarity.

RQ7. Figure 8 depicts the boxplot drawn for shared classes
of similar use cases compared to shared classes of dissimi-
lar use cases. Table XI depicts that there is no significant
difference between the cohesion in those classes.

The final result was that we could answer positively RQ1,
RQ2, RQ3 and RQ4. However, contrary to our hypotheses,
RQ5, RQ6 and RQ7 were answered negatively.

V. DISCUSSION

Our proposed automated analysis for use case similarity
had a precision of 90% at 60% of recall. This result support
our hypothesis that the identification of similar use case can
be automated. The major benefit of this automated approach
is higher productivity during this process. This is essential to
engage developers in the adoption of the approach.

TABLE VIII. MANN-WHITNEY TEST FOR RQ4 - WMC.

Feature Value

P value 0.0192
One or tow-tailed P value? one-tailed
Are medians signif. different? (P < 0.05) Yes
Mann-Whitney U 59.00

Fig. 6. Boxplot for RQ5 results.

TABLE IX. MANN-WHITNEY TEST FOR RQ5.

Feature Value

P value 0.3090
One or tow-tailed P value? One-tailed
Are medians signif. different? (P < 0.05) No
Mann-Whitney U 118.0

Fig. 7. Boxplot for RQ6 results.

Another interesting finding was that the higher the sim-
ilarity of use cases is, the higher the LOC sharing between
the classes that implement those use cases. This LOC sharing
is not necessarily related to code clones, but related to the
number of classes that are shared among the use cases.

Concerning the relation of shared classes and design met-
rics, some interesting findings are presented.

We have observed that independently of the use case
similarity, classes that are shared between different use cases
tend to have lower cohesion. In this case, we need to have
special attention to these classes and analyze the possibility
of refactoring those classes. In fact, we can even suggest that
during the development phase, developers pay more attention
on classes being shared between different use cases.

We also have observed that the complexity measured with
WMC of classes shared between dissimilar use cases tend to
have higher complexity than classes shared between similar
use cases. Just as in the case of cohesion, developers should
pay attention on those classes and eventually try to find some
pattern of refactoring that could be applied to those classes to
enhance their overall WMC.

Concerning coupling of classes, we could not observe an

TABLE X. MANN-WHITNEY TEST FOR RQ6.

Feature Value

P value 0.4681
One or tow-tailed P value? One-tailed
Are medians signif. different? (P < 0.05) No
Mann-Whitney U 110.0

Fig. 8. Boxplot for RQ7 results.

499

TABLE XI. MANN-WHITNEY TEST FOR RQ7.

Feature Value

P value 0.5000
One or tow-tailed P value? One-tailed
Are medians signif. different? (P < 0.05) No
Mann-Whitney U 53.50

interesting pattern that could call the attention of developers.

VI. THREATS TO VALIDITY

The subject system used in this study have some features
that could have some influence on the results. The use of
POJO2 classes, i.e., classes that have only attributes and getters
and setters, and the use of domain-driven development [7] may
have influence on the coupling metric (CBO). Other studies
with different domains and architecture would strength the
value of our results.

Another threat was the use of developers to map use cases
to classes and to evaluate the similarity of use cases. Because
this is a manual process, mistakes could have occurred. We
tried to mitigate this threat replicating the work of the devel-
opers and getting the consensus from them. Another mitigation
criterion was the selection of experts that had participated in
the implementation and documentation of the system, thus
their knowledge on the system would produce less error-prone
results.

A threat to the external validity is the representativeness
of the chosen subject system. This is a system that do not
represent the large universe of software. As a consequence,
our results are more likely to be valid with typical information
management systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the impact that the similarity
of use cases can have in LOC sharing of classes that implement
them, and in metrics for coupling, cohesion and complexity.
We found that there is a significant relation, although not
strong, between use case similarity and LOC sharing. In-
terestingly, we have also found that classes that are shared
between different use cases tend to have lower cohesion.
Moreover, classes that are shared between similar use cases
tend to have higher method complexity in classes. We found
no relation between use case similarity and coupling. These
findings can guide the developer, either in early development
phases or in maintenance activities, to produce designs with
higher cohesion and lower method complexity in classes.

We could extend this work in several ways, such as, repro-
ducing the study with other subject systems and investigating
the relation between use case similarity and code clones.

ACKNOWLEDGMENT

This work was partially supported by FAPEMIG grant
CEX-APQ-0286-11 and CNPQ grant 475519/2012-4.

2http://docs.jboss.org/hibernate/orm/3.5/reference/pt-BR/html/persistent-
classes.html

REFERENCES

[1] F. B. Abreu and R. Carapuça, “Object–Oriented Software Engineering:
Measuring and Controlling the Development Process,” in Object–
Oriented Software Engineering: Measuring and Controlling the De-
velopment Process, McLean, VA, USA, oct 1994, pp. 1–8.

[2] K. H. Bennett and V. T. Rajlich, “Software Maintenance and Evolution:
A Roadmap,” in Proceedings of the Conference on The Future of
Software Engineering, ser. ICSE ’00, 2000, pp. 73–87.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, jun 1994.

[4] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of
string distance metrics for name-matching tasks,” 2003, pp. 73–78.

[5] I. Dagan, L. Lee, and F. C. Pereira, “Similarity-Based Models of Word
Cooccurrence Probabilities,” Machine Learning, vol. 34, pp. 43–69,
1999.

[6] S. K. Dubey and A. Rana, “Assessment of maintainability metrics
for object-oriented software system,” SIGSOFT Software Engineering
Notes, vol. 36, no. 5, pp. 1–7, 2011.

[7] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Pearson Education, 2004.

[8] P. Grubb and A. A. Takang, Software Maintenance: Concepts and
Practice, 2nd ed. World Scientific, 2003.

[9] R. Harrison, S. Counsell, and R. V. Nithi, “An Investigation into
the Applicability and Validity of Object-Oriented Design Metrics,”
Empirical Software Engineering, vol. 3, no. 3, pp. 255–273, 1998.

[10] J. Hayes, S. Patel, and L. Zhao, “A Metrics-Based Software Main-
tenance Effort Model,” in Eighth European Conference on Software
Maintenance and Reengineering, 2004., March, pp. 254–258.

[11] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-
Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, 1992.

[12] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions,” and reversals. Technical Report 8, Tech. Rep., 1966.

[13] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical
Guide. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[14] T. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308–320, 1976.

[15] T. G. Nair and R. Selvarani, “Defect proneness estimation and feedback
approach for software design quality improvement,” Information and
Software Technology, vol. 54, no. 3, pp. 274–285, 2011.

[16] J. T. Nosek and P. Palvia, “Software Maintenance Management:
Changes in the Last Decade,” Journal of Software Maintenance, vol. 2,
no. 3, pp. 157–174, 1990.

[17] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 390–400.

[18] S. R. Pressman, Software Engineering - A Practitioner’s Approach,
7th ed. McGraw Hill, 2005.

[19] R. Shatnawi and W. Li, “The effectiveness of software metrics in iden-
tifying error-prone classes in post-release software evolution process,”
Journal of Systems and Software, vol. 81, no. 11, pp. 1868–1882, 2008.

[20] S. Singh and K. S. Kahlon, “Effectiveness of refactoring metrics model
to identify smelly and error prone classes in open source software,”
SIGSOFT Software Engineering Notes, vol. 37, no. 2, pp. 1–11, 2012.

[21] R. Subramanyam and M. S. Krishnan, “Empirical Analysis of CK Met-
rics for Object-Oriented Design Complexity: Implications for Software
Defects,” IEEE Transactions on Software Engineering, vol. 29, no. 4,
pp. 297–310, 2003.

[22] W. E. Winkler, “The State of Record Linkage and Current Research
Problems,” Statistical Research Division, U.S. Census Bureau, Tech.
Rep., 1999.

500

Generation of Thematic Maps using
WPS-Cartographer: An experimental study

Francisco Carlos M. Souza, Alinne C. Corrêa dos
Santos, Vinicius Pereira, Ellen Francine

Institute of Mathematics and Computer Science – ICMC
 University of São Paulo – USP

São Carlos, Brazil
{fcarlos, alinne, vpereira, francine}@icmc.usp.br

Vinícius Ramos Toledo Ferraz
Computing Department

University Federal of São Carlos – UFSCar
São Carlos, Brazil

vinicius_ferraz@dc.ufscar.br

Abstract— Presently, most geographic information systems
provide neither automation nor guidance on the selection of an
adequate cartographic language to produce a thematic map. This
paper reports an experiment to evaluate a Web service, called
WPS-Cartographer that is used for the semiautomatic selection
of cartographic symbols, to analyze and evaluate time and quality
of the generated thematic maps. The experiment was carried out
with either with MSc. Students and PhD. students of computer
science without experience in thematic maps generation. The
results show that the use of WPS-Cartographer did not influence
the generation of thematic maps regarding to time. However,
WPS-Cartographer was efficient with respect to the quality of the
generated maps, because the possibility of selecting of the most
appropriate mapping technique for a given domain and dataset.

Keywords- experimentation; thematic maps; WPS-Cartographer

I. INTRODUCTION

Thematic maps can visually summarize and present large
volumes of analytical data, making easier and more agile
complex analyzes of geospatial phenomena [1]. Geographic
Information Systems (GIS) help produce these maps, activity
known as Thematic Cartography Project (TCP).

The simple appearance of a thematic map hides some
difficulties of the users related to its composition as the correct
selection of the cartographic parameters, the graphic design,
clear visualization of the forms and patterns, as well as the
constant search for updated information.
 Currently, most of the GIS available provide a range of
tools and options to generate Thematic Maps, including
automation functionalities in the acquisition, standardization
and availability of thematic geospatial data. However, these
systems do not provide automation features and guidelines to
help the choice of a cartographic language that composes a
Thematic Map.
 However, despite several researches [2], [3], [4] e [5]
addressing possible solutions to restrict or direct appropriate
decisions for TCP, they do not have automation functionality
for TCPs. Though, Ferraz [6] proposed a Cartographer
Methodology based on Cartographer Ontology that is a
process to increase the level of automation of TCPs assisting a
user in choosing the appropriate symbols.

To corroborate the Cartographer Methodology Ferraz [6]
developed a Web service, called WPS-Cartographer1 based in

1 http://www.opengeospatial.org/standards/wps

this methodology for semiautomatic selection of cartographic
symbology. Thus, this paper describes an experiment to
analyze and evaluate the impact of the use of WPS-
Cartographer for thematic maps generation in relationship at
the time and quality.

This paper is organized as follows: Section II shows the
design of the experiment in detail. Section III provides the
results and discussions concerning the experiment. Finally,
Section IV concludes the paper and describes future work.

II. EXPERIMENT

The experiment aimed at analyzing and evaluating whether
the use of service WPS-Cartographer improves the time and
quality of the generated maps in comparison with the classical
method. The experiment was conducted with 18 master's and
PhD students at ICMC – USP without experience in thematic
maps generation. The students were randomly divided into two
groups (G1 and G2).

The experimental format this experiment was defined with
one factor, two treatments with comparison in pairs. The
factor is thematic maps generation and the treatments are: (i)
T1 (using the WPS-Cartographer) and (ii) T2 (using classical
method). Furthermore, both groups have performed both
treatments. Process experimental is composite for a sequence
of activities, which are detailed below.

A. Definition

To achieve the goal proposed, two questions were
developed to guide the definition (Table I) and implementation
of the experiment:

Q1: Are thematic maps generated faster using WPS-
Cartographer?

Q2: Are thematic maps generated with better quality using
WPS-Cartographer?

TABLE I. DEFINITION OF THE EXPERIMENT

CHARACTERISTICS DESCRIPTIONS
Objective of Study Analyze the WPS-Cartographer
With the purpose of Perform an evaluation
With respect to the Time and quality

From the perspective of Postgraduate students
In the context of Generate thematic maps

Furthermore, dependent and independent variables were
defined based in objectives and in research questions.
Dependent variables are composite for using

501

WPS-Cartographer and using classical method. Independent
variables are composite for time and quality. The variables
were measured using the following metrics:
• Time Spent: represents the amount of time spent using or

without WPS -Cartographer;
• Quality: represents the quality of the maps generated. The

quality will be calculated based on the scores attributed to
predefined criteria. The weight of each criterion changes
according to the topic, which can be seen in detail in the
work of Ferraz [6]. The quality is calculated by:

Q = (Type * 5) + Classification* 2 + Layout + Names = Values
(Topics 1 and 2) (1)

where the sum of all criteria in the formula results in
scores, which define quality index, ranging from 0 to 100
points.

B. Planning

This step defines instrumentation and experiment
validation process. Firstly six hypotheses were defined for the
experiment regarding to time and quality with using
WPS-Cartographer and using classical method. Concerning
the time spent of the thematic maps generated, the following
hypotheses were formulated:
• Null hypothesis (H0): in general, there is no impact on the
use of WPS-Cartographer with respect to the average time
(T) required for the thematic maps generation (H0: T-
Cartographer = T-Classical);
• Alternative hypothesis (AH1): the average time (T)
using the WPS-Cartographer is shorter than the average time
(T) spent using the classical method of thematic maps
generation. (AH1: T-Cartographer < T-Classical);
• Alternative hypothesis (AH2): the average time (T)
using the WPS-Cartographer is longer than the average time
(T) spent using the classical method of thematic maps
generation. AH2: T-Cartographer > T-Classical);

Regarding quality (Q) of the thematic maps generated the
following hypotheses were formulated:
• Null hypothesis (H0): in general, there is no impact on the
use of WPS-Cartographer, with respect to the average quality
(Q) of thematic maps generated (H0: Q-Cartographer =

Q-Classical);
• Alternative hypothesis (AH1): the average quality (Q)
using the WPS-Cartographer is higher than the average quality
(Q) achieved using the classical method of thematic maps
generation. (AH1: Q-Cartographer > Q-Classical);

• Alternative hypothesis (AH2): the average quality
(μQ) using the WPS-Cartographer is higher than the
average quality (μQ) achieved using the classical method
of thematic maps generation. (AH2: Q-Cartographer
> Q-Classical).

To validate the experiment measure descriptive statistics
such as mean, median and standard deviation were calculated.
Furthermore, the hypothesis tests were conducted using
Shapiro-Wilk [7], Levene [8], T [9] and Mann-Whitney test
[10] to analyze, interpret and validate results.

The participants were randomly divided into two groups, to
participate in two executions: (i) pack I (G1 generated the

thematic maps using the WPS-Cartographer and G2 generated
the thematic maps using classical method) and (ii) pack II (G1
generated the thematic using classical method and G2
generated the thematic maps using the WPS-Cartographer).

The IBM SPSS2 tool helped in analysis and interpretation
the collected data and in hypotheses verification. With the help
this tool were calculated the samples normality,
homoscedasticity, comparison of averages and unpaired
groups in order to check whether they belong or not to the
same population. The discussion of the analyses and
interpretations will be detailed in the next section.

III. RESULTS AND ANALYSIS

During the experiment 36 thematic maps were generated in
parallel by both groups (G1 and G2). The first analysis was
performed by using descriptive statistics, followed by
hypothesis tests to validate the analysis and interpretation of
data collected regarding time and quality of the generated
maps.

A. In relation time

The results regarding the time in generation of thematic
maps of the Packs I and II are illustrated in Figure 1 and 2
respectively. Time was calculated in seconds. Figure 2 shows
the group G1 (participant 1 to 9) and the group G2 (participant
10 to 18). As can be seen in relation to the average time (T),
in most cases, the group G1 spent lesser time than the group
G2 in the generation of thematic maps.

In most situations in Pack I, we observed little difference
in time between the groups G1 and G2. Furthermore, it can be
seen that the average time spent in thematic maps generation
by G1 is lesser than time spent by group G2. Figure 3 shows
the group G2 (participants 10 to 18) and the group G1
(participant 1 to 9) in Pack II.

Figure 1. Average time (in seconds) in the generation of thematic maps
using of WPS-Cartographer (G1) and using classical method (G2) of pack I

In Pack II, as can be seen in relation to the average time
(T), in most cases, the group G2 spent lesser time than the
group G1 in generation of thematic maps. However, in most
cases we observed more expressive difference in time between
some participants (10 and 1), (12 and 3) and (16 and 7).
Furthermore, it can be seen that the average time spent in
thematic maps generation by group G1 is lesser than time
spent by group G2.

To validate the analyze of data and justify the results were
carried out statistical tests. First, the Shapiro-Wilk test was
applied in the packs I and II .

2 http://www-01.ibm.com/software/analytics/spss/

502

Figure 2. Average time (in seconds) in the generation of thematic maps
using of WPS-Cartographer (G2) and using classical method (G1) of pack II

In pack I, we checked that the p-value (Sig 0,831) of the G1
and p-value (Sig. 0,785) of the G2 are higher than 0,05
(significance level), so the null hypothesis (H0: the data has a
normal distribution) was not rejected. Thus, one can conclude
that with 95% confidence level there is evidence that the data
follow a normal distribution. In pack II, the data follow a
normal distribution, since the p-value (Sig. 0,334) of the G1
and p-value (Sig. 0,241) of the G2 are higher than 0,05
(significance level).

After the analysis of normality, we applied the Levene’s test
to check the homoscedasticity of the samples. In pack I, we
checked that the p-value (Sig. 0,671)> 0.05, so the null
hypothesis (H0: variables have similar variances) was not
rejected. Thus, one can conclude that with 95% confidence
level there isn't evidence of the equality of variances.

In pack II, there is also evidence of equal variances, since
the p-value (Sig. 0,785) > 0.05. The T test was applied to in
normal distributions (G1 and G2) in relation to the time of the
packs I and II.

In packs I and II, the T test results used are in the first
column (Equal variances assumed). Considering p-value
(0,184) > 0.05 (Sig 2-tailed) in pack I, so the null hypothesis
(H0: T-Cartographer = T-Cl ssico) for equality of means
of the two groups (G1 and G2) is rejected.

Thus, one can conclude that there is no statistically
significant difference between the mean times of the two
groups. In pack II, there is no also statistically significant
difference between the mean times of the two groups,
considering that p-value (0,890)> 0.05 (Sig 2-tailed).

B. In relation to quality

The results related to quality in generation of the thematic
maps of Packs I and II are illustrated in Figure 3 and 4
respectively. In Figure 3, in relation to the average quality
(Q), in most cases, the thematic maps generated by group G1
have achieved better quality than the group G2.

In most situations in Pack I, we observed little difference
quality in the thematic maps generated between the groups G1
and G2, with the exception of some participants (4 and 13) and
(9 and 18). Figure 4 shows results of pack II. As can be seen
in relation to the average quality (Q), in most cases,
generated thematic maps by G2 have better quality than
generated by G1.

Figure 3. Average quality (in points) in the generation of thematic maps
using of WPS-Cartographer (G1) and using classical method (G2) of pack I

In most situations in Pack II, we observed that the
difference in quality between the groups G1 and G2 was not
very expressive, with the exception of some participants (13
and 4), (16 and 7) and (17 and 8). Furthermore, such as in the
pack I, in pack II there were no cases in which the group G2
have achieved lesser quality than group G1 in the generation of
thematic maps.

Figure 4. Average quality (in points) in the generation of thematic maps
using of WPS-Cartographer (G2) and using classical method (G1) of pack II

The Shapiro-Wilk test was also applied in the packs I and
II. In pack I, we checked that the p-values (Sig 0.028) and
(Sig. 0.047) > 0.05, so the null hypothesis (H0: the data has a
normal distribution) was rejected. Thus, one can conclude that
with 95% confidence level there isn't evidence that the data
follow a normal distribution.

In pack II, the data did not follow a normal distribution,
because the p-values (Sig. 0.039) and (Sig. 0.049) <0.05. After
the analysis of normality, Levene’s test was applied.

In the pack I, we checked that the p-value (SIG. 0.382) >
0.05, so the null hypothesis (H0: the variables have similar
variances) was not rejected. Thus, one can conclude that with
95% confidence level there is evidence of equality of
variances. In pack II, there is also evidence equality of
variances because the p-value (Sig. 0.149) > 0.05.

The Mann-Whitney test was applied because the
distributions of both packages in relation to quality were not
normal. In pack I, considering the p-value (Asymp. Sig. (2-
tailed)) 0.03 < 0.05 the null hypothesis of equality of means of
two groups (H0: Cartographer- Q = Q-Classical) was
rejected. Thus, one can conclude that there is a difference
statistically significant between the groups G1 and G2.

In pack II, there is also a difference statistically significant
between the two groups (G1 and G2), considering that p-value
(Asymp. Sig. (2-tailed)) 0.02 < 0.05.

503

C. Relationship between time and quality

The generation of thematic maps also was analyzed
graphically by relationship between time and quality. The
results of packs I and II are illustrated in Figures 5 and 6,
respectively.

In Figure 5 is evident that the group G1 generates maps
with higher quality and in lesser time. Most participants of the
group G1 generated thematic maps with quality equal to or
above 90 points of the total of 100 points in the mean time (T)
of 156 seconds. Already the quality of the thematic maps
generated by group G2 was not high, because 7 of 9
participants generate maps with quality lesser to 80 points in
mean time (T) of 213 seconds.

Furthermore, should note that 3 participants of the G1
generate maps with quality equal to 100 points, whereas only
one participant of the G2 generated a map with quality equal to
100 points.

Figure 5. Time x Quality in generation of thematic maps using
WPS-Cartographer (G1) and using classical method (G2) of the pack I

Such as in Figure 5, in Figure 6 is also evident that the
maps are generated with high quality in an acceptable time
using WPS-Cartographer. In pack II, 5 participants of the G2
thematic maps generated with quality equal to 75 points
ranging between 220 and 410 seconds. The quality of the
maps generated by G1 was not high, because 2 participants
generate maps with quality equal to 75 points and with time
above 400 seconds.

It is important highlight that 7 of the 9 participants of the
G2 generate maps whose quality was equal to or above 75
points. However, three participants of the G1 reached 80
points in maximum 216 seconds. It is evident that in both
packages the use of WPS-Cartographer influences more the
quality than time in the generated maps.

Figure 6. Time x Quality in generation of thematic maps using
WPS-Cartographer (G2) and using classical method (G1) of the pack II

IV. RESULTS AND ANALYSIS

This paper describes an experiment to analyze and evaluate
the impact of the use of WPS-Cartographer for thematic maps
generation in relationship at the time and quality. In relation to
threats of validity, some can endanger the validity of this
experiment such as:
• The selection of the treatments and sample size can
influence the interpretation of the analysis and statistical tests;
• The use WPS-Cartographer did not influence significantly
the generation of thematic maps, so there is no time savings
using WPS-Cartographer;
• Achievement of a pilot study to selection of the most
appropriate metrics and minimization of problems in relation
to operating systems (OS/X and Linux), browsers (Internet
Explore and Google Chrome);
• The results cannot be generalized because this experiment
was conducted with a relatively small group of 18 lay students
in the thematic maps generation.

At the end of the experiment it was observed that the use
of WPS-Cartographer positively influenced the final quality of
the thematic maps generated, being significantly better in
relation to time. As future work we hope to perform new
experiments with industry experts to verify the applicability of
the WPS-Cartographer to understand this new domain and
compare with the results obtained in this experiment.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian funding
agencies (FAPESP, CAPES, CNPq) and INCT-SEC (CNPq
573963/2008-8, FAPESP 08/57870-926) for their support.

REFERENCES

[1] Monmonier, M.S. How to Lie with Maps. Chicago: The University of
Chicago Press, 1996.

[2] ZHAN, F. B. and BUTTENFIELD, B. P. Object-oriented knowledge-
based symbol selection for visualizing statistical information.
International Journal of Geographical Information Science, v.9 (3),
p.293–315, 1995.

[3] LEE, D. and HARDY, P. Automating generalization-toolsandmodels. In:
Proceedings of International CartographicCongress. ACoruna, Spain,
2005.

[4] Shepherd, I. D.H. Travails in the third dimension: A critical evaluation
of three dimensional geographical visualization. In: 111 River Street,
USA: Wiley, 2008.

[5] SLOCUM, T. A. et al. Thematic Cartography and Geographic
Visualization. 2. ed. Upper Saddle River, NJ: Pearson Prentice Hall, 518
p., 2005.

[6] Ferraz, V. R. T. and Santos, M. T. P. Globeolap: Improving the
geospatial realism in multidimensional analysis environment. In:
Proceedings of the 12th International Conference on Enterprise
Information Systems. Funchal, Madeira – Portugal, 2010.

[7] Shapiro, S. S. and Wilk, M. B. An analysis of variance test for
normality (complete samples). Biometrika 52 (3-4), p. 591–611, 1965.

[8] Levene, H. Robust tests for equality of variances. In Ingram
Olkin, Harold Hotelling, et alia. Stanford University Press. pp. 278–292,
1960.

[9] Teste T. Disponível em: http://sistemas.eeferp.usp.br/myron/arquivos/
2540410/e8fc3b72347400901a2750cb214bf4e0.pdf. Acessado em:
20/11/2012.

[10] Mann, H.B. and Whitney, D. R. Em um teste para saber se uma de duas
variáveis aleatórias é estocasticamente maior que o outro. Annals of
Mathematical Statistics 18 (1) pp. 50-60, 1947.

504

Automated Support for Controlled Experiments in
Software Engineering: A Systematic Review

Marília Freire,a,b Daniel Costa,a Edmilson Campos,a, b Tainá Medeiros,a
Uirá Kulesza,a Eduardo Aranha,a Sérgio Soares,c

a Federal University of Rio Grande do Norte, Campus Universitário, 59.078-970, Natal-RN, Brasil
b Federal Institute of Rio Grande do Norte, Av. Salgado Filho, 1559, Tirol, 59015-000, Natal-RN, Brasil

c Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, C. Universitária, 50670-901, Recife-PE, Brasil
{marilia.freire, daniel.calencar , edmilsoncampos, tainamedeiros}@ppgsc.ufrn.br, {eduardo, uira}@dimap.ufrn.br,

scbs@cin.ufpe.br

Abstract— Context: There is an increasing need to perform
controlled experiments in software engineering. Objective: This
systematic review (SR) shows the current state of the art on the
tools and infrastructures that provide automated support for
controlled experiments in software engineering. Method: We
performed direct searches (without search string) in journals and
conferences proceedings for papers describing supporting tools
and environments to conduct controlled experiments. Results:
We found and reviewed 25 primary studies according to inclusion
and exclusion criteria, resulting in 15 relevant studies.
Conclusion: There are few supporting environments for
conducting controlled experiments, despite of the increasing
demand for this kind of study in software engineering. We also
highlight many limitations of these tools, which configures great
potential for future research.

Experimental software engineering; automated support;
controlled experiment.

I. INTRODUCTION
In recent years, the software engineering research

community has given more attention and importance to the
development and reporting of experimental studies, considering
that simple proof of concept is no longer acceptable in the
assessment of new proposed methods. One important type of
empirical study for the research in software engineering is the
controlled experiment [1].

A controlled experiment allows testing research hypotheses
and cause and effect relationship between variables involved in
the study. The process of a controlled experiment is typically
composed of the following phases: definition, planning,
execution, analysis, and packaging [2]. Each one of these
phases is associated with the execution of different activities
that consume and/or produce artifacts related to the experiment.
Controlled experiments require great care in planning so they
can provide useful and significant results [3]. However, the
process of planning, conducting, and reporting the various
activities involved in a controlled experiment is very complex
[4] .

Despite the growing need to run controlled experiments in
software engineering, their development is still very complex.
Furthermore, controlled studies need to be replicated because a
single controlled experiment may be insufficient and their
results are limited in terms of conclusions’ generalization [5].
Conduction and replication of large-scale experimental SE

studies is even more complex [6]. One factor that contributes to
that is the lack of automated and integrated tools supporting the
experiment process phases.

This paper focus on presenting the results of a systematic
review [7] [8] that analyzes the current state of the art on the
tools and infrastructures developed to provide automated
support to conduct controlled experiments in software
engineering. Our study has found seven tools specifically
developed or adapted for conducting experiments in software
engineering. Our systematic review aims to provide findings to
appropriately points out new research efforts and opportunities
related to development of automated support for the software
engineering experimental process.

The remainder of this paper is organized as follows. Section
II explains our review method. Section III presents our results.
The limitations of our study are stated in Section IV. Section
VI presents some discussions based on the data we got in our
systematic review, and, finally, Section VII presents the
conclusions and possible future works.

II. REVIEW METHOD
This section describes the protocol used to conduct this

systematic review, which was defined based on specific
guidelines [8]. The process was performed in the early 2012.
Due to space restrictions some contents related to the protocol
is not presented in this paper, for additional details please refer
to: http://bit.ly/10zA6FY.

A. Research Questions
Our research was guided by questions about the empirical

support tools and infrastructures that provide some automated
support to the phases of controlled experiments in software
engineering. The four main research questions (RQ)
investigated in the systematic review were:

 RQ.1 What tools have been proposed to support
controlled experiments in software engineering?

 RQ.2 Which stages of controlled experiments the
proposed tools are supporting?

 RQ.3 What are the main features supported by the
proposed tools?

505

 RQ.4 Who has been developing tools to support
controlled experiments? When?

B. Inclusion/exclusion criteria
The inclusion criteria defined in our study were: (i) only

studies written in English were considered, and (ii) only studies
that were not related to specifics domains of SR were included,
because we are interested in infrastructures for controlled
experiments in general and not, for example, an environment to
compare two specific algorithms. The exclusion criterion
defined in our study was: (i) studies that did not present
supporting environments for conducting controlled experiments
in software engineering were excluded.

C. Decision Procedure
In a systematic review, it is important to define how to

solve possible conflicting situations. These conflicts may
happen during the study selection, quality evaluation, or data
extraction. Therefore, we defined our process to support
decision-making and consensus as follows: two members from
our team read selected studies assigned in a random way. Any
disagreement among researchers was resolved by a third
reviewer (one professor).

D. Data Sources and Search Strategy
Our search strategy was established in two steps: (i) a

manual search across the main publication vehicles in the
Experimental Software Engineering area. By manual search we
mean searching directly on publication vehicles without a
search string; and (ii) a reference search where the reference
section of all selected primary studies were analyzed searching
for new research work related to our systematic review
questions. For the first step the following conferences and
journals were considered: Journal of Empirical Software
Engineering, Journal of Systems and Software, ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM) (and the previous METRICS and
ISESE), Experimental Software Engineering Latin American
Workshop (ESELAW), and International Conference on
Software Engineering (ICSE). It is important to say that for
publication sources as ICSE, Journal of Empirical Software
Engineering, and Journal of Systems and Software, we limited
the search period from January/2002 to December/2011,
because these events are already made long ago and we would
not have time to check them out. However, for the analysis of
referred papers we do not consider any restriction regarding
publication venues and dates.

E. Study Selection
The study selection process was realized in two steps as

follows: (i) titles and abstracts of papers found during the
manual search were read and irrelevant papers were removed;
(ii) the complete reading of the selected primary studies was
performed to assess whether they address the
inclusion/exclusion criteria.

F. Data Extraction Process and Synthesis
As usual, each research question motivated some data

extraction (see Table I). In addition, general information was
extracted from the studies, such as title, authors, publisher, and
publication year. The data extraction was also performed with

the aid of spreadsheets containing forms to extract portions of
the selected studies.

TABLE I. EXTRACTED DATA

Research
Question Attribute Data

RQ.1 Tool study title, tool name, origin (academic or
industrial), tools compared

RQ.2 Process study stages supported
RQ.3 Features functionalities supported
RQ.4 Mapping first author’s affiliation and country

III. RESULST AND FINDINGS
In this section we show the results of our study addressing

the research questions presented in Section II. Our systematic
review was interested in primary studies that present some
automated solutions to support software engineering
experiments.

Figure 1. Studies Search and Selection Process

Figure 1 illustrates the systematic review process showing
the primary studies that were found and selected. During the
manual search 55 papers were selected from the venues
previously specified. For this selection, the titles and abstracts
of the paper studies were read resulting in 25 papers. These 25
papers were completely read in order to discard irrelevant
studies. After this selection, we had 9 studies. After that, a
search on the reference sections of the papers was
accomplished aiming the selection of other relevant studies.
During this process we found other 7 primary studies. In the
final step we removed studies that were not specific to a single
domain of SE. The final number of relevant studies was 15.

During the search on the reference sections, we found
papers from other conferences: IEEE TSE (IEEE Transactions
on Software Engineering), Advances in Computing Journal,
NJC (Nordic Journal of Computing), NWPE (Nordic
Workshop on Programming and Software Development Tools
and Techniques), JIISIC (Jornadas IberoAmericanas en
Ingenieria del Software e Ingenieria del Conocimiento), and
ICECCS (International Conference on Electronics,
Communication and Computer Science). The results found for
each research question are discussed in the following sections.

506

A. Tools to support controlled experiments (RQ.1)
The following seven environments – tools, infrastructure –

were found: Simula Experiment Support Environment
(SESE), experimental Software Engineering Environment
(eSEE), value-based empirical research (VBER), Ginger2,
Experiment Manager framework (EMF), Framework for
Improving the Replication of Experiments (FIR), and
Mechanical Turk (MT). Following, we have a short summary
of the seven tools and the respective ID according to the Table
2:

SESE [9] [10] [11] [12]: It is a web-based tool that supports
participants management, capturing the time spent during the
experiment, enable the work product collection, and
participants activities monitoring. Its weaknesses are the data
collection and analysis (PS1, PS2, PS3, PS4).

eSEE [13] [14] [15] [16] [6] [17]: An environment to
manage several kinds of empirical software engineering
studies. It works in three levels of knowledge organization
about the experimentation process: knowledge for any kind of
experimental study (meta level), knowledge for each
experimental study (configuration level), and knowledge for a
specific experimental study (instance level). It has a prototype
and an initial set of tools to populate the eSEE infrastructure
has been built (PS5, PS6, PS7, PS8, PS9, PS10).

VBER [18]: A value-based framework to the planning
phase. It assists the stakeholders to compare the benefits and
risks of potential empirical study variants (PS3).

Mechanical Turk (MT) [19]: A crowdsourcing tool adapted
to support empirical studies in the experimental software
engineering context. It offers facilities to access and manage a
large pool of study participants and enables recruiting the right
type and number of subjects to assess a software engineering
technique or tool (PS11).

Ginger2 [20]: An experimental environment constructed
based on the CAESE framework. Although the CAESE covers
the complete processes, Ginger2 is restricted to the execution
and analysis phase. Its strength is the variety of low-level detail
collected (PS15).

FIRE [21]: A Framework for Improving Replication of
Experiments that focuses on knowledge sharing issues to allow
cooperation between research groups. Fire is a framework with
seven steps that assumes researchers are collaborating closely
using a variety of communication mechanisms. Its weakness is
that it gives only a conceptual support (PS13).

Experiment Manager Framework (EMF) [22]: This
framework is an integrated set of tools to support software
engineering experiments. It was used only in high performance
computing (HPC) experiments. It helps the subjects by
applying heuristics to infer programmer activities. Its analysis
tools are simple (PS14). Table 2 presents the 15 studies
included in this review, including the study ID, title, publisher
year, name of related supporting environment (tool, framework
or infrastructure), university or industry that developed the
environment, and the publisher source.

For the studies that are part of a collaborative work we fill
in the table with the first author information. Another point to

clarify is that the Feedback-collecting tool described in PS2 is
implemented as part of the web-based Simula Experiment
Support Environment (SESE).

Although PS15 was published in 1999, we included it in
our revision after the reference search because it presents the
Ginger2 that is a tool based on the CAESE (Computer-Aided
Empirical Software Engineering) framework. This framework
defines a complete solution for conducting experiments but,
according to the study, Ginger2 have been implemented to only
support the data collection and analysis stages. A major feature
of these tools is allowing the collection of several empirical
data as mouse clicks and keystrokes, eye traces, three-
dimensional movement, skin resistance level, and video-taped
data. We were not able to find more details of the current
development stage of these solutions. The eSEE tool is the only
one that reports a web site, although we were not able to find
out updated information from it.

B. Supported Stages of Controlled Experiments (RQ.2)
This question aims to point the main experimental process

stages that are supported by the investigated tools. A typical
controlled experiment process has the following stages [2]:

1) Definition: In this phase the study has to be
characterized in terms of problem, objective and goals. It
determines the foundation for the experiment.

2) Planning: It prepares for how the experiment is
conducted. It comprises the hypothesis formulation, variables
selection (dependent and independent), selection of subjects
and, design of experiment determination. It also considers the
threats to experiment evaluation.

3) Operation (execution): It follows from the design. It
comprises: (i) the study configuration (preparation), where
participants are chosen and the materials are prepared; and (ii)
the execution that collects the data that should be analyzed.

4) Analysis and Interpretation: Responsible by the
compilation of collected study data. It comprises descriptive
statistics, data set reduction and hypothesis testing.

5) Presentation and Package: In this stage the information
about the study is presented and the package is generated. It is
essential for the study replication.

Each stage defines activities to be accomplished and
specific work products. Table 3 presents the stages covered for
each experimental environment found in our systematic review.
Almost all empirical environments selected in our study give
some kind of support to the controlled experiment definition,
planning, and execution phases. The analysis stage is only
supported by two of them. Moreover, four of the studied
environments give support to the packaging step, which is
important for replication, but none of them defines an explicit
format or pattern to package experiments. CAESE framework
is the only that mentioned supporting the complete process but
the Ginger2 does not implement all these phases

C. SE Empirical Tools Functionalities Supported (RQ.3)
It is fundamental to understand the level of support

provided by each different tool for each different stage of the
process. Table 4 shows some features described by the primary
studies.

507

TABLE II. SELECTED DATA

ID Title Year Reported Tool University/Industry Publish Source

PS1 Conducting realistic experiments in software
engineering 2002 Web-based Simula Experiment

Support Environment (SESE) Simula Research Laboratory ISESE

PS2 Collecting Feedback During Software
Engineering Experiments 2005 Feedback-collecting tool Simula Research ESEM

PS3 A Web-based Support Environment for Software
Engineering Experiments 2002 Simula Experiment Support

Environment (SESE)
Simula Research Laboratory
+ KompetanseWeb AS NJC

PS4 SESE – an Experiment Support Environment for
Evaluating Software Engineering Technologies 2002 Simula Experiment Support

Environment (SESE)
Simula Research Laboratory
+ KompetanseWeb AS NWPER

PS5 Infrastructure for SE Experiments Definition and
Planning 2004 experimental Software Engineering

Environment (eSEE) COPPE/UFRJ ESELAW

PS6 eSEE: a Computerized Infrastructure for
Experimental Software Engineering 2004 experimental Software Engineering

Environment (eSEE) COPPE/UFRJ ESELAW

PS7 A computerized infrastructure for supporting
experimentation in software engineering 2005 experimental Software Engineering

Environment (eSEE) COPPE / UFRJ ESELAW

PS8
Supporting Meta-Description Activities in
Experimental Software Engineering
Environments

2005
Meta-configurator from
experimental Software Engineering
Environment (eSEE)

COPPE/UFRJ ESELAW

PS9 An environment to support large scale
experimentation in software engineering 2008 experimental Software Engineering

Environment (eSEE) COPPE/UFRJ ICECCS

PS10
Towards a Computerized Infrastructure for
Managing Experimental Software Engineering
Knowledge

2004 experimental Software Engineering
Environment (eSEE) COPPE/UFRJ JIISIC

PS11 Exploring the use of crowdsourcing to support
empirical studies in software engineering 2010 Mechanical Turk University of Nebraska ESEM

PS12 Value-Based Empirical Research Plan Evaluation 2007 value-based empirical research
(VBER) planning framework Vienna Univ. of Technol. ESEM

PS13 A Framework for Software Engineering
Experimental Replications 2008 FIRE - Framework for Improving

the Replication of Experiments Salvador University ICECCS

PS14 An Environment for Conducting Families of
Software Engineering Experiments 2008 Experiment Manager framework University of Nebraska Advances in

Computers

PS15 Ginger2: An Environment for Computer-Aided
Empirical Software Engineering 1999 CAESE Framework and Ginger2 Nara Institute

of Science and Technology IEEE TSE

TABLE III. EXPERIMENTAL PROCESS STAGES SUPPORTED PER TOOL

Process Stage SESE eSEE VBER MT FIRE Ginger2 EMF
Definition
Planning
Operation
Analysis and Interpretation
Presentation and Package

TABLE IV. TOOLS FEATURES

Functionalities Tools
Define the experiment (questionnaires, tasks descriptions,
artifacts and roles)*

SESE, eSEE,
Ginger2

Allow the researcher defining the kind and number of
subjects that should take part in the experiment SESE, eSEE

Allow the user (subject) fills in questionnaires and
downloads task descriptions, and other required
documents. User carries out the tasks, answers questions
along the way and uploads the finished documents.

SESE, eSEE,
 MT

Do continuous timestamp for activities SESE, MT.,
EMF, Ginger2

Monitor experiment (the progress of each subject) SESE, eSEE

Collect and storage data SESE, Ginger2,
EMF

Store and publish the experimentation process in a
process model repository eSEE

Specify and visualize the Experimental Plan trough well-
defined process eSEE

Elaborate the documents produced/consumed throughout
the Experimentation Process eSEE

Make the experimental tasks available eSEE, Ginger2,
MT

Functionalities Tools
Control the experiment eSEE
Register lessons learned eSEE
Gather feedback from subjects SESE
Characterize the study (using GQM) Ginger2, VBER
Support Experiment Design Ginger2
Support Data Analysis Ginger2, EMF.
Integrate data among different tools, integrate different
control tools, integrate analysis tools Ginger2

Support Packaging eSEE, SESE,
Ginger2, FIRE

Manage payment (to subjects) MT
Address knowledge sharing issues both at the intra-group
(internal replications) and inter-group (external
replications)

FIRE

Frequent interaction among groups through e-mail and
phone calls FIRE

Execution of pilot studies FIRE
Help identifying potential conflicts that indicate project
risks VBER

Elicit empirical study principal stakeholders (industry
and academia) and their key value propositions expected VBER

508

In an experimental process, one needs to choose the
experimental study design. This choice determines how to
organize (participants, experimental material, and treatments),
to run the experiment, and to analyze the experiment collected
data using a specific statistical analysis method. However, no
tool details what support is given to set up the experiment
design during the planning.

We also realized that analysis tools that are part of
investigated infrastructures are relatively simple, except the
Ginger2 that explicitly mentions the existence of internal tools
to support observational and computational analysis. Another
issue that is not addressed by the environments is how to define
metrics to be collected during the experiment execution.
Ginger2 mentions a Statistical Metrics Tool for data analysis
that computes and returns various statistical values and metrics
that have been defined by experimenters but it does not detail
how it works.

Finally, although Ginger2 and SESE enable the experiment
definition, they have a predetermined process that cannot be
adjusted according to the needs of each new experiment.

D. Developing Tools to Conduct SE Experiments (RQ.4)

The purpose of RQ.4 is to investigate who are the
researchers involved in the area of supporting infrastructures
for controlled experiments and to investigate the evolution of
the area. For example, we were interested in knowing if this
kind of infrastructure has been recently developed.

In our systematic review, we have initially restricted to
select only papers published between 2002 and 2010, when
searching for the papers from the investigated conferences and
journals. In the second step of our study, we included the
studies found while searching the reference section of the
primary studies even if they are outside of the established
initial period, as established by our protocol. Our main aim was
to try to capture a wide set of related research work. Our study
results demonstrated that research on automated execution of
SE controlled experiments was performed mainly over the last
decade.

Table 5 shows the country, affiliation and the distribution
of the selected studies per affiliation. One can observe that the
selected studies were originated from five different countries. It
is important to emphasize that some studies have researchers
coming from different countries but we have only considered
the first author affiliation and country. Among the selected
studies, 47% comes from Brazil (mainly from COPPE/UFRJ)
and other 27% comes from the Simula Research Laboratory/
Norway.

TABLE V. DISTRIBUTION OF STUDIES OVER AFFILIATION/COUNTRIES

Country Affiliation Dist. Approach
Japan Nara Institute of Science and Technology 1 Ginger 2

USA University of Nebraska 2 EMF
MT

Norway Simula Research Laboratory 4 SESE
Austria Vienna University of Technology 1 VBER
Brazil COPPE / UFRJ 6 eSEE
Brazil Salvador University 1 FIRE

IV. STUDY LIMITATIONS
Limitations are most related to our search strategy. The first

plan was to perform both manual and automatic searches.
When we started to define our search string we realized that we
are in a very large scope due to the diversity of our research.
Many research works in software engineering present
frameworks, tools, environments and infrastructures for other
different contexts than empirical software engineering. In
addition, there are also many research works that describe
experimental studies and controlled experiments. Because of
those reasons, it was extremely difficult to perform an
automated search without resulting in a large number
(thousands) of studies not related to the purpose of our
systematic review. As a result we decided to execute only
manual searches. We agree that there is a significant effort to
examine many irrelevant studies when submitting general
automatic searches, but on the other hand we can ensure the
gathering of relevant studies when choosing specific
conferences and journals. Similar strategies have been adopted
by other existing systematic reviews [23]

V. DISCUSSION
After performing the systematic review we have identified

some weaknesses and opportunities for future improvements.
In this section, we present these new perspectives based on the
results of the systematic mapping.

A. Environment customizations based on the experiment
design
The proposal of the investigated tools is to facilitate

planning and conducting an experiment, minimizing threats to
validity, and reducing the time spent in preparation, execution,
and analysis of a controlled experiment. However, they do not
mention how to set up the experimental design or how to
organize the execution according to a statistic experimental
design, even the most known, such as completely randomized
design (CRD), randomized complete block design (RCBD), or
Latin square (LS). We believe that providing assistance in how
controlled experiments will actually be arranged according to
statistical design can not only reduce the effort of skilled
researchers on experimental software engineering, but also
encouraging researchers that are no experts to perform such
kinds of experiments.

B. Improved analysis capabilities
Although the analysis phase has been supported by two of

the found approaches, all the environments exhibit weaknesses
that should be addressed, such as: (i) help to set up the
experimental design; (ii) automatic workflow generation of the
execution procedure for each experiment participant in order to
facilitate the automatic collection of their specific data; and (iii)
finally, analysis capabilities that facilitates the production of
graphics and data that help the analysis of the study according
to the chosen experiment design.

C. Guidance and automatic data collection
The effort to run and manage the great volume of

information collected in the experiment is substantial. In this
context, actions are necessary to minimize the manual data
collection effort, and the time consumed to run the experiment,
in other words, such environments should enable subjects to

509

keep updated about their current activities through guidance
and automatic data collection. It can simplify the process, since
the participant would not have to collect data such as time for
each activity performed, and to follow their activities through
of a systematic and customized workflow of your duties. We
believe these represent existing deficiencies of existing
environment.

D. Future improvements for experimental software
engineering environments
We have observed in our systematic review that current

some environments for empirical software engineering are
adaptable and extensible for specific needs of certain
experiments. We identified that those environments should
address the following requirements: (i) flexibility for
integration with external tools, as the execution of controlled
experiment involves a wide range of external tools that have to
be integrated and monitored to support the complete
experiment, such as process management tools, integrated
development environments (IDE), testing tools, and statistic
tools; and (ii) flexibility to extend the environment – to address
the variety of requirements of experiments from different
domains, it is also fundamental to promote the extensibility of
the SE experimental environment to support new experimental
study design, collected metrics, strategies to collect information
from subject, and so on.

VI. CONCLUSIONS AND FUTURE WORK
This paper reported a systematic review study of automated
support to conduct experiments in software engineering. The
results indicate a restricted number of existing environments,
infrastructures, tools or frameworks (total of seven). Moreover,
there are few empirical studies reporting the usage of these
tools. Potential future improvements for the development of
experimental software engineering environments are the
support to their customization to address specific needs of
experiments to give more flexibility to extend their basic
functionality, and to allow the integration with external tools.
Inspired on the results and illustrated challenges of this
systematic review, we are developing a customizable model-
driven environment for supporting and conducting controlled
experiments in software engineering.

ACKNOWLEDGMENT
This work was partially supported by the National Institute

of Science and Technology for Software Engineering (INES,
www.ines.org.br), funded by CNPq under grants 573964/2008-
4, 560256/2010-8, and 552645/2011-7, and by FAPERN.

REFERENCES
[1] D.I.K. Sjoeberg et al., "A survey of controlled experiments in software

engineering," IEEE Transactions on Software Engineering, vol. 31 , Issue:
9, pp. 733 - 753, Sept. 2005.

[2] Claes Wohlin et al., Experimentation in Software Engineering: An
Introduction. Boston/Dordrecht/London: Kluwer Academic Publishers,
2000.

[3] Shari Lawrence Pfleeger, "Experimental design and analysis in software
engineering: Part 2: how to set up and experiment," ACM SIGSOFT
Software Engineering Notes, vol. 20, pp. 22-26, jan 1995.

[4] Arilo C. Dias et al., "Infrastructure for SE Experiments Definition and
Planning," 1st Experimental Software Engineering Latin American

Workshop, 2004.
[5] V.R. Basili, F. Shull, and F. Lanubile, "Building Knowledge through

Families of Experiments," IEEE Trans. Software Engineering, vol. 25 (4),
pp. 456-473, July/August 1999.

[6] Guilherme H. Travassos, Paulo Sérgio Medeiros Santos, Paula Gomes
Mian, Arilo Cláudio Dias Neto, and Jorge Biolchini, "An environment to
support large scale experimentation in software engineering," 13th IEEE
International Conference on Engineering of Complex Computer Systems,
pp. 193-202, 2008.

[7] B. A. Kitchenham, T. Dyba, and M. Jorgensen, "Evidence-based software
engineering, In ICSE ’04," no. ICSE, pp. 273–281, 2004.

[8] B. Kitchenham and S. Charters, "Guidelines for performing Systematic
Literature Reviews in Software Engineering," Keele University and
Durham University, Tech. Rep, Tech. Rep EBSE 2007-001, 2007.

[9] E. Arisholm, D. I. K. Sjøberg, G. J. Carelius, and Y. Lindsjørn, "A Web-
based Support Environment for Software Engineering Experiments,"
Nordic Journal of Computing, no. 9(4), pp. 231-247, 2002.

[10] Erik Arisholm, Dag I.K. Sjøberg, Gunnar J. Carelius, and Yngve Lindsjørn,
"SESE – an Experiment Support Environment for Evaluating Software
Engineering Technologies," Nordic Workshop on Programming and
Software Development Tools and Techniques, pp. 81-98, 2002.

[11] AMELA KARAHASANOVIC et al., "Collecting Feedback During
Software Engineering Experiments," Empirical Software Engineering, no.
Springer Science + Business Media, pp. 113–147, 2005.

[12] Dag I.K. Sjøberg et al., "Conducting Realistic Experiments in Software
Engineering," International Symposium on Empirical Software Engineering
, 2002.

[13] Arilo Cláudio Dias Neto, Rafael Ferreira Barcelos, Paulo Sérgio Medeiros
Santos, Sômulo Nogueira Mafra, and Guilherme H. Travassos,
"Infrastructure for SE Experiments Definition and Planning," ESELAW'04,
Brasília, Brazil, 2004.

[14] P. G MIAN, G. H. TRAVASSOS, A. R. C. ROCHA, and A. C. C.
NATALI, "Towards a Computerized Infrastructure for Managing,"
Jornadas Iberoamericanas em Ingeniería del Software e Ingeniería del
Conocimiento, 2004.

[15] P. Mian, G. Travassos, and A.R.C Rocha, "eSEE: a Computerized
Infrastructure for Experimental Software Engineering," Experimental
Software Engineering Latin American Workshop (ESELAW'04), 2004.

[16] Paula G. Mian, Guilherme H. Travassos, and Ana Regina C. Rocha, "A
computerized infrastructure for supporting experimentation in software
engineering," Experimental Software Engineering Latin American
Workshop, 2005.

[17] W. A. Chapetta, P.S.M. Santos, and G. H. Travassos, "Supporting Meta-
Description Activities in Experimental Software Engineering
Environments," ESELAW'05, Brazil, 2005.

[18] Stefan Biffl and Dietmar Winkler, "Value-Based Empirical Research Plan
Evaluation," International Symposium onEmpirical Software Engineering
and Measurement, September 2007.

[19] Kathryn T. Stolee and Sebastian Elbaum, "Exploring the use of
crowdsourcing to support empirical studies in software engineering," 2010
ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, 2010.

[20] Koji Torii, Kumiyo Nakakoji, Yoshihiro Takada, Shingo Takada, and
Kazuyuki Shima, "Ginger2: An Environment for Computer-Aided
Empirical Software Engineering," IEEE Transactions on Software
Engineering, vol. (25)4, pp. 474–492., July 1999.

[21] Manoel G. Mendonça et al., "A Framework for Software Engineering
Experimental Replications," IEEE International Conference on
Engineering of Complex Computer Systems, 2008.

[22] Lorin Hochstein et al., "An Environment for Conducting Families of
Software Engineering Experiments," Advances in Computers, vol. 74, pp.
175–200, 2008.

[23] V. Alves, N. Niu, C. Alves, and G. Valença, "Requirements engineering for
software product lines: A systematic literature review," Information &
Software Technology, vol. 52, no. 8, pp. 806-820, 2010.

510

SIGAA Mobile – A sucessful experience of
constructing a mobile application from a existing web

system

Gibeon Soares de Aquino Júnior
Department of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte
Natal, Brazil

gibeon@dimap.ufrn.br

Itamir de Morais Barroca Filho
Informatics Management Office (SINFO)

Federal University of Rio Grande do Norte
Natal, Brazil

itamir@info.ufrn.br

Abstract—With the advent of mobile devices a new usage scenario
of computing is arising, changing old habits and creating new
ways of our society access information and interact with
computer systems. This scenario requires new kinds of system
and applications with specific requirements, capabilities and
constraints. For this reason the development of systems in this
context requires reviewing how the current knowledge we possess
about software development fit in it. In this paper are presented
some strategies successful used to implement a mobile application
version from an existing web-based system.

Keywords-component; mobile computing; system evolution;
android

I. INTRODUCTION

Computers are becoming ever more present in people's
lives. Nowadays, computing is so much more intense and
accelerated with the rise of mobile technologies in the world,
such as smartphones and tablets, connected to mobile networks
increasingly available everywhere. The ITU1 estimates that
there are more than 6 billion mobile subscribers worldwide [4].
According to Gartner, 1.75 billion people have mobile phones
with advanced capabilities [1] and points to further growth of
such technology adoption in the coming years. There is a
global trend towards increasing the number of users connected
to the network via mobile devices, which in turn will produce
an increasing demand for information systems, applications
and content for such equipment.

We are facing a new usage scenario of computing that is
changing old habits and creating new ways for our society to
access information and interact with computer systems. In this
new scenario arises the needs for new kind of applications and
systems with heterogeneous characteristics that are composed
of many computational elements, which simultaneously
possess characteristics of web systems and embedded systems
in addition to containing mobile devices connected to the
network, which interact with the latter consuming and
producing information.

1 International Telecommunication Union

The development of these new types of systems involves
several activities, such as: the construction of applications that
run on mobile devices; integration with exclusive services on
these devices, such as GPS, SMS, NFC and other telephony
services; development or evolution of existing web and
embedded systems; and integration between the mobile and
latter. Finally, these types of system have new requirements,
capabilities and constraints. For this reason, the development of
systems in this context requires reviewing how the current
knowledge we possess about software development -
particularly on the methods, techniques, patterns, best practices
and architectures for building systems - fit into this new
technological and behavioral scenario.

In this paper, we present the experience of adopting mobile
technologies in the context of an existing information system at
UFRN2. It intents to provide new ways how the users interact
with the SIGAA3, particularly the interaction from modern
mobile devices. Currently, this purpose is being conducted by
two actions:

• Adaptation of existing features, created specifically for
web systems, to be also accessible from mobile
devices. Such adaptation involves the development of
applications in native platforms, like Android and iOS,
the development of Restful Web Services [10] and the
integration with existing enterprise software
components which implement the business rules.

• Development of new specific features for mobile
devices - These devices offer new possibilities and new
technologies embedded in them, therefore an important
and promising initiative in this context would be the
development of features not existent in the scope of old
systems, which is only possible with mobile devices.
These features gain relevance with the use of these
possibilities and technologies.

2 http://www.ufrn.br

3 Integrated System for Management of Academic Activities
(http://www.sigaa.ufrn.br)

511

II. SIGAA: A MANAGEMENT ACADEMIC SYSTEM
SIGAA is a corporative web system developed by UFRN that
computerizes the business process of the academic area
through the modules that composes it: graduation; masters
degree (strictu and latu sensu); technical study; elementary and
high school; research projects submission and control;
research grants; academic extension actions control; teaching
projects submission and control (monitoring and innovation);
register and reports of professors' academic production; and a
virtual teaching place called "virtual class". These modules are
presented in Figure 1 and are enabled according to user
profiles. Nowadays, SIGAA has 41,397 users, divided into the
following profiles: students, professors and technicians. This
web system was developed using open technologies such as
Java, Hibernate, JavaServer Faces, Richfaces, Struts, EJB and
Spring. It uses PostgreSQL as DBMS and is deployed into
JBoss Application Server.

Figure 1 - SIGAA functional modules.

In terms of physical metrics, the SIGAA has 646,382 lines
of code, 4,750 classes and 1,135 tables divided into 40
schemes. Already in terms of functional metrics it contains
1,858 functionalities, accounting a total of 22,369 function
points4.

It depends on a software architecture also developed by
UFRN, serving as an infrastructure to this corporative system.
This infrastructure is composed by four components presented
in Figure 2:

• Architecture composed by abstract classes, helpers and
framework services.

• LIBS composed by libraries such as JSF, Struts,
Hibernate, Spring and Jasper Reports.

• Common Entities composed by common domain
classes such as User, Person and Permission.

• Integrated Services composed by data transfer objects
and interfaces for features available by web services.

Using this software infrastructure, the SIGAA is organized
into three layers:

4 Based on the NESMA account method.

• Presentation: responsible for controlling interaction
between users and system, containing JSF and Struts.

• Business: responsible for centralizing the domain
business system logic, composed by EJB Commands
and Spring.

• Data access: responsible for persistence and data
queries into database, containing Hibernate and DAOs.

 With the SIGAA's success in managing UFRN's academic
activities, this system has been released for others Brazilian
federal universities after 2009. Nowadays, about nineteen
Brazilian universities are using SIGAA.

Figure 2 - UFRN Software Architecture and SIGAA.

III. STRATEGIES FOR THE DEVELOPMENT OF MOBILE
APPLICATION FROM AN EXISTING WEB-BASED SYSTEM

As stated in the introduction section, mobile application

development involves a specific context and therefore requires
the use of new approaches related to different facets of
software development. Here, we categorize these approaches in
three groups: (a) Business, involves strategies related to the
scope, stakeholders involvement and publicity strategies; (b)
Technical, which involves aspects related to the product's
source code, such as architectural approaches [7], technologies
utilization, frameworks, software patterns and best practices;
(c) User Interface, that involves approaches related to the visual
appearance and the way the user interacts with it.

A. Business-related Approaches
At the beginning of the project, it is very important to plan

which functionalities are relevant in the context of mobile
environments. The process of creating a mobile application
from existing web enterprise system is not a direct mapping of
functionality-to-functionality. This kind of simplification is a
common mistake and must be treated carefully. Mobile devices
have some intrinsic restrictions such as screen size, difficulties
to type long texts and no guarantee of network access
availability. Moreover, it has a different mode of user
interaction with touch support, gesture events and rapid actions.
For this reason, it is important to follow some specific
strategies on projects involving mobile application
development.

One of these strategies is related to scope or more
specifically to the choice of functionalities and the way they are
adapted for the mobile context. Moreover, this strategy may be

512

subdivided in four practices: (i) Choose popular functionalities;
(ii) Avoid long-steps functionalities or long-fill forms; (iii)
Adapt existing functionalities; (iv) Create specific
functionalities for mobile application. As stated in Section II,
the SIGAA is a big system and it makes no sense to try to
implement each of these functionalities in the mobile
application. For this reason, we started with a minimized scope,
based on functional requirements of existing enterprise system,
but with only the most popular and convenient functionalities
(practices i and ii). Moreover, some of the chosen
functionalities had to be reviewed and adapted considering the
new context, as suggested by practice iii. The first version of
SIGAA Mobile Application, published in April 2012, was
released with only thirteen functionalities and supported the
two main roles: professors and students. Finally, the third
version, published in March 2013, released some new
functionalities that are missing in the web-based system but are
important for the mobile application.

Another important strategy is the early user involvement.
For a successful software development initiative, it is well-
known the importance of user involvement [5],[8], but to
construct mobile application based on existing web system this
practice gains even more value. The potential users of the
mobile version already use the mature web-based system and,
for this reason, expect a system as good as the one that already
exists. Moreover, they expect that a native mobile application
will make the work of using the system easier when they are on
a mobile device. Based on this strategy, we tried to involve
several professors and students in the project before starting
development, in order to receive their expectations and
feedbacks about our plans.

Finally, one of the most important strategies is the publicity
around the mobile application. The potential user must know
this new style of enterprise system exists and they may be
motivated to try this new way of accessing the system. Only
publishing the application on a platform store, e.g. Android
Play, Apple App Store, is not enough to make it known among
users. For this reason, its existence should be well
communicated for the target audience. In our case, the first
version of SIGAA Mobile had no action to communicate it was
available for use. However, at the second version release, the
AGECOM (Communication Agency of UFRN) did an
intensive publicity about it and the numbers of installations
grew significantly as can be viewed in Figure 5.

B. Technical-related Approches
The first challenge that needs to be addressed is how to

integrate with the existing system. Moreover, we need to be
concerned about how to reuse its already implemented business
components. Nowadays, the use of the layer pattern [3] is
common in particular for the web-based systems. For this
reason, a generic approach that can be used to integrate with
the existing web system is the definition of a new separated
layer providing a set of services that must be used by the
mobile application. This new layer integrates with the existing
business rules layer using the already implemented and stable
code, as showed by Figure 3. In the SIGAA Mobile project,
this layer is composed by several restful web services that uses

the business components (session beans, persistence entities
and utilities classes) provided by the existing business layer.

Although it seems so simple the integration with the
business layer, it may require some refactoring in existing
code. It is caused by a habitual phenomenon called “software
architecture erosion”, where the violation of architecture
principles during the system maintenance occurs without a
malicious intent. In our case, the current business layer was
prepared to provide services independently of its client
technology, but as it was used and matured integrated only with
a unique type of client, the web view layer, some of these
violations were found. A typical example found in SIGAA was
the movement of specific objects from web frameworks
beyond business layer boundary. For this reason, an important
practice is to plan some rework in order to reform the business
layer and prepare it to the expected integration.

Finally, one of the most important technical regard is that
you are developing a solution in a new context with dissimilar
non-functional requirements and, for this reason, others
concerns must be taken. A typical example is related to the
network connectivity reliability. Mobile devices are connected
with a network often using wireless connections and the
availability of latter may be low. Moreover, the connectivity
may be unstable while the user is interacting with the system.
For this reason, one of the most interesting functions
implemented in SIGAA Mobile was the offline work
capability. Even when there is no network connectivity, the
user can enter locally and do all the operations he can do when
he is online. It is possible because the application maintains a
local data cache filled in background while the user interacts
with the application when it is online. We also implemented a
mechanism that detects the unavailability of network
connection anytime while the user is interacting with the
application and asks the user if he wants to continue his work
in offline mode, storing the user input in a local database and
synchronizing later when the connectivity is resumed. With this
approach a new problem arises: the data synchronization and
its consistency evaluation. Our solution was based on the same
mechanism which detects the unavailability and availability of
connectivity. When the application changes from offline to
online state, a background routine is executed in order to
perform the data synchronization. The data changed in offline
state were specially tagged and this routine search for them,
trying to post each modification on the server. Actually, we are
performing the simplest approach, avoiding to override the data
on server when it has conflicts. For the current application
version, this approach is suitable because only two entities may
be changed, deleted or added by the mobile version and these
operations are rarely performed by different user at the same
piece of data. However, we agree that in more complex
environment other more refined techniques must be used.

513

Figure 3 - Solution to integrate existing web-based SIGAA with new mobile
application.

C. UI-related Approaches
Mobile applications tend to provide relevant advantages to

their users in terms of design and usability [9]. For this reason,
it requires new interaction approaches and own visual identity
with the aim of differing the mobile version from the web-
based system. A dangerous approach is to try to imitate the
existing system. Famous applications, e.g. Facebook, Twitter
and Instagram, have own appearances and usability on their
mobile version. Therefore, an important strategy is to think of it
as a mobile application, even if it was born from a web system,
and to use the typical usability and design approaches
performed by well-known applications.

Based on this understanding, we used some UI-related
practices in SIGAA mobile projects. First, we define a logo to
be used as icon to the application. Second, each functionality
was reviewed in terms of steps to perform, quantity and
arrangement of fields. Finally, the most important action we
have performed was the usability evaluation. This task was
done by a group of specialist following well-known techniques
[2]. A particular, work done by this group was the evaluation of
three different usability solutions for an important
functionality. They used the methodology of Participatory
Design and Prototyping Techniques, where three different
prototypes have been developed and tested with the aim of
investigating and evaluating the consequences of each one
approaches.

After this evaluation, we found several important
improvements to do. The main finds were solved and a new
version (the second) was published with these improvements.

IV. RESULTS OF NEW DEVELOPED PRODUCT
The project has two task forces related to the development

of mobile applications for the two main existing platforms:
Android and iOS. In this paper we relate only the Android
version experience, because the iOS version was not published
yet.

The Figure 4 presents the architecture of the SIGAA
Android application. The View layer is where all activities, i.e.
components which interacts directly with the user presenting
the graphical interface and manipulating the user events. It uses
a layer of abstraction for the business rules that are hosted in
the server called Business Delegate. This layer uses a

communication channel which implements the REST pattern to
communicate with the server-side of the system. Moreover, it
manipulates the Cache Data Access Layer, storing and
recovering data, depending of the connectivity status, to allow
the offline use capability already explained early.

Figure 4 - Software Architecture of Android SIGAA Application.

Here we will present some statistics about the SIGAA
Android uses. With Android Developer Console5, information
about download and quantification was extracted considering
the following informations: active installations, device model,
country, Android version, and application version. Nowadays,
SIGAA Android is installed into about 2,400 devices (active
installations), whose growing is presented on Figure 5. It was
uploaded to Google Play at 04/25/2012 and the download
number is increasing ever since.

Figure 5 - SIGAA Android active installations.

Considering device model installations, it is noted that
Samsung Galaxy devices dominates with 1,069 devices, as
presented on Figure 5. Observing country installations statics, it
is perceived that Brazil dominates the number of downloads
and installations, but analyzing Figure 6 we realize that there
are other countries on the statistics, like United States of
America, China, Spain, France and Portugal. This fact happens
because undergraduate and postgraduate UFRN’s students are
participating on international programs related to the academic
mobility and inter-institutional relations. Categorizing active
installations by Android versions, it is discovered that
Gingerbread (version 2.3) dominates the devices version with
1,310 devices, followed by Ice Cream Sandwich (version 4.0)
with 477 devices as presented in Figure 8.

5 Tool provided by Google to publishing and administrating

the Android applications.

514

Figure 6 - Devices model installations.

Figure 7 - Countries active installations.

Figure 8 - Android versions active installations.

Continuing on Android Developers Console analysis, the
third version of the application contains the higher active
installation number, with 2,299 installations. SIGAA Android
has 3 versions (1, 2 and 3) where actually the version 1 has 15
installations, version 2 has 58 installations. All these statistics
data about downloads and active installations can be obtained

using Android Developer Console, which is the tool for
distributing Android applications.

After the active installations analysis with Developer
Console, we used SIGAA log infrastructure to discover the
average daily access and most used functionalities. SIGAA has
a data base log controlled by an asynchronous process of
persisting information about every user operations. Analyzing
daily access logins into SIGAA Android, we discovered that
since its release, this application has 124,643 logins and an
average about 410 daily logins. We noted the increasing in
login numbers at the beginning and the end of the academic
activities period, as presented on the graph at Figure 8. For
example, the month of vacation the number of access
decreases, but immediately before and immediately after the
number of access increases.

Figure 9 - SIGAA Android logins.

V. CONCLUDING REMARKS AND FUTURE WORKS
Although this paper report the specific experience of

SIGAA Mobile project, we believe all presented strategies
could be generalized and applied on other similar projects,
particularly in projects with the aim of evolving an existing
web-based system with the construction of its mobile version.
However to be more confident of their effectiveness, a more
in-depth study of the strategies and their applicability should
be made. For this reason, we are evaluating the current
reported strategies in other similar projects in order to collect
more evidences of about the theme. Moreover, the next
direction of this research would be the elaboration of a
systematic process to be used in similar contexts.

Based on this experience we intend to produce a set of
development recommendations, which involves best practices
for projects involving the construction of mobile-based
systems from existing web-based. We also could give more
information, as code examples, about how a particular
functionality may be adapted to the mobile application,
including details on how the input was adapted, the possible
differences in the workflow of both versions, the architecture
components affected and other details related to this process.

515

Finally, we believe that a valuable result produced could be
architectural solutions for this context, in special design and
architectural patterns, frameworks and reusable components.

REFERENCES

[1] "Gartner Says Worldwide Mobile Phone Sales Declined 1.7 Percent in

2012" (Press release). Gartner. February 13, 2011. Retrieved March 09,
2013.

[2] Anamaria de Moraes and José Guilherme Santa Rosa. 2008. Avaliação e
Projeto no Design de Interfaces (1st Edition). 2AB, Teresópolis, RJ.

[3] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. 1996. Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley & Sons, Inc., New York, NY, USA.

[4] ICT Data and Statistics Division. The World in 2011 – ICT Facts and
Figures. Technical report, International Telecommunication Union
(2011).

[5] Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional.

[6] Lakshitha de Silva, Dharini Balasubramaniam, Controlling software
architecture erosion: A survey, Journal of Systems and Software,
Volume 85, Issue 1, January 2012, Pages 132-151, ISSN 0164-1212,
10.1016/j.jss.2011.07.036.

[7] Len Bass, Paul Clements, and Rick Kazman. 2003. Software
Architecture in Practice (2 ed.). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[8] Majid, R.A.; Noor, N.L.M.; Adnan, W.A.W.; Mansor, S., "A survey on
user involvement in software Development Life Cycle from
practitioner's perspectives," Computer Sciences and Convergence
Information Technology (ICCIT), 2010 5th International Conference on,
vol., no., pp.240,243, Nov. 30 2010-Dec. 2 2010.

[9] Nayebi, F.; Desharnais, J.-M.; Abran, A., "The state of the art of mobile
application usability evaluation," Electrical & Computer Engineering
(CCECE), 2012 25th IEEE Canadian Conference on , vol., no., pp.1,4,
April 29 2012-May 2 2012.

[10] Roy Thomas Fielding. 2000. Architectural Styles and the Design of
Network-Based Software Architectures. Ph.D. Dissertation. University
of California, Irvine. AAI9980887.

516

ANDRIU. A Technique for Migrating Graphical User
Interfaces to Android

Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Rafael Gómez-Cornejo, Maria Fernandez-Ropero and
Mario Piattini

Instituto de Tecnologías y Sistemas de Información (ITSI) at University of Castilla-La Mancha
Paseo de la Universidad 4 13071, Ciudad Real, Spain

{ricardo.pdelcastillo, ignacio.grodriguez, rafael.gomezcornejo, marias.fernandez, mario.piattini}@uclm.es

Abstract—Nowadays, pervasive environments force maintainers
to provide agile solutions for migrating legacy information
systems to mobile applications. While business knowledge can be
easily reused in tier-based modularized systems, the migration of
user interface tiers to a mobile application entails a bigger (but
usually ignored) challenge. This paper presents AndrIU, a
reverse engineering tool based on static analysis of source code
for transforming user interface tiers from desktop applications to
mobile ones. AndrIU has been specially developed for migrating
traditional systems to Android applications. AndrIU is generic
and extensible since it manages all the embedded knowledge in a
common, standard repository according to the Knowledge
Discovery Metamodel. This metamodel represents legacy
knowledge in a platform-independent way. The main advantage
is that AndrIU is designed to be extended for different migrations
to others mobile platforms.

Keywords—Migration, User Interface, Android.

I. INTRODUCTION
Pervasive environments are very common in our lives,

which allow us to freely interact with a vast amount of services
through a great variety of interactive devices (e.g.,
smartphones, laptops, pads, game consoles or digital television
among other) [15]. For example, today’s smartphones serve as
email readers, calendars, car navigation systems or even
entertainment systems, and they can provide almost constant
connectivity between people via texting, voice calls, and video
conferencing [3].

Pervasive environments force software producers to carry
out agile developments to obtain just-in-time software
applications for different devices [11]. Indeed, App Store and
Google Play (two of the most important mobile applications
markets) offer today more than 400,000 applications (with a
growth of 20% per month) and they approximately consider
80,000 software vendors [16].

Recently, researchers and engineers have provided many
methods and techniques to alleviate the challenge of agile
software development for pervasive environments. Firstly,
there exist multi-platform programming languages like Java.
Secondly, various architectural design patterns have been
proposed to facilitate the reuse of software such as three-tier
architecture [4] or model-view-controller architecture [7]. The
tier-based architectures encapsulate business rules in an

isolated tier that minimize the coupling with other tiers in
charge of user interface and data persistency.

Tier-based architectures facilitate the migration of software
applications in pervasive environments since the core, business
tier can be almost fully reused, while the remaining tiers has to
be adapted. In fact, the sole migration of the part of an
application that is interacting with the user is sometimes
enough to migrate an application to different devices [2].

This paper addresses the migration of the graphical user
interface (GUI) tiers of traditional applications to the user
interfaces of mobile applications by integrating them with other
source code tiers. This technique follows the model-driven
development approach. The technique is particularly based on a
static analyzer of Swing/AWT user interfaces which represent
the information in a common, standard repository according to
KDM (Knowledge Discovery Metamodel) [10]. KDM is the
ISO/IEC 19506 standard for representing all the information
retrieved by reverse engineering from every legacy software
artifact (e.g., source code, databases, user interfaces, etc.).
After that, the technique transforms the user interface model
represented in the KDM repository to a user interface model for
Android [8] applications based on a set of XML (eXtensible
Markup Language) files.

The technique is supported by an Eclipse™-based tool,
which was specially developed for Android applications due to
their widespread use and open source nature, which facilitated
the research. However, the technique is generic because it is
based on the KDM standard, and therefore, additional
transformations from KDM to others platforms such as iOS
(based on Xcode) could easily be provided. The developed tool
allows the applicability and adoption by the industry of the
proposed technique for migrating user interfaces from Java-
based applications to Android applications.

The remaining of the paper is organized as follows. Section
II presents in detail the technique to migrate user interface tiers
to Android applications. Section III introduces the supporting
tool. Finally, Section 0 discusses conclusions and future work.

II. MIGRATION TECHNIQUE
AndrIU facilitates the migration of graphical user interfaces

from desktop applications to mobile applications. On the one
hand, the underlying process follows model-driven

517

development principles, i.e., (i) it treats all the involved
artifacts as models in accordance with particular metamodels,
and (ii) it provides automatic transformations between such
models at different abstraction levels. On the other hand,
AndrIU is based on KDM [10] to represents all the extracted
information in a platform-independent and standardized way.

AndrIU is specially developed to the migration of
AWT/SWING user interfaces of desktop applications to
Android user interfaces based on XML files (see Figure 1).
However, AndrIU is generic due to the use of KDM, and may
easily be extended for other platforms. AndrIU considers four
different artifacts and a path of three progressive
transformations between them.

Android
MM

Static Analysis of
User Interfaces

Java
Swing
MM

KDM
MM

AST

code{

}

Mapping
AST KDM

Model Transformation
KDM Android

KDM

<xml>
< >

</>

Figure 1. The user interface migration process

A. Static Code Analysis of AWT/SWING interfaces
In the proposed method, the first transformation is

characterized by the use of static analysis as a reverse
engineering technique to retrieve user interface information
from the legacy source code. Static analysis consists of
syntactically analyzing the source code of source files that
belongs to the legacy system. Such static analysis detects code
elements of the user interface tiers and ignores non-relevant
pieces of source code belonging to different tiers.

This transformation is specifically tuned to analyze Java-
based systems. Therefore, while the static analysis is digging
up the information from a Java source file, a source code model
is built on the fly according to the Java SWING metamodel.
This metamodel contains some elements to represent containers
such as JFrame or JDialog, and other elements to represent
components within containers, e.g., JTextField, JButton,
JLabel, etc. The parser searches for such elements in each
source code file and builds the respective AST which
represents a specific-platform model (PSM) (see Figure 1).

B. Integration into the KDM repository
After obtaining various ASTs from source code files, which

contain relevant user interface elements, they are mapped to
KDM elements to be integrated in the KDM repository. The
mapping between Java SWING elements and KDM elements
distinguishes three concerns: (i) the containers and control
elements mapping; (ii) the actions mapping; and (iii) the
navigability mapping.

Container and control elements mapping. The first
mapping transforms container and control elements from
SWING AST models to KDM UI models. Regarding
containers, the mapped GUI elements are: windows (JFrame)

and panels (JPanel) to Screens, and dialogs (JDialog) to
Report. Concerning control elements, for example, buttons
(JButton) and toggle buttons (JRadioButton and JCheckBox),
which are transformed into UIResource elements; labels
(JLabel) and text fields (JTextField and JTextArea) that are
transformed into UIField elements in the KDM UI model.
Since the KDM UI model has to be platform-independent, this
mapping simplifies the semantics of user interface models. In
fact, there are only four basic elements in the KDM UI model
(Screen, Report, UIResource and UIField) to represents all the
information. However, in order to avoid a semantic loss, such
KDM elements incorporate an Attribute element that has a
tagged value ‘kind’ which contains the classifier name of the
SWING element, e.g., JLabel, JButton, etc.

Action Mapping. Since GUI elements are used to interact
with other tiers of the system (e.g., the business domain tier),
actions triggered under occurred events associated with GUI
controls have to be collected in the KDM UI model. Such pairs
of events-actions are handled in Java SWING through action
listeners added in each GUI element. These elements are
represented in the KDM UI model as UIAction elements, which
have a feature implementation which contains a reference to a
CallableUnit element within the KDM Code model. The
implementation feature therefore represents a reference to the
method that implements the triggered action. In this way, the
UI and Code model are integrated within the KDM repository
and feature location techniques could be used. Besides the
action, UIAction elements contain a kind feature containing the
type of the event (e.g., actionPerformed, onMouseClick, etc.).

Navigability mapping. Finally, the mapping between the
SWING AST model and the KDM UI model is completed with
the navigability mapping. This mapping uses the UIFlow
elements, as added to the UIAction elements to define a
navigability relationship between two windows. UIFlow
elements contain the features ‘from’ and ‘to’ that respectively
represent the references to the source and target UIDisplay
elements (Screen or Report).

In order to detect the navigability between two different
windows the parser of the previous transformation searches for
calls to the method setVisible (true) (open a certain window)
and setVisible (false) (close a window). These calls represent
that a window can be launched from another window.

C. Generation of Android interfaces
Once the information retrieved from the user interface tier

is integrated into the KDM repository, it can be used for
migrating the KDM UI model to Android-based user interfaces.

Android applications follow a Model/View/Control (MVC)
architecture [7], which consists of four different components:
activities, services, intents and resources. Graphical user
interfaces of Android applications therefore consist of a set of
Activities classes, which are built using View and ViewGroup
objects. There are many types of views and view groups, each
of which is a descendant of the View class. On the one hand,
the View objects are the basic units of user interface expression
on the Android platform and is the base for subclasses called
‘widgets’, which implements user interfaces controls (e.g., text
fields and buttons).

518

Figure 2. AndrIU modules and functionalities.

On the other hand, the ViewGroup class serves as the base
for subclasses called ‘layouts’, which offer different strategies
for distributing widgets such as linear, tabular, relative, and so
on. Android user interfaces are depicted through XML files
together a java class (R.java) with the definition of all the UI
resources. The XML files, depicting the Android user
interfaces, are built by transforming the KDM UI model almost
directly. For each UIDisplay element this transformation
creates a Layout element in the Android user interface. After
that, it transforms all the child elements of Screen or Report
elements to different Android controls (e.g., Button, EditText,
TextView) included within the previous Layout element.

III. ANDRIU TOOL
AndrIU [1] is a tool based on the Eclipse platform

especially developed to automate the underlying migration
process (see Figure 2). AndrIU allows maintainers to complete
the entire technique, since it automates the three proposed
model transformations. AndrIU additionally aids a manual
post-intervention by maintainers and developers through

various graphical editors so that the migration can be tuned or
adapted for each case.

A. Technologies Involved
This tool has been developed for Java-based legacy systems

and can be used to carry out case studies involving applications
with AWT/SWING user interfaces. The tool is based on four
key technologies. The first technology is JavaCC, which is a
parser and scanner generator for Java [14]. It is used to develop
the static analyzer. The second technology is EMF (Eclipse
Modeling Framework), which is a modeling framework and
code generation facility for building tools and other
applications based on structured data models [6]. This
framework makes it possible to build specific metamodels
according to the ECORE meta-metamodel (i.e. ECORE is the
metamodel proposed by the Eclipse platform to define
metamodels). Then, from these metamodels, EMF provides
tools to produce a set of Java classes for the model, along with
a set of adapter classes that enable viewing and command-
based editing of the model as well as a basic editor. Another

B D

C E

A

519

Eclipse framework, such as GMF (Graphical Modeling
Framework), is also used together with EMF to generate
graphical editors from the ECORE metamodels. Finally, the
fourth technology is XMI (XML Metadata Interchange), which
is a model-driven XML integration framework for defining,
manipulating and interchanging XML data and objects [12].
Every model involved in the proposed technique becomes
persistent with an XMI file.

B. Tool Modules
AndrIU is divided into five panels supporting different

functionality. Firstly, the panel A (see Figure 2) provides a
project explorer to navigate through all the different artifacts
involved in the three transformations (e.g., source code of the
input java application, KDM models, Android files, etc.).

To support the first transformation, a tool module to carry
out static analysis was developed. In this case, the module was
built specifically for parsing Java source code. This tool
module was developed through JavaCC from the EBNF
(Extended Backus–Naur Form) grammar of Java 1.5 [13]. This
module takes a Java file as input and then generates an XMI
file as the output that represents the Java code model, a PSM
model in L1. The second module executes a set of QVT
transformations to obtain a KDM model in L2 from the Java
code model obtained previously. The transformation is
executed using the open source Medini QVT [9], a model
transformation engine for QVT Relations. Panel B (see Figure
2) provides a tree view editor, which was built through EMF, to
visualize and manipulate KDM models. At the same time,
Panel C shows the graphical representation of the existing GUI.
The third module also executes a QVT transformation to
support the third transformation based on pattern matching.
Panel D (see Figure 2) visualizes in an XML editor the file that
represents the target user interface according to the Android
platform. Finally, Panel E allows maintainers to visualize in
parallel the first sketch of the target Android-based GUI so that
maintainers can refine it. Panels C and E can be used by
maintainers for checking manually the results between the
input and output graphical user interfaces.

IV. CONCLUSIONS
This paper presents AndrIU a static analysis-based tool for

migrating the GUI layer of legacy, desktop application to
mobile applications. AndrIU follows the model-driven
development principles and uses the KDM standard to
represent the intermediate information. The usage of KDM has
two important advantages. Firstly, AndrIU considers a common
KDM repository in which back-end parsers for different
graphical user interfaces (e.g., SWING, GTK, etc.) can store
the extracted information in the common KDM repository. In
turn, many front-end analyzers could be plugged in the KDM
repository to migrate interfaces to different platforms.
Secondly, another advantage of the KDM repository is that it
facilitates the integration of additional information related to
other software artifacts such us source code, databases, event
model. This information may be used to exploit synergies
between different artifacts during user interfaces migrations. In
this sense, feature location techniques [5] may be used by
mapping, for example, user interface elements with database

model in order to know which data is accessed from particular
user interface controls.

The work-in-progress deals with the conduction of various
experiments with several industrial, Swing applications in order
to demonstrate the applicability of AndrIU. Additionally, the
future work will address some open issues, e.g., the adaptation
of user interfaces to different devices and screens; transform
layout of desktop application to mobile devices; recognize GUI
elements in legacy applications with spaghetti code.

ACKNOWLEDGMENT
This work was supported by the FPU Spanish Program and

the R&D projects PEGASO/MAGO (TIN2009-13718-C02-01)
and GEODAS-BC (TIN2012-37493-C03-01).

REFERENCES
[1] Alarcos Research Group. AndrIU v1.0. Eclipse Marketplace 2012

[cited 2012 28-06-2012]; Available from:
http://marketplace.eclipse.org/content/andriu.

[2] Bandelloni, R., G. Mori, F. Paternò, C. Santoro, and A. Scorcia, Web
User Interface Migration through Different Modalities with Dynamic
Device Discovery, in 2nd International Workshop on Adaptation and
Evolution in Web Systems Engineering (AEWSE'07). 2007: Como,
Italy. p. 58-72.

[3] Ebling, M.R. and M. Baker, Pervasive Tabs, Pads, and Boards: Are We
There Yet?, in IEEE Pervasive Computing Magazine. 2012. p. 42-51.

[4] Eckerson, W., Three Tier Client/Server Architecture: Achieving
Scalability, Performance and Efficiency in Client Server Applications.
Open Information Systems, 1995. 10(1): p. 3.

[5] Eisenbarth, T., R. Koschke, and D. Simon, Aiding Program
Comprehension by Static and Dynamic Feature Analysis, in Proceedings
of the IEEE International Conference on Software Maintenance
(ICSM'01). 2001, IEEE Computer Society. p. 602.

[6] EMF, Eclipse Modeling Framework Project.
http://www.eclipse.org/modeling/emf/. 2009, The Eclipse Foundation.
IBM Corporation

[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Longman Publishing
Co. ed. 1995, Inc. Boston, MA, USA: Addison Wesley.

[8] Google Inc. Android (http://www.android.com/). 2012 [cited 2012
05/04/2012].

[9] ikv++, Medini QVT.
http://www.ikv.de/index.php?option=com_content&task=view&
id=75&Itemid=77. 2008, ikv++ technologies ag.

[10] ISO/IEC, ISO/IEC 19506. Knowledge Discovery Meta-model (KDM),
v1.1 (Architecture-Driven Modernization).
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.
htm?ics1=35&ics2=080&ics3=&csnumber=32625. 2012, ISO/IEC. p.
302.

[11] Martin, R.C., Agile software development: principles, patterns, and
practices. 2003: Prentice Hall PTR.

[12] OMG, XML Metadata Interchange. MOF 2.0/XMI Mapping, v2.1.1.
http://www.omg.org/spec/XMI/2.1.1/PDF. 2007, OMG.

[13] Open Source Initiative, Java 1.5 grammar for JavaCC.
https://javacc.dev.java.net/files/documents/17/3131/Java1.5.zip. 2009.

[14] Open Source Initiative, JavaCC 4.2. A parser/scanner generator for java.
https://javacc.dev.java.net/. 2009.

[15] Schmidt, A., B. Pfleging, F. Alt, A.S. Shirazi, and G. Fitzpatrick,
Interacting with 21st-Century Computers, in IEEE Pervasive Computing
Magazine. 2012. p. 22-31.

[16] van Agten, T. Google Android Market Tops 400,000 Applications. 2012
January 3, 2012 04/04/2012].

520

Using a Partially Instantiated GQM to Measure the
Quality of Mobile Applications

Luis Corral, Alberto Sillitti, Giancarlo Succi
Center for Applied Software Engineering

Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Luis.Corral@stud-inf.unibz.it, {Alberto.Sillitti, Giancarlo.Succi}@unibz.it

Abstract— Mobile application markets manage hundreds of
thousands of products involving millions of downloads. The
quality of these applications is normally controlled by market
policies; however, there is no link between the quality goals of the
mobile software market and the practices that have to be
exercised to assure a compliant application. In this paper, we
propose a GQM-based strategy to supply the mechanisms to
measure the quality of mobile software products. By partially
instantiating a GQM structure, we can have a schema previously
furnished to consider beforehand the conditions of the mobile
domain that typically impact the quality of the final product. Our
approach offers to apply a strong quality model in a field that
requires strong quality metrics to assess products generated in
short development cycles, with a potential impact of millions of
users, executed in a very limited environment.

Keywords- Assessment, Evaluation, GQM, Metrics, Mobile,
Product, Quality, Standards

I. INTRODUCTION
Mobile devices have evolved from being a communication

tool toward becoming the primary end-user computing
equipment. The introduction of smartphones and tablets
promoted a massive growth in the creation of mobile
applications, thanks to their operative organization and the
capability of installing and removing applications at user space,
opening a development opportunity previously bounded to
telephone manufacturers and carrier companies. Handheld
devices are able to carry out computer operations that cover a
variety of purposes, from traditional voice communication and
entertainment to business applications, mobile banking, and
other complex operations.

The offer and demand of mobile software applications
spans in very large ranges: major mobile distribution channels
manage hundreds of thousands of applications involving
millions of downloads. This allows developers to distribute
mobile “apps” in a wide scale, while users have access to a
huge range of products. In order to maintain a standard quality
level, application storefronts count on publishing guidelines
that must be observed for an app to be considered for inclusion
in market (mainly criteria related to adequacy of content,
privacy, copyright protection, etc.). In this way, mobile apps
are evaluated before being accepted for distribution and rated

by other users after being downloaded. However, up to the day,
mobile developers do not have a way to appraise the quality of
their apps from an objective and quantitative point of view.
Developers, for example, would like to know if an application
meets market and user’s needs, and may benefit from knowing
in a detailed fashion how a successful mobile application was
implemented.

In this paper, we propose a GQM-based strategy to supply
the mechanisms to facilitate the definition of metrics to monitor
the quality of mobile software products. By partially
instantiating the definition of a GQM structure, we can have a
schema that considers beforehand the conditions of the mobile
domain that typically impact the quality of the final product.
The rest of the paper is organized as follows: Section II reviews
the related work; Section III presents our research questions;
Section IV introduces our implementation strategy in the form
of the Partially Instantiated GQM; Section V shows sample
applications of our approach; Section VI outlines our future
work and Section VII provides a summary and conclusions.

II. RELATED WORK
Under the premise of “high quality processes deliver high

quality products”, mobile Software Engineering has produced
an extensive body of knowledge aiming to determine what are
the processes and practices that facilitate the creation of high
quality, successful products. As the software product
specializes in one domain, these processes may be customized
and adapted to suit the specific needs of the environment [1, 2].
Moreover, software metrics should be designed according to
the needs of the business and the possibilities of the particular
ecosystem [3, 4, 5]. When speaking about mobile software, the
diverse and heterogeneous factors in which these applications
rely (e.g., autonomy, connectivity, resource limitation, etc.)
build up an environment that is complex and fault prone [6]. In
consequence, mobile software developers should consider
customized development practices that aid to ensure the quality
of their applications when performing in such a limited and
particular environment.

To overcome this need, there are research works that aim to
furnish comprehensive frameworks to assure and evaluate the
quality of mobile software product, both from process and

521

product standpoints. From the software process point of view,
different development models have been proposed to
accommodate specific needs of the mobile environment
throughout activities, tasks and reviews conducted during the
development process. A number of these software development
methodologies concur on the fact that Agile-inspired practices
are the most appropriate for conducting mobile software
projects [7]. The suitability of Agile for the fulfillment of
objectives mobile software development for mobile devices has
been discussed in detail [8, 9], and Agile practices (Pair
Programming, Refactoring, Test Driven Development) that
have been analyzed have shown benefits in large industrial and
experimental settings [10-15]. Some of these practices were
adapted and incorporated to the mobile software domain.
Building on top of this solid approach, we can point out
Mobile-D [16], Hybrid Development [17], MASAM [18],
Scrum [19] and Scrum/Lean Six Sigma [20].

Although the proposed methodologies show a thorough
effort on process assurance, they miss to consider the target
environment, disregarding environment-specific conditions that
might enrich their quality and measurement activities. Focusing
on product quality, research works are less extensive. Current
proposals focus on methods to assess the quality of mobile
applications [21]. Dantas et al. [22] presented a review of
testing requirements particular to applications developed for
mobile devices that can be easily adapted, incorporating
detailed activities of product measurement. Spriestersbach and
Springer [23] identified relevant challenges in the development
of mobile web application and related such challenges into the
quality characteristics described by the ISO/IEC 9126 quality
standard. Mantoro [24] suggests adjustments to the same ISO
quality model for assuring the quality of context-aware
applications. These perspectives are highly relevant to the
matter at hand, as many conditions found on the mobile web
and context-aware applications also hold on general purpose
mobile applications.

By analyzing the process and product methodologies
already present in literature, we note that while we have a
variety of works concerning mobile software quality, we still
miss the link between the quality goals of the mobile software
and the processes that have to be exercised to develop
applications that fulfill such expectations. In addition, there is a
lack of works regarding how to measure the level of
accomplishment of a mobile application by using quality
attributes and domain-specific software metrics.

III. RESEARCH PROBLEM
To be able to evaluate or predict the quality of a mobile

software product, it is necessary to count on reference points
that permit to compare the product against a series of or
expected characteristics present on successful applications, in
such way that a given product can be evaluated objectively and
quantitatively.

Regardless of the platform or operating system used (e.g.,
Android, iOS, etc.), mobile devices have to cope with several
physical and infrastructure limitations (memory, CPU, battery,
networks, etc). Furthermore, a mobile application typically
encompasses heterogeneous technologies that have to interact
appropriately to provide a satisfactory experience. As a

consequence, traditional Software Engineering practices should
bear additional considerations. Understanding the context of
the mobile domain and its limitations is of vital importance to
guarantee the success of a mobile software project; a solid
knowledge on these aspects enables developers to deliver better
applications, and allows users to select and purchase them in a
more conscientious way.

Several mature and recognized quality standards have been
made available: ISO/IEC 9126, ISO/IEC 25010, McCall, and
others; however, their effectiveness and applicability on the
mobile software domain can be challenged as they do not take
into account some of the conditions of mobile software that are
not present in traditional desktop software products. Thus, it is
necessary to consider the customization of these mature
frameworks to fit the particular needs of the domain. For
instance, there are development and appraisal models for Open
Source Software (OSS), (e.g., QualiPSo OMM [25], MOST
[26] or QSOS [27]). These models pick up from other well-
grounded software quality models like CMMi, and introduce
customizations to provide the necessary procedures to evaluate
Open Source Software. The strategy followed by these models
is establishing the boundaries of the OSS scope, pointing out
and emphasizing domain-specific needs, and tailoring the
quality model to enhance it in terms of applicability and
effectiveness. Since we do not count on a quality model that
defines goals, processes, policies and metrics that specifically
fit the conditions existing in the mobile execution ecosystem,
we can follow the example set by OSS to build a mobile-
specific quality framework on top of mature software quality
models, bearing in mind the scope, environment-specific
concerns and, and platform-specific quality needs.

Given the high impact of the mobile software applications,
it is of paramount importance to be able to analyze them to
provide a sustained judgment, useful for the development,
acquisition, recommendation, or deployment of mobile
software products. To achieve this, we need to learn from
traditional and innovative quality frameworks that have proven
their value on other environments, (e.g., desktop, business,
embedded) and modify them incorporating domain-specific
requirements (e.g., usability matters, market awareness, etc.),
and target-specific needs (e.g., physical and infrastructure
limitations) To appraise the quality of the mobile software
product, it is compulsory to have a clear understanding of the
attributes that drive it, and to have solid foundations about the
expectations of the stakeholders. With the purpose of finding
these solutions, we formulated a research question:

RQ: How mobile software products can be analyzed to
provide a solid and objective notion of its quality? This means
that we set as the main objective of this work to achieve the
capability of associating the critical requirements and success
factors of a mobile product with quality characteristics that can
be measured and controlled.

To provide an answer, we need first to survey what is
typically expected from a mobile application from the
viewpoint of the involved stakeholders. Many of the
expectations of traditional software hold in the mobile scope;
however, it is essential to deepen this analysis into the mobile
domain. After this, it is necessary to analyze what are the

522

conditions present in mobile ecosystem, not present in other
environments, which have a significant impact on the quality of
the software product. At this point, we will be in a position to
set and find the answer of an important sub-question:

How can we measure the quality of a mobile software
product? The answer of this sub-question requires the
definition of a collection of metrics that help to approximate
quantitatively the quality of a mobile product bearing in mind
attributes of the product that are highly relevant for users,
developers, execution environments and application markets.

IV. IMPLEMENTATION APPROACH
Our research question requires conducting a comprehensive

survey to select the most important quality requirements set
upon apps. Mobile application markets already count on
policies that can be considered the minimum quality
expectation for a mobile app. These publication guidelines are
highly influential (i.e., applications not compliant with them
are not included on the market, or discontinued). We may start
from those rules to draw an outline of what a mobile
application should look for, what constraints should it bear, and
how should it perform. Therefore we may consider enhancing
them with additional requirements surveyed from other sources
(e.g., mobile software development experiences, processes etc).

Then, the answer to our research sub-question requires an
accurate and comprehensive definition of domain-specific
metrics. To this end, we propose to use the Goal-Question-
Metric (GQM) approach. The GQM approach proposes to
define a goal, refine such goal into questions, and introduce
metrics that collect the necessary information to answer the
questions. A goal represents the conceptual level: it is defined
for an object for a variety of reasons, with respect to various
models of quality, from various points of view and relative to a
particular environment. Questions represent the operational
level: A set of questions try to characterize the object of
measurement with respect to a selected quality issue, and to
determine its quality from a selected viewpoint. Finally,
metrics represent the quantitative level: data is associated with
every question to answer it in a quantitative way [28, 29].

To evaluate the quality of a product in the mobile domain,
it is necessary to relate the mobile-specific characteristics with
measurable attributes. For instance, from an operative point of
view, we should be aware that mobile software runs on a slow
processor, with limited input means, powered by a battery,
dealing with high autonomy requirements. Among others, these
constraints pose common requisites on the application’s
quality, and such constraints may be characterized to
understand how the mobile environment, by itself, introduces
new quality requirements that can be also analyzed and traced.

To maximize the profit of our approach, we propose to
summarize the common requisites and prepare a GQM baseline
that can be partially instantiated. This GQM should work as a
template that can be detailed and customized depending on the
scope of the desired quality assessment. We believe that a
GQM can be preliminarily furnished to facilitate an efficient
approximation of the quality from a viewpoint relevant to the
mobile ecosystem, considering beforehand the conditions that
typically arise on the mobile domain and that impact the quality

of the final product. By applying the partially instantiated
GQM, the time to produce a new metric can be significantly
shortened and it will be ensured that such metrics will be
beneficial to keep track of mobile-specific quality drivers.

Creating partial instantiation of a GQM allows us to
establish a core, extensible model that can be tailored,
depending on the focus of the analysis. The goal will always be
the analysis of the quality of the product:

G.1: “Analyze the mobile software product for the purpose
of evaluating it with respect to the quality, from the view
point of developers and customers, in the context of
execution environment and application markets”.

The questions, on the other hand, can be preliminarily set to
survey the characteristics of the application and to evaluate it
with respect to an outstanding attribute (X) that relates directly
to the issue that the GQM model attempts to solve:

Q.1: “What is the current performance of the application
with respect to attribute X?”

Q.2: “Is the current performance of attribute X satisfactory
from the viewpoint of the developer and the user?”

Q.3: “Is the current performance of attribute X acceptable
from the viewpoint of the application market?”

Finally, it is not possible to supply beforehand a fully-
equipped set of metrics, since they shall be proposed depending
on each case. Then, it should be provided a data source that
leads to answer the questions from an unbiased and quantitative
point of view.

V. SAMPLE APPLICATION
Let us consider two sample applications of our approach, to

evidence its actual feasibility.

In our first example, we want to evaluate the quality of the
Facebook Android App in terms of its suitability with the
battery life. Based on our partial instantiation of the GQM, we
translate it into the following interpretation:

G.1: “Monitor the quality of the product for the purpose of
measuring its energy consumption from the point of view of
the user in the context of the mobile execution
environment”.

Different questions need to be set, including:

Q.1: “What is the current performance of the application
with respect to energy consumption?”

Q.2: “Is the current performance of energy consumption
satisfactory from the viewpoint of the user?”

Q.3: “Is the current performance of energy consumption
acceptable from the viewpoint of the application market?”

To solve these questions, a number of metrics can be
calculated, for example:

M.1: Number of milliwatts consumed by the mobile phone
while the application is executed.

M.2: Percentage of battery drained while the application is
executed.

523

Such values will supply an accurate notion of the amount of
energy spent by the application. To determine the answers to
the questions and the accomplishment of the goal, the values
obtained from the metrics should be evaluated with respect to a
performance standard and the market policy concerning to
energy consumption and battery drains.

In the second application, we want to evaluate the quality of
the Trip Advisor Android App in terms of its observance of
user’s privacy while retrieving his or her physical position.
From the partial instantiation of the GQM, we obtain:

G.1 “Monitor the quality of the product for the purpose of
assessing its compliance with the privacy policy from the
point of view of the user in the context of the mobile
execution environment”.

Possible questions are:

Q.1: “What is the current performance of the application
with respect to privacy compliance?”

Q.2: “Is the current performance of the privacy compliance
satisfactory from the viewpoint of the user?”

Q.3: “Is the current performance of the privacy compliance
acceptable from the viewpoint of the application market?”

We can define the following metrics:

M.1: Amount of time spent on accesses to GPS data while
the application is working.

M.2: Amount of time spent on network access while the
application is working.

In this way, one can analyze if the app is retrieving the
user’s position only under his or her consent. To complete the
evaluation of the questions and the achievement of the goal, the
values obtained from the metrics should be evaluated with
respect to a performance standard, and the market policy
concerning to privacy management.

Since the metrics may be hard to determine, we foresee the
selection of a mature software assurance framework that can be
tailored to the needs given by the mobile ecosystem and the
mobile product. Our intention is to build on top of the ISO/IEC
25010:2011 quality standard [30], and analyze its quality
characteristics and attributes, focusing in those that are
applicable to the quality of the mobile software product
context. ISO/IEC 25010:2011 defines quality characteristics
grouped in two orthogonal dimensions: A “product quality
model” that relates to static properties of software and dynamic
properties of the computer system, and a “quality in use model”
that relates to the outcome of interaction when a product is
used in a particular context of use, making it very suitable to
the viewpoint of our GQM.

VI. FUTURE WORK
There is still an extensive effort to carry out in order to

accomplish the goals of the underlying work. With this
proposal and further experimentation, we aim to contribute to
state of the art on mobile Software Engineering by enabling
mechanisms to assure and monitor the quality of the mobile
software product, based on real-world quality expectations and

real-world market awareness, delivering a methodology to
identify metrics that enable substantiated quantitative analysis.
We also envision to provide the means to assist in decision
making to establish strategies or recommend practices to
optimize the development processes in mobile software
projects. This work also aims to share other relevant questions
that have been marginally established at this stage, such as:

(a) What is the extent in which the execution environment
affects the quality of a mobile application?

(b) Will the quality metrics of a given mobile app relate to
the restrictions and constraints imposed by the application
market (i.e., the most restrictive the app market is, the less
defects should be found in an application downloaded from it?)

In a long-term scope, establishing a strategy for software
quality assessment for mobile applications will be helpful for
researchers, developers and users to:

(i) Determine the capacity of the mobile software
application to meet specific requirements and demands.

(ii) Identify quality requirements addressable when
designing and implementing the mobile software product, and
implement metrics that allow to measure quality attributes and
track quality characteristics.

To verify the accuracy and usefulness of this approach, it is
necessary to conduct a piloted multi-dimensional evaluation of
diverse applications using the partially instantiated GQM and
its associated quality attributes. We will design and deploy a
case study that will supply the empirical data required to
analyze the effectiveness this approach a real industrial setting.
The analysis will be executed by designing and implementing
product metrics to analyze the applications developed by a
specialized mobile software company. The definition of the
metrics will be done after a partially instantiated GQM created
in collaboration with project managers, developers, testers and
pilot users. Metrics will be co-related to quality attributes
present in ISO/IEC 25010:2011, to guarantee the
implementation of both the product quality and quality in use
models. Finally this study will be complemented with
developer’s data collected non-invasively, to consider the
impact of different levels of experience and seniority [31-35].

As means of validation, we propose that the product quality
metrics obtained after the analysis shall be compared to the
number of downloads and to the user’s rating obtained by the
product in the application store, to identify if there is
correlation between the metric-oriented product assessment and
the user-provided product assessment.

VII. CONCLUSIONS
The expansion of mobile platforms as high-end, ubiquitous

computing equipment requires to understand the mobile
environment to create the best strategies to assure the quality of
the mobile software product from a domain-specific point of
view. Our approach pursues to apply a specific, partially
instantiated GQM that helps to identify goals, set questions and
design effective metrics considering in advance the conditions
that exist on the mobile domain and that impact significantly
the quality of the final product.

524

Mobile applications stand out from other traditional
software products due to a highly competitive market and a
potential impact on millions of users. The need of assuring the
development of high-quality mobile products becomes an
imperative, and demands extensive investigation and
experimentation from the academic and practitioner point of
view. The answers to our research question will enable us to
relate the real-world expectations on the mobile software
products with measurable characteristics, so that developers
can deploy quality strategies for their mobile software projects,
and final customers can conduct trustable evaluation efforts
before purchasing or deploying a new mobile application.

REFERENCES
[1] Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.;

Software process support over the Internet. In Proceedings of the 21st
International Conference on Software Engineering, pp. 642-645. 1999.

[2] Benedicenti, L., Succi, G., Vernazza, T., Valerio, A.; Object oriented
process modeling with fuzzy logic. In Proceedings of the 1998 ACM
Symposium on Applied Computing, pp. 267-271. 1998.

[3] Pedrycz, W., Succi, G., Chun, M.G.; Association analysis of software
measures. International Journal of Software Engineering and Knowledge
Engineering, 12 (3) , pp. 291-316. 2002.

[4] Scotto, M., Sillitti, A., Succi, G., Vernazza, T.; A relational approach to
software metrics. In Proceedings of the ACM Symposium on Applied
Computing, pp. 1536-15408. 2004.

[5] Pedrycz, W., Succi, G., Musïlek, P., Bai, X.; Using self-organizing maps
to analyze object-oriented software measures. Journal of Systems and
Software, 59 (1) , pp. 65-82. 2001.

[6] Corral L., Georgiev A. B., Sillitti A., Succi G.; A Method for
Characterizing Energy Consumption in Android Smartphones. 2nd
International Workshop on Green and Sustainable Software (GREENS
2013) in connection with ICSE 2013, pp. 38-45. 2013.

[7] Corral L., Sillitti A., Succi G.; Software Development Processes for
Mobile Systems: Is Agile Really Taking Over the Business?. 1st
International Workshop on Mobile-Enabled Systems (MOBS 2013) in
connection with ICSE 2013, pp. 19-24. IEEE. 2013.

[8] Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.; New directions
on Agile methods: A comparative analysis. In Proceedings of the
International Conference on Software Engineering. 2003.

[9] Abrahamsson, P.; Mobile software development: the business
opportunity of today. In Proceedings of the International Conference on
Software Development, pp. 20-23. 2005.

[10] Russo B., Scotto M., Sillitti A., Succi G.; Agile Technologies in Open
Source Development. IGI Global, USA, ISBN 978-1-59904-681-5.
2009.

[11] Di Bella E., Fronza I., Phaphoom N., Sillitti A., Succi G., Vlasenko J.;
Pair Programming and Software Defects – a large, industrial case study.
Transactions on Software Engineering, IEEE. To appear (DOI:
10.1109/TSE.2012.68). (n.d.)

[12] Sillitti, A., Succi, G., Vlasenko, J.; Understanding the impact of pair
programming on developers’ attention: a case study on a large industrial
experimentation. In Proceedings of the International Conference on
Software Engineering. pp. 1094-1101. 2012.

[13] Moser R., Sillitti A., Abrahamsson P., Succi G.; Does refactoring
improve reusability?. 9th International Conference on Software Reuse
(ICSR-9). 2006.

[14] Moser R., Abrahamsson P., Pedrycz W., Sillitti A., Succi G.; A case
study on the impact of refactoring on quality and productivity in an agile
team. In Proceedings of 2nd IFIP CEE-SET. 2007.

[15] Janes A., Remencius T., Sillitti A., Succi G.; Managing Changes in
Requirements: an Empirical Investigation. Journal of Software:
Evolution and Process, Wiley, to appear. (n.d.)

[16] Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J.,
Korkala, M., Koskela, J., Kyllönen, P., Salo, O.; Mobile-D: An Agile

approach for mobile application development. In Proceedings of
OOPSLA’04. 2004.

[17] Rahimian, V. Ramsin, R.; Designing an Agile methodology for mobile
software development: A Hybrid Method engineering approach. In
Proceedings of the 2nd International Conference on Research Challenges
in Information Science. 2008.

[18] Jeong, Y.J., Lee, J.H., Shin, G.S.; Development Process of Mobile
Application Software Based on Agile Methodology. Proceedings of the
10th International Conference on Advanced Communication
Technology, pp. 362-366. 2008.

[19] Scharff, C., Verma, R.; Scrum to support mobile application
development projects in a just-in-time learning context. Proceedings of
the 2010 Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2010) in connection with ICSE, pp. 25-31. 2010.

[20] Cunha, T.F.V., Dantas, V.L.L., Andrade, R.M.C.; SLeSS: A Scrum and
Lean Six Sigma integration approach for the development of software
customization for mobile phones. In Proceedings of the 25th Brazilian
Symposium on Software Engineering, pp. 283-292. 2011.

[21] Ryan, C., Rossi, P.; Software, performance and resource utilisation
metrics for context-aware mobile applications. In Proceedings of the
11th IEEE International Software Metrics Symposium. 2005.

[22] Dantas, V. L. L., Marinho, F. G., da Costa, A. L., and Andrade, R. M.
C.; Testing requirements for mobile applications. In Proceedings of the
24th International Symposium on Comp. and Information Sciences, pp.
555-560. 2009.

[23] Spriestersbach, A. and Springer, T.; Quality attributes in mobile web
application development. In Proceedings of the 5th International
Conference Product Focused Software Process Improvement, LNCS vol.
3009, pp. 120-130. 2004.

[24] Mantoro, T.; Metrics Evaluation for Context-Aware Computing. In
Proceedings of the 7th International Conference on Advances in Mobile
Computing & Multimedia, 2009.

[25] Petrinja, E., Nambakam, R., Sillitti, A.; Introducing the Open Maturity
Model. In Proceedings of the 2nd Emerging Trends in FLOSS Research
and Development Workshop in connection with ICSE. 2009.

[26] Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.; Quality of Open
Source Software: The QualiPSo Trustworthiness Model. In Proceedings
of the 5th International Conference on Open Source Systems. 2009.

[27] Petrinja E., Sillitti A., Succi G.; Comparing OpenBRR, QSOS, and
OMM Assessment Models. In Proceedings of the 6th International
Conference on Open Source Systems. 2010.

[28] Basili, V, Caldiera, G., Rombach, D.; The Goal Question Metric
Approach. Chapter in Encyclopedia of Software Engineering. Wiley,
ISBN: 1-54004-8. 1994.

[29] Basili, V.; Applying the goal question metric paradigm in the experience
factory. In Proceedings of the 10th Annual Conference of Software
Metrics and Quality Assurance in Industry. 1993.

[30] International Organization for Standardization. ISO/IEC 25010:2011
Systems and software engineering. Quality Requirements and Evaluation
System and software quality models, www.iso.org. 2011.

[31] Scotto, M., Sillitti, A., Succi, G., Vernazza, T.; A non-invasive approach
to product metrics collection Journal of Systems Architecture, Vol. 52
(11) pp. 668-675. 2006.

[32] Corral, L., Sillitti, A., Succi, G., Strumpflohner, J., Vlasenko, J.;
DroidSense: a mobile tool to analyze software development processes by
measuring team proximity. Proceedings of TOOLS 2012, pp. 17-33.
LCNS vol. 7304. 2012.

[33] Scotto, M., Sillitti, A., Succi, G., Vernazza, T.; A non-invasive approach
to product metrics collection Journal of Systems Architecture, Vol. 52
(11) pp. 668-675. 2006.

[34] Sillitti, A., Succi, G., Vlasenko, J.; Toward a better understanding of tool
usage: NIER track. In Proceedings of the International Conference on
Software Engineering, pp. 832-835. 2011.

[35] Fronza, I., Sillitti, A., Succi, G., Vlasenko, J.; Understanding how
novices are integrated in a team analysing their tool usage. Proceedings
of the 2011 International Conference on Software and Systems Process,
pp. 204-207. 2011.

525

Locating and Understanding Concurrency Bugs Based on Edge-labeled
Communication Graphs

He Li1,2, Mengxiang Lin1,3, Tahir Jameel1,2, and Zhenyuan Jiang1,2

1State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
2School of Computer Science and Engineering, Beihang University, China

3School of Mechanical Engineering and Automation, Beihang University, China
{lihe, mxlin, tahir, zyjiang}@nlsde.buaa.edu.cn

Abstract

Concurrency bugs are difficult to locate and understand.
This paper presents LUCON, a novel edge-labeled commu-
nication graph based technique, which locates the concur-
rency bugs and presents buggy access patterns and bug trig-
gering scenarios to help programmers understand the bugs.
The buggy access pattern gives the essence of the bug and
the bug triggering scenario shows how the bug happens with
the information of call stack and thread creation. A set of
experimental studies have been conducted to evaluate the
effectiveness of LUCON. The preliminary results show that
LUCON can locate concurrency bugs accurately and the
bug reports provided by LUCON can really help program-
mers understand the bugs.

1 Introduction

Locating and understanding concurrency bugs is more

challenging than that in sequential programs for at least

two reasons. First, concurrent programs can have poten-

tial astronomically large number of thread interleavings and

only rare particular interleavings can trigger the concur-

rency bugs. This makes it difficult for programmers to ex-

pose and locate these bugs. Second, the manifestation of

concurrency bugs usually involves complicated interactions

among multiple threads, and is therefore hard to understand.

A variety of fault locating techniques for concurrent

programs have been proposed [6][7][11][12][17]. Among

them, we are particularly interested in Recon [11], which

not only can locate concurrency bugs but also presents short

execution fragments to try to help understand these bugs.

However, the results provided by Recon are still not well

enough for programmers to clearly understand bugs. For ex-

ample, for atomicity violation, which usually involves three

or more statements, Recon often gives two of them. Actu-

ally, the missing statements are also necessary to understand

concurrency bugs. In addition, Recon may rank the bug low,

which means programmers have to take time to check some

results unrelated to the bug.

In this paper, we propose LUCON, a new communication

graph based technique to help locate and understand concur-

rency bugs. We extend a communication graph to an edge-

labeled communication graph by associating each edge with

labels. Specifically, one label represents whether the edge is

relevant to buggy behavior and the other provides the edge’s

run-time information. Based on the edge-labeled communi-

cation graph, our method finds buggy access patterns which

give the essence of bugs and constructs bug triggering sce-

narios which show how bugs happen to help programmers

understand concurrency bugs. For a concurrency bug, due

to the difference of execution contexts, this bug may be rep-

resented by several different edges in different communi-

cation graphs. We call these edges as reduplicative edges.

In addition, if one edge is irrelevant to buggy behavior, we

consider it as a redundant edge in fault locating. By inte-

grating reduplicative edges and reducing redundant edges,

our technique locates concurrency bugs accurately.

The main contributions of this paper are as follows: (1)

We extend a communication graph to an edge-labeled com-

munication graph, which characterizes properties of com-

munications between threads; (2) Our technique proposes

the idea of buggy access pattern and bug triggering scenario

to help programmers understand concurrency bugs; (3) We

have implemented LUCON for C/C++ programs and eval-

uation results show that LUCON can rank the bugs top on

our benchmark.

2 Motivation

2.1 Concurrency bugs

In this paper, we focus on atomicity violations and order

violations which are pervasive non-deadlock concurrency

526

Figure 1. Bugs in Transmission and Mysql.

bugs in practice [8]. An atomicity violation happens when

memory accesses supposed to be executed atomically are

interrupted by the memory accesses in other threads. An

order violation happens when memory accesses in different

threads execute in an unexpected order.

For example, Figure 1(a) shows an order violation in

Transmission, i.e. the read access to shared variable

h->bandwidth in thread 2 is expected to be execute af-

ter the write access in thread 1, but actually not. Under the

wrong order, the program reads an uninitialized null pointer

and crashes later. Figure 1(b) shows an atomicity violation

in Mysql, i.e. the two write accesses to the shared variable

log type in thread 1 are expected to executed atomically,

but actually the read access in thread 2 occurs between the

two write accesses. This unexpected read access causes loss

of some records. The blue part represents the access’s posi-

tion in source file. For example, session.c285 in Figure

1(a) means the statement is at line 285 in file session.c.

2.2 A motivating example

Figure 2 shows the result provided by Recon, which is

called an aggregated reconstruction, for the atomicity vi-

olation in Figure 1(b). A node in the aggregated recon-

struction is a memory access statement represented by its

position in source file. For example, the top left node

myopen.c97 means the statement that executes the mem-

ory access is at line 97 in file myopen.cc. The two nodes

log.cc1495 and sqlclass.h150, which are con-

nected by the black bold line, make up the buggy edge. The

nodes in the red, blue and green circles are the memory ac-

cesses that happen immediately before log.cc1495, be-

tween log.cc1495 and sqlclass.h150, and immedi-

ately after sqlclass.h150, which are called prefix,

body and suffix in Recon respectively. Recon pro-

posed to use the aggregated reconstruction to help under-

stand bugs. Figure 2 shows that the buggy edge related to

the bug is indeed included in the aggregated reconstruction.

However, understanding the bug is still not easy due to the

following reasons:

(1) The reconstruction only gives two memory

accesses involved in the bug: log.cc1495 and

Figure 2. The result of Recon.

sqlclass.h150. According to these two memory

accesses, it is difficult to determine whether the bug

is caused by order violation where log.cc1495 and

sqlclass.h150 are executed in an unintended order

or by atomicity violation where an atomic region that

contains one node of {log.cc1495, sqlclass.h150}
is interrupted by other nodes. Even if programmers suppose

the bug to be an atomicity violation, it is very difficult to

find the remaining part. In fact, the node log.cc138 that

should be executed atomically with log.cc1495 is far

from log.cc1495 in the source file, i.e. they are at line

138 and line 1495 in file log.cc respectively. Such a long

distance makes it difficult for programmers to find node

log.cc138.

(2) The aggregated reconstruction does not provide an ef-

fective execution fragment. The aggregated reconstruction

mixes the information of several executions without making

a distinction. Extracting one concrete execution from the

aggregated reconstruction is impossible. For example, pro-

grammers cannot know whether the nodes myopen.c97
and logevent.cc40 in prefix appear in the same ex-

ecution. Even if programmers use one single reconstruc-

tion, the nodes in prefix, body and suffix cannot

show useful information about the bug. For example, the

node logevent.cc40 is an irrelevant memory access to

log.cc1495 and is less helpful.

Besides, this reconstruction is ranked 34th1 which means

programmers need to check 33 irrelevant reconstructions

before it.

3 Approach

Given some buggy and nonbuggy executions, LUCON

proceeds in three steps: (1) locate and rank the buggy mem-

1We will show this rank value in Section 4.1.

527

ory access pair; (2) find buggy access patterns that contain

the buggy memory access pair; (3) build a bug triggering

scenario based on the buggy access pattern.

3.1 Locating buggy memory access pair

Our method is based on the communication graph that

represents concurrent program execution, where nodes rep-

resent the memory accesses and edges represent the inter-

thread communications between nodes via shared memory.

The edge in the buggy graphs that is strongly correlated

with the occurrence of buggy behavior is most likely sus-

pect. However, edges unrelated to buggy behavior influence

the ranking accuracy of the real buggy edge. Moreover, the

lack of run-time information about the edge does not facil-

itate programmers to understand the bug. To this end, we

extend the definition of communication graph as follows:

Definition 1. (Edge-labeled communication graph) An
edge-labeled communication graph is a system G =
(V,E, I, F), where
(1) V is a finite set of nodes and each node v ∈ V is a tuple
(s, ctx), where s is the statement that executes the access
and ctx is the execution context of this memory access;
(2) E ⊆ V × V is a finite set of edges, and each edge
e = (u, v) ∈E is a communication via a shared memory;
(3) F : E → {True, False} is a mapping that associates
with each edge e a truth value;
(4) I : E → TS×T×B×TS×T×B×M×P is a mapping
that associates with each edge e a tuple , where TS is the
set of timestamps ts, T is the set of threads t, B = {R,W}
is the set of access types b, M is the set of shared memories
m and P is the set of processes pid.

The edge label F is introduced to mark the edges that

are not relevant to the buggy behavior. For example,

edges, whose one node occurs before the time that the

main thread creates the first thread, will not cause con-

currency bug. Redundant edges can influence the ranking

accuracy, but the nodes contained in them may be useful

in understanding the bug. About label I , for an edge e,

I(e) = (ts1, t1, b1, ts2, t2, b2,m, pid) is the run-time in-

formation of e, where (ts1, t1, b1) is the execution time,

thread id and access type of the source node respectively,

(ts2, t2, b2) is the similar information of sink node, m is the

shared memory that nodes in e accesses and pid is the pro-

cess identifier.

For each edge e that may be relevant to the bug and

appears in the buggy executions, we use the method

proposed in [11] to count the edge’s frequency in the

buggy and nonbuggy executions, i.e. buggyCount[e] and

nonbuggyCount[e] respectively. These edges compose a set

called edgesInBuggyEexecution.

Besides redundant edges, reduplicative edges also influ-

ence the ranking accuracy. Reduplicative edges are different

edges whose difference is due to the difference of execution

contexts but they correspond to the same bug. Separately

counting their frequency will lower the bug’s rank. For ex-

ample, one edge (s1, ctx1, s2, ctx2) appears in some buggy

graphs and another edge (s1, ctx3, s2, ctx4), which has the

same memory access pair (s1, s2) but slightly different con-

text, appears in the other buggy graphs. They both do not

appear in the nonbuggy graphs and correspond to the same

bug, i.e. the buggy communication between s1 and s2. Sep-

arately counting the two edges’ frequency will lower their

ranks.

In order to reduce the impact of reduplicative edges, LU-

CON integrates their frequencies to the frequency of their

common memory access pair (s1, s2), i.e. for each edge

e = (s1, ctx1, s2, ctx2) ∈ edgesInBuggyEexecution,

the frequency of memory access pair mp = (s1, s2) whose

initial value is 0 is calculated by:

freq(mp) =

{
freq(mp) + buggycount[e], if nonbuggycount[e] = 0,

freq(mp), if nonbuggycount[e]
= 0.

During the integrating process, for each mp, when it is

updated by an edge e for the first time, we associate it with

I(e), which presents the run-time information for the mem-

ory access pair.

At last stage, for each memory access pair, mp, LUCON

computes the suspiciousness by the following equation:

suspiciousness(mp) =
√

freq(mp)2 + C(mp)2 (1)

where freq(mp) is the frequency of mp and C(mp) pro-

posed in [10] is a disparity in communication behavior be-

tween buggy and nonbuggy graphs, and then LUCON ranks

these memory access pairs by their suspiciousness.

3.2 Finding buggy access pattern

Many techniques [9][13][14][15][16] characterize faults

by likely interleaved sequences of operations, i.e. buggy ac-
cess pattern which is called pattern for simplicity in this

section. Based on our insight, patterns are valuable for

concurrency bug understanding because they contain all

the memory accesses involved and the interleaving orders

among these accesses. Based on the memory access pair,

LUCON tries to find the possible patterns that contain the

memory access pair.

For convenience, we denote a memory access to a shared

variable by bt,s, where b is the memory access type, i.e. ei-

ther read (R) or write (W), t is the thread that executes the

access, and s is the corresponding program statement. For

example, R1,s1 indicates a read access by statement s1 of

thread 1. When t1 is different from t2, memory access pair

(b1t1,s1 , b2t2,s2) is denoted as (s1, s2) in brief.

The following frequently-used patterns are considered:

Order violation:

528

(1) R1,s1 → W2,s2 , (2) W1,s1 → R2,s2 , (3) W1,s1 → W2,s2 ;

Atomicity violation:2

(4) R1,s1 → W2,s2 → R1,s3 , (5) W1,s1 → W2,s2 → R1,s3 ,

(6) W1,s1 → R2,s2 → W1,s3 , (7) R1,s1 → W2,s2 → W1,s3 .

For example, pattern (1) means read access R1,s1wrongly

occurs before the write access W2,s2 . Pattern (4) means two

read accesses R1,s1 and R1,s3 should be executed atomically,

but are wrongly interrupted by the write access W2,s2 .

Given a memory access pair (s1, s2) and its run-time in-

formation I(e), LUCON tries to find the possible patterns

that contain (s1, s2) by the following steps.

For atomicity violation, the access type of the memory

access pair (s1, s2) is extracted. Based on the type, LU-

CON further searches the potential patterns in one con-

crete execution indicated by I(e). For example, suppose

that the access type of s1 is W and the access type of s2
is R, then the extracted type is W → R. Since the type

W → R involves in three atomicity violation patterns, LU-

CON successively searches each of them. For the first pat-

tern R1,s1 → W2,s2 → R1,s3 , LUCON tries to find the mem-

ory access R1,s1 according to the following conditions: (1)

it occurs before the W2,s2 and R1,s3 which can be checked

by the timestamp ts; (2) it should be a read access; (3) it

should also access the shared memory m; (4) it should be-

long to the same thread as R1,s3 ; (5) it should not be too

far from R1,s3
3. For the remaining two patterns, LUCON

handles them similarly.

In the absence of atomicity violation pattern, LUCON

checks the order violation pattern. Different from atomicity

violation, nonbuggy executions are used to search for pat-

tern R1,s1 → W2,s2 . In most cases, this pattern will cause

the program to crash when the read access R1,s1 happens.

Therefore, W2,s2 cannot be found in the buggy executions.

Conversely, the nonbuggy edge W2,s2 → R1,s1 usually ap-

pears in the nonbuggy executions.

3.3 Building bug triggering scenario

Buggy access pattern gives the essence of the bug, but

still it cannot show how this bug happens. For instance,

from the buggy access pattern in Figure 1(b), it is dif-

ficult for programmers to know how the execution pro-

cess of thread 2 reaches to sql class.h150, because

sql class.h150 is executed in a small function and this

small function is invoked by many functions. Meanwhile,

programmers also do not know whether thread 2 is created

between the two memory accesses in thread 1 or not.

LUCON reports a bug triggering scenario to help bug un-

derstanding. The bug triggering scenario provides a sum-

mary of functions and threads when programs fail. Specifi-

cally, call stack of each memory access in the pattern and the

2We currently only consider the single-variable atomicity violation.
3The search distance can be preset.

Figure 3. A bug triggering scenario example.

creation relationship between threads compose the scenario.

The call stack gives the detailed function invoke process

from thread start function to the memory access. The cre-

ation relationship between threads shows whether threads

are independent and when the creation happens.

From the simplified bug triggering scenario in Figure 3,

programmers can know the following information. Thread

1 executes the function new file(). new file() first

invokes the function close() and close() executes the

W1,s1 . When close() returns, new file() continues

to invoke a new function open() and open() finally ex-

ecutes the W1,s3 through function init(). But during the

interval of W1,s1 and W1,s3 , thread 2 invokes the function

mysql insert() to execute R2,s2 . With above informa-

tion, programmers can roughly know most important events

during the bug triggering process.

LUCON collects the information of call stack and thread

creation during constructing the communication graphs.

For each thread, every function call and return event are

recorded with the timestamp that indicates when the event

occurs. According to the timestamp of the memory access,

all alive functions that have been called and have not re-

turned, from thread start function to current memory ac-

cess, can be found. Simultaneously, the parent thread and

the parent thread’s call stack when thread creation happens

are stored. By recursively finding the parent thread, the re-

lationship between threads can be determined.

4 Empirical study

We implemented LUCON based on Pin [2] and empir-

ically evaluated it on a suit of buggy concurrent C/C++

programs. Two categories of buggy programs were se-

lected. One is the bug kernels, which are constructed ar-

tificially (Bankaccount) or extracted from full version

of Mozilla (Httpconnectionw, Readwriteproc).

The other is the real client/server applications, including

Transmission, Pbzip2, two versions of Mysql and

529

Table 1. Evaluated applications and Locating
results of LUCON and Recon

Program LoCs Bug Type
Recon LUCON

Rank Edges Rank Edges

Httpconnectionw 63 R→ W 2 25 1 1

Readwriteproc 60 W→ W 2 31 1 1

Bankaccount 136 R→ W→ W 24 46 1 3

Transmission 139k R→ W 2 4386 1 2124

Pbzip2 2k W→ R 2 484 1 175

Mysql-3596 415k R→ W→ R 26 5062 1 4013

Mysql-791 372k W→ R→ W 34 5142 1 3984

Apache 188k W→ W→ R 23 3864 1 2314

Apache. The lines of code and the bug type are shown

in Column 2-3 in Table 1. We ran our experiment on a

computer with an 8-core 2.27GHz Intel Xeon processor and

12GB of memory, whose OS is Linux 2.6.32. Details about

the implementation can be found in [1].

4.1 Effectiveness of LUCON

The goal of this study is to investigate how well LU-

CON ranks bugs. For a fair comparison to Recon, LUCON

also collects 25 buggy runs and 25 nonbuggy runs. sleep
primitive was inserted into the programs to increase the fre-

quency of the bug appearance.

Table 1 shows the locating results of LUCON and Re-

con. Experiments of Recon are conducted on the prototype

tool provided by Recon’s developer. For all programs, LU-

CON locates the buggy access pattern accurately and ranks

all these patterns top. Recon performs not well in some ap-

plications. For example, in Mysql-791, the real bug is

ranked 34th. Column 5 and Column 7 in Table 1 show the

number of edges used in bug locating processes of Recon

and LUCON respectively. The result shows that the number

of edges unrelated to the buggy behavior is rather high in

most cases.

4.2 Bug report of LUCON

Figure 4 provides LUCON’s report about the bug in

Transmission. The bug report consists of two compo-

nents: one is the overall description, the other is the bug

triggering scenario.

Transmission case study. The first part (Lines

1-4) is the overall description. Line 1 shows that this bug

may be an order violation. Line 2 shows the bug type

is R→W. Line 3 and Line 4 give the information about

the two nodes contained in this order violation. For ex-

ample, for the first read access, the position of this ac-

cess is peer-mgr.c:2336, i.e. it is at line 2336 in file

peer-mgr.c. The string in the parenthesis is the name of

the function which the access belongs to.

1: This may be an order violation bug
2: One possible buggy access pattern is: R−→W

3: Fist access: peer-mgr.c:2336(bandwidthPulse())

4: Second access: session.c:285(tr sessionInitFull())

5: The source access’s call stack is

6: In trevent.c:305: timerCallback() call bandwidthPulse()

7: In event.c:387: event process active() call timerCallback()

8: In event.c:539: event base loop() call event process active()

9: In event.c:463: event loop() call event base loop()

10: In event.c:401: event dispatch() call event loop()

11: In trevent.c:249: libeventThreadFunc() call event dispatch()

12: In platform.c:123: ThreadFunc() call libeventThreadFunc()

13: Start Function of thread 1 is: ThreadFunc()(platform.c:114)

14: pthread create()
15: In platform.c:154 tr threadNew() call above function

16: In trevent.c:268 tr eventInit() call above function

17: In session.c:268 tr sessionInitFull() call above function

18: In cli.c:359 main() call above function

19: Parent thread Id is: 0

20: The sink access’s call stack is

21: In cli.c:359: main() call tr sessionInitFull()

22: Start Function of thread 0 is: main()

Figure 4. Bug Report for Transmission.

The second and the third parts(Lines 5-19) are the in-

formation of call stack and thread creation for the first read

access. For these two parts, we should look at them from

bottom to top. Lines 6-13 are the call stack information in

the read access’s thread. The function invoke process shows

programmers how the execution of thread 1 reaches to the

read access from the start function ThreadFunc()in

platform.c. Through function names, programmers

can roughly know the access happens during the process

when thread 1 handles an event. Lines 14-19 show that

thread 0 created thread 1. And the thread creation process is

main→tr sessionInitFull()→tr eventInit()
→ tr threadNew()→pthread create().

The fourth part (Lines 20-22) is the call stack information

for the write access. It shows that the write access is exe-

cuted in function tr sessionInitFull() by thread 0.

Because it is thread 0, it has no thread creation information.

From the thread creation information of thread 1(part3)

and the write access’s call stack information(part4), pro-

grammers know that thread 0 creates an asynchronous

thread by invoking the function tr eventInit() in

function tr sessionInitFull() of thread 0. When

tr eventInit() returns, thread 0 sequentially executes

the write access in function tr sessionInitFull().

Program crashes when the read access in the created thread

1 happens before the write access in thread 0.

For this bug, although Recon ranks it 2nd, Recon only

gives the read access. It is hard for programmers to find

the corresponding write access. Even if a tool can provide

the two memory accesses to programmers, it is still hard

530

to understand how the bug happens due to the complexity

of function calls. However, the above bug report shows that

LUCON finds both the read and the write access, and further

LUCON gives a bug triggering scenario to clearly show how

the bug happens.

5 Related work

Concurrency bug locating and debugging. Ctrigger

[13] uses some profiling runs to collect potential atom-

icity violations, forces the top ranked potential atomic-

ity violations to execute and checks whether the bug ap-

pears. DefUse [16] monitors the definition-use pairs, ex-

tracts definition-use invariants from program runs and re-

ports the invariant violations related to bugs. CCI [6] mon-

itors and samples shared memory locations and locates the

buggy locations using statistical method. Falcon [15] di-

rectly ranks patterns to identify potential concurrency bugs.

Context-aware communication graph based method is pro-

posed in [10][11] to debug concurrency bugs. The graph

method considers buggy behaviors as abnormal edges in the

graphs, i.e. edges that often appear in buggy graphs and

never or rarely appear in nonbuggy graphs. Our work ex-

tends the context-aware communication graph to the edge-

labeled communication graph, and improves locating accu-

racy by integrating reduplicative edges and reducing redun-

dant edges.

Bug understanding. There exist some methods

[3][4][5], which provide some kinds of execution contexts,

such as data flow or control flow, to help understand the

bugs in sequential programs. Recon [11] provides an aggre-

gate reconstruction to try to help understand concurrency

bugs. However, LUCON provides buggy access patterns

and bug triggering scenarios to help programmers under-

stand the bugs.

6 Conclusion

This paper presented LUCON, a new edge-labeled com-

munication graph based locating technique to help under-

stand concurrency bugs. LUCON first locates the buggy

memory access pair and then finds buggy access patterns

and constructs bug triggering scenarios to help program-

mers understand the bugs. There are two aspects of future

work. One is to provide visual results to further facilitate

programmers. The other is to handle multi-variable concur-

rency bugs.

Acknowledgement

This work was supported by the funds of the State

Key Laboratory of Software Development Environment

SKLSDE-2011ZX-07 and SKLSDE-2012ZX-18.

References

[1] http://code.google.com/p/lucon/.
[2] http://www.pintool.org/.
[3] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying

bug signatures using discriminative graph mining. ISSTA

’09, pages 141–152, New York, NY, USA, 2009. ACM.
[4] H.-Y. Hsu, J. A. Jones, and A. Orso. Rapid: Identifying bug

signatures to support debugging activities. ASE ’08, pages

439–442, Washington, DC, USA, 2008. IEEE Computer So-

ciety.
[5] L. Jiang and Z. Su. Context-aware statistical debugging:

from bug predictors to faulty control flow paths. ASE ’07,

pages 184–193, New York, NY, USA, 2007. ACM.
[6] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and

sampling strategies for cooperative concurrency bug isola-

tion. OOPSLA ’10, pages 241–255, New York, NY, USA,

2010. ACM.
[7] W. Li and N. Li. A formal semantics for program debugging.

Sci China Inf Sci, 55(1):133–148, Jan. 2012.
[8] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug char-

acteristics. ASPLOS XIII, pages 329–339, New York, NY,

USA, 2008. ACM.
[9] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atom-

icity violations via access interleaving invariants. ASPLOS

XII, pages 37–48, New York, NY, USA, 2006. ACM.
[10] B. Lucia and L. Ceze. Finding concurrency bugs with

context-aware communication graphs. MICRO 42, pages

553–563, New York, NY, USA, 2009. ACM.
[11] B. Lucia, B. P. Wood, and L. Ceze. Isolating and under-

standing concurrency errors using reconstructed execution

fragments. PLDI ’11, pages 378–388, New York, NY, USA,

2011. ACM.
[12] A. Muzahid, N. Otsuki, and J. Torrellas. Atomtracker: A

comprehensive approach to atomic region inference and vi-

olation detection. MICRO ’43, pages 287–297, Washington,

DC, USA, 2010. IEEE Computer Society.
[13] S. Park, S. Lu, and Y. Zhou. Ctrigger: exposing atomicity

violation bugs from their hiding places. ASPLOS XIV, pages

25–36, 2009.
[14] S. Park, R. Vuduc, and M. J. Harrold. A unified approach

for localizing non-deadlock concurrency bugs. ICST ’12,

pages 51–60, Washington, DC, USA, 2012. IEEE Computer

Society.
[15] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: fault local-

ization in concurrent programs. ICSE ’10, pages 245–254,

New York, NY, USA, 2010. ACM.
[16] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and

W. Zheng. Do i use the wrong definition?: Defuse:

definition-use invariants for detecting concurrency and se-

quential bugs. OOPSLA ’10, pages 160–174, New York,

NY, USA, 2010. ACM.
[17] F. Sorrentino, A. Farzan, and P. Madhusudan. Penelope:

weaving threads to expose atomicity violations. FSE ’10,

pages 37–46, New York, NY, USA, 2010. ACM.

531

Multiple Coordinated Views to Support Aspect Mining Using Program Slicing

Fernanda Madeiral Delfim and Rogério Eduardo Garcia
Departamento de Matemática e Computação

Faculdade de Ciências e Tecnologia
Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP

Presidente Prudente - SP, Brazil
fer.madeiral@gmail.com, rogerio@fct.unesp.br

Abstract

Aspect Mining and Refactoring to Aspects aim to iden-
tify crosscutting concerns and encapsulate them in aspects,
respectively. Aspect Mining remains as non-automatic pro-
cess, i.e., the user needs to analyze and understand the re-
sults generated by techniques/tools, and confirm crosscut-
ting concerns to refactor them to aspects. In this paper we
propose a visual approach that deals with results generated
by two aspect mining techniques proposed in the literature.
By coordinating visual mappings, different levels of detail
to explore software artifacts support aspect mining facili-
tating their interpretation for further refactoring to aspects.
The model to coordinate multiple views was implemented
(SoftV iz4AspectMining tool) and in this paper are pre-
sented the visualizations obtained, how to interpret them
and lessons learned.

Keywords: Program Understanding, Aspect Mining,

Refactoring to Aspects, Program Slicing, Software Visua-

lization, Software Evolution.

1. Introduction

Modularization of Crosscutting Concerns (CCs) is still a

challenge, since their implementations tend to be scattered
over several system units and tangled with others concerns

[11, 20, 14], what is a problem to understandability of soft-

ware system, and as result make difficult the maintainabil-

ity [4]. Aspect-Oriented Programming [10] provide mech-

anisms and abstractions to modularize CCs, encapsulating

them in a separate code unit named aspect, increasing the

modules cohesion [5] and possibility to code reuse [11].

Increasing modules cohesion makes easier program under-

standing activities, since it helps to focus on comprehending

specific functionality implemented in separated units, sup-

porting the software maintenance.

The evolution of existing software systems to aspect-

oriented technology is also a challenge. First, it is neces-

sary to identify CCs in non-aspect-oriented program that

potentially could be turned into aspects and, then, decide

about that. Aspect Mining is a research area aimed at CCs

identification. Several techniques have been proposed to as-

pect mining [1, 2, 3, 8, 9, 12, 13, 22, 23]. In general, such

techniques have similar limitations, like: poor precision of

results (i.e., the percentage of relevant aspect candidates re-

ported by a given technique is relatively low); subjectivity
to analyze the results because the ambiguity on results pro-

duced (what on software engineer as CC candidate, other

would not); difficulty on comparing the results of different

techniques; and difficulty on composing of results from mul-

tiples aspect mining techniques. Inadequate presentation of
results is pointed out as possible cause of such limitations

[15]. In this context, approaches to deal with limitations of

current techniques for mining aspects can be useful.

Software Visualization can be helpful on interpreting and

analyzing results of aspect mining techniques, making ex-

plicit how the source code is organized, how different levels

of abstraction are associated and how such associations take

place in source code. Several approaches and tools have

been proposed to support program comprehension using

software visualization techniques, like Asbro [18], CRISTA

[19] and SoftV izOAH [6], but they do not support CC

identification.

In this paper we propose a visual approach to support

aspect mining from existing object-oriented program. The

proposed approach includes visualize program slicing re-

sults, allowing the visualization of control and data de-

pendencies at statements level. The multiple coordinated

views are used to allow analyzing the program structure,

the associations at class level and method level based on

callings, and how the slices are composed across multiple

classes. We choose program slicing and added some fea-

tures of the fan-in analysis in order to facilitate understand-

ing and analyzing. Our focus is investigate whether visu-

532

alization contributes on understanding the results generated

by those techniques (program slicing and fan-in analysis)

in a complementary way. A Software Visualization tool,

named SoftV iz4AspectMining, was developed to sup-

port the visual approach proposed.

The remainder of this paper is organized as follows. In

Section 2 is presented an overview about aspect mining

techniques chosen. In Section 3 is presented the visual ap-

proach proposed (the coordination model) and some consid-

eration about the developed tool. In Section 4 are presented

the visual results obtained and we show how to interpret

them in Section 5. Finally, the conclusions and future works

are summarized in Section 6.

2. Related Works

There are several techniques proposed for mining aspects

in the literature [1, 2, 3, 8, 9, 12, 13, 22, 23]. Katti et al.

[9] discussed about the use of program slicing to help the

process of inserting aspects in a object-oriented program.

According to them, the slicing process consists of identify-

ing the statements that form the slice (slice identification)

and isolating these statements into an independent program

(slice extraction). Thus, they seems very much similar to

the Aspect Mining and Refactoring to Aspects process. We

consider program slicing visualization promising because

visual presentations can externalize slice overlapping and

user interaction can be useful to deal with. Due to pages

restriction, we do not present slicing techniques (see [21]).

Additionally, we also use fan-in metric mapped to visual

attribute. Fan-in analysis tries to capture the scattered code

at method level [16, 17]. Scattered code is a symptom of

crosscuttingness because called methods might implement

CCs and, then, those methods are called from many places,

resulting in high fan-in value. In an aspect-oriented reim-

plementation of such concerns, the method would constitute

an advice, and the call would correspond to the context that

needs to be captured using a pointcut. The steps for fan-in

analysis are: compute fan-in metric for all methods; filter

relevant methods; and analyze them to determine which are

CC candidates. To the last step, guidelines can be used to

look for consistent invocations of methods with high fan-in

value from call sites that could be captured by a pointcut

definition – for example, the calls always occur at the be-

ginning or at the end of a method [13].

3. The Coordination Model Proposed

In this paper we propose a visual approach to sup-

port aspect mining implemented in a desktop Software Vi-

sualization tool, named SoftV iz4AspectMining. The

SoftV iz4AspectMining architecture is organized in

three layers as depicted in Figure 1.

The proposed visual approach consists in a set of visual

presentations organized into Visualization Layer (see Fig-

ure 1) to show program features – Aggregate View, Treemap
View, Class Level Hyperbolic View, Method Level Hyper-
bolic View, Bars and Stripes View and Bytecode View. Us-

ing a program bytecode as input, at Data Layer are per-

formed static and dynamic analyzes to gather information

from code, kept into data structures used to generate the vi-

sual presentations at Visualization Layer and to coordinate

them by Control Layer. The multiple coordinated views en-

able a visual exploration of software in different levels of

detail.

Bytecode

Static
Analysis

Dynamic
Analysis Coordination

Data Layer Control Layer

Visualization Layer Aggregate
View

Bars and
Stripes View

Class Level
Hyperbolic View

Method Level
Hyperbolic View

Bytecode
View

Treemap
View

Figure 1. SoftV iz4AspectMining architecture.

The Aggregate View shows graphs representing instruc-

tions (vertices) linked by control flow and control and data

dependency (edges) projected into regions (representing

methods). Slices can be visualized and, by interacting with

the Aggregate View, the user can choose a visual item that

represents a specific statement (slice criterion) and slice

type (static/dynamic and backward/forward). Then, another

Aggregate View is created to present the slice using the pa-

rameters chosen.

The colors of visual items are predefined in each visual

presentation, but the user can modify such color definition.

In addition, there is a color mapping based on method calls

used across several views – for each unit (i.e., packages,

classes and methods) is computed the fan-in value and a

color gradient from light gray to red is used to represent

the obtained values (red represents the greater value). One

may filter code units based on fan-in value by defining a

threshold and observe them in projections and, then, it is

possible to visualize units with high frequency of callings.

533

4. Results: Visual Presentations

The results obtained with SoftV iz4AspectMining are

shown using a oriented-object program of an elevator sim-

ulation [7]. In Figures 2 and 3 are shown two hyperbolic

projections based on method calls: the first at class level

and the second at method level. The nodes represent units

(classes or methods), and the direct edges represent the call-

ing between them. The hyperbolic projection shows a node

in focus (chosen by user) larger than the other and posi-

tioned in center. The neighbor nodes are colored in pink,

and other nodes are no colored. Such projections help to

have evidences of possible CCs, and if user decide to refac-

toring methods to aspect, help identify which units are af-

fected – by analyzing the calls shown at method level it is

possible to observe the method to be considered on creating

advice and the ones that should be crosscut.

Figure 2. Class Level Hyperbolic View.

The Treemap View presents the program structure hier-

archically by nested rectangles (see Figure 4). The outer

rectangle represents the whole program (root). Other unit

levels are packages, classes, methods and test cases, repre-

sented by inner rectangles. The rectangles are colored using

a simple linear gradient of gray (dark gray represents whole

program). Each leaf rectangle represents a method and its

size is proportional to its amount of bytecode instruction.

In the Aggregate View, program instructions are repre-

sented by nodes – each node is a group of bytecode instruc-

tions. Also, the nodes are aggregated by methods, repre-

sented by curved polygon (named aggregate region) using

specific color by method (we used transparency because

of overlapping). There are two types of nodes: physical

Figure 3. Method Level Hyperbolic View.

Figure 4. Treemap View.

nodes and virtual nodes. The physical nodes are program

statements (colored in pink). The virtual nodes are intro-

duced to represent methods entries (colored in dark green),

methods exits (colored in light green) or parameters (col-

ored in black). The edges represent control flow (continu-

ous lines colored in black), exception (dashed lines colored

in black), control dependency (continuous lines represent

intra-method and dashed lines represent inter-method, both

534

colored in blue) or data dependency (continuous lines repre-

sent intra-method and dashed lines represent inter-method,

both colored in green). Aggregate View allows visual explo-

ration at statement level – statements are projected within

the methods in which they are. Aggregate Views are gen-

erated to selected method – in Figure 5 is depicted the Ag-
gregate View to method main. Focusing on specific node,

the user can apply filters to visualize slices obtained both

static/dynamic and backward/forward as subgraph.

Figure 5. Aggregate View.

In Figure 6 is shown the Bars and Stripes View. The

bars represent classes – the height of each bar is propor-

tional to amount of bytecode instruction. The stripes rep-

resent program instructions using different colors assigned

to each slice. Such view provides an overview of how

a slice is distributed across multiple classes. Also, the

SoftV iz4AspectMining allows visualizing bytecode in-

struction using two synchronized scrolling: right-scrolling

to overview and left-scrolling to detail. In the right-

scrolling the rectangles represent a set of bytecode instruc-

tion defined by labels in bytecode program. In the left-

scrolling are shown bytecode instructions of selected rect-

angles in right-scrolling, grouped method which instruc-

tions belong to. Similar to Aggregate View, each method

is shown by different color: in Figure 7 is shown the

method Logger.write (Ljava/lang/String;)V
represented in red, and other method is represented in blue.

The color mapping is the same of Aggregate View.

5. Analyzing the Visual Presentations

In this section we show how to analyze the visual presen-

tations. The frequency method calls is computed at level of

Figure 6. Bars and Stripes View.

Figure 7. Bytecode View.

package, class/inner class/test case and method in order to

create the color gradient aforementioned. In the Class Level
Hyperbolic View (Figure 2) is shown the most called class

(Logger) highlighted in red. The user can refine the results

of class level view and methods are highlighted at Method
Level Hyperbolic View. At method level it is also possible

to use another color scale to highlight methods with high

frequency call. In addition, such color scale can be used

to establish a minimum threshold value to frequency call

in order to discard methods. In Figure 3 are colored both

write and action methods (it was considered 17 call-

ings as minimum frequency1). Based on that, the user can

1The minimum frequency is defined empirically, taken into account the

source code.

535

observe explicitly the frequency of calling to each filtered

method and decide whether it can be considered a CC can-

didate.

Method Level Hyperbolic View has fundamental role in

the coordination model. By selecting a method of interest,

it is possible see the dependency of its class in the Class
Level Hyperbolic View and, also it is possible to observe the

selected method and the related ones at program hierarchi-

cal structure shown in Treemap. The Treemap View is not

decisive for CCs identification, but it is interesting to have

an overview of the program structure and observe the code

units (classes and methods) that can be affected by refac-

toring. In Figure 4 is shown the hierarchical structure high-

lighting the method selected in Figure 3 (its class in red) and

the related methods (called and callers) in pink. In addition,

details of control and data dependency of selected method

statements can be analyzed using Aggregate View, as well as

the bytecode instructions in Bytecode View (see Figure 7).

The Aggregate View shows a graph at statements level.

Each method has its own graph, and graphs can be com-

bined by method calls statements from or to a selected

method (forward or backward). A graph from a method

is used to create intra-method slice, and combined graph

is used to create a inter-method slice. The slices can be

static or dynamic, from or to a selected node (forward or

backward slice). In Figure 8 is shown a static backward

slice generated from the backward combined graph based

on method write (represents by aggregate region (1)).

The slice criterion selected is the statement (2) and the entry

node to writemethod is (3). In Figure 8 was used distance

filter equal to two, from entry node (3). One may observed:

1) the statements that call directly the method owner of the

slice criterion analyzing control dependency edges (blue);

2) the parameter used in the slice criterion by data depen-

dency edges (green). Thus, the user can define pointcuts to

capture joinpoints. In addition, an overview of how a slice

is distributed across multiple classes is provided in Figure 6

(statements from a slice are colored in red, and the Logger
class highlighted according color scale at class level).

By interacting with visual presentation, the user can

gather information about methods and decide about refac-

toring to aspect or not. Methods considered CCs candidates,

its class and methods callers, and how they are related must

be analyzed at high and low level. At low level, the user can

observe the control and data dependency, what is important

to evaluate how a CC can be implemented into an aspect (for

example, the aspect should have access to method data?).

In addition, we observed some considerations of pro-

gram slicing. A program slicing algorithm convert the pro-

gram statements into some alternative representation to cal-

culate a slice. Since a slice consists of all the statements of

a program that may affect the values of some variables in a

set V at some point of interest p (slicing criterion), indepen-

dently of the representation generated by program slicing

algorithm, the control and data dependencies should be cal-

culated. Thus, program slicing can be useful to help the

Refactoring to Aspect process, not only to extract a slice,

but also to help to define pointcuts (a step of Refactoring to

Aspects).

(3)

(2)

(1)

Figure 8. Slice Visualization in the Aggregate
View.

6. Conclusions and Future Works

In this paper we propose a visual approach that consists

in coordinating multiple views, using a color mapping based

on fan-in metric and a slices visualization, enabling: 1) vi-

sual exploration of software in different levels of detail; 2)

visualization of the methods more frequently called; 3) con-

trol and data dependency analysis to define pointcuts.

We show the SoftV iz4AspectMining tool that was

developed to support the multiple coordinated views model.

Our pilot study has shown that the model proposed supports

analyzing by exploring different levels of detail, helps to

deal with the limitations of projections (scalability of visu-

alization techniques) by user interaction (applying distance

filter in the graphs views, for example), and allows pointing

out the visual results and observations (lessons learned) pre-

sented here. However, to evaluate the effectiveness of co-

ordinated visual model proposed, a controlled experiment

has been planned, aims to identify CCs in object-oriented

program. Also, we intend to evaluate the tool focusing on

536

defining pointcuts (how effective is the help to refactor to

aspects). The initial study was very important to identify

possible treats to controlled experiment.

In addition, we intend to implement other aspect mining

techniques, to combine them in a complementary way. For

example, link analysis [8] identifies CCs at class level, and

may be advantageous make explicit the analysis result on

Class Level Hyperbolic View, as well as the result of clone
detection in the Aggregate View, with slices information.

References

[1] E. S. Abait, S. A. Vidal, and C. A. Marcos. Dynamic Anal-

ysis and Association Rules for Aspects Identification. In

Proceedings of the II Latin American Workshop on Aspect-
Oriented Software Development (LA-WASP ’08), pages 31–

39, October 2008.

[2] S. Breu and J. Krinke. Aspect Mining Using Event Traces.

In 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE ’04), pages 310–315, Washington,

DC, USA, September 2004. IEEE Computer Society.

[3] M. Bruntink, A. van Deursen, R. van Engelen, and

T. Tourwe. On the Use of Clone Detection for Identifying

Crosscutting Concern Code. IEEE Transactions on Software
Engineering, 31(10):804–818, 2005.

[4] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and

T. Tourwé. Applying and combining three different aspect

Mining Techniques. Software Quality Control, 14(3):209–

231, September 2006.

[5] C. Clifton, G. T. Leavens, and J. Noble. MAO: Owner-

ship and Effects for More Effective Reasoning About As-

pects. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’07), pages 451–

475. Springer-Verlag, 2007.

[6] A. F. d’Arce, R. E. Garcia, R. C. M. Correia, and D. M. Eler.

Coordination Model to Support Visualization of Aspect-

Oriented Programs. In Proceedings of the 24th International
Conference on Software Engineering and Knowledge Engi-
neering (SEKE ’12), pages 168–173, 2012.

[7] H. Do, S. G. Elbaum, and G. Rothermel. Supporting Con-

trolled Experimentation with Testing Techniques: An Infras-

tructure and its Potential Impact. Empirical Software Engi-
neering: An International Journal, 10(4):405–435, 2005.

[8] J. Huang, Y. Lu, and J. Yang. Aspect Mining Using Link

Analysis. In Proceedings of the 5th International Con-
ference on Frontier of Computer Science and Technology
(FCST ’10), pages 312–317, Washington, DC, USA, 2010.

IEEE Computer Society.

[9] A. Katti, V. Bingi, and V. Chavan. Application of Program

Slicing for Aspect Mining and Extraction - A Discussion.

International Journal of Computer Applications, 38(4):12–

15, January 2012.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. An Overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented
Programming (ECOOP ’01), pages 327–354, London, UK,

UK, 2001. Springer-Verlag.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-

gramming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’97), pages 220–

242. Springer-Verlag, 1997.
[12] J. Krinke and S. Breu. Aspect Mining Based on Control-

Flow. In Proceedings of the 7th Workshop Software Reengi-
neering (WSR ’05), volume 25, pages 39–40, Bad Honnef,

Germany, May 2005. GI-Softwaretechnik-Trends.
[13] M. Marin, A. V. Deursen, and L. Moonen. Identify-

ing Crosscutting Concerns Using Fan-In Analysis. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 17(1):3:1–3:37, December 2007.

[14] P. Massicotte, L. Badri, and M. Badri. Towards a Tool Sup-

porting Integration Testing of Aspect-Oriented Programs.

Journal of Object Technology, 6(1):67–89, 2007.
[15] K. Mens, A. Kellens, and J. Krinke. Pitfalls in Aspect Min-

ing. In Proceedings of the 15th Working Conference on Re-
verse Engineering (WCRE ’08), pages 113–122, Washing-

ton, DC, USA, October 2008. IEEE Computer Society.
[16] A. Mubarak, S. Counsell, and R. M. Hierons. An Evolu-

tionary Study of Fan-in and Fan-out Metrics in OSS. In

P. Loucopoulos and J.-L. Cavarero, editors, Proceedings of
the 4th IEEE International Conference on Research Chal-
lenges in Information Science (RCIS ’10), pages 473–482.

IEEE, May 2010.
[17] E. Nasseri, S. Counsell, and E. Tempero. An Empirical

Study of Fan-In and Fan-Out in Java OSS. In Proceedings
of the 8th International Conference on Software Engineer-
ing Research, Management and Applications, pages 36–41,

Los Alamitos, CA, USA, 2010. IEEE Computer Society.
[18] J.-H. Pfeiffer and J. R. Gurd. Visualisation-Based Tool Sup-

port for the Development of Aspect-Oriented Programs. In

Proceedings of the 5th International Conference on Aspect-
Oriented Software Development (AOSD ’06), pages 146–

157, New York, NY, USA, 2006. ACM.
[19] D. Porto, M. G. Mendonça, and S. C. P. F. Fabbri. CRISTA:

A Tool to Support Code Comprehension Based on Visual-

ization and Reading Technique. In Proceedings of the 17th
IEEE International Conference on Program Comprehension
(ICPC ’09), pages 285–286, 2009.

[20] C. N. Sant’Anna, A. F. Garcia, C. v. F. G. Chavez, C. J. P.

de Lucena, and A. v. Staa. On the Reuse and Maintenance

of Aspect-Oriented Software: An Assessment Framework.

In Proceedings XVII Brazilian Symposium on Software En-
gineering, 2003.

[21] F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[22] P. Tonella and M. Ceccato. Aspect Mining Through the

Formal Concept Analysis of Execution Traces. In Proceed-
ings of the 11th Working Conference on Reverse Engineer-
ing (WCRE ’04), pages 112–121, Washington, DC, USA,

2004. IEEE Computer Society.
[23] T. Tourwé and K. Mens. Mining Aspectual Views Using

Formal Concept Analysis. In Proceedings of the 4th IEEE
International Workshop Source Code Analysis and Manipu-
lation (SCAM ’04), pages 97–106, Washington, DC, USA,

2004. IEEE Computer Society.

537

How Does Acquirer’s Participation Influence Performance of
Software Projects: A Quantitative Analysis

Yasha Wang1,2,3, Jiangtao Wang1,2, Jiakuan Ma1,2, Bing Xie1,2,3
1 School of Electronics Engineering and Computer Science, Peking University, Beijing 10087, China

2 National Engineering Research Center of Software Engineering, Peking University, China
3 Beijing Beida Software Engineering Development Co., Ltd.

{wangys, xiebing, wangjt10, tanghao13, majk06}@sei.pku.edu.cn

Abstract- In custom software development projects, software
acquirer always participates in software development
processes acting as collaborator, reviewer or supervisor. The
acquirer participation has a significant influence on project
performance. In practice, the plans of acquirer participation
are often made by project managers according to their
personal experience or intuition, and the quality of the plan is
difficult to guarantee. Moreover, because of lacking objective
evaluation criterion for the plan, it’s hard for the acquirer and
the supplier to reach an agreement or compromise when they
have different opinions. To solve this problem, this paper
collects historical data of 25 software projects and establishes a
quantitative model of relationship between the acquirer
participation and project performance by leveraging a
variable-selection-based regression analysis approach. The
quantitative model provides guidance for making acquirer
participation plans. Furthermore, a review of 9 experienced
project managers was conducted to evaluate the model’s
validity.

Keywords- software acquirer, project performance, quantitative
analysis, software process

I. INTRODUCTION
Acquirer plays important role in software lifecycle

processes especially for custom software development
projects. According to the IEEE Std 12207-2008, acquirer is
stakeholder that acquires or procures a product or service
from a supplier. Commonly, the acquirer participates in
software development processes, acting as collaborator,
reviewer or supervisor. Literature survey indicates that
acquire participates in many activities of software
development processes. For example, Subramanyamon’s
study [4] of 117 software projects indicates that the
acquirers take part in every phase of the software lifecycle
and averagely 22% of the whole time duration of the project.
A questionnaire survey conducted by [5] indicates that
software acquirer participates in various activities of
software development processes such as planning,
requirement elicitation and coding. Some other existing
works also demonstrate that the acquirer participation has a
significant impact on project performance [2] [3] . Proper
acquirer participation improves the project performance [6]
[7] [8] , or in other words, has positive influence on the
project performance, and on the other hand, over- or under

participation has negative influence on the project
performance[1] [9] .

Through a questionnaire among 35 software enterprises
and 84 project managers, we found that in software projects,
acquirers are not tend to lead the participation plan making
task, due to their lack of professional knowledge on software
technology. On the other hand, as having different
perspectives or interests, the participation plans made by
suppliers are often difficult to gain acquirers’ approval. In
these situations, an objective criterion to evaluate the plan is
needed.

According to the above motivation, a quantitative model
of the relationship between acquirer participation and project
performance is built in the follow steps:

Step 1, data collection and quantification. Data are
collected from 25 custom software development projects,
which are already finished and from the same business
domain, e-government.

Step 2, data analysis. In the quantitative model we want
to establish, the dependent variable is the project
performance and the independent variable is the degree that
the acquirer participated in a specific activity in software
development processes. This paper proposes a variable-
selection-based regression analysis approach. It first selects
the independent variables that are most related and
influential to the dependent variables by leveraging dantzig
selector [13] , then it eliminates those weak correlated
independent variables, and build the model by leveraging
ordinary least squares regression.

Step 3, interview and analysis. We invite 9 senior project
managers to make comment on the model we built, discuss
the connotations by taking data into consideration to prove
the model’s validity.

The rest of this paper is organized as follows. Related
works are reviewed in section II. Data collection and
quantification is described in section III . The data analysis
approach and result are described in section IV. The
interview with project managers is described in section V.
Finally, the paper is concluded in section VI.

538

II. RELATER WORKS
Acquirer process, in contrast to supplier process, has

relatively less studied. The acquirer of project is defined by
IEEE Std 12207-2008 [10] , which provides acquisition
process including a series of seven activities from acquisition
preparation to closure. However, IEEE Std 12207-2008, as a
process specification framework, does not provide detailed
guidance for acquirer’s participating in software
development.

Exiting works chose a few macro indicators as
independent variables and made some high-level conclusions.
For example, [8] [9] select the degree of acquirer’s
participation as one single macro indicator to investigate the
statistical correlation between this indicator and project
satisfaction or overall performance. Though drawing
valuable high-level conclusions, these researches are not able
to provide detailed guidance for planning the acquirer’s
participation.

It is a common challenge in gene biography and some
other disciplines to analyze data when the number of
independent variables p is much smaller than sample size n.
For example, there are tens of thousands DNA microarray
while the number of patient samples is merely several
thousand [11] [12] . In this case, variable selectors such as
Danzig Selector [13] are able to reduce the number of
variables by selecting main variables so as to lay the
foundation for modeling. Inspired by this idea, this paper
combines variables-selection with the regression approach in
software process data analysis.

III. DATA COLLECTION AND QUANTIFICATION

A. Data Collection
From 11 Chinese software enterprises, we collect

historical data in 25 custom software development projects in
e-government domain. The project duration ranges from 10
months to 30 months, and the investment (or cost) ranges
from 520 thousands Yuan to 3 million Yuan.

Data is collected by ways of questionnaire surveys,
telephone and face-to-face interviews with people both from
acquirers and providers, and data extraction from project
documentations. The project documentations include project
planning and tracking documents, meeting minutes of
technical conversations and management reviews, project
milestone reports and project conclusion reports.

The collected project data consist of three parts: project
planning data, project performance data and acquirer’s
participation data. Project planning data include planning
time duration and investment volume of the project, and the
acquirer’s preference on project performance. Project
performance metrics includes time, costs and software
quality [14] . Performance preference is the weight assigned
to each of these three metrics, and the more important a
metric is considered, the bigger weight is set to it. Project
performance data include actual time duration, costs,
completion rate and the acquirer’s satisfaction degree to
software product. Acquirer’s participation data record what

activities acquirers participated in, what role they played, and
how much time they participated each time.

B. Project Performance Quantification
According to our collected data, many projects do not

finish all functions that were planned to be built. Therefore,
besides time, cost and software quality, we take project
completion rate into account to evaluate project performance.

The project performance of project i, denoted as Yi is
defined as follows:

(where and)

The is the weight assigned to costs,
time and software quality respectively. The metrics in the
above equation is defined in table 1.

Table 1 metrics for the quantification of project performance

The 25 project performance values of the 25 sample
projects are formed to a 25-dimension project performance
vector, denoted as Y25.

C. Acquirer Participation Degree Quantification
Since the data are collected from different projects and

different companies, the process model and terminology are
different among projects. In order to solve this problem, we
map the activities of the sample projects to the process
framework specified in IEEE Std 12207-2008 [10] .
Additionally, there are some common e-government-
domain-specific activities in the sample projects, which are
not defined in IEEE Std 12207-2008. In order to maintain the
security and consistency of the data, the data migration
activity needs the collaboration of both acquirers and
suppliers. In this paper, 38 activities are concluded in 25
projects

For a given specific activity, acquirer may participate in
different forms. We concluded 3 forms of acquirer
participation, which is described in table 2.

Table 2 Three forms of acquirer participation

Metric Meaning Definition Explanation

Completion
Ratio

 and are the

finished and planned
function points of
project i
respectively.

Cost
Overrun

Ratio
 and are the

actual and planned
cost of project i
respectively.

Time Delay
Ratio

 and are the

actual and planned
time duration of
project i
respectively.

Quality
Grade
Ratio

MQS = 5 is the
maximum score,
and is the score
of project i given by
the acquirer.

539

We define the concept of participation point as a 2-tuple
of (a, f), where a denotes a development activity that the
acquirer participates while f denotes the participation form of
a. There are 114 () total possible participation points
in our sample data set. Furthermore, for a given participation
point PPi,j (the participation point j in project i), we define its
participation degree as , where xi,j is the sum of
time that the acquirer spent in a certain participation point j
of project i, and where ADi is the actual duration of project i.
The participation degree of 25 projects in 114 participation
point can form a Participation Matrix X25 114.

In Matrix X25 114, if acquirer does not participate in
activity a, the participation degrees of three related
participation points are assigned as 0. Acquirers sometimes
participate in an activity acting in multiple forms. In this
occasion, we averagely assign the total participation time to
corresponding participation points. In the sample data set, we
found that there are 32 total participation points whose
participation degrees are all zero for all 25 projects. These
participation points are deleted from the participation matrix,
and the matrix is reduced to X25 82.

IV. DATA ANALYSIS

A. Overview
In this paper, the goal of quantitative data analysis is to

establish quantitative relationships between participation
degree matrix X25 82 and project performance vector Y25.
The analysis approach is divided into two steps: Step 1:
Dantzig Selector is used to select the most influential
independent variables in participation degree matrix, and
those non-selected variables are deleted from the data set.
Step 2: Ordinary least squares regression (or OLS for short)
is utilized to establish the quantitative model.

B. Variable-selection based on Dantzig Selector
The variable selection problem in this paper can be

represented as the computation of a sparse vectorβ R82,
making =Xβ+ε, ε R25 and εi~i.d.d N(0, σ2), i=1, 2, ..., 25..
As is sparse, those non-zero elements indicate those
selected variables. The Dantzig Selector proposed by
Emmanuel Candes and Terence Tao in 2007 is adopted to
solve this problem.

We use an open source implementation of Dantzig
Selector (can be downloaded from
http://www.acm.caltech.edu/l1magic/) to accomplish the

computation of . As required by the Dantzig Selector, the
assumption has to be made about the number of variables
needed to be selected (denoted as m). Based on [13] , if the
number of samples data is n, the restriction of has
to be satisfied. In order to try our best to avoid the possible
deletion of important variables, we set m=12, which is the
maximum value permitted. After setting m, the following
steps are performed:

(1) Initialize vector set all its component
to be 0

(2) A column with all components to be 1 is added as the
last column of extending to

(3) Randomly select 20 samples from the all 25 projects,

and select corresponding lines or component of
 and to constructing and

(4) Select ,

, , uses Dantizig
Selector open-source implementation to compute

=11dantzig_pd().
as a sparse vector

(5) Select the 82 left components of , making ;
(6) Set the 12 biggest components of in absolute value

to be 1, representing that corresponding independent
variables are selected during this iteration, set other
components to be 0.

(7) Denotes
(8) Executes (3)~(7) for 1000 times repeatedly, thus

getting vector .
The components of vector show total times that each

variable has been selected in these 1000 random experiments
(as shown in Figure 1). The 12 variables which are selected
the most times have been chosen to be the selected variables.

Fig.1Total time of each screened-out variable

Form Description Example
Management Participation to

influencing project
management

Tracing the project
schedule

Technique Participation to
influencing
technique solution

Attending technique
solution review meeting

Business Participation to
influencing business
domain knowledge

Providing domain
knowledge in
requirement elicitation

540

C. Regression Analysis
Based on the variable selection result, we use 12

selected variables (denoted as a~l) to conduct OLS
regression analysis, and the result is showed in figure 2.a. g

 and
y

 represents the gradient and intercept,
respectively.

(a) The 1st iteration

(b) The last iteration

Fig. 2 Results of the OLS regression

It is easy to observe that the P values of some variables
are significantly bigger than others. The bigger the P value
is, the less correlation between variable and project
performance. In order to improve the accuracy of this model,
we execute a simple algorithm as in figure 3 to further
deleting variables. Here set θ=0.03, indicating that only
when the statistical significance is bigger than 3%, a variable
is deleted for being considered to have no relationship with
the project performance.

Fig.3 algorithm for deleting variables

Using the algorithm above, only five variable are left,

and final model is PFMC=0.9357 0.3448·a
0.0977·c+0.0249·d+0.2344·e 0.0191·i And the Detailed
explanations of variables are described in table 8.

Table 4 Detailed explanations of variables in conclusion

D. Analysis of the model’s mathematical properties
Accuracy of the model. As shown in figure 2.b R2 and

Adj-R2 of OLS are close to 97%, indicating that these 5
variables have a good interpretation on y.

Completeness of the model. As a multivariate and linear
regression analysis model is used, we have to check whether
there are missing high-order terms. Ramsey RESET test is
performed, and the result p = 0.9765 indicates that there are
no missing high-order terms.

V. INTERVIEWS
The quantitative model in this paper shows that there

are five participation points having strong correlation to
project performance, two of which have positive influence
while other three have negative influence. In order evaluate
the validity of this model and understand its connotation, we
invite 9 senior project managers and interview them through
phone calls or e-mails. The contents of interview focus on
three questions about the each of the five selected
participation points: 1) Whether there is a strong correlation
between the participation point and the project performance;
2) Is the influence positive or negative; 3) Why. The
conclusion is organized as follows.

Participation point 1: Contract agreement in the form
of business. Model shows a negative influence (Coefficient
of - 0.3448). All of the 9 interviewee consider it is strongly
relevant to project performance. Four of them think its
influence is negative, because it tends to make the work falls
into unnecessary details. However, other five interviewee
consider that its influence can be positive if the degree of
participation is proper. The model is not fully compatible
with the interview, and the reason need to be further studied
in a bigger data set.

Participation point 2: Project planning in the form of
management. Model shows a negative influence (Coefficient
of - 0.0977) and is fully compatible with the interview. All
interviewee agree that it has negative influence because the
acquirer often tends to make a unreasonable short time plan
thus reducing the software quality.

Participation point 3: Software requirements analysis in
the form of business. Model shows a positive influence
(Coefficient of 0.0249) and is fully compatible with the
interview. All interviewee consider it has positive influence,
because commonly, the acquirer has better understanding of

Variables Detailed explanations
PFMC project performance
a Contract agreement in the form of business
c Project planning in the form of

management
d Software requirements analysis in the form

of business
e Data migration regular meeting in the form

of technique
i Testing problem resolution in the form of

management

1. Check whether there are variables with P value
bigger than θ. If yes, go to step 2, or else exit.
2. Select variables with the biggest P value and delete
it, then go to step 3.
3. Conduct OLS regression analysis based on rest of
variables and return to step 1.

541

the business knowledge, and its participation helps to
increase the working efficiency.

Participation point 4: Data migration regular meeting in
the form of technique. Model shows a positive influence
(Coefficient of 0.2344), which is consistent with 7
interviewee’s opinions. Because they think that data
migration has high requirements on system reliability, data
consistency and involving interaction with legacy systems,
and acquirer can contribute their valuable knowledge of the
data and legacy systems. Other two interviewees didn’t think
this participation point has strong correlation with the project
performance. Through deeper investigation, we found these
2 interviewees do not have experience of large-volume data
migration, and their point of view is only according to
personal intuitions.

Participation point 5: Testing problem resolution in the
form of management. Model shows a negative influence
(Coefficient of -0. 0191), which is opposite to all
interviewees’ opinion. All interviewees hold the point that
acquirer’s participation helps to avoid unnecessary dispute
and has positive impact on project performance. Through
further data analysis, we find the related data of this
participation point satisfies uniform distribution conditions
and does not have obvious offsets. So the opposition
between model and interviewee’s opinions needs to be
treated with caution.

VI. CONCLUSION
It is a challenging task to make acquirer participation

plans. This paper proposes a method based on objective
historical data, and establish a quantitative relationship
model between the acquirer participation and project
performance, which can provide guidance for making
acquirer’s participation plans. This method is approved to be
valid in terms of mathematic properties study even in small
sample size. The interview with project managers shows that
the most conclusions of our model are consistent with their
experience. But there are also some opposite cases, which
deserve further study. Future work of this paper is to
improve accuracy and trustworthiness of the model, by
collecting more project data and combining with other
variable-selection methods.

ACKNOWLEDGMENT
This work is supported by the Key National Science &

Technology Specific Projects under Grant NO. 2011ZX01043-001-
002, and High-Tech Research and Development Program of China
under Grant No. 2013AA01A605.

REFERENCES:
[1] Zhang KL. Ananlysis on Current Status and Policy Suggestion of E-

government Outsourcing in China, China Management
Informationization, 2010, 13(21):55-57 (in Chinese with English
abstract).

[2] Jun H, William K.The Role of User Participation in Information
Systems Development: Implications from a Meta-Analysis. Journal
of Management Information System, 2008, (3):301-331

[3] BachoreZ, ZhouL. A Critical Review of the Role of User
Participation in IS Success, AMCIS 2009 Proceedings, Paper
659.http://aisel.aisnet.org/amcis2009/659.

[4] SubramanyamR, WeissteinF, KrishnanM. User Participation in
Software Development Projects. Communications of the ACM, 2010,
(3):137-141.

[5] McleodL, MacdonellS, DoolinB. User participation in contemporary
IS development: an IS management perspective, Australasian
Journal of Information Systems,2007, (1):113-136.

[6] BussenW, Myers M. Executive information systems failure: A New
Zealand case study. Journal of Information Technology, 1997,
(12):145–153.

[7] GarceauL, JancuraE, KneissJ. Object oriented analysis and design: A
new approach to systems development. Journal of Systems
Management, 1993, 44(3):25-33.

[8] McKeenJ, GuimaraesT, WetherbeJ. The relationship between user
participation and user satisfaction: An investigation of four
contingency factors. MIS Quarterly,1994, 18(4):427-451.

[9] HeinbokelT, SonnentagS, FreseM, StolteW, BrodbeckF. Don't
underestimate the problems of user centredness in software
development projects - there are many!, Behaviour and Information
Technology, 1996, 15(4):226-236.

[10] The Institute of Electrical and Electronics Engineers.IEEE Std
12207:2008. Systems and software engineering-Software life cycle
processes Information technology-Software life cycle processes. The
Institute of Electrical and Electronics Engineers,
2008.http://ieeexplore.ieee.org/servlet/opac?punumber=447582

[11] Tibshirani R, Hastie T, Narasimhan B, Chu G. Class prediction by
nearest shrunken centroids, with applications to DNA microarrays.
Statistical Science, 2003,18(1):104-117.

[12] Fan JQ, Ren Y. Statistical Analysis of DNA Microarray Data in
Cancer Research. Clinical Cancer Research, 2006,12(15):4469-4473.

[13] Emmanuel C, Terence T. The Dantzig selector: statistical estimation
when p is much larger than n. The Annals of Statistics,
2007,35(6):2313-2351.

[14] Kasunic M. Performance Benchmarking Consortium, NDIA CMMI

Technology and Users Conference. Denver, CO, 2006.

542

Synchronized Data Acquisition from Web Services
Serving at Disparate Rates

D. R. Plante
Department of Mathematics and Computer Science

Stetson University
421 N. Woodland Boulevard

DeLand, FL 32723, USA
Email: dplante@stetson.edu

Abstract—Service-oriented architectures (SOAs) have provided
improved means of serving data in business-to-business (B2B)
communications. Usually, however, the flow of data from services
is limited by the service provider, and different providers may
limit to vastly different rates, leading to different quality of
services (QoSs) for each. In some cases, the data from these
various providers must be synchronized by the service consumer,
for example, when that data comes from different marketplaces
(e.g. Amazon or Ebay) and provides such information as prices,
item sales ranks, and quantities. The acquisition of that data
from each service must be reasonably synchronized if that data
is to be reliably compared. This paper addresses the problems
associated with this synchronization when QoS differs greatly
between services but the quality of the data and the services
themselves vary as well.

Index Terms—Web services, quality of services.

I. INTRODUCTION

A service-oriented architecture (SOA) [1] provides a loosely
coupled architectural style that facilitates the exchange of
data between software agents. In business-to-business (B2B)
communications, service providers and service consumers
exchange data conforming to specifications determined by the
provider. In exchanging this data, the services of different
providers may offer vastly different levels of quality of service
(QoS). While network lag is one limiter of service, some
services are simply not able to provide data at a level that
other providers do. It is also the case that some providers
purposefully limit or throttle consumer requests at specified
rates to prevent abuse of the service and server overload. Both
Amazon [2] and eBay [3] provide detailed and specific throt-
tling or call limits on accessing data from their services. Large
sellers on their respective marketplaces may receive increased
limits commensurate with their increased sales. However, sales
on international marketplaces may differ greatly (for example
AmazonCA or AmazonUK), again with QoS for these services
differing greatly.

As will be explained in Section II, if all data from all
services are of equal importance, and if all services are
also of equal importance, the rate of the slowest service
produces a hard limit to the overall rate that synchronized
data may be obtained from all services. Of course, data may be
obtained more rapidly from higher QoS services. The problem,
however, involves synchronizing each related data unit from

each service with that from the other services.
As a concrete example of the problem at hand, assume

a particular model camera is selling on eBayUS, eBayUK,
AmazonUS, and AmazonUK and the service consumer wishes
to obtain the lowest selling price of the camera from any
seller on any of those marketplaces. As marketplaces and item
prices are often highly dynamic, reliable price comparison
requires requesting a data unit (e.g. lowest price of camera
for given UPC or model number) from each of the four
marketplaces at reasonably synchronized times. Note that
the term synchronization here is somewhat relaxed, as the
exact time of data acquisition is not required. However, it is
important that the data is obtained at reasonably similar times.
Reasonably here depends a great deal on the data unit itself, as
some item prices on these marketplaces will hardly change at
all for days or weeks, while some will change often, possibly
in the order of seconds or minutes.

Given the dynamic nature of such marketplaces and QoS
limits, it is impossible for any service consumer with large data
unit needs to be in relative synchronization with the service
provider. For a seller with millions of items for sale in its
inventory, the problem can be quite severe. If such a seller
wishes to list an item on the marketplace that provides the
greatest profit at a given time, knowing other sellers’ prices
for items on those marketplaces is critical. Stale price data
may lead to reduced profits or worse, to lost sales for not
being competitively priced.

In Section II, we briefly provide some background and some
related work, though we have found no other comparable
work on this problem in the literature. Also in Section II,
we describe the problem in more detail. We then describe
our approach to a reasonable solution of the problem in
Section III. In Section IV we demonstrate the implementation
of algorithms developed in this paper. In Section V, we
summarize the paper along with some future directions for
work on this problem.

II. BACKGROUND AND PROBLEM DESCRIPTION

Online marketplace auctions have been the subject of re-
search for over a decade [4], [5] and continue to be actively
studied. Most of this work is aimed at trying to understand
underlying consumer behavior and/or price trends, unlike the

543

present work where we wish to simply have accurate and
timely data from multiple services providing data at disparate
rates. Also, while previous research has attempted to under-
stand underlying web services, contracts they satisfy, and the
QoS guarantees [6], [7], [8], this study focuses on the added
constraint that the data obtained from the provider must be
reasonably synchronized and obtained from all the services,
not only some.

A. Disparate Service Rates and Quality

To illustrate the problem, assume 4 service providers hold
8 instances each of related data, A,B,C, ..., H as shown in
Figure 1. For example, data unit A may be the price of a
particular model camera, B may be the price of a DVD, etc.
Importantly, for all four services, A refers to the same item.
While the price may differ, the price is tied to the particular
item such that prices for that item may be compared across
marketplaces. Assume the QoS of each service permits them

Fig. 1. Four services being consumed at rates that are powers of 2.

to serve data to the provider at a rate of 1, 2, 4, and 8 times
(i.e. 1×, 2×, 4×, and 8×) the speed of the slowest service,
which in the figure is the first or top service. As the fastest
service provides data at 8 times the speed of the slowest, by
the time the first is able to serve its second unit of data (i.e.
data unit B), the fastest service will serve all 8 data units. The
next slowest service will, in the same time frame, serve 4 units,
and the next slowest will serve 2 units. One key constraint,
however, is that to be useful for comparison, the data must be
obtain at reasonably similar times. For example, if the service
operating at 2× speed is to first serve data units A and then
H and the 1× service serves unit A through H in that order,
by the time the 1× service gets to unit H , the corresponding
data from service 2× will be stale and possibly inaccurate. Of
course, since the 2× service is twice as fast as the 1× service,
it may serve the H data again to try and synchronize with the
1× service when that service provides the unit H .

One important point to note here is that no matter how
fast the other services are, while they may offer all of the
data being provided by the service operating at 1× speed,
ultimately, the 1× service is a bottleneck that cannot be
overcome when the constraint of synchronization is imposed.
Of course, the relaxation of this constraint will help. If, for
example, the 2× service serves data units A and B in the time
the 1× service serves only A, if the 1× service then serves B
to the consumer, the consumer may deem the data unit B from
the 2× service to be “recent enough” to use when it receives

the related data from the 1× service. By categorizing the data
units based on some quality criteria (e.g. the sales rank of the
item on the marketplace or the user feedback on that item)
and rate of change of that data (e.g. how quickly the price
of the item is expected to change), intelligent choices may be
made on how often data should be updated.

In this paper, we will not address the issue of how delayed
data may be related. Instead, we assume the service consumer
requests data from the number of services and then compares
it. One constraint that is relaxed, however, is that of service
quality. In Figure 1, assume that the 1× service is slow partly
because it is a “lower quality” service. For example, it may be
that it is a marketplace with fewer sales (e.g. eBayUK having
fewer sales per day than AmazonUS). Possibly fewer resources
are dedicated to the slower service because it is less active.
In any case, it may be that the service consumer deems the
quality of the 1× server to be lower than that of the 2× server.
Note that the 2×, 4×, and 8× services can all serve data units
A and E in the time it takes the 1× service to serve only
A. The data units A and E are now synchronized between
all but the 1× service. Likewise, the 4× and 8× services
both can serve the units A, C, E, and G in the time it takes
the 1× service to serve only A and the 2× service to serve
only A and E. The circled data units in the Figure 1 indicate
these elements. The 8× service could have all 8 data units
circled, but the other 4 units would not be synchronized with
any other service. (Obtaining that data for analytics purposes
would be reasonably, of course.) This may be considered an
acceptable solution in some cases, namely to allow services 4×
and 8× to keep the 4 data units A, C, E, and G synchronized
while the 2× service keeps A and E synchronized with the
faster services and the 1× service only keeping the unit A
synchronized.

In Figure 1, the squared data units show the same scenario
for the next data requests, namely when the 1× service
requests element B. We see that in the time it takes the 1×
service to obtain two data units, the 4x and 8× services have
obtained all 8 data elements in relative synchronization, and
the 2× service has obtained half the data units in synchro-
nization with the two faster services. Here it is clear that
the orders of speed are important, since having respective
speeds of, for example, 1×, 1.7×, 2.3×, and 7.4× would
not permit such synchronization. Data units are acquired more
rapidly from the faster services, but keeping them aligned at
these rates is problematic. However, using other integer powers
(e.g. 1×, 3×, 9×, 27×) will also allow for synchronization,
especially in cases where the disparate QoS of services are
even more dramatic. Therefore, when relaxing the constraint
of all services having all data units synchronized, the above
method of acquiring data at rates that are integer powers of
an integer base is useful.

B. Variable Data Quality

Not all data units served by a service are of equal quality.
Using our example of online marketplaces, some items are
top sellers, for example a new release DVD of an Oscar

544

winning movie or a New York Times top selling book. Also,
some may even have metrics to indicate their importance on
a marketplace (e.g. Amazon Sales Ranks or buyer feedback
ratings). As already described, while the slowest service being
accessed by a service consumer provides a bottleneck when
comparing synchronized data, some improvements to the most
restrictive model are possible. By taking into account data
quality, another alternative means of acquiring synchronized
data is possible.

Assume a single service with the eight units of data from
the previous section, A through H . If units A, B, and C are
fast-changing and high quality (e.g. hot selling movie DVDs),
by cycling through the data in sequence, each unit will only
be requested and updated once each in one cycle, the same
amount as the other data units. If, however, units G and H
are very slow-moving inventory items (e.g. old B-rated movie
DVDs) whose prices are fairly unchanging, we may be willing
to obtain that data fewer than one time per eight requests so
that we may obtain the higher-quality data more often.

In Figure 2, we provide data quality measures to each data
unit. From this data, we see that A is considered 4× as
important as H . We see that rather than obtain each of the eight
data elements in one cycle, we can use this metric to request
A four times as often as H . The total number of requests for
units A through H is 16. So while A will be requested 4×
in the 16 requests, H will only be requested once. However,
given the importance of A, this may be a reasonable choice.
For the proposed quality measures, a single cycle is now 16
requests rather than the original 8, so the expansion factor for
one pass is 16/8 = 2.

Fig. 2. Data of different quality/importance being served more often.

III. PROPOSED METHODOLOGY

As Figure 3 shows, N service providers serve data units
to one service consumer at the request of the consumer. Each
provider is considered to have a service quality given by

S = {s1, s2, ..., sN}. (1)

Service quality here refers to the value placed on the given
service and the collective importance of its data, not quality of
an individual data unit. The rate at which each service returns
data is given by its velocity,

V = {vi : i ∈ {1, ..., |S|}}. (2)

The velocity is a real-valued measure of the number of times
faster each service is than the slowest service. By definition,
the slowest service will have a velocity of 1.0 while other

Fig. 3. Service consumer and producers of data units.

services will have velocities greater than or equal to 1. As
detailed in Section I, since synchronization of data acquired
from the different services is key, velocity in the form provided
by V is not as useful a measure as is the order of the service.
The order of the services is defined as

O = {oi : i ∈ {1, ..., |S|}} (3)

where for base b,

oi = {bj : j ∈ N
0, vi < bj+1, vi ≥ bj} (4)

In general, a base of 2 provides the greatest flexibility in
optimizing synchronization and speed of services, though
higher valued bases may be chosen.

Each service is capable of delivering M units of data that are
to be compared to related data delivered by the other services,
where the data provided by service j is given by

Dj = {d1j, d2j , ..., dMj}. (5)

This data may take any form that may be parsed and processed
on the receiving end of transmission. For example, data may
be flat or comma separated or more structured, such as JSON,
or XML. Each unit of data also has a corresponding quality

Qj = {q1j, q2j , ..., qMj}. (6)

We require that each unit dij be aligned across all services j
for each unit i. For example, the first unit of data for service
j, namely d1j , should correspond to the same data for all
services. An example of this may be the price for a given item
with a given UPC or ISBN. While the price of that item may
differ between different services, the data should be for the
identical item (i.e. UPC or ISBN) across services. Likewise,
the quality of that unit of data, in this case q1j , should also
align with the data for the given service. Using the example
of an item with UPC or ISBN, quality is numeric and may be
the item’s sales rank on a marketplace or user feedback value
for that item. As their values are clearly tied to each other, the
data and its quality are combined to produce pairs defined by

P = {(dij , qij) : i ∈ {1, ..., |D|}, j ∈ {1, ..., |S|}} (7)

We use the differences in qualities to request data from
services in a manner that allows improved performance for
higher quality data and services at the expense of lower quality
data and services. To do this, we first require that qualities are
normalized, namely

q̂ij =
qij∑N

k=1 qkj
(8)

545

ŝi =
si∑N

j=1 sj
(9)

If all services are deemed to be of comparable quality, the
normalized quality of each service is ŝj = 1/|S| for j ∈
1, ..., |S|. While data quality thus far has referred to data from
each different service, for decision making on which data to
request more often, an overall quality metric is needed for
each data unit collectively across services. This is achieved
by weighting normalized data quality by normalized service
quality, with

Q̂i =
N∑
j=1

q̂ij ŝj (10)

M∑
i=1

Q̂i = 1 (11)

Clearly for collections of data where M is large, each value
of Q̂i will be necessarily quite small. A mapping is desired
that will provide a relative multiple of updates per data unit
in one complete pass through all data from each service. One
way to accomplish this is to map the distribution of Q̂i to the
interval [0, 1] using a parameterized function and to scale this
mapping. Assuming Q̂min = min Q̂ and Q̂max = max Q̂, we
have

f(x) = D[Q̂min, Q̂max](x) → [0, 1] (12)
ci = �(Cmax − 1)f(Q̂i)�+ 1 (13)

C =

M∑
i=1

ci. (14)

Here, Cmax is chosen to be the maximum number of times
any data item may be requested during a full pass through all
data from all services. For a uniformly distributed set Q̂, we
note that D[α, β](x) = U [α, β](x). The number of data units
requested for one complete pass through D from all services
will be expanded by a factor of T = C/M .

One sample mapping is to use a simple linear function,

D[Q̂min, Q̂max](x) =
x− Q̂min

Q̂max − Q̂min

. (15)

Such a mapping may not be desirable, however, if data of
higher quality collectively is far preferred over data of much
lower quality. In such cases, a mapping such as a logistic
function may be preferred, for example

D[Q̂min, Q̂max](x) =
1

1 + e
−

[
x−Q̂min

Q̂max−Q̂min

] . (16)

Since for each data unit dij it is required that index i refers
to the same data description (e.g. d1j is the same book for
each service, with only its variable properties, such as price,
differing for each service j), we define the request description
to be ri. Therefore, a request for data r1 will result in data
unit d11 being provided by service 1, d12 being provided by

service 2, and so on. The request units and their pairings with
their respective counts are given by

R = {ri : i ∈ {1, ..., |D|} (17)
C = {(ri, ci) : i ∈ {1, ..., |D|}} (18)

Algorithm 1: Algorithm to create ordered list of request
units.

Data: set C; number of data units M ; max count for a
request Cmax; total count C

Result: requestList ordered list of requests for services
1 requestMultiplicities[]← OrderRequests(C)
2 numBins ← Cmax

3 binSize←
⌊

C
numBins

⌋
4 bins ← string[][numBins]
5 remainderBin ← string[]
6 requestList ← string[C]
7 for i ← 1 to M do
8 request ← requestMultiplicities[i].r
9 count ← requestMultiplicities[i].c

10 jump ←
⌊
numBins

count

⌋
11 startBinNum ← 1
12 while startBinNum ≤ numBins and

size(bins[][startBinNum]) ≥ binSize do
13 startBinNum ← startBinNum+ 1
14 end
15 binNum ← startBinNum
16 lastBin ← startBinNum+ (count− 1) ∗ jump
17 if lastBin > numBins then
18 jump = 1;
19 end
20 for j ← 1 to count do
21 if binNum ≤ numBins then
22 place copy of request in bins[][binNum]
23 else
24 place copy of request in remainderBin[]
25 end
26 binNum ← binNum+ jump
27 end
28 end
29 for k ← 1 to numBins do
30 foreach bins[][k] as request do
31 requestList[] ← request
32 end
33 end
34 foreach remainderBin[] as request do
35 requestList[] ← request
36 end
37 return requestList

A. Constructing Request List of Multiples

In Section II-B, we gave a simple example of using the
quality of data to construct a new list of data unit requests.

546

In Algorithm 1, we provide one approach to distributing the
multiple quantities of data in C based on each element’s
respective count, ci. The method described here assumes that
given the sizes defined by l = �maxO� and n =

⌊
C

max C

⌋
, we

require that n >> l. Physically, n is the number of request
units in each of the max C bins that data will be placed into and
l is the maximum factor of velocity (e.g. 2, 4, 8, etc.) indicating
how much faster the fastest service is than the slowest service.
Therefore, the required condition will always be met assuming
there is a substantial amount of data that is required from the
services.

The algorithm works as follows. We first call
OrderRequests(C) so that the data/count pairs in C
are in decreasing order based on the value of ci so that
the first pair has the highest count and the last pair has the
lowest count. Since multiple pairs will have the same count,
the order of the multiples does not matter as long as they
all are grouped together. We then create numBins bins
and one overflow bin, remainderBin. Since the number of
bins is equal to the maximum multiplicity of request units,
we ensure that multiple copies of requests are dispersed
across the request list to allow price updates to be separated
temporally. For each request-count pair (ri, ci), a jump factor
is calculated to allow maximal dispersal of higher-priority
requests, indicating how many bins to jump before placing the
next copy of the request in the list. An example demonstrating
the algorithm is provided in Section IV.

B. Traversing Request List of Multiples

For Algorithm 2, the requestList constructed by Algorithm
1 is used to construct each service’s request group. An example
of this is illustrated in Figure 1 for a simplified case, where
the circled elements form the request group for the services in
the first step, and the squared elements are those requested in
the second step. This process is stepped along until the slowest
service traverses the entire requestList once. The jumps
being made for each service indicates how many elements of
requestList to step over using the Algorithm 2. Conditionals
in the inner loops work to restrict the number of elements
being grouped based on speed of service and running beyond
the length of requestList.

Part of the request synchronization takes place here at the
end of the algorithm, where the requests are made to the
services. All requests are made by the consumer, and only
once all results are returned by the service providers does the
algorithm step along to the next set of requests. Service failure
is not addressed and is somewhat application dependent, as
business logic must be used to decide how best to handle
the problem. It should be noted that one advantage to the
approach developed here is that since service velocities are
always dropped to match either 2i, 3i, or other elements of a
power series, some flexibility is already built into the model
to handle some network lag or delays of these faster services.
When the slowest service suffers from some (possibly serious)
delays, synchronization of all services becomes problematic in
any case as that service already is the bottleneck.

Algorithm 2: Algorithm for traversing request list.
Data: set O; request list data requestList; number of

data units M ; number of services N
1 maxOrder ← maxO
2 for i ← 1 to N do
3 step[i] ← maxOrder

oi

4 end
5 for j ← 1 to M do
6 for i ← 1 to N do
7 jumps ← int[oi]
8 k = 1
9 repeat

10 jump ← (k − 1) ∗ step[i];
11 if jump < maxOrder then
12 jumps[k] ← jump
13 k ← k + 1
14 end
15 until jump ≥ maxOrder;
16 for k ← 1 to size(jumps) do
17 index ← jumps[k] + j
18 if index ≤ M then
19 requests[k][i] ← requestList[index]
20 end
21 end
22 end
23 request requests[][] data from services
24 end

IV. EXAMPLE

While in general, the number of data units M in real-world
applications will be very large, we illustrate the implementa-
tion of the two algorithms from Section III with a small dataset
to understand its essence. In Table I, we simplify the structure
of the requests using the notation of letter-number, where
letter refers to a group of requests having a particular count
(e.g. A has a count of 6 copies in the final request list), and
number refers to each instance of a unique request (e.g. A4
is the fourth unique request that has a count of 6.) In Figure
4, we show how the requests from Table I are loaded into the
final request list by binning that data. As the maximum count

TABLE I
REQUEST-COUNT PAIRS (ri, ci) WITH M = 30 UNIQUE REQUESTS,
C = 105 TOTAL LIST ENTRIES AND EXPANSION FACTOR OF T = 3.5.

Number of Number of
Unique Copies In

r c Requests Request List
A1 → A10 6 10 60
B1 → B5 4 5 20
C1 → C5 3 5 15

D1 → D10 1 10 10

of any unique request in this example is 6, Algorithm 1 begins
by creating 6 bins plus an overflow bin of undetermined sizes.

547

The algorithm places the multiple instances of a unique request
unit into bins by jumping an appropriate number of bins. In
the present case, for the counts of 6, 4, 3, and 1, the jumps
are � 6

6� = 1, � 6
4� = 1, � 6

3� = 2, � 6
1� = 6. Therefore, A units

will jump 1 bin, B units will jump 1 bin, C units will jump 2
bins, and D units will jump 6 bins. As we see in Figure 4, A
units are placed in bins 1 through 6, and B units are placed in
bins 1 through 4. However, C units are placed 2 bins apart if
possible, and once units C1 and C2 are placed in bins 1 and 3,
those bins have � 105

6 � = 17 elements each and are considered
full. Therefore, the algorithm steps to the next available bin,
bin 2, and places units C3 and C4 in bins 2 and 4, which are
spaced by 2 bins. At this point, bins 1 through 4 are filled,
leaving only bins 5, 6 and the overflow bin available. Since
jumping 2 bins from the next available bin, bin 5, would move
beyond the last of the 6 bins, the jump is changed to 1, and C5
is placed in bin 5 then 6. Now, since the last C5 unit cannot
be placed in one of the 6 primary bins, it is placed in the
overflow bin. The 10 D units are placed in bins 5, 6, then the
overflow bin one at a time as bins fill up. These bins are then
sequentially loaded into the array requestList and returned
for Algorithm 2 to request the data from services. This method
of placing units gives maximum priority to the highest-ranked
data units, with lower-ranked units being placed less optimally
if required, as is the case for C5 since its 3 copies are not as
well spaced across bins.

Fig. 4. Bin loading.

With the placement of requests in requestList, the first
17 elements (i.e. those originating from bin 1) are given in
Figure 5. If we assume three services operating at speeds (i.e.
orders) of 1, 2, and 8, the respective jumps in Algorithm 2
are 8, 4, and 1 respectively and specified in the figure next to
each service. Circled units are those that would be grouped
for each service in the first iteration of the loop through the
M unique request elements, while the squared elements show
which units are grouped during the ninth step through the loop.
An important point to note here is that all units in each group
are and will always be unique as long as the order of speed
is much smaller than the number of data units.

Fig. 5. Bin traversal.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of a service consumer acquiring
data from a collection of service providers operating at dis-
parate rates in a synchronized manner is addressed. We provide
one possible solution to this problem by using service and data
quality to modify how the data is requested. In this initial
approach, variable network lag and service provider failure is
not addressed. In future work, the issue of variable network
lag for the various services should be addressed, though as
already pointed out, some flexibility exists in the present
approach to account for some lag. Should serious service
quality degradation or inversion take place, for example if the
slowest service actually becomes faster than other services due
to lag or failure of the other services, the present approach
will perform less optimally. The issue of service failure is
a more difficult problem to address as how to handle this
is somewhat business-model oriented. However, for certain
business decisions such as ignore any service that is down,
improvements to the present approach are possible, and such
effects will be addressed in future work. Also, the present
model assumes that all services have all data units available
to provide to the service consumer, though this is often not
the case in real service applications and is also the subject
of future work. Finally, decoupling of the service provider’s
synchronized request structure into separate consumer request
modules or services may be preferred, with each module
requesting data from the providers separately as fast as each
can provide it and storing it for use by a data-synchronizing
aggregator.

REFERENCES

[1] Thomas Erl. Service-oriented architecture. Prentice Hall, 2004.
[2] Amazon Marketplace Web Service (Amazon MWS) Developer

Guide 2012, https://images-na.ssl-images-amazon.com/
images/G/01/mwsportal/doc/en US/bde/MWSDeveloperGuide.
V386854335 .pdf

[3] Trading API Guide, Verson 811, ebay developers program,
2013. http://developer.ebay.com/Devzone/XML/docs/PDF/
eBayXMLAPIGuide.pdf

[4] Jungpil Hahn. ”The dynamics of mass online marketplaces: a
case study of an online auction,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 317-
324. ACM, 2001.

[5] Rayid Ghani. ”Price prediction and insurance for online auc-
tions,” in Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, pp.
411-418. ACM, 2005.

[6] Fu, Xiang, Tevfik Bultan, and Jianwen Su. ”Wsat: A tool for for-
mal analysis of web services,” in Computer Aided Verification,
pp. 394-395. Springer Berlin/Heidelberg, 2004.

[7] Abdelzaher, Tarek, Ying Lu, Ronghua Zhang, and Dan Henriks-
son. ”Practical application of control theory to web services.” In
American Control Conference, 2004. Proceedings of the 2004,
vol. 3, pp. 1992-1997. IEEE, 2004.

[8] Wang, Xiaoling, Kun Yue, Joshua Zhexue Huang, and Aoying
Zhou. ”Service selection in dynamic demand-driven Web ser-
vices,” in Web Services, 2004. Proceedings. IEEE International
Conference on Web Services, pp. 376-383. IEEE, 2004.

548

A Dialogue Game Approach to Collaborative Risk Management

Fabrício S. Severo, Lisandra M. Fontoura, Luís A. L. Silva
Programa de Pós Graduação em Informática

Universidade Federal de Santa Maria (UFSM)
Santa Maria, Brazil

{severo.fabricio, lisandramf, silva.luisalvaro}@gmail.com

Abstract—Risk management aims to reduce surprises and in-
crease the chances of success of a project. Although collaborative
tasks of risk management have a crucial role in the capture and
reuse of different experiences in risk management, limited atten-
tion has been dedicated on the argumentative interaction steps
among project participants engaged on the development of risk
management debates. In this paper, we describe an argumenta-
tion-based collaborative approach to risk management. Ground-
ed on the notion of dialogue games, this approach presents a new
risk management communication protocol defined by its locution
acts and interaction rules. Along with this protocol, a web-based
collaborative Risk Discussion system is offered. Experiments
were developed to evaluate both the approach and the system.
Results from these collaborative risk discussion experiments
show positive evidence for the applicability of the protocol and
the usability of the system.

Keywords- Risk Management, Collaboration, Dialogue Games.

I. INTRODUCTION
Risk management is based on the identification of key risks

in a project and the elaboration of plans to prevent or mitigate
events that could interfere on the project or organization goals.
In essence [1], innovative projects are likely to have high risks
but also high benefits. According to [1][2], risk management
tasks ought to be developed collaboratively and with reuse of
information from previous projects. Collaboration activities
ensure that experiences are exploited in a project, taking into
consideration different perspectives about the risks and their
plans. In addition, the reuse of risk information captured on
these collaborative tasks allows stakeholders to avoid repeating
plans that have failed in the past.

In this paper, we present a novel argumentation-based ap-
proach to collaborative risk management. Due to the dialectical
nature of collaborative risk management debates, this argumen-
tation approach for risk management is grounded on the notion
of “dialogue games” [3]: knowledge representation structures
which aim to identify and represent meaningful steps of human
interaction that are typical of debates. Our approach exploits
the knowledge elicitation and representation of key risk infor-
mation in a project and the consequent organization of a risk
discussion memory. We also present a web-based Risk Discus-
sion (RD) system, which offers a collaborative environment
where stakeholders can interact and record those risk discus-
sions in the memory, allowing future reuse of that information.
Experiments were developed to evaluate our approach and

system, in which results show positive evidence for its applica-
bility and usability.

In this paper, Section 2 presents background information;
Section 3 presents our dialogue game-based risk management
approach; Section 4 presents experimental results; finally,
Section 5 presents conclusions and future works.

II. BACKGROUND
Boehm [2] described risk management as a set of risk prin-

ciples and practices directed to the identification, analysis and
treatment of risk factors. Among other goals, these tasks aim to
increase the likelihood of success of a project. Risk manage-
ment consists of: the identification of possible future problems
and their causes; the analysis of those risks and their prioritiza-
tion; the elaboration of plans to deal with the risks; and the
monitoring and execution of plans, when necessary in the pro-
ject life cycle.

Collaborative tasks of risk management can be modeled as
a process of “argumentation” as one can observe when typical
argumentation systems are considered (e.g. [4][5]). Argumenta-
tion studies the structure of arguments and the process of argu-
ing [6]. The main characteristic of arguments is the fact that an
argument presents (in its simplest format) a statement that may
or may not be true in a point in time. Arguing (or argumenta-
tion) is the act of using arguments to explain or justify a point
of view. In argumentation, dialogues can be expressed by
means of “dialogue games”. According to [3], the main struc-
tures defining a dialogue game are: (1) start and finish rules –
describing when and how a dialogue should start and end; (2)
locution acts – defining the types of actions for participant
interaction; and (3) combination rules – describing the context
where each locution is exploited so that these locutions could
organize the progress of the dialogue. Protocols like these are
often implemented by means of logic-based formalisms instead
of semi-formal representation models directed to support the
development of broader tasks of knowledge engineering in less
formal application problems such as risk management.

III. A DIALOGUE GAME APPROACH TO RISK MANAGEMENT
This paper discusses a new approach to engage projects

stakeholders on the development of risk management debates.
This approach is grounded on a well-defined communication
protocol, tailored for answering risk management needs. As a
result of collaborative risk management tasks, information
exchanged by participants involved on this kind of structured

549

dialogue is recorded in a risk management memory. Further
details of this approach are described in the following sections.

A. Definitions
In our argumentation-based interaction protocol, and corre-

sponding system that implements this protocol, a risk manage-
ment discussion memory M consists of a set of projects PR =
(pr1, pr2, …, prn). Each project pri is a tuple (C, D) where C is a
typical set of factual project characteristics (c1, c2, …, cn) – a
list of attributes and values – and D is a set of risk management
discussions (d1, d2, …, dn). Each discussion di is formed by a
set of speech acts A = (a1, a2, …, an). Importantly, these locu-
tion moves ai represent different arguments advanced in the
discussion by a participant pi P, where P is a set of discus-
sion participants (p1, p2, …, pn) involved in the dialogue. In
this knowledge elicitation model, S is a set of statements (s1, s2,
…, sn) where the content of these statements is presented in a
textual format by participants. In summary, the dialogue game
protocol for risk management £RM is defined as a tuple (L, R)
where L is a set of predefined locution acts (l1, l2, …, ln) and R
is a set of combination rules (r1, r2, …, rn). In this case, a rule
ri is represented as a tuple (l i, lj) meaning that l j can be used as
a response to li during a debate. In essence, the main role of the
dialogue game protocol £RM is to organize the collaborative
management of risks and its consequent recording of risk dis-
cussions.

B. The Locution Acts of the Dialogue Game
We developed a new set of locution acts L for risk man-

agement. This protocol is based on the integration of locutions
for deliberation dialogues [3] with locutions for typical tasks of
risk management. The L set consists of the locutions li:

start_discussion(di, pi): it is used to start a discussion di
by a participant pi;

propose(t, ai, si, pi): it allows making a proposition of type
t, where t T = {risk, impact, probability, plan, consequence},
in the dialogue. This proposition involves a speech act ai and
contains a statement si which is advanced by a participant pi;

select(t, ai, pi): it allows making a selection of type t,
where t T = {risk, impact, probability, plan, consequence}.
This selection involves a speech act ai which is advanced by a
participant pi;

withdraw(ai, pi): it is used to state that a speech act ai is
rejected by a participant pi;

argument_pro(ai, si, pi): it is used when a participant pi
wants to state an argument in favor of a speech act ai of the
dialogue. It also describes this argument as a statement si;

argument_con(ai, si, pi): it is used when a participant pi
wants to state an argument against a speech act ai of the dia-
logue. It also describes this argument as a statement si;

ask(ai, si, pi): it allows raising a question which is related to
a speech act ai of the dialogue. This question is presented as a
statement si by a participant pi;

inform(ai, si, pi): it is used to advance information related
to a speech act ai in the dialogue. This information is presented
as a statement si by a participant pi;

summarize(A’, si, pi): it allows summarizing a subset A’ of
speech acts, where A’ A, of the dialogue. This summarization
is presented as a statement si by a participant pi;

ask_position(ai, pi): it is used when a participant pi needs
to request an opinion about a speech act ai of the dialogue;

opinion(ai, si, pi): it allows stating an opinion which is re-
lated to the speech act ai of the dialogue. This opinion is pre-
sented as a statement si by a participant pi;

end_discussion(di, pi): it is used to close a discussion di by
a participant pi.

C. The Combination Rules of the Dialogue Game
The R set of combination rules can be summarized as the

following: the start_discussion and end_discussion locutions
are used once in a discussion di, opening and closing it, in this
order; the propose locutions submitted with a type t

i
 = risk are

the key elements of a discussion di – in this case, the propose
locutions involving any other type than risk are used in re-
sponse to a propose locution where the type is risk; the argu-
ment_pro, argument_con, ask, inform and summarize locutions
are used in response to any other speech act, promoting the
discussion of the topics; the withdraw locution can be used
after a proposition (i.e. propose locutions) to withdrawing from
it; the ask_position locution can be used after other locutions in
order to ask whether participants either agree or disagree with a
point of view. In response, participants should use the opinion
locution to express their opinion.

D. An Example of the Dialogue Game Protocol
In order to understand how our dialogue game mediates a

risk management debate, we can present an example of a risk
discussion (due to the limits of space, this sample discussion
was reduced to a single risk):

a1. start_discussion(“Risk Management of a Software Project”, p1)

a2. propose(“risk”, a1, “The schedule and budget are unreal”, p2)

a3. inform(a2, “The project has a fixed budget and needs to be
finished in a year”, p1)

a4. propose(“probability”, a2, “High”, p2)

a5. ask(a2, “Do we know if the project requirements are described
properly?”, p2)

a6. inform(a5, “The requirements are okay, but the time to develop
this project is not enough.”, p3)

a7. propose(“impact”, a2, “High”, p1)

a8. propose(“plan”, a2, “The client should be more present during
the project development.”, p2)

a9. argument-con(a8, “This client doesn’t have the time for this.”,
p1)

a10. withdraw(a8, p2)

550

a11. propose(“plan”, a2, “We should make periodic meetings in
order to discuss problems in the project development and their
solutions.”, p3)

a12. propose(“plan”, a2, “We should improve productivity by chang-
ing some coding standards.”, p2)

a13. summarize([a2-a12], “An unrealistic budget and schedule is a
risk in our project. This risk will be treated with two plans: the
participants will make periodic meetings to discuss the project
problems; and the productivity of the programmers will be im-
proved by changing some coding standards.”, p1)

a14. end_discussion(“Risk Management of a Software Project”, p1)

The key step in this debate is the proposition of risks. In the
example, the risk stated was that “The schedule and budget are
unreal”. The probability and impact of each risk are analyzed.
Then, plans to deal with the risk are proposed. In practice,
multiples risk management plans can be advanced in the de-
bate. In this way, participants are involved in the selection of
plans that will be applied in the project. Other locutions can
also be exploited during the discussion in order to capture al-
ternative points of view regarding the risks being assessed.

E. A Web-Based Risk Discussion System
The Risk Discussion (RD) system (Fig. 1) supports the de-

velopment of debates as described by the risk management
dialogue game protocol. The representation elements of this
protocol are described externally to the system in a XML repre-
sentation. This is a XML-based representation containing all
the locution acts and combination rules defined on the interac-
tion protocol.

Through the RD system, users are able to store their risk
discussions in a memory containing concrete experiences of
collaborative risk management. The system also contains basic
query resources into this memory, where users can search for
particular risk management speech acts advanced in past

problem situations. In practice, these locutions are the indexes
to this memory of risk discussions (e.g. a dialogue participant
searching for a list of “proposed plans” in past risk
discussions).

In summary, the RD system contains resources for the elici-
tation and consequent representation of risk information in a
structured memory. In practice, we believe these argumenta-
tion-based resources can enhance the data that is traditionally
managed by other project management systems.

IV. VALIDATION EXPERIMENTS
In order to evaluate the proposed approach and the RD sys-

tem, two experiments involving software development partici-
pants and computer science students were developed. The first
experiment aimed to compare our dialogue game-based ap-
proach with a “traditional” collaborative risk management
approach (based on paper-based templates for the recording of
risk management information), where no supporting systems
were used. This preliminary experiment involved 16 partici-
pants (divided on 3 different groups) on the development of
risk management tasks of 2 projects. On the first stage of this
experiment, when participants were asked to analyze the risks
of the first project, they executed this task without using our
argumentation-based system. As a result, they were asked to
write a report about their overall risk management achieve-
ments. On the second stage, and now analyzing the second
project, they were asked to use the RD system to record their
risk management discussions. In the end, participants were
asked to answer an evaluation questionnaire about their overall
risk management experiences. The questionnaire results were
not surprising: participants believed it was important to have a
system to mediate the risk management discussions and the RD
system was able to fulfill most of those discussion needs.
Moreover, the RD system environment allowed participants to
enhance the discussion coordination from the first stage to the
second stage of the experiment. Consequently, the information

The RD system structures discussions hierarchically. This is a tree-based
representation composed of locution moves. During a collaborative risk
discussion, the insertion of new locutions in the dialogue can be achieved
when users select a node in the tree where the new locution should be
placed. The menu of the system helps the choice of locution acts that should
be inserted in the tree by automatically reconstructing the list of speech acts
that are allowed in a certain dialogue situation. In this way, the new locution
inserted in the dialogue will always be coherent with the dialogue game
protocol, as defined by protocol combination rules.

Figure 1. The Risk Discussion system

551

recorded by the system was more complete than the risk infor-
mation recorded on the initial risk management reports.

A second experiment was executed in order to further as-
sess the relevance of our approach and RD system. In total, 16
participants (4 participants were there on the first experiment)
were involved on this experiment where 63% claimed good
experience in risk management while the remaining partici-
pants claimed little experience (although none of them claimed
to be an expert in the field). This experiment focused on the
utilization of the RD system by 4 different debate groups (con-
tained 4 participants). The evaluation started with a short
presentation of general risk management techniques. The dia-
logue game protocol for risk management was also presented to
these participants. All participants were given a document
containing basic information about risk management principles,
including the main characteristics of a project and its possible
risks. Then, the participants started discussing the risks of the
project. This debate was fully developed through the RD sys-
tem.

The overall feedback obtained with this second experiment
was promising. Key results are presented in Fig. 2 (the “Strong-
ly Disagree” option was not shown there since none of the
participants selected this option). Questions 1 and 2 were de-
signed to assess the relevant of our collaborative approach for
risk management. In general, all the participants agreed that it
is important to exploit collaboration in risk management (Q1),
as well as the recording of risk management debates (Q2).
Questions 3 to 6 aimed to assess the applicability of the ap-
proach. In this case, all the participants stated that our set of
locution acts allowed them to express relevant aspects of risk
management (Q3), and they also agreed that the protocol or-
ganizes such risk discussions appropriately (Q6). Although
some participants disagreed that the effort to learn the protocol
is low (Q4), the majority of the participants (88%) agreed that
this learning effort is not overwhelming. The majority of the
participants stated that the proposed communication protocol is
adequate to the development of risk management tasks (Q5),
but some of them (13%) selected the neutral questionnaire
option related to this question.

Questions 7 to 11 were designed to evaluate the RD system.
In this case, all participants agreed that it was worth to spend
some time learning and using this collaborative system (Q7).
However, they stated that it was not completely clear what was

necessary to develop during the experimental setting (Q9). It
may be because we had a limited time to explain relevant as-
pects of the system and the risk discussion experiment. Alt-
hough most of the participants agreed that the effort to use the
system can decrease with time (Q8), this agreement was not a
consensus among them. However, all participants stated that it
is important to have a system to mediate such risk discussions
(Q10). Finally, participants stated positive answers when (Q11)
was analyzed (a question regarding the usability of the overall
RD system resources) although free-text participants’ sugges-
tions indicated that the visual interface resources of the system
may need improvements (e.g. such as the need of additional
editing options in the discussion tree).

V. CONCLUSIONS
This paper presents a collaborative approach to risk man-

agement which is grounded on the definition, application and
evaluation of a new dialogue game protocol. This protocol
aims to support the elicitation and structuring of risk discus-
sions and the recording of those discussions on a risk manage-
ment memory. A Risk Discussion system is also discussed in
which project stakeholders are fully able to collaborate on the
development of key risk management tasks.

The main contribution of this paper is the argumentation-
based approach defined as a new dialogue game for risk man-
agement. The adoption of this approach can promote the en-
gagement of stakeholders in risk management discussions,
offering a communication environment in which they exchange
information with the goal of achieving better decisions. The
approach is central on the elicitation and consideration of opin-
ions and experiences from these project participants in order to
achieve the systematic development of risk management tasks.
Another benefit is the construction of a structured risk discus-
sion memory in which collections of data and arguments re-
garding different risk characteristics are recorded explicitly.

Future works will aim the development of additional evalu-
ation experiments involving the risk discussion of projects in
different organizations. We will also pursue the investigation of
new ways of querying the risk management memory that is
constructed when the argumentation-based approach for col-
laborative risk management is adopted.

REFERENCES
[1] DEMARCO, T., LISTER, T.: Waltzing with Bears: Managing Risks on

Software Projects. Dorset House Publishing Co., Inc. (2003).
[2] BOEHM, B.W.: Software Risk Management: Principles and Practices.

Management. (1991).
[3] MCBURNEY, P., HITCHCOCK, D., PARSONS, S.: The Eightfold

Way of Deliberation Dialogue. International Journal of Intelligent
Systems. 22, 95–132 (2007).

[4] TOLCHINSKY, P., CORTÉS, U., MODGIL, S., CABALLERO, F.,
LÓPEZ-NAVIDAD, A.: Increasing Human-Organ Transplant
Availability: Argumentation-Based Agent Deliberation. IEEE Intelligent
Systems. (2006).

[5] REED, C., WELLS, S.: Dialogical argument as an interface to complex
debates. Intelligent Systems, IEEE. (2007).

[6] MOULIN, B., IRANDOUST, H.: Explanation and argumentation
capabilities: Towards the creation of more persuasive agents. Artificial
Intelligence Review. 169–222 (2002).

0

0.2

0.4

0.6

0.8

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Strongly Agree Agree Neutral Disagree

Figure 2. Questionnaire experiment results

552

Maturity Model and Lesson Learned for improve the
Quality of Organizational Knowledge and Human
Resources Management in Software Development

Flávio E. A. Horita, Marco I. Hisatomi, Fernando H. Gaffo and Rodolfo M. de Barros

Computer Department, State University of Londrina, Londrina/PR, Brazil
{feahorita, marco.hisatomi, fernandogaffo}@gmail.com, rodolfo@uel.br

Abstract—Constant changes created by the global market have
led software organizations to depend increasingly on their
intellectual capital, its human resources. In this context, the
lessons learned are presented as an important resource to aid in
the preservation and control of this intellectual capital. This
paper aims to present a process model focused on gradually
implement activities to improve the human resources
management. Furthermore, this is also used to manage and share
a repository of organization's intellectual capital, through a
stream of lesson learned management. This process model was
applied in software house located in a Brazilian public university.
Their results showed improvements in both human resource
management and in preserving the intellectual capital of the
organization. Thus, this paper contributes to the scientific
community by presenting a process model focused not only on
improve the human resources management but also to increase
intellectual capital of the organization.

Keywords-Human Resources Management; Maturity Model;
Lesson Learned; Software Development; Process Quality.

I. INTRODUCTION

Changes in the technological context achieve a high degree
of innovation and agility, contemplating men as the
protagonist of a new organization history [14]. To assimilate
them, a cohesive development process, it is necessary that the
organization has a capable team with skills and to propose
corrective measures in a timely and effective. These factors
emphasize the high dependence of human resources for the
development and maintenance of software projects [14], [15].
Several processes and methodologies have been developed to
aid in the management of these resources [10], [5], [9].

In similar context, the use of Lessons Learned (LL) during
the performance of activities represent an important resource
to assist both in the analysis and understanding of patterns,
customs and ways of operation of teams and the planning of
future projects. In general, they should report the actual result
and expected decision detailing the facts and deviations
occurred during this journey [1]. Therefore, the quest for
maturity of human resource management, the use of LL can
bring significant results [4]. In this sense, the objective of this
paper is to present a process model to implement activities
which improve gradually the human resource management
and, in parallel, to increase knowledge about the historic

achievement of its tasks and projects developed through the
LL. Moreover, the organization analyzing these LL can
identify forms and patterns of development teams
performance.

In the pursuit of this goal, this paper is organized as follow.
First, it’s introduced background concepts used in this study.
The research method used to develop this paper is brief
presented in Section 3. In Section 4 we present the proposed
process model. Its initial application is presented in Section 5.
Finally, we conclude and present future works in Section 6.

II. BACKGROUND

A. Human Resources Management on Software Development

Several studies demonstrate that holding the best
technological tools, using the most efficient techniques and
work models is not enough to guarantee the success of a
software project [8], [14], [15]. It is necessary the existence, in
parallel, of a human resources management (HRM) able to
develop skills and guarantee the effective allocation of its
members, in order to increase the quality of its process [12].

However, several managers attribute more importance to
the technical and practical areas rather than the human
resources, which end up by losing the focus in software
development processes [15]. Moreover, during the
development of a software project, the dynamic in business
processes and the high turnover of technologies, and his
members highlights the importance to manage intellectual
knowledge with creating mechanisms to collect, store and
share it [5], [12].

B. Maturity Levels

Maturity models seek to establish levels of development of
processes, called maturity levels that characterize stages in the
implementation of improvement processes in the organization
[2]. Thus, at each step in this journey, the model recognizes
and signals the gradual maturity of the organization. Several
maturity models were studied, among which we may
highlight:

● People Capability Maturity Model (P-CMM): it is a
maturity model variant of Capability Maturity Model

553

(CMM) which has as focus to help in HRM. To do so, it
offers a set of good manners to make provisions for the
continuous growing of workforce abilities in the
organization [6].

● GAIA Human Resources (GAIA-HR): it is a framework
composed by a maturity model, services, and diagnostic
assessment questionnaire which aims to develop
processes and factors that influence on the HRM [9].

C. Lesson Learned (LL)

A lesson is a knowledge gained through experience. The
experience can be positive (good practices) as a successful
test, or negative, as a failure. Both of them are considered
lessons. A lesson must be significant, impacting on daily
operations [5]. Basically, it is an acquired knowledge by
observation or adverse experiences that cause an improvement
in organization or to a particular individual.

There are several benefits of applying Lessons Learned
(LL) within an organization, Roe [13] and Goes et al. [7] cite
some of them: a) Saves time in solving problems, since the
solutions of common problems are centralized in one location
for easy access by members, b) Helps reduce or avoid costs
from rework to correct defects already discovered, and c)
Encourages the use of best practices within the organization,
which improves the chance of success of the projects.

Can still be characterized as LL, narratives that explain
knowledge gained through experience, which can be both
positive and negative [3]. The LL record is an excellent way to
avoid the mistakes made previously and that the successes
achieved in the projects can be copied in future projects.

III. RESEARCH METHODOLOGY

The research methodology used in this paper was a case
study. We chose this methodology because it offers an
empirical research that offers researchers an object of applied
study in its natural context [16]. Table I presents the steps
followed on the research methodology.

Table I. Key Steps of Research Methodology

Step 1
Literature Review
Reviewed literature and identified approaches used to
develop the HRM.

Step 2
Process – First Release
From this analysis, we elaborated the process first version
which is defined its workflow and elements.

Step 3
Process Application
Using this version, the process was applied on a case
study.

Step 4
Results Analysis
The results obtained with the case study, we analysis the
beneficiates and problems evidenced.

Step 5
Process – Final Release
The items identified on the last step were used to increase
or add new elements to the process.

IV. PROCESS MODEL

 The process aims to implement gradually activities to
improve the HRM and, in parallel, it will increase knowledge

about the historic achievement of its tasks and projects
developed through the LL. Fig. 1 shows the process model
structure composed by eight activities and a LL incremental
process. It used an intuitive notation that represents the main
objective of each activity. Besides this, the blue arrows
represent a connection between the activities, the green arrow
sets the flow when the evaluation of services implantation is
approved, and red arrow when this it is rejected.
 Besides this, we can highlight the conditional step represent
by a rhombus shape and its alternatives: (1) if the activity
Services Implantation is approved the organization follows the
green arrow and goes to next activity, Increase Organization
Maturity Level, or (2) if the activity Services Implantation is
rejected the organization follows the red arrow and go back
planning the services implantation. Next, the process model
activities and LL incremental process will be present in detail.

Fig. 1.Process Model for HRM Maturity using LL

A. Choose Organization Responders

 Since this is a process model to assess the maturity of HRM
in software teams, they represent the main actors in this
scenario. With this assumption, the people involved this
process should be committed to the organization, focusing on
maximizing the knowledge and aware of their contribution to
the improvement of this management [9].

 As the first activity of the process, the choice of members of
the organization who will participate in the implementation of
improvements in the management of human resources has
crucial role to ensure its success. Thus, this team should be
prepared according to the following criteria: members aligned
to the organization strategy, involved in day-to-day
organization, and committed to knowledge dissemination.

554

B. Apply the Questionnaire Assessment Diagnotic

 The purpose of this paper is the implementation of a process
that demonstrates the practice of HRM, which can be verified
by a suitable questionnaire. The questions should be based on
principles that may assess over time. For this purpose we can
evaluate both aspects: the skills of workers and the HRM
process. For this, we used the models of Diagnostic
Assessment Questionnaire (DAQ) presented by Gaffo e Barros
[6] (The system used to Diagnostic Assessment Questionnaire
(DAQ) can be found on this link:
http://www.gaia.uel.br/gaia_ad/).

 The result of this questionnaire should reflect the real
situation of the organization as to the stage of HRM, this
identification of the maturity level institutionalized in the
organization, it is resulted by the low achieved index
compared using the value range presented on the Table III of
Gaffo e Barros [6] (an example of this can be found on Table
II, the maturity level institutionalized on the initial application
was two because the low achieved index of all services was
the mobilize and staff).

 Among his important points stand out: (1) human resources
management, (2) motivation of the people involved in the
project, (3) commitment of employees to project’s success, (4)
changes that affect people's performance, among others.

C. Define Organization Maturity Level

 Based on the tabulation of the questionnaire results, the
organization should be framed in a maturity level, thus
establishing the landmark positioning of HRM. In this context,
it was used the maturity model and services presented by
Horita e Barros [9]. Further, the calculations used to define
this maturity level were based on Gaffo e Barros [6].

D. Services Implantation Planning

 The success of the HRM can be measured only after its
effective implementation and evaluation, but the process itself
must have a deployment plan. This activity aims to minimize
the risk of failure during deployment. Resources should be
sized to ensure that the deployment is successful, such as
trained personnel and available computational resources,
participation of other stakeholders, infrastructure, scheduling
for each task, among others. The LL is also one of the
techniques to be planned from the explicit knowledge to its
spread, considering the experiences of success and failure.

E. Services Implantation

 This is one of process model main activity, it is put into
practice the tasks defined in the previous activities. Moreover,
it is necessary to identify possible adjustments to maintain the
initial goal. In this activity, the responsible persons should
have a fundamental role to monitor the tasks safely and in line
with the planning. However, it should also be prepared to take
corrective action to adjust the faults that may occur during
deployment.

F. Evaluate Services Implantation

 The assessment roll is the activity in which you will be
indicating whether the services were implemented properly
and according to plan, i.e. it shows whether they are
satisfactory, if adjustments need or are disapproved.

 This review can happen through a new application of DAQ,
through the application of personal interviews with selected
staff in the activity, Choose Responders Organization, or
applying a checklist evaluation [5].

G. Increase Organization Maturity Level

 Improving HRM in the organization is a natural result of the
evolution process. Therefore, it is necessary to perform new
challenges to improve HRM, shortly after positive evaluation.
Thus, this activity directs the organization to record the
activities executed at Implantation Planning Services to define
new services being deployed.

H. Lesson Learned Process

 The activities proposed in this process model are based on
the LL cycle. Planned in four stages, three of them are
executed on a cycle form - register, evaluate, and share - and
last one executed when a specific lesson are required. Initially,
the registry is the explanation of the experience transformed
into knowledge for possible use by others involved [13]. From
the recorded knowledge, this is validated according to the
requirements and criteria for the LL management.

 Then the LL is disseminated to feed new lesson and ensure
that the experiences will be useful to others involved in
software development. According Alvarenga Neto [11],
sharing the LL can happen by several media: internet, intranet,
and groupware information repositories. On each evolution
iteration of organization’ maturity level, the LL are analyzed
and effectively used to improve the software development
process. Therefore, the process model provides a LL analysis
to drive improvement in the organization.

V. PROCESS MODEL APPLICATION
In order to validate the process model on the case study,

we selected one simple project of software house in a public
university. This project was composed by seven use case
defined with customers. Its development team was composed
by four undergraduate, one master student with a medium
knowledge on software development, test, and requirements
elicitation. This team used a development process based on
Project Management Body of Knowledge (PMBOK).

 As defined by the process model, initially, DAQ was
applied on the current members of development team and
members of previous projects. These previous participants
were selected using a simple questionnaire sent by email
asking to these members participate of this questionnaire
application. This application happened on Jan/2012. For this,
we used the tool cited at Section IV.B.

.

555

 In Aug/2012, a second DAQ application happened to the
software house. This application aimed to validate and identify
areas where improvements in services have been deployed and
how to detect those needing improvement and redesigns.
However, this time, were adopted as respondents, members
other than those selected for the initial application, but they
were involved in project used as case study. Table II shows the
service rate achieved and a comparison with the initial rate.

Table II. Adherence Index on Final DAQ Application

Services Initial
Index

Final
Index

Evolution
of Index

Manage Human Aspects 32,81% 68,75% 35,94%
Manage Performance 29,06% 58,55% 29,49%
Knowledge Management 26,14% 49,24% 23,10%
Manage Training 31,64% 52,82% 21,18%
Mobilize and Staff 23, 67% 53,00% 29,33%
Human Resources Plan 33,12% 54,06% 20,94%
Review the Business Needs 25,93% 53,70% 27,77%

 After analyzing the results of initial application of DAQ, it
was evidenced the necessary improvement on three services
(highlighted by underline). Because of low index of mobilize
and staff it was gives to the organization the maturity level
two. From data shown by Table II, after the implementation of
the services suggested, it is highlighted the rates achieved by
focus areas all of them showing a growth above 20%. The
attendance rates achieved have also enabled the migration of
HRM software house for the level of maturity of three
maturity model since the lower rate is 49.24%.

 Besides this, it was also used to analyze the LL one
indicator that aims to provide growth in the level of
knowledge managed by the organization after the framework
implementation. To do so, are compared and analyzed their
contents generated with those approved. This approval aims to
ensure that they are stored only those relevant to the aid of the
projects. Fig. 2 shows this indicator for the case study.

Fig. 2. Produced Knowledge vs. Approved Knowledge

As shown in Fig. 2 through the process model
implantation, we identified an increase of 65 % in the project
selected as case study. In addition, this analysis can emphasize
the increased production of knowledge qualified to be stored
and used in future projects of the organization.

VI. CONCLUSION AND FUTURE WORK

 This main contribution of this paper is to present a process
model to improve the activities in human resource

management and to increase the historic achievement of its
tasks and projects developed through the LL. Moreover, LL
analyzing aims to understand the performance patterns of
development team and help on future projects planning.

 The experience of process model applying was possible to
evidence his efficiency on improving the activities of human
resource management in software house used as case study.
Furthermore, when it was used together on an evolutionary
HRM process, the LL cycle showed efficient by analyzing the
indicator associated. In future lines of work, we will try to
apply the process model on other companies and we intend to
integrate the multi-criteria analysis to help on identify, filter,
summarize, and select the set of the best LL created.

REFERENCES
[1] A. S. Al-Mudimigh, Z. Ullah, and T. A Alsubaie. A framework for

portal implementation: A case for saudi organizations. International
Journal of Information Management, 2011.

[2] Associação para Promoção da Excelência do Software Brasileiro.
Modelo de Referência para Melhoria de Processo do Software
Brasileiro para Software (MR-MPS-SW), Agosto 2012.

[3] Kessler F. Brett, F. and D. Dressler. The 24 keys to high performance. In
Frontline Group Organizational Learning Division, 2000.

[4] Patricia Carrillo, Kirti Ruikar, and Paul Fuller. When will we learn?
improving lessons learned practice in construction. In International
Journal of Project Management, 2012.

[5] Hefley B. Curtis, B. and P-CM Miller, S. P-cmm: People capability
maturiry model. Technical report, Software Engineering Institute, June
2009.

[6] F. H. Gaffo and Rodolfo M. Barros. Gaia risks - a service-based
framework to manage project risks. In XXXVIII Conferencia
Latinoamericana en Informática, 2012.

[7] Anderson S. Goes, Marco I. Hisatomi, Bruno O. Mesquita, and
Rodolfo M. Barros. Applying lessons learned as an improved
methodology for software project management. In IADIS International
Conference Information Systems, 2013, Lisboa, 2013.

[8] Orit Hazzan and Irit Hadar. Why and how can human-related measures
support software development processes? Journal of Systems and
Software, 81(7):1248 – 1252, 2008.

[9] Flávio E. A. Horita and Rodolfo M. Barros. Gaia human resources - an
approuch to integrate itil and maturity levels focused on improving the
human resource management in software development. In 25th
International Conference on Computer Applications in Industry and
Engineering (CAINE), 2012.

[10] Flávio E. A. Horita, Jacques D. Brancher, and Rodolfo M. Barros. A
process model for human resources management focused on increasing
the quality of software development. In 24th International Conference
on Software Engineering and Knowledge Engineering (SEKE), 2012.

[11] Rivadávia C. D. Alvarenga Neto and Chun W. Choo. The post nonaka
concept of ba: eclectic roots, evolutionary paths and future
advancements. In Proceedings of the 73rd ASIS&T Annual Meeting on
Navigating Streams in an Information Ecosystem, 2010.

[12] Yimeng Qiu. Human Resource Management Based on Human Capital in
Enterprises. Personnel, 2011.

[13] T. H. Roe. Establishing a lessons learned program: Observation, insights
and lessons. In Center for Army Lessons Learned, 2011.

[14] Xiaohong Shan, Guorui Jiang, and Tiyun Huang. The optimization
research on the human resource allocation planning in software projects.
In International Conference Management and Service Science (MASS)
on, pages 1 –4, aug. 2010.

[15] Hamid Tohidi. Human resources management main role in information
technology project management. Procedia Computer Science, 3:925–
929, January 2011.

[16] R. K Yin. Case Study Research: Design and Method, volume 5. Third
edition edition, 2002.

556

Recovering Software Architectural Knowledge from
Documentation using Conceptual Model

Mojtaba Shahin1,2, Peng Liang1*, Zengyang Li3

1 State Key Lab of Software Engineering, Computer School, Wuhan University
2 Department of Computer Engineering, Neyriz Branch, Islamic Azad University

3 Department of Computing Science, University of Groningen
mojtabashahin@gmail.com, liangp@sklse.org, zengyang.li@rug.nl

Abstract—Software architectural knowledge (AK) is the
integrated representation of the software architecture (SA) of a
software-intensive system, the architectural design decisions, and
the external context/environment. AK annotation using AK
conceptual model is used to recover formal AK from SA
documentation, including architecture design as well as the
design decisions, rationale, context, and other factors that
together determine architecture solutions. But there is no
evidence on how architects, especially junior architects,
understand and annotate SA documents and recover formal AK
from the documents using an AK model, which is right the case
when a new architect jumps into a project, trying to understand
the SA documents created by previous architects. This paper first
presents AKRCM (AK Recovery using Conceptual Model)
approach for recovering AK from SA documents. Second, we
conduct a descriptive study using experiment to investigate how
junior architects annotate SA documents and recover AK using
AKRCM approach. We found that an AK conceptual model is
beneficial for junior architects to get a fair understanding of SA
documents, and to recover better-quality AK from SA documents.

Keywords - architectural knowledge; knowledge recovery;
knowledge annotation; junior architect; conceptual model

I. INTRODUCTION

Software architecture is considered of paramount
importance to the software development life cycle [1]. It is a
key artifact for the early analysis of the system, as it facilitates
stakeholders’ communication and understanding, and drives
both system construction and evolution. Software architecting
is meanwhile a knowledge-intensive activity, in which a large
amount of knowledge is being continuously produced and
consumed. In the field of software architecture (SA), a
paradigm shift has occurred from describing the outcome of
architecting process to describing the Architectural Knowledge
(AK) created and (re)used during architecting process,
including architecture design as well as the design decisions,
rationale, assumptions, context, and other factors that together
determine architecture solutions [4]. Traditional approaches to
documenting SA are limited to capture this knowledge and
partially result in AK vaporization. The architecturally
significant information is lost during architecting process,
especially in architecture evaluation and maintenance activities.
This situation leads to many severe problems, such as
expensive system evolution, lack of stakeholders’
communication, and limited reusability of architecture [2]. The
SA community, both in industry and academia, is therefore
gradually acknowledging that capturing and recovering explicit

and valuable AK will lead to the improvement of architecting
process, and of architecture documentation itself [3].

In knowledge management, a distinction is often made
between two types of knowledge: implicit and explicit
knowledge [7]. Implicit (or tacit) knowledge is the knowledge
residing in people’s heads, whereas explicit knowledge is the
knowledge which has been codified in certain form (e.g., a
document or a model). Two forms of explicit knowledge can be
discerned: documented and formal knowledge. Documented
knowledge is explicit knowledge which is expressed in natural
language or images in documents. Typical examples of
documented AK are Word documents that contain architecture
descriptions. Formal knowledge is explicit knowledge codified
using a formal language or conceptual model of which the
exact semantics are defined. Typical examples of formal AK
models include AK ontologies [5] or AK conceptual models [8]
that formally define the AK concepts and their relationships,
and aim at providing a common language for unambiguous
interpretation by stakeholders. In comparison with documented
AK, formal AK provides a clearer description of AK entities
and their relationships in SA documents supported by
conceptual model. This paper focuses on the recovery of formal
AK that is codified in an AK conceptual model.

Formal AK recovery from SA documentation is critical to
various architecting activities, e.g., architecture evaluation and
maintenance. Jansen et al. stated that SA is often documented
after most of AK have been produced and used [6]. Therefore,
a large amount of AK may get lost during architecting process
and SA documents get quickly outdated, also the trust to SA
documents is decreased. To alleviate these problems, an
architect needs to recover formal AK from SA documents and
identify the gap in AK (e.g., an architectural design decision
without supporting design rationale) with the support of formal
AK management tool (e.g., Knowledge Architect [13]). In a
human perspective, AK recovery activity might take place in
the following situations: (1) AK recovery for understanding
existing design and making a new design by architects. (2) AK
recovery for communicating architecture design through AK
sharing [11]. In both cases, architects need to first recover AK
from SA documentation.

An annotation is generally a comment, note, explanation, or
other types of external remarks that can be attached to an
object, i.e., a sentence in a SA document. Different from
general text annotation, formal AK annotation uses controlled
terms (i.e., the AK concepts from a specific AK model) to
annotate the SA documents. We name this approach AKRCM

* Corresponding author
This work is partially sponsored by the NSFC under Grant No.
61170025 and AFR-Luxembourg under the contract No. 895528.

557

(AK Recovery using Conceptual Model). A sample of AK
annotation using AKRCM approach in a SA document is
shown in Figure 1. Note that practical AK annotation is
generally made by tools, e.g., Word plug-in [13]. The snapshot
in Figure 1 just shows how the subjects in this experiment
annotate the SA document (See Section III). AK recovery
requires a lot of design experiences and domain expertise of
the architects that normally junior architects don’t have. The
other characteristic of junior architects is that they need more
time to get familiar with a new system and may overlook some
key architecture information when they jump into a new
project. To the best of our knowledge, there is currently no any
evidence on how software architects, especially junior
architects, annotate the text in SA documents and recover
formal AK using an AK conceptual model.

To this end, we conducted an experiment: asking the
participants (a group of junior architects, in our setting, the
master students following a SA course) to recover formal AK
from a SA document using AKRCM approach based on their
understanding of the SA document with the support of a
specific AK model. We employ LOFAR AK conceptual model
(the concepts and their relationships are shown in Figure 2 and
detailed in Section III) to annotate and recover AK from an
LOFAR SA document. The reason for choosing LOFAR AK
model is that the SA document used for this experiment is from
LOFAR (Low Frequency Array) project undertaken by Astron,
the Dutch Astronomy Institute, which is involved in the
development of large software-intensive systems used for
astronomy research. It would be easier for participants to
recover most AK using this model. In this work, we first
investigate how junior architects understand AK concepts in
LOFAR AK model, and how they annotate the SA document
and recover AK using this conceptual model. Second, the
effectiveness of an AK conceptual model in AK recovery is
analyzed and evaluated.

The reminder of this paper is organized as a follows:
Section II presents the challenge of AK recovery and research
questions we try to answer by the experiment. Section III
describes the experimental setup on AK recovery, with the
threats to the validity of the experimental results. To answer the
research questions, the experiment results are reported and
analyzed in Section IV. Section V discusses the threats to the
validity of this study. Section VI presents the lessons learned
according to the experiment results. Section VII discusses
related work on recovering AK. Section VIII concludes this
paper with future work directions.

Figure 1. Snapshot of AK annotations in a SA document

Figure 2. LOFAR AK conceptual model

II. GOAL AND CHALLENGE OF AK RECOVERY
The goal of this experiment is to present the findings on

formal AK recovery using an AK model by junior architects.
The next step, i.e., how to use recovered AK in SA activities,
such as architecture evolution, is scheduled as the future work.

The challenge this paper tries to address is how an AK
conceptual model can help junior architects to recover AK
from SA documents. This challenge can be further detailed in
three research questions:

RQ1: How junior architects understand AK concepts in an
AK conceptual model? A domain-specific AK conceptual
model is normally co-constructed by experienced architects and
domain experts, but junior architects with few background and
experiences may have different understanding to the same AK
concept.

RQ2: How junior architects annotate SA documents and
recover AK? Experienced architects may recover AK from SA
documents by employing their tacit knowledge (e.g.,
experience on architecture patterns, domain knowledge,
architecture reasoning knowledge, etc.) in the recovery process
[6]. In other words, AK recovery results may heavily depend
on the skills and experiences of software architects, which
junior architects normally lack of.

RQ3: Is the AK conceptual model helpful for junior
architects to recover better-quality AK from SA documents? To
answer this question, we try to compare the results of AK
recovery by junior architects and experienced architects to
investigate the effectiveness of an AK conceptual model in AK
recovery.

III. EXPERIMENT SETUP FOR AK RECOVERY
We conducted a descriptive study using experiment to

answer the research questions in Section II. Descriptive study is
an observational study that tries to determine the distribution of
certain characteristics or attributes. The focus of a descriptive
study is not about why the observed distribution exists, rather
what it is [12].

At Wuhan University, SA course is introduced as an
optional course in the curriculum for the first-year master
students major in software engineering. 36 students participated
in this course in the academic year of 2010-2011. During this
course, the students learned fundamental knowledge about
architecture design, process, and evaluation by conducting an

558

architecture course project. We regard these students as junior
architects in this experimental context since Host et al. found
that students are suitable replacements for industry
professionals if performing small tasks of judgment [14]. The
task of this experiment is to ask students to annotate one page
(about 400 words) of corpus selected from the LOFAR SA
document 1 using LOFAR AK conceptual model, which are
both produced in an industrial project. A snapshot of the AK
annotations by annotators (i.e., the subjects in this experiment)
is shown in Figure 1. The experiment steps are following:

Step1: hand out the printed text in one page selected
from a SA document to the students (i.e., the subjects);
Step2: present a short tutorial in 10 minutes on the AK
conceptual model (i.e., LOFAR AK model) that are used
for the AK annotation with AK annotation examples;
Step3: ask the subjects to annotate the printed text (using
pen) with the AK concepts of the introduced AK
conceptual model within limited time (15 minutes).

A short description about the LOFAR AK model shown in
Figure 2: A Concern is an interest to the systems development.
A Requirement represents something demanded from the
system, which is a specific type of Concern. A Risk is also a
special type of Concern, which expresses a potential hazard. A
Decision Topic is a certain problem that a Decision should be
made to solve it. Alternative concept represents one or more
potential candidate solutions to address the described problem.
A Decision is chosen from the Alternatives to address the
described Decision Topic. If only one Alternative is proposed
and no (sufficient) motivation is given why this Alternative is
chosen, we then have a Quick Decision. A Specification is the
lowest level architectural Design Decision that is being made.
The refinement process of architecture documentation is
finished when it comes to Specifications. The concepts
Concern, Decision, Alternative and the like are not specific
concepts to the LOFAR AK model. These concepts exist in
most AK conceptual models although different AK models
might employ these concepts with different terms and with
different relationships [9].

IV. EXPERIMENT RESULTS AND ANALYSIS
There were 36 subjects (students), and 35 AK annotation

results were returned, in which 33 results were valid with 2
invalid results: one was no any AK annotations, and the other
one provided annotated text without annotation concepts. The
SA document (in one page) is composed of 16 sentences and 1
diagram, which are potential annotatable AK entities. Some
subjects also annotated part of a sentence as an AK entity or
annotated more than one sentences as an AK entity, in which
the unit of AK annotation can be a phrase, a paragraph, or a
sentence. In this section, we try to answer the research
questions presented in Section II.

RQ1: How junior architects understand AK concepts
in an AK conceptual model?

As shown in Table 1, different software architects may
annotate same unit of text with different AK concepts, because
they have different understanding about specific AK concept,

1 The corpus of the LOFAR SA document is available at

http://www.cs.vu.nl/~liangp/project/AKRv/LOFARdoc.pdf

or some AK concepts are actually overlapped with each other,
e.g., Specification is a subClassOf Decision, Decision Topic
is raisedFrom Requirement, etc. One of best practices to
resolve this issue is to combine two AK concepts into one AK
concept when most of architects annotate the same unit using
the two AK concepts alternatively. For example, in LOFRA
AK model, the concept Requirement is a subClassOf
Concern and most of junior architects annotate the same unit
using these two AK concepts alternatively. Table 1 shows that
most of junior architects (78.8%) annotate the Sentence 1 and 2
with Requirement and Concern alternatively. Therefore, it is
suggested that these two concepts are combined as one concept,
and the merging of AK concepts is considered as a post-
processing to annotated AK. Note that, the focus of this work
tries to investigate how junior architects recover AK with the
support of an AK model, but not to evaluate the effectiveness
of an AK model for AK annotation. As a side-effect of AK
recovery activity, the AK model can be improved according to
the AK annotations, which is not discussed in details in this
paper.

RQ2: How junior architects annotate SA document and
recover AK?

Junior architects annotate the text in different granularity,
e.g., one junior architect annotates two sentences as a
Requirement, and the other one annotates these two sentences
as two Requirements. For example, Table 1 shows that Subject
26 annotated Sentence 1 and 2 as one AK entity of
Requirement, while Subject 16 annotates the two sentences as
two different AK entities of Requirement and Specification
respectively. Most of junior architects did not consider the
figure (and related caption) in the SA document as an AK
entity. Figure 3 shows what kind of text units (phrase, sentence,
and paragraph) are mostly annotated by junior architects. The
result shows that sentence is mostly used as the unit of AK
annotation. We assume that this is partially because sentence is
a unit that has a logical-sound meaning.

RQ3: Is the AK model helpful for junior architects to
recover better-quality AK from SA documents?

A consistent annotation in this experiment refers to the AK
concept used by the most of subjects to annotate AK entities.
Figure 4 and Table 1 show how junior architects annotate the
16 sentences. For example, 9, 16, 1, and 7 out of 33 subjects
annotated Sentence 1 as Requirement, Concern, Decision
Topic, and No-AK entity (No-AK entity means that subjects
did not consider the sentence as any AK concept) respectively.
Therefore, we regard that junior architects get a consistent AK
annotation of Sentence 1 as Concern, which is listed in the
column 4 of Table 2.

To evaluate the quality of AK annotation and recovery
results by junior architects, the results by junior architects are
compared to the AK recovery results by experienced architects.
We asked two LOFAR architecture experts to annotate the
same SA corpus. Table 2 (columns 2 and 3) shows that the
annotation results by LOFAR experts 1 and 2 are largely
overlapped with each others, i.e., 62% of AK annotations by
experts 1 and 2 are similar (in yellow rows). The comparison
of the annotation results between junior architects (column 4
of Table 2) and two experts (columns 2 and 3 of Table 2)
shows that 57% of AK annotations by them are identical (in

559

yellow rows). The comparison result supports our hypothesis
that a pre-defined AK model (e.g., the LOFAR AK model in
this experiment) has a very positive impact to help junior
architects to get a fair understanding of SA documents and
recover better-quality AK.

Figure 3. Units of AK entities annotated in LOFAR AK concepts by
junior architects

As shown in Table 2, the LOFAR architecture experts
annotated more AK entities (e.g., Requirement, Quick
Decision in Sentence 5~8) than junior architects did. The
implication of this difference is that the AK conceptual model
can do help junior architects to understand/annotate/recover
AK in SA documents, but domain knowledge about projects is
also necessary/helpful and sometimes critical to recover AK.Figure 4. Consistent annotations with the support of an AK

conceptual model
Table 1. AK annotation results by junior architects

Sentence
Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
Subject 01 R R QD DT QD D S
Subject 02 R R C D S
Subject 03 R C DT S D
Subject 04 C R DT D QD S
Subject 05 R A QD DT D A A A
Subject 06 C R D QD S
Subject 07 DT R C D D S
Subject 08 R C DT QD S
Subject 09 C R S A QD S
Subject 10 C R DT A D C S
Subject 11 C R DT D S
Subject 12 C R DT A D S
Subject 13 C C R C C QD S
Subject 14 R C C Rs S
Subject 15 R R DT QD R S
Subject 16 R S R DT S QD R S
Subject 17 C S S DT D
Subject 18 C R D S
Subject 19 R S D C S
Subject 20 C C D C S
Subject 21 C D S
Subject 22 C R DT D C S S S
Subject 23 C S DT D D R R R R
Subject 24 C R C D S
Subject 25 R C DT R S R S D C S
Subject 26 R S D C S
Subject 27 C R DT D S
Subject 28 C R DT D QD C S
Subject 29 R DT D S
Subject 30 C QD R C S DT C S

560

Subject 31 R C DT D C S
Subject 32 R R R R R D D C D
Subject 33 C S R C D D C D

Requirement (R), Concern (C), Decision Topic (DT), Quick Decision (QD), Decision (D), Alternative (A), Risk (Rs), Specification (S)

Table 2. Comparison of AK annotations between LOFAR experts and junior architects

LOF rt 1AR Expe LOF rt 2AR Expe Consistent Annota Junior architectstions by

Sentence 1

Sentence 2

Sentence 3

Sentence 4

Sentence 5

Sentence 6

Sentence 7

Sentence 8

Sentence 9

Sentence 10

Sentence 11

Sentence 12

Sentence 13

Sentence 14

Sentence 15

Sentence 16

V. THREATS TO VALIDITY

Due to the limitations of this experiment, there are several
threats to the validity of the experiment results:

The size of the SA document used in this experiment is
relatively small due to the time limitation of the experiment
since this experiment was conducted during a two-hour course
session. We plan to extend the size of the experimental SA
document to cover all the LOFAR AK concepts.

In this experiment, we use one AK model (i.e., LOFAR
AK model). The LOFAR model is a specific AK model for the
SA documentation of our industrial partner, and may not cover
the AK concepts in other SA documents. We plan to repeat
this experiment with more AK models, and the general AK
core model proposed in [8], in order to investigate how junior
architects annotate AK using various AK models, and what
kind of model is more cost-effective for AK recovery.

The third threat of validity is related to the selected SA
document, which is from the domain of astronomy research,
and the subjects of this experiment are junior architects who are
not the experts in that domain. Therefore, the subjects (students)
may have some difficulties to understand correctly the SA
document of the LOFAR system (e.g., this SA document may
include specific and domain information which is only
understandable after special training).

VI. LESSONS LEARNED

The experiences and issues during applying AK recovery
method using AK conceptual model (AKRCM) are discussed:

(1) The AK conceptual model used for AK recovery is not
fixed. An AK conceptual model can evolve (e.g., merging,
splitting, modifying, and removing AK concepts) according to
users annotations, in order to get a wider consensus on
annotation results and get more AK being recovered.

(2) The AK recovery method using conceptual model
focuses on explicit AK (i.e., from documented AK to formal
AK) in SA documents without considering tacit AK (e.g.,
implicit design rationale and decisions). The method for
recovering architectural design decisions (an important type of
AK) proposed in [6] can be complementary to our method
since the two methods cover both explicit and tacit knowledge
in architecture design, documentation, and maintenance.

(3) In current software development practices, most of
software artifacts are recorded and managed in the form of file-
based documents besides SA documents, including
requirements documents, test specifications, etc. The
preliminary results of AK recovery from SA documents
suggest that knowledge recovery using specific conceptual
models can be extended and employed in the formal knowledge
recovery of other file-based software artifacts. Furthermore, we
propose that software knowledge recovery using conceptual
models, as part of knowledge reengineering activity in software
development, can be synthesized as a best practice in reverse
engineering of software-intensive systems.

VII. RELATED WORK

Capturing and recovering AK are two complementary
ways to record AK during architecting process. Capturing AK
is different from recovering AK in that AK capture normally

561

takes places during architecture design activity, while AK
recovery is an activity after the fact [6]. ADDRA
(Architectural Design Decision Recovery Approach) is an
approach to recover AK especially architectural design
decisions and document them [6]. Archium conceptual model
is used as input in ADDRA to document the recovered AK.
The concern of this approach is that it is heavily based on tacit
knowledge of original architect to recover AK. Roeller et al.
proposed an approach to recover architectural assumptions
(the architectural design decisions that are implicit and
undocumented) from existing software artifacts of software
products [10]. The approach, RAAM (Recovering
Architectural assumptions Method), uses documentation,
financial reports, free interviews, version control, and source
code as inputs, and then produces a list of assumptions.

ADDRA and RAAM are both heavyweight approaches
that try to recover tacit knowledge from existing SA
documents and transform them into explicit knowledge. The
AK recovery method in our work is based on annotations of
existing SA documents to transform the documented AK to
formal AK, which is more meaningful than documented AK
for understanding and communicating architecture design, and
facilitates AK reasoning for e.g., design maturity assessment.

There are also some work on recovering implicit AK (e.g.,
architecture layers and externally visible features) at source
code level using knowledge annotations, e.g., in [15]. The
advantage of this method is that it does not mandate a fixed
conceptual model for knowledge annotation in advance, but
employs an iterative process to refine flexible annotation types
(i.e., concepts in AK models), which introduces a viable
solution for iteratively refining AK models using the results of
AK annotations (see the point 2 of the future work).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted a descriptive study using
experiment to investigate how an AK conceptual model can
help junior architects to recover AK from existing SA
documents in order to further support other architecting
activities. Experiment results indicate that an AK model can do
help junior architects in AK recovery in two aspects: (1) it
helps junior architects get a fair understanding of SA
documents and recover better-quality AK; (2) it has a very
positive impact to junior architects to make AK annotation.

Based on the experiment results and analysis, we outline the
promising future work in several points: (1) Is an AK
conceptual model useful for AK recovery by
experienced/expert architects even if little impact is identified
to them? (2) Can recovered AK and unrecovered AK (i.e., No-
AK entities) helps to refine the domain-specific AK conceptual
model (e.g., add, remove, or modify AK concepts according to
the AK annotations)? (3) How architects are going to annotate
SA documents, if an AK conceptual model is not presented to
them? AK annotation without following an AK conceptual
model is called AK tagging, which produces various AK tags
we can not expect since architects can use whatever tags they
like, including domain-independent AK tags (e.g., Design
Decision, Pros, and Cons) and domain-dependent AK tags (e.g.,
pattern tags, function-related tags, performance, security, etc.).
It is useful to investigate how the two methods (i.e., AK

annotation and tagging) can be combined to achieve better AK
recovery results. (4) Conduct this experiment in an industrial
context with experienced architects and industrial-size SA
documents to understand the challenges of AK recovery that
architects face in architecting process. (5) Can this AK
recovery method using conceptual model be employed and
beneficial to other knowledge recovery activities in software
development, and further facilitate reverse engineering of
software-intensive systems? For example, requirements
rationale knowledge recovery from requirements specifications
to support evolution of requirements [16].

REFERENCES
[1] Bass, L., Clements, P., and Kazman, R., 2003. Software Architecture in

Practice, 2nd edition. Addison-Wesley Professional.
[2] Jansen, A. and Bosch, J., 2005. Software architecture as a set of

architectural design decisions. In: Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pages 109-
120.

[3] Lago, P. and Avgeriou, P., 2006. First workshop on sharing and reusing
architectural knowledge. ACM SIGSOFT Software Engineering Notes,
31(5):32-36.

[4] Kruchten, P., Lago, P., van Vliet, H., and Wolf, T., 2005. Building up
and exploiting architectural knowledge. In: Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 291-292.

[5] Kruchten, P., 2004. An ontology of architectural design decisions in
software intensive systems. In Proceedings of the 2nd Groningen
Workshop on Software Variability Management (SVM), pages 54-61.

[6] Jansen, A., Bosch, J., and Avgeriou, P., 2008. Documenting after the fact:
recovering architectural design decisions. Journal of Systems and
Software, 81(4):536-557.

[7] Nonaka, I. and Takeuchi, H., 1995. The Knowledge-Creating Company,
How Japanese Companies Create the Dynamics of Innovation. Oxford
University Press.

[8] de Boer, R., Farenhorst, R., Lago, P., van Vliet, H., Clerc, V., and Jansen,
A., 2007. Architectural knowledge: Getting to the core. In: Proceedings
of the 3rd International Conference on the Quality of Software-
Architectures (QoSA), pages 197-214.

[9] Shahin, M., Liang, P., and Mohammad, R. K., 2009. Architectural
design decision: existing models and tools. In: Proceedings of the 8th
Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 293-296.

[10] Roeller, R., Lago, P., and van Vliet, H., 2006. Recovering architectural
assumptions. Journal of Systems and Software, 79(4):552-573.

[11] Liang, P., Jansen, A., and Avgeriou, P., 2009. Sharing architecture
knowledge through models: quality and cost. The Knowledge
Engineering Review, 24(3):225-244.

[12] Wohlin, C., Host, M., and Henningsson, K., 2003. Empirical research
methods in software engineering. Empirical Methods and Studies in
Software Engineering, Springer, pages 145-165.

[13] Liang, P., Jansen, A., and Avgeriou, P., 2009. Knowledge Architect: A
Tool Suite for Managing Software Architecture Knowledge. Technical
report RUG-SEARCH-09-L01, SEARCH, University of Groningen,
February 2009.

[14] Host, M., Regnell, B., and Wohlin, C., 2000. Using students as subjects -
a comparative study of students and professionals in lead-time impact
assessment. Empirical Software Engineering, 5(3):201-214.

[15] Brühlmann, A., G rba, T., Greevy, O., and Nierstrasz, O., 2008.
Enriching reverse engineering with annotations. In: Proceedings of the
11th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 660-674.

[16] Liang, P., Avgeriou, P., and He, K., 2010. Rationale management
challenges in requirements engineering. In: Proceedings of the 3rd
International Workshop on Managing Requirements Knowledge
(MaRK), pages 16-21.

562

Knowledge Management Applied to Software
Testing: A Systematic Mapping

E. F. Souza
Computação Aplicada

Instituto Nacional de Pesquisas
Espaciais, INPE

São José dos Campos/SP, Brasil
erica.souza@lac.inpe.br

R. A. Falbo
Departamento de Informática

Universidade Federal do Espírito
Santo, UFES

Vitória/ES, Brasil
falbo@inf.ufes.br

N. L. Vijaykumar
Lab. de Comp. e Matem. Aplicada

Instituto Nacional de Pesquisas
Espaciais, INPE

São José dos Campos/SP, Brasil
vijay@lac.inpe.br

Abstract - With the growth of data from several different sources
of knowledge within an organization, it becomes necessary to
provide computerized support for tasks of acquiring, processing,
analyzing and disseminating knowledge. In the software process,
testing is a critical factor for product quality, and thus there is an
increasing concern in how to improve the accomplishment of this
task. In software testing, finding relevant knowledge to reuse can
be a difficult and complex task, due to the lack of a strategy to
represent or to associate semantics to a large volume of test data,
including test cases, testing techniques to be applied and so on.
This paper aims to investigate, through a Systematic Mapping of
the Literature, some aspects associated with applying Knowledge
Management to Software Testing.

Keywords: Software Testing, Knowledge Management,
Systematic Mapping

I. INTRODUCTION
 Software development is an error prone process. To achieve
quality software products, it is essential to perform Verification
& Validation (V&V) activities throughout the software
development process. Verification determines whether the
development products of a given activity conform to the
requirements of that activity. Validation refers to whether the
software satisfies its intended use and the user needs [1]. V&V
activities can be static and dynamic. Dynamic V&V activities
require the execution of a program, while static V&V activities
do not. Static V&V are typically done by means of technical
reviews and inspections. Dynamic V&V are done by means of
testing [2]. Thus, Software Testing consists of the dynamic
V&V of the behavior of a program on a finite set of test cases,
against the expected behavior [3].

Due to advances in technology and the emergence of
increasingly critical applications, tests have become more and
more complex. Currently, software testing is considered a
process consisting of activities, techniques, resources and tools.
During software testing, a large number of information is
generated. In fact, software testing is a knowledge intensive
process, and it becomes necessary to provide computerized
support for tasks of acquiring, processing, analyzing and
disseminating knowledge for reuse [4].

Finding relevant knowledge in software testing is not an
easy task. There is a need to represent and process knowledge
in an affordable and manageable manner. In this context,

principles of Knowledge Management (KM) are pointed out as
an important means to manage software testing knowledge [5].

The main goal of KM is to promote knowledge storage and
sharing, as well as the emergence of new knowledge [6]. This
paper presents a systematic mapping of the literature in order to
identify the primary studies that applied principles of KM to
software testing. A systematic mapping provides a broad
overview of an area of research, to determine whether there is
research evidence on a particular topic. Results of such
mapping may identify suitable areas for performing systematic
reviews and also areas where a preliminary study is more
appropriate. A systematic mapping also helps identifying gaps
in order to suggest areas for future research and provides a map
that allows appropriately to position new research activities [7].

The systematic mapping presented in this paper investigates
the following issues: (i) problems related to knowledge in
software testing; (ii) organizations’ purposes of applying KM
in software testing; (iii) types of knowledge items typically
managed in the context of software testing; (iv) benefits and
problems reported on the implementation of KM initiatives in
software testing; and (v) mechanisms or technologies used to
provide KM in software testing. This mapping was structured
in five research questions, and 336 studies were selected and
analyzed according to a systematic mapping method.

This paper is organized as follows. Section 2 presents the
main concepts used in this paper. Section 3 describes the
systematic mapping method applied, and discusses the main
parts of the mapping protocol used, including research
questions, inclusion and exclusion criteria, searched sources
and search string. Section 4 presents the main results of the
mapping, discussing the selection process, the classification
schemas, and presenting data synthesis. Section 5 discusses
the findings and the mapping limitations. Finally, Section 6
presents conclusions and future directions for this research.

II. BACKGROUND
In this section, we discuss briefly some of the most important
concepts in the research areas studied (namely Software
Testing and KM), in order to characterize the scope of our
investigation and to support the definition of the research
questions that are the subject of the systematic mapping.

563

Software Testing activities are supported by a well-defined
and controlled test process [3]. Testing process concerns to
how tests can be conducted and managed. It involves phases,
activities, artifacts, techniques, procedures, resources and tools
that seek to control and organize tests, in order to achieve
high-quality software [2, 3, 8, 9].

As the software development process becomes more
complex, testing process also becomes increasingly complex
and prone to generate a lot of information. Such information
may turn into useful knowledge to potentially benefit future
projects from experiences gained from previous projects [4].
However, converting this information into applicable
knowledge is not an easy task. There is a need to properly
represent and process the knowledge so that it can be accessible
and manageable. In this context, Knowledge Management
(KM) principles can be applied.

Different KM approaches have been applied in the context
of software testing to promote reuse of knowledge generated in
the testing process. Given this context, we conducted a
systematic mapping of the literature aiming at synthesizing the
evidences related to KM in software testing.

III. RESEARCH PROTOCOL
The research method for this systematic mapping was defined
based on the guidelines for systematic literature reviews given
in [7]. A systematic mapping helps providing a wide overview
of a research area and identifying areas suitable for conducting
Systematic Literature Reviews and areas where a primary study
is more appropriate. It involves three main phases [7]: (i)
Planning: refers to the pre-review activities, and aims at
establishing a review protocol defining the research questions,
inclusion and exclusion criteria, sources of studies, search
string, and mapping procedures; (ii) Conducting: regards
searching and selecting the studies, in order to extract and
synthesize data from them; (iii) Reporting: is the final phase
and aims at writing up the results and circulating them to
potentially interested parties. Following, the main parts of the
mapping protocol used in this work are presented.

A. Research Questions
This mapping aims at answering the following research
questions:

RQ1. What are the problems reported by software
organizations related to knowledge about software testing?

RQ2. What are the purposes of employing KM in software
testing?

RQ3. What are the types of knowledge items typically
managed in the context of software testing?

RQ4. What are the main conclusions (benefits and
problems) reported on the implementation of KM initiatives
in software testing?

RQ5. What are the mechanisms or technologies used to
provide KM in software testing?

B. Inclusion and Exclusion Criteria
The selection criteria are organized in one inclusion criterion
(IC) and five exclusion criteria (EC). The inclusion criterion

is: (IC1) The study discusses KM applied to software testing.
The exclusion criteria are: (EC1) The study does not have an
abstract; (EC2) The study is just published as an abstract;
(EC3) The study is not written in English; (EC4) The study is
an older version (less updated) of another study already
considered; and (EC5) The study is not a primary study, such
as editorials, summaries of keynotes, workshops, and tutorials.

C. Sources
The search was applied in seven electronic databases that were
considered the most relevant according to [10]. They are:

IEEE Xplore (http://ieeexplore.ieee.org)
ACM Digital Library (http://dl.acm.org)
SpringerLink (http://www.springerlink.com)
Scopus (http://www.scopus.com)
Science Direct (http://www.sciencedirect.com)
Compendex (http://www.engineeringvillage2.org)
ISI of Knowledge (http://www.isiknowledge.com)

D. Keywords and Search String
The search string considered two areas, Software Testing and
KM (Table I), and it was applied in three metadata fields (title,
abstract and keywords). The search went through syntactic
adaptations according to particularities of each source.

TABLE I. KEYWORDS SEARCH

Areas Keywords
Software Testing “Software Testing”, “Software Test”

KM “Knowledge Management”, “Knowledge Reuse”

Search string: (“Software Testing” OR “Software Test”) AND

(“Knowledge Management” OR “Knowledge Reuse”)

E. Data storage
The publications returned in the searching phase were
cataloged and stored appropriately. This catalog helped us in
the classification and analysis procedures.

F. Assessments
Before conducting the mapping, we tested the mapping
protocol. This test was conducted in order to verify its
feasibility and adequacy, based on a pre-selected set of studies
considered relevant to our investigation. The review process
was conducted by one of the authors and the other two carried
out its validation. They analyzed 36% of the studies using two
different samples.

IV. CONDUCTING THE MAPPING
In this section, the main steps that we performed in this
mapping are discussed, namely: search and selection, data
extraction and classification, and synthesis and data analysis.

A. Search and Selection
In the search process, we considered the studies published until
January 2013. As a result, a total of 336 publications were
returned, out of which 53 from IEEE Xplore, 67 from
Compendex, 70 from Scopus, 2 from Science Direct, 4 from
ACM Digital Library, 134 from SpringerLink and 6 from
Thomson Reuters Web of Knowledge.

564

Then, a selection process, divided into 3 stages, was applied
on the returned publications. In the first stage duplicates were
eliminated based on examining title and abstract. In this step,
the number of publications was reduced to 253 (approximately
25% reduction), since many publications were available in
more than one source.

In the second step, inclusion and exclusion criteria were
applied considering title and abstract. 219 publications (86.5%)
were eliminated. Although the publications cite, in the abstract,
the terms contained in the search string, they did not have the
principles of KM applied in the area of software testing and
thus were eliminated by the inclusion criterion (IC1). Finally,
in the third phase, the exclusion criteria were applied
considering the entire text, resulting in a reduction of 70.5%. It
is worth pointing out that, in the third stage, one publication
was eliminated because we did not have access to the full text.

From the three stages of the selection process, 10 studies
were considered relevant, from which data were extracted.
Table II summarizes the stages and their results. It shows the
progressive reduction of the number of studies throughout the
selection process. 10 out of 336 was the final number, with a
reduction rate of about 97%. Table III lists the 10 studies
considered relevant.

TABLE II. RESULTS OF THE SELECTION PROCESS STAGES

Stage Criteria Analyzed
Content

Initial N.

of Studies

Final N.

of Studies

Reduction

(%)

1st Eliminating
duplication

Title and
abstract

336 253 25%

2nd IC1, EC1,
EC2, EC3,
EC4 e EC5

Title and
abstract

253 34 86.5%

3rd IC1, EC4,
EC5 e EC6

Entire
Text

34 10 70.5%

B. Data Extraction and Classification

To answer the research questions from the 10 selected studies,
we used a form containing some parameters, including the
following: id, bibliographic reference, problems, purpose, types
of knowledge, and benefits and problems, related with the
implementation of KM in software testing. This form was used
to extract the answers. Therefore, before the extraction,
categories for classifying the studies were defined according to
the research questions. So, depending on the focus of each
category item, the study was classified as one or any
combination of this. Categories were defined as follows.

Classification schema for problems: this is based on the main
problems related to knowledge about software testing. We have
identified five main categories of problems, namely: (i)
Barriers in transferring testing knowledge, (ii) Loss of testing
knowledge, (iii) Low reuse rate of testing knowledge, (iv)
Testing knowledge is not properly shared, and (v) Testing
knowledge is not properly considered for planning the testing
process (including human resource allocation to testing
activities).

TABLE III. SELECTED STUDIES

ID Bibliographic
reference

#1 Y. Liu, J. Wu, X. Liu, G. Gu “Investigation of Knowledge
Management Methods in Software Testing Process,” International
Conference on Information Technology and Computer Science,
v.2, pp. 90 – 94, 2009.

#2 O. K. Wei, T. M. Ying, “Knowledge Management Approach in
Mobile Software System Testing,” Industrial Engineering and
Engineering Management, pp. 2120 - 2123, 2007.

#3 L. Xu-Xiang, Z. Wen-Ning, “The PDCA-based software testing
improvement framework,” Apperceiving Computing and
Intelligence Analysis (ICACIA), pp. 490 - 494, 2010.

#4 R. Abdullah, Z. D. Eri, A. M. Talib, “A Model of Knowledge
Management System in Managing Knowledge of Software Testing
Environment,” Malaysian Conference in Software Engineering
(MySEC), pp. 229 – 233, 2011.

#5 X. Li, W. Zhang, “Ontology-based Testing Platform for Reusing,”
Sixth International Conference on Internet Computing for Science
and Engineering, pp. 86 – 89, 2012.

#6 A. Desai, S. Shah, “Knowledge Management and Software
Testing,” International Conference and Workshop on Emerging
Trends in Technology (ICWET), pp. 767-770, 2011.

#7 E. Collins, A. Dias-Neto, V. F. Lucena, "Strategies for Agile
Software Testing Automation: An Industrial Experience," 36th
Annual Computer Software and Applications Conference
Workshops, pp. 440-445, 2012.

#8 J. Andrade, J. Ares, M. Martínez, J. Pazos, S. Rodríguez, J.
Romera, S. Suárez, “An architectural model for software testing
lesson learned systems,” Information and Software Technology,
pp. 18-34, 2013.

#9 K. Karhu, O. Taipale, K. Smolander, “Investigating the
relationship between schedules and knowledge transfer in software
testing,” Information and Software Technology, Vol. 51, pp. 663-
677, 2009.

#10 K. Nogeste and D. H.T. Walker, “Using knowledge management
to revise software-testing processes,” Journal of Workplace
Learning, v.18, n.1, pp. 6-27, 2006

Classification schema for purposes: we wanted to know what
are the organizations’ purposes, when employing KM in
software testing. We have identified five main categories of
purposes: (i) Reuse of knowledge related to software testing
(including lessons learned), (ii) Support for decision making,
(iii) Cost reduction, (iv) Competitive advantages, and (v)
Organizational learning (including also lessons learned).

Classification schema for types of knowledge: This schema
shows what types of knowledge are dealt with by
organizations and how they are handled. In this case, we
analyzed the explicit and tacit knowledge generated by an
organization in the context of software testing. Tacit
knowledge comes from individual experiences. It is highly
personal, hard to formalize and, therefore, difficult to
communicate to others. On the other hand, explicit knowledge
is formal and systematic. For this reason, it can be easily
communicated and shared. It can be expressed as tables,
figures, drawings, sketches, diagrams and requirements [11].

Other classification schemes: In these schemes we collected
unstructured data without a predefined classification. We
looked at the main findings found as benefits and problems
related with the implementation of KM in software testing,
and the main mechanisms and technologies reported by the
selected studies.

565

C. Synthesis and Data Analysis
Publications over the years: In order to offer a general view
of efforts in the area of KM in Software Testing, a distribution
of the 10 selected papers over the years is shown in Figure 1.
As this figure suggests, KM in Software Testing is very recent,
occurring basically from 2006 to nowadays.

Figure 1. Distribution of the selected studies over the years

Main problems related to knowledge about software
testing (RQ1): Figure 2 shows the percentage of studies per
category, considering the problems reported by software
organizations related to knowledge about software testing. We
can notice that “Barriers in Knowledge Transfer” has the
largest representativeness (9 studies in 10, corresponding to
90%). It stands out because transfer of organizational
knowledge can be quite difficult to achieve. This occurs
because most of the knowledge in organizations is tacit, that
is, derived from experience, and it becomes difficult to
articulate. Another category with a high percentage is “Low
Reuse Rate Knowledge” with 60% (6 studies). Software
Testing, in general, can involve reusing modules, test cases,
components, and experiences. However, testing teams,
generally, do not reuse or take advantage on the knowledge
acquired or the experience gained. Therefore, the same
mistakes are repeated, even though there are individuals in the
organization with the knowledge and experience required to
stop this [4].

Figure 2. Percentage of the selected studies per problems reported

Main purposes to employ KM in software testing (RQ2):
Figure 3 shows the percentage of studies per category,
considering the organizations’ purposes in managing software
testing knowledge. We can notice that “Knowledge Reuse”
(10 studies – 100%), “Organizational Learning” (7 studies –
70%) and “Competitive Advantages” (6 studies – 60%) have
the largest representativeness. We should highlight that some
purposes identified are strongly related. For instance, lessons
learned are both a way to promote knowledge reuse and
organizational learning. Thus, studies reporting that one of the
purposes of applying KM in software testing is registering and
disseminating lessons learned (5 studies – 50%) were
considered in both categories. Knowledge reuse, in turn, helps
increasing test effectiveness and thus leads to competitive
advantages and cost reduction.

Figure 3. Percentage of the selected studies per purposes reported

Types of knowledge typically managed (RQ3): Knowledge
can be of two main types: tacit and explicit knowledge. In the
10 selected studies, both of them are considered. Tacit
knowledge is taken into account in all studies (100%), whereas
7 studies (70%) consider also explicit knowledge. Explicit
knowledge appears mainly as test artifacts. Some examples of
explicit knowledge are: Test Plan, Test Cases, Test Results,
Requirements Specification, and Conceptual Models. Out of
all these examples, Test Cases are the most common cited
artifact in most of the literature evaluated.

Most of the studies identify that tacit knowledge is more
difficult to acquire, as part of personal experiences by the
members of the test team. They also mention that tacit
knowledge can be acquired from discussions, experiences
from project members, questionnaires and communications.

Main conclusions (benefits and problems) reported on the
implementation of KM initiatives in software testing
(RQ4): Regarding this issue, we have to highlight that 4
studies, although discussing some aspects related to KM in
software testing, they do not report KM initiatives in software
testing. In fact, only six of them (studies #1, #2, #3, #5, #8,
and #10 in Table III) discuss KM initiatives in software
testing. From these studies, we identified the following
conclusions from employing KM in software testing:

 Major problems found: (i) Employees are normally
reluctant to share their knowledge; (ii) if, on top of this,

566

knowledge sharing increases the employee workload,
KM strategies fail; and (iii) the existing communication
systems are not appropriate.

 Primary benefits found: (i) Selection and application
of better suited techniques, methods and test cases;
(ii) Cost reduction; (iii) Increasing test effectiveness;
and (iv) Competitive advantages.

Mechanisms or technologies used (RQ5): From the selected
studies, 6 of them use a KM system (one using a general
purpose one), and 4 present KM models or architectures
devoted to KM in software testing. From the mechanisms and
technologies applied by them, two highlight: yellow pages (or
knowledge maps) are used in 4 studies (40%); and ontologies
are used in 3 studies (30%).

V. RESULTS DISCUSSION
In this section we discuss some important findings and

limitations of this mapping.

Several studies have reported the problem of knowledge
reuse within organizations. The main issue is that knowledge
is retained with a single individual and therefore becomes
more difficult to raise this knowledge to the organizational
level. Even when some knowledge management strategy is
applied, it is not always feasible to achieve organizational
learning because the employees are reluctant to share their
knowledge as they feel that retaining this knowledge is an
advantage over their colleagues [4].

 Several studies report on the use of a KM system (#1, #2,
#3, #5, #8, #10). Others propose knowledge management
models or architectures (such as #1, #4, #5, #8). A KM system
should support the integration of information from disparate
sources, wherein a decision maker manipulates information
that someone else conceptualized and represented. So, the KM
system must minimize ambiguity and imprecision in
interpreting shared information. This can be achieved by
representing the shared information using ontologies [12].
Although ontologies have been widely recognized as an
important technology for KM, only three studies (#1, #5, and
#8) use ontologies. More specifically, only one (#5) uses an
ontology of the software testing domain. This seems to be a
problem, since, as pointed by Staab et al. [13], ontologies are
the glue that binds KM activities together, allowing a content-
oriented view of KM. Ontologies define shared vocabulary to
be used in the KM systems to facilitate communication,
integration, search, storage and knowledge representation [14].

 With respect to the types of knowledge, both tacit and
explicit have been investigated in the literature. According to
[11], as expected, tacit knowledge is more valuable, it is hard
to be acquired, and it requires good strategies to acquire and
process this knowledge. However, results obtained from it are
rich. Therefore, tacit knowledge is important to the test team
as it refers to previous experiences and thorough analysis of
past projects [15]. In this context, yellow pages or knowledge
maps are considered important tools for managing testing

knowledge, and the some studies cite their importance, such as
#1, #5, and #8.

 During the mapping it was possible to infer that much of
the explicit knowledge was related to reuse of test cases
derived from documents considered complete and correct.
According to [16], more detailed information on test cases can
provide a greater learning. As test cases evolve in applications,
they may be changed for a variety of reasons. Thus an efficient
and effective KM process can help in evaluating the impact
and in conducting changes of the test cases.

As we can see by means of this mapping, there are many
benefits of implementing KM in organizations for managing
software testing knowledge:

 Selection and application of better suited
techniques, methods and test cases. Experience
plays a key role in testing, and managing past
experience helps to effectively tailor the techniques
and methods to the ongoing project. Some of these
techniques, such as White-box Testing Techniques,
Black-box Testing Techniques or Defect-based
Testing Techniques [2], depend on the knowledge,
experience and intuition of test analyst.

 Cost reduction. In the testing context, cost has a very
strong relationship with time. Tester experience is
crucial for designing test cases and regression test
selection. A good selection of test cases minimizes not
only costs but also reduces time [17].

 Test effectiveness increase. Knowledge and
experience about the domain and the system under test
is essential for increasing test effectiveness. This helps
testers improve decision making on which techniques
to use, selection of test cases or approaches for test
input generation [4].

 Competitive advantages. In organizations, KM is
now seen as a strategic factor and knowledge is also
recognized as one of the main sources of cost savings
and competitive advantage [18]. The ability to transfer
best practices in the organization is a means to build
competitive advantage through the appropriation from
scarce knowledge [19].

Although KM in software testing brings many benefits,
there are also problems, such as:

 Employees are normally reluctant to share their
knowledge: Many experiences are grasped by only a
few people and haven’t become public knowledge.
This causes many difficulties in knowledge transfer
about testing [4].

 Increased workload: Shortage of time is a potential
risk to incorporate the principles of KM in software
testing, because knowledge sharing can imply in
increasing the employee workload and costs [4, 18].

567

 KM systems are not appropriate yet: There are
many difficulties in implementing knowledge
acquisition, coding, storage and searching
functionalities effectively in KM system, because it
involves all the problems mentioned above as time and
interest of the employees.

The mapping conducted in this study also had some
limitations. In order to reduce subjectivity, the other two
authors made a random validation of 36% of the studies. We
did several tests with the search string to try our best not to
compromise the return of some preliminary studies. We
cannot say what is the best technique applied, but the objective
was to map how the principles of KM has evolved in the
software testing domain over the years. Furthermore, the
results may be different if conducted to another area of
application different from the testing software.

VI. CONCLUSIONS
This paper presented a systematic mapping in the context of

software testing and KM. Five research questions were
defined and addressed investigating the following aspects: (i)
main problems found related to knowledge in software testing;
(ii) purposes to employ KM in software testing; (iii) types of
knowledge typically managed in the context of software
testing; (iv) main conclusions (benefits and problems) reported
on the implementation of KM initiatives; (v) mechanisms or
technologies used in KM in software testing.

The contributions of this work are on making evident some
aspects associated to the employment of KM in software
testing and research efforts that can drive future research. In
this context, we highlight the following conclusions: (i) the
major problem in organizations are barriers in knowledge
transfer with largest representativeness; (ii) reuse of testing
knowledge is the main purpose of applying KM in software
testing; (iii) there is a great concern with tacit knowledge.

Implementation of KM strategies in the field of software
testing has shown very promising research, since KM helps in
handling knowledge within the organization in several
respects as shown in this systematic mapping. However, a
point seems to be a challenge for KM in software testing.
Although recognized as an important instrument by the KM
community [12, 13, 14], ontologies are not being widely used
in KM initiatives in software testing. Thus, as future work, we
intend to explore how ontologies can be used for managing
knowledge in the software testing domain.

ACKNOWLEDGMENT
The first author would like to acknowledge FAPESP

(Process: 2010/20557-1) for the financial grant. The second
author acknowledges FAPES (Process Number 52272362/11)
for the financial grant.

REFERENCES
[1] IEEE Std 1012-2004: IEEE Standard for Software Verification and

Validation. New York, NY, USA. pp. 120, 2004.
[2] A. P. Mathur, Foundations of Software Testing. 5rd ed. Delhi, India:

Dorling Kindersley (India), Pearson Education in South Asia, 2012.
[3] IEEE Computer Society, SWEBOK, A Guide to the Software

Engineering Body of Knowledge, 2004.
[4] J. Andrade, J. Ares, M. Martínez, J. Pazos, S. Rodríguez, J. Romera, S.

Suárez, “An architectural model for software testing lesson learned
systems,” Information and Software Technology, pp 18-34, 2013.

[5] A. Desa, S. Shah, “Knowledge Management and Software Testing,” in
International Conference and Workshop on Emerging Trends in
Technology (ICWET 2011) – TCET, Mumbai, India, 2011.

[6] D. O'Leary and R. Studer, “Knowledge management: An
interdisciplinary approach,” IEEE, vol. 16, No. 1, 2001.

[7] B, Kitchenham, S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” School of Computer
Science and Mathematics Keele University and Departament of
Computer Science University of Durham, UK, v. 2.3, 2007.

[8] G. J. Myers, The Art of Software Testing. 2rd ed. Canada: John Wiley
and Sons, 2004.

[9] R. Black, J. L. Mitchell. Advanced Software Testing: guide to the
ISTQB advanced certification as an advanced technical test analyst.
USA:Oreilly & Assoc, 2008.

[10] T. Dyba, T. Dingsoyr, G. Hanssen, “Applying systematic reviews to
diverse study types: An experience report,” First International
Symposium on Empirical Software Engineering and Measurement,
Madrid, pp. 225-234, 2007.

[11] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company. How
Japanese Companies Create the Dynamics of Innovation, Oxford
University Press, Oxford, 1999.

[12] H. M. Kim, “Developing Ontologies to Enable Knowledge
Management: Integrating Business Process and Data Driven
Approaches,” Workshop on Bringing Knowledge to Business Processes,
2000.

[13] S. Staab, R. Studer, H. P. Schurr, and Y. Sure, “Knowledge Processes
and Ontologies,” IEEE Intelligent Systems, vol. 16, No. 1, 2001.

[14] V. R. Benjamins, D. Fensel, and A. G. Pérez, “Knowledge Management
through Ontologies,” The 2nd International Conference on Practical
Aspects of Knowledge Management (PAKM98), Switzerland, 1998.

[15] K. W. Ong, M.Y. Tang, “Knowledge management approach in mobile
software system testing,” in Proceedings of the IEEE International
Conference on Industrial Engineering and Engineering Management,
IEEE IEEM 2007, Singapore, pp. 2120–2123, 2007.

[16] X. Li, W. Zhang, “Ontology-based Testing Platform for Reusing,” Sixth
International Conference on Internet Computing for Science and
Engineering, pp. 86- 89, 2012.

[17] A. Beer, R. Ramler, “The role of experience in software testing
practice,” in Proceedings of the 34th Euromicro Conference Software
Engineering and Advanced Applications, Italy, pp. 258–265, 2008.

[18] O. Taipale, K. Karhu, K. Smolander. “Observing Software Testing
Practice from the Viewpoint of Organizations and Knowledge
Management,” In Empirical Software Engineering and Measurement
(ESEM), 2007. pp. 21-30, 2007.

[19] K. Karhu, O. Taipale, K. Smolander, “Investigating the relationship
between schedules and knowledge transfer in software testing,”
Information and Software Technology, Vol. 51, pp. 663-677, 2009.

568

Improving Architectural Knowledge Management in
Public Sector Organizations – an Interview Study

Dan Tofan
University of Groningen
Groningen, Netherlands

d.c.tofan@rug.nl

Matthias Galster
University of Canterbury

Christchurch, New Zealand
mgalster@ieee.org

Paris Avgeriou
University of Groningen
Groningen, Netherlands

paris@cs.rug.nl

Abstract — Architecting software systems is a knowledge-
intensive activity. It requires significant knowledge about ar-
chitecting in general, but also about domains and technologies.
Such knowledge should be managed systematically to make it
available throughout the whole software development cycle
(e.g. to facilitate maintenance). Architectural knowledge man-
agement (AKM) literature covers organizations in the private
sector (e.g. software vendors). However, there is a lack of stud-
ies on AKM practices in public sector organizations (e.g. mu-
nicipalities), even though AKM practices in the public sector
are immature. Therefore, we propose applying lessons from
AKM practices found in the private sector to address AKM
challenges in the public sector. Thus, we conducted an inter-
view study with four public and four private sector organiza-
tions. We identified challenges for AKM in the public sector.
Then, we derived solutions from the private sector to the chal-
lenges in the public sector. The main challenges in the public
sector are vaporization of architectural knowledge, insufficient
knowledge sharing, and organizational cultures that do not
encourage AKM. Solutions to these challenges include commu-
nity building, improved tool support, quality control and man-
agement support. The results help improve AKM practices in
the public sector.

Keywords – software architecture; knowledge management;
public sector; private sector

I. INTRODUCTION
Within software developing organizations, architectural

knowledge is considered an important asset that needs to be
managed systematically [1]. Software architects make im-
portant decisions. Making architectural decisions is a
knowledge-intensive task. For example, deciding on the
decomposition of a system requires experience, domain-
specific knowledge, knowledge about technologies, and gen-
eral software architecture knowledge. The software architec-
ture is thus the result of early design decisions with regard to
a software system. Typical examples of architectural deci-
sions include choosing a development framework (e.g. J2EE,
.NET), selecting architectural patterns (e.g. client-server,
layers), or deciding on the middleware for a distributed soft-
ware system (e.g. an enterprise service bus) [2].

Architectural knowledge management (AKM) increases
the quality of software products by creating, capturing, and
sharing knowledge among architects, developers and other
stakeholders [1]. AKM can also improve the overall software
development process [1], mainly by reducing architectural
knowledge (AK) vaporization [3]. AK vaporization happens
when knowledge about critical design decisions is lost. AK
vaporization increases maintenance costs as stakeholders
miss the rationale of previous decisions later on in a project

(e.g. during maintenance) [3]. Therefore, the field of soft-
ware architecture knowledge management has seen increased
attention in recent years [1, 4].

Most work on AKM has been conducted in the context of
private sector organizations (e.g. commercial software ven-
dors or companies that develop products that rely heavily on
software). Unfortunately, AKM in public organizations has
neither been studied, nor understood well enough to propose
solutions to its AKM challenges.

Architects in private sector organizations are software or
enterprise architects. Organizations in the private sector are
not owned or operated by a government. Typical private
sector organizations are corporations, regardless of their size.
In contrast to private sector organizations, public sector or-
ganizations are owned and operated by some government.
Typical public sector organizations are municipalities or
government agencies. Architects in public sector organiza-
tions are usually enterprise architects. Public sector architects
are involved in e-government projects, which offer services
to citizens, private sector organizations, and other public
sector organizations.

From our previous work on service-oriented architectures
in e-government [5], we learnt that AKM in the public sector
needs improvement. For example, immature AKM leads to
constraints on designing specialized reference architectures
for municipalities [5]. Additionally, similar to the private
sector, e-government projects in public sector organizations
are under pressure to reduce costs. As shown for the public
sector, AKM helps reduce costs. However, we could not find
literature on AKM in the public sector. Therefore, the goal of
this study is to understand AKM in the public sector and to
provide solutions for improving AKM in the public sector.
Towards this goal, we formulate the following research ques-
tion: What are potential solutions to the challenges for
AKM in public sector organizations?

To answer this research question, we conducted an inter-
view study in public and private sector organizations, with
the purpose of improving AKM practices in the public sec-
tor. The first step towards improving AKM in the public
sector is to understand AKM challenges in the public sector.
Then, we use AKM solutions from the private sector to ad-
dress AKM challenges in the public sector. Proposing solu-
tions for improving knowledge management practices in the
public sector by using practices from the private sector has
already been applied successfully [6, 7].

The main contribution of this paper is a set of AKM chal-
lenges in the public sector, mapped to challenges and solu-
tions found in the private sector. Researchers can use the

569

results to propose further improvements to AKM practices in
public sector organizations. Practitioners can apply the solu-
tions to AKM challenges, to improve current AKM practices
in public sector organizations.

II. RELATED WORK
This paper is related to three research areas: knowledge

management (KM) in software engineering, AKM, and KM
in the public sector. We discuss related work from each area.

Dingsøyr and Conradi [8] analyzed eight case studies of
KM in software engineering. All cases reported benefits due
to KM, such as time savings. However, results from a sys-
tematic literature review on KM in software engineering
indicate that most existing work consists of informal lessons
learnt from applying KM, instead of scientific studies [9]. In
contrast, we conducted an interview study to answer our
research question in a scientific manner.

Various AKM challenges and solutions have been inves-
tigated in private sector organizations. For example, the chal-
lenge of architectural knowledge vaporization can be ad-
dressed by documenting design decisions [3]. Furthermore,
the challenge of sharing architectural knowledge can be ad-
dressed by considering communication, planning issues, and
quality of captured knowledge [1, 4] when implementing
AKM strategies. Finally, a delicate balance must exist be-
tween sharing architectural knowledge through documenta-
tion and social interactions [6] to ensure that knowledge is
made explicit, without causing much burden on architects.

The idea of getting inspiration from the private sector for
improvements in the public sector has been used before. Bate
and Robert [6] describe how knowledge management con-
cepts and practices from the private sector can improve
health care organizations in the UK public sector. Another
study compares public and private sector perceptions and the
use of knowledge management [7]. In both types of organi-
zations, improved quality and efficiency were the main bene-
fits of knowledge management.

Overall, many reports exist on AKM in the private sector
(e.g. [1, 4]), as well as on general knowledge management in
the public sector (e.g. [6, 7]). However, we could not find
any work on AKM in the public sector.

III. RESEARCH METHOD
To answer the research question in Section I, we con-

ducted an interview study in public and private sector organ-
izations, using semi-structured interviews. Such interviews
belong to qualitative research, which aims at investigating
and understanding phenomena within their real life context
[10]. Challenges and solutions for AKM are linked tightly to
their context. Also, we needed flexibility during the inter-
views, so that we could ask new questions, to further probe
for AKM challenges and solutions.

Similar to [11], we decided to conduct extended, semi-
structured interviews. Using surveys was less optimal, be-
cause of the lack of reports on AKM practices in public sec-
tor organizations, which inhibits the development of relevant
questionnaires. Additionally, in a survey, participants might
have different interpretations of the questions. Therefore, we
decided to conduct semi-structured interviews, which ena-
bled us to present our topics of interest, and discuss them
directly with the participants. Furthermore, semi-structured
interviews are useful as preliminary work for an in-depth

case study [10]. However, semi-structured interviews require
significant effort to prepare a discussion plan, recruit partici-
pants, and conduct the interview sessions. Overall, semi-
structured interviews suited best our research goal, given the
lack of previous work on AKM in the public sector.

A. Data Collection and Analysis Procedures
To conduct the interviews, we selected organizations

from the private and public sectors which had enterprise or
software architects. We contacted diverse organizations from
our collaboration network. For the interviews, we used rec-
ommendations from [12] to ensure that the interviewer has
the needed skills, and to facilitate good interaction between
interviewer and interviewees. In each organization, we inter-
viewed one or two persons, depending on their availability.
In total, we interviewed eleven persons. We conducted face-
to-face interviews that typically lasted one hour. The inter-
views took place between January 2010 and July 2012. We
made audio records for the interviews, with the permission of
the interviewed persons. We used a discussion plan with
open-ended questions structured around three areas: strategy
(e.g. “what are the objectives of the AKM strategy?”), pro-
cesses (e.g. “what are the processes for sharing AK?”), and
tools (e.g. “what tools are used for AKM?”). We derived
these areas from AKM literature [1, 4].

To analyze the interviews, we transcribed the audio re-
cordings. Next, two researchers performed content analysis,
by assigning individually codes to sentences, phrases or par-
agraphs [10]. Each code corresponded to either a challenge
or solution for managing AK. Different codes could be as-
signed to the same piece of content. Afterwards, researchers
discussed their differences, and they agreed on a common
interpretation. In case of disagreements, we consulted a third
researcher. Data analysis also included a mapping of chal-
lenges to solutions by identifying which challenges were
addressed by which solutions.

B. Organizations
The organizations that took part in this study are listed in

TABLE I. Only the software architect in PS1 had about five
years of practical experience. All the other participants had at
least ten years of practical experience. The private sector
organizations are international corporations. The public sec-
tor organizations are part of Dutch government. For confi-
dentiality reasons, we provide limited details on the organi-
zations, and we assign aliases to them.

TABLE I. SUMMARY OF PARTICIPATING ORGANIZATIONS

ID Sector Domain # Employ-
ees Interview with

Gov1 Public Municipality ~1.000 Enterprise architect
KM consultant

Gov2 Public Municipality ~100 Enterprise architect

Gov3 Public Agency ~1.300 Software architect
Software architect

Gov4 Public Ministry ~30.000 Enterprise architect

PS1 Private Software
provider ~600 KM director

Software architect
PS2 Private IT consultancy ~40.000 Enterprise architect

PS3 Private Engineering >100.000 Enterprise architect

PS4 Private IT consultancy >100.000 Software architect

570

C. Validity Threats
We discuss validity threats using the recommendations

from [13], in line with a report that uses the same methodol-
ogy conducted by [11]. Construct validity refers to the rela-
tion between the observations and the theory behind the re-
search. We interviewed many practitioners to avoid mono-
operation bias [13]. We avoided evaluation apprehension
[13] by using the recommendations from [12] to create a
comfortable and nonjudgmental atmosphere for the inter-
views, and ensuring their confidentiality. Conclusion validity
refers to the accuracy of the study conclusions. To increase
conclusion validity, we involved more researchers in the data
analysis, who reached a high agreement when interpreting
the data. External validity refers to how well the results can
be generalized beyond the study. To increase external validi-
ty and to reduce validity threats, we conducted interviews at
a variety of organizations in the public and private sectors.
Besides architects, we also interviewed knowledge manage-
ment consultants, who could offer insights on how architec-
tural knowledge is managed. Internal validity threats are not
applicable to this study, because we do not try to establish
any causal relationships.

IV. CHALLENGES

We identified three common challenges for the public
and the private sector, as well as a challenge only for the
private sector. Additionally, we link these challenges to re-
sults from knowledge management literature. We summarize
these challenges in TABLE II. Afterwards, we present details
on all challenges, their consequences, and concrete examples
from the public and private sectors.

TABLE II. CHALLENGES IN PUBLIC AND PRIVATE SECTOR
ORGANIZATIONS.

Challenge Public sector Private sector

AK vaporization Gov1, Gov2, Gov3, Gov4 PS1, PS2, PS3, PS4

Low AK sharing Gov1, Gov2 PS1, PS2, PS3, PS4

Organizational culture Gov1, Gov2, Gov3 PS1, PS2, PS4

Low integration - PS1

A. Challenges in the public sector
1) AK Vaporization: This challenge refers to the loss of

architectural knowledge in an organization [3]. We learnt
that AK vaporization contributes to increased vendor lock-in
because the less in-house AK remains in public sector organ-
izations, the more they depend on software vendors for tech-
nology decisions (e.g. extending existing software depends
on one vendor). Also, AK vaporization makes it more
difficult to modify the architecture without involving ven-
dors. For example, migrating existing systems to a service-
oriented architecture depends on the willingness of the ven-
dors. Having more in-house AK enables organizations to
make better decisions about software solutions that meet
their core needs, and to decrease vendor lock-in. Overall, AK
vaporization reduces flexibility for public sector organiza-
tions and increases maintenance costs.

AK vaporization is a challenge across all public sector
organizations that we studied. In Gov3, little architectural
knowledge was captured on a regular basis. Architects had
no formalized way to capture their knowledge. A wiki was
used in the past, but only for a brief period, so the content

became quickly outdated. Consequences of AK vaporization
were that similar problems were solved in different ways.
Thus, new people who joined a team needed to re-discover
solutions, instead of reusing a proven solution. Instead of
reusing captured knowledge, much informal communication
of knowledge needed to take place. Architects often needed
to explain the same solution to more developers, instead of
documenting a solution and sharing the documentation.

Similar to the other organizations, little architectural
knowledge was captured in Gov4. The architects working for
Gov4 were employed through external companies, and were
not asked to document their knowledge, although they were
willing to do it. Moreover, little architectural knowledge
existed inside Gov4 to facilitate knowledge sharing through
direct interactions. Therefore, when the external architects
stopped working for Gov4, their knowledge vaporized from
Gov4, because there was no mechanism for preserving it.

2) Low AK Sharing: This challenge refers to insufficient
sharing of architectural knowledge, inside and across organi-
zations [1]. We learnt that low AK sharing existed across
Gov1 and Gov2. An architect from Gov1 compared his cur-
rent position with his previous job in the private sector,
where co-workers were much more open to knowledge sha-
ring, resulting in higher efficiency, by helping each other.

At Gov3, architects worked in small, isolated groups,
without sharing much knowledge across groups. Also, archi-
tects could allocate parts of their time to increase their
knowledge, but not for sharing it with others. In Gov4, the
same tendency for isolation between groups existed, with
little knowledge sharing between them. Moreover, in Gov4
most architects were from external companies, and very few
knowledgeable people existed in Gov4, so architects could
not share their knowledge with them. Overall, low AK shar-
ing caused inefficiencies.

3) Lack of Supportive Organizational Culture: Culture
contains norms about who controls what knowledge, and
who can share or hoard it [14]. For example, a cultural norm
is accepting knowledge hoarding as a source of job security
or power [14]. An architect from Gov1 stated: “Nearby
municipalities are very small compared to us, maybe they
fear we are going to take over things from them. That’s the
kind of feeling, which is very old.” Such fears encouraged
knowledge hoarding and reduced knowledge sharing.

An architect at Gov3 considered that organizational cul-
ture played a role in a previous failed attempt to use a wiki
for knowledge sharing between architects and developers.
However, there were no accepted norms in Gov3 to capture
and share knowledge, so the wiki content became gradually
outdated, and was abandoned. Overall, we noticed that the
lack of a supportive organizational culture increases
knowledge vaporization and leads to reduced knowledge
sharing, within and across organizations.

B. Challenges in the private sector
The challenges in the private sector match the ones from

the public sector and include one extra challenge, namely
low integration of AKM with organizational goals.

571

1) AK Vaporization: We found this challenge in all the
private sector organizations. Architects mentioned several
factors that contribute to this challenge. First, due to lack of
time, less knowledge can be documented (PS1, PS2, and
PS3). Second, documentation becomes irrelevant a few years
after writing it, so the return for spending much time docu-
menting is unclear (PS1, PS2, and PS4). The architect at PS2
summarized his view on documenting AK: “We typically
document when either the client asks for it or we discover
that we need it. I’m not really interested in this
documentation, unless I discover that the speed by which I
can address a problem depends on the documentation.”
Third, the differences in educational background between
software architects and maintainers increased the
documentations costs. The architect at PS2 described this as
follows: “I have a designer, who has knowledge, puts it into
a document, and pass it to someone who does maintenance,
and who reads that information, generates knowledge from
it, and these two do not match. Why not? Well, this one has
architectural schooling for eight years and this one is good
at programming routers. The points of view are so different,
that these simply do not match, even if the documentation is
the same.” Forth, existing research results on capturing ar-
chitectural design decisions are not fully adopted in industry
(PS1, PS2, and PS3). Overall, similar to public organizations,
AK vaporization lead to increased maintenance costs.

2) Low AK Sharing: This challenge exists in all the pri-
vate sector organizations. From the interviews at PS1, we
learnt that a factor contributing to this challenge was sharing
knowledge by e-mails, because senders determined receivers
of its content. This created an obstacle for other persons that
might be interested in the knowledge captured by e-mail. For
example, let us assume the rationale for an architectural deci-
sion is in an e-mail thread among a few architects. If a devel-
oper working on the code is interested in the rationale for
that decision, then he would need to find out that the e-mail
thread exists, and then ask one of the architects to forward it
to him. Reducing overhead from these steps may facilitate
AK sharing.

3) Lack of Supportive Organizational Culture: We iden-
tified this challenge in the interviews at PS1, PS2, and PS4.
Several factors contributed to this challenge. First, architects
and developers needed to be convinced to deliver not only
source code, but also their knowledge. For example, at PS2,
architects were not interested in transferring knowledge,
because they do not consider it an interesting activity. Sec-
ond, trust was an important factor in organizational culture,
as put by the interview at PS1: “It’s not about software. It’s
not about wiki content, it’s about people getting trust and
solving problems.”

4) Low Integration with Organizational Goals: This
challenge refers to the integration of knowledge management
efforts with the goals of the organization [15]. From the in-
terviews at PS1, we learnt that if such integration is low, then
AKM efforts carry the risk of adding too little value to the
organization. Specifically, the challenge is to provide value
from AKM efforts throughout the lifecycle of projects for
customers, i.e., from sales, to architecting, development, and

during maintenance. AKM efforts need to show benefits,
such as time savings for architects and other stakeholders.

Although the integration challenge did not emerge from
the interviews in the public sector organizations, we consid-
ers this challenge is also relevant to public sector organiza-
tions, because such integration is a critical element of
knowledge management, regardless of the type of organiza-
tion [15]. Due to their different nature, the organizational
goals in the public sector differ from the goals in the private
sector. However, in both types of organizations, AKM efforts
must serve organizational goals.

V. SOLUTIONS
We describe six solutions to the challenges in Section IV,

elicited from the interviews in the private sector organiza-
tions: community building, tool support, training, resources
allocation, quality control, and management support. Next,
we present details about each solution.

1) Community Building: This solution was described in
all private sector organizations. PS1 built its community,
based on three elements: people, tools, and processes. People
include architects, developers, testers, partners, and custom-
ers, who joined the community voluntarily and gradually.
The main tool is a commercial wiki. Processes are managed
through PS1’s own business process management tool. For
example, architects follow predefined processes for capturing
knowledge regularly in the company wiki. If an architect
leaves, the impact is reduced, because the other people in the
organization can still use the architect’s previous regular
contributions to the wiki.

PS2 supports the creation of various communities of
practice, in which architects can share knowledge with peo-
ple in other positions or fellow architects. Moreover, collo-
cating architects with other project groups improves AK
sharing across projects. Architects who work in other groups
“get the feeling on what that really means and how that
works.” Overall, getting perspectives from other groups
helps architects deliver better documentation as architects
became aware of the documentation needs of other groups.

Architects in PS3 share their knowledge through com-
munities of practice, on architectural or other technical topics
(such as Java or .Net), or business related topics. For these
communities, the company organizes regular events to help
networking, and promote knowledge sharing. Recognized
experts are invited to share their insights at such events. The
architect at PS3 stressed the idea that although tools help,
they are less important than networks of people.

2) Tool Support: This solution receives much attention
in all private sector organizations. At PS1, tool support shift-
ed from a sender-dominant paradigm (e-mail) to a receiver-
dominant paradigm (subscription). This means that notifica-
tion about content and the actual content are separated. For
example, instead of architects emailing content, they put
architectural content in the wiki, and then send an e-mail
notification with the wiki link. If a person considers that the
content is interesting for her work, then the person can sub-
scribe to the topic, and receive future notifications about it,
without the constraint of receiving content through email.

572

Moreover, at PS1 knowledge capturing is based on a
wiki, to avoid using different tools (e.g. forums, wikis, or
document management systems). Having content in multiple
locations creates obstacles for end users in accessing and
sharing it. Therefore, all content must be delivered in the
wiki. For example, if architects produce artifacts with other
tools (e.g. PowerPoint slides), then the artifacts need to be
attached to a wiki page.

At PS2 and PS3, various tools (e.g. SharePoint, wikis, in-
ternal blogs, and a third party collaborative software system)
are used for capturing and sharing architectural knowledge.
Additionally, social networking tools (e.g. Skype, Twitter,
and Yammer) are widely used in PS2, PS3, and PS4, ena-
bling knowledge exchanges across offices around the world.

3) Training: PS2 develops training materials for mainte-
nance persons, to facilitate the transfer of architectural
knowledge. In PS3, to increase peoples’ AK, architectural
training take place as part-time assignments, which may take
from six to nine months. Although demanding, such trainings
are necessary to ensure similar levels of AK throughout PS3.
In addition, PS4 has central training facilities in which archi-
tects from various offices can meet in person during train-
ings, which leads to stronger connections through the social
networking tools.

At PS3, in addition to trainings, there are company-wide
events with software architecture experts. Architects can
attend such events to expand their knowledge, or share their
knowledge with each other.

4) Resources allocation: This solution refers to planning
and allocating resources for AKM activities. At PS1 and
PS3, 10% of architects’ time is allocated for KM activities.
At PS2, transferring architectural knowledge to maintenance
people is considered a project by itself. As part of the project,
architects need to consider what knowledge is needed for
maintenance, and plan for its transfer. Architects may join
temporarily the maintenance team to facilitate the transfer.

5) Quality Control: This solution refers to measures for
increasing the quality of captured knowledge. At PS1, vari-
ous metrics are collected for the wiki pages, such as number
of visitors, profile of visitors, time spent on a page, or next
visited pages. Such metrics indicate issues with content. If
the content in the wiki is useful and up to date, then visitors
perceive value in accessing the wiki.

At PS3, peer-review is used to evaluate the quality of
captured AK. For example, a group of architects involved in
a healthcare project sent some design documents to another
group of experienced architects for review. The experienced
architects provided constructive feedback to increase docu-
mentation quality. On the other hand, the reviewers (experi-
enced architects) improved their knowledge on the healthcare
domain.

At PS4, a solution to increase quality is to separate do-
main-specific knowledge from department-specific
knowledge in the wiki system used for capturing knowledge.
The rationale was that domains and departments evolve at
different speeds. For example, a department might disappear
during a re-organization, but knowledge from that depart-
ment about the architecture of a specific system might be

needed across other departments. If no separation exists, then
the captured knowledge about that specific system becomes
difficult to update, because it is mixed with irrelevant
knowledge about the disappeared department.

6) Management Support: Support from top management
was essential for the knowledge management efforts at PS1,
because AKM is a long term effort. A person from PS1
summarized this in a metaphor: ”Grass doesn’t grow by
pulling it.” PS1 needed two to three years to implement its
new knowledge management practices. To sustain momen-
tum for long-term knowledge management efforts,
knowledge workers (including architects) needed to experi-
ence benefits from the new practices. This was mainly
achieved by saving time through AK reuse.

Top management influences organizational culture by
encouraging initiatives, and having tolerance for mistakes.
This was described as a success factor at PS1: “You’ll only
get fired if you didn’t take initiative, not because you made a
mistake. Otherwise I wouldn’t be doing this. I wouldn’t even
be close to this kind of ideas [for knowledge management].”

At PS4, management supported knowledge management
efforts by providing positive reinforcements to the top wiki
contributors who shared their knowledge. The positive rein-
forcements were in the form of emails from the top manage-
ment thanking contributors, and internal news articles prais-
ing their efforts. By receiving recognition for their efforts,
the organizational culture became more supportive for
knowledge management activities. In turn, people became
comfortable to share their knowledge and help colleagues.

VI. DISCUSSION
A similar study in the UK public sector (i.e. national

healthcare) [6] describes knowledge management as a core
activity for organizational improvements. Unfortunately,
knowledge management in UK public sector is much more
immature, compared to private sector organizations [6].
Therefore, the public sector can benefit from the lessons and
experiences in the private sector [6].

In our study, we noticed a similar situation for the Dutch
public sector. Although architectural knowledge manage-
ment provides significant benefits, AKM in the public sector
is much less mature than AKM in the private sector. For
example, interviewees from the public sector mentioned
previous failed attempts to use wikis for capturing and shar-
ing knowledge. Therefore, we think that the experiences
derived from the private sector will help improve AKM prac-
tices in the Dutch public sector and elsewhere. Similar to [6,
7], we consider that solutions from the private sector help
improve the situation in the public sector. Also, the improved
quality and efficiency that the private sector derives from its
AKM efforts can motivate public sector organizations to pay
more attention to AKM.

We summarize the solutions from the private sector (de-
tailed in Section V) and map them to the challenges in the
public sector (detailed in Section IV.IV.A) in TABLE III.
Each solution exists in two or more private sector organiza-
tions, and addresses one or more challenges. For example,
community building addresses the AK vaporization and shar-
ing challenges. Also, tool support addresses AK vaporiza-
tion, sharing and organizational culture challenges.

573

TABLE III. SUMMARY OF SOLUTIONS AND CHALLENGES.

Organizations Solution Challenges

PS1,PS2,PS3,PS4 Community building vaporization, sharing

PS1,PS2,PS3,PS4 Tool support vaporization, sharing, culture

PS2,PS3,PS4 Training vaporization, sharing, integration

PS1,PS2,PS3 Resources allocation vaporization, integration

PS1,PS3,PS4 Quality control vaporization, sharing, integration

PS1,PS4 Management support culture, integration, sharing

Dependencies among challenges have received little at-
tention in AKM literature on the private sector. We noticed
dependencies between AK sharing and AK vaporization:
sharing reduces the risk of vaporization. On the other hand,
addressing vaporization by creating architecture documenta-
tion makes it possible to share AK. Also, to address the lack
of AK sharing and vaporization we can use a common set of
solutions: trainings, processes, tools and building communi-
ties. Another dependency is that organizational culture influ-
ences the willingness of architects to share and capture their
knowledge. For example, architects might not share their
knowledge because there is no positive reinforcement in their
organization for sharing. On the other hand, management
support influences organizational culture, by providing the
positive reinforcement and long-term focus. Both are needed
to foster an organizational culture, which encourages
knowledge-related activities.

This study also contributes to existing literature on AKM
in the private sector. For example, various solutions have
been proposed to address AK vaporization and sharing [1, 3].
However, little work exists on the role of organizational
culture and the integration of AKM efforts with organiza-
tional goals. Results from KM literature [14, 15] and from
this study encourage more research on these challenges that
focuses on architectural knowledge.

Researchers can use these results to develop a taxonomy
of AKM challenges and their solutions, for the public and
private sectors. Such taxonomy would make explicit the
relationships among challenges, among solutions, and be-
tween challenges and solutions. Additionally, practitioners
can use the results of this study to improve AKM practices in
the public sector. For example, the challenges indicate poten-
tial pitfalls when implementing AKM strategies in public
sector organizations, so practitioners can define actionable
AKM activities from the solutions, such as improving tool
support, and securing management support.

VII. CONCLUSION AND FUTURE WORK
In this paper, we present the results of an interview study

consisting of eleven interviews conducted over two years.
We conducted the interviews in four public and four private
sector organizations. The paper contributes to the existing
body of work on AKM (e.g. [1, 2, 4]) with lessons learnt
from implementing AKM in the private sector and proposes
these as solutions to the challenges in the public sector. Also,
our study confirms that AK vaporization and sharing as ma-
jor challenges. Furthermore, we identified less studied chal-
lenges in the AKM literature: the role of organizational cul-
ture, and the integration of AKM with organizational goals.
These challenges require further research to understand their
role in AKM efforts in the public and private sectors. Finally,
we think that dependencies among AKM challenges need
further attention. Overall, researchers can use the results of

this study to propose taxonomies of challenges and solutions
for AKM in both public and private sectors. Practitioners can
use this study to improve AKM practices in the public sector.

As future work, we will conduct workshops in the Dutch
public sector with architects and their managers to improve
AKM practices. Also, using insights from this study, we are
developing tool support (https://github.com/danrg/RGT-
tool/wiki) to help architects capture their knowledge.

ACKNOWLEDGMENT

We thank interview participants for their help. This re-
search has been partially sponsored by the ‘Software as a
Service for the Varying Needs of Local e-Government’ pro-
ject, via contract no. 638.000.000.07N07.

REFERENCES
[1] M. A. Babar, T. Dingsøyr, P. Lago, and H. van Vliet, Software

Architecture Knowledge Management: Theory and Practice. Springer
Berlin, 2009.

[2] T. Dingsøyr and H. van Vliet, "Introduction to software architecture
and knowledge management," in Software Architecture Knowledge
Management, M. A. Babar, T. Dingsøyr, P. Lago, and H. van Vliet,
Eds. Springer Berlin, 2009, pp. 1-17.

[3] A. Jansen and J. Bosch, "Software architecture as a set of
architectural design decisions," in Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture, 2005, pp. 109-120.

[4] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D. Perry,
"Architectural knowledge and rationale: issues, trends, challenges,"
ACM SIGSOFT Software Engineering Notes, vol. 32, no. 4, pp. 41-
46, 2007.

[5] M. Galster, P. Avgeriou, and D. Tofan, "Constraints for the design of
variability-intensive service-oriented reference architectures - An
industrial case study," Information and Software Technology, vol. 55,
no. 2, pp. 428-441, 2013.

[6] S. P. Bate and G. Robert, "Knowledge management and communities
of practice in the private sector: lessons for modernizing the National
Health Service in England and Wales," Public Administration, vol.
80, no. 4, pp. 643-663, 2002.

[7] R. McAdam and R. Reid, "A comparison of public and private sector
perceptions and use of knowledge management," Journal of European
Industrial Training, vol. 24, no. 6, pp. 317-329, 2000.

[8] T. Dingsøyr and R. Conradi, "A survey of case studies of the use of
knowledge management in software engineering," Journal of
Software Engineering and Knowledge Engineering, vol. 12, no. 4, pp.
391-414, 2002.

[9] F. O. Bjørnson and T. Dingsøyr, "Knowledge management in
software engineering: A systematic review of studied concepts,
findings and research methods used," Information and Software
Technology, vol. 50, no. 11, pp. 1055-1068, 2008.

[10] C. B. Seaman, "Qualitative methods," in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K.
Sjøberg, Eds. Springer London, 2008, pp. 35-62.

[11] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar, A.
Shahrokni, and R. Feldt, "Quality Requirements in Industrial Practice
- An Extended Interview Study at Eleven Companies," IEEE
Transactions on Software Engineering, vol. 38, no. 4, pp. 923-935,
2012.

[12] S. E. Hove and B. Anda, "Experiences from conducting semi-
structured interviews in empirical software engineering research," in
Proceedings of the 11th IEEE International Software Metrics
Symposium (METRICS'05), 2005, pp. 23-23.

[13] C. Wohlin, P. Runeson, and M. Höst, Experimentation in Software
Engineering: an Introduction. Springer, 2000.

[14] D. W. D. Long and L. Fahey, "Diagnosing cultural barriers to
knowledge management," The Academy of Management Executive
(1993-2005), vol. 14, no. 4, pp. 113-127, 2000.

[15] B. Rubenstein-Montano, J. Liebowitz, J. Buchwalter, D. McCaw, B.
Newman, and K. Rebeck, "A systems thinking framework for
knowledge management," Decision Support Systems, vol. 31, no. 1,
pp. 5-16, 2001.

574

Enhancing Deployment Requirements’ Traceability
via Knowledge Management Audit

Naomi Unkelos-Shpigel
Department of Information System, University of Haifa,

Haifa, Israel
naomiu@haifa.ac.il

Irit Hadar
Department of Information System, University of Haifa,

Haifa, Israel
hadari@is.haifa.ac.il

Meira Levy

Department of Industrial Engineering and Management,
Shenkar College of Engineering and Design, Ramat-Gan, Israel

lmeira@shenkar.ac.il

Abstract— This paper presents a case study of an IT firm,
in which the deployment architecture process was analyzed
from a knowledge management (KM) perspective, using the
KM audit methodology, SEKAM. The analysis identified
several KM gaps, which can cause serious deployment
requirements’ traceability (RT) problems. Based on these
findings, we propose a preliminary reengineered deployment
architecture process, including enhanced knowledge
repositories and processes that facilitate RT throughout the
deployment process. The enhanced process aims at assisting
architects in better receiving a precise and wide perspective of
the overall requirements of the product, and improves RT
throughout the deployment process.

Keywords-component; deployment architecture; knowledge
management; knowledge audit; requirements’ traceability
Introduction

I. INTRODUCTION
Deployment architecture is an important part of the software
development lifecycle. Its purpose is to bridge the gap
between the requirements of the capabilities, to the point
where the solution is delivered and installed at the customer`s
site [1]. Deployment architecture is defined as "allocation of
the system’s software components (and connectors) to its
hardware hosts" [2,p.1], and highly influences quality of
service (QoS). Since the deployment solution involves
adjusting the product to the customer`s needs and
environment, it has a major effect on customer satisfaction of
the product [3].

 Several empirical studies have examined the deployment
process, most of which focus on defining the requirements met
in the deployment architecture [4]. Deployment concerns that
are not widely inquired include the challenges along different
phases of the deployment process and the relations the service
architect (who creates the architecture, hereafter referred to as
the architect) maintains with other stakeholders. These
concerns may influence the decisions made by the architect
while constructing the deployment architecture solution,
namely, specifying the components composing the solution
and the connection between them. This stage, though

sometimes short, is very important and affects the product`s
overall architecture.

An important aspect of the software development process is
requirement traceability (RT). Gotel and Finkelstein [5] define
RT as "the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction."
They address several problems and solutions related to
traceability, emphasizing the importance of managing and
organizing information before, during and after requirements
specification. Spanoudakis and Zisman [6] discuss the use of
automated tools as a way to enhance RT in software projects.
However, we did not find studies addressing the deployment
RT within the deployment architecture process.

The deployment architecture process is a knowledge-
intensive business process (KIBP), thus it requires knowledge-
related practices. Knowledge management (KM) has been
recognized as an essential component of knowledge-intensive
industries, which are characterized by technological
uncertainty and a competitive environment [7]. Over the past
years, we have witnessed an increased focus on KM as a major
part of organizational strategy in knowledge-intensive
organizations and as a significant driver for business process
design and reengineering in such organizations [8]. KM
enhances the ability of knowledge-intensive organizations to
continuously learn and adapt, and to rapidly respond to
changes in technology, market, and customer preferences [7],
mainly by improving their KIBP.

In this study, we analyze the deployment architecture
process using the KM audit methodology SEKAM [9], which
aims at identifying KM requirements within a KIBP. We posit
that handling knowledge throughout the deployment
architecture process enhances handling deployment RT.
Accordingly, our research question is: "How can we enhance
deployment RT within the deployment architecture process,
using a KM audit methodology?" In this ongoing study, we
have examined thus far this question from the viewpoint of
deployment architects, based on a case study in a large IT
firm. Based on that, we present a preliminary proposal for
managing and enhancing requirements and architecture
interdependencies in the domain of deployment, as a means to

575

assist firms in improving the deployment architecture process,
and as a means to assist architects in creating better
deployment solutions.

II. THEORETICAL BACKGROUND

A. Deployment architecture
Creating deployment architecture is a process that involves

matching all the customer requirements to the physical
components, and creating an overall solution [1]. We found in
the literature two main approaches of defining deployment
architecture, viewing deployment architecture either as a
process, namely, describing the sequence of activities of
creating the deployment architecture, or as an artifact, namely
describing the deployment documents and blueprints.

The definitions referring to the process elaborate on the
different steps of creating the deployment architecture solution
including, for example, the interrelated activities of release,
install, activate, deactivate, update, and adapt (e.g., [1]). The
definitions referring to the artifact typically state what
information the documents and blueprints comprising this
artifact should provide (e.g., [4]).

These two approaches can be viewed as complementary.
However, since our intent here was to uncover factors related
to the decisions made by the architects while creating a
deployment architecture solution, we focus on the deployment
architecture process.

B. Requirement Tracability (RT)
As stated in the introduction, RT is recognized as a concern

in guidelines and standards in requirement engineering [5]. It
tackles the changes a requirement undergoes, prior and post its
inclusion in the requirement specification, and its overall effect
on the system.

Spanoudakis and Zisman [6] suggest the use of repositories
as a tool for conducting successful RT. They use the term
"traceability relations" to describe several challenges in a
system`s lifecycle; for example, the way a change in
requirements will be expressed in the system`s structure.
However, they address tractability with respect to the full
software development cycle, without referring to its various
stages and aspects. Specifically, the need to follow the system`s
compatibility with a particular set of requirements, which are
related to its deployment, has not yet been studied.

C. Social Engineering Knowledge Audit Methodology
(SEKAM)
SEKAM [9] is a methodology for eliciting and analyzing

KM infrastructure requirements in the context of KIBP.
SEKAM is highly connected to the business context through
integrative audit of knowledge and business processes. It
provides integration of both aspects – social and engineering –
for analyzing KM infrastructure solution requirements. Its
comprehensive analysis identifies knowledge bottlenecks, thus
contributing to KIBP reengineering. This study utilizes f
SEKAM for identifying and studying KM gaps within the
deployment architecture process and presents a reengineered
process that enhances the KM of the software deployment
process, focusing on its RT.

III. RESEARCH METHOD
The main objective of this study was to explore the work
process of deployment architects, and their perceptions on that
process, focusing specifically on the process of RT. For
conducting this research, we chose the qualitative research
approach, where the investigator does not have a pre-defined
theory about the environment inspected, but rather uses
techniques and tools to explore and discover phenomena [10].
We used the grounded theory methodology (ibid), in which
data are collected from the field, analyzed and used to build a
theory, as was done in this research in the context of the
deployment process.

We initiated our research by distributing an open-questions
questionnaire to 25 architects at a global, large-scale IT firm.
This firm is one of the largest IT management software
providers worldwide, with headquarters in the US and 150
offices in more than 45 countries. The questionnaires were
intended to achieve a preliminary identification of the major
concerns of the deployment process and its main challenges
and opportunities for improvement, as perceived by architects.
Next, we conducted 5 in-depth interviews with senior service
architects in the firm, focusing on the challenges emerging
from the questionnaires. Data collected were inductively
analyzed and categorized. Categories were detected and named
by using open coding [6]. Data was then further analyzed using
the SEKAM model [9], in order to describe the process and its
challenges, and suggest a preliminary solution for KM within
the process. While using grounded theory, it is permitted to
consult the literature for further analysis of the data [11]. Due
to space limitations, in this paper we present a partial set of the
SEKAM tools (SEK 1, SEK 6 and SEK 8) that best describe the
knowledge gaps within KIBP and the reengineered KIBP, and
in our case elicit RT concerns and solutions.

IV. MAIN FINDINGS
In this section we present our findings of RT concerns. Some
emerged concerns were not directly described by the architects
as RT concerns, but – based on literature review – were found
to imply to RT problems in the deployment process.

A. SEK 1 - General description of the business process
environment
The first stage of SEKAM aims at identifying knowledge

oriented problems and opportunities within organizational
KIBPs (SEK 1). Data collected in questionnaires and
interviews, point at the deployment architecture process as the
KIBP to focus on, since it is a major factor influencing
customer satisfaction.
The deployment architecture process starts when an architect
receives the product requirements from the marketing unit. In
some cases, marketing promises customers product
functionalities without checking their feasibility in advance.
This lack of knowledge in this case results is conflicts,
misunderstandings and critical errors in product design and
deployment. In addition, since architects are involved with
product requirements at a late stage of the project, they usually
do not have the ability to express their opinions about the
requirements.

576

"Sales people sell the software and not the services with it;
there is always a gap between business requirements and
capabilities… the architect should always be a part of pre-
sales."

Next, the architect creates the high-level design document
(HLD) with no designated tool that could have also facilitated
diagram drawing. In cases where diagrams are required during
the design, they are created with stand-alone CASE tools which
make the design validation and relevant knowledge extraction
harder. Therefore, architects often use peer support (product
managers), Share Point documents from previous projects, and
online help from the firm`s guide books or the internet.
Moreover, since there is no FAQ repository, additional required
information about product`s components is hard to find.

“One of my biggest concerns is lack of availability of
validated certified references".
After completing the HLD, a review session usually takes
place. In this review, each stakeholder (i.e., market analyst,
product manager) usually addresses only requirements which
are relevant to their point of view. There is no tool which
enables the different stakeholders to view and communicate
about the requirements which are relevant to several
stakeholders, or can be critical in the future and affect the
overall product behavior. In addition, architects do not obtain
the ability to get several views of the solutions. As a result, the
architect is not aware of changes in product configuration,
which might prevent the product from being installed at the
customer site because errors or deviation of the product from
the requirements. In addition, since these tools contain a vast
amount of complicated, unneeded features, architects usually
prefer to work with simpler tools, which do not provide the
wider needed perspective.

"I want to be able to receive information from automated
tools about failing tests of another stakeholder I depend
on…People prefer to use excel sheets rather than requirement
managing tool… the current tool has a lot of un-used
features”.

B. SEK8 - Requirement traceability problem example
For combining hard elements such as process flowchart and

soft elements such as culture, the SEK 8 modeling tool [9],
named knowledge interactions diagram, is used, as
demonstrated in Figure 1. We were frequently told that in
recent years the firm has been increasingly concerned with
customer complaints, and in some cases even the CEO got
involved in their resolution. We found that in some cases, well
managed RT would have been able to prevent these complains.

Figure 1 illustrates an example of a lack of RT during the
deployment process, where a customer was promised to have
an XML interface of the product, while the product itself did
not have this feature. This gap was discovered only at the
product installation. The flow presented in the diagram is based
on a real case we encountered in the interview, and reflects the
conversations between various stakeholders in the deployment
architecture process. The scenario starts during installation
when the customer complains about having no XML interface
to his company portal, although they specified it and the
marketing division approved it. While the product manager
knew that this requirement could not be fulfilled, the

deployment architect was not updated on that. Moreover, this
requirement was not written in the SRS document, resulting in
no XML interface in the product. Support team checked the
complaint and found it just, as did the QA team. This did not
please the project manager. Checking with the product
manager, it appeared that this requirement could not be
implemented, which decreased customer satisfaction. Had this
problem been identified in advance, and informed to all the
stakeholders, this undesired event could have been prevented.

Figure 1. SEK 10 - Conceptual Scheme of Informal Knowledge
Interaction Diagram[9]

C. Reengineering the deployment architecture process
SEK 6 modeling technique [9] aims at generating a

knowledge inventory diagram and examining knowledge
bottlenecks of the process, and is originally presented before
SEK 8. However, due to space limitations we used SEK 6 also
for suggesting solutions that will be incorporated into the
deployment architecture process. Hence, SEK 6 describes both,
the current and the proposed processes. The diagram indicates
knowledge input bottlenecks within the deployment
architecture tasks (i.e., marketing information during
requirements’ specification; similar solutions during looking
for existing solutions). Realizing that the firm does not use a
requirement tool or a knowledge repository, we decided to add
them to the presented current deployment architecture process
flow. However, the use of knowledge tools is not enough in
order to improve RT [6]. Additional changes to the process
were made, mainly adding a phase of brainstorming review
sessions, and connecting the requirement tool usage to various
steps in the process (i.e., designing a solution). In addition, we
proposed updating the knowledge repository at each step.

In what follows, we present a preliminary model of the
deployment architecture process, based on the problems we
identified. It addresses the RT problem directly. Since this is an
ongoing research, we plan to further refine this model. The
reengineered process is presented in Figure 2, where we
elaborate on additional tasks that focus on KM and enable RT:

 Brainstorming review session – includes the marketing
person, product manager, and architect. In this session the
main project requirements are presented, the requirement
tool is used for handling the project’s requirements from the

577

Figure 2. SEK 8 – Deployment architecture flow chart –problems and suggestion for improvement

start, and common issues are raise concerning possible
challenges in the project.

 Creating the high-level design – utilizing the tool and the
repository, which include all the information, gathered from
similar former projects, thereby, enabling architecture
deployment reuse. The architect can easily access all relevant
information via designated requirement tool – documents,
forums, blogs, peers’ comments, wikis – without spending
time searching for the information. If there is a lack of
information, the architects can summon a peer review, where
they can get guidance from other stakeholders.
 Customize and deliver – at this stage, the architect has
finished building the solution and delivers it to the customer.
Since many of the conflicts in requirements can occur at this
stage, the architect can use the data repository and the KM
tool to immediately seek for help and consult with peers.

V. CONCLUSION
In this paper we presented a work in progress, focusing on a
case study of an IT firm, in which we analyzed the deployment
architecture process from a KM point of view, aiming to
identify knowledge gaps in the process and their sources. We
found the KM perspective appropriate for our research since the
interviewees referred time and again to knowledge they require
and not always have access to, and the ability to trace
requirements’ changes.

Using the SEKAM model to analyze the existing situation
and developing the structure of the solution, helped us to point
out the RT problem as a basic concern of the process. Based on
these findings, we proposed a reengineered deployment
architecture process, facilitated with enhanced knowledge
repositories and processes that will assist architects in better
receiving a precise and wide perspective of the overall
requirements of the product, and improve RT throughout the
deployment process. Since the proposed solution is embedded in

the process, little additional effort is required. Future research
will study the proposed model implementation and further
required development and evaluate the solution.

VI. REFERENCES
[1] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van Der

Hoek, and A.L. Wolf, "A characterization framework for software
deployment technologies," Technical Report. Colorado State Univ.
Fort Collins Dept of Computer Science, 1998.

[2] N. Medvidovic, and S. Malek "Software deployment architecture
and quality-of-service in pervasive environments," Int. Workshop
on Engineering of Software Services for Pervasive Environments,
in conjunction with the 6th ESEC/FSE joint meeting, ACM, 2007,
pp. 47-51.

[3] A. Mockus, P. Zhang, and P. L. Li, “Predictors of customer
perceived software quality," Int. Conference on Software
Engineering (ICSE 2005), ACM, May 2005, pp. 225–233.

[4] S. Adam and J. Doerr "On the notion of determining system
adequacy by analyzing the traceability of quality," Workshops
and Doctoral Consortium, vol. 1, 2007.

[5] O. C. Gotel, and C. W. Finkelstein, "An analysis of the
requirements traceability problem," Proc. IEEE Int. Conf. on
Requirements Engineering, April 1994, pp. 94-101.

[6] G. Spanoudakis,and A. Zisman, "Software traceability: a
roadmap," Handbook of Software Engineering and Knowledge
Engineering, 3, 2005, pp. 395-428.

[7] A. Lonnqvist, "Business Performance Measurement for
Knowledge-intensive Organizations, Business Performance
Measurement: Towards Organizational Excellence," Le Magnus
University Press, 2005, pp. 17 - 35.

[8] N. Gronau, and E. Weber, "Management of Knowledge
Intensive Business Processes,"In Business Process Management,
Desel, J., Pernici, B., Weske, M. (eds.), Springer-Verla, 2004.

[9] I. Aviv, M. Levy, and I. Hadar, "Knowledge-Intensive Business
Process Audit: The Practical Aspect," Proceeding of the 9th
International Conference on Knowledge Management and
Knowledge Technologies, Graz, Austria, 2009.

[10] A. Strauss, A. and J. Corbin, "Basics of Qualitative Research: Grounded
Theory Procedures and Techniques," Sage Publications, Inc., 1990.

[11] R. Suddaby ”From the editors: What grounded theory is not,” Academy
of Management Journal 49(4), 2006, pp 633-642.

578

Generating Partial Covering Array for Locating Faulty
Interactions in Combinatorial Testing

Ziyuan Wang1, 2 Ting Guo1 Wujie Zhou3 Weifeng Zhang1 Baowen Xu2

1School of Computer Sci. & Tech., Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210093, China

3Department of Mathematics, Southeast University, Nanjing, 210096, China
Corresponding: wangziyuan@njupt.edu.cn

Abstract— Combinatorial testing is widely used to detect failures
caused by interactions among parameters. After detecting faults,
the subsequent problem in combinatorial testing is characterizing
faulty interactions that cause these detected failures. In order to
characterize faulty interactions accurately and efficiently, a test
suite that usually differ from the original combinatorial test suite
is required in fault diagnosis. By assuming the number of faulty
interactions is under control, the partial covering array, whose
size grows logarithmically with the number of parameters, can
serve as a test suite for locating faulty interactions in the non-
adaptive faulty interaction locating process. In this paper, we
extend the one-test-at-a-time framework, which is widely used in
combinatorial test generation, for generating partial covering
arrays. We combine this framework with greedy methods and
meta-heuristic search methods respectively. An experiment shows
that partial covering array needs smaller number of test cases
than existing non-adaptive methods.

Keywords — combinatorial testing; software debugging; fault
diagnosis; faulty interaction; minimal faulty schema

I. INTRODUCTION
Assume that we have a software system whose behavior is

affected by k parameters (or factors). In the testing of this
software system, besides the failure that caused by a specific
parametric value of a specific parameter, there may be failure
that caused by a combination of specific parametric values of
 specific parameters (1< k). We call such a failure-causing

combination of parametric values as a faulty interaction with
size or a -way faulty interaction.

In order to testing these faulty interactions, an ideal method
is the exhaustive testing that covers all the possible k-tuple
combinations of parametric values. But it is unfortunate that,
the exhaustive testing is unacceptable since the number of
required test cases grows exponentially with k. Combinatorial
testing, which uses covering array or mixed covering array as
test suite, could provide a tradeoff between the cost of testing
and the degree of interaction coverage. E.g., for a given integer
(<k), the -way combinatorial testing requires covering all the
-tuple combinations of parametric values rather than the k-

tuples, and the number of test cases in the -way combinatorial
test suite grows logarithmically with k [1]. The reduction of test
cases in combinatorial test suite will not reduce the failure
detection ability of combinatorial testing in most applications,

since the investigation on real software failures states that most
failures are caused by faulty interaction with a small size [2].

Combinatorial testing is used widely for its efficiency and
effectiveness. Up to date, most works in combinatorial testing
focus on test generation and fault detection. These works could
provide multiply results on detecting software failures. After
detecting failures by combinatorial test suite, we must answer a
question: why did the software fail in testing? Or what is the
faulty interaction that causes failure? The fault diagnosis will
answer this question and provide an assistant to the software
debugging. In the fault diagnosis, the faulty interaction that
causes the detected failure will be characterized and located, by
using the information that obtained from the execution results
of test cases in combinatorial test suite or some other types of
test cases.

All the previous faulty interaction locating techniques in
combinatorial testing could be categorized into two classes:
adaptive strategy and non-adaptive strategy [3]. Adaptive
strategy generates and runs additional test cases by using the
executions results of prior test cases in combinatorial test suite.
And sometimes it need diagnose iteratively. In non-adaptive
strategy, test cases that characterizing faulty interactions are
independent from the execution results of prior test cases. So
there is an advantage of non-adaptive strategy that, test cases
for diagnosis could be generated before the execution of those
test cases for detecting failures. Such an advantage could help
us to increase the efficiency of locating faulty interactions,
since the detection and locating of faulty interactions could be
parallel if some essential conditions are satisfied.

In this paper, we mainly focus on the non-adaptive faulty
interaction locating strategy because of its advantage on high
efficiency. Besides the existing locating and detecting arrays
[3] and error locating array [4][5], we found another algebraic
structure we called partial covering array [6] could be used as
test suite for locating faulty interactions, and may be better than
previous two types of arrays since it requires less test cases.
Contributions of our paper mainly include: (1) Introduce non-
adaptive faulty locating strategy in detail. (2) Extend the one-
test-at-a-time strategy that widely used in combinatorial test
generation for generating partial covering array, and combine
this framework with greedy strategy and meta-heuristic search
strategy. (3) Give simulation experiment to compare proposed
algorithms, and show that partial covering array needs smaller

579

number of test cases than other existing non-adaptive faulty
interaction methods.

The rest of this paper will be organized as follows. Section
2 presents backgrounds. Section 3 describes the non-adaptive
faulty interaction locating strategy. The definition of partial
covering array is given is section 4. We extend the one-test-at-
a-time strategy to generate partial covering array in section 5.
Experimental results are shown in sections 6. Related works are
discussed in section 8. And finally a conclusion is given.

II. PRELIMINARIES

A. Combinatorial Testing
For a software system with k parameters (or factors), we

suppose each factor fi has ai (1 i k) discrete valid values. Let
F={f1, f2,…, fk} denote the set of factors, and Vi={0, 2,…, ai-1}
(1 i k) the value set for fi without loss of generality.

Definition 1 (Test case). A k-tuple test=(v1, v2, …, vk) is a
test case, where v1 V1, v2 V2,…, vk Vk.

Definition 2 (Covering array). Given a 2-dimension array
A=(ai,j)m×k, where the j-th column denotes the parameter fj and
all elements of this column come from the set Vj (j=1, 2,…, k),
that is ai,j Vj. If each m× (1 k) sub-array contains all value
combinations of corresponding parameters, then A is a -way
covering array or a covering array with strength . It could be
denoted as CA(m; , F). [7]

A -way combinatorial test suite could be obtained easily
from -way covering array, by mapping each row of covering
array to a test case of combinatorial test suite. So a -way
combinatorial test suite must cover all tuples in set:

rRr CombSetCombSet
Where

},...,,|},...,,{{ ,2,1,,2,1, FffffffR iiiiii

},...,,
},,...,,{|),...,,{(

,,2,2,1,1,

,2,1,,2,1,

iiiiii

iiiiiir
VvVvVv

fffrvvvCombSet

TABLE I. PARAMETERS AND THEIR PARAMETRIC VALUES

Browser OS Connection DB
Firefox

IE
Opera

Linux
Windows
Macintosh

LAN
ISDN

Modem

DB/2
Oracle
Access

TABLE II. A 2-WAY COMBINATORIAL TEST SUITE

No. Browser OS Connection DB
1
2
3
4
5
6
7
8
9

Firefox
Firefox
Firefox

IE
IE
IE

Opera
Opera
Opera

Linux
Windows
Macintosh

Linux
Windows
Macintosh

Linux
Windows
Macintosh

LAN
ISDN

Modem
ISDN
LAN

Modem
Modem

LAN
ISDN

DB/2
Oracle
Access
Access
Oracle
DB/2

Oracle
Access
DB/2

B. Faulty Interaction
In combinatorial testing, we mainly focus on the failure

caused by a combination of specific parametric values of
specific parameters (1 k). We call this type of failure as the
interaction failure, and call such a failure-causing combination
as a faulty interaction with size or a -way faulty interaction.

In the field of faulty interaction locating, there is usually an
assumption that, a test cases matching a faulty interaction must
fail [3][4][8][9]. So any higher-size interaction matching a -
way faulty interaction must be a faulty interaction too. In order
to focus our views on the small-size faulty interactions, we use
the model of minimal faulty schema [8].

Definition 3 (Interaction schema). A k-tuple s=(-, …,- , vi, 1,
-, …, -, vi, 2, -, …,- , vi, , -, …, -) is a -way interaction schema,
or interaction schema with size , or -schema for short (1 k).
Where values are fixed as vi, 1 Vi, 1, vi, 2 Vi, 2, …, vi, Vi, ,
and other k- values are not fixed and represented as “-”.

Definition 4 (Sub-schema and parent-schema). Schemas
s1=(v1, v2, …, vk) and s2=(v1’, v2’, …, vk’) are 1-schema and 2-
schema respectively (1 2). If 1 i k, (vi=”-”) (vi=vi’) is true,
then s1 is sub-schema of s2, and s2 is parent-schema of s1. It is
denoted as s1 s2. Especially, if s1 s2, then s1 is real sub-schema
of s2, and s2 is real parent-schema of s1.

For a test case t, there are totally 2k-1 sub-schemas. They
form a set ScheSet(t)={s|s t}. And for a test suite T, there is
ScheSet(T)={s|s ScheSet(test), test T}.

Definition 5 (Minimal schema). A schema s ScheSet is a
minimal schema of a set of schemas ScheSet, if s’ ScheSet
(s’ s) (s’=s).

E.g, for the test case t=(IE, Linux, ISDN, Access) in Table
2, ScheSet(t)={(IE, -, -, -), (-, Linux, -, -), (-, -, ISDN, -), (-, -, -,
Access), (IE, Linux, -, -), (IE, -, ISDN, -), (IE, -, -, Access), (-,
Linux, ISDN, -), (-, Linux, -, Access), (-, -, ISDN, Access), (IE,
Linux, ISDN, -), (IE, Linux, -, Access), (IE, -, ISDN, Access),
(-,Linux, ISDN, Access), (IE, Linux, ISDN, Access)}. There
are totally 4 minimal schemas (IE, -, -, -), (-, Linux, -, -), (-, -,
ISDN, -), (-, -, -, Access) in ScheSet(t).

Definition 6 (Faulty schema). A schema s ScheSet(Tall) is
a faulty schema, if test cases t Tall=V1×V2×…×Vk containing s
as a sub-schema t is failed in testing.

Definition 7 (Minimal faulty schema). A faulty schema s is
a minimal faulty schema (or MFS), if any real sub-schema of s
is not faulty schema.

Based on such a minimal faulty schema model, each faulty
interaction can be mapped to a faulty schema. When locating
faulty interactions, only the interactions that described as a
minimal faulty schema need to be characterized.

III. NON-ADAPTIVE FAULTY INTERACTION LOCATING
In order to characterize faulty interactions or minimal faulty

schemas, both adaptive strategy and non-adaptive strategy are
available. Here “adaptive” means that, test cases that used in
the phase of fault diagnosis (we call them diagnosing test cases
in this paper) should be generated and executed according to

580

the execution results of prior test cases that used in the phase of
failure detection (we call them detecting test cases).

Differing from adaptive strategy, in non-adaptive strategy,
diagnosing test cases could be generated before the execution
of detecting test cases, since all diagnosing test cases should be
independent from the execution results of detecting test cases.
So if there is high risk of failures in testing, we could design
and execute both detecting test suite and diagnosing test suite
in parallel. Such a parallel work can increase the efficiency of
locating faulty interactions, and even the efficiency of whole
process of software development and maintenance. Figure 1
shows the difference between the processes of adaptive strategy
and non-adaptive strategy.

Figure 1. Processes of adaptive fault locating strategy (left) and
non-adaptive fault locating strategy (right)

One of possible scenarios, where parallel detecting failures
and locating faults are required, is the well-known daily build
or nightly build. A daily build is the practice of each day doing
a building and smoke testing of the latest version of a program
[18]. Typically, developers submit program after work, and
testers test program on night. Now we assume that there is a
high risk of detecting failures. If the adaptive fault diagnosis
were started in the next day, the resource of fixing software
bugs, which is a manual action, would be occupied by the fault
locating. On the contrary, if we started the non-adaptive fault
diagnosis in parallel with the nightly testing, developers could
fix bugs at the beginning of the next working day. It means that,
in the daily build process, non-adaptive faulty interaction
locating may increase the efficiency of software development.

IV. PARTIAL COVERING ARRAY IN NON-ADAPTIVE
FAULTY INTERACTION LOCATING

For non-adaptive faulty interaction locating strategy, people
have proposed to use locating and detecting arrays [3] and
error locating array [4][5] as the diagnosing test suites. Here
we focus on the error locating array in this paper.

For a system with safe values, if the maximum number of
minimal faulty schemas is not larger than integer d, and the
maximum sizes of minimal faulty schema is not larger than
integer , a error locating array ELA(m; , F), which contains
m test cases, can locating all minimal faulty schemas. Here the
system has safe values, if fi F, v Vi is a safe value that
involved in none minimal faulty schema. Algorithm 1 gives the
process of locating faulty interactions.

Algorithm 1. Locating minimal faulty schemas
with error locating array

Input: ELA(m; , F): a error locating array
Output: MFSs: minimal faulty schemas
1. MFSs = ;
2. = ScheSet(ELA(m; , F));

Design and run
all test cases for
failure detection

Design and run
all test cases for
failure detection

3. For Each test case t ELA(m; , F)
4. If (test case t passes) Then
5. = - ScheSet(t);
6. End If
7. End For
8. Return all minimal schemas in ;

People usually use a high-way covering array CA(m; +d, F)
as the error locating array ELA(m; , F) for the situation that
+d k [4][5]. However, the numbers of test cases in these high-

way covering arrays are usually too large. Hence it is necessary
to find other method to construct error locating array. Zhou et
al proposed to use partial covering array to replace traditional
error locating array [10].

Definition 8 (Partial covering array). Assume is a set of
interaction schemas. Given a array A=(ai,j)m×k, where the j-th
column denotes the factor fj and all elements of this column
come from the set Vj (j=1, 2,…, k), that is ai,j Vj. If all schemas
in could be covered by at least one row of A, then A is a -
way partial covering array or a partial covering array with
strength . It could be denoted as PCA(m; , F,).

Theorem 1. For a software system with safe values, assume
that 0 Vi is one of safe values of parameter fi F. If the
maximum number of minimal faulty schemas is not larger than
integer d, the maximum sizes of minimal faulty schema is not
larger than integer , and +d k, then a partial covering array
PCA(m; +d, F, , d) is a ELA(m; , F), where the tuple set , d
={(+d)-way schema | d values are fixed as 0, values are fixed
as any element except 0}.

The proof of this theorem could be found in ref [10].

The partial covering array has an advantage over traditional
error locating array that, it needs smaller number of test cases.
If the software system has a property that a=a1=a2=…=ak, the
number of test cases in corresponding partial covering array
follows m=O(d +1×logk), while the size of (+d)-way covering
array follows m=O(d×ad+ ×logk) [10].

V. GENERATING PARTIAL COVERING ARRAY WITH ONE-
TEST-AT-A-TIME STRATEGY

Though partial covering array could use smaller number of
test cases to serve as an error locating array in non-adaptive

Design and run
test cases for

fault diagnosis

Locate faulty
interactions

Any test
case fail?

Design and run
all test cases for
fault diagnosis

End

N

Y

NAny test
case fail?

Locate faulty
interactions

End

Y

581

faulty interaction locating, the problem of generating partial
covering array has not been studied previously. We study this
problem in this section.

For traditional combinatorial test case generation, one-test-
at-a-time strategy have been well studied [7][17]. We extend
this strategy for the partial covering array generation. The
framework of one-test-at-a-time strategy for partial covering
array can be summarized and described as Algorithm 2. It starts
with an empty initial test suite. Then build one test case at a
time to cover some uncovered tuples in , d until all the tuples
in , d have been covered.

Algorithm 2. One-test-at-a-time Framework
Input: F: set of parameters, , d: set of uncovered tuples
Output: T: partial covering array
1. T = ;
2. Uncover = , d;
3. While (Uncover)
4. Build one single test case t;
5. T = T + {t};
6. Uncover = Uncover - ScheSet(t);
7. End While

To generate a partial covering array as small as possible in
one-test-at-a-time framework, an ideal method, which selects a
“best” single test case each time to cover the greatest number
of uncovered tuples in , d, is fascinating to us. But it is
unfortunate, selecting such a “best” test case is very difficult.
Colbourn et al proved that, in combinatorial test generation, the
problem that determining whether there is a test case covering a
given number of uncovered tuples is a NP-C problem [17]. It is
similar in the problem of partial covering array generation.

For above limitations, to replace the method that selecting
the “best” test case in one-test-at-a-time framework, a feasible
method is to generate approximate “best” test case with some
more efficient strategies, such as greedy strategy and meta-
heuristic search strategy.

A. Greedy Methods
A feasible method to generate a single test case in partial

covering array is determining an order of factors and fixing
parametric values in a determined turn. This kind of algorithms
in combinatorial test generation includes AETG [1], DDA [17],
and etc. We attempt to extend these two algorithms for the
partial covering array generation.

1) AETG-Liked Algorithm:

When generating a single test case, the first parameter and
its value are selected as the one that appears in the greatest
number of uncovered tuples in , d. Then the order of other
parameters is random, and the value of each parameter is fixed
as a value that appears most frequently in the uncovered tuples
in , d.

2) Density-Based Algorithm:

When generating a single test case, the order of parameters
is determined deterministically according to the “local density”

of each parameter. To fix parametric value, the value that takes
the greatest “global density” is selected. Because the partial
covering array needs to covers all the (+d)-tuple combinations
in , d, the local density and global density are same as that in
the generation of (+d)-way combinatorial test suite [17].

B. Meta-Heuristic Search
Besides the greedy strategy, another feasible method to

generate a single test case in partial covering array is meta-
heuristic search optimization, including simulated annealing,
generic algorithm, ant colony algorithm, taboo search, particle
swarm, and etc. We attempt to apply three of these algorithms
in the one-test-at-a-time framework for partial covering array.

1) Simulated Annealing:

Simulated annealing applies transformations on a single test
case. The modified parameters and its values are selected
random. To determine whether to accept a modification, the
cost is evaluated and accepted according to a cooling schedule.
Based on the information about cost and cooling schedule, the
probability of acceptance is computed. In our application, the
cost could be defined according to the number of new-covered
(+d)-tuple combinations in , d.

2) Genetic Algorithm:

Genetic algorithm mimics the process of natural evolution.
It is based on the concept that the candidate solution created by
swapping two good candidates is also good. Genetic algorithm
applies transformations on a population of test cases. Test cases
will be modified in a process including selection, crossover,
mutation, and be evaluated by a fitness function. The fitness
function depends on the number of new-covered (+d)-tuple
combinations in , d.

3) Particle Swarm Optimization:

Particle swarm optimization could optimize a test case by
moving a population of candidate test cases. Particles (or test
cases) move according to simple mathematical formulae over
the particle's position and velocity. Each particle's movement is
influenced by its local best known position and is also guided
toward the best known positions in the search-space, which are
updated as better positions are found by other particles. Here
the position is determined by test cases’ tuple coverage ability.

VI. COMPUTATIONAL RESULTS
Experiments in this section are designed to compare the

performance of partial covering array generation algorithms,
including the AETG-liked algorithm, density-based algorithm,
simulated annealing, genetic algorithm, and particle swarm. All
these algorithms work in the framework of one-test-at-a-time to
generate a single test case each time.

Table 3 illustrates the sizes of partial covering arrays that
generated by different 5 algorithms. For simulated annealing
(SA), genetic algorithm (GA), and particle swarm (PSO), we
list the worst, average, and best results respectively for each
input, since all these meta-heuristic search algorithms are non-
deterministic. We can conclude from the data that, for many
inputs, meta-heuristic search algorithms generate the smaller

582

TABLE III. SIZES OF PARTIAL COVERING ARRAYS AND HIGH-WAY COVERING ARRAYS

Input
F d

AETG-like Density-based SA(Wst/Avg/Best) GA(Wst/Avg/Best) PSO(Wst/Avg/Best) (+d)-way
covering array

26 2 2 16 17 23/17/15 29/17/15 22/19/16 21
310 2 2 122 119 133/120/119 141/123/119 136/129/119 159
413 2 2 366 363 377/368/360 401/366/361 370/364/360 508
515 2 2 743 744 765/749/739 798/773/740 769/744/740 1245
220 2 3 108 108 119/109/107 129/109/107 121/114/109 119
320 2 3 465 462 461/460/460 499/467/459 476/465/460 1266
420 2 3 1058 1056 1102/1056/1043 1152/1067/1043 1077/1056/1043 5516
515 2 3 1417 1420 1439/1420/1411 1499/1478/1419 1441/1419/1412 12704
320 2 4 763 763 770/764/760 793/769/763 767/764/761 4486
415 2 4 1240 1239 1299/1247/1235 1370/1264/1237 1253/1239/1235 16384
515 2 4 2207 2207 2251/2236/2206 2282/2247/2206 2246/2227/2206 82139
210 3 2 47 47 52/50/47 56/54/47 59/56/47 56
314 3 2 696 696 711/707/696 736/715/696 709/703/696 922
415 3 2 2592 2597 2607/2600/2590 2693/2631/2590 2600/2597/2590 3364
210 3 3 109 108 110/109/107 137/121/108 112/110/107 116
315 3 3 1686 1677 1679/1671/1665 1722/1696/1672 1689/1669/1663 3234
412 3 3 4093 4088 4098/4082/4079 4099/4090/4081 4100/4087/4078 14281

partial covering arrays than greedy algorithms. And especially,
the particle swarm usually has a better performance than other
meta-heuristic search algorithms.

By the way, the sizes of traditional error locating array (or
(+d)-way covering array) for the same inputs are also list in
the table. It is evident that, the non-adaptive faulty interaction
locating method that uses partial covering array needs smaller
number of test cases than the method that uses high-way
covering array.

VII. RELATED WORKS
As we mentioned previously, there are adaptive and non-

adaptive faulty interaction locating strategies.

Adaptive faulty interaction locating methods include the
well known Delta Debugging [16], AIFL and Iterative AIFL
methods [15], FIC and FIC_BS methods [9], constraint solving
method [12], Xie’s methods [13][14]. All above adaptive faulty
interaction locating methods have an advantage that, they don’t
need any predication about faulty interactions. Besides, there
are also Martinez’s adaptive methods [4][5], and an improved
method based on Martinez’s method [11]. These three methods
need an assumption that software system has safe values.

Previous non-adaptive faulty interaction locating methods
include the methods that use locating and detecting arrays [3]
and error locating array [4][5] as the test suite for locating
faulty interactions. They needs more test cases than partial
covering arrays to locate the same faulty interactions.

VIII. CONCLUSION
Characterizing faulty interaction is an important problem in

combinatorial testing. In this paper, we mainly focus on the
non-adaptive faulty interaction locating strategy, which has an
advantage that diagnostic test suite could be generated and
executed in parallel with the detecting test suite efficiently. The

problem of generating partial covering array, which could be
used as diagnostics test suite in the non-adaptive strategy, is
studied in this paper. Experiment results show us that partial
covering array needs small number of test cases than existing
non-adaptive faulty interaction locating methods. So it is clear
that partial covering array has equivalent ability and stronger
efficiency in the locating of faulty interactions

In the field of non-adaptive faulty interaction locating, the
most important future works may include: (1) more efficient
algorithm to generate diagnostic test suite; and (2) avoid the
limitation that both the maximum strength and the maximum
number of faulty interactions must be given before the fault
diagnosis.

ACKNOWLEDGMENT
The work described in this paper was partially supported by

the National Natural Science Foundation of China (91018005,
61003020, and 61202006); Natural Science Foundation of
Jiangsu Province (BK2011190), Foundation of Nanjing
University of Posts and Telecommunications (NY212023);
Open Foundation of Guangxi Key Laboratory of Trustworthy
Software; and Six Peak Talent of Jiangsu Province.

REFERENCES
[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, et al. The AETG System: An

Approach to Testing Based on Combinatorial Design. IEEE Transaction
on Software Engineering, 1997, 23(7): 437-444.

[2] D. Richard Kuhn, Dolores R. Wallace. Software Fault Interaction and
Implication for Software Testing. IEEE Transaction on Software
Engineering, 2004, 30(6): 418-421.

[3] C. J. Colbourn, D. W. McClary. Locating and Detecting Arrays for
Interaction Faults. Journal of Combinatorial Optimization, 2008, 15(1):
17-48.

[4] C. Martinez, L. Moura, D. Panario, and B. Stevens. Algorithms to locate
errors using covering arrays. In LATIN2008: Theoretical Informatics,
Lecture Notes in Computer Science, 2008(4957): 504-519.

583

[5] C. Martinez, L. Moura, D. Panario, and B. Stevens. Locating errors
using ELAs, covering arrays, and adaptive testing algorithms. SIAM
Journal on Discrete Mathematics, 2009, 23: 1776-1799.

[6] P. Carey, A. Godbole. Partial Covering Arrays and A Generalized
Erdos-Ko-Rado property. Journal of Combinatorial Designs, 2010, 18:
155-166.

[7] Changhai Nie, Hareton Leung. A Survey of Combinatorial Testing.
ACM Computing Surveys, 2011, 43(2).

[8] Changhai Nie, Hareton Leung. The Minimal Failure-Causing Schema of
Combinatorial Testing. ACM Transactions on Software Engineering and
Methodology, 2011, 20(4).

[9] Zhiqiang Zhang, Jian Zhang. Characterizing Failure-Causing Parameter
Interactions by Adaptive Testing. In Proveedings of the International
Symposium in Software Testing and Analysis (ISSTA2011), Toronto,
ON, Canada, July 17-21, 2011: 331-341.

[10] Zhou Wu-Jie, Zhang De-Ping, Xu Baowen. Locating Error Interactions
Based on Partial Covering Array. Chinese Journal of Computers, 2011,
34(6): 1126-1137.

[11] Zhou Wu-Jie, Zhang De-Ping, Xu Baowen. An Adaptive algorithm of
Locating Fault Interactions Based on Combinatorial Testing. Chinese
Journal of Computers, 2011, 34(8): 1509-1518.

[12] Jian Zhang, Feifei Ma, Zhiqiang Zhang. Faulty Interaction Identification
via Constraint Solving and Optimization. In Proceedings of the 15th

International Conference on Theory and Applications of Satisfiablity
Testing (SAT2012), Lecture Notes in Computer Science, 2012(7317),
Trento, Italy, june 17-20, 2012: 186-199.

[13] Laleh Shikh Gholamhossein Ghandehari, Yu Lei, Tao Xie, Richard
Kuhn, Raghu Kacker. Identifying Failure-Inducing Combinations in a
Combinatorial Test Set. In Proceedings of the 5th IEEE International
Conference on Software Testing, Verification and Validation
(ICST2012) , April 17-21, 2012: 370-379.

[14] Kiran Shakya, Tao Xie, Nuo Li, Yu Lei, Raghu kacker, Richard kuhn.
Isolating Failure-Inducing Combinations in Combinatorial Testing Using
Test Augmentation and Classification. In Proceedings of the 5th IEEE
International Conference on Software Testing, Verification and
Validation (ICST2012) , April 17-21, 2012: 620-623.

[15] Ziyuan Wang, Baowen Xu, Lin Chen, Lei Xu. Adaptive Interaction
Fault Location Based on Combinatorial Testing. In Proceedings of the
10th International Conference on Quality Software (QSIC2010): 495-
502.

[16] A. Zeller, R. Hildebrandt. Simplifying and Isolating Failure-Inducing
Input. IEEE Transaction on Software Engineering, 2002, 28: 183-200.

[17] R. C. Bryce, C. J. Colbourn. A Density-Based Greedy Algorithm for
Higher Strength Covering Arrays. Software Testing, Verification and
Reliability, 2009, 19(1): 37-53.

[18] S. McConnell. Daily Build and Smoke Test. IEEE Software, 1996, 13(4).

584

Analyzing the Effectiveness of a System Testing
Tool for Software Product Line Engineering

Crescencio Rodrigues Lima Neto1,2,3, Ivan do Carmo Machado2,3,

Vinicius Cardoso Garcia5, Eduardo Santana de Almeida2,3,4

1Federal Institute of Bahia
2Computer Science Department - Federal University of Bahia (DCC/UFBA)

3Reuse in Software Engineering Labs (RiSE)
4Fraunhofer Project Center (FPC) for Software and Systems Engineering
5Center for Informatics - Federal University of Pernambuco (CIn/UFPE)

{crescencio, ivanmachado, esa}@dcc.ufba.br, vcg@cin.ufpe.br

Abstract—This paper reports on a serie of empirical evalua-
tions of a proposed testing tool for SPL, in order to understand
how useful it might be consider. The study is a serie of controlled
experiment involving over fourty subjects, which analyzed the
use of a proposed tool in an SPL project. The results show that
the effort spent during the test case design decrease significantly
when the tool was used. The subjects preferred to work with the
tool, especially users without experience in testing. The collected
insights are reported for further studies and the gathered data
will serve as baseline values for future experiments, since there
is a lack of work in this direction.

Keywords—Software Testing; Software Product Lines; Soft-
ware Reuse; Testing Tools; Empirical Evaluation

I. INTRODUCTION

Automated tools are available to support testing in every

stage of the software development life cycle [1]. Some orga-

nizations have used testing tools to manage, store and handle

the tests, including their execution results. Nakagawa et al. [2]

encourage the use of supporting tools to make testing a more

systematic activity, which may lead to reductions in cost and

time consumed, and also minimizing errors caused by human

intervention.

However, when narrowing the observation scope to only

consider testing tools for Software Product Line Engineering,

the number of existing testing tools decrease drastically, lead-

ing to the need of tools to support testing in such a develop-

ment paradigm, so as to enable practitioners to experience the

same benefits, as the ones mentioned earlier.

Within the set of existing tools for SPL testing [3], either

the reports lack details of empirical assessments that endorse

their usefulness, or there is really few evidence that support

in the large-scale use.

In earlier investigation, we developed SPLMT-TE, a tool to

support the design of system test cases from SPL use cases

[4], [5]. In this paper, we report on a serie of experimental

studies performed in order to evaluate its usage effectiveness,

namely an in-vitro experiment, and its replication, in a distinct

environment.

The experimental study consisted of three phases. We

initially performed a pilot study [6], aiming at analyzing

the experiment feasibility. Then, we performed the actual

experiment. Next, we carried out the replications.

The experimental study was conceived and structured based

on the concepts of experimental software engineering and the

evaluation of methods and tools provided by Wohlin et al. [7].

The replications were motivated by the desire of achieving

more significance and confidence on the results [8].

The remainder of this paper is structured as follows. Section

II introduces the proposed testing tool. Section III presents

the experimental study. Section IV discusses the related work.

Section V concludes the paper and presents future research.

II. TOOL SUPPORT FOR SYSTEM TESTING IN SPLE

In previous research [3], we carried out a mapping study of

tools for testing software product lines, involving the investiga-

tion of thirty-three research papers, dated from 1999 to 2011.

Among other goals, such a mapping aimed at identifying the

functionalities supported by existing tools, and also to leverage

others an SPL testing tool is expected to support. The findings

of such an investigation served as input for the analysis and

design of our proposal, called SPLMT-TE [4].

The SPLMT-TE was developed using Django, a Python Web

Framework1. The tool supports the design of system test cases

from use case, and manages assets such as test cases, suites,

and plans. It intends to reduce the effort and the cost associated

to the SPL testing process. We performed an initial evaluation

in [5] to assess the tool’s effectiveness.

III. EXPERIMENTAL STUDY

This Section details the experimental study setup and mea-

surements used to investigate the effects of using our proposed

tool. We reported the study by following the guidelines for

conducting experiments in software engineering defined by

Wohlin et al. [7], and reported as suggested by the guidelines

described in [9].

1http://www.djangoproject.com/

585

A. Experimental Planning

We applied the GQM method [10] in order to define

quantitative measures that could provide objective assessment

of the tool’s effectiveness. It was structured as follows:

1) Goal.: The objective of this experimental study is to

analyze the SPLMT-TE tool for the purpose of evaluation with

respect to its efficiency and effectiveness from the point of view

of the potential users (testers) in the context of an SPL testing
project in an academic environment.

2) Questions.: To achieve this goal, we used the following

questions defined in [5] and we added the question Q6:

• Q1. Is the amount of test cases increased when the tool
is used? [5]

• Q2. Is the time required to design system test cases
reduced when the tool is used? [5]

• Q3. Is the time required to execute the designed test cases
reduced when the tool is used? [5]

• Q4. Is the amount of errors detected increased when the
tool is used? [5]

• Q5. Is the effectiveness of test cases improved when the
tool is used? [5]

• Q6. Is the time required to find errors improved when the
tool is used?

3) Metrics.: After defining the questions, they need to be

mapped to a measurement value, in order to characterize and

manipulate the attributes in a formal way [11]. Hence, the

metrics used in this analysis are next described next:

• M1. Designed Test Cases (DTC)[12], [5];

• M2. Efficiency in Test Case Design (ETCD)[12], [5];

• M3. Efficiency of Test Cases Execution (ETCE)[12], [5];

• M4. Number of Errors Found (NEF) [12], [5];

• M5. Test Cases Effectiveness (TCE) [13], [5];

• M6. Efficiency in Finding Errors (EFE): It refers to

number of errors found (M4) reported over the amount

of time spent to execute test cases (TSE).

EFE =
NEF

TSE
(1)

4) Design.: In this experimental study, we applied One
factor with two treatments, as the design type. We compared

the two treatments against each other [7]. In this sense, the

factor was the use of the proposed tool, and the treatments

were: (1) Creating test cases with the tool support and (2)

Create test cases manually. The subjects were divided in two

groups, each one addressing a treatment.

5) Experiment materials.: The experiment used Consent

Form, Background and Feedback Questionnaires, a set of

Test Assets, Use Cases, Test Case Creation Form, Test Case

Execution Form, Defect Reporting Form, application to be

tested and the proposed tool.

6) Subjects.: We applied convenience sampling [7] in this

experimental study. Initially, we performed a pilot with four-

teen students from the Software Engineering course at Federal

University of Bahia, Brazil. Next, the subjects were graduate

students (seven M.Sc. Students and five Ph.D. Students) from

Federal University of Bahia and Federal University of Per-

nambuco, Brazil. Then, additional nineteen students from the

Software Engineering course at Federal University of Bahia

participated in the experiment replications.

7) Hypotheses.: We set up six hypotheses for this experi-

mental study. The Null Hypothesis (H0n) considered that there

was no benefit of using the proposed tool.

Conversely, the Alternative Hypothesis (H1n) stated the

opposite values. The alternative hypothesis determined that the

proposed tool produced benefits that justify its use.

We used the same hypotheses defined in [5]. Moreover, we

added the Null Hypothesis H06 : μEFEmanual
= μEFETool

and the Alternative H16 : μEFEmanual
�= μEFETool

8) The Experimental Study Project.: We selected two

projects for the experimental study. The first one consisted

of a product line in the mobile devices games domain called

Arcade Game Maker (AGM) Pedagogical Product Line2 pro-

duced by the SEI3. The second project consisted of the

NotepadSPL, a product line built upon the well-known word

processor Notepad. This product line was extracted from the

FeatureVisu4.

B. Execution

The subjects carried out the activities involved in the

experiment. When the subjects filled out the background

questionnaire, we could organize them into two groups. The

balancing strategy was applied to harmonize the groups in

terms of expertise. Both groups performed the experiment

using the tool in one phase and without using the tool in the

other phase.

1) Procedure.: The experiment took place at Federal Uni-

versity of Bahia, Brazil in July of 2011. The replications were

also carried out at the same place, namely in November 2011,

and in June 2012.

Initially the subjects became aware of the experiment

purpose and associated tasks. Next, training sessions were

performed with practical exercises.

The first training session consisted of theoretical and prac-

tical classes on fundamentals of software testing. Both groups

learned how to create a good test case, how to execute test

cases, and how to report errors. It was not necessary to offer

training classes on software product line engineering, given

that all subjects had been involved in research in such a field.

Next training session involved the use of the SPLMT-TE

tool. At the end, they had to fill out the feedback questionnaire.

This process was also performed at the pilot study and

replications execution.

2) Operation.: All subjects were asked to fill out a back-

ground questionnaire, as the initial task in the experiment. It

served for us to investigate their experience. It was comprised

of a set of items, described next:

• Participation in industrial development/testing

2http://www.sei.cmu.edu/productlines/ppl/index.html
3http://www.sei.cmu.edu
4http://fosd.de/FeatureVisu

586

• Experience in programming

• Experience with testing tools

The execution was performed in two phases. One group

used the tool while the other worked without tool support.

The pilot study execution was limited to 2 hours of test cases

creation and execution because of the discipline schedule.

However, at the experiment and replications, we did not restrict

the time of creation and execution.

The subjects were instructed to analyze the available com-

ponents, create, and execute the test cases. Their assigned tasks

were: (1) to analyze the available use case document; (2) to

build test, i.e., writing the test cases manually or using the

proposed tool; (3) to execute them manually step by step; and

(4) to report the findings in the proper form. The replications

focused only at the last two steps: test execution and reports.

At the end of the experiment, each participant completed the

feedback questionnaires. The complete characterization of the

subjects, as well as supplemental material of this experimental

study such as complete descriptive statistics, questionnaires,

reports, and forms can be reached in the paper’s resource

website5.

C. Analysis and Interpretation

In [5], we used the wrong hypothesis testing in some

descriptive statistic analysis. For this reason, we analyzed all

the artifacts produced by the subjects again, including the

error report forms and the feedback questionnaires. The new

analysis was performed based on descriptive statistics and

hypothesis testing using t-test [7] (for parametric statistical

hypothesis test) and Mann-Whitney-Wilcoxon [7] (for non-

parametric statistical hypothesis test).

Since the replications’ subjects had the same profile, under-

graduate students from a Software Engineering course inex-

perienced in testing, the two replications data were combined

and analyzed in the same dataset.

Descriptive Statistic

1) Designed Test Cases.: According to Figure 1(a), the

amount of designed test cases created with the tool is higher

than without tool support. Moreover, since the subjects were

inexperienced in testing, we decided not to consider this

measure in the replications.

2) Efficiency in Test Case Design.: Figure 1(b) presents

that the efficiency in test case design was higher with groups

that used the tool, which enabled the creation of more test

cases faster than without tool support. Hence, as this metric is

related with the previous metric, we preferred not to consider

it for the same reason.

3) Efficiency in Test Cases Execution.: Figure 1(c) presents

that during the first experiment execution, the effort of test case

execution were almost the same. On the other hand, during the

replications, the tests created by the tool were more efficient

than the tests created manually (see Figure2(a)).

5http://www.crescenciolima.com/seke2013/

4) Number of Errors Found.: Figure 1(d) presentes that the

subjects were capable to find more errors during the use of the

tool. Figure 2(b) confirms that the number of errors found were

higher when the subjects used the tests created by the tool.
5) Test Cases Effectiveness.: Figure 1(e) presents that dur-

ing the experiment, the test case effectiveness was practically

the same using the tool or not. The number of errors found per

number of test cases was almost the same using and without

using the tool. Which can be confirmed by the replications

and it can be seen in Figure 2(c).
6) Efficiency in Finding Errors.: Figure 1(f) presents the

amount of errors that were found in the experiment execution.

The efficiency was practically the same between the amount of

errors found using the tests generated by the tool and manually.
On the other hand, during the replications more errors were

found faster when the tests created by the tool were used (see

Figure 2(d)).

Hypotheses Testing

Since the experiment has one factor with two treatments,

completely randomized design, the data collected during the

experiment were submitted to descriptive statistic examination.

Firstly, in order to reduce the dataset errors, we eliminated

the outliers. Secondly, we verified if the sample came from a

normally distributed population through Shapiro-Wilk test.
Thirdly, when the sample was not “normal”, we used the

non-parametric test (Mann-Whitney-Wilcoxon). On the other

hand, when the sample was “normal”, we verified if it had

equal variance through Levene test. Finally, when the sample

had different variance, we used non-parametric test (Mann-

Whitney-Wilcoxon), and, when the sample had equal variance

we used parametric test (t-test).
The tests were primarily presented for a significance level

of 5%. Table I presents the hypothesis testing results from the

experiment and replications. The results are detailed next.

TABLE I
HYPOTHESES TESTING RESULTS

RQ* Metric Study Test p-value StD?**
Q1 DTC Experiment Wilcoxon 0,0007 Yes

Q2 ETCD Experiment Wilcoxon 0,0001 Yes

Q3 ETCE Experiment t-test 0,03 Yes

Q4 NEF Experiment Wilcoxon 0,35 No

Q5 TCE Experiment Wilcoxon 0,34 No

Q6 EFE Experiment t-test 0,7 No

Q3 ETCE Replications t-test 0,04 Yes

Q4 NEF Replications t-test 0,058 Near 0,05

Q5 TCE Replications t-test 0,5 No

Q6 EFE Replications t-test 0,03 Yes

*Research Question **Statistical Diference?

Regarding Q1, the amount of test cases created using the

tool is higher than without using it, p-value = 0.0007. The

p-value is smaller than the significance level, rejecting the

null hypothesis. Null Hypothesis H01 is rejected, since H01 :
μDTCmanual

�= μDTCTool
.

587

(a) DTC [5] (b) ETCD [5] (c) ETCE (d) NEF [5] (e) TCE (f) EFE

Fig. 1. Experiments Bloxplots (T - means tool support, M - means manual)

(a) ETCE (b) NEF (c) TCE (d) EFE

Fig. 2. Replications Bloxplots (T - means tool support, M - means manual)

Time spent creating test cases without the tool is higher

than using it. For this reason, in order to answer the Q2, the

Null Hypothesis H02 is rejected, since H02 : μETCDmanual
�=

μETCDTool
, p-value = 0.0001. This p-value allowed the rejec-

tion with high significance level.

Thus, the efficiency in test case execution supports the Null
Hypothesis H03. The question Q3 is answered, p-value = 0.03.

As the p-value is lower than 0.05 the null hypothesis was

rejected. The same result is confimed in the replications, p-
value = 0.04.

The Null Hypothesis H04 cannot be rejected, since there

is no significant difference H04 : μNEFmanual
= μNEFTool

,

although the number of errors found were higher using the tool

support. The experiment p-value = 0.35 and the replication p-
value = 0.058, are higher than 5%, which did not reject the

null hypothesis, answering the Q4.

As a result, the Null Hypothesis H05 cannot be rejected,

since H05 : μTCEmanual
= μTCETool

, the experiment p-
value = 0.34 and replication p-value = 0.5. Since the p-value
are higher than the significance level the hypothesis cannot

be rejected and no conclusion can be drawn. Regarding Q5,

there is no significant differences between the effectiveness

test cases values during the tool usage and without use it.

Finally, regarding the Q6, the efficiency in finding erros

supports the Null Hypothesis H06. The experiment p-value
= 0.7, cannot reject the null hypothesis. On the other hand,

the replications p-value = 0.03 is lower than the significance

level, rejecting the Null Hypothesis.

D. Evaluation of results and implications

The results presented insights that enable us to consider that

activities of test case creation were more productive when the

tool was used as we can seen in the hypotheses H01 and H02.

For this reason, we focused the replication analysis in the null

hypotheses that could not be rejected.

During the replications, we identified that in some as-

pects, subjects without experience were more productive than

the experienced ones. In other words, the tool could have

hampered the performance of the subjects with experience

in testing. Although, almost all the subjects answered the

feedback questionnaire saying they preferred to work with the

tool.

During study execution, we observed the importance of

splitting the design and execution activities. Ideally, these

activities should be performed by different subjects.

Perhaps, as the subjects gain confidence on the SPLMT-

TE usage (depending on the time availability, to try different

scenarios), the results might become better. But it is solely an

assumption that should be tested, maybe applying in a larger

context.

588

E. Threats to Validity

1) Maturation.: This is the effect that subjects react differ-

ently as time passes. Some subjects can be affected negatively

during the experiment, and their performance may be below

normal. In order to mitigate this boredom, two familiar do-

mains were provided.

2) Gained Experience.: There were two scenarios: in the

first phase group 1 performed the task using tool support, and

in the second phase, without the tool. In the second scenario,

group 2 executed the first phase manually, and in the second

phase with tool support. To mitigate this risk, two distinct

problems were analyzed.

3) Experimenter Expectations.: Surely the experimenter

expectations may bias the results, and for that reason, all

formal definition and planning of the experiment was carefully

designed by the first author of this paper, and revised by the

two remaining authors. We also had support of two senior

researchers in the field of Software Product Line Engineering.

4) Generalization of subjects.: This is an effect of having

a subject population not representative of the population we

would like to generalize to. The replications were conducted

with undergraduate students without knowledge about soft-

ware testing. In this case, if these subjects succeed using the

tool support, we cannot conclude that an experienced testing

analyst would use it successfully too.

IV. RELATED WORK

As we mentioned before, there is few empirical evaluations

of testing tools for SPL. According to [14], there is a lack

of studies reporting on empirical evaluations in SPL testing,

more specific in a testing tools viewpoint.

It is even harder to find empirical studies that evaluate SPL

testing tools. From the papers we analyzed in the previous

work [3], we found only one study considered as a similar

study [15].

Nogueira et al. [15] presented the Test and Requirements

Generation Tool (TaRGeT), which is a tool for automatic test

case generation from use case scenarios written in Natural

Language (NL).

V. CONCLUDING REMARKS AND FUTURE WORK

This paper presented the experimental studies conducted

to evaluate the proposed tool. It included the definition,

planning, operation, analysis and interpretation of a pilot study,

experiment, and replications. The guidelines defined by [7]

were used to perform the experiment.

The evaluations analyzed the SPLMT-TE effectiveness and

efficiency, in order to gather empirical evidence. As one of

the findings we had after performing this study, we observed

that, for users with experience in testing, it could be more

complicated to work with the tool support.

Probably, for these subjects, there was no gain using the

tool to save time during the execution of test cases. In the

analysis of test case effectiveness, it was not possible to reject

the null hypothesis, concluding that there is no advantage in

using the tool.

On the other hand, the tool proved to raise the productivity

of subjects without experience in testing. Moreover, the num-

ber of test cases created and the number of errors found were

higher when the subjects used the proposed tool. Finally, the

effort spent during the test case design decrease when the tool

was used.

As future work, we plan to compare the proposed tool with

some other testing tools, which is a difficult task since is

necessary to adapt the tool use to SPL. We also intend to

replicate this study in other environments.

ACKNOWLEDGMENT

This work was partially supported by the National Institute

of Science and Technology for Software Engineering (INES),

funded by CNPq and FACEPE, grants 573964/2008-4 and

APQ-1044-1.03/10 and APQ-1037-1.03/08 and CNPq grants

305968/2010-6, 559997/2010-8, 474766/2010-1 and FAPESB.

REFERENCES

[1] M. Fewster and D. Graham, Software Test Automation: Effective Use of
Test Execution Tools. John Wiley Sons, Ltd., 1999, vol. 10, no. 2.

[2] E. Y. Nakagawa, A. S. Simão, F. C. Ferrari, and J. C. Maldonado,
“Towards a Reference Architecture for Software Testing Tools,” in
International Conference on Software Engineering & Knowledge En-
gineering, 2007, pp. 157–162.

[3] C. R. L. Neto, P. A. M. S. Neto, E. S. Almeida, and S. R. L.
Meira, “A Mapping Study on Software Product Lines Testing Tools,”
in International Conference on Software Engineering & Knowledge
Engineering, 2012, pp. 628–634.

[4] C. R. L. Neto, I. C. Machado, P. A. M. S. Neto, E. S. Almeida,
and S. R. L. Meira, “Software Product Lines System Test Case Tool:
A Proposal,” in International Conference on Software Engineering &
Knowledge Engineering, 2011, pp. 699–704.

[5] C. R. L. Neto, E. S. Almeida, and S. R. L. Meira, “A Software
Product Lines System Test Case Tool and its Initial Evaluation,” in 13th
International Conference on Information Reuse and Integration, 2012,
pp. 25–32.

[6] M. Mendonça, D. Cruzes, J. Dias, and M. C. F. de Oliveira, “Using
observational pilot studies to test and improve lab packages,” in Inter-
national Symposium on Empirical Software Engineering. New York,
NY, USA: ACM, 2006, pp. 48–57.

[7] C. Wohlin, P. Runeson, M. C. O. Martin Höst, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction,
ser. The Kluwer Internation Series in Software Engineering, V. R. Basili,
Ed. Norwell, Massachusets, USA: Kluwer Academic Publishers, 2000.

[8] N. J. Juzgado and A. M. Moreno, Basics of Software Engineering
Experimentation. Kluwer, 2001.

[9] A. Jedlitschka and M. Ciolkowski, “Reporting Experiments in Software
Engineering,” pp. 201–228, 2008.

[10] V. R. Basili, “Software Modeling and Measurement: the
Goal/Question/Metric Paradigm,” College Park, MD, USA, Tech.
Rep. CS-TR-2956, 1992.

[11] V. Basili, R. Selby, and D. Hutchens, “Experimentation in Software
Engineering,” IEEE Transactions on Software Engineering, vol. 12,
no. 7, pp. 733–743, July 1986.

[12] N. J. Juzgado, A. M. Moreno, and S. Vegas, “Reviewing 25 Years
of Testing Technique Experiments,” Empirical Software Engineering,
vol. 9, no. 1-2, pp. 7–44, 2004.

[13] Y. Chernak, “Validating and Improving Test-Case Effectiveness,” IEEE
Softw., vol. 18, pp. 81–86, January 2001.

[14] I. C. Machado, E. S. Almeida, G. S. S. Gomes, P. A. M. S. Neto,
R. L. Novais, and M. G. de Mendonça Neto, “A preliminary study on
the effects of working with a testing process in software product line
projects,” in Ibero-American Conference on Software Engineering, 2012.

[15] S. Nogueira, E. Cartaxo, D. Torres, E. Aranha, and R. Marques, “Model
Based Test Generation: An Industrial Experience,” in 1st Brazilian
Workshop on Systematic and Automated Software Testing, Oct. 2007.

589

Exploiting Weights of Test Cases to Enhance Fault Localization
Yihan Li, Chao Liu, Zi Yuan

School of Computer Science and Engineering
Beihang University

Beijing, China
{liyihannew, liuchao, yuanzi}@sei.buaa.edu.cn

Abstract—Spectrum based fault localization techniques such as
Tarantula and Ochiai have been proposed to guide developers to
the locations of faults. These techniques make a summary on the
number of failing and passing test cases to calculate the
suspiciousness score of a program statement. Though results are
promising, these techniques assume all test cases share equal
importance, which ignore individual error diagnosis ability for
different test cases. In this paper, we present an approach to
improve the effectiveness of some existing spectrum based fault
localization techniques by exploiting varying weights for different
test cases in the computation of suspiciousness scores.
Evaluations on Siemens Test Suits demonstrate that the refined
fault localization techniques using our approach are significantly
more effective than the original techniques.

Keywords-fault localization; program spectrum; debugging;
passed tests; failed tests

I. INTRODUCTION
It is a common phenomenon that developers more or less

introduce bugs during software development processes despite
the fact that developers may spend much effort on coding and
testing. When faults are revealed during testing process,
software debugging is employed to remove bugs so as to
improve quality of software. Typically, software debugging
involves locating faults, repairing faults and verifying repairs.
However, according to a previous study, locating faults is one
of the most expensive tasks in debugging [1]. Therefore, in
order to reduce the cost of debugging, a variety of fault
localization techniques has been proposed to alleviate the work
developers devoted to locating faults in recent years
[2][6][10][11].

In particular, Spectrum-base fault localization (SFL)
techniques are effectiveness [3][5]. The basic idea behind them
is that they exploit how program entities are correlated with
program failure via statistically analyzing coverage information.
Specifically, SFL usually collect coverage information of a set
of test cases and their corresponding test results to form
program spectrum, and then contrast the coverage statistics of
program entities between passed executions and failed
executions using different statistical formula to produce a
ranking list of all program entities in terms of suspiciousness.
Those program entities with higher suspiciousness are more
likely to contain bugs and thus are given higher priority during
software debugging. Following this idea, many researchers
have proposed different statistical formulas to measure
program entities to be faulty based on coverage information,
such as Tarantula [2], Ochiai [4] and Jaccard [4].

Although SFL approaches have brought encouraging results
in locating faults, these approaches only use information of the
number of failing and passed test cases and thus treat all test
cases as equally important, which ignore individual error
diagnosis ability for different test cases and may reduce
effectiveness of the techniques. Take Tarantula as an example.
If two statements are both exercised by the same number of
passed tests and the same number of failed tests, the technique
assigns same suspiciousness score to these two statements and
therefore loses power to distinguish such statements, which
may decrease its accuracy in predicting the locations of bugs.
Furthermore, during testing, a statement is often executed by
different number of passed tests and failed tests. The number of
failed tests is often relatively smaller than that of passed tests
and there often exists redundancy in passed tests. Due to such
distribution of test cases, the contribution of the statement to
failure will also be decreased largely even if the statement
contains fault, which may yield misleading results in
debugging.

In this paper, we propose an approach to measure weights
for different test cases, to mitigating noisy introduced by tests.
Our approach treats failed and passed tests separately. For each
failed test, different weights are assigned with respect to each
statement according to its coverage information and relative
size of tests associated for that statement. For each passed test,
since there is no definite information about fault, we simply
assign same weight to all passed tests. In such way, our
approach can be applied as a refinement method to some
existing SFL techniques. In this paper, four representative
techniques are studied, i.e.,Tarantula [2], Jaccard [4], Ochiai
[4], and SBI [8]. Based on these four techniques, four
corresponding revised techniques are constructed. We use
seven Siemens programs to evaluate our revised techniques,
and compare effectiveness with original techniques. The
empirical results show that our approach is promising on the
studied subject programs. Further analysis shows that for the
four SFL techniques, our approach can significantly improves
their performance. The main contributions of this paper are as
follows:

(1) We propose an approach to quantify weights for
different test cases according to coverage information
and associated test cases for different statements and
incorporated the approach into four existing
representative techniques.

(2) We verify the effectiveness of our techniques with our
experiment and compare refined techniques with other
techniques based on program spectrum.

590

II. PROPOSED APPROACH

Typically, failed tests present definite information about
program behavior that fault is activated and propagated to
program failure, while passed tests do not guarantee that fault
is activated. This implies that contribution for different types of
tests to failure should be considered separately in terms of error
diagnosis. The current popular SFL techniques often utilize
four spectrum parameters denoted as <aef, anf, aep, anp> for each
statement to calculate suspiciousness score using different
statistical formulas. The four spectrum parameters record the
number of tests with respect to a statement, where the first part
of the subscript indicates whether the statement is executed (e)
or not (n) and the second indicates whether the test passed (p)
or failed (f). Similar to this, in this paper, four different types of
weights with respect to each statement are defined as follows:

Nef(s): the weights of failed test cases that cover statement s

Nnf(s): the weights of failed test cases that do not cover
statement s

Nep(s): the weights of successful test cases that cover
statement s

Nnp(s): the weights of successful test cases that do not cover
statement s

The computation of the four weights for each statement will
be presented in the following sections. For the convenience of
following discussion, let us suppose a program P consists of n
executable statements, which are denoted as P={s1,s2,s3,…,sn},
and m basic blocks, which are denoted as P={b1,b2,b3,…,bm}.
Also consider that the program P is tested against a test suite T,
which comprises of w different test cases that are denoted as
T={t1,t2,t3,…,tw}. The test suite T can be partitioned into two
disjoint subsets Tp and Tf according to the passed/failed status
of test cases.

A. Weights of Failed Tests
To compute Nef(s) and Nnf(s) for each statement, we first

discuss two practical test scenarios that motivate us to
distinguish weights for failed test, and two equations that
capture characteristic of weight are defined respectively. Then
these equations are combined to measure different weights of
failed tests with respect to each statement.

1) Weight of coverage of test with respect to each
statement. Consider two tests both result in failure while one of
them executes less basic blocks. When measuring fault locating
ability for test case, the test that exercises less basic blocks
explicitly demonstrate more power to find fault than the other
one, since less basic blocks require less code examination for
debugging. We use basic blocks rather than statements to
capture this characteristic because statements within a basic
block cannot be distinguished by tests.

Let a test case ti be one element of Tf and cover statement s.
Spectra of basic block information for ti are collected, which is
recorded as a binary vector <b1i,b2i,b3i,…,bmi>. If block bj is
covered by test ti, then the value for bji in the vector is 1
otherwise 0. After collecting basic block information, we
computer weight of test case ti about its execution that
contributes to statement s using equation (1):

() = (1)
The greater the Eci is, the more important is the test case for

debugging. If a failed test executes only one basic block, the
value approach maximum. In such scenario, the test case can
provide significant information for debugging since developer
can right now discover location of fault with the aid of the
failed test. When a failed test executes all basic blocks in the
program, it provides relatively less information to aid in
locating fault.

Similar to eq. (1), for a statement s that is not covered by a
failed test ti, eq. (2) computes the contribution that the failed
test subjects the statement s not to be a faulty statement. A
small constant (0.001 in this study) is used in the denominator
to avoid division by zero when all of the basic blocks are
executed in a failing test.() = + 0.001 (2)

2) Weight of status of tests with respect to each statement.
In testing process, the number of passing tests is often
relatively larger than that of failing tests and redundancy may
exist in the passing tests. Due to such distributions of tests, the
effect of failing tests for error diagnosis is reduced, which may
degrade effectiveness of SFL. In this study, we propose an
information quantity based strategy to reduce imbalance
between sizes of passing and failing tests. Specifically, let an
event be “a statement is covered by (h+k) tests, of which the
number of failing test is k”. The information quantity of the
event can be represented as: -log(k/(h+k)) = log((h+k)/k). A
smaller probability the event occurs with, a larger information
quantity the event has. Thus, the information quantity of the
event is used as weight for every k failing tests. Based on this
idea, we compute the weight of every failed test ti that covers
statement s using equation (3):() = log ((h + k) k + 1) (3)

A constant (1 in this study) is added in the equation to
ensure that weight of a failing test is always greater than 1,
which is weight of a passing test that will be discussed later.
The formula dynamically determines weight for every failed
test according to size relation between passed tests and failed
tests. A great value means that the failed information is rare for
statement s and weight of failed tests are adjusted for better
error diagnosis. Such case often happens when a statement is
executed by many passed test cases and a few failed test cases,
which is common in test process. In such cases, passed test
cases may be already redundant for the statement while failed
test cases are lacking for the statement, which implicitly
indicate that we should pay relatively more attention to such
failed test cases owing to redundancy of passing tests.

For a statement s that is not executed in a failed test ti, the
weight of the test for statement s is also calculated using
equation (4):() = log ((h + k) (| | k) + 1) (4)

591

TABLE 1. INVESTIGATED TECHNIQUES

Name Original Formula Revised Formula

Tarantula
++ + + ++ + +

Jaccard + + + +
Ochiai + (+) + (+)

SBI + +
3) Combined to measure weights of failed tests. We use the

above four equations to compute Nef(s) and Nnf(s) of failed tests
with respect to every statement in program as follows.

For a failing test ti that covers a statement s, the weight of
the test to the statement is computed as: Eci(s)*Rci(s). Thus, eq.
(5) is used to compute weights of a failed test set V all of which
covers the statement s by summing over weight of each test
case in V. () = () () (5)

Similarly, for a failing test ti that does not cover a statement
s, the weight of the test to the statement is computed as:
Eni(s)*Rni(s). Therefore, eq. (6) is used to compute weights of a
failed test set U all of which do not cover the statement s by
summing over weight of each test case in U.() = () () (6)
B. Weights of Passed Tests

For passed tests, since developers often cannot make sure
about whether statements that are executed in passed tests
contain fault or not, we simply assign equal weight to each
passed test. In this paper, 1 is used for weight of each passed
test such that weights of passed tests can be calculated easily
using the number of tests that cover or not cover the statements.

For every statement s and a passed test set C all of which
covers the statement s, the weights of test set C for statement s
are recorded in Nep, which is summed over each test case in C
as equation (7): = | | (7)

Similarly, for every statement s and a passed test set N all
of which does not covers the statement s, a term Nnp is recorded,
which is summed over each test case in N as equation (8):= | | (8)
C. Refining the existing techniques

After the above four weights are collected for each
statement in program, our proposed method can be applied into
some existing spectrum-based fault localization techniques as a
refinement to calculate suspiciousness scores for every

TABLE 2. STATISTICS OF SUBJECTS TABLE TYPE STYLES

Subjects # of faulty
versions

of test
cases

Description

print_tokens 4 4130 Lexical analyzer
Print_tokens2 10 4115 Lexical analyzer

replace 27 5540 Pattern replacement
schedule 4 2650 Priority scheduler

Schedule2 9 2710 Priority scheduler
tcas 35 1608 Altitude separation

Tot_info 23 1052 Information measure
statement. In this paper, we investigate four representative
techniques, i.e., Tarantula [2], Jaccard [4], Ochiai [4], and SBI
[8]. Table 1 shows original and revised formulas for four
techniques. The spectrum parameters <aef, anf, aep, anp> in
original formulas are respectively substituted by <Nef, Nnf, Nep,
Nnp> to generate new statistical formulas.

III. EXPERIMENTAL RESULT AND ANALYSIS

In this section we report details on our experiments
conducted to evaluate our proposed approaches across Siemens
test suite.

A. Experiments Setup
The Siemens test suite has been used widely in previous

studies [3][4][5][8][10][11] to measure the effectiveness of
fault localization techniques. In this paper, we also used
Siemens test suite as our subject programs and obtained them
from the website [9]. The test suite contains 7 types of
programs. For each program, there are a variety of test cases
and faulty versions available. For simplicity, only single fault
versions are considered in this study. Buggy versions that do
not yield failed information on the provided test suite are also
excluded. After removing those versions, 112 faulty programs
are used to evaluate our techniques in total. Table 2 lists the
statistics of the subject programs used in the experiments.

In our experiments, we select four representative techniques
Tarantula [2], Jaccard [4], Ochiai [4] and SBI [8] to be
compared with their refinement approach using our proposed
method. Additionally, comparisons are also made with the
weighting method proposed by Lee Naish et al. [10]. They
proposed a weighting function for failed tests and considered
weight of a failed test is inversely proportional to the number
of statements exercised in the test. We implemented their
weighting method on the four representative techniques
ourselves and carefully examined the weighting function to
assure it is strictly consistent with that in [10].

Table 1 lists the four techniques and their respective revised
formula using our method. The original formula and revised
formula are respectively evaluated against Siemens test suite in
terms of effectiveness of fault localization. We use the metric
Expense proposed by Yu [3] to measure the effectiveness of
the fault localization technique. The Expense metric is
computed by the percentage of the program that must be
examined to find the fault following rank list from top to down.
In case of tie when two or more statements share same
suspiciousness score, we adopt the worst cases. That is,
developers have to examine all the tie statements to find the
faulty statement.

592

Figure 1. Comparison between Tarantula and two refined techniques

Figure 2. Comparison between Jaccard and two refined techniques

Figure 3. Comparison between Ochiai and two refined techniques

Figure 4. Comparison between SBI and two refined techniques

B. RESULT AND ANALYSIS
In our experiments, we apply the refinement method to all

the formulas listed in Table 1, investigating its effectiveness in
improving the performance of these SFL techniques. We refer
to four refinement techniques using our approach as
Tarantula-Rev, Jaccard-Rev, Ochiai-Rev and SBI-Rev
respectively. For the four techniques that enhanced by methods
proposed by Lee Naish et al. [10], their names are suffixed by
Naish respectively. Fig. 1 to Fig. 4 illustrates effectiveness
between original techniques and corresponding two refinement
approaches in all faulty versions. For all four figures, the x-axis
represents the percentage of executable statements to be
examined. The y-axis denotes the percentage of faulty versions
whose faults have been located by examining no more than
corresponding percentage of executable statements in x-axis.

From Fig. 1 to Fig. 4, we observe that all the four revised
formulas using our approach achieve better performance than,
or at least equal with the other two types of SFL techniques in
terms of effectiveness of fault localization. The curves for four
revised formulas are always higher than the other two. Take
Tarantula as an example. By examining up to 5% of all the
code in faulty versions, the revised Tarantula technique can
locate faults in 40.2% of all faulty versions while the original
Tarantula can only locate 30.3% faults and Tarantula refined by
Lee Naish et al. [10] can locate 31.2% faults. On average, for
the four techniques, the revised technique can locate 20.5%
more faults than original technique, and 15.7% more faults than
technique refined by Lee Naish et al. [10] when examining no
more than 5% of all the code. The gain of performance varies
in different techniques. Tarantula, Jaccard and Ochiai achieve
similar improvement on performance using our approach while
SBI achieve a little improvement on performance. In summary,
the figures show that the four revised formulas can be more
effectively and precisely in locating faults than original
techniques studied and techniques refined by Lee Naish et al.

Table 3 shows the mean effectiveness of these techniques
on each program. The lower the value is, the better
performance the technique achieves. This table shows that for
these programs, our proposed weighting method can be more
precise to locate faults than the other two.

IV. RELATED WORK
In this section, we briefly review previous studies related to

fault localization.

The Tarantula system [2] colored the statements to
highlight the particular statements that contain bugs. It used the
number of successful tests and failed tests to locate buggy
statements. The intuition is that the more failed tests and the
less successful tests cover a statement, the more likelihood for
the statement to be faulty. Different colors for different
suspicious statements are then assigned to visualize program
codes. Therefore a buggy statement is colored as red for
highlighting so that developers can focus on it directly.
Empirical evaluation [3] showed that Tarantula consistently
outperforms four other techniques—Set union [6], Set
intersection [6], Nearest Neighbor [6], and Cause Transitions
[12].

Abreu et al. [4] proposed several spectra metrics to study

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f f
au

lts
 lo

ca
te

d

% of code examined

Tarantula
Tarantula-Naish
Tarantula-Rev

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f f
au

lts
 lo

ca
te

d

% of code examined

Jaccard

Jaccard-Naish

Jaccard-Rev

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f f
au

lts
 lo

ca
te

d

% of code examined

Ochiai

Ochiai-Naish

Ochiai-Rev

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

%
 o

f f
au

lts
 lo

ca
te

d

% of code examined

SBI
SBI-Naish
SBI-Rev

593

TABLE 3. MEAN EFFECTIVENESS ON INDIVIDUAL PROGRAMS

Subjects Tarantula Tarantula-
Naish

Tarantula-
REV Jaccard Jaccard-

Naish
Jaccard-

REV Ochiai Ochiai-
Naish

Ochiai-
REV SBI SBI-

Naish
SBI-
REV

schedule 7% 7% 3% 7% 6% 3% 4% 4% 3% 7% 7% 7%
print_tokens 9% 8% 3% 7% 5% 3% 3% 3% 3% 9% 8% 8%

tot_info 37% 37% 30% 35% 35% 29% 33% 32% 28% 37% 37% 37%
schedule2 59% 57% 48% 59% 57% 54% 54% 54% 47% 59% 57% 57%

tcas 52% 52% 50% 52% 52% 51% 50% 50% 49% 52% 52% 52%
print_tokens2 30% 30% 23% 29% 29% 20% 25% 24% 18% 30% 30% 29%

replace 12% 11% 10% 11% 10% 9% 9% 9% 9% 12% 11% 10%
the accuracy of prediction by fault localization. In their work,
they found that Ochiai metric is more effective in bug
localization performance than other metrics. Similar to
Tarantula, these metrics only use binary information of test
execution to rank statements.

Wong et al. [5] proposed some heuristic strategy to assign
different weights for passed and failed tests respectively.
Weights for passed/failed tests are assigned according to the
number of passed/failed tests. As the number increases, weight
gets lesser. Our work differs from Wong et al. in that 1)We
focus on weight of test cases from test property such test
coverage and status of tests associated with a statement. Thus,
weights can be dynamically assigned to individual tests. 2) Our
approach is a refinement method that can be applied into some
existing SFL techniques.

Naish et al. [10] also proposed a weighting strategy for
failed tests. The rationale behind the idea is that failed tests that
cover few statements provide more information than other
failed tests. Thus, they considered weight of a failed test is
inversely proportional to the number of statements exercised in
the test. Our work extends their studies in two aspects: 1) We
use basic blocks rather than statements to calculate weight for
each failed test since statements within a basic blocks are often
not distinguishable from each others in terms of error diagnosis.
2) We additionally consider the imbalance property of tests
with respect to each statement. The weight of a failed test is
assigned according to proportion between the number of failed
tests and that of passed tests. In this study, we also compare our
weighting strategy with method proposed by Lee Naish et al.

Bandyopadhyay et al. [11] extended the idea of nearest
neighbor model [6] to incorporating the relative importance of
different passing test cases in the calculation of suspiciousness
scores. They stated that the importance of a passing test case is
proportional to its average proximity to the failing test cases.
They used different thresholds for their weighting function to
control weights assigned to tests. However, in their study, they
do not prescribe how to choose best threshold for weighting
function and thus we do not make comparison with their work.
Furthermore, our work focuses on relative importance of
failing tests while their work focus on relative importance of
passing tests.

V. CONCLUSIONS AND FUTURE WORK
In this study, we proposed a weight-based refinement for

SFL techniques to enhance errors diagnosis. In our proposal,

we take into consideration of variable weights for different
tests, which depends on execution information and status of
tests. We conducted an experiment to evaluate the refinement
techniques using four representative SFL techniques. The
experimental results suggested that the revised techniques can
always achieved better performance than the techniques’
original performance.

In our future study, we plan to conduct more empirical
studies by using larger scale programs and multiple-faults
versions. We also wish to explore other factors that may impact
on weights of test cases to develop more effective strategies for
fault localization techniques.

REFERENCES
[1] I. Vessey, "Expertise in Debugging Computer Programs: A Process

Analysis", ;presented at International Journal of Man-Machine Studies,
1985, pp.459-494.

[2] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, Orlando,
Florida, 2002, pp.467–477.

[3] J.A. Jones and M.J. Harrold, "Empirical evaluation of the tarantula
automatic fault-localization technique", in Proc. ASE, 2005, pp.273-282.

[4] R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C.V. Gemund, "A
practical evaluation of spectrum-based fault localization", presented at
Journal of Systems and Software, 2009, pp.1780-1792.

[5] W.E. Wong, Y. Qi, L. Zhao, and K. Cai, "Effective Fault Localization
using Code Coverage", in Proc. COMPSAC (1), 2007, pp.449-456.

[6] M. Renieris and S. Reiss, “Fault localization with nearest neighbour
queries”, in Proceedings of the 20th IEEE/ACM International
Conference on Automated software engineering, Montreal, Canada,
2003, pp. 30–39.

[7] H. Cleve and A. Zeller, “Locating causes of program failures”, In
Proceedings of the International Conference on Software Engineering,
pages 342 351, St. Louis, Missouri, May 2005.

[8] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the effects
of test-suite reduction on fault localization,” in ICSE ’08: Proceedings of
the 30th International Conference on Software Engineering, Leipzig,
Germany, 2008, pp. 201–210.

[9] [Online]. Available: http://sir.unl.edu/portal/index.html
[10] L. Naish, H.J. Lee, and K. Ramamohanarao, "Spectral Debugging with

Weights and Incremental Ranking", in Proc. APSEC, 2009, pp.168-175.
[11] A. Bandyopadhyay and S. Ghosh, "Proximity based weighting of test

cases to improve spectrum based fault localization", in Proc. ASE, 2011,
pp.420-423.

[12] H. Cleve and A. Zeller. Locating causes of program failures. In
Proceedings of the International Conference on Software Engineering,
pages 342-351, St. Louis, Missouri, May 2005.

594

Comparative Evaluation of Programming Paradigms: Separation of Concerns
with Object-, Aspect-, and Context-Oriented Programming

Fumiya Kato, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa
Dept. Computer Science and Engineering

Waseda University
Tokyo, Japan

E-mail: fum kato@asagi.waseda.jp

Abstract
There are many programming paradigms for the sep-

aration of concerns (SoC). Each paradigm modularizes
concerns in a different way. Context-oriented program-
ming (COP) has been developed as a supplement to object-
oriented programming (OOP), which is one of the most
widely used paradigms for SoC. It modularizes concerns
that are difficult for OOP. In this paper, we focus on three
paradigms - OOP, aspect-oriented programming (proposed
as a supplement to OOP that has a different approach from
COP), and COP - and study whether COP can modular-
ize concerns better than other two paradigms in given sit-
uations. Then we determine the reasons why COP can or
cannot better modularize concerns.

1. INTRODUCTION

In software development, the separation of concerns
(SoC) is an important matter. To deal with SoC, numer-
ous programming paradigms have been proposed. Object-
oriented programming (OOP) is one of the most widely
used paradigms. However, some concerns called cross-
cutting concerns (CCCs) are difficult to modularize for
OOP and are often scattered over modules in a program. As
a supplement to OOP, aspect-oriented programming (AOP)
has been proposed. AOP modularizes CCCs as aspects that
weave codes into other modules.

In recent years, context-oriented programming (COP)
has been proposed as a supplement to OOP that has a dif-
ferent approach from AOP. COP modularizes behavior that
depends on the state of execution as layers. Several COP
languages have been developed [1, 2, 3] however, there has
been little research on the situations COP is most effective
for developing and how COP modularizes concerns better
than the other paradigms.

In this paper, we focus on three programming paradigms:

OOP, AOP, and COP and perform comparative experimen-
tation on these paradigms to research their effectiveness of
achieving SoC. To measure the effectiveness of achieving
SoC, we perform experimentation in terms of the descrip-
tion amount and the locality of change. The purpose of this
study is to answer the following research questions (RQs):

RQ1: Do the description amount and the locality of
change differ in implementing programs with the
same requirement by OOP, AOP, and COP?

RQ2: Are there any situations in which COP is superior
or inferior to OOP and AOP in terms of the descrip-
tion amount and the locality of change?

RQ3: What features of COP result in its superiority to
OOP and AOP?

RQ4: What features of COP result in its inferiority to
OOP and AOP?

The contributions of this paper are as follows:
• Suggestion of the comparative evaluation scheme

for programming paradigms.
• The comparative results of the superiority or infe-

riority of OOP, AOP, and COP in terms of the de-
scription amount and the locality of change.

• Specification of the causes of superiority and inferi-
ority in the comparative results.

The rest of the paper is structured as follows. Section
2 introduces the cross-cutting concerns that are difficult to
modularize by OOP, and how AOP and OOP modularize
such concerns. Section 3 presents the study format: the
purpose of study, the method of comparative study, and the
programming languages used. Section 4 shows the results
of the study and our analysis. We discuss related works in
Section 5 and summarize the paper in Section 6.

2. BACKGROUND
2.1. Cross-Cutting Concerns

CCC is a type of concern that is entangled with other
concerns. As the source code level, CCCs are often scat-
tered over modules in a program. For instance, logging to

595

Figure 1. Cross-cutting concern of logging
code in OOP (top) and modularization of CCC
of logging code in AOP (bottom)

carry out debugging is one CCC. As shown in the top of Fig-
ure 1, it is difficult to modularize CCCs by OOP. A logging
code can be written in many modules in a program in OOP.
Such a situation worsens maintainability, because scattered
logging codes make programs unreadable, and causing mis-
takes in modifying or deleting logging codes.

2.2. Aspect-Oriented Programming

AOP has been proposed as a supplement to OOP. AOP
modularizes CCCs as aspects. The bottom of Figure 1
shows the modularization of CCCs about logging by AOP.
Aspects separate CCCs from the major concerns that each
class modularizes by weaving CCC codes into other mod-
ules. AOP has a pointcut-advice mechanism for achieving
weaving. Advice defines the operation woven into other
modules. Pointcut defines the modules into which advice
is woven and the points - for instance, particular methods
are executed or particular types of objects are accessed - at
which woven codes are validated.

2.3. Context-Oriented Programming

COP has been proposed as a supplement to OOP via a
different approach from AOP. COP can modularize CCCs
about changing behavior depending on the state of execu-
tion as layers. A layer defines the methods in other classes.
Methods defined in a layer are executed in a particular state
instead of the original method definitions. Figure 2 shows
the modularization of CCCs about logging by COP. A layer
defines the methods in other classes with logging codes.
Method definitions with logging codes in a layer can be ex-
ecuted instead of the base definitions in other classes when

Figure 2. Modularization of CCC with layer
the layer is activated. Layers are activated by with state-
ments. In addition, base definitions can be called from the
definitions in a layer by proceed statements.

3. COMPARATIVE EVALUATION SCHEME

Figure 3 shows the overview of the comparative evalu-
ation. To detect situations in which COP is superior or in-
ferior to OOP and AOP, we performed comparative experi-
mentation. In this paper, we created three sample programs
containing CCCs about changing behavior, implemented
them in three programming languages, and performed seven
modification experimentation. In addition, we implemented
some parts of open-source software (OSS) in Java with each
programming language. From the results of our implemen-
tation, we discuss the superiority and inferiority of COP.

In the analysis of the results, we use two criteria: de-
scription amount and locality of change. For comparison
of the locality of change, we created seven change tasks
as follows: add classes related or unrelated to CCCs, add
methods related or unrelated to CCCs, rename methods re-
lated or unrelated CCCs, and delete CCCs. We counted the
chunks of code that the change tasks forced to modify.

As programming languages for OOP, AOP, and COP, we
use Java, AspectJ [4, 5] , and JCop [1] respectively. As-
pectJ and JCop are implemented by extending Java. Thus,
the forms of the fundamental descriptions of Java, AspectJ,
and JCop are similar. Therefore, the results should be less
affected by differences in the abstraction level and gram-
mar of languages, and more affected by differences among
paradigm features.

4. EVALUATION EXPERIMENTATION

4.1. Target

4.1.1. Sample Programs

To compare OOP, AOP, and COP, we created three
sample programs that are based on the samples on the JCop
project page [6]: address book, bank account system, and

596

Figure 3. Overview of the comparative evalu-
ation.

BMI calculator (https://github.com/FumKato/CompPar-
adigm). They contain CCCs about changing behavior of
several classes depending on the state of execution.

Figure 4 shows the design of the address book. As the
base behavior, the StandardRenderer class implementing a
Renderer interface outputs the fields of a Person object. The
CCCs about changing behavior enable renderer classes to
switch the styles of output: to render a name with an ad-
dress, to add HTML tags, and to decorate outputs by *
and . As shown in Figure 5, each output option is
switched independently. As the description amount, the
lines of code (LOC) to implement the program are counted.
As the change of locality, the seven change tasks defined
in Section 3 are applied to the CCCs about output options.
For instance, Add-Related-Class adds a new renderer class
so that output options can be set, and Add-Unrelated-Class
adds a new class unrelated to output options.

In the same way as the address book, bank account sys-
tem has CCCs: logging and encryption of data. The BMI
calculator, which is a GUI application with a Qt Jambi
framework [8], also has CCCs: switching units of input and
style of output.

4.1.2 Open-Source Software
We perform a comparative study of sample programs

prior to the comparative study of OSS. The results and anal-
ysis of the samples, presented in a later section, indicate that
a correspondence relation between layers in JCop and the
decorator pattern - one of the GoF design patterns - in Java
exists. If JCop improves implementation in the decorator
pattern, we can propose the part of the programs the dec-
orator pattern is applied as the COP usage guideline. The

Figure 4. Design of address book and addi-
tional design concern

Figure 5. Output of address book: each op-
tion is switched independently

guideline can be used to recommend to developers the more
positive use of COP than of OOP. Then we performed a
comparative study of OSS in the Java that decorator pattern
are applied. The OSS we used is JHotDraw 5.3 [7], a Java
GUI framework for graphics editor. We found four places
decorator patterns are applied, and rewrote them in AspectJ
and JCop.

4.2. Evaluation Results

The top of Figure 6 shows the LOC to implement sample
programs in each programming language. In the three sam-
ple programs, implementation in Java needs the most LOC,
and implementation in JCop needs the least LOC.

Table 1 shows the change tasks and chunks of code that
the tasks forced to change. In Add-Related-Method, Add-
Unrelated-Method, and Rename-Unrelated-Method, imple-
mentation in AspectJ and JCop need less change than in the
case of OOP. In particular, in Add-Related-Method of the
address book and bank account system, implementation in
JCop needs less change than in the other languages. On the
other hand, in Add-Related-Method, JCop has the largest
number of changed chunks of code.

The modularization of CCCs about changing behavior in
sample programs is achieved using the decorator pattern in
Java, aspects in AspectJ, and layers in JCop.

The bottom of Figure 6 shows the LOC of implementa-
tion where the decorator pattern is applied in each program-
ming language. In three of the four cases, implementation
in JCop needs the most LOC, and in the other case, it is
impossible for implementation in JCop to rewrite the codes

597

Table 1. Seven change tasks and affected chunks of code. n indicates the number of times the
tasks, e.g. in Add-Related (Unrelated)-Class, n indicates the number of added classes (n > 0).

Address Book Bank Account System BMI Calculator
OOP AOP COP OOP AOP COP OOP AOP COP

Add-Related-Class n 0 3n 2n 0 6n 13n 4n 2n
Add-Unrelated-Class 0 0 0 0 0 0 0 0 0
Add-Related-Method 3n 4n 2n 2n 2n 2n 3n 3n 2n

Add-Unrelated-Method n 0 0 2n 0 0 2n 0 0
Rename-Related-Method 3n 2n 2n 2n 2n 2n 2n 2n 2n

Rename-Unrelated-Method 3n 0 0 2n 0 0 2n 0 0
Delete-Concerns n 0 1 n 0 1 6n 0 0

Figure 6. LOC for sample program (top)
and OSS with the decorator pattern (bottom)
implementation in three programming lan-
guages

applied the decorator pattern without changing the funda-
mental structure of the program. Implementation in AspectJ
can reduce LOC in two of the four cases, and in the other
cases LOC increases compared with that in OOP.

4.3. Discussion
RQ1: Do the description amount and the locality of
change differ in implementing programs with the same
requirement by OOP, AOP, and COP?

The comparative result shown in Figure 6 indicates that
the description amount differ in implementing programs
with the same requirement by OOP, AOP, and COP. The re-
sults shown in Table 1 indicate that the localities of change
also differ. Therefore, using the programming paradigms

properly in appropriate situations would improve the soft-
ware quality from the viewpoint of the description amount
and the locality of change compared with that in the case of
using a single paradigm.
RQ2: Are there any situations in which COP has supe-
riority or inferiority to OOP and AOP in terms of the
description amount and the locality of change?

The comparative results of the sample programs shown
in the top of Figure 6 indicate that situations in which COP
is superior to OOP and AOP exist from the viewpoint of the
description amount. On the other hand, the results for OSS
shown in the bottom of Figure 6 indicate that situations in
which COP is inferior to OOP and AOP exist.

The results shown in Table 1 indicate that situations in
which COP is both superior and inferior to OOP and AOP
exist from the viewpoint of the locality of change. The situ-
ations in which COP is superior to OOP are the change tasks
of Add-Unrelated-Method, Rename-Unrelated-Method, and
Delete-Concerns. These change tasks affect COP in the
same way as AOP. In Add-Related-Class, COP is less af-
fected than OOP and AOP.
RQ3: What features of COP result in its superiority to
OOP and AOP?

The situations in which COP is superior to other two
paradigms can be classified under two types of descriptions:
necessary for Java but unnecessary for AspectJ and JCop,
and necessary for AspectJ but unnecessary for JCop.

First, we discuss the former. As mentioned above, the
decorator pattern is applied in implementation in Java. Fig-
ure 7 shows that the concerns about changing behavior
are implemented as the Html class; such a class is called
decorator class. The Html class changes the behavior of
StandardRenderer class - such classes are called compo-
nent classes - through the field of a component class ob-
ject. Therefore, decorator classes need descriptions that set
and get component class objects. On the other hand, im-
plementation in AspectJ or JCop does not need such de-
scriptions, because aspects and layers have mechanisms of
weaving codes that change behavior into other classes.

598

Figure 7. Part of address book program implemented in Java (left), AspectJ (center), and JCop (right).

Furthermore, a decorator class needs to implement the
same interface with a component class in implementation
in Java. Therefore, a decorator class needs to define not
only the methods that change behavior but also other meth-
ods unrelated to the concerns about changing behavior. On
the other hand, aspects and layers do not need to define the
methods unrelated to the concerns about changing behav-
ior, because if aspects or layers do not describe the methods
of other classes, the methods defined in each class are just
called. For that reason, adding methods unrelated to the
concerns about changing behavior does not force aspects or
layers to change any codes and only implementation in Java
need to change codes as shown in Figure 7.

Secondly, we present the later. Figure 7 shows the exam-
ple. Adding a method that changes behavior forces decora-
tor classes, aspects, and layers to change codes. To adopt
the added method, aspects need to define advice - that is the
operation weaved into other classes - and the pointcut that
defines the classes and timing advice is weaved for each ad-
vice. Therefore, two chunks of code - pointcut and advice -
are needed for each new method that changes behavior. On
the other hand, the method definitions in layers are bound
to only classes weaved codes. The timing at which weaved
codes are validated is bound to layers. Therefore, if the tim-
ing of validating weaved codes is common to the methods
defined in a layer, JCop defines it only once no matter how
many methods are defined in a layer. For these reasons, im-
plementation in JCop needs less change in the Add-Related-
Method than that in AspectJ.
RQ4: What features of COP result in its inferiority to
OOP and AOP?

The situations in which COP shows inferiority originate
from the change task Add-Related-Class in Table 1 and the
results of the decorator pattern in OSS shown in Figure 6.
Figure 8 shows an example: part of the address book pro-
gram. In the change task Add-Related-Class, the TableRen-

derer class is added. The TableRenderer class has meth-
ods that changes behavior the same as the StandardRenderer
class. This change task does not force an aspect to change
any codes, because the pointcut rendering in the Html as-
pect already defines the classes that are weaved codes as
subclasses of the Renderer interface. Such a definition is
achieved by Renderer+ .

On the other hand, Add-Related-Class forces layers to
describe redundant method definitions as shown in Figure
8. An Html layer needs to describe almost the same method
definitions that differ only in class path to weave into the
StandardRenderer and TableRenderer classes, because each
method definition is bound on only one class. Therefore,
situations in which COP is inferior to OOP and AOP exist.

The main reasons why implementation in JCop needs
more LOC than that in other languages in OSS are the same
as those for sample programs. A decorator class is often
applied to two or more component classes; therefore, im-
plementation in JCop needs redundant method definitions
such as in the example given in Figure 8.

In addition, layers in JCop cannot define members that
are not weaved into other classes. Therefore, in Java, if dec-
orator classes define private members, layers cannot define
such members. Thus, each class that is weaved code by lay-
ers needs to define members that are accessed by only lay-
ers. For this reason, implementation in JCop makes codes
accessed by only layers scattered.

4.4. Threats to Validity

The results and analysis are based on our implementa-
tion in each programming paradigm. Therefore, threats to
internal validity exist, because the affect of the difference
in the developer on the comparative results is not discussed
in this paper. As future work, we will perform implementa-
tion experimentation with several programmers to validate

599

Figure 8. Situation in which COP has infe-
riority to OOP and AOP. Adding a new re-
lated class forces layers to describe redun-
dant method definitions that differ only in
class path.

the generality of the results and analysis discussed in this
paper.

5. RELATED WORK
In recent years, many COP languages have been devel-

oped [9] including those for Java [1, 2, 3, 10]. These studies
focused on specification of the languages and their perfor-
mance of execution. However, these studies do not evaluate
how degree and what situations these languages can achieve
SoC compared with other programming paradigms.

The prior works that have guided this study is given
in [11, 12, 14, 15]. Figueiredo et. al [11] performed a
quantitative study of AOP that investigated the efficacy of
AOP to prolong design stability of software product lines.
This study focused upon a multi-perspective analysis in
terms of modularity, change propagation, and feature de-
pendency measured by metrics for concerns [13]. Kiczales
and Mezini [14] performed comparative study of program-
ming paradigms, which dealt with procedure calls, pointcut-
advice, and annotation by the implementation of a sample
program. The comparison was in terms of the locality and
the implicitness. Hannemann and Kiczales [15] performed
study of improving design patterns by AOP, which showed
a comparison of Java and AspectJ by implementation of
sample programs including design patterns. The compar-
ison was in terms of the modularity and the reusability.
Our study is inspired by these studies and focuses on COP.
We perform comparative studies in terms of the description
amount and the locality of change measured by basic met-
rics such as LOC and chunks of code as a first step towards
the evaluation of the efficacy of COP to deal with CCCs.

6. CONCLUSIONS AND FUTURE WORK
As the programming paradigm that achieves SoC with a

different approach from existing paradigms, COP has been

proposed. From the viewpoints of the description amount
and the locality of change, we performed comparative stud-
ies of OOP, AOP, and COP to detect situations in which
COP achieves better SoC and determine the reason why
COP can or cannot achieve better SoC. From these results,
several avenues for future work exist.

The next step would be a comparative study with larger
projects applying metrics used in prior works [11, 13]. A
comparative study focusing on multi-perspective analysis
would also be interesting, for instance, reusability, implicit-
ness, ease of description, and learning cost. A second line of
work would be to discuss and develop a COP language that
improves the inferior situations detected in this research.

References
[1] Appeltauer, M. et al. : Event-Specific Software Com-

position in Context-Oriented Programming, SC 2010,
pp. 50-75.

[2] Appeltauer, M. et al. : Context-oriented Programming
with Java, 26th JSSST Annual Conference, 2009.

[3] Salvaneschi, G. et al. : JavaCtx: Seamless
Toolchain Integration for Context-Oriented Program-
ming, COP’11, 2011.

[4] AspectJ, http://www.eclipse.org/aspectj/
[5] Kiczales, G. et al. : An Overview of AspectJ, ECOOP

’01, pp. 327-353, 2001.
[6] JCop-Context-Oriented Program-

ming Projects, https://www.hpi.uni-
potsdam.de/hirschfeld/trac/Cop/wiki/JCop

[7] JHotDraw, http://www.jhotdraw.org/
[8] Qt Jambi, http://qt-jabmi.org/
[9] Schippers, H. et al. : An Implementation Substrate

for Languages Composing Modularized Crosscutting
Concerns, SAC’09, pp. 1944-1951, 2009.

[10] Hirschfeld, R. et al. : Context-oriented Programming,
Journal of Object Technology, Vol. 7, No. 3, pp.125-
151, 2008.

[11] Figueiredo, E. et al. : Evolving Software Product
Lines with Aspects: An Empirical Study on Design
Stability, ICSE’ 08, pp. 261-270, 2008.

[12] Soares, S. et al. : Implementing Distribution and Per-
sistece Aspects with AspectJ, OOPSLA’02, pp. 174-
190, 2002.

[13] Figueiredo, E. et al. : On the Maintainability of
Aspect-Oriented Software: A Concern-Oriented Mea-
surement Framework, CSMR 2008, pp. 183-192, 2008

[14] Kiczales, G. and Mezini, M.: Separation of Concerns
with Procedures, Annotations, Advice and Pointcuts,
ECOOP 2005, pp. 195-213, 2004.

[15] Hannemann, J. and Kiczales, G.: Design Pattern Im-
plementation in Java and AspectJ, OOPSLA’02, 2002.

600

Extended Design Patterns in New Object-Oriented Programming Languages

Kazunori Sakamoto #1, Hironori Washizaki ∗2, Yoshiaki Fukazawa ∗3

National Institute of Informatics
1 exkazuu@nii.ac.jp

∗ Dept. Computer Science and Engineering, Waseda University
2 washizaki@waseda.jp 3 fukazawa@waseda.jp

Abstract

Most of design patterns are implemented in major
object-oriented programming languages such as C++ and
Java. However, newer object-oriented programming lan-
guages than such languages has new language features
which can improve implementations of design patterns.

In this paper, we propose two extended design patterns
called customizable state pattern and deeply immutable
pattern. We compares implementations of our design pat-
terns in Java, C++ and eight new object-oriented program-
ming languages through our motivating example. As a re-
sult, we confirmed new languages, in particular Scala, im-
proved implementations of our design patterns.

1. Introduction
The Gang-of-Four (GoF) design patterns (DPs) make

software quality better by providing reusable design solu-

tions [2]. The authors’ sample implementations of the GoF

DPs are written in C++. Other samples also exist in differ-

ent programming languages such as Java and C#.

Most of new object-oriented programming (OOP) lan-

guages have functional features. For example, Java7 1 had

planned to employ closure features. Although Java8 will

employ closure features instead Java7, several new lan-

guages on Java Virtual Machine (JVM) such as Scala have

already employed functional features including closures.

While DPs do not depend on programming languages,

implementations of DPs depend on programming lan-

guages. The reason is that each programming language has

different language features so that ways to implement in-

stances of DPs are different with respect to each program-

ming language. For example, C++ supports multiple inher-

itance, while Java lacks it. Thus, it is difficult to design a

class to have multiple roles in Java.

The GoF DPs are currently designed mainly for C++ and

Java. However, newer OOP languages than C++ and Java

1http://www.jcp.org/en/jsr/detail?id=335

can improve implementations of the GoF DPs. For exam-

ple, the strategy pattern is designed as an alternative way

to implement functional values. OOP languages with func-

tional features such as Scala can directly handle functional

values without the strategy pattern. As another example,

Scala supports an object class which represents a singleton

object with the singleton pattern.

Many researchers improved implementations of DPs

with other programming paradigms than the OOP [3–5, 9].

Moreover, a number of DPs are also proposed for other

paradigms than the OOP [1, 6].

In this paper, we propose two extended DPs through

our development experience of ACM JavaChallenge 2012,

which is an artificial intelligence programming (AI) contest

related to game software 2. We discuss how we can improve

implementations of our DPs in new OOP languages includ-

ing Scala in comparison with C++ and Java. As a result, we

confirmed new OOP languages can improve implementa-

tions of our DPs. We believe our result indicates new OOP

languages promote improving and extending existing DPs.

The contributions of this paper are as follows.

• Two extended DPs called customizable state and

deeply immutable DPs.

• Improvements on implementations of our DPs in new

OOP languages such as Scala.

• What language features are required to improve our de-

sign patterns.

2. Motivating example
We explain a need of extended DPs through our devel-

opment experience of JavaChallenge 2012.

2.1. Requirements of sample game software
We developed game software for JavaChallenge 2012 in

Java and Scala. The contestants develop AI programs on

our game software to compete with each other. As a result

2We will publish a paper on ICSE GAS 2013 which highlights whole

development experience of JavaChallenge 2012 including our DPs. How-

ever, this paper highlights only extended DPs in new OOP languages.

601

of our requirement analysis, we found the game software

have to satisfy five requirements as follows. Note that we

consider the game software as sample software for our dis-

cussion in this paper.

Functional requirement (FR1) The software have to

make progress based on a state machine. The software

shows and executes various scenes such as a title, main

and end scenes corresponding to a current state.

Functional requirement (FR2) The software have to al-

low users to switch various playing modes such as user

manipulation, AI manipulation, graphical user inter-

face (GUI) and console user interface (CUI) modes.

Non-functional requirement, security (NFR1) Game

states of the software have to be protected from user-

developed AI programs. AI programs is prohibited to

modify the game states illegally.

Non-functional requirement, concurrency (NFR2) The

software have to be concurrently work to speed up AI

programs so that it aids them to find the best action.

Non-functional requirement, maintainability (NFR3)
The source code of the software have to have no

duplicated code and no redundant code because such

code reduces maintainability such as changeability

and understandability.

We had previously developed a framework called Game

AI Arena (GAIA) which aids to develop game software

where user-developed AI programs can be added [7]. GAIA

provides a Scene interface and a SceneManager class

as a feature of a state machine designed by the state pat-

tern. The SceneManager class changes game scenes by

switching an active Scene object. The Scene interface

has an advance method which returns a next Scene ob-

ject for the switch.

2.2. Design with the state pattern in Java

Figure 1. Class diagram of the software with the
state pattern in Java

Figure 1 shows a class diagram of the software in

Java. This diagram does not contain the SceneManager
class and several unrelated classes for the simplicity. The

GlobalState, Map, Character and Player classes

are for representing a game state. Theses classes are mu-

table, and thus, their objects can be modified in playing

games.

The game consists of three scenes to satisfy FR1: a

title, a main, and an end scenes. The TitleScene,

MainScene, EndScene abstract classes represent these

scenes. The title scene initializes the game showing a title

image, the main scene deals with the game logic showing a

game screen and the end scene calculates the result of the

game showing the result.

The software has four modes to satisfy FR2: a user ma-

nipulation, an AI manipulation, a GUI and a CUI modes.

Although the user manipulation mode acquires game inputs

from a keyboard, the AI manipulation mode acquires game

inputs from AI programs. The user manipulation mode is

suitable for debugging the software and AI programs. The

GUI mode shows a graphical game screen, while the CUI

mode shows a text-based game screen. The CUI mode is

also suitable for debugging AI programs by speeding up the

game. For example, the GuiUserTitleScene class is

for the title scene with the GUI and the user manipulation

modes.

This design has three problems as follows.

• The classes representing the game state are mutable.

The mutable classes cause risks of illegally modifying

the game states so that this design violates NFR1.

• The scene classes are strongly combined with the sin-

gleton class as a global variable of the game state. This

dependence makes the concurrent execution difficult

so that this design violates NFR2.

• Duplicated and redundant code exists between scene

classes such as the GuiUserTitleScene class and

the GuiUserMainScene class (abbreviated in the

diagram) so that this design violates NFR3.

2.3. Design with the state pattern in C++
Although we can apply multiple inheritance which is

applied only when defining classes into the scene classes

to reduce duplicated code, applying such multiple in-

heritance increases classes. Figure 2 shows a class di-

agram of the software with the state pattern in C++,

which supports the multiple inheritance. For example, du-

plicated code between the GuiUserTitleScene and

CuiUserTitleScene classes are extracted into the

UserInputScene class. The GuiScene, CuiScene
and AIInputScene classes are also newly added to ex-

tract the duplicated code.

602

Figure 2. Class diagram of the sample game soft-
ware with the state pattern in C++

2.4. Design with the state and decorator patterns

Figure 3. Class diagram of the software with the
state and decorator patterns

1 Scene scene = new GuiDecorator(
2 new UserInputDecorator(new TitleScene()));

Figure 4. Java code constructing a similar object
to a GuiUserTitleScene object

We can also employ the decorator pattern instead of

multiple inheritance. The decorator pattern allows to

enhance objects with delegation. Figure 3 shows a class di-

agram of the software with the state and decorator patterns

in Java. The SceneDecorator class is a base class of

a decorator which has the delegateScene field to be

enhanced. For example, Figure 4 shows Java code which

constructs a similar object to a GuiUserTitleScene
object. Although this design adds the five decorator classes

such as the SceneDecorator, GuiDecorator,

CuiDecorator, UserInputDecorator and

AIInputDecorator classes, it removes 16 redun-

dant classes such as the GuiUserTitleScene class in

Figure 1 to satisfy NFR3. Moreover, this design extracts

the duplicated code into the five decorator classes to satisfy

NFR3. Thus, this design is better than the designs of

Figures 1 and 2.

2.5. Design with the state pattern in Scala

Figure 5. Class diagram of the software with the
state pattern in Scala

1 val scene = new TitleScene()
2 with UserInputFeature with GuiFeature

Figure 6. Scala code constructing a similar object
to a GuiUserTitleScene object with mixin

Scala supports mixin instead of multiple inheritance so

that Scala can merge classes with traits [8]. Scala also

allows to construct an object with mixin which is ap-

plied when creating objects. Figure 5 shows a class dia-

gram of the software with the state pattern in Scala. Fig-

ure 6 shows Scala code which constructs an similar ob-

ject to a GuiUserTitleScene object with the mixin.

Although this design adds the four traits such as the

GuiFeature, CuiFeature, UserInputFeature,

and AIInputFeature traits, it removes 16 classes such

as the GuiUserTitleScene class in Figure 1 to satisfy

NFR3. Moreover, this design extracts the duplicated code

into the four traits to satisfy NFR3. This design is better

than the designs of Figures 3 because this design does not

require a similar class to the SceneDecorator class.

2.6. Design about immutability

Immutability is preferable because changes of variable

values increase complexity of programs. Functional pro-

gramming represents programs with mapping of function

603

application while imperative programming represents pro-

grams with changes of variable values. Thus, functional

programming can easily employ immutability in programs.

The GlobalState class and the related classes such as

the Map, Character and Player classes in Figures 1,

2 and 3 are mutable. Objects of these classes can be easily

modified from other programs.

We can employ immutable objects to prevent illegal

modification completely. The State class in Figures 5 is

immutable. Moreover, the classes referred from the State
class are also immutable. When the referred classes are mu-

table, the game state can be modified partially. Thus, the

State class have to be deeply immutable to satisfy NFR1.

The GlobalState class is a singleton class which

represents the game state. All scene classes refer the

GlobalState class to make progress on games. This

design strongly combines the scene classes with the

GlobalState class. For example, AI programs some-

times require enormous time to search the best action. Al-

though executing multiple games concurrently can reduce

the time, this combination makes the concurrent execution

difficult. Moreover, the singleton object cannot represent

multiple game states. In contrast, the State class is used

only as a parameter of methods in the scene classes. These

scene classes can treat multiple game states for the concur-

rent execution to satisfy NFR2 because the scene classes do

not have State objects in fields.

3. Customizable state pattern

We extract a new DP called customizable state pattern

which extends the state patterns from Figures 3 and 5. In

this section, we show the description of the customizable

state pattern.

3.1. Context
Program behavior changes corresponding to a state

based on a state machine. A program on each state deals

with various operations such as doing logic and rendering

an UI. The operations differ depending on options such as a

CUI and a GUI modes.

3.2. Problem
Options cause combinatorial explosion so that it dras-

tically increases conditional branches or classes. Options

also cause duplicated code and redundant code so that it re-

duces maintainability.

3.3. Forces
• Combinatorial explosion owing to options increases

program elements linearly with the number of options.

• Source code representing options does not contain du-

plicated code and redundant code.

3.4. Solution
Create modules representing behavior of states with re-

spect to each option. Note that the number of modules

should be equal to the number of options except for addi-

tional modules such as a base class. Combine state modules

with option modules with one of the following ways.

3.5. Implementation

Figure 7. Class diagram of customizable state pat-
tern with the mixin
Figure 7 shows a class diagram of the customiz-

able state pattern with the state pattern and multiple in-

heritance or mixin which is applied when creating ob-

jects. The StateFeature modules are merged with

ConcreteState classes corresponding to options. This

implementation requires only modules corresponding to op-

tions without additional classes.

Figure 8. Class diagram of customizable state pat-
tern with decorator pattern

Figure 8 shows a class diagram of the customizable

state pattern with the state and decorator patterns. The

ConcreteDecorator classes are corresponding to op-

tions and enhance the ConcreteState classes. This im-

plementation requires additionally the StateDecorator
class in comparison with the design of Figure 7.

3.6. Consequences
The customizable state pattern deals with the combina-

torial explosion owing to options. Basically, the implemen-

tations of the options requires only the same number of the

modules as the options. The modules modularize the imple-

mentations of the options well so that duplicated code and

redundant code do not appear.

3.7. Related Patterns
State patter Although the state pattern does not consider

how to modularize state classes which have various op-

604

erations, the customizable state pattern aids to modu-

larize state classes where options are added.

Decorator pattern and bridge pattern The decorator and

bridge patterns can be utilized to modularize state

classes with various operations. Although multiple in-

heritance or mixin which is applied when creating ob-

jects is a better way to modularize them, the decora-

tor pattern is also one of ways to modularize them in

OOP languages without the multiple inheritance and

the mixin.

4. Deeply immutable pattern

We extract a new DP called deeply immutable pattern

which extends the immutable patterns from Figure 5. In this

section, we show the description of the deeply immutable

pattern.

4.1. Context
A program consists of a set of classes for representing a

program state (not related to state role for the state pattern).

The program state must not be illegally changed by added

user programs. The program allows to clone and restore

program states to search other program states. The pro-

gram can concurrently work using multiple program states

to speed calculations up.

4.2. Problem
It is not clear how to modularize the program state as im-

mutable modules in OOP languages because most of major

OOP languages are designed for imperative programming.

Moreover, the singleton pattern is frequently used as only

global variables. However, a singleton class cannot be uti-

lized to clone and restore program states and cannot treat

multiple program states.

4.3. Forces
• Program states are protected from illegal modification

by user programs.

• Program states are cloned and restored to search other

program states.

• The program treats the multiple program states.

4.4. Solution
Modularize the set of classes for representing a program

state with a tree structure making all the fields in the classes

immutable. Determine one of program state classes as a

root class and the other classes as node classes. Change

each class so that they have one-way connections to child

node classes and all node classes can be scanned from the

root class. Copy the root and node classes from a modi-

fied node class recursively when generating a new program

state.

4.5. Implementation

Figure 9. Class diagram of deeply immutable pat-
tern
Figure 9 shows a class diagram of the deeply immutable

pattern. The Client class manipulates the program state

locally (e.g. acquiring a State object as a parameter and

passing a new modified object to other methods) because

a global immutable object cannot be utilized to represent

changeable program states.

1 case class State(SubState1 sub1, SubState2 sub2) {
2 def newState() = {
3 val newSub1 = createNewSub1()
4 this.copy(sub1 = newSub1)
5 }
6 }
7 case class SubState1(SubSubState1 subSub1,
8 SubSubState2 subSub2) {}
9 case class SubState2(SubSubState3 subSub3) {}

10 case class SubSubState1() {}
11 case class SubSubState2() {}
12

13 val state: State = initialize()
14 val newState = state.newState()

Figure 10. Scala code which defines the classes

Figure 10 shows Scala code which defines the classes in

Figure 9. Several OOP languages with functional features

such as Scala aids to implement immutable classes. Case

class in Scala generates several useful methods including

the copy method. The copy method copies the receiver’s

object accepting parameters for changing the specific fields.

The Scala code in Figure 10 generates a new State ob-

ject by modifying sub1 field with a return value of the

createNewSub1 method.

4.6. Consequences
The deeply immutable pattern protects program states

from being modified illegally. This pattern also allows to

utilize immutable classes for representing changeable pro-

gram state by generating and passing modified program

states.

4.7. Related Pattern
Immutable pattern The immutable pattern treats only a

target class without referring classes so that the target

class can have relations to mutable classes. Thus, im-

mutable pattern cannot guarantee a set of classes for

605

representing program states are immutable.

5. Evaluation

We evaluate our extended DPs through the sample soft-

ware. Table 1 shows the numbers of required classes and

relations which indicate inheritances and references, and

existence of duplicated code in the state and customizable

state patterns, respectively. We consider six new OOP lan-

guages on the JVM and two new OOP languages on the

.NET Framework: Scala, Kotlin, Xtend, Ceylon, Fantom,

Gosu, F# and Nemerle.

Let S be the number of state classes and O be the number

of combinations of options, and P be the number of option

classes which a state depends on. Note that the numbers

of required classes and relations are expressed as formulas

with concrete numbers in the case of the sample software.

The implementations with the customizable state pattern

have only S+O+1 or S+O classes with S+O+2 or S+O
relations while them without the customizable state pattern

has S+S∗O or S+S∗O+1 classes with S∗O or S∗O∗(P+
1) relations. Scala, Kotlin, and Ceylon support mixin which

is applied when creating objects using an anonymous class

so that they remove classes and relations about decorators.

The customizable state pattern reduces approximately 50%

classes and 33% relations at least for the sample software.

Table 2 shows the numbers of required implementations

for immutable classes and of required copy methods. Let

F be the number of fields in classes for representing a pro-

gram state and C be the number of classes for representing

a program state.

Xtend and Fantom support annotations for marking im-

mutable classes. Fields in Ceylon and Nemerle are im-

mutable by default. Fantom can check whether an im-

mutable class is deeply immutable at compile-time. Scala

and F# automatically generate copy methods for updating

immutable objects. Kotlin will support immutability with

copy methods similarly to Scala. Thus, several new OOP

languages, in particular Scala and F#, can reduce imple-

mentation costs for applying the deeply immutable pattern.

Table 1. Evaluation of customizable state pattern
Implementation Class Dupli

Relation cation

State /wo multiple inheritance and S + S ∗O (15) Exist

mixin in Java, Xtend, Nemerle, F# S ∗O (12)

State /w multiple inheritance and S + S ∗O + 1 (16) None

mixin in C++, Scala, Kotlin, Gosu S ∗O ∗ (P + 1)

Ceylon, Fantom (36)

Customizable state with decorator S +O + 1 (8) None

in Java, C++, Xtend, Fantom, S +O + 2 (9)

Gosu, Nemerle, F#

Customizable state with mixin S +O (7) None

in Scala, Kotlin, Ceylon S +O (7)

Table 2. Evaluation of deeply immutable pattern
Implementation Implementation Copy

for immutability method

C++, Java, Kotlin, Gosu F C
Xtend, Ceylon, Fantom, Nemerle 0 C
Scala, F# 0 0

6. Conclusions

We proposed the customizable state pattern and the

deeply immutable pattern. We found that newer OOP lan-

guages such as Scala than traditional ones such as C++ and

Java can improve implementations of our DPs.

We plan to improve existing DP such as the GoF DP in

new OOP languages with functional features. Moreover, we

will find which language features can improve DPs and how

the features can improve DP with case study.

References

[1] S. Antoy and M. Hanus. New functional logic design patterns.

In Proceedings of the 20th international conference on Func-
tional and constraint logic programming, WFLP’11, pages

19–34, Berlin, Heidelberg, 2011. Springer-Verlag.
[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-

sign patterns: elements of reusable object-oriented software.

Addison-Wesley Professional, 1995.
[3] J. a. L. Gomes and M. P. Monteiro. Design pattern implemen-

tation in object teams. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing, SAC ’10, pages 2119–2120,

New York, NY, USA, 2010. ACM.
[4] O. Hachani and D. Bardou. Using aspect-oriented program-

ming for design patterns implementation. In In Proc. Work-
shop Reuse in Object-Oriented Information Systems Design,

2002.
[5] J. Hannemann and G. Kiczales. Design pattern implemen-

tation in java and aspectj. SIGPLAN Not., 37(11):161–173,

Nov. 2002.
[6] R. Lämmel and J. Visser. Design patterns for functional strate-

gic programming. In Proceedings of the 2002 ACM SIGPLAN
workshop on Rule-based programming, RULE ’02, pages 1–

14, New York, NY, USA, 2002. ACM.
[7] K. Sakamoto, A. Ohashi, H. Washizaki, and Y. Fukazawa. A

framework for game software which users play through artifi-

cial intelligence programming (in japanese). IEICE Transac-
tions, 95(3):412–424, mar 2012.

[8] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:

Composable units of behaviour. In L. Cardelli, editor,

ECOOP 2003 - Object-Oriented Programming, volume 2743

of Lecture Notes in Computer Science, pages 248–274.

Springer Berlin Heidelberg, 2003.
[9] G. T. Sullivan. Advanced programming language features for

executable design patterns ”better pattern through reflection”,

2002.

606

ELCD: an efficient online cycle detection technique for pointer analysis

Fei Liu, Lulu Wang, Bixin Li

School of Computer Science and Engineering, Southeast University, Nanjing, China
Email: {fei liu, wanglulu, bx.li}@seu.edu.cn

Abstract

Online cycle detection techniques can improve the effi-
ciency and scalability of inclusion-based pointer analysis
algorithm. Currently, many cycle detection techniques ag-
gressively seek cycles in the constraint graph and have
high overhead. LCD(Lazy Cycle Detection) technique can
significantly reduce the overhead of online cycle detec-
tion, because it tries to detect cycle only when cycle is
likely to be in the constraint graph. It identifies potential
cycles based on cycle effect. However, most LCD cycle
detection searches find no cycles because the computation
of cycle effect only bases on points-to sets of two nodes
on one edge, which sometimes can not assure there must
be a cycle. In this paper, an improved cycle detection
technique is introduced which we call ELCD(Extended
Lazy Cycle Detection). Compared to LCD, ELCD can
identify potential cycles based on more-refined cycle effect,
which is computed based on not only points-to sets of
two nodes on one edge but also the points-to set of the
successor of destination node of the edge; and significantly
reduce the number of cycle detection searches that find no
cycles. Experimental results show that ELCD can improve
efficiency of LCD without losing points-to information
precision.

Keywords—online cycle detection; inclusion-based pointer
analysis; points-to set; constraint graph

I. Introduction

Pointer analysis is a static analysis technique. Its goal

is to determine statically which memory locations one

Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and no. 60973149, and partially
Supported by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, and partially by National High Technology
Research and Development Program under Grant No.2008AA01Z113.

Correspondence to: Bixin Li, School of Computer Science and Engi-
neering, Southeast University, Nanjing, China. E-mail: bx.li@seu.edu.cn

pointer variable may point to. Pointer analysis is an im-

portant technique, because it enables compilers optimiz-

ing and program analyzers for languages with pointers

such as C/C++ and Java. The existing pointer analysis

algorithms are all approximate and each approximate al-

gorithm provides a trade-off between the efficiency and

the precision. There are several dimensions that affect ef-

ficiency/precision trade-off of the algorithm, among which

are context-sensitivity and flow-sensitivity. This paper

deals with inclusion-based pointer analysis which is flow-

insensitive and context-insensitive.

Inclusion-based pointer analysis is first proposed by

Andersen in his ph.d thesis[2]. The primary technique to

improve algorithm’s efficiency and scalability is online
cycle detection, which is first proposed in [3]. Online

cycle detection techniques dynamically detect cycles in the

constraint graph during the analysis and collapses all the

nodes in a cycle into a representative node. Since there are

several classic graph algorithms which can detect strongly

connected component of directed graphs efficiently, the

difficulty in online cycle detection lies in when to perform

cycle detection and how to control overhead of pointer

analysis algorithm. Most online cycle detection techniques

aggressively seek out cycles in the constraint graph when

new edge are added[6, 7]. However, Hardekopf et al.

propose a novel technique of detecting cycles called Lazy

Cycle Detection(LCD), which identifies potential cycles

based on cycle effect. In this paper, inclusion-based pointer

analysis algorithm that employs LCD technique for online

cycle detection is called LCD algorithm. The cycle effect in

LCD algorithm is defined as identical points-to sets of two

nodes of an edge. When points-to sets of two nodes of an

edge are identical, LCD algorithm thinks that there is a cy-

cle in the constraint graph, and cycle detection is triggered.

But LCD algorithm has the following shortcomings: firstly,

the majority of cycle detection searches find no cycles;

by observing experimental results of LCD algorithm, it

can be found that less than 1% searches will find actual

cycles[8]; secondly, there are some cycles in the constraint

607

graph that LCD algorithm can not find. So the efficiency

of LCD algorithm may be improved if the number of cycle

detection searches which find no cycles can be significantly

reduced and more cycles in the constraint graph can be

found.

In this paper we introduce an online cycle detection

technique called ELCD, which is an improvement of LCD

technique. Cycle detection of ELCD is also based on cycle
effect. The difference between ELCD and LCD lies in the

definition of cycle effect and the cycle effect of ELCD is

more refined than that of LCD. Inclusion-based pointer

analysis algorithm that employs ELCD for online cycle

detection is called ELCD algorithm. Experimental results

show that ELCD algorithm can significantly reduce the

number of cycle detection searches which find no cycles

and improve algorithm’s efficiency without losing points-to

information precision, compared to LCD algorithm.

The rest of this paper is organized as follows. In Section

II we provide relevant background about inclusion-based

pointer analysis and LCD algorithm. Section III introduces

ELCD algorithm. Section IV describes experimental eval-

uation. Section V discusses related work. And section VI

concludes this paper.

II. Background

This section contains three parts: preliminaries of

inclusion-based pointer analysis, inclusion-based pointer

analysis algorithm using constraint graph(IBPAC algo-

rithm), and LCD algorithm proposed in [4].

A. Preliminaries of Inclusion-Based Pointer Anal-
ysis

In this paper, C language program is our target program

to be analyzed. Inclusion-based pointer analysis is first

proposed by Andersen in his ph.d thesis[2]. It is based on

set constraint analysis and contains two phases: constraint
generation and constraint solving. Constraints are derived

from the statements involving pointer variable assignment

and function parameter passing in the C program. Con-

straints derivation process is trivial and basic constraint

generation rules are used. Table I illustrates generation

rules and constraint types used in inclusion-based pointer

analysis. Andersen’s algorithm maintains the inclusion

constraints in a vector and solves constraints by iterating

over constraints until a fixpoint is obtained.

B. IBPAC Algorithm

More inclusion-based pointer analysis algorithms em-

ploy constraint graph to represent inclusion constraints.

Inclusion-based pointer analysis algorithm using constraint

TABLE I. Basic constraint generation rules
and constraint types

statement constraint type
𝑝 = &𝑞 𝑝 ⊇ {𝑞} base
𝑝 = 𝑞 𝑝 ⊇ 𝑞 simple
𝑝 = ∗𝑞 𝑝 ⊇ ∗𝑞 complex 1
∗𝑝 = 𝑞 ∗𝑝 ⊇ 𝑞 complex 2

graph is called IBPAC algorithm in this paper. IBPAC

algorithm solves inclusion constraints by computing the

dynamic transitive closure of constraint graph. In constraint

graph G, there is one node for each program variable.

Each node has an associated points-to set, and the points-

to set of the node is initialized using base constraints: for

each 𝑝 ⊇ {𝑞} , points-to set of node p contains loc(q),
where loc(q) denotes the memory location of variable q.

A direct edge from node p to node s represents propagation

of points-to set from node p to node s.

IBPAC algorithm is reduced to compute the dynamic

transitive closure of the constraint graph by continually

propagating points-to sets along constraint graph’s edges,

adding new edges when appropriate. It is illustrated in

Algorithm 1.

Algorithm 1 IBPAC algorithm

1: let G=⟨𝑉,𝐸⟩
2: W ← V

3: while 𝑊 ! = ∅ do
4: n ← 𝑆𝐸𝐿𝐸𝐶𝑇 𝐹𝑅𝑂𝑀(𝑊)
5: for each 𝑣 ∈ 𝑝𝑡𝑠(𝑛) do
6: for each constraint 𝑎 ⊇ ∗𝑛 do
7: if 𝑣 → 𝑎 /∈ 𝐸 then
8: 𝐸 ← 𝐸 ∪ {𝑣 → 𝑎}
9: 𝑊 ← 𝑊 ∪ {𝑣}

10: end if
11: end for
12: for each constraint ∗𝑛 ⊇ 𝑏 do
13: if 𝑏 → 𝑣 /∈ 𝐸 then
14: 𝐸 ← 𝐸 ∪ {𝑏 → 𝑣}
15: 𝑊 ← 𝑊 ∪ {𝑏}
16: end if
17: end for
18: end for
19: for each 𝑛 → 𝑧 ∈ 𝐸 do
20: 𝑝𝑡𝑠(𝑧) ← 𝑝𝑡𝑠(𝑧) ∪ 𝑝𝑡𝑠(𝑛)
21: if pts(z) changed then
22: 𝑊 ← 𝑊 ∪ {𝑧}
23: end if
24: end for
25: end while

608

C. LCD Algorithm

Considering the fact that nodes in the same cycle should

have identical points-to sets when IBPAC algorithm termi-

nates, Hardekopf et al. propose LCD algorithm[4], where

they propose a novel strategy for online cycle detection:

before propagating points-to information along an edge

of constraint graph, algorithm checks to see whether the

source and destination node already have identical points-

to sets or not. If the two nodes have identical points-to

set, LCD algorithm uses a depth-first search to check for

a possible cycle.

The LCD algorithm is an improvement of IBPAC

algorithm, which is illustrated in Algorithm 2. Before a

points-to set is propagated from one node to another,

the algorithm needs to check whether the following two

conditions are satisfied or not: (1) the points-to sets are

identical; and (2) the algorithm has not triggered a search

on this edge previously. If these conditions are satisfied,

LCD algorithm triggers the cycle detection rooted on the

destination node. If there exists a cycle, the algorithm

collapses all the nodes involved together; otherwise it

marks this edge to show that it is not necessary to repeat

this attempt later.

Algorithm 2 LCD algorithm

1: let G=⟨𝑉,𝐸⟩
2: /* R represents edges on which LCD algorithm has

already triggered cycle detection */

3: R ← ∅
4: W ← V

5: while 𝑊 ! = ∅ do
6: Lines 4 to 18 in Algorithm 1 are added here.

7: for each 𝑛 → 𝑧 ∈ 𝐸 do
8: if pts(z)=pts(n) ∧ n→ 𝑧 /∈ 𝑅 then
9: 𝐷𝐸𝑇𝐸𝐶𝑇 𝐴𝑁𝐷 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 𝐶𝑌 𝐶𝐿𝐸(𝑧)

10: 𝑅 ← 𝑅 ∪ {𝑛 → 𝑧}
11: end if
12: 𝑝𝑡𝑠(𝑧) ← 𝑝𝑡𝑠(𝑧) ∪ 𝑝𝑡𝑠(𝑛)
13: if pts(z) changed then
14: 𝑊 ← 𝑊 ∪ {𝑧}
15: end if
16: end for
17: end while

LCD technique is lazy because cycle detection is not

triggered until the effect of the cycle(identical points-to

sets) becomes evident, rather than trying to detect cycles

when the final edge that completes the cycle is inserted.

The advantage of this technique is that algorithm only

attempts to detect cycles when it is likely to find them. The

efficiency of LCD algorithm depends on the assumption

that two nodes usually have identical points-to sets only

because they are in the same cycle. But this assumption

does not hold at most time. Because during LCD algorithm

execution, when two nodes have identical points-to sets,

they are often not in the same cycle. If the assumption does

not hold, that is to say, two nodes with identical points-

to sets are not in the same cycle, LCD algorithm wastes

time attempting to detect non-existent cycles. This is one

shortcoming of LCD algorithm, and also leave some room

to improve LCD algorithm both in efficiency and other

aspects.

III. ELCD Algorithm

Considering the shortcoming of LCD algorithm, we

propose an improvement of LCD algorithm, which we

call ELCD algorithm. ELCD, that is to say, online cycle

detection technique of ELCD algorithm, is also based on

cycle effect. The difference between ELCD and LCD lies

in the definition of cycle effect. The cycle effect in LCD

is defined as identical points-to sets of two nodes of an

edge. The cycle effect of ELCD is more refined than that of

LCD and is defined to satisfy the following two conditions

simultaneously: (1) two nodes of one edge have identical

points-to sets; and (2) destination node of the edge has at

least one immediate successor and the immediate successor

has the same points-to set as points-to set of source node of

the edge. When these two conditions are satisfied, ELCD

algorithm thinks that there is a cycle in constraint graph,

and cycle detection search is triggered.

Because cycle effect of ELCD algorithm is more refined

than that of LCD algorithm, many cycle detection searches,

which are triggered in LCD algorithm and find no cycles

in the constraint graph, will not be triggered in ELCD

algorithm. Compared to LCD algorithm, ELCD algorithm

can significantly reduce the number of cycle detection

searches which find no cycles and improve algorithm’s

efficiency without losing points-to information precision.

Similar to LCD algorithm, ELCD algorithm does not

trigger twice cycle detection searches on the same edge.

This restriction avoids making repeated cycle detection

searches which find no cycles. And it also indicates that

ELCD algorithm is not guaranteed to find all cycles in the

constraint graph.

ELCD algorithm is shown in Algorithm 3. Before prop-

agating points-to information along an edge from one node

to another, algorithm 3 checks to see if the defined cycle
effect is satisfied. Only if these conditions are satisfied,

ELCD algorithm triggers cycle detection rooted at the

destination node. If there exists a cycle, ELCD algorithm

collapses all the nodes involved together; otherwise it

marks this edge so that algorithm will not repeat the

attempt later.

609

Algorithm 3 ELCD algorithm

1: let G=⟨𝑉,𝐸⟩
2: /* R represents edges on which ELCD algorithm has

already triggered cycle detection */

3: R ← ∅
4: W ← V

5: while 𝑊 ! = ∅ do
6: Lines 4 to 18 in Algorithm 1 are added here.

7: for each 𝑛 → 𝑧 ∈ 𝐸 do
8: if pts(z)=pts(n) ∧ n→ 𝑧 /∈ 𝑅 then
9: if ∃ m, z→ 𝑚 ∈ 𝐸∧ pts(m)=pts(z) then

10: 𝐷𝐸𝑇𝐸𝐶𝑇 𝐴𝑁𝐷 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 𝐶𝑌 𝐶𝐿𝐸(𝑧)
11: end if
12: 𝑅 ← 𝑅 ∪ {𝑛 → 𝑧}
13: end if
14: 𝑝𝑡𝑠(𝑧) ← 𝑝𝑡𝑠(𝑧) ∪ 𝑝𝑡𝑠(𝑛)
15: if pts(z) changed then then
16: 𝑊 ← 𝑊 ∪ {𝑧}
17: end if
18: end for
19: end while

TABLE II. Experimental benchmarks*

Name Description LOC Constraints
Emacs-21.4a text editor 169K 83,213

Ghostscript-8.15 postscript viewer 242K 169,312
Gimp-2.2.8 image manipulation 554K 411,783
Insight-6.5 graphical debugger 603K 243,404

Wine-0.9.21 windows emulator 1,338K 713,065
Linux-2.4.26 linux kernel 2,172K 574,788

* Constraints: the number of constraints generated by the CIL[1]
front-end.

IV. Experimental Evaluation

The benchmarks used to compare algorithm’s efficiency

between ELCD and LCD are a suite of six open-source

C programs, which range in size from 169K to 2.17M

LOC. The benchmarks are described in Table II. We

perform the experiments on a quad 2.40GHz processor

with 3.24GB of memory, using the Ubuntu 9.10 Linux dis-

tribution(VMWare platform). All executables are compiled

using gcc-4.4.1 and the ’-O3’ optimization flag.

A. Experimental Framework

Figure 1 describes the framework of the experiments

conducted in this paper. Original constraint file is pre-

processed in offline optimization analysis phase, and then

reduced constraint file is used as algorithm’s input of both

ELCD and LCD.

If original constraint file generated from benchmark

source code by the CIL front-end[1] is directly used as

o r i g i n a l c o n s t r a i n t f i l e

h v n

h r u + l e

r e d u c e d c o n s t r a i n t f i l e

L C D

E L C D

e x p e r i m e n t a l r e s u l t s

o f f l i n e o p t i m i z a t i o n a n a l y s i s

Fig. 1. Experimental Framework. hvn and
hru+le each representing different offline op-
timization technique[5].

algorithm’s input, both ELCD and LCD can only deal with

benchmarks of emacs and gs. Larger benchmarks(such as

inst, wine and lnx) run out of memory before analysis algo-

rithm completes. So in our experiments, original constraint

files are first pre-processed by offline optimization analysis

techniques hvn and hru+le[5], and then reduced constraint

files are used as algorithm’s input.

B. Experimental Results

1) Offline optimization analysis: Table III describes

time overhead of pre-processing original constraint files

using hvn and hru+le. Table IV shows the number of orig-

inal constraints and the number of constraints generated

by hvn and hru+le. From table III and IV, we can find

that hvn and hru+le can significantly reduce the number

of constraints in original constraint files with little time

consumption.

2) ELCD and LCD: Considering that two offline op-

timization techniques are used in offline analysis phase,

this section presents five corresponding tables to describe

experimental results of LCD and ELCD. Table V and Table

VI correspond to experimental results of LCD and ELCD

under hvn. The experimental results of LCD and ELCD

coupled with hru+le technique are shown in table VII and

table VIII. Table IX describes efficiency improvement of

LCD algorithm under hvn and hru+le.

Corresponding parameters in tables V-VIII are ex-

plained as follows: time(sec) represents algorithm’s exe-

cution time; collapsed nodes denotes number of all nodes

which are collapsed into strongly connected components;

false num shows number of cycle detection searches

which find no cycles; good num represents number of

cycle detection searches which actually find cycles in the

constraint graph; scc denotes number of strongly connected

components in the final constraint graph; total num shows

number of cycle detection searches triggered by analysis

algorithm.

610

TABLE III. Time(s) of pre-processing
original constraint files

emacs gs gimp inst wine lnx
time under hvn 0.24 0.516 1.484 0.784 3.2802 1.9801

time under hru+le 0.416 2.14 3.62 4.4762 10.6087 9.4885

TABLE IV. Number of constraints generated
by hvn and hru+le

emacs gs gimp inst wine lnx
original constraints 83,213 169,312 411,783 243,404 713,065 574,788
constraints by hvn 21,460 67,310 96,483 85,375 171,237 203,732

constraints by hru+le 7,829 46,301 49,870 48,325 110,285 108,942

C. Experimental Analysis

Figure 2 and 3 show the comparison of the performance

of ELCD with LCD under hvn and hru+le. For bench-

marks, execution time of ELCD is almost less than that of

LCD algorithm under hvn and hru+le, except for inst under

hvn and lnx under hru+le. Figure 4 compares improvement

of LCD under hvn and hru+le.

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
(𝑡𝐿𝐶𝐷 − 𝑡𝐸𝐿𝐶𝐷)

𝑡𝐿𝐶𝐷
∗ 100%

On average, ELCD can make improvement of LCD by

7.51% under hvn and 5.66% under hru+le.

From experimental results, we can find the following

observations and conclusions:

∙ Scc and collapsed nodes of ELCD and LCD algo-

rithm are almost identical under offline optimization

technique hvn and hru+le, except for gs benchmark

under hvn. ELCD frequently has the same number

of collapsed nodes as LCD while always triggering

less cycle detection attempts. These data shows the

evidence that ELCD has the potential to perform

better than LCD.

∙ Total num and False num of ELCD algorithm are

less than those of LCD algorithm under hvn and

hru+le. For benchmarks used in this paper, the dif-

ference between execution time of ELCD and LCD

algorithm is relatively unobvious. This is because of

this fact that the sizes of points-to sets of these bench-

marks are very large. Large points-to sets increase the

overhead of repeatedly performing set equality when

ELCD algorithm executes.

∙ Improvements of LCD under different offline opti-

mization techniques are different. This is because

reduced constraint files are obviously different.

V. Related Work

Research of inclusion-based pointer analysis algorithm

is mainly focused on how to improve efficiency and scal-

TABLE V. LCD with hvn
time(s) scc collapsed nodes false num good num total num

emacs 2.3401 5305 5999 6679 45 6724
gs 12.8128 28294 13563 16009 102 16111

gimp 36.9303 45466 19165 26230 59 26289
inst 32.8541 29359 21001 34501 182 34683
wine 901.908 78596 56082 66337 122 66459
lnx 268.193 86179 43555 82453 426 82879

TABLE VI. ELCD with hvn
time(s) scc collapsed nodes false num good num total num

emacs 2.0321 5305 5999 1438 40 1478
gs 11.7927 28293 13564 2411 94 2505

gimp 33.0621 45466 19165 7217 51 7268
inst 33.3421 29359 21001 9486 139 9625
wine 850.945 78596 56082 10260 108 10368
lnx 243.211 86179 43555 19121 361 19482

TABLE VII. LCD with hru+le
time(s) scc collapsed nodes false num good num total num

emacs 0.008 9076 561 214 43 257
gs 0.292 32808 4336 1892 44 1936

gimp 0.056 50291 4222 1003 30 1033
inst 2.0201 34118 6255 4923 72 4995
wine 2.9362 110823 15966 3900 42 3942
lnx 3.0522 91539 11717 4857 304 5161

TABLE VIII. ELCD with hru+le
time(s) scc collapsed nodes false num good num total num

emacs 0.004 9076 561 39 40 79
gs 0.28 32808 4336 514 35 549

gimp 0.056 50290 4223 300 26 326
inst 1.8561 34118 6255 1811 61 1872
wine 2.7042 110823 15966 820 36 856
lnx 4.1563 91539 11717 1301 275 1576

TABLE IX. Improvement of LCD under hvn
and hru+le*

improvement under hvn improvement under hru+le
emacs 13.16% 50.00%

gs 7.96% 4.11%
gimp 10.47% 0.00%
inst -1.49% 8.12%
wine 5.65% 7.90%
lnx 9.31% -36.17%

average 7.51% 5.66%

Fig. 2. Performance of ELCD versus LCD
under hvn.

611

Fig. 3. Performance of ELCD versus LCD
under hru+le.

Fig. 4. Improvement of LCD under hvn and
hru+le.

ability without losing points-to information precision. The

existing methods used to improve algorithm’s efficiency

and scalability mainly contain: online cycle detection tech-

niques and offline optimization techniques.

Online cycle detection techniques Faehndrich et

al.[3] first propose online cycle detection technique. Their

work performs partial online cycle detection. Heintze and

Tardieu[6] performs cycle detection by graph reachability

queries. Pearce et al.[7] dynamically maintains a topologi-

cal ordering of the constraint graph. Only a newly-inserted

edge that violates the current ordering could possibly cre-

ate a cycle, so cycle detection and topological re-ordering

are performed only in this case. Fernando Magno Quintao

Pereira et al.[8] propose two new algorithms for solving

inclusion-based pointer analysis, such as wave propagation
and deep propagation. The wave propagation method

separates the insertion of new edges in constraint graph and

the propagation of points-to sets based on Pearce et al.’s

algorithm[7]. The deep propagation algorithm maintains

the invariant that, if a node w is reachable from a node v,

then the points-to set of w contains the points-to set of v.

Offline optimization techniques An offline analysis

is a static analysis performed prior to the actual pointer

analysis. Hardekopf et al.[5] propose three offline opti-

mization analysis techniques which dramatically reduce

both the time and memory consumption of subsequent

algorithm. The hvn(hash-based value numbering) tech-

nique gives each direct node a pointer equivalence label

such that two nodes share the same label only if their

points-to sets are identical. The hru technique extends

hvn technique by interpreting the union and dereference

operators. The le(location equivalence) technique assigns

location equivalence labels such that le(x)=le(y) iff x and

y always belong to the same points-to sets.

VI. Conclusion and Future Work

In this paper, we have discussed how to perform online

cycle detect efficiently for inclusion-based pointer analysis.

The main contributions include: an efficient online cycle

detection technique called ELCD is proposed, which is

based on more refined definition of cycle effect, compared

with LCD technique; a series of experiments are conducted

to show that ELCD algorithm can significantly reduce the

number of cycle detection searches which find no cycles

and improve LCD algorithm’s efficiency without losing

points-to information precision.
Future work should include:(1) compare algorithm’s

efficiency of ELCD and LCD on other benchmarks to

verify the speculation: whether the execution time of

ELCD is far less than that of LCD algorithm when ELCD

and LCD are run on benchmarks whose points-to sizes are

moderate. (2) further improve ELCD algorithm to enable

ELCD to find more cycles in the constraint graph.

References

[1] cil. http://www.cs.berkeley.edu/ necula/cil/.

[2] Lars Ole Andersen. Program analysis and special-
ization for the C programming language. PhD thesis,

DIKU, University of Copenhagen, May 1994.

[3] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su,

and Alexander Aiken. Partial online cycle elimina-

tion in inclusion constraint graphs. In Programming
Language Design and Implementation, pages 85–96,

1998.

[4] B. Hardekopf and C. Lin. The ant and the grasshopper:

fast and accurate pointer analysis for millions of lines

of code. In Programming Language Design and
Implementation, pages 290–299, 2007.

[5] Ben Hardekopf and Calvin Lin. Exploiting pointer and

location equivalence to optimize pointer analysis. In

Static Analysis Symposium, pages 265–280, 2007.

[6] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing

analysis using CLA: a million lines of C code in

a second. In Programming Language Design and
Implementation, pages 254–263, 2001.

[7] D.J. Pearce, P.H.J. Kelly, and C. Hankin. Online

cycle detection and difference propagation for pointer

analysis. In Source Code Analysis and Manipulation,

pages 3–12, 2003.

[8] Fernando Magno Quintao Pereira and Daniel Berlin.

Wave propagation and deep propagation for pointer

analysis. In Code Generation and Optimization, pages

126–135, 2009.

612

Exploring Ensemble-Based Data Preprocessing Techniques

for Software Quality Estimation

Kehan Gao
Eastern Connecticut State University

gaok@easternct.edu

Taghi M. Khoshgoftaar
Florida Atlantic University

khoshgof@fau.edu

Amri Napolitano
Florida Atlantic University

amrifau@gmail.com

Abstract—Software quality modeling uses software metrics such as
code-level measurements and defect data in order to build classification
models for identifying potentially-problematic program modules. The
prediction accuracy of these classification models is heavily influenced by
the quality of the input data. Two problems which can affect such data are
high dimensionality (having an extremely large number of independent
attributes, or features) and class imbalance (having one class with many
more members than the other class). In this paper, we present a novel
form of ensemble learning based on boosting that incorporates data sam-
pling to alleviate class imbalance and feature (software metric) selection to
resolve high dimensionality. As we adopt two different sampling methods
(Random Undersampling (RUS) and Synthetic Minority Oversampling
(SMOTE)) in the technique, we have two forms of our new ensemble-
based approach: SelectRUSBoost and SelectSMOTEBoost. To evaluate
the effectiveness of these new techniques, we apply them to a group
of datasets from a real-world software system. We use four learners
and nine feature selection techniques to build our models. In addition,
we consider versions of the technique which do not incorporate feature
selection, and compare all four techniques (the two different ensemble-
based approaches which utilize feature selection and the two versions
which use sampling only). The experimental results demonstrate that
SelectRUSBoost is more effective in improving classification performance
than SelectSMOTEBoost, and that the techniques with feature selection
result in better prediction than using the techniques without feature
selection.

Index Terms—software defect prediction, software metrics, feature
selection, data sampling, ensemble learning.

I. INTRODUCTION

Software measurement data (such as code metrics, execution traces,

historical code changes, and defect databases) collected during the

software development process contain valuable information about a

software project’s status, progress, quality, and evolution. Practition-

ers can use this software measurement data along with various data

mining techniques to perform software defect prediction, the process

which utilizes software metrics and defect data in order to build

classification models which estimate the quality of program modules

(e.g., classify program modules as either fault-prone (fp) or not-fault-

prone (nfp)) [1]. With such predictions, project resources such as

quality-assurance time can be effectively allocated to the problematic

modules. For example, the potentially-faulty modules receive more

inspection and testing, resulting in better quality of the product.

Many studies have shown that prediction accuracy is affected by

the quality of the input data. In this paper, we are interested in

investigating two common problems, high dimensionality and class
imbalance, that appear in many software measurement datasets. High

dimensionality occurs when too many variables (features or software

metrics) are available for building classification models. Several

problems may arise due to high dimensionality, including longer

learning time of a classification algorithm, a decline in prediction

performance of a classification model, and the creation of complex

models which are difficult for humans to interpret. Previous research

has shown that filter-based feature ranking techniques are simple,

fast, and effective methods for dealing with this problem [2].

In the context of software quality engineering, class imbalance

occurs when not-fault-prone (nfp) modules significantly outnumber

fault-prone (fp) modules in a given dataset. Generally, for a binary

classification problem, two types of errors can occur: Type I and

Type II1. In software engineering, a Type II error is usually far more

expensive than a Type I error, as the cost of a Type I error may

involve wasted effort resulting from inspecting high quality program

modules, while a Type II error may indicate a missed opportunity

for correcting a faulty module prior to system deployment and

operation. Class imbalance usually results in more prediction errors

of Type II, especially when the different costs of misclassifications

are ignored during the modeling process. Data sampling, a process

which modifies the input data by removing majority-class instances

or adding minority-class instances to reduce the class imbalance, is

frequently used to cope with this problem.

To alleviate the adverse impacts of high-dimensional, imbalanced

data on the prediction models, in this paper we propose a new

technique which integrates data sampling, feature selection, and

ensemble learning (boosting). We use two different sampling methods

(Random Undersampling (RUS) and Synthetic Minority Oversam-

pling (SMOTE)), and thus we have two forms of this ensemble-

based approach, SelectRUSBoost and SelectSMOTEBoost. In addition,

we build our models using nine various filter-based feature ranking

techniques, resulting in 18 different ensemble-based methods in total.

We also consider the techniques which do not use feature selection

(denoted RUSBoost and SMOTEBoost).

To assess the effectiveness of the proposed method, we apply

the techniques to four datasets from a real-world large legacy

telecommunications software system, all of which exhibit significant

class imbalance between the two classes (fp and nfp). In particular

for all four datasets, the proportion of the fp class ranges from

1% to 7% of total number of modules. The post-sampling class

ratios is set to 50:50, meaning that after sampling the new dataset

will contain the same number of fp and nfp modules. Four differ-

ent learners are used to build classification models. We compare

the two forms of the ensemble-based approach, SelectRUSBoost

vs. SelectSMOTEBoost, and we also compare the techniques using

feature selection with those which do not. The experimental results

demonstrate that SelectRUSBoost results in better or similar prediction

as SelectSMOTEBoost. In addition, the proposed techniques demon-

strated much better classification behavior when feature selection is

used in the data preprocessing step.

The rest of the paper is organized as follows. Section II dis-

cusses related work. Section III provides methodology, including

1A Type I error or misclassification refers to a nfp module misclassified as
fp, while a Type II error refers to a fp module misclassified as nfp.

613

more detailed information about the feature selection, data sampling,

ensemble-based techniques, learners, and performance metric applied

in this study. The datasets used in the experiments are described in

Section IV. Section V presents the experimental results. Finally, the

conclusion and future work are summarized in Section VI.

II. RELATED WORK

Feature selection is an effective technique to resolve the problem

of high dimensionality, and as such it has been heavily researched.

Liu et al., in their research [3], provide a comprehensive survey of

feature selection and review its developments with the growth of data

mining. Numerous variations of feature selection have been employed

in a range of fields. Ilczuk et al. [4] highlight the importance of

attribute selection in judging the qualification of patients for cardiac

pacemaker implantation. In the context of text mining, Forman [5]

investigates multiple filter-based feature ranking techniques.

In addition to excess number of attributes, many real-world datasets

are plagued with the class imbalance problem. A considerable amount

of research has been done to investigate this problem. Weiss et al. [6]

provide a survey of the class imbalance problem. Two important

techniques discussed for alleviating the problem of class imbalance

are data sampling and boosting. Barandela et al. [7] and Han et al.

[8] examine the performance of some “intelligent” data sampling

techniques such as SMOTE, Borderline SMOTE, and Wilson’s Editing.

Although boosting, a common form of ensemble learning, is

not specifically developed to handle the class imbalance problem,

it has been shown to be very effective in this regard [9]. The

most commonly used boosting algorithm is AdaBoost [10]. Several

variations [11], [12] have been proposed to make AdaBoost cost-

sensitive or to improve its performance on imbalanced data.

While a great deal of work has been done for feature selection

and data sampling separately, limited research has been done and

reported on both together. In one of our recent studies [13], we

use data sampling together with feature selection to deal with the

high dimensionality and class imbalance problems in the context of

software quality classification. The experimental results demonstrate

that using feature selection along with data sampling is more effective

than using each technique individually for improving software defect

prediction.

III. METHODOLOGY

A. Filter-Based Feature Ranking Techniques

The goal of feature ranking is to score each feature according to

a particular method, allowing the selection of the best features.

1) Standard Techniques: The six filter-based feature ranking tech-

niques used in this work include: chi-squared (CS), information gain

(IG), gain ratio (GR), two types of ReliefF (RF and RFW), and

symmetrical uncertainty (SU). All six use the implementation found

in the WEKA tool2 [14], and use default parameters unless otherwise

noted.

The chi-squared (CS) test is used to examine whether two variables

are independent. CS is more likely to find significance to the extent

that (1) the relationship is strong, (2) the sample size is large,

and/or (3) the number of values of the two associated features is

large. Information gain, gain ratio, and symmetrical uncertainty are

measures based on the concept of entropy from information theory.

Information gain (IG) is the information provided about the target

2Waikato Environment for Knowledge Analysis (WEKA) is a popular suite
of machine learning software written in Java, developed at the University of
Waikato. WEKA is free software available under the GNU General Public
License.

Algorithm 1: Threshold-Based Feature Selection

input :
1. Dataset S = {(xi, yi)|i = 1, . . . ,m and yi ∈ {P,N}} with
features F j , j = 1, . . . , n, where P = fp and N = nfp;

2. The value of attribute F j for instance xi is denoted F j(xi);
3. Metric ω ∈ {AUC, PRC}.
output: Ranking R = {r1, . . . , rn} where rj represents the rank for

attribute F j , i.e., the rj -th most significant attribute as
determined by metric ω.

for F j , j = 1, . . . , n do
Normalize F j �→ F̂ j =

F j−min(F j)

max(F j)−min(F j)
;

Calculate metric ω using attribute F̂ j and class attribute

{yi| yi ∈ {P,N}, i = 1, . . . ,m}, ω(F̂ j) ; (The detailed formula
of each metric ω is provided in Section III-A2.)

Create attribute ranking R using ω(F̂ j) ∀j

class attribute Y, given the value of another attribute X. IG measures

the decrease of the weighted average impurity of the partitions,

compared with the impurity of the complete set of data. A drawback

of IG is that it tends to prefer attributes with a larger number of

possible values, even if it is actually no more informative. One

strategy to counter this problem is to use the gain ratio (GR), which

penalizes multiple-valued attributes. Symmetrical uncertainty (SU) is

another way to overcome the problem of IG’s bias toward attributes

with more values, doing so by dividing by the sum of the entropies

of X and Y. Relief is an instance-based feature ranking technique.

ReliefF is an extension of the relief algorithm that can handle noise

and multiclass datasets. When the WeightByDistance (weight

nearest neighbors by their distance) parameter is set as default (false),

the algorithm is referred to as RF; when the parameter is set to true,

the algorithm is referred to as RFW.

2) Threshold-Based Feature Selection: The threshold-based fea-

ture selection (TBFS) technique was proposed by our research

team and implemented within WEKA. The procedure is shown in

Algorithm 1. Each independent attribute works individually with

the class attribute, and this two-attribute dataset is evaluated using

different classification performance metrics. More specifically, the

TBFS procedure includes two steps: (1) normalizing the attribute

values so that they fall between 0 and 1; and (2) treating those values

as the posterior probabilities from which to calculate performance

metrics.

The feature rankers we propose utilize three rates3. The value

is computed in both directions: first treating instances above the

threshold (t) as positive and below as negative, then treating instances

above the threshold as negative and below as positive. The better

result is used. In this manner, the attributes can be ranked from most

to least predictive based on each metric. Two metrics used in this

study are presented as follows:

a. Area Under the ROC Curve (AUC). Receiver operating char-

acteristic, or ROC, curves graph true positive rate on the y-

axis versus the false positive rate on the x-axis. The resulting

curve illustrates the trade-off between true positive rate and false

positive rate. In this study, ROC curves are generated by varying

the decision threshold t (between 0 and 1) used to transform the

normalized attribute values into a predicted class. AUC is used to

3Analogous to the procedure for calculating rates in a classification setting
with a posterior probability, the true positive rate, TPR(t) and false positive
rate, FPR(t) can be calculated at each threshold t ∈ [0, 1] relative to the

normalized attribute F̂ j . Precision, PRE(t) is defined as the fraction of the
predicted-positive examples which are actually positive.

614

provide a single numerical metric for comparing the predictive

power of each attribute.

b. Area Under the Precision-Recall Curve (PRC). PRC is a single-

value measure that originated from the area of information

retrieval. A precision-recall curve is generated by varying the

decision threshold t from 0 to 1 and plotting the recall (equiv-

alent to true positive rate) on y-axis and precision on x-axis

at each point in a similar manner to the ROC curve. The area

under the PRC ranges from 0 to 1, and an attribute with more

predictive power results in an area under the PRC closer to 1.

3) Signal to Noise Ratio: Signal to noise ratio (S2N) [15] is a

simple univariate ranking technique which defines how well a feature

discriminates between two classes in a two class problem. S2N, for

a given feature, separates the means of the two classes relative to

the sum of their standard deviation. The formula to calculate S2N

is S2N = (μP−μN)
σP+σN

, where μP and μN are the mean values of a

particular attribute for the samples from class P and class N, and σP

and σN are the corresponding standard deviations. The larger the S2N

value, the more relevant the feature is to the class attribute.

B. Sampling Techniques

The two data sampling techniques used in this study are random

undersampling (RUS) and synthetic minority oversampling technique

(SMOTE). RUS alleviates the problem with class imbalance in a dataset

by randomly discarding instances from the majority class (nfp class

for our study). SMOTE is an intelligent oversampling method proposed

by Chawla et al. [16]. SMOTE adds new, artificial minority examples

by extrapolating between preexisting minority instances rather than

simply duplicating original examples. The newly created instances

cause the minority regions of the feature-space to become fuller and

more general.

C. Ensemble-Based Data Preprocessing Techniques

1) SelectRUSBoost: Before introducing the SelectRUSBoost tech-

nique, we would like to discuss an ensemble-based sampling tech-

nique called RUSBoost [12] first, as the SelectRUSBoost technique

is a combination of feature selection with the RUSBoost algorithm.

RUSBoost combines random undersampling (RUS) and boosting for

improving classification performance. Boosting is a meta learning

technique designed to improve the classification performance of weak

learners by iteratively creating an ensemble of weak hypotheses

which are combined to predict the class of unlabeled examples. This

study uses AdaBoost [10], a well known boosting algorithm shown to

improve the classification performance of weak classifiers. Initially,

all examples in the training dataset are assigned equal weights. During

each iteration of AdaBoost, a weak hypothesis is formed by the base

learner. The error associated with the hypothesis is calculated and the

weight of each example is adjusted such that misclassified examples

have their weights increased while correctly classified examples have

their weights decreased. Therefore, subsequent iterations of boosting

will generate hypotheses that are more likely to correctly classify the

previously mislabeled examples. After all iterations are completed a

weighted vote of all hypotheses are used to assign a class to unlabeled

examples. In this study, the boosting algorithm is performed using 10

iterations. RUSBoost applies the same steps as the regular boosting,

but prior to constructing the weak hypothesis during each round

of boosting, RUS is applied to the training data to achieve a more

balanced class distribution.

The SelectRUSBoost technique is simply the integration of feature

selection into RUSBoost. Prior to building each model, the chosen

feature selection approach is applied, and then the model is built. Note

Algorithm 2: SelectRUSBoost

input : Dataset S = {(xi, yi)|i = 1, . . . ,m and yi ∈ Y } with
minority class yr ∈ Y , |Y | = 2

: Weak learner, L
: Feature ranking technique, R
: Number of features to select, k
: Number of iterations, T
: Desired percentage of total instances to be represented by the

minority class, N
output: Final hypothesis for predicting the class of example x, H(x)

Initialize D1(i) =
1
m

for all i.
for t ← 1 to T do

1) Create temporary training dataset S′t with distribution D′t
using random undersampling.

2) Apply R to dataset S′t.
3) Remove all features from S′t which are not within the top k

of R.
4) Call L, providing it with examples S′t and their weights D′t.
5) Get back a hypothesis ht : X × Y → [0, 1].
6) Calculate the pseudo-loss (for S and Dt):

εt =
∑

(i,y):yi �=y

Dt(i)(1− ht(xi, yi) + ht(xi, y))

7) Calculate the weight update parameter:

αt =
εt

1− εt

8) Update Dt:

Dt+1(i) = Dt(i)α
1
2
(1+ht(xi,yi)−ht(xi,y:y �=yi))

t

9) Normalize Dt+1:

Let Zt =
∑
i

Dt+1(i)

Dt+1(i) =
Dt+1(i)

Zt

Output the final hypothesis:

H(x) = argmax
y∈Y

T∑
t=1

ht(x, y)log
1

αt

that this feature selection takes place after the random undersampling

step, which means that each of the separate models may have different

features selected. Let xi be a point in the feature space X and yi be

a class label in the set of class labels Y . Each of the m examples

in the dataset (S) can be represented by the tuple (xi, yi). Let t
be an iteration between 1 and the maximum number of iterations T
(number of classifiers in the ensemble), ht be the weak hypothesis

(trained using some classification algorithm, L) trained on iteration t,
ht(xi, yi) be the output of hypothesis ht for instance (xi, yi) (which

may be a numeric confidence rating). Let Dt(i) be the weight of

the ith example on iteration t (the weights are typically normalized

to sum to one). Algorithm 2 presents the complete SelectRUSBoost

algorithm.

2) SelectSMOTEBoost: SelectSMOTEBoost has the same mecha-

nism as SelectRUSBoost. It is the integration of feature selection into

SMOTEBoost. Analogous to RUSBoost, SMOTEBoost is produced with

the process of combining synthetic minority oversampling (SMOTE)

to boosting with the purpose of improving classification performance.

For the complete SelectSMOTEBoost algorithm, one can refer to

Algorithm 2, just replacing RUS with SMOTE.

615

D. Learners

In this paper, four learners are used: multilayer perceptron (MLP),

k-nearest neighbor (KNN), support vector machine (SVM), and logistic

regression (LR). All models were built using WEKA with default

parameters unless otherwise noted.

Multilayer perceptron is a neural network of simple neurons called

perceptrons. Some related parameters of MLP were set as follows. The

hiddenLayers parameter was set to 3 to define a network with one

hidden layer containing three nodes. The validationSetSize
parameter was changed to 10 to cause the classifier to leave 10% of

the training data aside to be used as a validation set to determine the

stopping point for the iterative training process.

K-nearest neighbor is a type of instance-based learning, or “lazy”

learning approach. No actual model is built using the training data;

instead, the training data itself is the model. To predict the class of an

unlabeled test instance, the model computes the distance from that in-

stance to all the instances in the training dataset (using an appropriate

distance metric such as Euclidean distance) and locates the nearest

neighbors (in this study, we find the five nearest neighbors). These

neighbors are grouped by their class values, and are then weighted

by the value 1/Distance. The total weight of each class is found,

and the class with the greatest weight is assigned as the predicted

class label for the instance being classified.

Support vector machines are a classification algorithm built from

the assumption that both classes are linearly separated from each

other. This assumption allows us to use a discriminant to split the

instances into the two classes. A linear discriminant uses the formula

g(x|w, ω0) = wTx + ω0. In the case of the linear discriminant

the only data that needs to be learned is the weight vector, w
and the bias ω0. One aspect that must be addressed is that there

can be multiple discriminants that correctly classify the two classes.

SVM is a linear discriminant classifier which assumes that the best

discriminant maximizes the distance between the two classes. This

is measured in the distance from the discriminant to the samples

of both classes. In WEKA, the SVM classifier is implemented as

SMO. For SMO, we alter two of the parameters from the default.

The complexity parameter, c, is set to 5.0 (the default is 1.0) and

the buildLogisticModels parameter is set to true in order to

produce proper posterior probability estimates.

Logistic regression is a statistical technique that can be used to

solve binary classification problems. Based on the training data, a

logistic regression model is created, which is used to decide the class

membership of future instances.

E. Performance Metric

One of the most popular methods for evaluating the performance

of learners built using imbalanced data is receiver operating char-
acteristic, or ROC, curves. ROC curves graph true positive rate on

the y-axis versus the false positive rate on the x-axis. The resulting

curve illustrates the trade-off between detection rate and false alarm

rate. The ROC curve illustrates the performance of a classifier across

the complete range of possible decision thresholds, and accordingly

does not assume any particular misclassification costs or class prior

probabilities. The area under the ROC curve (AUC) is used to provide

a single numerical metric for comparing model performances. The

AUC value ranges from 0 to 1. An attribute with more predictive

power results in an AUC value closer to 1.

IV. DATASETS

For this study, we conduct our experiments on four datasets from

a very large legacy telecommunications software system (denoted as

TABLE I
DATASET SUMMARY

Dataset nfp fp Total
% # %

SP1 3420 93.7 229 6.3 3649
SP2 3792 95.3 189 4.7 3981
SP3 3494 98.7 47 1.3 3541
SP4 3886 97.7 92 2.3 3978

LLTS). The LLTS software system was developed in a large organiza-

tion by professional programmers using PROTEL, a proprietary high

level procedural language (similar to C). The system consists of four

successive releases of new versions of the system, and each release

was comprised of several million lines of code. The data collection

effort used the Enhanced Measurement for Early Risk Assessment of

Latent Defect (EMERALD) system [17]. A decision support system

for software measurements and software quality modeling, EMERALD

periodically measures the static attributes of the most recent version

of the software code. We refer to these four releases as SP1, SP2, SP3,

and SP4. Each set of associated source code files is considered as a

program module. The LLTS datasets consist of 42 software metrics,

including 24 product metrics, 14 process metrics, and 4 execution

metrics. The dependent variable is the class of the software module,

fp or nfp. The fault-proneness is based on a selected threshold, in

particular, modules with one or more faults are considered as fp, nfp
otherwise. Table I summarizes the numbers of the fp and nfp modules

and their percentages in each dataset.

V. EXPERIMENTS

In this experiment, we apply the SelectRUSBoost and

SelectSMOTEBoost (abbreviated as ‘SRB’ and ‘SSB’ respectively in

the figures and tables) techniques to the four datasets described

above and compare the classification models of the two techniques.

We also consider the simple RUSBoost (RB) and SMOTEBoost (SB)

methods in which no feature selection is involved and use these as

the baseline for evaluating the new techniques. Because the datasets

are highly imbalanced, we do not consider approaches without RB

or SB to address the class balance problem.

The results averaged over the four datasets (in terms of AUC) are

reported in Figure 1, which contains four subfigures that describe the

classification performance for four learners, MLP, KNN, SVM, and LR,

respectively, each averaged across all four datasets. Every subfigure

shows the results of SRB and SSB over each of the nine rankers as

well as the one where no ranking technique is used (i.e., the RB and

SB techniques). Note that the post-sampling ratio between fp and nfp
is 50:50 after RUS or SMOTE is performed. The number of the features

selected in the feature subsets is set to �log2 n� = 6, where n is the

number of independent attributes in the original dataset (n = 42 in

this experiment). The results show the following points.

• For the MLP and KNN learners, the SRB technique performed

much better than SSB for every ranker involved. Also, RB

showed much better performance than SB.

• For the SVM and LR learners, the SRB technique presented simi-

lar performance as the SSB method. RB continued to demonstrate

significantly better performance than SB for the SVM learner, but

had quite similar behavior to SB for the LR algorithm.

We also carried out a statistical analysis using the unpaired two

tailed t-test to compare the SRB technique with the SSB method.

The t-test examines the null hypothesis that the population means

related to two independent group samples are equal against the

616

TABLE II
CLASSIFICATION PERFORMANCE FOR LLTS DATASETS

Ranker MLP KNN SVM LR

SRB SSB p-value SRB SSB p-value SRB SSB p-value SRB SSB p-value
RB/SB 0.7945 0.7654 0.002 0.8050 0.7580 0.000 0.8230 0.7878 0.000 0.7650 0.7654 0.983
CS 0.8090 0.7906 0.000 0.8088 0.7452 0.000 0.8250 0.8248 0.925 0.8226 0.8250 0.310
GR 0.8028 0.7736 0.000 0.8088 0.7447 0.000 0.8256 0.8042 0.000 0.8255 0.8041 0.000
IG 0.8069 0.7894 0.002 0.8099 0.7502 0.000 0.8257 0.8244 0.619 0.8231 0.8238 0.801
RF 0.8183 0.7965 0.000 0.8095 0.7715 0.000 0.8308 0.8274 0.143 0.8300 0.8266 0.184
RFW 0.8188 0.7983 0.000 0.8111 0.7644 0.000 0.8322 0.8268 0.018 0.8282 0.8260 0.400
SU 0.8043 0.7886 0.008 0.8077 0.7517 0.000 0.8247 0.8171 0.067 0.8229 0.8168 0.147
AUC 0.8068 0.7925 0.008 0.8054 0.7604 0.000 0.8259 0.8255 0.853 0.8236 0.8247 0.644
PRC 0.8063 0.7918 0.007 0.8017 0.7569 0.000 0.8260 0.8251 0.640 0.8215 0.8255 0.078
S2N 0.8162 0.8014 0.003 0.8086 0.7637 0.000 0.8323 0.8321 0.932 0.8310 0.8319 0.736

����

����

����

����

����

���	

���

��	�

��	�

��	�

��	�

���� �� � �� � �� �� ��� �� ���

�
�
�

���

��

���

(a) MLP

����

����

����

����

����

����

����

	
��
 � �	 �� 	� 	�� �� �� �	 ���

�
�
�

���

�	

��

(b) KNN

����

����

����

����

����

����

���	

���

����

��� �� �� �� �� ��� �� ��� ��� �	�

�
�
�

���

��

��

(c) SVM

����

����

����

����

����

����

����

	
��
 � �	 �� 	� 	�� �� �� �	 ���

�
�
�

��

�	

��

(d) LR

Fig. 1. Classification performance for LLTS datasets

TABLE III
ANOVA FOR LLTS DATASETS

Source Sum Sq. d.f. Mean Sq. F p-value
A (sampler) 0.3239 1 0.3239 489.26 0.000
B (learner) 0.8560 3 0.2854 431.01 0.000
C (ranker) 0.2488 9 0.0276 41.75 0.000
Error 2.1092 3186 0.0007
Total 3.5379 3199

alternative hypothesis that the population means are different. The

underlying assumptions of the t-test were examined and validated

prior to statistical analysis. Both the AUC results and this statistical

analysis are presented in Table II, with the p-values provided for

each pair of comparisons. The significance level is set to 0.05. When

the p-value is less than 0.05, the two group means are significantly

different from each another, and are highlighted with bold in the

table. As can be seen, for the MLP and KNN learners, SRB performed

better than SSB at significance level of 0.05 for all cases; for the

SVM and LR learners, however, SRB and SSB demonstrated similar

classification performance in most cases except for the GR ranker and

RFW ranker (for SVM) as well as the no ranker case (for SVM), where

SRB continued performing better than SSB.

We also conducted a three-way analysis of variance (ANOVA) F

test on the classification performance to examine if the performance

difference (better/worse) is statistically significant or not. Three

factors are designed as follows: Factor A represents the two versions

of the ensemble-based method, Factor B represents the four learners

used in this study, and Factor C represents the ten feature ranking

techniques (including the case in which no ranking technique is

involved). The null hypothesis for the ANOVA test is that all the group

population means are the same, while the alternate hypothesis is that

at least one pair of means is different. Table III shows the ANOVA

results. The p-value is less than the cutoff 0.05 for all factors, meaning

that for each main factor the alternate hypothesis is accepted.

We further carried out a multiple comparison test on each main

factor with Tukey’s honestly significant difference (HSD) criterion.

Figure 2 shows the multiple comparisons for Factors A, B, and C. The

figures display graphs with each group mean represented by a symbol

(◦) and 95% confidence interval as a line around the symbol. Two

means are significantly different if their intervals are disjoint, and are

not significantly different if their intervals overlap. The assumptions

for constructing ANOVA and Tukey’s HSD models were validated.

From these figures we can see the following points:

• SRB performed significantly better than SSB.

• For the four learners, the order in terms of their performance

from highest to lowest is SVM, LR, MLP, and KNN.

617

0.79 0.795 0.8 0.805 0.81 0.815 0.82 0.825

SSB

SRB

(a) Factor A: Sampler

0.78 0.79 0.8 0.81 0.82 0.83 0.84

LR

SVM

KNN

MLP

(b) Factor B: Learner

0.775 0.78 0.785 0.79 0.795 0.8 0.805 0.81 0.815 0.82 0.825

S2N

PRC

AUC

SU

RFW

RF

IG

GR

CS

RB/SB

(c) Factor C: Ranker

Fig. 2. Multiple comparison for LLTS datasets

• Among the nine filter-based feature ranking techniques, S2N,

RF, and RFW performed better than other rankers. CS, IG, SU,

AUC, and PRC demonstrated average performance. GR performed

worst. The study also shows that the classification models

produced significantly better predictions when using a feature

selection technique compared to the RB or SB techniques where

no feature selection was considered.

VI. CONCLUSION

High dimensionality and class imbalance are the two major prob-

lems affecting software defect prediction datasets. In this study, we

proposed two forms of an ensemble-based data preprocessing tech-

nique, SelectRUSBoost and SelectSMOTEBoost, to overcome these two

problems. The new technique is the integration of feature selection,

data sampling and ensemble learning (boosting). In our experiments,

we applied these techniques to a group of datasets from a very

large legacy telecommunications software system. We evaluated the

effectiveness of the new techniques and compared the two forms, each

in conjunction with nine filter-based feature ranking techniques as

well as the case of no feature selection. We built classification models

using four learners. The results demonstrate that the SelectRUSBoost

technique performed better than or similarly to the SelectSMOTEBoost

method. Also, the techniques always demonstrated better performance

when feature selection is taken into account. In addition, among the

nine feature selection techniques, signal to noise ratio and ReliefF

resulted in better prediction performance than other rankers. Of

the four learners, support vector machine and logistic regression

performed better than multilayer perceptron and k-nearest neighbor.

Future work will involve conducting additional empirical studies with

software measurement and defect data from other software projects.

REFERENCES

[1] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 356–370, May/June 2011.

[2] T. M. Khoshgoftaar, K. Gao, and A. Napolitano, “An empirical study of
feature ranking techniques for software quality prediction,” International
Journal of Software Engineering and Knowledge Engineering, vol. 22,
no. 2, pp. 161–183, 2012.

[3] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Proceedings of the Fourth In-
ternational Workshop on Feature Selection in Data Mining, Hyderabad,
India, 2010, pp. 4–13.

[4] G. Ilczuk, R. Mlynarski, W. Kargul, and A. Wakulicz-Deja, “New feature
selection methods for qualification of the patients for cardiac pacemaker
implantation,” in Computers in Cardiology, 2007, Durham, NC, USA,
2007, pp. 423–426.

[5] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of Machine Learning Research, vol. 3,
pp. 1289–1305, March 2003.

[6] G. M. Weiss, “Mining with rarity: A unifying framework,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[7] R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri, “The
imbalanced training sample problem: Under or over sampling?” In Joint
IAPR International Workshops on Structural, Syntactic, and Statistical
Pattern Recognition (SSPR/SPR’04), Lecture Notes in Computer Science
3138, no. 806-814, 2004.

[8] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,” in International Con-
ference on Intelligent Computing (ICIC’05). Lecture Notes in Computer
Science 3644. Springer-Verlag, 2005, pp. 878–887.

[9] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Building useful models from imbalanced data with sampling and
boosting,” in Proceedings of the 21st International Florida Artificial
Intelligence Research Society Conference (FLAIRS-2008). Coconut
Grove, Florida: AAAI Press, May 2008, pp. 306–311.

[10] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proceedings of the 13th International Conference on
Machine Learning, 1996, pp. 148–156.

[11] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive
boosting for classification of imbalanced data,” Pattern Recognition,
vol. 40, no. 12, pp. 3358–3378, 2007.

[12] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,” IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vol. 40, no. 1, pp. 185–197, Jan. 2010.

[13] T. M. Khoshgoftaar, K. Gao, and L. A. Bullard, “A comparative study of
filter-based and wrapper-based feature ranking techniques for software
quality modeling,” International Journal of Reliability, Quality and
Safety Engineering, vol. 18, no. 4, pp. 341–364, May 2011.

[14] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[15] L. Goh, Q. Song, and N. Kasabov, “A novel feature selection method
to improve classification of gene expression data,” in Proceedings of
the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New
Zealand, 2004, pp. 161–166.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[17] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and
J. Mayrand, “EMERALD: Software metrics and models on the desktop,”
IEEE Software, vol. 13, no. 5, pp. 56–60, September 1996.

618

Comparison of SRGMs and NNEs on Multiple Data
Sets

Catherine Stringfellow Sreya Reddy Raaji Vedala-Tiramula Swetha Myneni

Department of Computer Science
Midwestern State University

Wichita Falls, TX 76308
catherine.stringfellow@mwsu.edu

Abstract-Several studies have been performed using SRGMs and
neural nets to predict the number of total defects in a system.
Most of these studies are limited in that they were only applied to
data from one system; for example, SRGMs were applied to a
large medical record system and neural nets were applied to a
real-time control system. In this study, both techniques, including
some alternative SRGMs, are applied to data from two different
types of systems. This paper describes detailed results of the
techniques and concludes by suggesting the best suitable one for
the given data sets.

Keywords-defect prediction; SRGMs; neural nets

I. INTRODUCTION

Testing is an essential activity in software development to
ensure the quality of software products. Earlier studies
estimated testing can consume fifty percent, or even more, of
the development costs [2]. For large and complex software,
testing becomes even more critical due to the lack of practical
techniques for proving software correctness [8].

Testing is also one of the basic methods of assessing the

reliability of software. Various software reliability models
have also been proven effective for estimating the remaining
defects in the software [6, 14, 16, 17]. This in turn helps in
making release decisions during testing, which may consider
tradeoffs between cost, time and quality. Software reliability
growth models or SRGMs are essentially curves which fit the
experimental defect data and have traditionally been used to
approximate the growth of reliability during testing. Different
studies have concluded that certain software reliability growth
models or SRGMs are better than others, but those studies
may not have considered some that have worked well in other
studies. Most recently, it has been proposed to apply neural
nets to make defect predictions, as they do not have the same
problems with ensuring assumptions are met.

This paper is organized as follows: Section 2 discusses the

various methods and techniques used for making software
development decisions, specifically making predictions about
the number of defects so as to be able to determine if a
software product is ready for release. Section 3 describes the
two data sets used in previous case studies and the software
reliability growth models that were used on the two different

data sets. Section 4 presents the results of running alternative
SRGMs on those data sets, as well as applying neural nets to
those data sets and compares those techniques in terms of
relative error. Section 5 summarizes the paper.

II. BACKGROUND
Many proposed SRGMs are used to estimate the relationship
between software reliability and time and other factors. These
models are divided into two main categories, parametric and
non-parametric [18]. Parametric models estimate the models'
parameters based on the assumptions about the nature of
software faults, behavior of the software failure process and
the development environments. Non-parametric models, such
as neural networks, are not only more flexible as they predict
reliability metrics based only on fault history, they often do so
with better predictive quality than parametric models. Both
kinds of models have been applied to various data sets to
predict the remaining defects in the software product and have
been show to work quite well in actual practice.

Various techniques have been used to select the optimal
SRGMs. Almering, van Genuchten, Cloudt and Sonnemans
applied a Laplace trend test and log-log plots to their failure
log data to determine which SRGMs to investigate [1]. Their
results show the Log Poisson execution time model (PET) and
the Log power model (LP) performed best as soon as 20% of
the testing effort was completed, the GO model was good at
42% and the delayed S-shaped model did not start performing
well until 71% of the testing effort had been completed.

Sharma, Garg, Nagpal and Garg propose a distance based

approach (DBA) method to evaluate, select and rank seven
SRGMs based on four common criteria often used to compare
the models [11]. They applied the DBA method to two data
sets. The best SRGMS for their data using this method were
the P-N-Z model, the Yamada imperfect debugging model, the
Yamada exponential and then the G-O model. The delayed S-
shaped model ranked seventh. The data in their paper is used
as data set 4 in this study.

Hewett, Kulkarni, Seker and Stringfellow identify
SRGMs that are effective at estimating remaining defects
using defect data collected during system testing in software

619

development [5]. They used post release defect data to validate
models. Rather than trying to determine from the beginning
which models to apply, since the underlying model
assumptions are often violated in practice, they apply several
as the failure/fault data comes in and then empirically make
decisions as to which models to continue with and which ones
to reject. The strategy applied various software reliability
models starting after 60% of the expected testing effort.
Selected models fit the data well, as measured by goodness of
fit or R2 value, the prediction stability, and the difference
between the actual and predicted number of defects. The
difficulty is that if the initial choice of the SRGM is wrong,
then the estimates only become worse. These conclusions
were drawn by conducting the study on one kind of data, i.e.,
those obtained from a medical record database system [14].

Hewett, Kulkarni, Stringfellow and Andrews attempted to

predict time for fixing defects during testing using three
learning algorithms for data analysis- decision tree learner,
Naïve Bayes classifier and a neural network approach [6].
They used data from [14] and identified thirty attributes,
twelve of interest and in particular fixing time, the one they
wanted to predict. The results of all the predictive models
from the various algorithms were promising - the average of
the best accuracies was over 90%. Estimating fixing time has
potential benefits for planning and scheduling in software
testing management. The authors, however, only applied the
techniques to one release of their data. Using an ensemble of
neural networks may also improve the estimates.

There have been several studies that have experimented

with neural networks to assess reliability. Sitte determined that
neural networks were better or just as good as parametrically-
recalibrated SRGMS and were easier to use [13]. Cai, Cai,
Wang, Wu, and Zhang investigated the back propagation
network method (BPNN) to predict next failure time [3]. They
experimented with changing the neural net architecture and
concluded the effectiveness depends on the nature of the
data.Tian and Noore used an evolutionary approach to find the
optimal architecture with good results [15]. Khatri, Trivedi,
Kant and Dembla integrated the Goel-Okumoto SRGM with a
neural network approach using stochastic differential
equations appropriate for data where the number of faults
decreases as testing progresses, since defects are detected and
eliminated [7]. They state that this approach can applied to any
SRGM to improve it. Singh and Kumar performed a
comparison analysis on feed-forward neural networks (FFNS)
and three parametric SRGMs using seven data sets. Their
results showed that FFNNs had better prediction capability
[12].

Using an ensemble of neural networks (NNE) may also

improve estimates. Hansen and Salamon implement an NNE
that performs well in classifying a given input pattern using a
consensus scheme to decide the collective classification [4].
Zheng also compared NNEs to single neural nets and three
SRGMs (G-O, Duane, S-Shaped) using two data sets collected

from a command and control application and a single-user
workstation. Results showed that the NNE achieved lower
prediction errors [18].

Only a few studies have applied both kinds of models to

various data sets to predict the remaining defects in the
software product [6, 7, 12, 13]. In this paper, two different
data sets (one from three releases of a large medical record
system and another from a real time control system) are used.
Various software reliability growth models and neural
networks (NNs) are applied to the data sets.

III. APPROACH

This section describes the data sets and the replication
approach used in this study.

A. Data

Data sets 1-3 for this study come from three releases of a

large medical record system as reported in [14], while data set
4 came from a real-time control system [11]. The medical
record system originally had 173 software components and 15
components were added over the three releases. System testers
entered defect reports for each defect found into a defect
tracking system; the date of each defect was automatically
recorded. This study (and the study in [14]) grouped the
number of defects found by week. The number of cumulative
defects found each week was used as input data into the defect
estimation models.

Data set 4 includes, for each failure, the time between

failure (TBF) and the cumulative time between failures
(CTBF), respectively. As data set 4 is really large, this study
combined failures in groups of 500 cumulative time units.

The following sections describe this replication study,

which applies the defect estimation methods to the data sets on
which they had not been previously applied.

B. Replication Approach

First, the SRGM models described in [14], as well as the

Duane and the Y-Inflection models [11] were applied to data
set 4 [11].

 Second, the Duane and Inflection S-shaped SRGM

models were applied to data sets 1-3 from [14]. Formulas for
these models are presented in [11]. Zheng claims that the
Duane model and the Inflection S-shaped model both work
well on the data in their study [18]. This study seeks to show
the external validity of these models by running them on other
data.

Last, neural nets are run on all four data sets. The Neural

Net toolbox from MATLAB provides four neural net functions

620

that may be appropriate for making predictions [9]. Zheng
used forward-feed neural nets (FFNNs) and Elman nets [18].
This study uses the newff() function (a FFNN) and the newlrn
function (which supersedes the Elman net in the toolbox). In
addition this study uses two delay networks that are
recommended for making predictions [4]. Table 1 briefly
describes the neural net functions used in this study. These
neural net functions were applied to all four data sets.

TABLE I. NEURAL NETWORK FUNCTIONS LIST.

Function Purpose

newdtnn() Creates distributed time delay network.

newff() Creates feed-forward back propagation network.

newfftd() Creates feed- forward input time delay propagation network.

newlrn() Creates layered- recurrent network.

IV. RESULTS

In order to determine the best techniques for predicting

the number of defects in a system, a variety of SRGMs and
neural nets were applied to the four data sets from two
different systems. Table 2 shows the best of the results of
applying the SRGM techniques and the neural nets to data sets
1-4. In accordance to [14], models are recommend to be
rejected (indicated by an R) if the goodness of fit of the their
estimates, that is the R-value, is below 0.95 or if their
estimates are less than the actual number of failures found in a
test week – with the goal of being conservative. Models are
not considered to be useful until their estimates stabilize, that
is, when an estimate is within 10% of the previous week’s
estimate (indicated by an S, and a D if they destabilize). The
second column shows the test week the models were applied
and the third the actual number of defects found. The
following sections provide a discussion on the results.

A. Results for alternative SRGMS on data sets 1-3

Table 2 shows the results of the best original SRGMs [14]

and the alternative Duane and Inflection S-shape SRGMs on
data sets 1-3. The best of all models and good estimates are
highlighted. The best original SRGM model(s) performed
better than the SRGMs not originally applied to the data. The
Duane model worked well, but its estimates do not approach
an asymptote and so may greatly overestimate, depending on
how many weeks in advance one needs to predict. The

Inflection S-shaped model was rejected in data sets 2 and 3,
because it underestimated or diverged. In data set 1, it did not
perform well in estimating the number of defects that would
eventually be found (which is more important to know than
the number of defects already found). Figures 1-3 show the
results of the SRGMs on data sets 1-3, respectively.

B. Results for SRGMs on Data Set 4

Table 2 also shows the results of applying SRGMS on data
set 4. Of the original SRGM models [14], the Gompertz
model performed the best, although according to the empirical
selection model in [14], it would have been rejected for
underestimating in week 28. It did stabilize in week 29, but
occasionally underestimated failures until week 33. It had
very good R-values ranging from 0.985 to 0.989. The G-O
Musa model diverged. The delayed S-shaped model
underestimated and had a bad R-value. The Duane model
performed very well, while the Inflection S-shaped model was
overly pessimistic. Of the six models, the Inflection S-shaped
model was the only acceptable model according to the criteria
in [14], although if one more week had elapsed before
applying the models, the Gompertz and the Duane models
would have been the best. This study suggests that the
empirical SRGM selection model proposed in [14] should be
modified, so as not to reject an SRGM too early just because it
is underestimating defects by just a little. The tolerance for
underestimating could be increased as testing time elapses.
Figure 4 shows the results of the SRGMs on data set 4.

C. Results for NN on both data

The last four columns of Table 2 show the results of

applying four neural net functions on the four data sets.
Newdtdnn, newlrn turned to be the first and second best
functions on all data sets. For data set 1 newdtdnn and newlrn
networks estimated 211 and 297, respectively – these should
be compared to the actual number of defects (231). In data set
2 these functions estimated 269 and 408 (compare to 245) and
in data set 3 they estimated 103 and 88 (compare to 83).
Finally on data set 4 the newdtdnn and newlrn networks
estimated 128 and 120 (compare to 136). The best estimates
are highlighted in Table 2. The estimates could never really be
said to be stable, although the newdtdnn did perform the best.
Figures 1-4 show the results of the two best neural nets on data
sets 1-4.

621

TABLE II. RESULTS OF MODELS APPLIED TO DATA SETS.
Data Set

Test Failures Inflection
Week Found n e w d td n n n e w lrn n e w fftd n e w ff

Est R-val Est R-val Est R-val Est R-val Est Est Est Est
11 139 830 0.953 2431 0.970 142 0.953 347 0.959
12 152 562 0.962 796 0.975 157S 0.964 205 0.976
13 164 451 0.970 412 0.979 171 0.970 205S 0.976

1 14 164 345 0.972 276 0.979 179 0.970 188 0.979 47 38 43 47
15 165 287 0.971 227 0.979 184 0.967 180 0.981 36 36 48 48
16 168 255 0.972 207S 0.979 188 0.964 177 0.983 62 68 49 52
17 170 236S 0.973 197 0.980 192 0.961 177 0.984 223 180 219 106
18 176 226 0.974 193 0.981 196 0.960 177 0.986 211 297 332 156

post28 211 302
post38 231 408

Test Failures Inflection
Week Found n e w d td n n n e w lrn n e w fftd n e w ff

Est R-val Est R-val Est R-val Est R-val Est Est Est Est
11 192 262 0.967 200 0.964 205 0.959 200 0.971
12 192 283S 0.970 198 0.966 207S 0.951 203S 0.971

2 13 192 284 0.970 197 0.969 207 0.943 210 0.971 58 63 48 57
14 192 320D 0.971 196 0.969 207 0.934 198 0.972 47 49 53 51
15 203 286 0.972 197R 0.969 210 0.937 200R 0.973 54 80 94 52
16 203 265S 0.973 198 0.969 211 0.937 202 0.974 154 204 120 168
17 204 249 0.973 199 0.969 213 0.937 204 0.975 269 408 310 347

post26 245 238
Test Failures Inflection

Week Found n e w d td n n n e w lrn n e w fftd n e w ff
Est R-val Est R-val Est R-val Est R-val Est Est Est Est

9 70 84 0.980 77 0.983 73 0.971 - '-R 38 38 39 38
3 10 75 86S 0.984 80S 0.986 78S 0.974 - - 35 35 38 35

11 76 85 0.986 81 0.988 81 0.973 78 0.987 31 41 40 63
12 76 84 0.987 80 0.989 84 0.968 78S 0.988 85 62 41 44
13 77 83 0.988 80 0.990 85 0.964 78 0.989 103 88 105 96

post13 83 85
Test Failures Inflection

Week Found n e w d td n n n e w lrn n e w fftd n e w ff
Est R-val Est R-val Est R-val Est R-val Est Est Est Est

28 119 103R 0.95 114R 0.988 118R 0.991 148 0.994
29 123 105S 0.945 118S 0.986 120S 0.992 150S 0.992
30 123 107 0.942 121 0.985 122 0.992 153 0.992
31 123 108 0.94 123 0.985 124 0.993 155 0.991
32 127 110 0.937 126 0.985 126 0.993 158 0.991

4 33 129 111 0.935 129 0.985 127 0.994 161 0.99
34 129 113 0.993 131 0.985 129 0.994 163 0.99
35 129 114 0.932 132 0.985 131 0.994 164 0.99
36 130 115 0.932 134 0.986 132 0.994 165 0.99
37 130 117 0.932 134 0.986 133 0.994 166 0.99
38 132 118 0.931 136 0.987 135 0.994 168 0.991
39 133 119 0.931 136 0.987 136 0.994 168 0.991
40 133 120 0.931 137 0.987 137 0.994 169 0.991
41 134 121 0.931 138 0.989 138 0.994 170 0.991 36 36 37 36
42 135 122 0.931 138 0.988 139 0.994 171 0.991 36 36 35 36
43 135 123 0.931 139 0.988 140 0.994 171 0.992 34 29 52 41
44 135 123 0.932 139 0.989 141 0.993 171 0.992 51 45 47 110
45 136 126 0.932 139 0.989 142 0.993 172 0.992 128 120 80 117

S-shaped

Best of old SRGMs New SRGMs

Duane

 S-shaped Gompertz Duane

NNs

Delayed
 S-shaped Gompertz Duane S-shaped

S-shaped

Delayed

Yamada
Exponential Gompertz Duane S-shaped

Delayed
 S-shaped Gompertz

622

0

100

200

300

400

500

600

700

800

12 13 14 15 16 17 18 post-28

N
um

be
r o

f f
ai

lu
re

s

Weeks

Actual Failures

Delayed S

Gompertz

Duane

Inflection S

newdtdnn

newlrn

Figure 1. SRGMs and NNs on data set 1.

0

20

40

60

80

100

120

11 12 13 14 15 16

N
um

be
r o

f f
ai

lu
re

s

Weeks

Actual Failures

Delayed S

Gompertz

Duane

Inflection S

newdtdnn

newlrn

Figure 3. SRGMs and NNs on data set 3.

V. CONCLUSION

Software reliability growth models (SRGMs) provide good
predictions of the total number of failures or the number of
remaining defects. This study found that at least two SRGMs
models work well on all four data sets. While the Duane
model performed well in fitting the data and predicting defects
a few weeks in advance, it does not work well too much
farther than that. This study concludes that the alternative
SRGMs could be included in the empirical SRGM selection
model from [14], but the SRGM selection model would have
to be a bit more tolerant of underestimations in earlier weeks.

 Neural nets worked well in [11], and showed promise in

this study when applied to data in [14] as long as enough

0

50

100

150

200

250

300

350

400

450

11 12 13 14 15 16 17 post

N
um

be
r o

f f
ai

lu
re

s

Weeks

Actual Failures

Yamada

Gompertz

Duane

Inflection S

newdtdnn

newlrn

Figure 2. SRGMs and NNs on data set 2.

0

20

40

60

80

100

120

140

160

180

200

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

N
um

be
r o

f F
ai

lu
re

s

Weeks

Actual Failures

Delayed S

Gompertz

Duane

Inflection S

newdtdnn

newlrn

Figure 4. SRGMs and NNs on data set 4.

testing time had elapsed. Finally among all neural net
functions used, newdtnn() was the best, followed by newlrn().
The NNs seem to require more data and more testing time to
have elapsed, probably because some of the data is used for
training the net, and the rest is used for prediction. Perhaps
data from [14] should be analyzed on a daily basis, rather than
a weekly basis to get more data points. Another possibility to
improve the predictions is to alter the parameters in the neural
network functions, such as the number of hidden layers and
the number of nodes in the layers. This is work for the future.

623

REFERENCES

[1] Almering, V., Genuchten, M., Cloudt, G., Sonnemans, P., "Using
software reliability growth models in practice," IEEE Software, Nov/Dec
2007, pp. 82-88.

[2] Bezeir, B., Software Testing Techniques, 2nd ed., Van Nostrand
Reinhold Co., New York, NY, 1990.

[3] Cai, K., Cai, L., Wang, W., Zhou, Y., Zhang, D., "On the neural network
approach in software reliability modeling," J. Systems and Software, vol
58, 2001, pp. 47-62.

[4] Hansen, K., Salamon, P., "Neural network ensembles", IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(10), Oct.
1990, pp. 993-1001.

[5] Hewett, R., Kulkarni, A., Seker, R., and Stringfellow, C., "On effective
use of reliability models and defect data in software development,"
Proceedings of 2006 IEEE Region 5 Technology and Science
Conference, San Antonio, TX, April 2006, pp. 67-71.

[6] Hewett, R., Kulkarni, A., Stringfellow, C., Andrews, A., "Software
defect data and predictability for testing schedules," Intl Conf on
Software Engineering and Knowledge Engineering, Redwood City, CA,
July 2006, pp. 499-504.

[7] Khatri, S., Trivedi, P., Kant, S., Dembla, N., "Using artificial neural-
networks in stochastic differential equations based software reliability
growth modeling," J. Software Engineering and Applications, 4, 2011,
pp. 596-601.

[8] Littlewood, B., Strigimi, L., "Validation of ultra high dependability for
software-based systems," CACM, 36(11), 1993, pp. 69-80.

[9] Neural Net Toolbox, MatLab.
[10] Musa, J., Iannino, A., and Okumoto, K., Software Reliability:

Measurement, Prediction, Application, McGraw-Hill, Inc., New York,
NY, USA, 1987.

[11] Sharma, K., Garg, R., Nagpal, C., Garg, R., "Selection of optimal
software reliability growth model using distance based approach," IEEE
Trans. on Reliability, 29(2), June 2010, pp. 266-276.

[12] Singh, Y., Kumar, P., “Application of Feed-Forward Neural Networks
for Software Reliability Prediction,” ACM SIGSOFT Software
Engineering Notes, (35)5, Sept. 2010, pp. 47-62.

[13] Sitte, R., "Comparison of software-reliability-growth predictions: neural
networks vs parametric-recalibration," IEEE Trans. on Software
Reliability, 48(3), Sept 1999, pp. 285-291.

[14] Stringfellow, C., Andrews, A., "An empirical method for selecting
software reliability growth models," Empirical Software Engineering,
7(4), Dec. 2002, pp. 319-343.

[15] Tian, L., "Evolutionary neural network modeling for software
cumulative failure time prediction," J. Reliability Engineering and
System Safety, 87, 2005, pp. 45-51 .

[16] Yamada, S., Ohba, M., and Osaki, A., "S-shaped reliability growth
modeling for software error detection," IEEE Transaction on Reliability,
32(5) 1983, pp. 475-478.

[17] Yamada, S., Ohtera, H., Narihisa, H., "Software reliability growth
models with testing effort," IEEE Transaction on Reliability, 35(1),
1986, 19-23.

[18] Zheng, J., "Predicting software reliability with neural network
ensembles", Expert Systems with Applications, 36(2), Mar. 2009, pp.
2116-2122.

624

HESA: The Construction and Evaluation of
Hierarchical Software Feature Repository

Yue Yu, Huaimin Wang, Gang Yin, Xiang Li, Cheng Yang
National Key Laboratory for Parallel and Distributed Processing

School of Computer Science, National University of Defense Technology

Changsha, China

yuyue whu@foxmail.com, whm w@163.com, {jack.nudt, shockleylee}@gmail.com

Abstract—Nowadays, the demand for software resources on
different granularity is becoming prominent in software en-
gineering field. However, a large quantity of heterogeneous
software resources have not been organized in a reasonable and
efficient way. Software features, a kind of important knowledge
for software reuse, are ideal materials to characterize software
resources. Our preliminary study shows that the effectiveness
of feature-related tasks, such as software resource retrieval and
feature location, will be greatly improved, if a multi-grained
feature repository is available. In this paper, we construct a
Hierarchical rEpository of Software feAture (HESA), in which
a novel hierarchical clustering approach is proposed. For a
given domain, we first aggregate a large number of feature
descriptions from multiple online software repositories. Then we
cluster these descriptions into a flexible hierarchy by mining
their hidden semantic structures. Finally, we implement an online
search engine on HESA and conduct a user study to evaluate
our approach quantitatively. The results show that HESA can
organize software features in a more reasonable way compared
to the classic and the state-of-the-art approaches.

Keywords—Software reuse; Mining Software repository;
Feature-ontology; Clustering;

I. INTRODUCTION

Software reuse is widely recognized as an effective way to

increase the quality and productivity of software [1]. With the

development of software industry, the degree of software reuse

is deeper than previous years and the demand for resources on

different granularity becomes more prominent. For example,

when developing a new large software system, we may reuse

some API calls from the third party to accomplish the core

functions and the mature open source software as the basic

framework. Additionally, some code fragments or components

can be reused to meet other additional demands. The reusable

resources are multi-grained, consisting of API calls (the finest

level of granularity), code fragments, components (higher than

API calls) and software systems (much higher than others).

However, considering the large-scale, heterogeneous and

multi-grained software resources, it is a great challenge for

stakeholders to retrieve the suitable one. With the evolution of

open source ecosystems, more than 1.5 million open source

software projects are now hosted in open source communities

[2]. Reusable resources [3] are manifold, including code bases,

execution traces, historical code changes, mailing lists, bug

databases and so on. All of these valuable resources have not

been reorganized in a reasonable and efficient way to assist in

the activities of software development.

As a kind of attributes which capture and identify com-

monalities and differences in a software domain, software

feature [4] [5] is an ideal material to characterize the software

resources. Constructing a feature repository of a flexible

structure can make a great contribution to multi-grained reuse.

However, classic feature analysis techniques, such as Fea-

ture Oriented Domain Analysis (FODA) [6] and Domain

Analysis and Reuse Environment (DARE) [7], are heavily

relied on the experience of domain experts and plenty of

market survey data. Hence, the feature analysis is a labor-

intensive and error-prone process.

In recent years, more and more stakeholders develop, main-

tain and share their software products on the Internet. In order

to promote their products to users, project managers write

some market-oriented summaries, release notes and feature

descriptions on the profile pages via natural language. The

large number of online software profiles can be treated as a

kind of repository containing a wealth of information about

domain-specific features. Although researchers propose several

automatic methods to mine features from the web repository

[8] [9] [10], the problems have not completely be solved,

specifically in organizing features as flexible granularity.

In this paper, we are trying to address the above problems

by proposing a novel approach to construct a Hierarchical
rEpository of Software feAture (HESA). First of all, we extract

a massive number of feature descriptions from online software

profiles and mine their hidden semantic structure by proba-

bilistic topic model. Then, we present an improved Agglom-
erative Hierarchical Clustering (iAHC) algorithm, seamlessly

integrated with the topic model, to build the feature-ontology

of HESA. Finally, we implement an online search engine1

for HESA to help retrieve features in a multi-grained manner,

which can support multiple reuse requirements. By conducting

a user study, we demonstrate the effectiveness of our system

with quantitative evaluations comparing to the classic and the

state-of-the-art approaches.

The rest of this paper is or organized as follows. Section

II introduces the overview of our work. Section III describes

how to construct HESA in detail. Experiments and analysis

can be found in Section IV. Finally, we present some related

1http://influx.trustie.net

625

Figure 1. Overview of the construction and use of HESA

work in Section V and draw our conclusions in Section VI.

II. APPROACH OVERVIEW

First of all, we give the definitions of some concepts used

in this paper.

Feature element: Feature element is a kind of raw descrip-

tions which can indicate a functional characteristic or concept

of the software product.

Feature: Feature is an identifier of the cluster about feature

elements, where the cluster is an intermediate output of

improved Agglomerative Hierarchical Clustering (iAHC).

Feature-ontology: Feature-ontology is a kind of hierarchical

structure induced from feature elements by iAHC.

HESA: The assembly of all feature-ontologies of the dif-

ferent categories is the Hierarchical rEpository of Software
feAture.

The objective of this paper is to build a hierarchical structure

of feature as a flexible granularity. In the top layers, the

features in coarse granularity may be mapped to the cor-

responding software resources such as mature applications,

design patterns, and superclasses. In the bottom layers, the

features can be mapped to some related code fragments, API

calls and subclasses.

Before describing the specific details of the underlying

algorithms, an architectural overview of approach will be pro-

vided as below. There are actually two processes concerning

the application of our method, i.e., the construction process

and the use process of HESA by stakeholders. In this paper,

we only focus on the construction process owing to space

limitations.

As depicted in Figure 1, the construction process consists

of three primary modules and the input is software profiles

data collected and updated continuously by a web crawler.

The first module is called the Extractor and Synthesizer. We

use the Extractor component to extract feature elements. Then,

after running preprocessing tasks, the Synthesizer component

will automatically located these feature elements, into a unified

category. Especially, the word “domain” will be replaced by

“category” for they are sharing the same meaning in the rest

of this paper.
The second module, the Feature-Topic Modeler, is respon-

sible for mining the semantic structure hidden in feature

elements. We will merge the synonymic feature elements in

terms of their semantic structure in the next step.
The last module, the FAFO (Flexible grAnularity Feature-

Ontology) Constructor, is a critical part of the construction

process. In this module, we present a novel algorithm iAHC to

construct the feature-ontology and more details can be found

in Section III. The major functionalities of this module are

listed as below:
(1) The synonymic feature elements are merged based on

the semantic structure outputted by the Feature-Topic Modeler;
(2) For each cluster, a significant group of feature elements

is selected as the medoid used to generate feature;
(3) A feature-ontology is learned and features can be

retrieved in terms of flexible granularity.
After all the raw data under our category are disposed, the

construction process of HESA is finished.
The HESA can perfectly support the multi-grained resource

reuse. For example, when a company plans to enter a new

domain such as Antivirus, the stakeholders want to know a

few general features about this domain, e.g. “Anti-rootkit”,

“Heuristic scanning”, and “File backup”. Inputting require-

ments and use the search engine of HESA, the matched

features will be returned. Based on the feature in coarse

granularity, they can find some mutual software systems.

Furthermore, to know this field more clearly and locate some

reusable code fragments or packages, some fine granularity

626

(a) Bullet-point lists of features in Softpedia.com (b) Bullet-point lists of features in Sourceforge.com

(c) Release notes in Freecode.com

Figure 2. Examples of feature elements in the software pages

features can be retrieved from HESA, e.g., “Automatic detec-
tion of downloaded files and Lock Autorun.inf, virus cannot
execute.”

III. CONSTRUCTION OF HESA

A. Feature Elements in Software profiles

The online software profiles contains a wealth of in-

formation about domain-specific features. In this paper, all

the feature elements are extracted from software profiles

in Softpedia.com2, Freecode.com3 and Sourceforge.com4. As

depicted in Figure 2(a), there is a bullet-point list of some

key features about the software resource in Softpedia.com and

Sourceforge.com. Another type of raw descriptions being used

is the Release Notes in Freecode.com. A product has many

release versions about bug fixes, performance optimizations

and feature enhancements. As depicted in Figure 2(b), we

extracted feature elements from the release notes about feature

enhancement, which contain some related tags or key words,

such as “add”, “support for” and “new feature”.

To allocate different feature elements, which extracted from

three different websites, into a unified domain category, the

two categories of Softpedia.com and Sourceforge.com was

combined into a new one. Then, all software and their feature

elements are automatically classified into the unified category

according to softwares tags or descriptions using the method

of paper [2].

B. Feature Element Analysis

Because different people describe the functions in terms of

their personal understanding in an open environment, feature

elements are unstructured and disordered. To illustrate these

problem clearly, the feature elements in Antivirus category are

used as examples in this paper.

2http://www.softpedia.com
3http://freecode.com
4http://sourceforge.net

Hybrid Semantic-level: The problem of hybrid semantic-

level is that different feature elements describe a common

theme in different semantic level, such as the following

descriptions:

(1) “Email Scanner enhanced email protection”;

(2) “Email scanning for Microsoft Outlook, Outlook Ex-
press, Mozilla Thunderbird, Windows Live Mail, Windows
Mail, and other POP3/IMAP mail clients, ensuring your email
is free of viruses and other threats”;

(3) “Blocks spam mails, phishing attack mails, junk mails
and porn mails before they reach your inbox”;

The first sentence describes the theme of email protection in

a general level. However, the last two sentences present more

details including what type of mail clients would be supported

and what kind of message would be filtered.

According to sampling statistics of our datasets, there are

25.7% feature elements in a relative high semantic-level,

33.9% feature elements in a relative specific semantic-level,

and 40.4% in the intermediate-level.

On one hand, the massive number of feature elements in

different semantic-level are good materials for the construction

of flexible granularity ontology. On the other hand, it is a great

challenge for the traditional methods to cluster and reorganize

feature elements.

Synonymic Feature Element: The problem of synonymic

feature element happens when two features are used to de-

scribe some common or very similar functional attributes.

Some feature elements are almost the same with each other,

such as the four feature elements below:

(1) “Kills the core of AdPower and not only symptoms”;

(2) “Kills the core of BANCOS.D and not only symptoms”;

(3) “Kills the core of Dyfuca and not only symptoms”;

(4) “Kills the core of eBot and not only symptoms”;

The difference between these feature elements is the name

of the malicious code, such as “AdPower”, “BANCOS.D” and

“Dyfuca”. However, all of them present a common functional

attribute about the ability of killing various popular viruses.

Another typical problem is that each pair only shares few

core words, such as the following:

627

(1) “Ability to update that does not require downloading
full package”;

(2) “Incremental database updates and often to include
information about latest threats”;

(3) “Incremental updating system minimizes the size of
regular update files”;

These three feature elements present the common attribute

about incremental updating, but only the word “update” is

shared by the two sentences. According to the statistics,

there are 33.7% of synonymic feature elements in Antivirus

category, 28.9% in File-manger category, and 41.6% in Audio-

Player category. Thus, feature elements should be merged

together by an effective method.

Latent Semantic Structures: According to our observa-

tion, one feature element may relate to several specific topics.

Take five feature elements of Mozilla Firefox5 and three topics

of “Browse with Security”, “Protect your Privacy” and “Easy
to Use” as an example. Figure 3 illustrates the relationship

among these feature elements and topics. Each feature element

connects with one or two topics and this connection can be

exposed by the key words or phrases. For example, the feature

element “Control the level of scrutiny you’d like Firefox to give
a site with a variety of customized settings” is related to the

topics of “Browse with Security” and “Protect your Privacy”.

The phrases “Control the level of ” and “scrutiny” reflects that

it is possible to associate with the topic of security, and “you’d
like” and “customized settings” reflects the relevancy with the

topic about user experience. The relationship between topic

and feature element is a kind of latent semantic structures

which is useful for the clustering of feature element and the

construction of feature-ontology.

C. Feature-Topic Model

Problem Formalization: In a specific category, such as

Antivirus, all the feature elements in the corpus can be repre-

sented as Fm = {f1, f2, . . . , fi, . . . , fm}, where fi denotes

the ith feature elements in the corpus. Assuming that K
latent topics Tk = {t1, t2, . . . , tj , . . . , tk} are implicit in the

feature elements, where tj denotes the jth topic. Although

a feature element can be bound up with several topics, it

may put more emphasis on some topics than the others. The

topic degree within feature element fi can be represented as

a K-dimensional vector υi = (pi,1, pi,2, . . . , pi,j , . . . , pi,k),
where pi,j is a topic weight describing the extent to which

the topic tj appears in feature element fi. When pi,j = 0,

fi is irrelevant to tj . Thus, the υi, i ∈ [1,m], represented by

Vm, can be used to indicate the semantic structure implied

in feature elements. If the Vm can be obtained, the thematic

similarity measure would be induced for each pair of feature

elements and the synonymic feature elements would be merged

together. Because topic models answer what themes or topics

a document relates to and quantify how strong such relations

are, it is a effective way to learn Vm.

5http://www.mozilla.org/en-US/firefox/security

Figure 3. Feature elements mapping to topics

Topic Modeling Technique: A topic model provides

a means to automatically analysis the semantic structures

within unstructured and unlabeled documents. In this paper,

we choose Latent Dirichlet Allocation (LDA) [11] because it

has been shown to be more effective for a variety of software

engineering purposes [12] [13] than other topic models like

LSI. In LDA, each word wi in a document d is generated

by sampling a topic z from document-topic distribution, and

then sampling a word from topic-word distribution. More

formally, a latent topic z = j is modeled as an unlabeled

topic-word distribution φ(j) = P (w|z = j), which was drawn

from a dirichlet prior distribution Dirichlet(β). The number

of topics K is specified beforehand to adjust the granularity.

Each document d is a mixture of topics θ(d) = P (z) with

a dirichlet prior distribution Dirichlet(α). The generative

process of each word in d is an essentially draw from the joint

distribution: P (wi) =
∑K

i=1 P (wi|zi = j)P (zi = j). Given

the observed documents, Gibbs Sampling algorithm [14] is

widely used for posterior inference. Finally, the word-topic φ
and topic-document θ distribution can be approximated.

However, document is a generalized concept which can

be any textual resource. In this paper, a feature element

fi can be viewed as a document which is preprocessed by

removing commonly occurring words and then by stemming

the remaining words to their root form. According to category,

we apply LDA to process the documents using the MALLET

tool [15] which is an implementation of the Gibbs sampling

algorithm. Then, the topic-feature distribution Vm can be

trained, which is the same as θ.

D. iAHC : improved Agglomerative Hierarchical Clustering

To support multi-grained reuse environment, the semantic

similar feature elements should be merged and reorganized

as a flexible hierarchical structure defined as feature-ontology.

In this paper, we present an iAHC algorithm (Algorithm 1)

integrated with the LDA.

Initially, every feature elements is a distinct cluster. Line 4-

7 finds the closest two clusters ci and cj in the current cluster

set M , and merge them into a new cluster c and update M .

The proximity used to measure the distance between every

two clusters, defined as below:

proximity(ci, cj) =

∑
fi∈ci
fj∈cj

similarity(fi, fj)

|ci| × |cj | (1)

628

Algorithm 1 improved Agglomerative Hierarchical Clustering

Require:
Fm = {f1, f2, . . . , fi, . . . , fm};

feature-topic distribution Vm;

Ensure:
The construction of feature-ongtology;

1: M ← D
2: featureSet ← ∅
3: repeat
4: 〈ci, cj〉 = findTwoClosestClusters(M)
5: merge ci and cj as c
6: delete ci and cj from M
7: add c to M
8: centroid = calculateCentroid(c)
9: for ci ∈ c do

10: values = Similarity(ci, centroid)
11: degreet = calculateTopicDegree(ci)
12: scorem = κ× values + λ× degreet
13: add scorem to MedoidScore
14: end for
15: medoidC = findMaximumScores(MedoidScore)
16: scoreF = Similarity(medoidC)
17: featureC = mergeMedoid(medoidC , scoreF)
18: saveFeaturetoHESA(M,featureC)
19: until |M | = 1

Where ci, cj ⊆ Fm, similarity(fi, fj) used to calculate the

divergence between any two data point. Based on LDA, the

divergence can be understood as the thematic space coordinate

distance between the two feature elements. There are several

ways to calculate the divergence between any two feature-
topic distributions, such as Jenson-Shannon divergence, cosine
similarity and KL divergence. Taking cosine similarity as an

example, the Equation is shown as below:

similarity(fi, fj) =
υi · υj

||υi|| ||υj ||

=

∑k
r=1 pir × pjr√∑k

r=1 p
2
ir ×

√∑k
r=1 p

2
jr

(2)

Where k is the topic number and p is the probability value of

υ.

Line 8-14 pick out a set of feature elements from the new

cluster, defined as medoid, which can be used to represent the

theme of c. Two metrics, similarity value and topic degree,

are used to determine the medoid. Firstly, to get the values,

we calculate the similarity between ci ∈ c and the centroid
of c through Equation 2, where the vector υc̄ of centroid is

calculated by υc̄ =
∑|c|

i=1 υi

|c| . Then, the Equation 3 is used to

calculate the degreet based on the following two important

observations of feature-topic distribution Vm in our datasets.

degreet = xmax +
1

e

√∑k̂
r=1(xmax−pir)2

k̂

(3)

Where xmax is the maximum value of υi, and k̂ is the

frequency when υi not equal to zero, and pir is any value

that not equals to zero in υi.

Observation 1 The most probable topic reflects the most

prominent theme that the document (feature element) is about.

Observation 2 The more widely and evenly distributed its

topics are, the higher-level the document (feature element) is.

In brief, Equation 3 can ensure the feature element in the

coarsest granularity have the highest score degreet ∈ (0, 2],
where xmax ∈ (0, 1] can reflect the emphasis topic and the

formula 1

e

√∑k̂
r=1(xmax−wir)2

∈ (0, 1] can reflect the semantic

generality.

The scorem is used to measure the medoid calculated as

the Equation of line 12, where κ and λ is the empirical

coefficients.

Finally, the medoid with the highest scorem would be

selected. Measuring the similarity for the each pair of elements

in medoidC (line 15), the featureC (line 17) can be formed

by merging distinguished feature elements whose similarity

score below a threshold (set to 0.38). Each iteration in the

repeat clause saves the M and featureC to HESA. On the

termination of the algorithm, a feature-ontology (Figure 4) for

the category is constructed.

E. The Retrieval Method of HESA

Figure 4 depicts an example of the construction process

and result with 6 data nodes using the iAHC algorithm. Each

cluster consists of several nodes and the top node (the red color

one in Figure 4) is the feature of the cluster. The concept layer
is defined as below:

(1) The layer 0 consists of the bottom nodes which are the

original feature elements;

(2) The layer i consists of the feature node of cluster i and

all nodes in layer i − 1 except those being merged in cluster

i.
For example, the layer 3 consists of the features of cluster

3, cluster 2 and cluster 1, because all the nodes in different

clusters.

The most important advantage of the feature-ontology is

that the nodes in a layer are the most representative features

under a given similarity threshold. If the stakeholder needs a

generalized feature of the category, the feature in the top layer

can be selected. Assuming that the category of Figure 4 can be

covered by three features, the feature nodes of cluster 3, cluster

2 and cluster 1 would be retrieved step by step. From top

down, the semantic granularity is finer and finer accompanying

with the increasing number of features, which can satisfy the

requirements of multi-grained reuse environments.

Algorithm 2 is a flexible method to retrieve features in

terms of quantity, which demonstrates the advantages of the

feature-ontology. The input is the quantity of feature you need

for a specific domain. Line 1-6 show the process of finding

the suitable layer. Then, all the nodes in the same layer are

selected out in the repeat clause (line 9-20). An online search

engine has been implemented based on it in this paper.

629

Figure 4. An example of the feature-ontology

IV. EMPIRICAL EVALUATION

In this section, we present our dataset and experiment

setting, research questions and answers, and describe some

threats to validity.

A. Dataset and Experimental Setting

Dataset: We have collected 187,711, 432,004 and 45,021

projects profiles from Softpedia.com, Sourceforge.com and

Freecode.com respectively. Compared with that of the other

two communities, the quantity of projects from Freecode.com

is relatively small. Thus, we just adopt projects in Softpe-

dia.com and Sourceforge.com. The feature elements have been

classified into 385 categories and we randomly choose the

data of 3 unique categories to evaluate our method including

Antivirus, Audio-Player and File-manger. Furthermore, the

feature elements are preprocessed by removing commonly

occurring words and then by stemming the remaining words

to their root form. To ensure the quality of data, we omit the

preprocessed feature elements with less than 6 words. Table 1

presents the details about our dataset.

Parameter setting: As shown in Table 1, for LDA, the

number of topics K was empirically set as different value, and

the hyper-parameters α and β were set with α = 50/K and

β = 0.01 respectively, and the iteration of Gibbs Sampling was

set as 1000. In addition, the coefficients κ and λ of Algorithm
1 were set with κ = 0.7 and λ = 0.3.

B. Research Questions

To demonstrate the effectiveness of the approach in this

paper, we are interested in the following research questions:

Table I
PREPROCESSED EXPERIMENT DATASETS

Category #Softpedia #Sourceforge #Total #Topic

Antivirus 2919 1105 4024 50
Audio-Player 3714 1283 4997 60
File-Manager 2270 970 3240 40

RQ1 How the resultant feature-ontology looks like?

RQ2 Does the iAHC algorithm achieve better clustering

results than the simple but classical method and the state-of-

the-art approach?

RQ3 How accurate is the feature-ontology? Is the structure

reasonable?

C. Cross-Validation Design of the User Study

The cross-validation limits potential threats to validity such

as fatigue, bias towards tasks, and bias due to unrelated factor.

We randomly divided the 45 students from computer school

of NUDT into three groups to evaluate RQ2 and RQ3. The 2

questions and the 3 categories of dataset can be composed to

6 tasks. Each group randomly picks up 2 of them and finishes

in one day, and then we summarize the result.

RQ1: Feature-ontology: Figure 4 shows an example

feature-ontology of the Antivirus category which is a very

reasonable structure. The features (red color) in different layer

can be mapped to resources on different granularities. In

addition, the feature is relatively representative for each cluster.

RQ2: Clustering Results: We choose the K-Medoids

(tf-idf), a classic and widely used clustering algorithm, and

630

Algorithm 2 a flexible granularity retrieval method

Require:
kf the quantity of feature you need;

T a hierarchical structure consisting of n nodes;

Ensure:
featureSet a set of features;

1: layer ← n− k
2: if layer = 0 then
3: return the nodes of T [0]
4: end if
5: i ← 0
6: featureSet[i] ← the node of T [layer]
7: layer ← layer − 1
8: i ← i+ 1
9: repeat

10: if T [layer] is a subtype of featureSet[i] then
11: layer ← layer − 1
12: else
13: featureSet[i] ← the node of T [layer]
14: i ← i+ 1
15: layer ← layer − 1
16: if layer = 0 then
17: return the rest nodes of T
18: end if
19: end if
20: until i = kf
21: return featureSet

the Incremental Diffusive Clustering (IDC), the state-of-the-art

technique proposed in paper [8], as the baseline. Especially,

the IDC use the feature descriptions from Softpedia.com which

is the same as our dataset. We also use the modified version

of Cans metric [8] to compute the ideal number of clusters.

Then, we retrieve the corresponding number of clusters from

HESA for comparison. Precision is a percent of the reasonable

feature elements in a cluster. Figure 5 shows the average value

and standard deviation of the judgments given by different

groups. We can see that our approach achieves the highest

precision in all three categories and relatively low deviations.

The precisions and deviations are comparatively stable across

different categories, which shows the probability that our

approach is more generalizable in different domains. We plan

to conduct more experiments to study this issue in the future.

RQ3: Accuracy of the feature-ontology: According to

the three categories, participants randomly choose 15 clusters

in different layers from HESA using the online search engine

respectively. Each participant is randomly assigned 3 layers

and asked to provide a 3-point Likert score for each cluster

to indicate whether they agree if the feature is the most

representative of all terms. Score 3 means very reasonable,

Score 2 means reasonable but also have better one, Score 1

means unreasonable.

Table 2 shows that 35.03% features are reasonable, 49.57%

partially reasonable and only 15.40% unreasonable. The mean

of Likert score is 2.20, which means that the feature selected

(a) the average value

(b) the standard deviation

Figure 5. The clustering results for each category

Table II
EVALUATION OF FEATURE-ONTOLOGY QUALITY

Category Score-3 Score-2 Score-1 Likert

Antivirus 33.3% 50.0% 16.7% 2.17
Audio-Player 39.1% 46.3% 14.6% 2.25
File-Manager 32.7% 52.4% 14.9% 2.18

Average 35.03% 49.57% 15.4% 2.20

out by our approach is reasonably meaningful.

D. Threats to validity

First, the participants manually judge the clustering re-

sults and their ratings could be influenced by fatigue, prior

knowledge and the other external factors. These threats were

minimized by randomly distributing participants to the various

groups and dividing the tasks into multiple parts. Second, due

to our limited datasets, parameters used in our approach, the

evaluation is not comprehensive enough.

In the feature, with the help of our online search engine,

we plan to adopt the idea of crowdsourcing and upload a lot

of tasks about use study on the Internet with a low price, such

as 5 cent. Therefore, a comprehensive and reliable evaluation

result can be obtained.

V. RELATED WORK

Recently, mining software repository has been brought into

focus and many outstanding studies have emerged that use

this data to support various aspects of software development

[16]. However, fewer previous works have been done for

mining software feature and especially construction of feature-

ontology (defined in this paper), to the best of our knowledge.

631

In this section, we review some previous works about feature

analysis and ontology learning.

In feature analysis area, most approaches involve either the

manual or automated extraction of feature related descriptions

from software engineering requirements and then use the

clustering algorithm to identify associations and common

domain entities [7] [17] [18]. Niu et al. [19] propose an on-

demand clustering frame-work that provided semi-automatic

support for analyzing functional requirements in a product line.

Mathieu Acher et al. [9] introduced a semi-automated method

for easing the transition from product descriptions expressed

in a tabular format to feature models. A decision support

platform is proposed in paper [20] to build the feature model

by employing natural language processing techniques, external

ontology (such as WordNet), and MediaWiki system. However,

the quantity of the existing documents is so limited that the

brilliance of data mining techniques cannot be fully exploited.

To address this limitation, paper [8] and [10] proposed the

Incremental Diffusive Clustering to discover features from a

large number of software profiles in Softpedia.com. Based

on the features, a recommendations system is build by using

association rule mining and the k-Nearest-Neighbor machine

learning strategy. Compared with these studies, the clustering

algorithm presented in this paper is more effective by mining

the semantic structures from feature elements and especially

focus on the construction of feature-ontology.

Ontology learning (also called ontology extraction) from

text aims at extracting ontological concepts and relation from

plain text or Web pages. Paper [21] developed an ontology

learning framework using hierarchical cluster and associa-

tion rule for ontology extraction, merging, and management.

Several researches have attempted to induce an ontology-

like taxonomy from tags. Jie Tang et al. [22] proposed a

generative probabilistic model to mine the semantic structure

between tags and their annotated documents, and then create

an ontology based on it. Xiang Li et al. [23] enhance an

agglomerative hierarchical clustering framework by integrating

it with a topic model to capture thematic correlations among

tags. Based on tens of thousands of software projects and their

tags, Shaowei Wang et al. [24] propose a similarity metric to

infer semantically related terms, and build a taxonomy that

could further describe the relationships among these terms. In

this paper, to support multi-grained reuse, emphases of the

feature-ontologys construction is on the measure of similarity

and granularity instead of generality.

VI. CONCLUSION AND FUTURE WORK

The continuing growth of open source ecosystems creates

ongoing opportunities for mining reusable knowledge. In this

paper, we have explored the idea of mining large scale reposi-

tories and constructed the HESA to support software reuse. In

the future, we plan to improve the performance of our method

and aggregate richer features from software repositories. In

addition, we will design several representative applications

based on HESA, such as software resource recommendation

system, to support the reuse of multi-grained resources.

VII. ACKNOWLEDGEMENT

This research is supported by the National High Technology

Research and Development Program of China (Grant No.

2012AA011201) and the Postgraduate Innovation Fund of

University of Defense Technology (Grant No.S120602).

REFERENCES

[1] W. B. Frakes and K. Kang, “Software reuse research: Status and
future,” IEEE Trans. Softw. Eng., vol. 31, no. 7, pp. 529–536, Jul.
2005. [Online]. Available: http://dx.doi.org/10.1109/TSE.2005.85

[2] T. Wang, G. Yin, X. Li, and H. Wang, “Labeled topic detection of open
source software from mining mass textual project profiles.” in Software
Mining, 2012, pp. 17–24.

[3] A. E. Hassan and T. Xie, “Mining software engineering data.” in ICSE
(2), 2010, pp. 503–504.

[4] S. Apel and C. Kastner, “An overview of feature-oriented software
development.” 2009, pp. 49–84.

[5] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature
modeling for product line software engineering.” in ICSR, 2002, pp.
62–77.

[6] K.C.Kang, S.G.Cohen, J.A.Hess, W.E.Novak, and A.S.Peterson,
“Feature-oriented domain analysis (foda) feasibility study. technical
report.” 1990.

[7] W. B. Frakes, R. P. Dłaz, and C. J. Fox, “Dare: Domain analysis and
reuse environment.” 1998, pp. 125–141.

[8] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, “On-demand feature recommen-
dations derived from mining public product descriptions.” in ICSE, 2011,
pp. 181–190.

[9] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet,
and P. Lahire, “On extracting feature models from product descriptions.”
in VaMoS, 2012, pp. 45–54.

[10] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and
B. Mobasher, “Recommending source code for use in rapid software
prototypes.” in ICSE, 2012, pp. 848–858.

[11] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003. [Online].
Available: http://www.cs.princeton.edu/ blei/lda-c/

[12] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet al-
location for automatic categorization of software.” in MSR, 2009, pp.
163–166.

[13] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceabil-
ity with topic modeling.” in ICSE (1), 2010, pp. 95–104.

[14] T. Griffiths, “Gibbs sampling in the generative model of Latent
Dirichlet Allocation,” Stanford University, Tech. Rep., 2002. [Online].
Available: www-psych.stanford.edu/ gruffydd/cogsci02/lda.ps

[15] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[16] A. E. Hassan, “The road ahead for mining software repositories.” 2008.
[17] S. Park, M. Kim, and V. Sugumaran, “A scenario, goal and feature-

oriented domain analysis approach for developing software product
lines.” 2004, pp. 296–308.

[18] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson,
C. Pohl, and A. Rummler, “An exploratory study of information retrieval
techniques in domain analysis.” in SPLC, 2008, pp. 67–76.

[19] N. Niu and S. M. Easterbrook, “On-demand cluster analysis for product
line functional requirements.” in SPLC, 2008, pp. 87–96.

[20] E. Bagheri, F. Ensan, and D. Gasevic, “Decision support for the software
product line domain engineering lifecycle.” 2012, pp. 335–377.

[21] A. Maedche and S. Staab, “Learning ontologies for the semantic web.”
in SemWeb, 2001.

[22] J. Tang, H. fung Leung, Q. Luo, D. Chen, and J. Gong, “Towards
ontology learning from folksonomies.” in IJCAI, 2009, pp. 2089–2094.

[23] X. Li, H. Wang, G. Yin, T. Wang, C. Yang, Y. Yu, and D. Tang,
“Inducing taxonomy from tags: An agglomerative hierarchical clustering
framework,” in Advanced Data Mining and Applications. Springer
Berlin Heidelberg, 2012, vol. 7713, pp. 64–77.

[24] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging.” in ICSM,
2012, pp. 604–607.

632

Class Diagram Retrieval with Particle Swarm Optimization

Wesley Klewerton Guez Assunção1,2, Silvia Regina Vergilio1

1DINF - Federal University of Paraná (UFPR), CP: 19081, CEP: 81531-980, Curitiba, Brazil
2COINF - Technological Federal University of Paraná (UTFPR), CEP: 85902-490, Toledo, Brazil

{wesleyk, silvia}@inf.ufpr.br

Abstract

Abstract—An important software reuse task is the re-
trieval of models, such as UML class diagrams. The space
for searching the most adequate model may be huge, and
search based algorithms can efficiently solve the problem.
Works in the literature generally represent the diagrams
as graphs, and are based on Genetic Algorithms (GA).
Differently of the existing works, the approach described
in this paper uses the Particle Swarm Optimization (PSO)
algorithm. The idea is to better explore the search space
composed by diagrams from diverse applications with a
collective intelligence. We introduce a representation to
the problem, and describe how the PSO and GA algo-
rithms were implemented. An experiment was conducted
and the results of both algorithms are compared. We
observe that PSO presents a better performance in more
complex cases.

Keywords—Model reuse; UML class diagram; particle
swarm optimization; genetic algorithm

1 Introduction

Software reuse is a well established strategy that is based

on the use of existing artifacts to develop new software.

Its main advantages are: (i) increased productivity; (ii) in-

creased quality; and (iii) reduced costs. Any artifact built

in the software development can be reused, including soft-

ware models. Models play an important role in the software

engineering and model reuse brings many benefits: allows

early reuse when compared to code reuse; eases complex-

ity management and modifications; and reduces faults being

propagated in future development phases.

A common reuse problem, addressed by many organi-

zations, is to find and retrieve from a repository the most

suitable model for reusing. In most cases there is an initial

draft to represent the software being developed. This draft

is used as a query to search in a large repository the most

related complete diagram to be reused. Many works use

methods based on “brute force”. But when we are exploring

a large repository the search space can be exponential and

a huge number of candidate solutions need to be analyzed.

The complexity of such analysis can be illustrated with a

simple example. Considering we have a class diagram in

a repository with one hundred of classes and a query with

eight classes, there is a number of 7.50E+15 possibilities of

different permutations with eight classes to be explored to

find a similar fragment from that repository. In this scenario

if each computational comparison between a fragment and

the query, to analyze their similarity, spends ten millisec-

onds, it will be necessary 2.08E+07 hours.

Another limitation found in the model retrieving is the

nature of the artifact. The models in general do not have a

standard or syntactic verification, and they are very subjec-

tive. So, the retrieval process needs to be based on charac-

teristics that allow exploring efficiently the repository, per-

mitting a good way to analyze the similarity between query

and candidate artifact, such as the structural and semantic

characteristics of the models. There are works that address

the problem as a graph matching problem [1]. To capture

semantic characteristics, other works are based on ontolo-

gies [2, 3, 4].

Those limitations motivated some authors to use search

based techniques, particularly Genetic Algorithm (GA) to

properly deal with the model retrieval problem. In the work

of Salami and Ahmed [5] the retrieving of models is solved

as a matching graph problem. UML class diagrams are rep-

633

resented by graphs, where nodes correspond to classes and

edges to the relationships. The fitness function uses similar-

ity measures based on the name of classes and on the graph

topology. Differently, in our work we investigated the ap-

plication of another metaheuristic for the same problem, the

PSO (Particle Swarm Optimization) [6]. The main motiva-

tion to do this is that GA and PSO implement different opti-

mization strategies. GA is a competitive algorithm and PSO

is based on collective and cooperative intelligence. PSO has

been widely used in optimization tasks [6], including soft-

ware engineering ones with promising results. For example,

in [7] PSO was applied in the software testing task, and out-

performed GA for complex cases.

Considering those facts, this work introduces a PSO ap-

proach for the retrieving problem. A discrete implementa-

tion of PSO is described, as well as results from comparison

with the GA approach. The main contribution is to better

explore the search space of different applications, by using

global and local memories, and improve the retrieval pro-

cess. The global memory is used to indicate the systems in

the repository that are the most similar to the query. The

local memory is used to explore a specific class diagram.

The remainder of this paper is organized as follows: Sec-

tion 2 presents the representation to the problem and dis-

cusses implementation aspects. Section 3 describes exper-

imental setup. In Section 4 we perform analysis of the ob-

tained results. Section 5 reviews some works similar to ours

and Section 6 concludes the paper.

2 Search based solution

This section describes the search based solution adopted

to the retrieving problem: population representation, cost

evaluation function and algorithms implementation.

2.1 Problem Representation

Two elements of the retrieving problem need to be rep-

resented: the query and the repository. The query is usu-

ally a fragment (draft) of a diagram being developed. The

repository is composed by many class diagrams of different

systems. The task here is to find the best mapping between

the query and one class diagram from the repository. The

best mapping is the candidate (solution) to be reused.

The query is represented as an array of strings. Each el-

ement of the array corresponds to a class of the query. To

illustrate such representation consider Figure 1. The query

has four classes: Customer, Order, SpecialOrder
and NormalOrder. The individual (solution) is also rep-

resented by an array containing two parts. In the first part

each element of the array is mapped to an element in the

query. This part has a size equal to the query size. The sec-

ond part contains the name of the diagram in the repository

where the individual is included. For example, Individual 1

is from the diagram CD01. The population of individuals is

represented by a matrix. The names of the classes present in

the matrix are sufficient as the class diagram reference and

to consider existing relationships.

Figure 1. Population Representation

2.2 Cost evaluation function

Since we have represented the population, we need to

evaluate each solution. Different measures can be used to

evaluate the similarity between individual and query. Simi-

larly to the related work [5], we use an aggregation of two

similarities measures: (i) the relationship similarity (RS)

among the classes, and (ii) the name similarity (NS) of the

classes in the query and in the possible mapping, given by:

S(X) = α ∗RS(X) + (1− α) ∗NS(X) (1)

where α is between 0 and 1 and is used to prioritize each

measure. If α has high values near 1, the measure RS will

be prioritize in the search, on the other hand if it has low

values, the measure NS will be prioritize.

RS and NS are described below. To exemplify the mea-

sures we consider the query and Individual 2 represented

in Figure 1. The corresponding diagrams are in Figure 2,

which presents the relationships in the query and in the

mapped fragment.

Figure 2. Individual 2 and Query

Relationship Similarity (RS): To calculate RS we use a

matrix of Relationship Distances (RD) (Table 1) adapted

from [2, 5]. In the table we have the types of relation-

ships: A = Association or Aggregation, D = Dependency,

G = Generalization, and R = Realizations. The values in the

cells, obtained by applying questionnaires to experts, rep-

resent the cost to transform a relationship in another one.

For example to transform an Association to a Dependency

the effort is 0.45. If the relationships are the same, the ef-

fort is 0. If there is not relationship associated, the effort is

maximal and equal to 1.

634

Table 1. RD Matrix (adapted from [2])
From To Rel.
Rel. A D G R None
A 0 0.45 0.45 0.66 1

D 0.49 0 0.28 0.21 1

G 0.49 0.28 0 0.49 1

R 0.83 0.34 0.62 0 1

None 1 1 1 1 0

Given n the size of a query Q and of an individual X , to

determine the relationship similarity RS we use Equation 2.

All the relationships of each class in Q are considered, as

well as, the relationships of each class in Individual X ,

RS(X) =

n∑
i=1

n∑
j=1

RD[Rel(Xi, Xj), Rel(Qi, Qj)], i �= j (2)

Considering Figure 2, Table 2 presents the RS calcula-

tion. We can observe that in four cases the relationship in

the query is different from the relationship in Individual 2,

so Table 1 was used to measure the cost.

Table 2. RS Calculation Example
Individual Query RD

Source→Target From Source→Target To Cost
Customer→Order - Customer→Order - 0

Customer→Product - Customer→SpecialOrder - 0

Customer→OrderDetail - Customer→NormalOrder - 0

Order→Customer A Order→Customer D 0.45

Order→Product - Order→SpecialOrder - 0

Order→OrderDetail - Order→NormalOrder - 0

Product→Customer - SpecialOrder→Customer - 0

Product→Order - SpecialOrder→Order G 1

Product→OrderDetail - SpecialOrder→NormalOrder - 0

OrderDetail→Customer - NormalOrder→Customer - 0

OrderDetail→Order A NormalOrder→Order G 0.45

OrderDetail→Product D NormalOrder→SpecialOrder - 1

Total (RS) 2.90

Name Similarity (NS): NS is related to how similar are the

name of the classes. It is calculated with the Levenshtein

Distance (LD) [8]. LD measures the number of characters

in a string that need to be changed to obtain another string.

We use 0 if the strings are the same, and is 1 if all the char-

acters in a string need to be changed to obtain the other

string desired, ie, the strings are totally different. Equation 3

shows how to calculate this measure for individual X . NS

is the sum of all the LD values for the classes mapped in

an individual. An example is presented in Table 3, again

considering Individual 2.

NS(X) =

n∑
i=1

LD(NameX(i), NameQ(i)) (3)

Table 3. NS Calculation Example
Individual Class Name Query Class Name Cost

Customer Customer 0

Order Order 0

Product SpecialOrder 0.83333

OrderDetail NormalOrder 0.81818

Total(NS) 1.65152

2.3 Algorithms

Both algorithms, PSO and GA, were implemented by us-

ing versions available in the framework jMetal [9]. In such

framework, a continuous implementation of PSO is avail-

able, so we adapted it to a discrete version. The main mod-

ifications are related to the way that velocity is calculated

and to particles movement. They are described next.

PSO works with a population-based heuristic inspired by

the social behavior of bird flocking aiming in finding food.

It was introduced by Kennedy and Eberhart [10]. In PSO the

system initializes with a set of solutions, possibly random,

and searches for optima by updating generations. The set of

possible solutions is a set of particles, called swarm. Each

swarm moves in the search space, in a cooperative search

procedure. These moves are performed by an operator that

is guided by a local and a social component [11]. This op-

erator is called velocity of a particle and moves it through

the search space based on the leader positions (global com-

ponent), and on their own best position (local component).

The best particles are found based on the fitness function,

which is the problem objective function.

For continuous problems, each particle pi, at a time step

t, has a position −→x (t), which represents a possible solution.

The position of the particle at time t + 1 is obtained by

adding its velocity, −→v (t), to −→x (t):

−→x (t+ 1) = −→x (t) +−→v (t+ 1) (4)

The velocity of a particle pi is based on the best position

already fetched by the particle, −→p best(t), and the best po-

sition already fetched by the all swarm, −→g best(t), which is

the leader. The velocity update function, in time step t + 1
is defined as follows:

−→v (t+1) = ∗−→v (t)+ (c1 ∗φ1) ∗ (−→p best(t)−−→x (t))+

(c2 ∗ φ2) ∗ −→g best(t)−−→x (t)) (5)

In Equation 5, φ1 and φ2 are coefficients that determine

the influence of the particle best position, −→p best(t), and the

particle best global position, −→g best(t); constants c1 and c2
indicate how much each component influences on the ve-

locity. The coefficient is the particle inertia, and controls

how much the previous velocity affects the current one.

635

In our discrete implementation we use −→g best(t), the

leader, to guide the particles to the class diagram mapped

by −→g best(t). So, considering a great inertial value when

the algorithm starts, and decreasing this value over the in-

teractions, the probability of 1− is used to make a particle

to go to the same position of −→g best(t). The inverse value of

the inertia aims to avoid the premature convergence of the

particles to a specific class diagram, preventing local op-

tima. −→p best(t) is used to explore the class diagram mapped

by the particle, since it maintains the best mapping of the

particle achieved along the search process. The velocity is

an array whose elements values are in [0,1]. It has the same

size of the vector of strings, and is used as a probability to

change the mapped class to another one of the same class di-

agram. In our discrete implementation, we defined the local

and global influence, besides the random values φ1 and φ2,

as input parameters represented by Pb and Gb, respectively.

The new velocity equation is:

−→v (t+ 1) = (∗ −→v (t) + (c1 ∗ φ1 ∗ (1− Pb))+

(c2 ∗ φ2 ∗ (1−Gb)))/(+ c1 + c2) (6)

where the division by (+c1+c2) is performed to maintain

the velocity in [0,1].

For GA implementation, we adapted the jMetal genetic

operators. We used as a base the implemented permuta-

tion operators. The crossover strategy used was two-point

crossover, where the classes mapped by two individuals are

changed between them. To avoid the generation of invalid

solutions, the crossover is applied only for parents that map

the same class diagram. The mutation follows the bit flip

strategy. During the mutation, all the genes of the individ-

ual can mutate, so, when the probability reaches the muta-

tion rate the, class in the gene position is changed to another

from the same class diagram. The selection operator was the

binary tournament with the original jMetal implementation.

3 Experimental Setup

We built a repository of class diagrams from systems

in the same domain generated by reverse engineering from

source code using the tool called ObjectAid UML Explorer1

The systems used in the experiment are found in Source-

forge2, in category “Business”, subcategories “Enterprise

Financial” and “Point-Of-Sale”. To standardize the experi-

ment two filters were applied: (i) “Translations: English”;

and (ii) “Programming Language: Java”. From the returned

results, we selected only those with source code3.

1http://www.objectaid.com/class-diagram
2http://sourceforge.net/directory/business-enterprise/financial/pointofsale/
3The characteristics of the selected systems, as well as

the results obtained by GA and PSO can be found at

http://dl.dropbox.com/u/28909248/sekeSite.pdf

The created queries are fragments extracted from a text-

book example [12]. It describes a point-of-sale terminal

system from the same domain of the systems in the reposi-

tory. They vary in the number of classes and types of rela-

tionships according to Table 4.

Table 4. Queries
Name Classes A D G R
Query 1 5 0 1 3 0

Query 2 5 2 0 2 0

Query 3 8 9 0 0 0

Query 4 13 13 0 2 0

The algorithms were configured in order to use the same

computational resources. The population size of both algo-

rithms was set with a value twenty times greater than the

size of the query. The number of evaluations, which was

set one hundred times greater than the population size, was

used as stop criterion.

The input parameter of PSO and GA was empirically cal-

ibrated using Query 1. For PSO, the inertial weight ()

starts with 1.0 and decreases until 0.4; the constants c1 and

c2 are both set to 2; the Pb value was set to 0.3 and the Gb

value was set to 0.7. For GA, the crossover and mutation

rates used are respectively 0.95 and 0.3. Both algorithms

were executed thirty times with the same parameters. For

the cost evaluation function, the value for α was set to 0.5

to give for the two measures the same importance.

4 Results and Analysis

In this section the results are presented and possible dif-

ferences between PSO and GA are analyzed. This analysis

is based on the best solution found by each algorithm. Each

algorithm has thirty solutions obtained, one for each run.

To better show the differences between the algorithms,

we depicted in Figure 3 the costs of the best solutions (mea-

sure S). In spite of GA be better in Query 1, it is observed

that some solutions of PSO have the same costs. In Query 2

we observe the same, with numerous solutions in the same

points of the chart. This situation is not observed in charts of

Queries 3 and 4. Almost all solutions are found by PSO. We

can confirm the complexity of each query, since for Queries

1 and 2, the algorithms achieved solutions with cost near to

1. On the other hand, for the other queries the cost of the

achieved solutions are greater.

Taking into account the mean cost of each algorithm we

can not observe difference between them. To support our

analysis, we use the Wilcoxon Mann-Whitney test [13] to

verify statistically differences, considering 95% of confi-

dence (p-value lower than the significance level α = 0.05).

The statistical test presents differences between the algo-

rithms for the four queries. For Queries 1 and 2, the simplest

636

(a) Query 1 (b) Query 2

(c) Query 3 (d) Query 4

Figure 3. Cost of Solutions Found in Each Run

ones, the algorithm GA is the best. For Queries 3 and 4, the

most complex ones, the algorithm PSO is the best.

The analysis of the algorithms runtime is performed

based on Table 5. For all queries PSO was faster than GA.

The percentage that PSO is faster than GA is almost 18%,

9.5%, 46%, and 62.5% for Query 1 to 4, respectively. Con-

sidering runtime PSO is better than GA.

Table 5. Runtime (Milliseconds)

Query GA PSO
Mean Std. Dev. Mean Std. Dev.

Query 1 1444.9 502.97 1181.37 191.73

Query 2 1553.3 239.74 1406.27 333.33

Query 3 12681.87 6176.63 6846.27 4798.61

Query 4 87703.93 22235.68 32965.5 22895.64

5 Related Work

Information and documents retrieval is an active research

area, where GAs and other algorithms such as ACO have

been used successfully [14, 15, 16, 17]. The works most re-

lated to ours address retrieval of UML diagrams. The work

of Block et al [18] is dedicated to Use Case (UC) retrieving.

The similarity measure is based on the UC’s event flows.

UCs are also addressed by the work of Morales et al [4],

which is based on ontologies and semantic web.

In the work of Ali and Du [19] the retrieval process is

based on a conceptual graph and on associated similarity

measures. The works of Gomes et al [3, 20, 21, 22] are

based on CBR. The diagrams are expressed as cases, and as-

sociated to classifiers. The similarity between the classifiers

concepts was first calculated by using a taxonomy [21, 22]

and later in [3] an ontology. Similarly, the work of Robles

et al [2] is also based on ontology. The distances in their

work are calculated with a shortest path algorithm.

Kolovos et al. addressed the problem as a graph match-

ing problem [23] considering different measures, including

measures based on similarity, similar to ours. However, the

work uses exact algorithms that need users configuration.

Another work that is also based on graph matching is the

one reported in [5]. The UML diagrams are represented by

graphs, where nodes represent the classes and edges the re-

lationships between them. In this way, the retrieving prob-

lem corresponds to a matching graph problem, to be solved

by a GA. This work is the most similar to ours.

We observe that in the works addressing class diagram

retrieving, the structure of the diagrams are usually repre-

sented by graphs, and the semantic aspects by taxonomies

or ontologies. The matching graph problem and GA based

solutions present promising results. However, PSO has not

been yet used in this context.

637

6 Concluding Remarks

This work implemented a discrete PSO to deal with the

problem of model based retrieval, with focus on UML class

diagrams. The benefits of the global and local information

provided by PSO collective intelligence were used to bet-

ter explore the search space (repository). The social mem-

ory works to guide the particles to the best class diagram

mapped in the repository, and at the same time the local

particle memory is used to explore such diagram.

Results from the study comparing the proposed imple-

mentation with a GA show that PSO has a better perfor-

mance in more complex cases, that is, with more complex

queries. Concerning runtime, PSO is always the fast one.

Threats to validity of our study are related to the repos-

itory size, since we used a limited number of systems. An-

other point is the proposed discretization of the algorithm

PSO. Other discretization approaches existing in the litera-

ture should be evaluated and can get different results. The

input parameters of the algorithms are also a threat to va-

lidity, despite of we use an empirical calibration, different

parameters could impact on the results.

As future work we intend to apply other collective intel-

ligence based algorithms, such as Ant Colony Optimization

(ACO), Bee Colony Optimization, and so on. We should

also investigate the use of other similarity measures to bet-

ter evaluate the solutions with respect to the software devel-

opment environment and software engineer requirements.

References

[1] W. N. Robinson and H. G. Woo, “Finding reusable UML

sequence diagrams automatically,” IEEE Software, vol. 21,

pp. 60–67, 2004.

[2] K. Robles, A. Fraga, J. Morato, and J. Llorens, “Towards an

ontology-based retrieval of UML Class Diagrams,” Informa-
tion and Software Technology, vol. 54, pp. 72–86, 2012.

[3] P. Gomes and A. Leitão, “A tool for management and reuse

of software design knowledge,” in Conference on Managing
Knowledge in a World of Networks, 2006, pp. 381–388.

[4] B. Bonilla-Morales, S. Crespo, and C. Clunie, “Reuse of

use cases diagrams: An approach based on ontologies and

semantic web technologies,” International Journal of Com-
puter Science, vol. 9, no. 2, 2012.

[5] H. O. Salami and M. A. Ahmed, “A framework for class di-

agram retrieval using genetic algorithm,” in Conference on
Software Engineering and Knowledge Engineering (SEKE),
2012.

[6] M. Clerc, Particle Swarm Optimization. John Wiley &

Sons, 2010.

[7] A. Windisch, S. Wappler, and J. Wegener, “Applying particle

swarm optimization to software testing,” in Genetic and Evo-
lutionary Computation Conferences (GECCO), 2007, pp.

1121–1128.

[8] V. Levenshtein, “Binary Codes Capable of Correcting Dele-

tions, Insertions and Reversals,” Soviet Physics Doklady,

vol. 10, pp. 707–710, 1966.

[9] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework

for multi-objective optimization,” Advances in Engineering
Software, vol. 42, pp. 760–771, 2011.

[10] J. Kennedy and R. Eberhart, “Particle swarm optimiza-

tion,” in IEEE International Conference on Neural Networks.

IEEE Press, 1995, pp. 1942–1948.

[11] ——, Swarm intelligence. San Francisco, CA, USA: Mor-

gan Kaufmann Publishers Inc., 2001.

[12] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Develop-
ment, 3rd ed. Prentice Hall, 2004.

[13] F. Wilcoxon, “Individual Comparisons by Ranking Meth-

ods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[14] J.-T. Horng and C.-C. Yeh, “Applying genetic algorithms to

query optimization in document retrieval,” Information Pro-
cessing and Management, vol. 36, pp. 737–759, 2000.

[15] R. K. Bhatia, M. Dave, and R. C. Joshi, “Retrieval of most

relevant reusable Component using genetic algorithms,” in

Software Engineering Research and Practice, 2006, pp. 151–

155.

[16] ——, “Ant colony based rule generation for reusable soft-

ware component retrieval,” ACM SIGSOFT Software Engi-
neering Notes, vol. 35, no. 2, pp. 1–5, 2010.

[17] N. Kaur and J. S. Budwal, “Hybrid Approach to Retrieval

of Reusable Component from a Repository Using Genetic

Algorithms and Ant Colony,” in International Conference on
Genetic and Evolutionary Methods (GEM), 2008, pp. 2–7.

[18] M. Blok and J. L. Cybulski, “Reusing UML specifications in

a constrained application domain,” in Asia Pacific Software
Engineering Conference, 1998, pp. 196–202.

[19] F. Ali and W. Du, “Toward reuse of object-oriented soft-

ware design models,” Information and Software Technology,

vol. 46, pp. 499–517, 2004.

[20] P. Gomes, P. Gandola, and J. Cordeiro, “Helping software en-

gineers reusing UML class diagrams,” in International Con-
ference on Case-Based Reasoning (ICCBR), 2007, pp. 449 –

462.

[21] P. Gomes, F. Pereira, P. Paiva, N. Seco, P. Carreiro, J. Fer-

reira, and C. Bento, “Case retrieval of software designs using

WordNet,” in European Conference on Artificial Intelligence
(ECAI), 2002.

[22] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L.

Ferreira, and C. Bento, “Using wordnet for case-based re-

trieval of UML models,” AI Communications, vol. 17, no. 1,

pp. 13–23, Jan. 2004.

[23] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige,

“Different models for model matching: An analysis of ap-

proaches to support model differencing,” in ICSE Workshop
on Comparison and Versioning of Software Models (CVSM),
2009, pp. 1–6.

638

639

640

641

642

643

644

How Does Refactoring Affect Understandability of
Business Process Models?

Ricardo Pérez-Castillo, Maria Fernández-Ropero, Mario
Piattini

Instituto de Tecnologías y Sistemas de Información (ITSI),
University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
[ricardo.pdelcastillo, marias.fernandez,

mario.piattini]@uclm.es

Danilo Caivano
 Department of Informatics, University of Bari,

Via E. Orabona, 4, 70126 Bari, Italy
caivano@di.uniba.it

Abstract—Business process refactoring techniques have been
often provided for business process manually modeled.
Unfortunately, no many refactoring techniques lie in reversing
business process models obtained from existing information
systems, which need, even more, to be refactored. Hence, there is
no strong empirical evidence on how the understandability of
business process models is affected by this kind of refactoring
techniques. This paper is aimed at providing a case study with
two real-life information systems, from which 40 business process
models were obtained by reverse engineering. The empirical
study attempts to quantify the effect to the understandability of
the order of refactoring operators as well as the previous
refactoring actions. The main implication of the obtained results
are a set of rules that may be used to optimize the
understandability by means of the prioritization and
configuration of refactoring techniques specially developed for
business process models retrieved by reverse engineering.

Keywords-Business Process, Refactoring, Understandability

I. INTRODUCTION
Business process models depict the sequence of coordinated

activities that an organization carried out to achieve their
business goal [22]. Business processes models are considered
one of the most important assets for organizations due to two
main reasons. An appropriate management of business process
models first helps companies to quickly adapt their business
goals and structures to environmental changes while
maintaining or even improving their competitiveness [10].
Secondly, from a software engineering viewpoint, business
process models are the starting point for obtaining the
requirements of new-development or maintenance projects
[19].

Since business processes exist within organization in an
intangible way, business process modeling provides tangible
descriptions of them allowing their management.
Unfortunately, not all business processes are modeled in the
organization, or when business processes are modeled, these
might be out of date and therefore could be misaligned
regarding the enterprise information systems that give support
to such processes [9]. Similarly to the chicken-and-egg
dilemma, there is no way to truly know which came first,
business process models or enterprise information systems. In

fact, outdated and misaligned business process models
(together with organizations that deal with business process
modeling at the first time) are the key motivations for reverse
engineering techniques devoted to retrieving the actual
business process models supported by the existing information
systems [17, 20].

Reverse engineering techniques for obtaining business
process models are often less error-prone and time-consuming
than manual (re-)modeling from scratch. However, reverse
engineering techniques imply an inherent semantic loss due to
the abstraction increase [2]. As a result, although outdated and
misalignment problems are addressed, quality of the retrieved
models is eroded. Reverse engineering techniques could
retrieve, for example, incomplete or inaccurate business
process models (i.e., with missing and wrong elements), or
even modes with inadequate understandability and
modifiability levels (e.g., with a vast amount of fine-grained
and ambiguity elements) [7].

In order to cope with understandability and modifiability
faults, refactoring of business process models has been widely
used [7]. These techniques change the internal structure of
business process models without altering or modifying their
external behavior. There exist in literature several refactoring
approaches to be applied with business process models [3, 11,
21]. Unfortunately, there are no refactoring techniques
specially developed for those models obtained through reverse
engineering and some of their peculiarities such as missing
elements, mining of non-relevant elements, fine granularity,
and so on. In addition to this drawback, the main problem is
that current refactoring techniques often apply several
refactoring operators to deal with different bad smells, i.e.,
refactoring opportunities (e.g., non-relevant elements, fine-
grained elements, etc.). The application of different refactoring
operators is commonly done in an arbitrary way [7].
Nevertheless, it has been demonstrated that the order and
subset of refactoring operators lead to different results in terms
of the understandability and modifiability gain [6].

This paper therefore focuses on the assessment and
optimization of the understandability of business process
models during refactoring. Hence, this paper tries to provide a
set of arguments and insights through empirical validation so

645

that the community can have a better answer to the question:
how affect refactoring to the business process model
understandability? In order to provide the mentioned insights
for such answer this paper conducts a case study with two
industrial information systems, from which 40 business process
models were first obtained by reverse engineering. After that,
those models were refactored by using IBUPROFEN [6], a
refactoring approach, by setting up different orders and subsets
of refactoring operators. IBUPROFEN is used in this study
since this approach and its supporting tools were specially
developed for refactoring business process models obtained by
reverse engineering from existing source code. Finally, all the
obtained business process models are inspected to evaluate the
understandability gains and determine the best configurations.

The remainder of this paper is organized as follows. Section
II briefly presents related work. Section III introduces
IBUPROFEN, the approach used for refactoring. Section IV
explains the case study in detail. Finally, Section V discusses
conclusions and future work.

II. RELATED WORK
Business process management has become a valuable

activity for managing organizations from an operational
perspective. Dijkman et al. [4] provide various techniques for
improving their management as merging, mining, refactoring,
re-use, among other. Particularly, refactoring has been used for
several authors in literature for improving the quality degree of
business process models. For example, Weber et al. [21] collect
a catalogue of process model smells for identifying refactoring
opportunities and provide a set of behavior-preserving
techniques for refactoring to avoid redundancies and increase
in the complexity of the model. Similarly, Dijkman et al. [3]
show a development of a technique based on metrics to detect
refactoring opportunities and La Rosa et al. [11] identify
patterns to reduce the model complexity through compacting,
compositing, merging, amoung other. Leopold et al. [12], for
their part, focus on refactoring of activity labels in a business
process model following a verb-object style.

Concerning to the order of application of the refactoring
operators or the selection of a sub-set of operators, previous
approaches rely on the expert decision, or simply define an
arbitrary sub-set and order. Although Gambini et al. [8]
propose the automation of de business process models
refactoring through a technique for automatically fixing the
refactoring scenarios using Petri nets, the order of application is
not mentioned. Fernandez-Ropero et al. [6] demonstrate that
the order of application of refactoring operators affect the
understandability and modifiability. However, that preliminary
work does not assess the best sub-sets or application orders to
achieve the highest understandability.

III. IBUPROFEN
IBUPROFEN [6] (Improvement and BUsiness Process

Refactoring OF Embedded Noise) is a framework with which
to refactor business process models particularly retrieved by
reverse engineering. IBUPROFEN allows applying different
refactoring operators taking into account the assessment of
various measures related to the modifiability and

understandability of business process models [7] such as
density, size, connectivity, separability, etc.

IBUPROFEN is supported by a tool specially designed for
business process models represented according to the BPMN
(Business Process Modeling Notation) [14]. The tool has being
implemented as an EclipseTM plug-in [1]. Hence, the supporting
tool can be used in combination with other Eclipse™ plug-ins
aimed, for example, at obtaining business process models from
the source code of existing information systems.

IBUPROFEN provides a set of ten refactoring operators
(see TABLE I) grouped into three categories in terms of the
bad smells that the operators address: (i) relevant elements
maximization; (ii) fine-grain granularity reduction; and finally,
(iii) completeness maximization.

A. Relevant Elements maximization
This category groups five refactoring operators (R1 to R5)

responsible for removing non-relevant elements found in
business process models as isolated tasks, sheet tasks and
inconsistencies. Moreover, nested gateways can origin an
increase in the complexity of business process models, thus
these are replaced by equivalent, light-weight structures.

R1 removes nodes (i.e., tasks, gateways or events) in the
business process model that are not connected with any other
node in the business process model. R2 discards elements in
the business process model that are considered sheet nodes.
These nodes can be gateways or intermediate events that have
no successor nodes. In turn, R3 merges consecutive gateways
of the same type when the first gateway has only one output
and the second has only one input, i.e., nested gateways. R4
removes sequence flows in the business process model that are
considered as inconsistent. When two tasks are connected
through a cut node, as an intermediate event or a gateway, and
through a direct sequence flow this sequence flow are removed.
Finally, R5 removes gateways that connected only two nodes,
i.e. with one input and one output. Such gateways are removed
and a direct sequence flow is created between related nodes.

B. Fine-grained granularity reduction
The different granularity of business tasks and callable units

in existing information systems constitutes another important
challenge [17]. According to the approach proposed by Zou et
al. [24], each callable unit in an information systems is
considered as a candidate business task. However, existing
systems typically contain thousands of callable units, some of
which are large ones supporting the main business
functionalities of the system, while many are very small and do
not directly support any business activity. In other situations a
set of small callable units together supports a business activity.
As a consequence, this category provides two refactoring
operators (R6 and R7) to deal with large sets of fine-grained
business tasks and data objects:

R6 transforms each task in a compound task when the task
T has several subsequent tasks which are in turn connected with
a round-trip sequence flow to the task T. This scenario is due to
each callable unit is transformed as a task during the reverse
engineering stage when a certain callable unit can invoke
another callable unit returning a value to the first one. In this
case, the refactoring operator creates a compound task with a

646

start and end event connected with each subsequent task
through the respective split and join exclusive gateways.
Additionally, R7 combines data objects that are input and/or
output of a task. The combination is possible when those data
objects are exclusively used (written or read) for that task. The
combination is done when the number of data objects is above
a threshold. In order to mitigate the collateral semantic loss, all
the names of the grouped data objects are saved in the
documentation attribute defined by the BPMN specification.

C. Completeness Maximizatioin
Any reverse engineering technique implies an increase of

the abstraction degree, and therefore a semantic loss. For this
reason, R8 to R10 operators are provided to deal with semantic
loss by means of the incorporation of further elements. The
refactoring operators are the following:

R8 joins the start and end event with the starting and ending
tasks, respectively. These events are created whether such
events were not created by reverse engineering. When there are
several starting tasks the refactoring operator adds a split
complex gateway between the start event and starting tasks.
Similarly, if there are several ending tasks, the refactoring
operator adds a join complex gateway between ending tasks
and the end event [13]. Furthermore, due to the usage of
reverse engineering to retrieve business process models, it is
possible to obtain models without following some of the
modeling guidelines in accordance with the BPMN
specification with regard to the gateways. R9 therefore adds a

join and split exclusive gateways when a certain task
respectively has several precursor or subsequent tasks. Finally,
R10 improves names and labels of business tasks that were
obtained almost directly from methods or functions of legacy
source code through reverse engineering. These labels usually
follow the camel case format (i.e., the concatenation of various
capitalized words) in accordance with naming conventions
present in most programming approaches. In an effort to have
more understandable names, this refactoring operation split
these labels into ones with various words.

IV. CASE STUDY
This section provides a case study with two real-life

information systems. The case study has been conducted by
following the formal protocol developed by Runeson et al. [18]
for conducting and reporting case studies in the software
engineering field. Hence, the following sections show the
stages proposed in the formal protocol: case study design, case
selection procedure, execution procedure and data collection,
analysis and interpretation, and finally, threats to the validity.

The object of this case study is the understandability of
business process models after refactoring and the purpose of
this case study is to evaluate how the execution order of the
different refactoring operators and previous refactoring actions
affect to the understandability. Taking into account the object
and purpose of the study two main research questions are
provided.

TABLE I. IBUPROFEN’S REFACTORING OPERATORS

Re
le

va
nc

e

R1. Remove Isolated Nodes R2. Remove Sheet Nodes R3. Merge nesting

R4. Remove Redundant Paths R5. Remove unnecessary nesting

Gr
an

ul
ar

it
y R6. Create compound tasks R7. Combine data objects

Co
m

pl
et

en
es

s

R8. Join Start and End events R10.Refine names

R9. Add gateways in incoming and outgoing branches

647

RQ1: How does the order of the application of refactoring
operators affect to the understandability of business
process models?

RQ2: How does previous refactoring affect to the
understandability achieved with the application of
certain refactoring operators?

A. Case Study Design
The case study follows the embedded case study design

according to the classification proposed by Yin [23], whereby
the case study consists of a multi case (i.e., it focuses on two
information systems) but considers several analysis units as
independent variable within the case, i.e., all the different
business processes models retrieved from both information
system. Therefore, the study consists of applying the three
refactoring categories: relevance (R), granularity (G) and
completeness (C) in different combinations and obtaining
business process models. Such models are in turn analyzed to
evaluate understandability in accordance with RQ1 and RQ2.
In order to quantify understandability, size, connectivity,
separability and density [5] measures are used as dependent
variables.

Size is the number of nodes in a business process model
(i.e., business tasks, gateways, data objects and events). This
measure affects negatively to the understandability, i.e. a
higher size difficult the understandability of a certain business
process model [13]. Connectivity measures the ratio between
the total number of arcs in a business process model (i.e.,
sequence flows and associations) and the total number of
nodes. This measure negatively affects the understandability
since a lower connectivity implies business process models
more understandable due to a lower intricacy. Separability
represents the ratio between the number of cut-vertices in a
business process model (i.e. nodes that serve as bridges
between otherwise strongly-connected components) and the
total number of nodes. Separability positively affects to the
understandability. Density is the ratio between the total number
of arcs in a business process model and the theoretical
maximum number of possible arcs regarding the number of
nodes. The lower density, more understandable business
process models.

B. Case Selection Procedure
To select the case under study a set of selection criteria

were formulated in order to rigorously select the source system:
(1) the system should be a real-life information system
currently in production; (2) and with a considerable size (to
avoid toy programs) which ensure that the system supports a
great number of business processes; (3) the system should be
written in Java language to be able to use the MARBLE tool
[15]. MARBLE is the tool used to recover business process
models from existing Java code. This tool was selected because
is released as an Eclipse plug-in and it therefore can be easily
integrated with the IBUPROFEN tool.

After analyzing various information systems of partner
companies, two cases were selected in accordance with the
mentioned criteria: Tabula and XCare. Tabula is a web
application of 33.3 KLOC (thousands of lines of code) devoted
to create, manage and simulate decision tables for associating
conditions with domain-specific actions. XCare is a mobile

application of 9.9 KLOC intended for diabetes patients, which
analyzes blood (through an external device) and suggests diet
plans.

C. Execution Procedure and Data Collection
The procedure to be performed to execute the case study

consists of a set of steps. (i) A sample of 40 business process
models are mined, by using MARBLE [16], from the source
code from both information systems under study. (ii) After that,
IBUPROFEN refactoring operators are executed in all the
possible orders in terms of the three categories, so six different
execution orders are considered (i.e., RGC, RCG, CRG, CGR,
GCR and GRC). (iii) The mentioned measures are computed
through IBUPROFEN tool after the execution of each category
as well as before refactoring (i.e., four measurements for each
execution order are taken). These semiautomatic steps are
executed in a computer with a 2.66 GHz dual processor and 4.0
GB RAM.

Data collected during execution is used to compute the
normalized gains after the execution of each category. TABLE
II presents the normalized gains for each previous combination
of refactoring category. This data represents the gain evolution
for all the measures in accordance with the position in which a
category is executed and regarding to the previous refactoring
actions. Size, density, connectivity and separability cells are
mean values computed for all the 40 business process models.
The whole data, including base data directly obtained from the
execution of the study is online available1.

TABLE II. GAIN ON AVERAGE FOR EACH CATEGORY WITH DIFFERENT ORDERS

Cat. Pre-Act. Size Density Connectivity Separability

R
el

ev
an

ce
 - 0.390 -3.959 -0.597 0.470

G 0.500 -7.798 -0.954 0.548
C 0.127 -0.669 -0.171 0.154
GC 0.157 -0.896 -0.231 0.184
CG 0.142 -0.848 -0.207 0.172

G
ra

nu
la

ri
ty

 - 0.269 0.051 0.218 0.064
R 0.231 -0.199 0.146 0.070
C 0.072 -0.067 0.022 0.068
RC 0.107 -0.114 0.028 0.059
CR 0.085 -0.103 0.009 0.078

C
or

re
ct

ne
ss

 - -0.476 -0.318 -0.601 -0.325
R -0.341 0.163 -0.082 -0.152
G -0.530 -0.793 -1.252 -0.373
RG -0.477 0.080 -0.315 -0.280
GR -0.459 0.140 -0.225 -0.256

D. Analysis and Interpretation
The inspection of data collected in TABLE II suggests that

results highly vary with regards to the order in which each
refactoring category is applied. These values also depend on
the previous refactoring applied. However, in order to figure
out whether these observations reflect a common pattern rather
than the random effect, a statistical hypothesis testing were
conducted for assessing the real effect of the application order.

For this purpose, the Kruskal-Wallis (KW) test was used.
The KW test is a non-parametric method supporting a one-way
analysis of variances by ranks. The KW test is used for
comparing more than two non-related samples. Thus, the null

1 http://alarcos.esi.uclm.es/per/mfernandez/

648

hypothesis is H0: μ1 = μ2 = μn, while the alternative hypothesis
means that there is a significant difference between the means
of sub-samples, i.e., H1: μ1 ≠ μ2 ≠ μn. In this study, the different
sub-samples were selected according to the five different
configurations (order and previous actions). For example, the
five samples of relevance (R) are in which R is applied at the
beginning, is applied in second place (CR or GR), or is applied
at the end (CGR or GCR). TABLE III provides the results of
the KW test, whose inspection shows that the order (RQ1) and
previous refactoring of all the categories (RQ2) affect the gain
achieved at least for some of the measures. In case of
relevance, the configuration affects to all the measures. In case
of granularity, the order and previous refactoring affect to size,
density and connectivity gain, but do not affect to separability.
Finally, in case of completeness, the configuration only affects
to density and connectivity. These results demonstrate that the
application in an arbitrary order is not a good idea.

Having known there is a difference between different
configurations, it is necessary (in order to complete the answer
of research questions RQ1 and RQ2) to figure out which
certain configuration is better than other in each category.
Figure 1 graphically shows these variances. Regarding
Relevance, the best choice was to apply it in the second place
after granularity if the goal is to maximize size and separability.
However, density and connectivity gains, which are always
negative, are better if the relevance category is applied in
second place after correctness refactoring. Concerning
granularity, the best combination was to apply it at the
beginning to achieve the greatest gain of size, density and
connectivity. However, the best separability was achieved
when granularity is applied at the end after correctness and
relevance categories. Anyway, the differences of separability
gains are negligible for every order (see Figure 1). Finally, with
respect to completeness, most gains are unfortunately negative.
Despite this fact, the best order in every case is to apply
completeness in the second place after relevance.

After analyzing outgoing results, some rules to prioritize
the application of refactoring categories can be derived so that
research question can be fully answered. The first insight is that
refactoring operators related to relevance should be applied in
second place. Particularly, after granularity refactoring if the
gain of size and separability are prioritized and after
completeness if density and connectivity gain has to be
maximized. The second rule is about granularity category,
which should be applied in the first place. The third rule about
completeness states that it should be applied in second place
after relevance refactoring operators.

E. Validity Evaluation
This section presents the threats to the validity of this case

study and possible actions to mitigate them. There are mainly
three types of validity: internal, construct and external. As far
as the internal validity is concerned, a sample of 40 business
process models was retrieved from a two information systems,
and it is therefore possible to obtain statistically representative
results. Nevertheless, the study may be replicated by using
more information systems, to attain a larger sample of business
process models. Anyway, there are two decisive threats. The
first one is related to the way in which business process models

were retrieved by reverse engineering, i.e., through MARBLE.
This supporting tool was used to obtain the business process
models, could be a factor that affects the initial sample of
business process models. Secondly, the set of refactoring
operators included in IBUPROFEN as well as their categories
is a threat to the generalization of the results. The replication of
the study by using different refactoring operators and
techniques may be a mean for mitigating these threats.

TABLE III. KRUSKAL-WALLIS TEST RESULTS

 Size Density Connectivity Separability
 2 Sig. 2 Sig. 2 Sig. 2 Sig.
Relevance 48.8 0.000 20.4 0.000 24.1 0.000 52.5 0.000
Granularity 24.6 0.000 21.7 0.000 25.8 0.000 1.6 0.801
Completeness 3.45 0.485 35.6 0.000 44.7 0.000 5.7 0.226

Figure 1. Behaviour of categories with different orders and previous actions

-4.50

-3.50

-2.50

-1.50

-0.50

0.50

Siz Den Con Sep

Relevance

R GR CR GCR CGR

-0.20

-0.10

0.00

0.10

0.20

0.30

Siz Den Con Sep

Granularity

G RG CG RCG CRG

-1.30

-1.10

-0.90

-0.70

-0.50

-0.30

-0.10

0.10

Siz Den Con Sep

Completeness

C RC GC RGC GRC

649

Moreover, with respect to the construct validity, the
selected measures (size, density, connectivity and separability)
were suitable for assessing the theoretical understandability of
business process models. However, a more practical approach
based on expert viewpoint could be used to assess the
understandability of business process models. Finally, external
validity is concerned with the generalization of the results. This
study considers the whole population to be business process
models retrieved by reverse engineering from legacy
information systems. The results obtained can be strictly
generalized to this population with the particularity that all the
information systems under study are based on Java platform.
This restriction is related to the mentioned supporting tools
used in the study. This threat may be mitigated by replicating
the study using systems implemented in different platforms.

V. CONCLUSIONS AND FUTURE WORK
Business process model refactoring has proved to be a good

mechanism for dealing with understandability problems and
other faults. Unfortunately, most refactoring techniques only
address business process models manually modeled and hardly
ever consider reversing models semi-automatically retrieved
from existing information systems. This paper precisely
focuses on this kind of refactoring techniques by means of an
empirical study that tries to assess how different configurations
of refactoring affect the understandability gain. However, the
understandability of business process model is difficult to be
measured. On one hand, the understandability additionally
depends on the people in charge of use, manage or evaluate
such business process models, which is individually subjective.
On the other hand, understandability of business process
models that were previously refactored could vary due to the
application of different refactoring operators. In fact, some
operators might lead to a worse understandability. This study
precisely attempts to establish links between different
refactoring configurations (in terms of categories applied, i.e.,
relevance, completeness and granularity) and the
understandability gain, which is measured with size, density,
connectivity and separability of business process models. The
study’s results reflect that refactoring categories can be
prioritized concerning the order in which to be applied as well
as the previous refactoring actions so that the understandability
gain can be optimized.

ACKNOWLEDGMENTS
This work was supported by the FPU Spanish Program and

the R&D projects PEGASO/MAGO (TIN2009-13718-C02-01)
and GEODAS-BC (TIN2012-37493-C03-01).

REFERENCES
[1] Alarcos Research Group. IBUPROFEN. 2012; Available from:

http://marketplace.eclipse.org/node/423052.
[2] Canfora, G., M. Di Penta, and L. Cerulo, Achievements and challenges

in software reverse engineering. Commun. ACM, 2011. 54(4): p. 142-
151.

[3] Dijkman, R., B. Gfeller, J. Küster, and H. Völzer, Identifying refactoring
opportunities in process model repositories. Information and Software
Technology, 2011.

[4] Dijkman, R., M.L. Rosa, and H.A. Reijers, Managing large collections
of business process models—Current techniques and challenges.
Computers in Industry, 2012. 63(2): p. 91.

[5] Fernández-Ropero, M., R. Pérez-Castillo, I. Caballero, and M. Piattini,
Quality-Driven Business Process Refactoring, International Conference
on Business Information Systems (ICBIS 2012). 2012 p. 960-966.

[6] Fernández-Ropero, M., R. Pérez-Castillo, J.A. Cruz-Lemus, and M.
Piattini, Assessing the Best-Order for Business Process Model
Refactoring. 2013. p. 1400-1406.

[7] Fernández-Ropero, M., R. Pérez-Castillo, and M. Piattini, Refactoring
Business Process Models - A Systematic Review, in 7th International
Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2012). 2012, INSTICC: Wroclaw, Poland. p. 140-145.

[8] Gambini, M., M. La Rosa, S. Migliorini, and A. Ter Hofstede,
Automated error correction of business process models. Business
Process Management, 2011: p. 148-165.

[9] Heuvel, W.-J.v.d., Aligning Modern Business Processes and Legacy
Systems: A Component-Based Perspective (Cooperative Information
Systems). 2006: The MIT Press.

[10] Jeston, J., J. Nelis, and T. Davenport, Business Process Management:
Practical Guidelines to Successful Implementations. 2nd ed. 2008, NV,
USA: Butterworth-Heinemann (Elsevier Ltd.). 469.

[11] La Rosa, M., P. Wohed, J. Mendling, A.H.M. ter Hofstede, H.A. Reijers,
and W. van der Aalst, Managing process model complexity via abstract
syntax modifications. Industrial Informatics, IEEE Transactions on,
2011. 7(4): p. 614-629.

[12] Leopold, H., S. Smirnov, and J. Mendling, Refactoring of process model
activity labels, in Proceedings of the Natural language processing and
information systems, and 15th international conference on Applications
of natural language to information systems. 2010, Springer-Verlag:
Cardiff, UK. p. 268-276.

[13] Mendling, J., H.A. Reijers, and W.M.P. van der Aalst, Seven process
modeling guidelines (7PMG). Information and Software Technology,
2010. 52(2): p. 127-136.

[14] OMG. Business Process Modeling Notation Specification 2.0. 2011;
Available from: http://www.omg.org/spec/BPMN/2.0/PDF/.

[15] Pérez-Castillo, R., M. Fernández-Ropero, I. García Rodríguez de
Guzmán, and M. Piattini, MARBLE. A Business Process Archeology
Tool, in 27th IEEE International Conference on Software Maintenance
(ICSM'11). 2011, IEEE Computer Society: Williamsburg, Virginia,
USA. p. 578-581.

[16] Pérez-Castillo, R., M. Fernández-Ropero, I.G.-R.d. Guzmán, and M.
Piattini, MARBLE. A Business Process Archeology Tool, in 27th IEEE
International Conference on Software Maintenance (ICSM 2011). 2011:
Williamsburg, VI. p. 578 - 581

[17] Pérez-Castillo, R., B. Weber, I. García Rodríguez de Guzmán, and M.
Piattini, Generating Event Logs from Non-Process-Aware Systems
Enabling Business Process Mining. Enterprise Information System
Journal, 2011. 5(3): p. 301–335.

[18] Runeson, P. and M. Höst, Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical Softw. Eng.,
2009. 14(2): p. 131-164.

[19] Sommerville, I., P. Sawyer, and S. Viller, Viewpoints for Requirements
Elicitation: A Practical Approach, in Proceedings of the 3rd International
Conference on Requirements Engineering: Putting Requirements
Engineering to Practice. 1998, IEEE Computer Society. p. 74-81.

[20] van der Aalst, W., Process Mining: Overview and Opportunities. ACM
Transactions on Management Information Systems (TMIS), 2012. 3(2):
p. 7.

[21] Weber, B., M. Reichert, J. Mendling, and H.A. Reijers, Survey paper:
Refactoring large process model repositories. Comput. Ind., 2011. 62(5):
p. 467-486.

[22] Weske, M., Business Process Management: Concepts, Languages,
Architectures. 2007, Leipzig, Germany: Springer-Verlag Berlin
Heidelberg. 368.

[23] Yin, R.K., Case Study Research. Design and Methods. 3rd ed. 2003,
London: Sage.

[24] Zou, Y. and M. Hung, An Approach for Extracting Workflows from E-
Commerce Applications, in Proceedings of the Fourteenth International
Conference on Program Comprehension. 2006, IEEE Computer Society.
p. 127-136.

650

A multi-dimensional approach for analyzing
software artifacts

Sébastien Adam, Ghizlane El Boussaidi
Department of Software and IT engineering

École de technologie supérieure
 Montréal, Canada

Abstract—During a software project the development team
deals with various artifacts such as requirements, models,
design patterns, and procedures. Each artifact has its proper
features and issues that may threaten the success of a project.
This paper introduces an approach to promote a methodical
and multi-dimensional analysis of the linkages among the
artifacts’ features and issues by using networks of weighted
and semi-formal arguments. These networks of data may be
used to produce quantitative information in different multi-
dimensional views to ease the identification of critical artifacts
and issues of a software project. The Template Method design
pattern is used as an example of artifact to identify a coherent
set of features and issues related to this pattern. This case
study illustrates how the designers may use the proposed
approach to manage software artifacts of their system.

Keywords-software knowledge management, software
artifacs, multi-dimension analysis, decision support systems

I. INTRODUCTION
During the development of a software system, the

development teams deal with numerous artifacts such as
requirements, models, design patterns, and procedures. Each
artifact can be characterized using a set of features and it
relates to a set of issues that are factors of influence that may
threaten the success of a project. For instance, a design
pattern [1] is a design artifact that is characterized by a
rationale, a solution, plausible consequences, and trade-offs
to be considered when used. Somehow, the artifacts
constitute the assets that embody decisions and trade-offs
applied during the project.

For the development teams to be efficient, the projects’
artifacts must be managed and shared in an efficient fashion.
Indeed, designers must evaluate how the most influential
artifacts impact the capacity of the system to satisfy the
stakeholders’ needs. Insufficient details about these artifacts
and their relationships may lead teams to inappropriate or
suboptimal decisions. In particular, several approaches
propose, to some extent, a process or a technique aiming at
relating software artifacts (e.g., [3, 7, 8, 11, 13, 14, 15, 17]).
These approaches usually focus on a subset of the artifacts
involved in the development process and on some specific
development perspective that is part of this process.
However, there is a lack of works that support a multi-
dimensional view and a methodical treatment of the artifacts
and their related factors of influence, which include artifacts’
features, issues, and arguments that influence the activities
and dimensions of a software development project.

Designers’ expertise and experiences remain the key
elements in identifying the critical factors to their projects
and the appropriate solutions to these factors. This is true at
different stages of the software development process (e.g.,
analysis, design, or implementation) and for different
projects’ dimensions (e.g., budget, quality, and schedule).
The accumulated knowledge related to software engineering
should be addressed in an integrated and systematic manner
to enable the development of decision support systems that:
1) relate the software artifacts to their factors of influence; 2)
offer support to use the relevant artifacts and to appropriately
solve their related issues; and 3) keep track of the adopted
arguments and resolved issues.

In this paper, a multi-dimensional analysis approach to
efficiently use and relate software artifacts is proposed. This
is a two-phase approach for analyzing and identifying critical
factors related to software artifacts for a given project. The
first phase of the approach is the preparation phase, which
aims at eliciting the artifacts’ knowledge in the form of inter-
related arguments. The second phase is the analysis phase
where this knowledge is used to provide views that ease
identifying critical factors to a project. As an example of
artifact, the Template Method design pattern [1] and its
related factors are presented. Then, these factors are analyzed
and ranked for producing multi-dimensional views of the
pattern that highlight critical factors. The approach have been
applied in the context of an undergraduate course project for
validating its usefulness especially for novice designers. The
contributions of this paper are: 1) reusable specifications of
artifacts based on a uniform argument format; 2) a systematic
method for executing multi-dimensional analysis of artifacts;
3) a flexible method to transform networks of arguments to
multi-dimensional views.

This paper is organized as follows. Section II gives an
overview of the proposed approach. Section III introduces
the Template Method that is used to illustrate the preparation
and analysis phases of the proposed approach in sections IV
and V, respectively. Section VI details a case study realized
in the context of an undergraduate course. Finally, sections
VII and VIII present some related works and conclude.

II. OVERVIEW OF THE MULTI-DIMENSIONAL ANALYSIS
Our approach aims at applying multi-dimensional

analysis using a set of factors that characterize software
artifacts and influence software engineering. In this paper, a
factor may be a feature, an issue, an argument, an activity, or
a dimension. Table I describes each of these factors.

651

TABLE I. FACTORS OF THE MULTI-DIMENSIONAL ANALYSIS

Factor Description
Feature Distinguishing characteristic of an artifact
Issue Problem that emanates by using a feature
Argument Reasoning about an issue or a solution
Activity Set of cohesive tasks
Dimension Either functions, quality, cost, schedule, or staff

A feature is a distinguishing artifact’s characteristic that
we can conceptually use for analyzing its impacts on a
project. Features may be of various types (e.g., a property
describing a characteristic promoted by the artifact or a role
assigned to a person within the process of implementing the
artifact). Each feature relates to some inherent issues. For
example, implementing a behavior (feature) may require
capabilities that are not mastered by the work team. Different
artifacts may share similar features. Both artifacts and their
features relate to activities (e.g., design, implementation) and
dimensions (i.e., budget, quality) that are determinants of
successful projects. Finally, arguments are what tie factors
altogether. They encode the reasoning about how a set of
factors relate to each other and influence a system.

Our approach is a two phases approach: a preparation
phase that aims at eliciting the factors that describe the
system’s artifacts, followed by an analysis phase that aims at
analyzing these factors in order to create multi-dimensional
views that shall enable identifying important factors of a
software project. Both phases are independent. The results of
the preparation phase may be used for multiple executions of
the analysis phase. Specifically the preparation phase is
organized into three steps: 1) Eliciting features and related
activities; 2) Eliciting issues and impacted dimensions; and
3) Eliciting arguments. The analysis phase is divided into
three steps: 1) Selecting factors and building generic views
for the artifacts under analysis; 2) Ranking factors according
to the context of the project and generating contextual views;
and 3) Identifying important factors of the project using the
contextual views. The approach will be illustrated through
the analysis of the Template Method (TM) design pattern as
an example of a software artifact.

III. THE TEMPLATE METHOD DESIGN PATTERN
The Template Method (TM) design pattern [1] is used for

providing reusability and extensibility of algorithms in
object-oriented software. It aims to implement the skeleton
of an algorithm in a base class, and calls primitive methods
that subclasses override to provide concrete behavior. The
base class interface declares the algorithm as a template
method, which calls abstract primitive methods that represent
the algorithm’s variation points. The subclasses implement
the primitives for specializing the algorithm. The template
method may be declared final in order to ensure that it cannot
be overridden. The primitive methods may be declared
protected in order to ensure that they cannot be called by
another algorithm. As a result, the algorithm’s structure is
written only once and indirectly specialized in subclasses,
which reduces duplication of code and enforces class
interface stability. Also, the template method allows the
addition of instrumentation in the base class, and lightens
users' duty since it is no longer required to call a primitive.

IV. PREPARATION PHASE

A. Eliciting features and related activities
Table II presents some of the distinguishing features we

identified from the analysis of various TM descriptions as
given in the literature. Each feature has a description and is
classified under a specific type. Table III summarizes the
feature types that relate to the TM pattern. We classified each
feature type as part of the problem space or the solution
space related to the TM pattern. We use these feature types
as a mean to ease the elicitation of features and to constrain
their possible interpretations.

The Rationale type regroups the features that provide
reasoning about the problem. The rationale of the TM pattern
summarizes what the design pattern does. The Property type
regroups the drivers that define the problem. Clements et al.
[2] define a property as additional information about entities
and relations, such as names and attributes of quality [3].
Each pattern may promote or disadvantage one or more
properties. For instance, the TM pattern promotes the object-
oriented paradigm, and reusability and extensibility of
software. Pattern descriptions fix a subset of elementary
actions (Operationalization type) and behaviors (Behavior
type) that shall lead to their appropriate implementations.
The Convention type regroups de facto standards that define
guidelines for the problem to be solved. The domain objects
(Role type) and the structures of elements (Structure type)
have roles in realizing the solution. A domain object may be
a human, a device, or another software interacting with the
system to execute some tasks. The situational factors
(Situational Factor type) describe the environment and
hypotheses that influence this artefact. For the TM pattern,
the requirements imply the use of an object-oriented
programming language to define an abstract class that
subclass writers extend with their specific concrete classes.

TABLE II. DISTINGUISHING FEATURES OF THE TM

Feature
Act.

Id Type Description
Ra1 Rationale Define an algorithm, defer steps to subclasses

Pr1 Property Object-oriented paradigm

Pr2 Property Reusability

Pr3 Property Extensibility

Be1 Behavior Template method calls primitive operations

Op1 Operational. Define an abstract base class

Op4 Operational. Define a template method

Op5 Operational. Define a concrete child class

Op7 Operational. Declare a final template method

Op8 Operational. Declare protected primitives operations

Be2 Operational. Hook operations do nothing by default

St1 Structure Abstract class

St2 Structure Concrete class

St3 Structure Object-oriented programming language

Ro1 Role Subclass writers

SF1 Situational factor Multiple kinds of primitive operations

Co1 Convention Naming convention

652

It is important to address each artifact’s feature during the
development activities that cause most beneficial influences.
An activity is a set of cohesive tasks intended to contribute to
the achievement of a common goal. Table II classifies each
feature of the TM pattern based on these criteria. We
considered four important activities: architecting (A),
designing (D), implementing (I), and managing (M).
Architecting deals with the properties and high-level
structures (e.g., paradigm or platform selection) that shape
the software. Designing deals with the detailed structures
(e.g., abstract class) and the requirements that refine the
properties. Implementing usually deals with more specific
features (e.g., final method). Managing deals with roles (e.g.,
subclass writers), situational factors, and conventions (e.g.,
naming convention) that constitute the organizational system.

B. Eliciting issues
We analyzed the TM pattern to identify issues that may

hinder its usage. Table IV lists some issues and the features
they relate to. Due to lack of space, we present only few of
the numerous issues we identified. Each feature may solve or
engender one or more issues. For example, the extensibility
property (feature) may not be well defined for a module
(issue). Also, to lighten subclass writers’ responsibility, the
template methods call the primitive operations (feature).
However, the uncontrolled calls to primitive operations
(issue) may cause problems. To address this issue, the pattern
proposes to declare protected primitive operations (feature).
Our approach proposes to use a semi-formal argument
format to describe the issues.

C. Eliciting arguments and impacted dimensions
One important objective of the preparation phase is to

elicit arguments that will be used during the analysis phase to
estimate the impacts of each issue, which may differ
depending on the context of use of an artifact.
Argumentation is concerned with reasoning in the presence
of imperfect knowledge by eliciting arguments for exploring
issues rather than eradicating them [4]. In our approach, the
argumentation is geared towards quantifying the impacts of
the factors on software development dimensions and
activities. We used the format presented in Table V (adapted
from [5]) to describe the arguments. The claim is the
conclusion of the argument and it exposes the relationships
between a set of features. The claim is unique for each
argument. The description provides the chain of reasoning
that ties altogether the argument’s parts. The reasons are
related arguments that support the claim. The rebuttals are
counter-arguments for the claim. The alleviations are
arguments that affect the intensity of the argument. Reasons,
rebuttals, and alleviations are connection points. The two last
parts of the argument format specify the scope of the
argument. It refers to activities and dimensions that are
strengthened (+) or weakened (-) by the argument. The
activities are inferred from the activities related to the
features exposed in the argument’s claim while the
dimensions are inferred from the dimensions impacted by the
issue that prompted the argument.

TABLE III. DISTINGUISHING FEATURE TYPES RELATED TO THE TM

Space Feature type Description

Problem
Convention A de facto standard that define guidelines
Rationale A reasoning about the problem
Situational factor A factor of the context that is problematic

Solution

Behavior An interaction among a set of elements
Operationalization An operation that is part of a module interface
Property An additional information about elements/relations
Role An allocation of responsibilities
Structure A set of elements and relationships
Procedure A domain object interacting with the system

TABLE IV. ISSUES RELATED TO THE TM FEATURES

Feature Issue description
Co1 The naming convention is not well defined
Be1 The template method behavior is subject to change
Op1 The deferred steps are not well known
Op8 The hook operations are not well identified
Pr1 The object-oriented paradigm is not well mastered
Pr2 The reusability objectives are not well defined
Pr3 The extensibility objectives are not well defined
Ro1 The subclass writers do not discern which methods must be overridden
St3 The programming language is not well mastered

TABLE V. ARGUMENT FORMAT USED TO RELATE THE FACTORS

Claim: conclusion of the argument.
Description: description of the argument.
Reasons: evidences that support the claim.
Rebuttals: evidences that establish the falsity of the claim.
Alleviations: evidences that reduce the intensity of the claim.
Dimensions: dimensions impacted by the claim.
Activities: activities concerned by the claim.

The project’s dimensions we consider in our approach are
(adapted from [6]): Functions (F) – What is the estimated
impact of the claim in terms of the capacity of the software
to accomplish (+) or not (-) its functions? Quality (Q) –
What is the estimated impact of the claim in terms of the
capacity of the software to deliver (+) or not (-) previsioned
quality? People (P) – What is the estimated impact of the
claim in terms of the capacity of a human to accomplish (+)
or not (-) his task? Budget (B) – What is the impact of the
claim in terms of the number of budgeted resources saved (+)
or invested (-) to resolve the issue? and Schedule (S) – What
is the estimated impact of the claim in terms of the number
of work hours saved (+) or invested (-) to resolve the issue?

Table VI presents some of the arguments we elicited to
establish how each issue of the TM pattern impacts projects’
dimensions (F, Q, P, B, S) and activities (M, A, D, I). For
example, the argument (Arg1) predicts positive impacts on
the functional dimension (F+) by declaring a final method.
One reason is that a final method cannot be overridden. One
rebuttal or reservation is that it is possible to hack the final
mechanism (Arg7). The argument refers to features (i.e.
feature OP7) that may concern both design (D) and
implementation (I) activities. The prevision is not weighted
during the elicitation step because the elicited arguments are
not project-specific. They can be reused among projects with
other situational factors. The arguments are weighted during
the analysis phase where a specific project is analyzed.

653

TABLE VI. ARGUMENTS THAT RELATE TO THE TM

Id Claim Rea Reb All Dim Act

1
A final method cannot be
overridden by subclasses 7

+
FQ DI

2
Programming require skills
for object-oriented

di

5, 6, 11,
12

-
BPS M

6
The low cohesion reduces
the analysability of modules 9 -

BPQS ADI

7
The final mechanism is
hackable

-
FQ DI

9
The class cohesion is
proper for the team’s

ti

+
BPQS DI

11
The low cohesion makes
maintaining more tedious 5, 6

-
BFPQS ADIM

15
The template method is
subject to change

22, 24,
25, 26,

39

-
BQS DI

22
The extensibility objectives
are not well defined

-
BQS ADI

24
There are too many
primitive methods

-
Q DI

25
The deferred steps are not
well known 22

-
BQS DI

29
The hook operations are not
well identified 22

-
BFQS DI

V. ANALYSIS PHASE
During the analysis phase, we use the artifact’s factors

that were elicited in the preparation phase to engender multi-
dimensional views for assessing the factors’ impact in
different contexts. It is a three steps phase. The planning step
aims at selecting factors and building generic views of
networked arguments related to these factors. The execution
step aims at ranking factors according to the specific context
of the project and generating weighted views. These
contextual views are used to identify critical factors to be
addressed by designers.

A. Selecting factors and building generic views
Consider the TM pattern as our artifact under analysis.

For the lack of space we will consider as factors only four
activities (M, A, D, I) and five dimensions (F, Q, P, B, S) of
a project, and only some of the arguments related to the TM.
By selecting activities and dimensions we obtain a generic
multi-dimensional view of the TM arguments that relate to
the factors under analysis. Table VII presents the view
obtained from the arguments described in Table VI.

B. Ranking arguments, activities, and dimensions
We use the absolute ranking (H: high, M: medium, L:

low and X: not relevant) for prioritizing the factors. As a first
step, a work team needs to estimate how much each activity
and dimension is relevant for the project. The weighing of
activities and dimensions may be different depending on the
project’s context and nature. These rankings are used for
filtering the set of arguments that shall be further analyzed
from the multi-dimensional view of Table VII. In addition,
the values of the rankings are used for multiplying the
weights of the arguments. As result, the arguments that relate
to the most prioritized activities and dimensions will produce
more remarkable values in the contextual (i.e., quantified)
view.

TABLE VII. A MULTI-DIMENSIONAL VIEW OF THE TM ARGUMENTS

 B F P Q S

A 6, 11, 22 11 6, 11 6, 11, 22 6, 22

D 6, 9, 11, 15,
22, 25, 29

1, 11, 29 6, 9, 11 1, 6, 9, 11, 15, 22,
24, 25, 29

6, 9, 15, 22,
25, 29

I 6, 9, 11, 15,
22, 25, 29

1, 11, 29 6, 9, 11 1, 6, 9, 11, 15, 22,
24, 25, 29

6, 9, 15, 22,
25, 29

M 2, 11 11 2, 11 11 2

As a second step, the work team needs to estimate how
much each argument is relevant for the project. The ranking
of the arguments generates the concrete quantified views. As
a result of this step, the arguments are now contextualized
and their weights may be calculated. Each argument is
potentially the root of a tree of arguments (i.e. arguments that
are part of its reasons, rebuttals, and alleviations). Therefore,
the weight of an argument is the sum of its rank (H, M, or L)
and the ranks of its children divided by the number of nodes
in the arguments tree. The computation of a concrete view
will be illustrated in the case study (Section VI).

C. Identifying critical factors
Weighing activities, dimensions, and arguments

generates contextual views that are used to identify critical
factors to the project, which correspond to view’s cells that
have remarkable values. The view’s cells are prioritized
based on their values. Firstly, we identify the most prioritized
cell (i.e., with a priority of 1). Our approach suggests
reasoning further about the factors that relate to this cell in
order to nullify or reduce its value. We make the assumption
that taking actions to address these most influent factors shall
produce the highest benefits. After these critical factors are
addressed, their ranking is adjusted. The adjusted rankings
will provide new priorities. The user shall iterate these steps
(i.e., identifying flaws and taking actions accordingly) until
he is satisfied with the values in the concrete views (i.e.,
specific threshold values are attained).

VI. APPLICATION OF THE TM MULTI-DIMENSIONAL
ANALYSIS TO A CONCRETE CONTEXT

We analyzed the TM design pattern in different contexts
of application. In this section, we detail our experiment of
applying the approach in the context of an undergraduate
course of object-oriented software design at ETS.

A. Context of application of the TM
During the software design course the students are asked

to design, implement, and document their projects’ decisions
in teams within given deadlines and using the Java
programming language. The project we analyzed in this
experiment focuses on the design and implementation of a
software framework that provides the skeleton of a dice
game. The design of a software framework promotes
extensibility and reuse. In this case, the framework aims to
provide a set of classes to allow the software implementation
of various dice games. In addition, the project requires
extending these classes to implement the functionality of a
concrete dice game. At least three patterns are used in this
project: Iterator, Template Method (TM), and Strategy.

654

The resulting Dice Game Software Framework (DGSF)
was required to be simple enough to be understood by junior
programmers that have backgrounds only in procedural
programming. Students’ teams were divided into two groups:
teams proceeding without the analysis method and teams
using the method.

B. Execution and results of the analysis
The DGSF promotes extensibility and reusability of basic

high-quality components. Therefore, the arguments related to
the design activity and quality dimension shall generate more
remarkable values in the multi-dimensional view. Table VIII
presents a contextualization of the factors (i.e., activities,
dimensions, and arguments) for the DGSF. We quantified the
ranking as H=100, M=10, L=1, and X=0. Table VIII
indicates that we consider designing and quality as the most
important factors for the project. The budget factor is not
relevant for the project and the arguments that only relate to
this dimension have been removed from the analysis. As a
result of the rankings given in Table VIII, the weight of the
first argument (Arg1) will be multiplied by ten thousand
(10000 = 100 * 100) in the view’s cell that intersects the
design activity (H) and quality dimension (H) (i.e., Arg1 is
part of this cell as shown in Table VII) while its weight will
be multiplied by one thousand (1000 = 100 * 10) in the
view’s cell that intersects the design activity (H) and
functions dimension (M). A total impact value is then
computed for each cell of the view by summing the
multiplied weights of the arguments it contains. These values
are then translated into priorities (1 is the highest priority).

TABLE VIII. RANKING FACTORS FOR THE DGSF

Activities’ rankings for
the analysis

 Arguments’ rankings for each iteration
 Arg. Iter1 Iter2 Iter3

Architecting M 1 L L L
Designing H 2 H H H

Implementing M 6 M L X

Managing L 7 L X X

Dimensions’ rankings
for the analysis

 9 H H H
 11 X X X

Budget X 15 L L L

Functions M 22 H L X
People M 24 X X X

Quality H 25 H X X

Schedule M 29 X X X

TABLE IX. CONCRETE VIEWS OF THE DGSF ARGUMENTS

Activity

Iteration 1
 10 11
 6 5

Iteration 2

In the context of the DGSF, most students executed at
least three iterations (i.e., identifying and addressing critical
factors) in the analysis phase. Table VIII displays the weight
of some arguments for the three iterations. For example, the
argument (Arg1: “A final method cannot be overridden by
subclasses”) was ranked as low; this means that Arg1 is of
low importance for the project. The evaluation is made in
terms of the capacity of the DGSF to accomplish its
functionalities (+F) and deliver quality (+Q). Students
considered that the final mechanism provides a functional
capability to the DGSF through the Java programming
language. In addition, this feature contributes to improve the
robustness of the DGSF and force subclass writers to reuse
the fundamental components. However, its global impact on
the functional and quality dimension is of low importance.
As a second example, the arguments (Arg11) and (Arg24) do
not apply for the DGSF.

Table IX presents the resulting multi-dimensional views
for the DGSF for the two first iterations. As expected, the
first iteration generated a high priority value (i.e., 1) for the
designing and quality factors. Therefore, students took
actions for addressing the most prioritized arguments that
relate to these specific factors. Then, they adjusted the
arguments’ ranks in order to reflect the updated context. As a
result, the impact values in the view are recomputed. The
second iteration generated a high value for the architecting
and quality factors as shown in Table IX. The reader shall
also remark that the sum of each line (respectively column)
provides a global indication of how much a particular
activity (respectively dimension) and its related factors
contribute to the project (the less is the value, the more
important is the factor).

We compared the design reports of both the students’
teams who didn’t use the analysis method and the ones who
used it. It is worth noting two results: 1) teams who used the
method had elicited more arguments for supporting the
design decisions that shaped their DGSF; 2) the number of
changes they made to their DGSF for implementing a
concrete dice game application was significantly reduced
compared to teams who didn’t use the method.

VII. RELATED WORKS
Designers deal with multiple factors that conflict

depending on their software project. Many organizations
maintain significant software artifacts and knowledge in a
database to help the document control, development, and
maintenance activities. In particular, much knowledge and
support for the designers is provided by the literature
including patterns, tactics and quality models (e.g. [1, 2, 3, 7,
8, 9, 10, 11, 12]). To take full advantage of the accumulated
knowledge, the designers need frameworks and tools not
only to manage this knowledge but also to relate it to the
decisions taken and artifacts produced during the design
activity. In particular, when evolving a system it is important
not to lose sight of the initial objectives that drove the initial
decisions. However, most of models, methods, and tools
provide limited views into this knowledge database [3, 7, 8].

655

Our method was influenced by the ATAM (Architecture
Tradeoff Analysis Method) [3], which aims at discovering
risks and reporting correlations between decisions, quality
attributes, and business objectives. However, our method is
distinct: 1) the ATAM is based on tactics for supporting
tradeoffs analysis; our method is based on inter-related
factors for supporting multi-dimensional analysis; 2) the
ATAM uses formatted scenarios for correlating decisions
and objectives; our method uses formatted arguments for
correlating factors; 3) the ATAM uses ranking for
prioritizing scenarios; our method uses ranking for creating
multi-dimensional views on networks of factors.

Many approaches were proposed to support the design
process [2, 3, 7, 14], but few approaches (e.g. [8]) support
the designers in managing and keeping track of the
accumulated knowledge during the design process. One of
the most used approaches is the Attribute-Driven Design
method (ADD) [3]. The focus of ADD is the process of
architecting systems in order to satisfy a set of quality
attributes and to manage tradeoffs between these attributes
(quality dimension). Our approach can be used to analyze
and keep track of the artifacts and knowledge produced by
the ADD, but it also provides additional capacities for
analyzing multiple dimensions and encoding decisions. In
particular, many architectural styles and patterns have been
described and cataloged [1, 2, 3] in the literature, but few
approaches support the designers in selecting and using the
appropriate patterns. We believe our approach can be used to
describe the artifacts in a manner that may ease the selection
of appropriate tactics and patterns and keep track of the
selected artifacts as quantified design decisions.

Finally, our work is closely related to Ovaska et al.’s
work [8]. They propose an approach to fully integrate quality
requirements in the software design process. Their approach
allows the architect to manage and track the quality attributes
from the requirements specification to the architecture
design. This approach focuses on finding styles and patterns
using some quality attributes. While this is very useful, an
architect still needs to keep track of the rational, objectives
and other constraints that led the choice of these quality
attributes. The management of the relationships between the
decisions and the factors they influence is a challenge [11].
Our framework can be useful to manage these relationships
into a structured view that relates in a finer-grained manner
the artifacts of the problem space to the ones of the solution
space, from the organizational goals to the specific system
artifacts. We believe a multi-dimensional view is a valuable
artifact for providing an integrated view of the knowledge.

VIII. CONCLUSION
In this paper, a multi-dimensional analysis approach for

analyzing artifacts such as design patterns is presented. The
approach describes artifacts using a set of factors of
influence such as features, issues, arguments, activities, and
dimensions. Relating these factors enabled the creation of
multi-dimensional views that support designers in identifying
the critical factors to their projects and addressing them.

The approach was used within a context of an
undergraduate course project especially for analyzing and
addressing the factors related the TM design pattern. As a
proof of concept a prototype tool that students used for
analysis has been developed. This experimentation proved
that the multi-dimensional view eases design decision
making and helps keeping track of these decisions.

This preliminary work produced evidences that the multi-
dimensional analysis approach is a valuable step towards
handling artifacts as an integrated set of factors of influence.
The proposed approach can be customized to better support
particular development process and systems’ needs. In the
near future the approach will be applied on other artifacts
such as architectural patterns. In addition, the arguments’
characteristics will be analyzed to define a set of guidelines
that will support the process of eliciting arguments. One goal
of this work is to contribute to building a reference model of
factors linked formally and exploited by algorithms.

REFERENCE
[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns:

Elements of Reusable Object-Oriented Software”, A.-W., B. (1995)
[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,

Nord, R., Stafford, J., “Documenting Software Architectures – Views
and Beyond”, Addison Wesley, Boston (2003)

[3] Bass, L., Clements, P., Kazman, R., “Software Architecture in
Practice”, Addison Wesley, Boston (2003)

[4] Carbogim, D, Robertson, D, Lee, J, “Argument-based applications to
knowledge engineering”, Knowl. Eng. Rev. 15, 2 (J. 2000), 119-149.

[5] Carlos, C, Jarred, M, Sanjay, M, Iyad, R, Chris, R, Guillermo, S,
Matthew, S, Gerard, V, Steven, W, “Towards an argument
interchange format”, Knowl. Eng. Rev. 21, 4 (Dec. 2006), 293-316.

[6] Karl E. Wiegers, “Standing on Principle,” Journal of the Quality
Assurance Institute, vol. 11, no. 3 (July 1997).

[7] Kim, S., Kim, D.K., Lu, L., Park, S., “Quality‐driven Architecture
Development Using Architectural Tactics”, Journal of Systems and
Software 82, 1211‐1231 (2009)

[8] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.,
“Knowledge Based Quality-driven Architecture Design and
Evaluation”, Journal of Info. and Soft. Tech. 52, 577-601 (2010)

[9] Fayad, M., Schmidt, D., Johnson, R., “Building Application
Frameworks: Object-Oriented Foundations of Framework Design”,
Addison-Wesley, Boston (1999)

[10] Shahin, M., Liang, P., Khayyambashi, M.R., “Architectural Design
Decision: Existing Models and Tools”, In: WICSA/ECSA 2009, pp.
293-296. IEEE, Cambridge (2009)

[11] Khaled, L., “Achieving Goals through Architectural Design
Decisions”, Journal of Computer Science. 6, 1424--1429 (2010)

[12] Parizi, R.M., Ghani, A., “Architectural Knowledge Sharing (AKS)
Approaches: a Survey Research”, Journal of Theoretical and Applied
Information Technology, 1224--1235 (2008)

[13] Scott, J., Kazman, R., “Realizing and Refining Architectural Tactics:
Availability”, Technical report, Software Engineering Institute (2009)

[14] Bachmann, F., Bass, L., Klein, M., “Deriving Architectural Tactics: a
Step Toward Methodical Architectural Design”, Technical report,
Software Engineering Institute (2003)

[15] Mylopoulos, J., Chung, L., Nixon, B., “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach”, IEEE
Trans. on Sofware. Eng., Vol. 18 No. 6, June 1992, pp. 483-497.

[16] L. Chung, B. Nixon, E. Yu and J. Mylopoulos, “Non-functional
requirements in software engineering” Kluwer Acad., Boston, 2000.

[17] D. Gross and E. Yu, “From Non-Functional Requirements to Design
Through Patterns”, Requirements Eng. Journal Vol. 6, 2001, 18-36.

[18] S. Toulmin, “The Uses of Argument”, Cambridge, C. U. Press, 1958.

656

Semantic Conflicts Detection in
Model-driven Engineering

Valéria Oliveira Costa1,2, João M. B. Oliveira Junior1, Leonardo Gresta Paulino Murta2

1Instituto Federal de Educação, Ciência e

Tecnologia do Piauí, IFPI
Teresina, Brasil

valeria@ifpi.edu.br
joaomanoel@aluno.ifpi.edu.br

2 Instituto de Computação
Universidade Federal Fluminense, UFF

Niterói, Brasil
leomurta@ic.uff.br

Abstract— An important challenge of Model Driven Version
Control System (VCS) is to use conflict detection methods that
are appropriate for models. Methods that analyze only the syntax
of models can detect conflicts that do not exist in reality (false
positives) and can fail to detect conflicts that do exist (false
negatives). This paper presents a method to reduce the
occurrence of both false positive and false negative conflicts. For
this, the presented method provides an analyzer of the semantic
equivalence between models. Our method verifies if the model
versions are semantically equivalent, if one version semantically
contains the other version, and if there are conflicts between
versions.

Keywords- model-based version control; semantic conflict
detection

I. INTRODUCTION
 With the advent of the Model-driven Engineering (MDE),

which aims to facilitate the development of systems through
the creation, manipulation, and maintenance of models, it
became possible to direct the focus of the developers to design
applications at higher abstraction levels [1]. Thus, a system can
be constructed through the refinement of models that begins at
the highest level of abstraction and goes toward the lower
levels through the use of transformations [1].

In the context of MDE, during the development or
evolution of a system, multiple versions of a model can be
generated. Similarly to source code, this brings the necessity of
model-driven Version Control Systems (VCS). A VCS helps
the development team to manage the evolution of a software
product through consistent maintenance of its many variants
and revisions [2]. Therefore, a model-driven VCS manages
model version. To do so, it compares models, detects and
resolves conflicts, and makes the consistent merge of models.
Among the existing Model driven VCS we can mention
Odyssey-SCM [3], Smover [4], and Mirador [5].

One of the key concepts in the area of version control is the
conflict. Conflict is a set of contradictory changes where at
least one operation performed by the first developer does not
agree with at least one operation performed by a subsequent

developer [6]. A conflict is not desirable because it generates
an additional effort for the developer [7] , which means rework.
One might think that the time and effort needed to resolve a
conflict could be used to continue the development or evolution
of the system.

In this scenario, it may be noted that one important
challenge of the model-driven VCS is the use of a conflict
detection method that is appropriate and efficient to models.
According to [8], in order to obtain success in a model merge
process, it is necessary to understand not only the logical
structure of the model, but also its semantics. According to [9],
to resolve the conflicts, it is needed to identify the reasons of
the conflict. This is especially difficult when only syntactic
detection support is used.

 In a modeling process, there may be situations where the
same intention can be modeled in different ways. Thus, two
developers working in parallel may use different strategies to
model the same situation. A purely syntactic analyzer identifies
this difference as conflicting. After a manual analysis, it can be
verified that the conflict does not proceed, since the two
representations are semantically equivalent. This type of
conflict is false positive and reduces the efficacy of the conflict
detection method, since the method should not report erroneous
information to the developer.

One solution to reduce occurrences of false positive
conflicts is to understand the semantics of the models. This
understanding allows the identification of related syntactic
conflict that is actually a semantic equivalence. Furthermore, a
semantic analyzer also allows it to detect semantic conflicts.
These conflicts occur when modifications in a given model
element interfere in another model element even without
explicit syntactic relationships among them. Semantic conflicts
are more difficult to detect and, because of it, they generate
false negatives conflicts. These, in turn, are conflicts that exist
in reality, but unfortunately the conflict detection method
cannot diagnose them.

This way, a good method of conflict detection should be
able to identify semantic equivalences and not report them as

657

conflicts. This contributes to the reduction of false positive
conflicts. Also, it must be able to detect semantic conflicts,
thereby decreasing the number of undetected conflicts or false
negatives conflicts.

 To help solve the problems related above, this paper
presents a semantic conflict detection method for models. The
method focuses on the investigation of semantic equivalence of
models in order to reduce false positive conflicts. It also uses
the semantic understanding of the models to increase the
coverage of the conflict detection method. The increased
coverage decreases the likelihood of a semantic conflict
undetected by the method (false positives).

The rest of the paper is organized as follows: section II
presents important concepts about model-based version
control; Section III explains the proposed method; Section IV
shows an example of our method in action; Section V discusses
the technologies used in the implementation of the prototype;
Section VI presents some related works; and Section VII
presents the conclusion and future work.

II. BACKGROUND
Consider a scenario where the development team uses an

optimistic VCS. With this type of VCS, each developer can
work in an individual copy separately [2], until they decide to
socialize their copy with other developers. Initially, the original
version of the project, called base version, is stored in the
repository. Then, all team members download the base version
and start working on it separately. During socialization, the
developer´s version, called developer version, should be
analyzed and compared with the base version, and with the
latest version already committed into the repository, called
current version. The Fig. 1 shows this scenario. The process
that considers the information contained in the ancestral
version for calculating differences between two versions is
used in three-way merge [2].

Another concept used in this work is state-based merge [2].
In this type of merge, only the information contained in the
base version and its revisions are considered [2]. In this type of
merge, there are no records of the operations performed that
facilitate the understanding of the transformation from one
version to another. On the other hand, this type of merge is
more realistic, as it imposes no restriction over the
development environment. The complete state-based merge
process is composed of four phases [9]: comparison, conflict
detection, conflict resolution, and the merge itself.

III. SEMANTIC CONFLICTS DETECTION OF MODELS
This work is based on the before-mentioned state-based

merge process. However, as it focuses only on the
identification of semantic conflicts, it is restricted to the first
two phases: comparison and conflict detection.

In the comparison phase, our method receives the three
versions to be analyzed (base, current and developer versions).
The versions are automatically transformed into a set of Prolog
facts. Then, each Prolog version is analyzed in order to infer
indirect relationships. This step is done by a Prolog set of rules
that describes the semantic relationships of models according to

a specific metamodel. The versions are then compared to verify
if they are semantically equivalent or if one version
semantically contains the other. If the versions are not
equivalent, and if the current version does not contain the
developer version (or vice versa), then the conflict detection is
initiated. In this phase, four sets are created considering the
base, current, and developer versions: all model elements
added to base version to compose current and developer
versions and all model elements deleted from base version to
compose current and developer versions. The special
intersection among the sets of added and deleted model
elements of different versions (current and developer) indicates
conflicts.

The Fig. 2 provides an overview of the proposed method. In
the first activity, called Translation, the developer version
represents a version just produced by a member of the
development team as a revision of base version. On the other
hand, current version is the tip of the repository, created due to
a previous commit performed by other team members. This
way, current and developer versions were created in parallel,
and both are revisions of base version. The goal of this activity
is to transform these three versions into Prolog facts. Each fact
refers to an existing element or relationship in the model. In the
case of a relationship, there is involvement of a pair of
elements in general. This way, the Translate activity result is a
set of Prolog facts that represents all relevant syntactic
information contained in the analyzed model.

The second activity, called Semantic Enrichment, is
responsible for inferring new facts. To do so, this activity
combines the previously generated facts with Metamodel-
specific Rules. The Metamodel-specific Rules represent the
semantics of relationships in a given metamodel. This way,
they need to be set once and can be used for every model
compliant to the metamodel. For instance, in the context of
Use Case diagrams (UCD) of the UML metamodel, Tab. I
shows the semantic rules used by our method. Such rules help
on extracting semantics from the syntactic set of model
elements represented as Prolog facts.

Figure 1. Development scenario

658

TABLE I. USE CASE DIAGRAM SEMANTIC RULES

Semantic rules
Rule

1

2

3

4

Next, the third activity, called Conflict Detection is

performed. In this activity, the enriched Prolog facts of current
and developer versions are analyzed and compared to base
version. The analysis is done based on the three-way diff
concept, forming two pairs: the first involving the diff between
base and current versions and the second involving the diff
between base and developer versions. For each pair, two sets
of differences are computed: one that holds all added items
(Add) and another that holds all deleted items (Del). These
sets are computed according to (1) and (2):

Where . After the computation

of the additions and deletions sets, a conflict is detected if an
element of the model appears simultaneously in the set of
additions of the first pair and in the set of deletions of the
second pair or vice versa. It is important to emphasize that to
generate the set of semantic conflicts, the Metamodel-specific
Rules were previously used during the Semantic Enrichment
activity. Equation (3) denotes how the set of conflicts is
formed:

Figure 2. Our method overview

Where and can be any two variants in general, but in
the specific case of this work, = current and =
developer. Moreover, represents an especial intersection
between sets that overloads the equality property to match not
only identical elements. The matching between non-identical
elements is possible because our method takes into account the
syntactic rules of relationships described in the UCD
metamodel. When a relationship is used, not only the
relationship, but also the elements that compose it are verified.
So, if an actor is deleted by , while adds a relationship
that uses the same actor (e.g. an association between this actor
and a use case), a conflict is detected. This reasoning is
analogous to the use of other relationships of the UCD
metamodel.

The analysis of the , and Conflict sets may lead to
the following conclusions:

- If then the versions are semantically equivalent.

This means that the intentions of the developers were
similar. In this case, there is no conflict and any one of the
two versions can be chosen.

- If then one version semantically
contains the other. In this case, there is also no occurrence of
conflict and the intention of one developer entails the
intention of the other. Since there is no divergence of
intention, the most complete version should be chosen.

- If
then the versions differ among themselves, one version
semantically doesn´t contain the other but there is no
semantic conflict. In this case, a syntactic merge suffices.

- If then the versions semantically differ,
one version semantically doesn´t contain the other and there
are semantic conflicts. In this case, the Conflict set contains
the syntactic facts that are implying semantic conflicts.

In order to have a better understanding of our method,
section IV shows it in action.

IV. OUR METHOD IN ACTION
Consider the UCD of a bank control system as depicted in

Fig. 3, where Fig. 3.a shows the base version, Fig. 3.b shows
the current version and Fig 3.c shows the developer version.
These last two versions are revision of the base version.

The three versions have their files submitted to Translation
activity, as explained in the previous section. The results
produced in this activity are shown in Tab II. In this table,
each column shows the automatically generated facts for each
of the presented versions.

Then the Semantic Enrichment activity is performed
through the application of previously defined semantic rules.
These rules, written in Prolog, discover new facts created
through the indirect relationships among model elements, as
shown in Tab. III.

To illustrate the second activity of Fig. 2, consider the
diagram presented in Fig. 3.a. Note that the Natural Person
actor is indirectly associated with the Open Account use case.
The association occurs through inheritance between Natural
Person and Person actors. Considering the semantics of

659

inheritance, it can be said that Natural Person is a Person.
Furthermore, as Person is directly associated to the Open
Account and End Account use cases, we can say that Natural
Person is also associated with Open Account and End Account
use cases, although the association is not directly shown in the
model.

The discovery of the indirect relationships is a key factor
in order to enable the detection of semantic conflicts in our
method. The knowledge of those relationships allows us to
verify that a change made to an element X generates conflict
in an element Y, even if X and Y are not directly connected in
the model.

Tab. III shows the results of the second activity of Fig. 2
applied to the case shown in Fig. 3.

Figure 3. Model versions of a bank control system

The discovered facts are added to the files shown in Tab.
II. Consider the base version column of Tab. III. The first
Prolog fact of this column is association(natural_person,
open_account). This fact can be visually inferred in Fig. 3.a
where Natural Person actor is connected through inheritance
with Person actor, which is associated with Open Account use
case.

The third activity, Conflict Detection, computes the
following sets:

Delcurrent =

Addcurrent = { usecase(open_saving_account),

inheritance(open_saving_account, open_account),
association(natural_person, open_saving_account),
association(person, open_saving_account),
association(employee, open_saving_account)}

Deldeveloper = {actor(natural_person),

inheritance(natural_person, person),
association(natural_person, open_account),
association(natural_person, end_account)}

Adddeveloper = { usecase(cash_out_amount),

association(person, cash_out_amount)}

Next, the intersection between the elements of the sets is
calculated to detect occurrence of conflicts:

 Addcurrent Deldeveloper = actor(natural_person),

association(natural_person, open_saving_account) }

Adddeveloper Delcurrent =

Conflictcurrent, developer = { actor(natural_person),
association(natural_person, open_saving_account)}

It can be observed that actor(natural_person) and

association(natural_person, open_saving_account) operate
over with natural_person actor. This intersection represents a
conflict because an association requires the existence of both
model elements in its association ends. According to Tab. II,
natural_person is an actor. Moreover, according to Deldeveloper,
this actor was deleted in developer version. Meanwhile,
according to Addcurrent, a new association has been established
in parallel with this actor in current version. This scenario
shows that, in the same team, a developer is deleting an actor
while another is expanded its responsibilities in the same
system design. This situation indicates a semantic conflict
between the versions. This type of conflict is not detected
when only syntactic elements and direct relationships are
analyzed, leading to false negatives.

As shown in the example, the presented method
contributes to detect these conflicts by increasing the
efficiency of the detect conflict method. Moreover, the
computation of semantic equivalences identifies the use of
different relationships that have the same meaning. This is

a. base version

b. current version

c. developer version

660

TABLE III. SEMANTIC ENRICHMENT OF PROLOG FACTS

possible because semantic rules abstract the syntactic
differences of relationships and extract the meaning of such
relationships in the model as a whole. Thus, the method does
not identify these differences as conflicts and reduces conflicts
false positives reported to developer. This feature reduces the
rework generated for the team.

V. PROTOTYPE IMPLEMENTATION
We are implementing a prototype of our method for UCD.

Currently, the prototype entails activities related to
comparison and conflict detection phases. We are testing these
phases and we intend to extend our prototype in the near
future to other UML diagrams.

For the purpose of testing our prototype, we adopt
Papyrus a to design use case models. This tool provides an
editing environment for EMF and UML models, among
others. For each model, Papyrus generates two important files:
a diagram interchange file, which contains the diagram
information such as position of elements, and an XML
Metadata Interchange (XMI) file, which contains the model
elements themselves.

Each XMI file is submitted to Translation activity to be
automatically transformed into a set of Prolog facts. The

a http://www.eclipse.org/papyrus/

model´s transformation to Prolog facts is made using the
OMG Model to Text (M2T) standard. The implementation of
the transformation is based on Acceleo b . Acceleo is a
generator that transforms models into code. It uses Model-
driven Architecture (MDA) to transform a model into text. To
perform the second activity, Semantic Enrichment, we adopt
the TuPrologc library integrated with Java.

Our method was conceived to accommodate new types of
diagrams and metamodels. As previously discussed, it is not
restricted to proprietary model formats as input models are
XMI files. The support for a new diagram or even a new
metamodel requires three main tasks: writing a M2T
transformation to generate Prolog facts according to the new
diagram or metamodel, writing Prolog rules for the Semantic
Enrichment phase and writing syntactic rules in Java to be
used in Conflict Detection phase .

VI. RELATED WORK
In [10], a semantic conflict detection method is presented,

named Smover. The approach is based on semantic views of
interest and inspection strategies of elements that can be
configured by the user. A semantic view maps a metamodel to
another based on relevant aspects of the first. The output of the
transformation is a model in conformity with the second that
contains the aspects of interest. The conflicts found in the
original metamodel are syntactic conflicts, and those found the
mapped metamodel are semantic conflicts. Our method
transforms the elements and relationships into Prolog facts and
uses inference rules to help compare two models. Moreover,
we use only one metamodel to detect conflicts.

 Odyssey-VCS [11] is a Model-driven VCS that allows the
use of fine granularity for version UML 2 models. The conflict
detection is based in existence analysis of elements and
processing of attributes and relationships. It considers both
non containment and containment relationships. Our method
focuses in semantic conflict detection to all elements and
relationships of the UCD models.

b http://www.eclipse.org/acceleo/

c http://tuprolog.alice.unibo.it/

Prolog facts added by semantic rules application

base version current version developer
version

association(natural_
person,open_account).

association(natural_
person,open_account).

association(natural_
person, end_account).

association(natural_
person, end_account).

association(natural_person,
open_saving_account).

 association(person,
open_saving_account).

 association(employee,
open_saving_account).

TABLE II. MODEL TO PROLOG TRANSLATION.

Contents of prolog files – activity 1
 base version current version developer version

actor(person). actor(person). actor(person).
actor(natural_person). actor(natural_person).
actor(employee). actor(employee). actor(employee).
usecase(open_account). usecase(open_account). usecase(open_account).
usecase(end_account). usecase(end_account). usecase(end_account).
 usecase(open_saving_account).
 usecase(cash_out_amount).
inheritance(natural_person, person). inheritance(natural_person, person).
 inheritance(open_saving_account, open_account).
association(person, open_account). association(person, open_account). association(person, open_account).
association(person, end_account). association(person, end_account). association(person, end_account).
association(employee, open_account). association(employee, open_account). association(employee, open_account).
association(employee, end_account). association(employee, end_account). association(employee, end_account).
 association(person, cash_out_amount).

661

Gerth et al. [12] present a method to detect conflicts that
takes into account the semantics of business process models.
This method decomposes the process model into fragments
and activities to make your comparison. Moreover, it creates
add, delete and move operations for fragments and activities.
The approach also provides a method to the resolution of
conflicts and uses individual strategies to resolve different
types of conflicts. The method uses change-stated merge. Our
work presents a method to state-based approach to UCD and
in the future other UML models. We also intend to
automatically resolve detected conflicts.

Koegel et al. [13] provide an algorithm to compute conflicts
on the operations that change the model. It also takes into
account the serialization of the application of these operations.
The conflicts are classified into hard and soft. The hard
conflicts must be resolved by the user and the soft ones
automatically resolved. However, different of our method it
does not take into account the semantics of the models and is
made for operation-based approach.

Mirador [5] uses a hybrid state and operation-based
approach. The merge is based on operation and detects direct
and indirect conflicts. Conflicts are detected by the before(a,b)
predicate where an operation a must come before an operation
b. The approach describes techniques for detection and
resolution of conflicts based on decision tables. The users can
customize the rules of the tables. These tables can take into
account the semantics and to use their rules to detect false
positives. The approach uses metametamodel Ecore extended
to compute differences between versions. Our method uses
inference rules of metamodel to help compute semantic
conflicts. It considers not only the false positive conflict
detection generated by similar situations but also false
negative conflict detection.

VII. CONCLUSION
This paper presented a conflict detect method to MDE. The

method expects three model versions as input (two variants
with a common ancestry) and verifies: if the variants are
semantically equivalent, if one variant semantically contains
the other, and if there are semantic conflicts to be resolved.
The process starts by transforming the models into Prolog
facts. The Prolog facts are semantically enriched by means of
metamodel-specific rules. Finally, semantic conflicts are
discovered via three-way diff technique.

 We also present an example that shows how changes in
different elements can interfere with other elements, even if
they are not directly connected. Due to the difficulty in
identifying this type of conflict, the method helps on reducing
the amount of false negatives conflict. Thus, it increases the
efficacy of the conflict detection method as a whole.

Moreover, the detection of semantic equivalence decreases
the amount of false positives conflicts reported to the
developer, whereas purely syntactical analysis detects
differences and reports them as conflicts. This feature also
contributes to the improvement of conflict detection method
because it reduces the rework of the team.

Currently, we are studying how to make the merge when
there are no conflicts are detected. In the case of the equivalent
models, the system must choose or suggest which model
should be considered the merged version. To help on this
suggestion, the traceability of indirect relationships should be
considered. The traceability can indicate the best model
designed.

As future work, we intend to support automatic conflict
resolution and collaborative merge. At the phase of conflict
resolution, heuristics may help on suggesting consistent
solutions. Regarding collaborative merge, traceability can also
figure as an important technique, visually guiding developers
from semantic conflicts to the syntactic elements that triggered
these conflicts.

We also intend to support additional UML diagrams and
expand the method to work directly on the metametamodeling
language, such as EMF and MOF, via the reflective API. This
would allow processing any metamodel, requiring only the
metamodel XMI file as input. Finally, we are planning to run
some experimental studies with the proposed method.

VIII. REFERENCES
[1] A. Cicchetti, F. Ciccozzi, e T. Leveque, “On the concurrent
Versioning of Metamodels and Models: Challenges and possible Solutions”,
2011, p. 16–25.
[2] T. Mens, “A state-of-the-art survey on software merging”,
Software Engineering, IEEE Transactions on, vol. 28, no 5, p. 449–462, 2002.
[3] L. Murta, H. Oliveira, C. Dantas, L. G. Lopes, e C. Werner,
“Odyssey-SCM: An integrated software configuration management
infrastructure for UML models”, presented at the Science of Computer
Programming, 2007, vol. 65, p. 249–274.
[4] K. Altmanninger, “Model Versioning – SMoVer”, Smover:
Configurable & Semantically Enhanced Conflict Detection in Model Version,
2011. [Online]. Available: http://smover.tk.uni-linz.ac.at/prototype.php.
[Accessed: 20-dez-2011].
[5] S. Barrett, P. Chalin, e G. Butler, “Table-driven detection and
resolution of operation-based merge conflicts with mirador”, Modelling
Foundations and Applications, p. 329–344, 2011.
[6] R. Conradi e B. Westfechtel, “Version Models for Software
Configuration Management”, ACM Computing Surveys (CSUR), vol. 30, no 2,
p. 232–282, 1998.
[7] J. G. Prudêncio, L. Murta, C. Werner, e R. da S. V. Cepêda, “To
lock, or not to lock: That is the question.”, Journal of Systems and Software,
vol. 85, no 2, p. 277–289, 2012.
[8] K. Altmanninger e G. Kotsis, “Towards accurate conflict detection
in a VCS for model artifacts: a comparison of two semantically enhanced
approaches”, 2009, p. 139–146.
[9] K. Altmanninger, M. Seidl, e M. Wimmer, “A survey on model
versioning approaches”, presented at the International Journal of Web
Information Systems, 2009, vol. 5, p. 271–304.
[10] K. Altmanninger, W. Schwinger, e G. Kotsis, “Semantics for
accurate conflict detection in smover specification detection and presentation
by example”, IJEIS, p. 68–84, 2010.
[11] L. Murta, C. Corrêa, J. G. Prudêncio, e C. Werner, “Towards
Odyssey-VCS 2: Improvements over a UML-based Version Control System”,
presented at the ACM, Leipzig, Germany New York, USA, 2008, p. 25–30.
[12] C. Gerth, J. M. Küster, M. Luckey, e G. Engels, “Detection and
resolution of conflicting change operations in version management of process
models”, Software & Systems Modeling, dez. 2011.
[13] M. Koegel, M. Herrmannsdoerfer,, e O. von Wesendonk,
“Operation Base Conflict Detection”, presented at the IWMCP10:
International Workshop on Model Comparison in Practice, Malaga, Spain,
2010.

662

Automatic Generation of Semantic Web Services

Thiago P. da Silva, Thais Batista, Frederico Lopes
DIMAp

Universidade Federal do Rio Grande do Norte - UFRN
Natal, RN, Brazil

{thiagosilva.inf, thaisbatista, fred.lopes}@gmail.com

Flavia C. Delicato, Paulo F. Pires
DCC/IM

Universidade Federal do Rio de Janeiro - UFRJ
Rio de Janeiro, RJ, Brazil

{fdelicato, paulo.f.pires}@gmail.com

Abstract—Web services typically contain only syntactic
information describing their interfaces. Due to the lack of
semantic descriptions, service composition becomes a difficult
task. To solve this problem, Web services can exploit the use of
ontologies for the semantic definition of service's interface, thus
facilitating the automation of discovering, publication, mediation,
invocation, and composition of services. However, ontology
languages, such as OWL-S, have constructs that are not easy to
understand, even for Web developers, and the existing tools that
support their use contains many details that make them difficult
to manipulate. This paper presents a MDD tool called AutoWebS
(Automatic Generation of Semantic Web Services) to develop
OWL-S semantic Web services from UML models. AutoWebS
offers an environment that provides many features required to
model, implement, compile, and deploy semantic Web services.

Keywords-Model Driven Development; OWL; UML; Web
Service; Semantic Web

I. INTRODUCTION
The semantic Web services (SWS) [1] encompasses the

semantic definition of services through the use of ontologies.
Ontologies provide a semantic description of a Web service
(WS) that is computationally interpretable by combining the
concepts defined in the ontology with the elements of the WS
syntactically described in WSDL [2]. The development of SWS
is typically divided into two stages: (i) WS creation, and (ii)
WS ontology creation. There are languages that allow the
description of WS using ontologies, such as OWL-S (Ontology
Language for Web Services) [3]. The ontology languages have
different syntaxes, a very extensive vocabulary, and most of
them are based on first order logic.

Existing tools that support the use of ontology languages do
not offer mechanisms to abstract their syntaxes, thus hampering
their use [4]. The adoption of semantic descriptions of WS is
hindered by the limitations of the tools and the fact that
creating an ontology is a difficult and time-consuming task [5].
In order to facilitate the use of SWS it is necessary to abstract
specific details for each semantic description language.

A way to guide the development of tools that meet this
purpose is to define the essential requirements for such tools. In
this sense, [6] proposed some essential requirements for the
development of tools to compose WS. These requirements can
be adapted to guide the development of a high level tool that
provides an easy way to create atomic SWS. The requirements
should define the need of abstracting the underlying
technologies used in the development of SWS. Moreover, it is

necessary to automate the generation of code artifacts, since it
is expected to abstract the languages involved in the creation of
SWS. The requirements should also specify the need of
integrating functionalities to allow the creation of SWS without
the need of accessing external resources or tools. This is
essential to reduce the development time, to avoid errors and
possible conflicts that arise when using different
tools/applications such as conflicts of languages versions.

In this context, Model Driven Development (MDD) [7] is
useful to manage the inherent complexity in the use of
ontologies to specify SWS. MDD is a software development
approach that focuses on creating models instead of program
code, allowing separation of concerns between specification
and implementation. Thus, a MDD approach can abstract away
the underlying technologies of WS through models.

In the MDD approach, UML profiles can be used to create
models that provide a higher abstraction level of the underlying
technologies of SWS. A UML profile consists of a collection of
extensions that customize UML for a specific domain and,
models created by UML profiles are valid UML models, which
can be created using the same tools for UML modeling. UML
and ontology specification languages have some overlaps and
similarities. For example, both languages use classes,
associations between classes, class properties, generalizations,
and data types for structural representation of a software
system. Such similarities make it possible to make some
elements of ontology specification languages in elements of the
UML model [8]. Other elements of the ontology specification
languages that do not directly correspond to the primitive
elements of UML can be represented by using UML profiles.
Thus, UML profiles can be used for specifying SWS, since
they are capable to represent ontologies and WS interface.

This paper proposes a UML profile for the SWS and
presents AutoWebS (Automatic Generation of Semantic Web
Services), a MDD tool to create SWS. AutoWebS offers a
graphical environment, which can be used to graphically
represent OWL (Web Ontology Language) [9] ontologies as
UML models, using the elements defined in a UML profile.
Thus, it avoids that developers directly deal with the OWL
language syntax by supporting the definition of SWS interface
via UML models. This tool enables to: (i) specify the WS
interface, i.e., model the inputs and outputs of each WS
operation, (ii) perform semantic annotations, linking the inputs
and outputs of operations with the elements of an ontology, (iii)
automatically create the OWL-S file that contains the semantic

663

description of WS, (iv) automatically generate the skeleton
code for the WS, (v) extend its functionality, for example,
including support for another semantic description language.
The tool is implemented as a plugin of the Eclipse platform and
uses EMF (Eclipse Modeling Framework) for the specification
of the OWL and OWL-S languages metamodels. AutoWebS
uses the Axis2 middleware [10] for generating WS and it also
uses syntax validators for OWL-S ontologies.

This paper is organized as follows. Section 2 presents the
requirements for a tool to create SWS, an overview of
AutoWebS, and a motivating example. Section 3 presents the
implementation details. Section 4 presents the results of a
controlled experiment that evaluates AutoWebS compared to
an application suite composed by the OWL-S Editor [11] and
the Axis2 Eclipse plugin. Section 5 presents related work.
Section 6 contains the conclusions and future perspectives.

II. AUTOWEBS
This section presents the essential requirements for a tool to

support the creation of SWS, details of the AutoWebS, and a
motivating example.

A. Requirements
Before the development of AutoWebS, a set of essential

requirements for a tool aimed at creating SWS have been
established. The requirements are intended to specify the need
of abstracting specific details and the syntax of semantic
description languages used in the creation of the semantic
description of WS. The considered requirements are: (i) R0 To
provide a mechanism for a user to model the SWS interface
without the needing to have a deep knowledge about Web
technologies; (ii) R1 To perform the automatic generation of
some WS source code; (iii) R2 To perform the automatic
generation of the WS semantic description in a semantic
language; (iv) R3 To allow the use of pre-existing ontologies to
create semantic description of WS through the interconnection
of the concepts defined in these ontologies with the elements of
the WS; (v) R4 To provide a development environment that
integrates all the features required to create a SWS, without the
need to use external tools or resources; (vi) R5 To generate
syntactically correct code artifacts. The generated code should
be readable, executable, and meet the W3C specification for
WS and SWS; (vii) R6 To allow the manutenability e.g., allow
the insertion of new features without the need of performing
major structural modifications in the tool.

R0 requirement can be achieved using UML models to
specify the interface of the SWS, and to abstract the underlying
technologies used to develop SWS. R1 and R2 requirements
are related to automating the generation of code artifacts. In
this work we adopt the OWL language because this work is
part of a wider project which uses OWL. R3 requirement is
concerned with the use of pre-existing ontologies to create
semantic description of WS. This issue contributes to promote
interoperability since it enables the use of existing ontologies
that can be widely known and available on the Internet.

R4 requirement is essential to reduce the time of
developing SWS and avoid possible conflicts that arise when
different tools are used to build a SWS. For example, when
using a tool to create the domain ontology that adopts a

particular version of the ontology specification language that is
not supported by other tool used to create the WS ontology. R5
aims to ensure the correctness of code artifacts generated by the
tool. R6 is concerned with the insertion of new features or
update of the current features, such as the upgrade to a newer
version of the semantic language used to describe WS.

B. Tool Overview
AutoWebS provides an environment that integrates various

functionalities used to create SWS (R4 and R6). The use of
AutoWebS, as shown in Figure 1, consists of three main
activities: (a) import domain ontology, (b) design the WS, and
(c) generate the OWL-S ontology and WS. The tool requires as
input OWL ontologies (R3) and produces as outputs OWL-S
ontologies (R2) and the source code of the WS in Java (R1).

Figure 1. Overview of the AutoWebS

In the first activity, (a), the tool maps the elements of the
OWL ontology to UML elements, and the result is a UML
model (class diagram) that represents the OWL ontology. The
UML profile customizes the model using stereotypes,
constraints and tagged values, which are attached to UML
model elements. They define the semantics of the UML model
elements and make it possible to add additional information
such as properties that define the port where are the WS, and
its endPoint. In the (b) activity, the user works at the modeling
level rather than on the direct manipulation of ontology
languages. To create UML models that specify the SWS
interface, the user relies on stereotypes, constraints and tagged
values defined in the UML profile. From the perspective of the
SWS designer, the tool resembles an UML class diagram editor
(R0). In the environment provided by AutoWebS it is possible
to create UML models that specify the SWS interface by using
elements of the UML class diagram. In the (c) activity, the
UML model that specifies the SWS interface is the input to a
set of model-to-model and model-to-text transformations that
automatically generate the semantic description of the WS in
OWL-S ontology (R2) and build a WS project to the Eclipse
IDE (R1). The created WS project contains: (i) the WSDL
document, (ii) the descriptor of the WS, (iii) the classes that
compose the SOAP communication infrastructure, and (iv) the
Apache Ant script that automates the tasks of compiling and
packaging the WS. To ensure that the semantic description of
the WS is valid, the following validators are used (R5): the
RDF validator; the OWL validator; and the OWL-S validator
available in the OWL-S API.

664

C. Motivating Example
For the purpose of illustration of how to create a SWS,

consider the WS Barnes & Noble Price Finder (http://www.
mindswap.org/2004/owl-s/services.shtml) that returns the price
of a book as advertised in Barnes and Nobles Web site given
the ISBN Number. This WS has the following operation:

GetBNQuote (ISBN:String)Price:String;

There are several technologies that can be used to
implement this WS and also different ways to structure its
inputs and outputs. For example, we can represent the input
Book as a class that contains the attributes title and author, or
the input can only be a String. Abstract types are elements
specified within WSDL documents used to characterize the
inputs and outputs of the WS.

Figure 2 illustrates the declaration of the abstract types for
the Barnes & Noble Price Finder WS. The GetBNQuoteSoap-
In and GetBNQuoteSoapOut elements (lines 20 and 23)
specify the request and response messages of the WS. Such
messages are defined by GetBNQuote and GetBNQuote-
Response Parts elements (lines 3 and 10), which provides a
logical description of the message through XML Schemas.

Figure 2. WSDL Document

In order to semantically describe this WS, the concepts
defined in BibTex (http://purl.org/net/nknouf/ns/bibtex) and
Concepts OWL ontologies may be used. The BibTex ontology
formally defines the concepts and their relationships in the
domain of the reference management software for formatting
lists of references. The Concepts ontology defines the concept
of price. In the BibTex ontology, Book is an OWL class that
formally defines the concept of a book and in the Concepts
ontology there is the Price class that defines price.

The OWL-S ontology that semantically describes the WS
needs to model the GetBNQuote operation as an entity that
exchanges semantic data serialized in XML messages and
associates the input and output with elements of the BibText
and Concepts ontologies. The WS input should be associated
with the Book class and the WS output should be associated
with the Price class. The OWL-S ontology must also specify

how the receiver can interpret the XML message and send it
back into the semantic data and vice-versa. The transformations
of the inputs and outputs are performed by XSL
Transformations.

Figure 3. Instance of the OWL class Book

The process of manually creating an OWL-S ontology is
an error prone task that consumes time and effort. For
example, the OWL Book class used to semantically describe
the WS input has several properties, among them
hasPublisher, hasTitle, hasYear, humanCreator, and hasISBN.
The structure of the OWL Book class and consequently an
instance of this class is quite different from the WS input
(String). Figure 3 shows an instance of the OWL Book class,
which may be a hypothetical input of the WS. This example
shows some high-level activities to create a SWS, and the real
need for tools to create SWS. The produced artifacts, such as
the syntactic description of the WS (WSDL document) and the
WS ontology are difficult to perform by hand.

Figure 4. UML Profile

I. IMPLEMENTATION DETAILS
This section presents the implementation details of

AutoWebS. It is composed of: (i) an UML editor, (ii) a
mechanism to import ontologies, and (iii) a mechanism for the
automatic generation of SWS descriptions and some source
code from a UML model (R4). AutoWebS uses the Papyrus
UML graphical editor [12] that supports UML profiles and
allows creating custom editors based on UML standards. The
QVTo plugin is used to perform the following model-to-model

665

transformations: (i) from an OWL ontology (in OWL/XML
format) to an EMF model (equivalent to the OWL metamodel),
(ii) from an OWL model to a UML model; and (iii) from an
UML model to an OWL-S model. The OWL-S document is
created from OWL-S model using the code generator Acceleo.
The source code of the WS is created from the UML model
(R1) using UML to Java Generator plugin. AutoWebS extends
the functionality of Axis2 to enable the generation of source
code and also to allow the creation of WSs projects to the
Eclipse platform (R0). It also offers some facilities for
compiling, packaging, and deploying WS. All features offered
by this component are accessible via buttons or menus in our
tool. New functionalities can be integrated into AutoWebS with
the insertion of new plugins (R6) since the infrastructure
offered by Eclipse enables the development of modular
applications as plugins. Furthermore, the MDD approach
implemented by AutoWebS allows the insertion of a new
semantic description language. For this purpose, it is necessary
to create a metamodel to such language and to create the
model-to-model and model-to-text transformations.

A. UML Profile
The UML profile (Figure 4) defined and implemented by

AutoWebS has two main purposes: (i) to allow the partial
representation of OWL ontologies as UML models, and (ii) to
represent meta-information about the WS in UML models. We
chose to propose a new UML profile for OWL because the
AutoWebS represent only the necessary OWL elements to
specify the SWS instead of the full OWL ontology. In this
profile the owl:ontology stereotype is applied to the definition
of an UML Package and corresponds to the Ontology OWL
element. This stereotype defines the ontology domain and
contains information about the version of the ontology, author,
comments, and namespaces’ declarations. An OWL ontology
can import concepts from other ontologies. The owl:imports
stereotype enables the relationship with other ontologies. The
owl:Class stereotype represents a concept that has been
modeled as an OWL class. The OWL properties
(DatatypeProperty and ObjectProperty) are mapped to
attributes of a UML class with the owl:Class stereotype. In
these attributes are applied the owl:DatatypeProperty and
owl:ObjectProperty stereotypes. The rdfs:subClassOf
stereotype is applied to the UML Generalization metaclass and
represents OWL classes generalizations.

The Text-description and Category stereotypes extend the
UML Comment metaclass and enable the textual description of
the SWS and the association with a category. The Pre-
condition and Effect stereotypes extend the UML Constraint
metaclass in order to specify constraints which must be

satisfied for the WS to properly run. In OWL-S preconditions
and effects elements are represented as logical formulas and
can be expressed with languages whose standard encoding is
XML or literal strings. In the current version of the AutoWebS,
logical formulas are set as UML Constraint.

The SemanticWebService stereotype is applied to an UML
interface, which defines the WS operations (modeled as
methods). This stereotype has the following properties: target-
Namespace that defines the namespace used in the WSDL
document; URI WSDL that determines the WS URI; Web-
Service Documentation that serves for documentation
purposes; servicePort specifies the port on which the WS
responds; and the endPoint determines the type of endpoint
used for end-to-end communication. The methods defined in
the interface stereotyped as SemanticWebService, which
represent the operations of the WS are stereotyped as
SWSOperation. The input and output of the operations can be
defined as UML classes, UML primitive types or classes from
the OWL ontology, which are represented in the UML model
by owl:Class stereotype.

In our proposed MDD approach, the OWL ontology
import process is implemented in two phases. In the first
phase, a set of QVT transformations transforms an OWL
ontology in an OWL model (according to the OWL
metamodel). In the second phase, some elements of the OWL
model are mapped to UML elements, so that at the end of the
two phases the outcome is an UML model (class diagram),
that can be used to model the interface of the SWS. In the
resulting UML model, the UML profile provides additional
meta-information inherent to the imported ontology and of the
context of SWS. For example, the UML model includes
properties that define the port on which the WS is listening,
endPoint, and namespaces.

B. MDD Aproach
AutoWebS implements a MDD approach, illustrated in

Figure 5, in order to meet the R0, R1, R2, and R3
requirements. This strategy allows separation of concerns
between the specification and implementation, and provides a
high abstraction level of the OWL language. In our proposed
MDD approach, a set of QVT transformations transforms an
OWL ontology (or a set of ontologies) in an OWL model
(according to the OWL metamodel), and some OWL elements
of the OWL model are mapped to UML elements, producing
an UML model (UML class diagram). This UML model need
be manually extended to incorporate the WS definitions. From
the UML model that describes the SWS interface, the tool
automatically generate the WS project to Eclipse IDE (R1),

Figure 5. MDD Approach.

666

and the OWL-S document. AutoWebS exports the graphical
representation of the UML model to an XMI document, and
from the XMI document the artifacts are created. To create an
OWL-S document, AutoWebS uses an OWL-S metamodel and
a set of QVT transformation rules that are applied to the UML
model to automatically generate the OWL-S model (according
to the OWL-S metamodel). AutoWebS uses an Acceleo
model-to-text transformation that transforming the OWL-S
model into the OWL-S document. The source code in Java,
which composes the WS project to Eclipse IDE, is generated
from the UML model by the model-to-text transformation
“UML to Java”. The WS operations represented through
public methods in UML interface (stereotyped as
SemanticWebService) are mapped to methods in Java
Interface, and they are used to generate the source code of the
WS (each public method represents an WS operation).
AutoWebS calls the API Axis2 to perform the following tasks:
(i) to create the WSDL document associated with the WS; (ii)
to generate the source code of the WS, i.e. the code artifacts
that make up the SOAP infrastructure of the WS; (iii) to create
the build.xml Ant script. The main code artifacts generated are:
i) the services.xml deployment descriptor, which contains the
runtime configuration of the WS, ii) the MessageReceiver,
which is responsible for the end-to-end communication, iii)
Skeletons that implement the protocol used for the transmission
of messages, and iv) Apache Ant build.xml. The build.xml file
is used to automate the building process and packaging the WS.
All artifacts are attached in a project for the Eclipse platform,
so the user can develop the business rules of the WS. After the
implementation of the WS business rules, the user can use the
features offered by AutoWebS to build and to deploy the WS.
The result of the compilation is a file with the aar extension
containing that can be deployed in a Web Container that has
installed the Axis2 runtime.

II. CREATING A SEMANTIC WEB SERVICE
This section shows how AutoWebS can be used to create

SWS, demonstrating the process of creating the Barnes &
Noble Price Finder SWS. The demonstration encompasses four
steps: (i) to import the Bibtex and Concepts OWL ontologies;
(ii) to model the SWS interface; (iii) to trigger the generation of
the OWL-S ontology, and the source code of the WS; and (iv)
to implement the WS business rules. Steps (i) and (iii) are
automated by AutoWebS and the user only needs to manually
perform the steps (ii) and (iv). Step (i) imports the Bibtex and
Concepts OWL ontologies, which contains the Book class that
can be mapped to a UML class. The OWL Book class is a
subclass of Entry and contains the properties: hasTitle,
humanCreator, hasPublisher, and hasYear. The OWL Book
class is mapped to UML as a packageElement element with
uml:Class type and Book name. The UML Book class is a
generalization of the UML class Entry. The OWL property
classes are mapped to the ownedAttribute XMI element,
keeping their names. The values are mapped to the UML
primitive types. The Step (ii) consists of adjusting the UML
model. In this activity the user can insert or remove elements
in the UML model. Figure 6 illustrates an UML model that
contains the interface stereotyped with SemanticWebService.
This UML model defines the BNPrice SWS. In this SWS the
GetBNQuote operation receives as input a Book element of the

BibTex ontology and returns its price as a Price element of the
Concepts ontology. The Step (iii) models the SWS interface.
This step consists of defines the interface of the WS and
triggering the mechanism of automatic generation of OWL-S
file and WS project to the Eclipse platform. In this step the
transformations presented in Section 3.3 are performed. The
Step (iv) consists in the implementation of the WS business
rules. After implementing the WS business rules, the next step
consists in using the functionality of AutoWebS to build and
deploy the WS. The WS project is built using Apache Ant's
buildfile (build.xml). The result of the building process is a file
with the aar extension. To deploy this WS, AutoWebS makes a
copy of the file with the aar extension into the Web Container
that has installed the Axis2 runtime.

Figure 6. UML model to the semantic Web service BNPrice.

III. ANALYSIS
For purposes of analysis, we have conducted a controlled

experiment that evaluated AutoWebS and an application suit
comprised by the OWL-S Editor and the Axis2 Eclipse plugin,
in the activities for the creation of SWS. The choice of OWL-S
Editor and Axis2 Eclipse plugin was motivated by the fact that
together they have some of the functionalities of AutoWebS
and are used to create SWS. All the details of the experiment
(hypotheses, methods and results) are available at
www.consiste.dimap.ufrn.br/projetos/autowebs. We applied
eight replicas of the experiment and created two SWS for each
semantic WS project, each one created by a different tool. The
results were analyzed with the Wilcoxon nonparametric
statistical test [13]. Table I shows the times, in minutes,
required for developing each SWS and the number of errors or
inconsistencies in each OWL-S ontology.

TABLE I. RESULTS

 AutoWebS Application suite
time error time error

OilMonitor 1 12 0 35 1
OilMonitor 2 8 0 55 1
Book Finder 20 0 35 1

Zip Code Finder 5 0 21 1
LatLongFinder 8 0 25 1

Barnes & Nobles 5 0 20 1
BabelFish Translator 5 1 45 1
Currecy Converter 5 0 14 1

The WS ontologies created by AutoWebS do not have
errors or inconsistencies and in all OWL-S ontologies created
by the application suite, errors or inconsistencies were found.

Figure 7 illustrates the time consumed by the participants
to develop each SWS. The development time using AutoWebS

667

was shorter than the time when using the application suite.
Based on data contained in Table 1, we can conclude that for
all SWS the values for the metrics "time" and "errors" for
AutoWebS were smaller than or equal to the application suite.

Figure 7. Time to develop each semantic Web service (SWS)

IV. RELATED WORK
Some MDD approaches to create OWL-S ontology have

been proposed in the literature. (i) ASSAM [14] is a tool that
provides a graphical interface based on views. It uses a semi-
automatic process where the user defines the mappings
between concepts of an OWL and the Message elements of the
WSDL document. This tool uses a learning algorithm that
when a user defines the mappings, it presents some suggestions
of the ontology classes that can be associated with the WSDL
elements, and (ii) CODE [15] is a plugin for the Eclipse IDE.
CODE provides a converter called WSDL2OWL-S to generate
the semantic description of WSs in OWL-S. The tool has four
editors that enable to edit the OWL-S sub-ontologies. The
editors are based on forms that must be filled with data from
the WS ontology. The aforementioned tools apply different
approaches. Table 2 presents a comparison of them with
AutoWebS, considering the requirements for a high-level
abstraction tool for creating SWS (Section 2.1). “Y” means
that the tool fully meets the correspondent requirement, “N”
means that the tool does not meet the requirement, and “P”
means that the tool partially meets the requirement.

TABLE II. COMPARISON BETWEEN THE TOOLS

 Requirement
R0 R1 R2 R3 R4 R5 R6

(i) N N Y Y N P N
(ii) Y Y Y N P P Y

AutoWebS Y Y Y Y Y P Y
As shown in Table 2, ASSAM does not fulfil the R0, since

it requires an extensive knowledge about XML Schemas and
OWL. Moreover, the manual association between ontology
concepts and the WSDL elements may be difficult to be
performed, since the number of possible combinations of
mappings may be large. This tool is not integrated into a
development environment and it does not provide functionality
for creating the source code of the WS, and the WSDL
document. Thus, ASSAM is not in compliance with R1 and
R4. The tool does not support the integration of new
functionalities, therefore does not meet R6. The CODE tool has
no mechanism to import the ontological concepts, therefore it
does not meet R3 and R4. Furthermore, the OWL-S ontology
generated by the WSDL2OWL-S converter is incomplete and
requires manual processing to supplement the ServiceProfile
and ServiceModel sub-ontologies. For this reason, this tool
partially meets the R5 requirement. As CODE uses the Eclipse
platform, it is possible to integrate new modules that provide

new functionality (R6). The Java2WSDL and WSDL2OWL
generators provide some abstraction of the underlying
technologies used to develop the SWS, thereby meeting R0.

V. CONCLUSIONS
This paper presented a MDD tool to make the development

of SWS more intuitive and easy. The approach implemented by
AutoWebS allows developers to focus their efforts on creating
models instead on writing source code. Additionally, the fact
that the models created from UML profiles are valid UML
models and due to extensive use of UML as modeling
language, this approach makes AutoWebS accessible to a wider
audience. AutoWebS has some limitations that do not prevent
its use. The current version of the algorithm for creating XSLT
scripts is only able to create scripts to ontology concepts which
have properties defined as primitive types or other concepts
defined as OWL classes. For more complex cases, such as lists,
our algorithm is unable to generate the XSLT script.

ACKNOWLEDGMENTS
This work was partially supported by CNPq through the

grant 485935/2011-2 for Thais Batista. Flavia Delicato and
Paulo Pires are also partially supported by FAPERJ and CNPq
(grants 311363/2011-3, 470586/2011-7, 310661/2012-9).

REFERENCES
[1] McIlraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic web

services. IEEE Intelligent Systems. 16(2):46–53.
[2] Booth, D., et al.. (2007) Web services description language (WSDL)

version 2.0 part 0: Primer. Tech. report, World Wide Web Consortium.
[3] Martin D, Burstein M, Hobbs J, et al. OWL-S: Semanic markup for Web

Services. 2004. http://www.daml.org/services/owls/1.1/overview/.
[4] Brambilla, M., et al. (2007). Model-driven design and development of

semantic web service applications. ACM Trans. Internet Technol., 8.
[5] Missikoff, M., et al. (2002). The usable ontology: An environment for

building and assessing a domain ontology. In Proc. of the Int. Semantic
Web Conf. (ISWC), volume 2342, p 39–53. Springer-Verlag.

[6] Chafle, G., et al. (2007). An integrated development environment for
web service composition. In . IEEE Int. Conf. on Web Services (ICWS)
2007, pages 839 –847.

[7] Stahl, T. and Völter, M. (2006). Model-Driven Software Development:
Technology, Engineering, Management. Wiley, Chichester, UK.

[8] Atkinson, C., et al. (2006). On the relationship of ontologies and models.
In Proc. of the 2nd Int. Work. on Meta-Modelling, pages 47–60.

[9] Bechhofer, et al.: OWL - Web Ontology Language Reference, W3C
Recommendation. 10 February 2004.

[10] Perera, S., et al. (2006). Axis2, middleware for next generation web
services. In Proc. of the IEEE Int. Conference on Web Services, pages
833–840, Washington, DC, USA. IEEE Computer Society.

[11] Elenius, D., et al. (2005). The OWL-S editor - a development tool for
semantic web services. In Proc. of the 2nd European Semantic Web
Conf., p 78–92. Springer.

[12] Gérard, S., et al. (2007). Papyrus: A UML2 tool for domain-specific
language modeling. In Model-Based Engineering of Embedded Real-
Time Systems, p 361–368.

[13] Corder, G. and Foreman, D. (2009). Nonparametric Statistics for Non-
Statisticians: A Step-By-Step Approach. Wiley.

[14] Heß, A., et al. (2004). ASSAM: A tool for semi-automatically
annotating semantic web services. In 3rd Int. Semantic Web Conf., p
320–334. Springer.

[15] Srinivasan, N., et al. (2005). CODE: A Development Environment for
OWL-S Web services. Tech. Report CMU-RI-TR-05-48, Robotics
Institute, Carnegie Mellon University.

668

A Knowledge Modeling System for Semantic
Analysis of Games Applied to Programming

Education

Elanne Cristina Oliveira dos Santos1,2
Gleison Brito Batista1

1 Instituto Federal de Educação, Ciência e Tecnologia do
Piauí, IFPI

Teresina, Brasil
elannecristina.santos@ifpi.edu.br

brittobaptista93@gmail.com

Esteban Walter Gonzales Clua2
Instituto de Computação

2 Universidade Federal de Fluminense, UFF
Niterói, Brasil

esteban@ic.uff.br

Abstract — Teaching and learning algorithms and programming
is being an important challenge, not only in universities, but also
in schools. With the purpose of making this process more efficient
and enjoyable, we introduce Jplay providing structures and
architectures for developing simple games. In this paper we
introduce a new knowledge modeling system for semantic
analysis of games applies to programming teaching within Jplay.
The analyzer semantically interprets the programmer code and
return detailed analysis of its correct functionalities. Our process
consists of comparing the program with a model program,
previously defined, searching for similar behaviors and
structures between them. We developed a strategy for knowledge
modeling based on pairs of similar classes and implemented a
tool that enables the proposed analysis.

Keywords- programming; JPlay; knowledge; classification;
teaching; games

I. INTRODUCTION
Many studies point to the difficulty of teaching and learning

the disciplines related to algorithms and programming,
resulting in high dropout rates in computer courses [12][4]. The
main reason for this negligence is the difficulty in learning
abstract concepts of programming [13]. Trying to solve this
issue, there are several proposals including application of new
technological tools [2][10][16][3].

 In this sense, the JPlay framework was proposed and
developed for teaching programming [8][9]. Jplay is a
framework developed in order to facilitate the teaching of
programming, providing an algorithmic learning process
related with the logic of simple 2D game development. Jplay
does not interfere with the structure of basic programing
necessary for a correct learning of algorithmic logic and does
not introduce specific features of design patterns of games in
the source code. The tool allows the students an easy way to
draw and move images on a computer screen and provides
methods and helper objects that help to create 2D games using
the Java language.

In this paper, we present a novel knowledge modeling
system for semantic analysis of games applied to teaching

programming using the JPlay framework. The analyzer has a
function of interpreting semantically and architecturally a Java
program developed that uses the JPlay and return results of this
examination to the programmer. The process consists on
analyze the behaviors of a program for games using JPlay. The
behaviors of the program can be obtained by the analyzer
through the comparison with another program treated as model.
For this, the programmer must select, in his integrated
development environment (IDE) tool, the model program that
he wants to use as reference, previously available in a
repository. Thus, the analyzer is able to interpret semantically
the program that is being built by the programmer, point out
problems and suggest possible solutions. We developed a tool
that enables the proposed analysis.

II. RELEATED WORK
Different works presents the modeling and representation of

source code using Extensible Markup Language (XML) for
various purposes.

The representation of source code in text format is widely
used for encoding algorithms. However, for knowledge based
system, the representation of programs needs a more abstract
representation and converting it to meta-structures becomes an
important issue [14].

The CodeMI [14] proposes a source code representation in
XML format. The CodeMI aims to enable studies of the
evolution of commercial software, through the use of data
repository, where the representation of source code has a
central role, preserving the characteristics necessary to conduct
the studies of the evolution of software, but at the same time
hide the details of its implementation.

Another representation of code as XML format is JavaML
from Mamas and Kontogiannis [11]. In this work the authors
generated XML files, one for each class of system, storing
information on keys elements such as classes and their methods
and attributes, but does not store information about the
implementation strategy of the methods.

669

Badros et al. proposes the JavaML Badros [5] (or JavaML
1.0). This proposal also generates XML files, one for each class
of system. In comparison with the representation of Mamas and
Kontogiannis, in this work is possible to get information about
the implementation of the methods, and there is an identifier
(id) for each method and variable, with a reference to the
identifier (idref) for every relationship that use these entities.

JavaML 2.0 of Ademar Aguiar [1] is based on JavaML of
Badros and presents improvements that are mainly based on
total preservation of the source code, which greatly increased
the number of tags and the representation become more robust.

In relation to tutoring systems for programming, ProPat, is
a sub-project of IBM Eclipse project for the construction of an
Integrated Development Environment (IDE) for programming
introduction courses and is oriented for C language. The
ProPAT analyzes the student´s program, according to the
standards specified by the teacher, and returns the results in
Eclipse IDE [6].

Silva et al. [15] proposes a system for source analysis called
Vertical Code Completion (VCC). The VCC is based on two
phases: mining sequential patterns and querying these patterns.
In the second phase, a source code is analyzed in order to find
pieces corresponding to patterns generated in the first phase.
The patterns are sorted by metrics and suggested to the user.
The analysis of the code in the VCC is performed by the usage
of an abstract syntax tree (AST) [17]. The restriction analysis
by VCC is that it does not consider the conditional structures
and the structures of exception handling, understand the source
code that depends on these conditions as a simple sequential
code.

None of the above representations was specifically
developed to analyze semantically a Java source code
represented in XML and generate results of this analysis. Our
work differentiates from others by proposing a XML
representation that makes possible the semantically analysis
of a source code by applying a clustering algorithm and
classification process of similar classes. Another important
difference is that our proposal is based on a design pattern
oriented to simple 2D game, according to the original purpose
of JPlay [8][9], focusing the analysis at the behaviors between
pairs of classes previously detached and classified.

III. JPLAY

A. JPlay Architecture

In Jplay architecture, we divide the JPlay diagram into
three parts: the interaction between game and player,
characters and output the game.

The classes responsible for interaction between game and
player are Keyboard (it defines input data for the computer
keyboard) and Mouse (it defines input data for computer
mouse). The classes responsible for creating the characters of
the game are Animation (it defines an animation. It must have
a picture and their frames), Sprite (it extends the Animation
class and contains methods that can make the image move
across the screen) and Body (it extends the Animation class.
Like Sprite, the Body class also contains methods that can

move the image, and beyond these methods it adds methods to
accelerate and decelerate the image across the screen). The
classes responsible for outputs in the game are Window (it
defines a window where all the game elements will be drawn),
Time (it defines a time counter), Sound (it defines the sound
that will be played in the game) and Collision (it’s a static
class, used to check if there was a collision between two
objects. The occurrence of a collision can be verified using
this method collided in all classes, or by Collision static class).

B. JPlay Sequential Pattern

Our proposal is based on design patterns of sequence used
in JPlay framework. JPlay follows a typical game framework
pattern: objects, also called as game objects, are initially
defined. A loop is initiated (also called as a game loop) and
each iteration corresponds to a frame being produced. In this
loop all game objects are updated with their corresponding
logic (coming from an AI algorithm, physic algorithm or even
from the user interface sequence). Finally, all the elements of
the game are drawn in the screen.

A typical sequence of activities of the JPlay framework is
in Fig.1. In the sequence first a main method must be defined
in the initialization of the program; then in the body of the
main method objects will instantiated, one of these objects
must contain a game loop (infinite loop). Finding a class that
contains this loop means finding the loop execution of the
program; then in the class that contains the game loop (infinite
loop) objects are declared, at this point it is possible to check
if all objects have been declared also have been instantiated;
then objects declared as Sprites, Animations and GameImages
should be drawn in the window of the game, at this point it is
necessary to verify if all declared objects of these types were
draw; then an object declared of Window should be updated in
the game window; at this point it is necessary to verify if the
Window object is updated. For the objects updated in the
window, he should call the update method.

IV. MODELING AND ANALYSIS OF PAIRS OF SIMILAR
CLASSES BETWEEN PROGRAMS

Since Badros [5] approach allows the preservation of the
source code and our methods need a subsequent semantic
analysis, we initially convert all classes from a developed
program into a XML representation, based the proposed
JavaML method. Due the increase of tag’s representation from
JavaML 2.0, we ignored this update for our proposal. CodeMI
approach does not suit the goals of this work, because their
representation is not fully preservative in relation to the
structure of the source code, and consequently it hides a lot of
information in an attempt to ensure the authoring protection of
the program.

A. JavaML Representation

For this work we initially developed a parser based in the
JavaML Representation. However, changes at the original
JavaML representation were necessary in order to adapt the
model for the purpose of this work.

670

Figure 1 – JPlay sequential pattern

An additional maker was created with the name of the
behavior. A behavior marked has assigned also its attribute
<type>. In the case of an assignment command, the attribute
<type> receives the value of the <assignment>; when
identifying the conditional command, the attribute <type>
receives the value of the <conditional>; when identifying the
loop command, the attribute <type> receives the value of the
<loop>.

It is important to note that the inclusion of the behavior
marker does not delete or change almost none of the existing
markers in the JavaML representation. The only exception
concerns about the marker <do-while>, which was defined by
the representation of Badros differently from the rest of the
markers <while> and <for>. We chose, however, to maintain a
standard for all markers <while>, <for> and <do-while>, then
everyone gets the value <loop> in attribute <type> and after the
attribute <kind> identifies the three types of repeating loops
(<while>, <for> or <do-while>). The objective was to
minimize the changes and keep the original representation,
only adding a markup over the generated XML.

Following a example the marking <if> shows the original
markings of representation and then immediately how the
marking <behavior> was added in the code, the marking <if> is
accompanied by a sub-markup <test> that identifies the test
expression required for the conditional statement is performed
and a sub-markup <true-case> that identifies what should be
executed if the expression is true:

<if><test></test><true-case></true-case></if>
Then, we add the markup <behavior>:
<behavior id=’’ type=’conditional’><test></test>
<true-case></true-case></behavior>

B. Grouping Pairs of Classes
In order to semantically analyze a code under

development, the programmer must select in a repository
another program which will act as a model program for the

comparison. The analysis consists in compare pairs of classes.
Every class of the programmer code and from the program
base will initially be transformed into XML by the parser.

Each XML file will be read and interpreted by Java
language using Document Object Model (DOM) [7]. DOM
obeys the standard World Wide Web Consortium (W3C) and
defines standard access to XML and HTML documents. The
DOM interface defines objects and properties to all elements
of these types of documents mentioned above, giving also
methods to access them.

To group the pairs of classes we developed a matrix of
objects, where the columns are the total number of classes
from the model program and the lines are the total number of
classes in the programmer code. The rules are analyzed and
the results are stored in the structure of the matrix of objects.
In the diagram of Fig. 2 it is possible to see the GeneralRules
class, that implements the methods necessary to verify all the
rules, the MatrixSimilarFirstPair class, that is responsible for
the assignment of the similarity of pairs according to the
specified rule for the first pair and is also responsible for
verifying which pair has a higher similarity, the
MatrixSimilarSecondPair class, that assigns the similarity pair
value according to the rules specifies for the second pair and
verifies which pair has higher similarity. In the diagram of the
Fig. 2 each component of matrix is represented by an Element
class.

The attributes of the Element class is stored in order to be
used later as parameters of the program analysis. Below are
the descriptions of these attributes:

 Weight of the similarity of each pair;

 Number of declared classes (from the same package)
and number of declared classes (from imported
packages) in the analyzed class in the programmer
code and in the analyzed class in the model program;

 Number of instantiated classes (from the same
package) and number of instantiated classes (from
imported packages) in the analyzed class in the
programmer code and in the analyzed class in the
model program;

 Amount of classes (from the same package) and
amount of classes (from imported packages) that call
the draw method in the analyzed class in the
programmer code and in the analyzed class in the
model program;

 Amount of classes (from the same package) and
amount of classes (from imported packages) that call
the update method in the analyzed class in the
programmer code and in the analyzed class in the
model program;

 Results array, where each array element is a property
that represents the result of a rule considered for that
pair. The goal of this results array is to identify
properties with a value of false as critical points. Each
property has a boolean value and initially all values
are set as true, indicating that they do not represent
any critical points in the program. Each property

671

represents a rule that must be analyzed, then when a
rule is true for a pair, a property receives value equal
to true, and when a rule is false for a pair, a property
receives value equal to false.

The properties are Main Similarity, Game Loop
Similarity, Declaration Similarity, Initialization
Similarity, Draw Similarity and Update Similarity.
The use of properties is described in more detail in the
section that deals the rules of the first and second pair
of similar classes.

The pairs are compared using previously established rules
based on standard Java projects with Jplay framework. After
that, the pair of most similar classes between the programmer
code and the model program is classified through our
algorithm of similarity weight. During the process of grouping
pairs of classes, attributes in Element class are filled according
to the characteristics of the programs.

C. Classification of Pairs of Classes
After defining the pairs of classes, the comparisons

between pairs are performed. The goal on this stage consists
on classifying the pairs of classes that have higher similarity.
The analysis of similarity between pairs of classes is based on
rules previously established.

Each class in the model program is compared with all
classes of the programmer code, and, according to the rules,
weights are assigned to each compared pair.

At the end of each rule or set of rules applied, a pair of
classes with the highest weight is classified. Through the result
of comparisons between pairs, critical points of the
programmer code are posted. Based on these critical points
the analyzer can show the results of the analysis, in order to
identify the problems found in the program and then proceed
with suggestions of possible solutions.

D. Specific Rule of Classification for the first Pair of Similar
Classes
In order to classify the first pair of similar classes we

establish only one rule: the class must have the method main.
Initially, the matrix is initialized with its similarity value,
represented by the attribute weight, equal to 0 (zero) in all its
elements.

The class which contains the method main will be
increased by 1 (one) in its similarity value. When the analyzer
finds two classes containing the main method, the similarity
weight value of this pair will be equal to 2 and the Main
Similarity property will continue as true. The rest will have
similarity weight value equal to 1 or 0 and the Main Similarity
property value equal to false, indicating a possible of a critical
point this pair. The pair with the higher weight should be
selected as the first pair of similar classes.

E. Specific Rules of Classification for the second Pair of
Similar Classes
In order to classify the second pair of similar classes we

established five rules:

Figure 2 - Class diagram of the Semantic Analyzer

 Rule 1: If, for each class in the pair, there is a game
loop, then the weight value is increased by 10 and the
value of the results array at the Game Loop Similarity
property will continue as true, otherwise the value of
the Game Loop Similarity property is set to false.We
emphasize that the rule 1, which deals with the
existence of an game loop in the class, is the most
important at this stage, so it has the highest weight.
The game loop can be characterized by a search
through the DOM interface with a tag called
<behavior> of the type <while> which contain a
boolean expression, a value equal to true or even a
game ending condition.

 Rule 2: if the number of declared classes in the
analyzed class of the programmer code is equal to the
number of declared classes in the analyzed class of the
model program, then the weight value is increased by
1 and the value of the results array at Declaration
Similarity property continues as true, otherwise the
value of the Declaration Similarity property is set to
false, indicating a possibility of a critical point for this
pair.

 Rule 3: if the number of classes declared in the
analyzed class by programmer code is the same
amount of classes that were instantiated of the
program, then the weight value is increased by 1 and
the value of the results array at Instantiation Similarity
property continues as true, otherwise the value of the
Instantiation Similarity will be set as false, indicating
a possible critical point in these classes pair.

 Rule 4: if the number of objects by programmer code
that call the draw method is equal to the number of
objects that inherit from Sprite class, Gameimage class
or Animation class in this program, then the weight
value is increased by 1 and the value of the result
array at Draw Similarity property is equal to true,
otherwise it is false.

 Rule 5: if the number of objects by programmer code
that calls the update method is equal to the number of

672

objects that inherit from Window class in this
program, then the weight value is increased by 1 (one)
and the value of the result array at Update Similarity
property is equal to true, otherwise it is false.

F. General Classification Rule from the third Pair of Similar
Classes on
At this stage we dispose the previously classes selected at

the first and second pair of similar classes. For the third pair of
similar classes, the rules are general for all other pairs and are
based on behaviors of the game.

Initially it is checked if the pair of classes inherits from the
same super class. If this happens, its weight will be
incremented. For each class, lists are created with information
about the behavior of the variables. The lists are as follows:

a) List of variables, formed by elements that contain
variable type attribute and amount of variables of this type
attribute;

b) List of variables behaviors: For each variable there is a
list of behaviors formed by the behavior identifier, behavior
type, expression and action.

Initially, the lists of variables of classes are compared and
the pair of classes that contain the most similar lists will be
chosen for the second comparison. After that, the lists of
variable´s behavior of the classes pair are compared. This
comparison is based on the similarity of the 3 behavior
elements:

a) Type: the value can be equal to conditional, loop or
assignment. If they are similar, the weight is incremented by 1.

b) Expression: the description of the conditional
expression from which depends on the behavior. If the
expressions are similar, the weight is incremented by 1.

c) Action: the description of the action will be executed
if the expression is true. If the actions are similar, the weight is
incremented by 1.
During this process, the results of these comparisons are stored
in attributes of the objects matrix in order to be used later in
the processing of the analysis.

V. RESULTS
In this paper we presented a semantic analyzer for program

developed using the Jplay and a knowledge modeling of
simple game projects based on JPlay framework. To
semantically analyze a program, the developer must select in a
repository another program which will be considered as a
model program, as shown Fig. 3. In the example in Fig. 3, we
compare the programmer code called Jogo with the model
program called Pong.

The Jogo program contains the classes Main, Bola, Jogo
and Barra; the Pong program contains the classes Pong, Ball,
Bar, GamePlay and Pong.

 Figure 3. Choosing the model program at semantic analyzer plugin

The pairs of classes are compared and results are stored in
the objects matrix. The goal of the analyzer is to interpret
semantically a Java program that uses Jplay and return results
to the programmer. The repository has available only XML
files that represent the model program.

Initially, in the matrix, for each pair we assume that:

 The weight of similarity is equal to 0;

 The results array is entirely filled with true value.

After that, the analyzer will identify the first pair of similar
classes and will look for classes that contain the main method
in the two programs. This classification generates values for
results matrix, as Tab. I. The matrix shows the pair
[Main.java, Pong.java] with the highest similarity value equals
to 2 and values of remaining pairs equal to 0 or 1.

After the analyzer to identify the first pair of similar
classes, it will look for the second pair of classes with the
highest weight of similarity according to the rules previously
presented. This classification generates values for a new
matrix as Tab. II. The matrix shows the pair [Jogo.java,
Gameplay.java] with the highest similarity value equal to 16.

Through the definition of similar classes for the first and
second pairs, it is possible to return some semantic analyzer
results. Fig. 4 shows an example, where the analyzer tells to
the programmer that probably the object bola, that is an object
of the Sprite class (from the JPlay package), was not drawn on
the game window, being this a semantic requirement based on
the model program.

TABLE I. TABLE WEIGHT MATRIX FOR FIRST PAIR OF SIMILAR
CLASSES

Programmer
code classes

Model program classes
Ball.java Bar.java Gameplay.java Pong.java

Barra.java 0 0 0 1

Bola.java 0 0 0 1

Jogo.java 0 0 0 1

Main.java 1 1 1 2

673

TABLE II. TABLE WEIGHT MATRIX FOR SECOND PAIR OF
SIMILAR CLASSES

Programmer
code classes

Model program classes
Ball.java Bar.java Gameplay.java Pong.java

Barra.java 5 4 8 4

Bola.java 5 3 7 3

Jogo.java 13 11 16 12

Main.java 4 3 8 5

 VI. CONCLUSION

This paper presents a knowledge modeling system and a
novel semantic analyzer for programs developed using Jplay.
Although our implementations and tests are related to this
framework, our proposal can easily be adapted to other
program patterns.

The goals of the analyzer are to interpret semantically a
Java program that uses Jplay and return results of this analysis
to the programmer.

Our proposal brings significant contributions to researchers
working in the field of programming and software
engineering, specifically in relation to the knowledge
modeling, having as a main contribution, an architecture for
grouping and classification of similar classes to perform
semantic analysis of programs based on XML representation.
The proposal also contributes in the sense that we introduce a
tool able to interpret semantically code built by programmers,
returning results, pointing out problems and suggesting
solutions.

As future work, we intend to use data mining and
classification methods for improving the efficiency of the
algorithm.

Figure 4 - The analyzer returns to the programmer telling that the object
“bola” was not drawn on the game window

REFERENCES

[1] Aguiar A., David G., Badros G.L., “JavaML 2.0: Enriching the Markup
Language for Java Source Code”, in XML: Aplicações e Tecnologias
Associadas (XATA’2004), Porto, Portugual, February 2004.

[2] Allen, E., Cartwright, R. and Stoler, B. Drjava: a lightweight pedagogic
environment for java. SIGCSE Bull., 34(1):137-141.

[3] Allowatt, A. and Edwards, S. Ide support for test-driven development
and automated grading in both java and c++. In eclipse “05: Proceedings
of the 2005 OOPSLA workshop on Eclipse technology eXchange, pages
100-104, New York, NY, USA. ACM Press. 2005.

[4] Barbosa, Leonidas da Silva; Fernandes, T.C.B ; CAMPOS, A. M. C.
Takkou: Uma Ferramenta Proposta ao Ensino de Algoritmos. In: XXXI
CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO -
WEI XIX WORKSHOP SOBRE EDUCAÇÃO EM COMPUTAÇÃO,
2011, Natal. WEI XIX WORKSHOP SOBRE EDUCAÇÃO EM
COMPUTAÇÃO, 2011.

[5] Badros G.J., “JavaML: A Markup Language for Java Source Code”, In
Proceedings of the 9th Int. Conf. On the World Wide Web (WWW9),
Amsterdam, Netherlands, May 2000.

[6] Delgado, K. V. “Diagnóstico baseado em modelos num sistema
inteligente para programação com padrões pedagógicos”. Master's
dissertation, Institute of Mathematics and Statistics. 2005.

[7] DOM, available in http://www.w3.org/DOM/. Accessed in November
2012.

[8] Feijó, B.; Clua, E.; Da Silva, F.S.C. “Introdução à Ciência da
Computação com Jogos: Aprendendo a Programar com Entretenimento”,
Campos Elsevier.1º ed. 2010.

[9] Jplay, available in http://www.ic.uff.br/jplay/. Accessed in April 2012.
[10] Kolling, M., Quig, B., Pattern, A., and Rosenberg, J. The BlueJ system

and its pedagogy. Journal of Computer Science Education, Special issue
on Learning and Teaching Object Technology, 13(4):249-268.

[11] Mamas, E. and Kontogiannis, C., “Towards Portable Source Code
Representatitions Using XML”, in Proc, of the 7th Working Conf. on
Reverse Engineering (WCRE’00), Brisbane, Australia, pp. 172-18,
November 2000.

[12] Rapkiewicz, C. E. et al. (2006). "Estratégicas pedagógicas no ensino de
algoritmos e programação associadas ao uso de jogos educacionais",
http://ww2.deinfo.ufrpe.br:8080/licomp/Members/jeanemelo/plonelocalf
olderng.2006-04-10.7475913377/PEP/Aula8/EnsinoJogos.pdf.

[13] Santos, N.S.R.S.; C.E. Rapkiewicz. Ensinando princípios básicos de
programação utilizando jogos educativos em um programa de inclusão
digital. In: SBGAMES - VI Simpósio Brasileiro de Jogos para
Computador e Entretenimento Digital, 2007, São Leopoldo - RS.

[14] Santos, O.J.P. and Barros, O. M., “CodeMI – Source Code as XMI.
Uma Representação de Código-fonte para Coleta de Métricas”, in SBSI.
2009.

[15] Silva, L.L.N.D.; Plastino, T.N.D.O.A.;Gresta Paulino Murta, L.,
"Vertical Code Completion: Going Beyond the Current Ctrl+Space,"
Software Components Architectures and Reuse (SBCARS), 2012 Sixth
Brazilian Symposium on , vol., no., pp.81,90, 23-28 Sept. 2012.

[16] Traetteberg, H. and Aalberg, T. Jexercise: a specification-based and test-
driven exercise support plugin for eclipse. In eclipse “06: Proeedings of
the 2006 OOPSLA workshop on eclipse technology eXchange, pages
70-74, New York, NY, USA. ACM Press. 2006.

[17] W. Holz, R. Premraj, T.Zimmermann e A. Zeller. Predicting software
metrics at design time. 9th International conference on Product-Focused
Software Process Improvement. Rome, pp. 34 – 44, June 2008.

674

Representing Chains of Custody Along a Forensic Process: A Case Study on Kruse
Model

Tamer Fares Gayed, Hakim Lounis
Dépt. d’Informatique

Université du Québec à Montréal
Case postale 8888, succursale Centre-ville, Montréal QC

H3C 3P8, Montréal, Canada
gayed.tamer@courrier.uqam.ca lounis.hakim@uqam.ca

Moncef Bari
Dépt. de Didactique

Université du Québec à Montréal
Case postale 8888, succursale Centre-ville, Montréal QC

H3C 3P8, Montréal, Canada
bari.moncef@uqam.ca

Abstract – Chains of Custody (CoCs) are tangible documents
accompanying the evidences along the forensic process. They
play vital role in the forensics investigation by
demonstrating the road map of Who exactly, When, Where,
Why, What, and How came into contact with the evidences
in order to prosecute them in a court of law. In the cyber
forensic, the evidences have digital nature; the fact that can
make them easily altered and loses their values. With the
advent of digital age, and the poor awareness of juries to
understand digital evidences, CoC documents need to
undergo a radical transformation from paper to electronic
data (e-CoC) readable, discoverable, understandable, and
consumable by people and computers. The semantic web is a
fertile land to represent and manage the tangible CoCs
because it uses web principles known as Linked Data
Principles (LDP) which provides useful information in RDF
upon URI resolution. These principles are used to publish
data publicly on the web and provide a standard framework
that allows such data to be shared, and consumed in a
machine readable format. This paper provides a case study
applied on a cyber forensic model, such as Kruse model,
explaining how these principles are applied to represent
chains of custody for this model, and how the e-CoCs are
customized to be used on a small scale using public key
infrastructure approach (PKI), where the role players and
juries are the only people who are authorized to respectively
publish and consume this e-CoC.

Keywords - Chains of Custody, Knowledge Representation;
Provenance Vocabularies, Semantic Web, Linked Data
Principles, Public Key Infrastructure, Kruse Model

I. INTRODUCTION

One of the most essential parts of the digital
investigation process is the chain of custody (CoC). CoC is
a chronological document accompanying digital evidences
in order to avoid later tampering allegations. CoC records
everything that happens to the evidence: who handled it,
where, why, what, when, and how it was handled (known
as 5Ws and 1H). There are three main reasons that
motivate the transformation of the CoCs from tangible to
electronic form:

 Motivation 1: cyber forensics is a daily growing field
that requires the accommodation on the continuous
changes of digital technologies as well as its tangible
documents (i.e. concurrency with the knowledge

management). Thus, tangible CoCs and all their
contents (victim information and forensics information)
must also undergo a radical transformation from paper
to machine readable format in order to accommodate
this continuous evolution.

 Motivation 2: judges’ awareness and understanding
the digital evidences are not enough to evaluate and
take the proper decision about the digital evidence.
Juries need to know more concerning the evidences in
hand. One of the proposed solutions is to organize a
syllabus and training program to educate the juries the
field of Information and Communication Technology
(ICT) [4]. The authors argue against this solution
direction, because it will not be an easy task to teach
juries with their juridical positions, the different
concepts of ICT. The authors propose a solution
offering the ability to the juries to navigate, discover
(dereference) and execute different queries on the
represented information.

 Motivation 3: CoCs play vital role in the investigation
process that’s why it must be maintained and managed
throughout the investigation process in order to preserve
its integrity, especially when the evidence has digital
nature. However, if the CoC is not well maintained and
the suspect was guilty, a lawyer/defense can argue that
the CoC was not properly established and casting doubt
on the damning of the acquired evidence. A security
mechanism should be integrated with the represented
data to keep its integrity and limit and control its access
to only the authorized people.
Today, the semantic web is the web of data which is

not just concentrated on the interrelation between web
documents but also between the raw data within these
documents. This data interrelation is based on four aspects
known as LDP. In 2006, Berners Lee outlined set of
rules/principles that are well structured for publishing data
on the web. These principles explain that the data
(content/resources) should be related one another just as
documents are already [9][10]:

 Use URI as names for things and they are used as
globally unique identification mechanism [7].

 Use Hyper Text Transfer Protocol (HTTP) as
universal access mechanism so that people can look
up those names [8].

675

 When someone looks up a URI, provide useful
information using the standards (Resource
Description Framework, SPARQL).

 Include RDF statements that link to other URIs so
that they can discover related things (i.e. people
locations, or abstract concepts).

Publishing data using this structured way can facilitate
its consumption and help the consumer of this data to take
the proper decision.

This paper resumes the works provided in [1][3]. The
works in [1] launched the idea of exploiting LDP to
represent the tangible CoC. The work in [3] provides a
framework and lists 8 advantages for representing the CoC
using LDP. Both works discussed how to apply this
framework to one only forensic phase. However, this
framework can be applied to a complete forensic process
such as the Kruse model. Security approach such as Public
Key Infrastructure (PKI) is also integrated to this
framework to ensure the identity and the authentication of
each role player participated in the forensics process.
Current work explains in a simplified way how this
framework can be used to produce e-CoCs for the phases
of Kruse model using manually generated RDF code.
However, the PKI approach provided in this paper is
electronically presented and will be implemented in later
publications. This work opens the door for cyber forensics
experts to represent their forensics information in a
structured way in order to be later consumed in an easy
and understandable way by the juries in a court of law.
Using the PKI approach to the Linked Data opens the door
to a new era of research called the Linked Closed Data
(LCD) instead of using the LDP only for the LOD.
The organization of this paper is as follows: next section
discusses the state of the art of the semantic web, and the
web of data. Section 3 explains the processes performed
in Kruse model, and specifies different terms describing
such processes in order to be later represented using LDP.
Section 4 provides the solution framework and how the e-
CoCs are represented by the role players, consumed by
the juries in the court of law, and how the represented
data is controlled and accessed by only those actors.
Finally, the last section concludes and summarizes this
work.
The related works in this paper are not presented in a
separate section. However, they are mentioned in detail in
[1], and through different references along the paper,
especially in the explanation for each layer.

II. STATE OF THE ART: SEMANTIC WEB AND THE

WEB OF DATA

Semantic web is an extension of the current web (i.e.
from document to data) [11][12], designed to represent
information in a machine readable format by introducing
RDF model to describe the meaning of data and allows
them to be shared on the web in a flexible way.

The classical way for publishing documents on the web
is just naming these documents using URI and hypertext

links. With the same analogy, entities and contents (data)
within documents can be linked between each others
using typed linked and with the same principles used by
the web (i.e. web aspects). This is called the web of data.
The Linking Open Data (LOD) project is the most visible
project using this technology stack (URLs, HTTP, and
RDF) and converts existing open license data on the web
into RDF according to the LDP [9][10].

The LOD project created a shift in the community of
research and development of the semantic web. Instead
the concern was on the ontologies for their own sake and
semantic, it becomes on the web aspects Ontologies are
used then to foster and serve the semantic interoperability
between parts that want to exchange such data. These are
known as lightweight ontologies [13][20] that use the full
advantages of semantic web technologies, minimum
Ontology Web Language (OWL) [2] constructs, and reuse
existing RDF vocabularies wherever possible.

RDF consists of three slots called triples: resource,
property, and object. Also, resources are entities retrieved
from the web (e.g., persons, places, web documents,
pictures, abstract concepts, etc,). RDF resources are
represented by uniform resource identifiers (URIs), of
which URLs are a subset. Resources have properties
(attributes) that admit a certain range of values or that are
attached to another resource. The object can be a literal
value or a resource.

While RDF provides the model and syntax for
describing resources, it does not define the meaning of
those resources and does not impose any interpretation on
the kinds of resources involved in a statement beyond the
roles of subject, predicate and object. That’s where other
technologies such as RDF Schema (RDFS) come in. The
latter is a way of imposing a simple ontology on the RDF
framework by introducing a system of simple types.
RDFS enriches the basic RDF model, by providing a
vocabulary for RDF. It develops classes for both
resources and properties. However, RDFS is limited to a
subclass hierarchy and a property hierarchy with domain
and range definitions of these properties [6].

III. KRUSE MODEL

Investigation models in the cyber forensics are
numerous. Different cyber forensics models are proposed
for the digital investigation process [14][15][16][17][18].
This paper uses the Kruse model [22] to illustrate how the
LDP can be used to represent the e-CoCs, because it
encompasses the three essential steps required by any
cyber forensics investigation. The three phases of the
Kruse model are: acquisition of the evidence,
authentication of the recovered evidence, and analysis of
the evidence.
Most works provided in the forensics models globalize the
5 Ws and 1H questions once over the whole forensics
process. However, these questions must be asked
separately over each phase of the forensics process, since
each question for a given phase is different from the other.

676

Furthermore, each phase in a forensics model is
accomplished by a role player responsible to prepare the
CoC that answers the 5Ws and 1H questions for the
forensics phase in hand. Figure-1 shows the role player
participating in each phase of the Kruse model.

Figure 1. The Use Case diagram for Kruse Model

Before representing a CoC for a forensics phase, the
terms that describe each phase should be specified in order
to be defined later using the LDP. These specifications
will be well achieved by the experts/analyzers of the cyber
forensics domain (i.e. understanding of different processes
and algorithms throughout the investigation tasks, and the
resources such as forensics tools, role player).

TABLE I. THE COCS OF THE KRUSE MODEL

Acquisition: it is the operation of acquiring the evidence
from suspect storage devices (e.g. hard disk, flash
memory, digital camera). It starts by saving the state of
the digital system under question so that it can be later
analyzed. First responder is the role player of this activity.
He is responsible to preserve the exact state that it was
found [14]. Actually, the forensics analysis is not done
directly on the suspect’s device but on a copy instead.
Thus, after preserving the scene’ state, the role player
performs two tasks: recovering and copying. Before
copying the digital data from the suspected storage device
to a trusted device, the deleted contents should be restored
first. Later, copying the data from the suspect’s device to
another device (trusted) is performed to prevent
tampering and alteration of the suspect’s data on the
digital device.
Authentication: it is the process of ensuring that the
acquired evidence has not been altered and kept its
integrity since the time it was extracted, to the time it was
transmitted, and stored by an authorized source [19]. Any

change to the evidence will render the evidence
inadmissible in the court. Investigators authenticate the
digital media by generating a checksum (Hash) of it
contents (i.e. using the MD5, SHA, and CRC algorithms).
Checksum is like an electronic fingerprint in that it is
almost impossible for two digital media with different
data to have the same checksums. The main aim behind
this task is showing that the checksums of the seized
media (suspected) and the trusted (image) are identical.
Analysis: this is the last and most time consuming step in
this model. In this phase, the investigator tries to uncover
the wrongdoing of the crime by examining the acquired
data such as files and directories in order to identify pieces
of evidence and determine their significance and probative
value, and drawing conclusion based on the evidence
found. In [5] the author defined the 3 major types of
evidence that should be considered in the analysis phase:

 Inculpatory evidence: evidence that supports a
given theory

 Exculpatory evidence: evidence that contradicts a
given theory

 Evidence of tampering: evidence that is used to
tamper the system to avoid the correct identification

Analysis of evidences must be accomplished without
tainting the integration of the data.

IV. SOLUTION FRAMEWORK

The solution framework is imported from the work in
[3]. Each forensics phase has its own CoC. In each phase,
the player role is responsible to prepare and create the
CoC of the phase in which he worked in. Each player role
constructs his CoC using a web form that allows the
player to import different resources (i.e. from the victim
and forensics part) or create new triples using well
predefined/custom vocabularies (see figure-2).

Figure 2. Cyber Forensic-CoC Framework [3]

The results will be a set of interrelated triples
describing all phases in the forensics process. These
triples are consumed by the juries in the court of law
using different applications consumption patterns on the
semantic web. Along this scenario, provenance dimension
(metadata) is also integrated with the forensics data to
answer all questions related to the origins of this data. The
published data and its consumption will be published and
consumed by the authorized people who are allowed to
work on the current cybercrime case. PKI is used to
ensure from the identities and authorization of each role
player. Next sub sections describe each phase in details:

677

Figure-3 : Definition of first responder and responded term (Class and Property) [35]

A. Semantic web vocabularies and domain light weight
ontologies

This framework uses two types of terms. The build-in
terms that are predefined by the semantic web (e.g Friend-
of-a-friend-FOAF, Dublin Core-DC, RDFS, OWL) and
property vocabularies constructed to describe certain
domain when the existing terms are not sufficient. The
terms specified in table-1 are created using the
lightweight ontologies [13][20] (e.g. RDF, RDFS, OWL,
FOAF). Figure-3 shows an example of how a CoC’ term
was defined using lightweight ontologies. The “first-
responder” term is defined as a property term (rdf: type
and owl#objectProperty) and its range (rdfs:range) is the
First-responder class (rdf: type and rdf-schema#class)
which is a subclass (rdf-schema#subClassOf) of the
Person class (foaf:person). This term is also the inverse
(owl:inverseof) of the “responded” verb which has the
domain (rdfs:domain) of First-responder class and range
(rdfs:range) of the Acquisition class.

B. Victim and Forensics Parts

Once the vocabularies needed to describe all CoCs terms
are created, the forensics part can use them to describe
and represent their information. The paper assumes that
the victim already has a published data describing their
profiles and resources. The role player integrates the
victim data with the forensics information by the support
of different vocabularies (built-in and property) to
construct and represent the CoC of each phase (figure-4).
The victim and forensics parts are able to publish their
information when they own a unique domain/namespace
minted by unique URL. This URL is used to describe
different resources using extended hash(#) URIs e.g.
http://cyberforensics-coc.com/vocab/authentication#MD5
and to make such resources dereferenceable (i.e. HTTP
clients can look up the URIs using the HTTP protocol and
retrieve a description about the resources that are
identified by these URIs). For example, the MD5 can be
described by the “Hash” property term specified in table-1
(authentication phase). Also, the Hash term can be
defined using lightweight ontology.
Furthermore, the integration of the forensics data resulted
from the investigation process (i.e. analysis phase) can be
realized using the Advanced Forensic Format (AFF4). It
is an open format for the storage and processing of digital

evidences [21]. The great advantage of this format is to
represent different forensics metadata in the form of RDF
triples (subject, predicate, and value), where the subject is
the Unified Resource Name (URN) of the object the
statement is made about, and the predicate (e.g. datelogin,
datelogout, evidenceid, affiliation, etc,) can be any
arbitrary attribute which can be used to store any object in
the AFF4 universe.
Figure-4 provides the e-CoC of the authentication phase:
What: evidence (RDF), Why: Hash (custom), Where:
location (AFF4), When: date (DC), and How: MD5
(custom) are all integrated together in a unified
framework answering the six questions of this phase. The
big difference between the terms defined in the AFF4
format and the customs terms is that the latter are URI
resources that can be dereferenced while the former are
set of literals that are terminals. The higher the number of
dereferenceable terms, the more the data provided to
juries are descriptive.

C. Cyber Forensic-CoC Web Application Form

This section provides the design principles that should
exist on a web application to generate complete CoC RDF
triples and connect them in order to be later consumed
and crawled by juries. The web application is designed to:
 Import resources from the forensics parts (e.g. role

players profiles, results of forensics investigation)
 Import resources from the victim part (departments

namse, employees names, machines IDs, etc,)
 Create and describe resources by the support of :
o Existing terms imported from well established

vocabularies.
o New terms imported from custom vocabulary

create to describe the CoC for each forensics phase.
o Adding provenance metadata to the forensics data

(i.e. provenance vocabularies are used to improve
the origin of the data imported)

Two languages can be used to generate the RDF models
from the data entered in the web form application: script
language or mapping language. In both cases, the data is
posted first in a relational database and queried or mapped
later. So, for instance, the PHP script language can
generate linked data in RDF/XML format by the help of
the ARC library for working with RDF in PHP [23].

678

Figure-4 : e-CoC for Authentication phase (NGAuth) [35]

On the other hand, the D2RQ mapping language [24][25]
is used to map database content into RDF vocabularies
and OWL ontologies and it allows the RDF data to be
browsed and searched [9].

D. Pattern Consumption Applications

As mentioned in the last section, the first way to publish
linked data on the web is to make URIs that identifies
data items dereferenceable into RDF descriptions. Three
main patterns can be used by juries to consume this
information about the CoC published by role players:
browsing, searching, and querying. Browsing is like the
traditional web browsers that allow users to navigate
between HTML pages. Same idea applied for linked data,
but the browsing is performed through the navigation over
different resources by following RDF links and
downloads them from a separate URL (e.g. RDF browsers
such as Disco, Tabulator, or OpenLink Browser). A
custom semantic specialized for the juries can be easily
created [26].
RDF Crawlers are developed to crawl linked data from
the web by following RDF links. Crawling linked data is
a search using a keyword related to the item in which
juries are interested (e.g. SWSE and Swoogle). Juries can
also perform extra search filtering using query agents.
This type of searching is performed when SPARQL
endpoints are installed, allowing expressive queries to be
asked against the dataset. Furthermore, a void vocabulary
(vocabulary of interlinked datasets) [27] contains a set of
instructions that enables the discovery and usage of linked
datasets through dereferenceable HTTP URIs (navigation)
or SPARQL endpoints (searching), using SPARQL
protocol (void:sparqlendpoint) or URI protocol.

E. Provenance Metadata

CoC data source should include provenance metadata
together with the forensics data. Such metadata can be
used to give the juries data clarity about the provenance,
completeness, and timeliness of the forensics information
and to strength the provenance dimension for the
published data.
Provenance information can be integrated within the
forensics data using three different methods. The first
method is using provenance vocabularies of the semantic

web. The second one is to use open provenance model
[28], and the last method is by exploiting Named Graph
(NG) for RDF triples, to add provenance metadata about
each group of triples [32].
The most widely method is to combine the provenance
metadata with named graph. A widely deployed
provenance vocabulary is the Dublin Core [31]. This
vocabulary contains different predicates that can provide
extra information related to the forensics data like the
dc:creator, dc:publisher, and dc:date.
The idea of the named graph is to take a set of RDF
triples (i.e. Graph) and name this graph with a URI
reference. Figure-5 provides an abstract diagram
depicting the grouping of triples and naming them to a
graph with the integration of provenance metadata (e.g.
DC). The NGAuth in figure-5 is the e-CoC of the
authentication phase provided in figure-4. Each phase
contains inner and outer links that relate all CoCs to each
others.

Figure-5: Named graph for Kruse Model

It is useful for juries to navigate using applications and
access provenance metadata related to certain set of
triples and get more description about them (e.g.
LDspider [34] allows crawled data to be stored in an RDF
store using the named graphs data model). As the
SPARQL is widely used for querying RDF data, juries
can also use the SPARQL query single or sets of named
graphs and access the provenance information related to
different graph.

F. PKI Approach

Provenance metadata are not enough to ensure that the
published data belong to the right. PKI approach allows
juries to ensure from the identity of role players

679

participated in the forensics investigation. Each player in
the forensics process should have his own certificate
which contains information about his identity and his
digital signature. A digital certificate alone can never be
proof of anyone's identity. A third trusted party is needed
to confirm and sign the validity and authority of each
player certificate. This party is then called certification
authority (CA).

Figure-6 Application of PKI in CoC Representation

Any certificate contains pieces of information about the
identity of the certificate owner (role player) such as
owner’s distinguished name, owner’s public key, and
information about the CA (issuer of certification) such as
CA’s signature of that certificate, and general information
about the expiry date and the issue date of the certificate.
Figure 6 shows in a sequence of steps, how the juries
verify the identity, and how the PKI certifications are
applied in this context:
1. Juries send a list of players who are supposed to work

on the current cyber crime case.
2. The role player generates a public-private key pair

({KU-P, KR-P}), where P is all information identifying
the player, R is private, and U is public. Players store
the private key in a secure storage to keep its
integrity and confidentiality, and then send the public
key KU-P to the CA.

3. The player’s public key and its identifying
information P are signed by the authority using its
({KR-CA}) private key. The resulting data structure is
back to the role player, R-CA {P, KU-P} is called the
public key certificate of the role player, and the
authority is called a public key certification authority.

4. Juries obtain the authority’s public key {KU-CA}
5. Each player creating a CoC must authenticate himself

to the juries by signing his RDF graph NG using his
private key R-P{NG} (i.e. all triples describing a
phase are assembled in one graph called NG Auth,
NGAcq, and NGAnaly). Later, before the court session,
each player sends the certification R-CA {P, KU-P} to
juries accompanied with the signed graph R-
P{NG}[33].

The main idea behind this scenario is based on the public
key cryptography, where the senders (role player and CA)
make signature using their private key and the jury
verifies these signature using their public key. Applying
PKI to the LDP emerge a new era of research for the
Linked Closed Data, where access restrictions to the

URLs are applied. A new work will be published to solve
the compromise between the URLs access restriction (i.e.,
especially the external links) and their consumption using
the different patterns interface.

I. CONCLUSION

This paper discussed the idea of representing the tangible
CoC using the LDP through the Kruse model. This paper
provides design options to construct CF-CoC system. It
answered the three motivations provided in section I:
1. The CF-CoC framework is based on the RDF model

which enables the encoding and reuse of structured
metadata, so it can be exchanged between role
players, juries, and machine without the loss of
meaning. Also, the vocabularies (predefined,
property) accompanying this model enrich the
represented resources with semantic interpretation
that are useful to take proper decision about the case
in hand (motivation 1).

2. The web aspects used by the LDP allow the creation
of dereferenceable resources which allow the juries to
navigate between resources, retrieve additional
information about the represented data, and execute
different queries using SPARQL language
(motivation 2).

3. The PKI mechanism is used to secure the RDF model
by signing the RDF graph associated to each phase,
and limit the access only to the authorized people
(motivation 3).

This paper opens the door to construct a system allowing
role players to transform the tangible CoCs to e-CoCs,
and helping juries to easily consume and understand the
different results of investigation provided to them even
their technical knowledge are not sufficient about the field
of ICT [4]. The validation of a system based on the RDF
is to check the syntax of RDF generated from this system.
This type of validation will be held after constructing all
the modules of the CF-CoC framework. However, the
paper uses a manually generated RDF graph to show that
the LDP are very suitable for representing the CoCs of the
forensic process.

REFERENCES
[1] T. F. Gayed, H. Lounis, and M. Bari, “Computer Forensics:

Toward the Construction of Electronic Chain of Custody on the
Semantic Web,” . SEKE 2012 pp: 406-411

[2] F. v. Harmelen. OWL Web Ontology Language Overview - W3C
Recommendation. http://www.w3.org/TR/2004/REC-owl-
features-20040210/, 2004.

[3] T. F. Gayed, H. Lounis, and M. Bari, “Cyber Forensics:
Representing and Managing the Tangible Chain of Custody using
the linked data principles,” The Fifth International Conference on
Advanced Cognitive Technologies and Applications 2013,
Valencia, Spain

[4] G. C. Kessler, “Judges’ Awareness, Understanding and
Application of Digital Evidence,” Phd Thesis in computer
technology in Education, Graduate school of computer and
information sciences, Nova Southeastern University, 2010

680

[5] B. Carrier and B D, “Carrier, Defining Digital Forensic
Examination and Analysis Tool Using Abstraction Layers,”.
IJDE 1(4) (2003)

[6] Linked data : Evolving the web into a global data space,
http://linkeddatabook.com/editiopns/1.0/

[7] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 2396 –
Uniform Resource identifieres (URI): Generic Syntac.
http://www.isi.edu/in-notes/rfc2396”, August 1998

[8] Roy fielding. Hypertext transfer protocol – http/1.1 request for
comments

[9] M. Campbell and S. MacNeill, “The semantic web, Linked and
Open Data, A Briefing paper,” June 2010, JISC CETIS

[10] L. Berners-Lee, T: Design issues: Linked data. Retrieved Mar.
19, 2010, from
http://www.w3.org/DesignIssues/LinkedData.html

[11] T. Berners-Lee, J. Hendler, and O. Lassilia, “The semantic web.
Scientific American,” 284(5):34–44, Mai 2001.
http://dx.doi.org/10.1038/scientificamerican0501-34DOI:
10.1038/scientificamerican0501-34

[12] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story
so far. Int. J. Semantic Web,” Inf. Syst., 5(3):1–22, 2009.
http://dx.doi.org/10.4018/jswis.2009081901DOI:
10.4018/jswis.2009081901

[13] F. Giunchiglia and I. Zaihrayeu, “University of Trento, Italy.
Technical Report,” October 2007

[14] Technical Working Group for Electronic Crime Scene
Investigation, Electronic Crime Scene Investigation : A Guide for
first responders, United States Department of Justine, 2001

[15] E. Casey, “Digital evidence and computer Crime,” Elsevier
Academic Press, 2004

[16] S. O. Ciardhuain, “ An extended model of cybercrime
investigations,” International Journal of digital Evidence, Vol. 3,
2004

[17] Y. Yusoff, R. Ismail and Z. Hassan, “common phases of
computer forensics investigation models”. International Journal
of computer science and information technology (IJCSIT), Vol 3,
No 3, June 2011.

[18] M. Köhn, J. Eloff and M. Olivier, "UML Modeling of Digital
Forensic Process Models (DFPMs),” Proceedings of the ISSA
2008 Innovative Minds Conference, Johannesburg, South Africa,
July 2008 (Published electronically)

[19] S. Vanstone, P. Van Oorschot,, & A. Menezes, Handbook of
Applied Cryptography“, CRC Press, 1997

[20] B. Glimm, A. Hogan, M. Krötzsch, and A. Polleres, “OWL: Yet
to arrive on the Web of Data?,” April 2012, Lyon, France
abs/1202.0984 (2012)

[21] M. cohen, S. Garinkel, and B. Schatz “Extending the advanced
forensic format to accommodate multiple data sources,” logical
evidence, arbitrary information and forensic workflow. Digital
Investigation”, 2009. S57-S.

[22] W. Kruse and J. Heiser, “Computer Forensics: Incident Response
Essentials. Addison Wesley,” 2002

[23] http://arc.semsol.org/

[24] http://sites.wiwiss.fu-berlin.de/sihl/bizer/d2r-server/index.html

[25] http://d2rq.org/d2rq-language

[26] Dennis Quan, David R. Karger. “ How to make a semantic web
browser” May 2004, ACM, New York, USA

[27] Latest version provided http://www.w3.org/TR/void/

[28] http://purl.org/net/opmv/ns

[29] O. Hartig, J. Zhao, “Publishing and Consuming Provenance
Metadata on the Web of Linked Data,” IPAW 2010: 78-90

[30] O. Hartig, “Provenance Information in the Web of Data,” LDOW
2009

[31] http://dublincore.org/documents/dcmi-terms/

[32] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named graphs,
provenance and trust,” In WWW '05: Proceedings of the 14th
international conference on World Wide Web, pages 613{622,
New York, NY, USA, 2005. ACM Press. (doi:
http://doi.acm.org/10.1145/1060745.1060835).

[33] J. J. Carroll. Signing RDF Graphs. In 2nd ISWC, volume 2870 of
LNCS. Springer, 2003.

[34] R. Isele, A. Harth, J. Umbrich, and C. Bizer. Ldspider “An open-
source crawling framework for the web of linked data.,” In ISWC
2010 Posters & Demonstrations Trach: Collected Abstracts Vol-
658,2010

[35] Figures generated using : http://www.w3.org/RDF/Validator/

681

ARGUMENTATION UNDERSTOOD AS
PROGRAM SYNTHESIS

Ashwag Omar Marghraby and Dave Robertson
Centre for Intelligent Systems and their Applications
School of Informatics, The University of Edinburgh,

Edinburgh, UK
A.O.Maghraby@sms.ed.ac.uk

Abstract— A gap exists between the specification of
argument/argumentation norms and their implementation via
protocols in multi-agent systems. This paper describes a new
approach to support and automate the synthesis (code
generation) of multi-agent argumentation protocols. The idea is
to automatically transform a high-level description of an
argumentation dialogue game provided by an argumentation
user to a final multi-agent executable protocol based on reusable
and parameterized patterns. This brings pattern based program
synthesis into multi-agent programming in a new way.

Index Terms— Program Synthesis; Automated Synthesis;
Dialogue game; Argumentation.

I. INTRODUCTION
Generally, the argumentation community views arguments

in a formal way, where a Multi-Agent Systems (MAS)
argumentation dialogue game [1] is defined using abstract
specification languages such as the Argument Interchange
Format [2] (AIF is a generic speciation language for argument
structure) which abstracts the game from its technical details.
Although arguments may be specified precisely using abstract
specification languages, this is not a practical way to
implement MAS.

In practice, abstract specification languages are not
executable languages and in the software engineering
community, in order to build complete multi-agent
argumentation systems, there is a need to produce concrete
implementations in which these abstract specifications are
realized via protocols coordinating agent behavior. This
creates a gap between standard argument specification and
implementation of MAS protocols.

So far in the software engineering community, there are
two ways of addressing this issue. The first way is to ignore
the abstract specification representation of the dialogue game
and implement (re-build) the MAS from scratch. The second
way is through the automated program synthesis [3] (in which
an automated program synthesis tool transforms a high-level
specification into an executable code). Designing an
automated program synthesis method involves three steps: (1)
selecting or creating a new abstract language (which acts as a
high-level language) that allows particular types of
argumentation to be defined; (2) selecting a MAS protocol
implementation language (which acts as an operational or low-
level language) that is used for specifying the message-passing
behavior of MAS interaction protocols; (3) selecting an

approach to automated program synthesis and developing a
system that is able to interpret the abstract language to
produced MAS protocol implementation language.

This paper attempts to solve the engineering problems of
MAS argumentation systems by using a combination of
automated program synthesis (code generation) and
verification methods. More precisely, this paper proposes a
means of moving rapidly from dialogue game argument
specification to protocol implementation using an automated
synthesis method.

The paper is organized as follows. Section II represents the
argumentation dialogue game abstract language (the first step
toward automation synthesis of MAS protocol). Section III
presents the MAS protocol implementation language (the
second step toward automation synthesis of MAS protocol).
Section IV illustrates the automated program synthesis
approach (the third step toward automation synthesis of MAS
protocol). Section V presents a verification approach which is
used to evaluate the approach. Section VI contains the
conclusion.

II. ABSTRACT LANGUAGE
The first step toward the automation of the MAS protocol

is the selection or creating of new abstract language to
represent argumentation dialogue game rules. The existing
abstract specification languages in the argumentation
community (e.g. AIF [2]) enable users to structure arguments
using diagrammatic linkage between natural language
sentences. However, these languages do not capture some
concepts that are needed to support the interchange of
arguments between agents (e.g. the sequence of argument or
message). For that reason, this research created a new,
intermediate recursive visual high-level language called
Dialogue Interaction Diagram (DID) to represent, in an
abstract way, the multi-agent dialogue game interaction
protocol rules between two agents by allowing the designer to
specify the permitted messages and their relationship to each
other.

DID is a recursive visual language which restricts agents'
moves to: (1) Unique-moves: agents can make just one move
before the turn-taking shifts, and agents can reply just once to
the other agent’s move; (2) Immediate-reply moves: the turn-
taking between agents switches after each move, moving from
one level to the next level, and each agent must reply to the
move of the previous agent.

682

Message Name
Role Name Role Name

Role
Arguments

Role
Arguments

Agent ID Agent ID

This restriction is quite strict but it still allows us to
include a large class of argumentation systems in our
synthesizer. For instance, all argumentation systems that can
be described as dialogue games. In general, we can synthesize
arguments that can be described as a sequence of recursive
steps (each of which involves turn taking between the pair of
agents) terminating in a base case.

DID has nine interaction protocol rules concepts [4]: (1)
Locutions rules: represent the set of permitted messages; (2)
Commitment rules: define the propositional commitments
made by each participant with each message during the
dialogue; (3) Structural rules: define legal messages in terms
of the available messages that a participant can select to follow
on from the previous message; (4) Turn-Taking: specifies the
next player; (5) Starting rules: define the conditions to begin
the dialogue; (6) Termination rules: define the conditions to
end the dialogue; (7) Pre-condition rules: define the conditions
under which the message will be achieved; (8) Post-condition
rules: define the conditions which must always be true just
after the locution utterance.; (9) Sender and receiver agents'
roles: a set of functions that an agent can use to interact with
another agent. Each role identifies the messages that an agent
can send or receive.

Space limitation prevent a discussion in depth of how
these are represented. Instead, in the next subsection, we move
to a summary of the (formal) visual notation we use to capture
these concepts.

DID ELEMENTS
The basic element of every DID is a message (locution)

icon. A message icon (as shown in Fig.1) is simply a rectangle
divided into three sections. The topmost section contains the
name of the message. The left section contains sender agent
attributes (Role name, Role arguments, and Agent ID), and the
right section contains receiver agent attributes (Role name,
Role arguments, and Agent ID). A rhombus shape represents
conditions which apply to each message; when connected to
the left section it represents sender agent pre-conditions and
when connected to the right section it represents receiver
agent post-conditions. Dotted rectangles represent the message
type: Starting (can be used to open a dialogue game),
Termination (can be used to terminate the dialogue game), and
Recursive locution (can be used to remain in the dialogue
game). A DID is created by linking the message icons
together. The links between the message icons represent reply
relations between arguments. Please see papers [5,6] for more
detail about the DID elements (syntax) and examples.

III. PROTOCOL IMPLEMENTATION LANGUAGE
The second step toward the automation synthesis of the

MAS protocol is the selection of a MAS protocol
implementation language. To support formal analysis and
verification, we choose as our protocol implementation
language the LCC [7]. LCC is a declarative [8], process [9]
calculus-based, executable specification language for
choreography [10] which is based on logic programming and
is used for specifying the message-passing behavior of MAS

Fig.1. Locution icon
interaction protocols. See paper [7] for more information
about the abstract syntax of LCC.

IV. AUTOMATED PROGRAM SYNTHESIS METHOD
The third step toward the automation synthesis of the

MAS protocol is the selection of an approach to automated
program synthesis as well as the development of a system that
is able to interpret the abstract language as a MAS protocol
implementation language. One approach used on order to
automate program synthesis is a structured synthesis approach
(pattern-based). The main idea of the structured synthesis
approach is to capture information required for the
transformations as reusable and parameterized patterns. These
patterns can be used to apply the transformations through an
automated program synthesis tool. Patterns [11], are generic,
recurring solutions to common problems, defined in the target
language (LCC in this paper) and capture the overall structure
of a task, having been extensively studied within the software
engineering community.

In the following subsections, we summarize some protocol
patterns (LCC-Argument patterns) that can be embedded in
the automated synthesis tools and used with DID to support
the MAS protocol development activity. The reason for
introducing protocol design patterns in argumentation is that
by re-using them it is possible to reduce the effort of building
dialogue game argumentation agent protocols.

A. LCC- Argument patterns

The patterns described in this paper are called LCC-
Argument patterns. These patterns are similar to object-
oriented design patterns (in the software engineering
community). The only difference between them is the
structure of an LCC-Argument pattern which is described by
using the notions of roles instead of the notions of classes and
objects. We use the notation of the roles since our protocol
language is LCC which is not considered to be an object-
oriented language and uses roles (instead of classes and
objects) to describe MAS protocols.

LCC-Argument patterns capture the different relationships
and interactions between LCC agents' roles. These patterns
provide a common LCC argument code for developing
protocols and their components along with defining how two
or more agents can interact with each other. They are generic
solutions to the common LCC argumentation protocol
development problem that recur repeatedly across protocols
and can be adapted to generate specific protocols. Maghraby

Sender
Information

Receiver
Information

 Sender
condition Receiver

condition

Message Type

683

[11] describes these patterns in detail. To expedite our
argument, we will not repeat these here. Instead we will
describe the uses of two LCC-Argument patterns which
describe the MAS interaction protocol between two agents:

1) Starter pattern : This pattern is used to start the dialogue
between two agents (A1 and A2). It is composed of two
roles: sender role, RoleOneA1, and receiver role,
RoleOneA2.The general idea of this pattern is that the
agent with role RoleOneA1 sends a starting message to the
agent playing role RoleOneA2 and then both agents change
their roles (see Fig.2).

2) Termination-Intermediate Pattern: This pattern is used to
send/receive a message(s) to terminate the dialogue game
(interaction between agents A1 and A2) or to change
agents' roles. It is composed of two roles: sender role,
RoleOneA1, and receiver role, RoleOneA2. The general
idea of this pattern is that the agent with role RoleOneA1
sends:

a) a termination message (TM), to the agent playing role
RoleOneA2, to terminate the dialogue game;

b) or sends a recursive message (RM) (step b.1), to the
agent playing role RoleOneA2, and then both agents
change their roles (step b.2) (see Fig.3).

The sender agent in this pattern can send one or more
message to the receiver agent. This pattern handles this by
using refinement (rewriting) methods [12].

B. Automated Program Synthesis Steps

This section illustrates the outline of our method for
bridging the gaps between argument specification and
implementation of MAS protocol languages as depicted in
Fig. 4.
The user draws a DID diagram of the dialogue game. Then,
the automated program synthesis tool transforms this diagram
into an LCC MAS interaction protocol (an executable
protocol) by applying predefined and automated
transformational steps to the DID diagram. More precisely, the
tool matches DID diagram icons with LCC-Argument patterns
(parameterized patterns) to create a LCC MAS interaction
protocol.

Patterns capture the overall structure of the interactions
between agents and are defined in the LCC language. A DID
diagram (specified by the user) specifies information required
for fitting and customizing the pattern for a specific dialogue
game. Transformational steps use the DID diagram to fit the
patterns and generate the LCC MAS interaction protocol. We
shall now describe the automated transformation steps in
further detail.

AUTOMATED TRANSFORMATION STEPS FOR GENERATING AN
AGENT PROTOCOL BETWEEN TWO AGENTS

The automated synthesis process of the two agents'
protocol consists of five steps (The two agents' protocol
automated synthesis algorithm is illustrated in Fig.5).

Fig. 2. Starter Pattern

Fig. 3. Termination-Intermediate Pattern

 Fig. 4. Automated Program Synthesis Method

1. Input (DID, LCC-Argument patterns)
2. Select&Save Icon= one DID locution icon (Step1)
3. Select&Save Pattern= one pattern from the LCC-Argument

patterns library (Step2)
4. If (Pattern has rewriting methods) then (Step3)
5. If (level has one message icon) then
6. Select&Save RewriteMethod=Rewrite 1
7. If (level has more than one message icon) then
8. Select&Save RewriteMethod=Rewrite 2
9. Match (Icon,Pattern,RewriteMethod) (Step4)
10. Go To line 2 (Step5)
11. End matching all level in the DID with the corresponding

patterns
12. Output LCC protocol

Fig.5. Two Agents' Protocol Automated Synthesis Algorithm

AUTOMATED TRANSFORMATION STEPS FOR GENERATING AN
AGENT PROTOCOL BETWEEN N-AGENTS

The DID notation is general across all dialogue games but
is limited to two agents. Our design patterns extend to N-
agents but only accommodating those protocols that fit the
patterns, so we lose the DID generality. However, we can
reclaim some generality for patterns in which parts of the
protocol are dialogues. Our idea is to consider the dialogue
among N-agents as a dialogue between two agents by dividing
agents into groups composed of two agents under certain

 DID

Input

Automated
Program
Synthesis

Tool

LCC-Argument patterns
+

Transformational steps

Output

Resulting LCC Protocol
(MA executable protocol)

A2

 Send
starting
message

A1

RoleOneA1

A1

RoleTwoA1

A2

RoleOneA2
Change

Role

1.

2.
Change

Role

2.

A2

RoleTwoA2

A1

RoleOneA1

A1

RoleTwoA1

A2

RoleOneA2

Send TM

Change
Role

a.

b.2.
Change

Role

b.2. Send RM
b.1.

A2

RoleTwoA2

684

conditions. Our automated synthesis method uses an LCC-
argumentation broadcasting pattern [11] to divide agents into
groups composed of two agents and then it follows the general
automated synthesis process of two agents protocol to
generate the LCC protocol for DID for two agents, which
allows the selected pairs of each group to communicate with
each other.

V. VERIFICATION METHOD

Automated protocol synthesis (pattern-based synthesis) is
complex. It requires many steps (e.g. profound knowledge of
agent protocols, understanding of dialogue games and LCC
language) and large amounts of time to define a correct set of
patterns and adding new patterns risks introducing errors into
the synthesizer. Therefore, this paper also presents a
verification method based on Standard functional
programming language (SML) [13] and Coloured Petri Net
(CPNs) [14] to verify the semantics of the DID specification
against the semantics of the synthesized LCC protocol. Space
limitations prevent us from giving details of this but we will
sketch the main elements here.

Given the DID and the LCC MAS interaction protocol, our
verification tool could answer the question: Does the LCC
specification satisfy the DID behavior properties? To answer
this question, the tool performs the following tasks (see Fig.6):
(1) Given the DID as an input, the automated verification tool
extracts the DID properties using SML specification
transformational steps; (2) Given the LCC MAS interaction
protocol as an input, the automated verification tool
transforms the LCC protocol into an equivalent CPNXML file
using a set of transformational rules. The generated CPNXML
file can then be used to construct the state space. From the
state space the automated verification tool extracts the
behavioral properties of the LCC protocol; (3) The tool
compares the DID properties and the behavioral properties of
the LCC protocol by using CPN SML functions. A positive
(negative) result indicates that a specific property is satisfied
(unsatisfied). For more details please see [5].

Fig.6. Verification Process

VI. CONCLUSION

This paper describes an approach to bridging the gap
between dialogue game argument specification and multi-agent
implementation using DID as an example of a dialogue game
argumentation language and LCC as an example of a multi-
agent implementation (coordination) language. The proposed
approach is based on a new specification dialogue game
argument language (DID) and reusable, parameterized
transformation patterns.

Using our approach reduces the time in moving from
abstract specification to implementation and gives greater
assurance for the semantic equivalence between the DID
specification and the resulting LCC protocol (which is
executable via LCC interpreters).

Although the resulting synthesis and verification system is
not an industry-strength specification tool, it demonstrates
how automated synthesis methods can connect argumentation
to MAS interaction protocols in a process language.
Potentially, this could allow developers of argumentation
systems to use specification languages to which they are
accustomed (in our case DID) to generate systems capable of
direct implementation on open infrastructures (in our case
LCC).

REFERENCES
[1] D. Walton, "What is reasoning? what is an argument?," the

journal philosophy, vol.87, pp. 399-419, 1990.
[2] C. Chesnevar et al., "Towards an argument interchange format".

The Knowledge Engineering Review, vol.21, pp.293–316,2007.
[3] S. Gulwani, "Dimensions in program synthesis," in PPDP, 2010.
[4] H. Prakken, "Formal systems for persuasion dialogue," The

Knowledge Engineering Review, vol.21, pp.163-188, 2006.
[5] A Maghraby, "Automatic Agent Protocol Generation from

Argumentation" in 13th European Agent Systems Summer
School, Girona, Catalonia (Spain), 2011.

[6] A Maghraby, D. Robertson, A. Grando and M. Rovatsosr,
"Automated Deployment of Argumentation Protocols," in
Fourth International Conference on Computational Models of
Argumen, 2012.

[7] D. Robertson, "Multi-agent coordination as distributed logic
programming". in 20th International Conference, 2004.

[8] J. Lloyd, "Practical advantages of declarative programming," in
Joint Conference on Declarative Programming, GULP-
PRODE'94, 1994.

[9] J. Baeten, "A Brief history of process algebra," Theoretical
Computer Science, vol. 335, pp. 131-146, 23 May 2005.

[10] R. Dijkman and M. Dumas, "Service-oriented design: A multi-
viewpoint approach," International Journal of Cooperative
Information Systems, vol.13, pp.337-378, 2004.

[11] A. Maghraby, "LCC argument patterns," School of Informatics,
Edinburgh university, 2011. Unpublished. Available from:
http://homepages.inf.ed.ac.uk/s0961321/index.html

[12] C. Morgan, Programming from specifications, 2nd ed., Prentice
Hall International (UK) Ltd., 1994.

[13] R. MILNER, M. TOFTE, R. HARPER and D. MACQUEEN,
The definition of Standard ML, revised ed., Cambridge, 1997.

[14] K. Jensen, L. Kristensen and L. Wells, "Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems,"
International Journal on Software Tools for Technology
Transfer (STTT), vol. 9, pp. 213–254, 2007.

LCC
Properties

Verification Tool
Transformational rules

+
State Space technique

Input

Output

Step 2

Resulting LCC Protocol
(MA executable

protocol)

DID
Properties

Input

Output

Verification Tool
SML specification

Transformational steps

Step 1

DID(Argument
Specification Language)

DID
Properties

LCC
Properties

True False

Step 3
Verification Tool
General behaviour

property checking code
in SML

685

Virtual Medical Board:
A Distributed Bayesian Agent Based Approach

Animesh Dutta
Dept of IT

NIT Durgapur
India

animesh.dutta@it.nitdgp.ac.in

Sudipta Acharya
Dept of IT

NIT Durgapur
India

sudiptaacharya.2012@gmail.com

Aneesh Krishna
Dept. of Computing

Curtin University of Technology
Western Australia

a.krishna@curtin.edu.au

Swapan Bhattacharya
Dept of CSE

NIT Surathkal
India

director@nitk.ac.in

Abstract—Distributed Decision Making has become of increas-
ing importance to get solution of different real life problems.
Application of agent and multi agent system in this Distributed
Decision Support System is an evolving paradigm. One of such
real life problem is medical board formation. But always forma-
tion of a medical board with a group of expert physicians may not
be always possible due to lack of infrastructure, availability, time
etc. In these situations the role of multi agent based distributed
decision making can comes into play. In this paper we develop
a Virtual Medical Board System in which a number of software
agents (expert agents) act as a group of expert physicians with
knowledge base(KB), reasoning capability. They coordinate with
each other to diagnose a patient.

Index Terms—Vitual Medical Board, Bayesian Network Of
Bayesian Agent, Multi agent system, Expert agents, Coordination
Ontology, Distributed decision support system.

I. INTRODUCTION

Proper medical treatment starts with proper medical diag-
nosis. Accordingly, doctors are trained to look for certain
medical conditions when specific symptoms are presented by
patients. When those symptoms are missed and a condition
goes undiagnosed, the potential consequences can be fatal.
While diagnosing a patient, sometimes it happens that the
doctor is not able to reach any final conclusion regarding
the disease and its treatment plan by himself, then he may
need to consult with his fellow colleagues or some expert in
that field. The group formed by these expert physicians is
called Medical Board. Members of Medical Board collectively
discuss with each other to diagnose a patient properly. Medical
board formation is costly method and it needs a developed
infrastructure in the hospital. That is why it is impossible to
form medical Board to diagnose a patient in rural hospital
which have weak infrastructure. So to provide a sophisticated
medical facility like medical board in rural areas, a virtual
medical board can be formed.

An agent [1] , [2] is a computer system or software that can
act autonomously in any environment to achieve a goal. Multi-
agent systems (MAS) [1] , [2] are computational systems in
which two or more agents interact or work together to perform
a set of tasks or to satisfy a set of goals.

Multi agent system (MAS) based decision support system
[3] is a system where number of software agents take a
decision of a given problem collectively. In these situations,

each agent plays role of a human entity in human-based group
discussion methodology.

Multi agent based distributed decision support system is
the key idea in the formation of virtual medical board. Here
number of software agents act as group of expert physi-
cians forming medical board. In our system we represent the
knowledge base(KB) of expert agent in the form of Bayesian
network.

A Bayesian network or Bayes network or belief network
[4] is a probabilistic graphical model. As medical diagnosis
is a probabilistic method so in our system we use Bayesian
network to represent the knowledge base of each expert agent
by specifing probabilistic relationships between diseases and
symptoms.

Ontology [5] is the most suitable representation of do-
main knowledge because concepts, relationships and their
categorizations in a real world can be represented with them.
With the concept of Ontology, we can say that coordination
Ontology is the domain specific Ontology which contains
some rules and methodologies about how to take an ultimate
decision by a number of decision maker by resolving different
obstacles/conflicts during group discussion.

II. SCOPE OF WORK

There have been a lot of contributions in the area of
agent based decision support system in Medical Diagnosis.
But most of them are centralized-knowledge based or single
diagnostic agent based in nature. That is depending on single
medical ontology of a diagnostic agent diagnosis of a patient
is done[[6], [7], [9], [10], [13], [14]]. There is no human
oriented medical board like group discussion mechanism to
diagnose a patient. Some of the papers are on distributed
decision support system. But here a main problem is divided
into number of subproblem[[8], [11], [12]], where each agent
deals with different subpart of the main problem. Here it is
not proposed how to take a final decision if number of agents
are dealing with the same problem. In our work we propose a
system which is virtualization of medical board. Here number
of software agents with knowledge base act as a group of
expert physician. Where each physician handles same patient
with same symptoms, diagnoses the patient independently, take
diagnosis decision, communicate with each other to share their

686

decisions. Finally ultimate diagnosis decision is taken with the
help of a coordination Ontology.

III. SYSTEM MODEL

A. System Architecture

S’={si | i=1...s}

S={si | i=1...n}

Patient Pt
Rt = X(dmxi(t),Tpi)

dmxi(t)

LPA

TP repository

Exp1

Exp2

Expv

Final

BNBA

Q={Q j | j=1...v}
Coordination ontology

Fig. 1: Architecture of the proposed System

Figure 1 represents the brief architecture of our proposed
system. Here S′ is the set of symptoms of patient Pt. LPA
adds some signs in the set S′, and new set S is the set of
sign and symptoms of that patient, so n ≥ s. Local Physician
Agent(LPA) sends this set S to the discussion module of the
system. We represent it by ’Bayesian network of Bayesian
agent with coordination ontology’. From the module final
diagnosis result dmxi(t) is chosen which is sent to Treatment
plan repository. From which corresponding treatment plan Tpi

is chosen and report R(t) is generated. Report R(t) is send
back to LPA.

Formally system architecture can be defined by a set of
tuple,

VBMS = {HA,BNBA,CO, Tprep}
where
• HA : Human agent. There are two types of human agent.

1. Patient 2. Local physician Agent(LPA)
• BNBA : Bayesian network of Bayesian Agent(BNBA)

is part of discussion module of the system. It is a graph
which can be represented by a set of tuple, BNBA =
{V,E, P} where,

– V is set of variables in the BNBA which act as nodes
in a graph. Two types of variables are there, 1.NV :
Normal variable having number of mutual exclusive
states.
2.BAV : In the system each software expert agent
also can be denoted as Bayesian Agent variable
having number of mutual exclusive states. These
variables or expert agents are called Bayesian Agent
variable because each variable itself consists a
knowledge base (KB) which is in the form of
Bayesian Network. So Bayesian network of each
Bayesian Agent can be represented by a set of tuple,
BN = {V ′, E′, P ′} where,
∗ V ′ : Set of variables in the Bayesian Network of

each Bayesian Agent which act as nodes of the
graph. In our application there are two type of
variables, 1. Ds: Set of disease variables. 2. Sy:

Set of symptom variables.
so we can say, V ′ = (Ds

⋃
Sy)

∗ E′ : Set of directed edges which represents the
causal relationships between variable V ′.

∗ P ′ : Joint probability distribution over variable V ′.
It is defined as,
P (V ′

1 , V ′

2V ′

w) = Πw
i=1 p(V ′

i |parents(V ′

i))
– E: Set of directed edges which represent causal

relationships between variables V .
– P : Joint probability distribution over variable V . It

is defined as,
P (V1, V2....Vx) = Πx

i=1 p(Vi|parents(Vi))
• CO: Coordination Ontology is a part of discussion mod-

ule. It contains set of rules which are used to get final
decision among a number of alternative decisions. The
detail of coordination ontology can be found in our earlier
paper [15].

• Tprep: Treatment plan repository is defined over medical
domain M. Here for each disease treatment plan is
defined. i.e. disease to treatment plan is a One-to-one
mapping. It can be defined by these function,
TPkb: D −→ TP

where D = { di |i=1....n } is a set containing all treatable
diseases.
and TP = { tpi |i=1....n } is set of corresponding
treatment plan. Function X is used to generate a report
R,
X(di, TPi) = R. This report is sent back to LPA.

B. Architecture of BNBA

D1 D2 Dn

s1 s2 s3 s4 sm−1 sm

D1 D2 Dn

s1 s2 s3 s4 sm−1 sm

D1 D2 Dn

s1 s2 s3 s4 sm−1 sm

a1 a2 an

Final

Fig. 2: Architecture of Bayesian Network of Bayesian Agent
(BNBA)

Figure 2 represents the Bayesian network formed by
Bayesian agents. where each Bayesian agents holds one
Bayesian network. so number of mutually exclusive states
of each Bayesian variables depends on number of different
diseases in the Bayesian network of that agent. Number of
mutual exclusive states of variable Final is union of total
number of different diseases of all expert agents

C. Algorithm to construct Conditional Probability table if
’Final’ variable in BNBA

As in BNBA ‘Final’node is conditionally dependent on all
Bayesian Agent variables so to take decision among a number
of alternative decision Conditional Probability Table (CPT)
should be formed. This CPT should be formed by abiding
rules of Coordination Ontology.

687

CPT CONSTRUCT(m,count,Dc{})
If (m/2) ≤ count ≤ m then
If ∀ di ∈ Dc Conflict = False then
{ Make entry ∀ di ∈ Dc in CPT of Final variable in

BNBA as follows,
p(di/Dc{}) = 1 and rest entries of the CPT = 0 }
ElseIf ∀ di ∈ Dc Conflict = True then
Grouping is done
If Groups are asymmetric then
{ Make entry ∀ di ∈ Dc in CPT of Final variable in

BNBA as follows,
p(di/Dc{}) = { The Cardinality of the group in which

di belongs × (1 / Count) }
}
Else
{ Make entry ∀ di ∈ Dc in CPT of Final variable in

BNBA
as follows,
p(di/Dc{}) = { Value of the maximum trust value of

the group in which
di belongs × (1 / summation of maximum trust value

from each group) }
}
EndIf

EndIf
ElseIf Count < (m/2) then
new (m - Count) number of expert agents are chosen and
with the total m number of expert agent again call function
CPT CONSTRUCT(m,count,Dc{})
EndIf

Where m = Number of expert agent participating in dis-
cussion. count = Number of expert agent able to take deci-
sion among m expert agents. Dc{} = array of decisions of
‘count’number of expert agents.

IV. PROBLEM FORMULATION

Let in the system the set of expert agents A = { ai |i = 1....m
} is a team with a common objective. Let Sm is a global set
of all possible sign symptoms of a patient. Now suppose by
LPA a set of symptoms is taken from a patient Pt and the
set of those sign and symptoms formed is S = { si |i=1...n }
LPA sends this set S to all expert agents ai ∈ A.
Their exists a logical network defined by a graph G =
(Ag,Ed) where A is agent corresponds to vertices and e ∈ Ed

corresponds to communication link. Depending on the re-
ceived symptoms each expert agent arised some questionnaire.
Let Qj = { qi |i=1...k } is a set of questionnaire arised by
expert agent aj . According to questionnaire LPA finds out
other sign and symptoms of the patient Pt. Let ’α ’ is a
function responsible for the selection of sign and symptoms
depending upon qi. α (qi)= s where s ⊂ Sm. similarly, α(Qj)
= Sj = { si |i=1...l } where Sj ⊂ Sm and Sj = ∅ can be true.
LPA sends this Sj to agent aj . All expert agent independently
maps all these processed data on their KB(represented in the
form of Bayesian network) which contains (s, v) ordered pair
of symptoms and their possible value/ranges. A function β is

defined over (s, v) to find out probable disease.
β (

∑u

i=1(si,vi)) = dj(t) where n ≤ u (As after getting answer
of questionaries some expert agents can get more than number
of symptoms from patient, so these symptoms are added with
n and let now set of symptom is u)
Where dj(t) is the decision of expert agent aj at time t.
β returns information regarding disease on the basis of the
following relations.
F: 2s×v −→ D (many to one relation), Where D is the
universal set of all possible disease of patient.
so D = {di |i=1...w } Now all expert agent exchanges their
decisions with other expert agents and according to other’s
decision they update their knowledge about the diagnosis using
equation 1, If expert agent ai ∈ A take diagnosis decision
di(t) at time t, where di(t) ∈ D Then agent ai ’s probability
distribution over D at time ‘t’is,
pi(di(t), t) = Belief of the agent ai that disease di(t) is the
probable disease at time t. After message passing and sharing
their decisions with other experts if agent ai gets di(t) is the
decided disease of agent aj at time t, Agent ai’s new belief
at time twill be,
pi(di(t′), t′) = pi(di(t), t) +(1)
Where ≥ 0 and (1 ≥ pi(di(t), t) ≥ 0),

According to equation (1) belief of each expert agent is
updated for each disease di ∈ D. After belief updating again
decision making process is restarted and each expert agent
takes decision independently. Let those decision can to be
represented in the form of set Dc = { di(t) |i= 1....o and o
≤ m }. Now coordination ontology is used to find out final
decision among all alternative decisions of set Ds. A function
CON is defined is CON(Dc) −→ d(t) where d(t) is the final
decision at tth time. The belief value of final decision is
p(d(t), t).

The performance of the team or the utility of the final
decision will be affected if summation of divergence between
each agent′s belief and final decision belief increases.
As utility of the final decision ∝ total divergence between
decisions of expert agents.
The divergence between the belief of final decision and ai

agents decision di(t) at time t is , |pi(di(t), t) - p(d(t), t) |=
Δi(D, pi(di(t), t))
The bigger the above value mean higher divergence. The cost
of Δi(•) divergence to an agent ai at particular time is
C(ai, Δi(•)) −→ R
Where R is the real number. Thus the overall optimization
function to minimize is,

∑
ai∈A

∫ T

t=0
C((ai, Δi(•)) dt

To minimize this Optimization function again expert
agents communicates with each other by message passing to
share their decision and update their belief. The discussion
and updating of their belief process goes iteratively until
optimization function get minimized. After getting the final
decision with maximum utility let that is dmaxi(t) ∈D,

688

where i may vary from 1 to w. This final diagnosis result is
sent to Treatment plan repository to generate report.

V. CASE STUDY

We have done a case study on a medical domain of different
types of fever. In the domain 7 types of diseases are there.
Those are, D = { Urinary tract infection, Typhoid, Brucellosis,
Lobar Pneumonia, Malaria, Kala-azar, Diseased liver }
and 14 types of symptoms of these diseases. Those are,
Sm= { Headache(A), Body pain(B), Joint pain(C), Vomit-
ing(D), Chills(E), Poor appetite(F), Loose bowels(G), Nau-
sea(H), Urine problem(I), Abdominal pain(J), Diarrhea(K),
Nose bleeds(L), Cough(M), Skin problem(N) }
In bracket we represent the abbreviations of corresponding
symptom. e.g. Headache is denoted by A.
There are 8 expert agents we choose to participate in group
discussion.
Each expert agent′s KB is represented in the form of Bayesian
network formed by upper specified diseases and symptoms.
KB may be different for different experts depending on their
knowledge.

Now suppose from a patient LPA takes symptoms and sends
them as a set S = {I(9), J(6), E(9), H(6), D(9), L(6), O(6),
M(2), C(6)}. In bracket severity value of every symptom (
high(9), medium(6), low(2)) is given.
After a number of rounds of discussion final decision about the
diagnosed disease is found as Lobar pneumonia. Simulations
of discussion is shown in Figure 3 and 4. In figure 3 x axis
represents number of rounds of discussion after which experts
get negotiated in same decision. We can see at 5th round of
discussion the optimization function value is 0, i.e. it gets
minimized.

Fig. 3: Convergence of optimization function

In figure 4 it is shown that after time or round value 4, all
experts belief value converges. that is their decision about the
diagnosis become same.

VI. CONCLUSION

In this paper, we propose a multi agent based group discus-
sion mechanism to form a virtual medical board like system.
Here each agent acts as an expert physician, consisting of
a knowledge base represented in the form of bayesian net-
work. All expert physicians independently diagnose a patient,
communicate with each other with a common vocabulary i.e.

Fig. 4: Convergence of beliefs of all expert agents

Coordination Ontology to agree upon in a common decision.
We also propose a optimization function, minimization of
which increase the final decision utility.

REFERENCES

[1] G. Weiss, Ed., ”Multiagent systems: a modern approach to distributed
artificial intelligence”, MIT Press (1999)

[2] M. J. Wooldridge, ”Introduction to Multiagent Systems”, John Wiley
Sons, Inc(2001)

[3] H Lee, M A Buckland and J W Shepherdson, ”A multi-agent system to
support location based group decision making in mobile teams”, In BT
Technology Journal, Vol 21 No 1, January 2003

[4] K. K. Breitman and J. C. S. do Prado Leite, ”Ontology as a Require-
ments Engineering Product”, In 11th IEEE International Requirements
Engineering Conference (RE03),pages 309−319, Sep. 2003.

[5] A. Aguilera, E. Herrera and A. Subero, ”MEDICAL COORDINATION
WORK BASED IN AGENTS”, In The 3rd International Symposium on
Biomedical Engineering (ISBME 2008)

[6] I. G. Czibula, G. S. Cojocar and A. M. Guran, ”IMASC - An Intelli-
gent MultiAgent System for Clinical Decision Support”, In 2008 First
International Conference on Complexity and Intelligence of the Artificial
and Natural Complex Systems. Medical Applications of the Complex
Systems. Biomedical Computing.

[7] Y. Jiang, J. Hu and D. Lin, ”Decision Making of Networked Multiagent
Systems for Interaction Structures”, In IEEE transactions on systems,
man, and cybernetics − Part A: Systems and Human, VOL. 41, NO. 6,
November. 2011.

[8] M. Indiramma and Dr K. R. Anandakumar,”Collaborative Decision-
making in Multi-agent Systems for GIS Application”, In Proceedings of
the International MultiConference of Engineers and Computer Scientists
2008 Vol I IMECS 2008, 19-21 March, 2008, Hong Kong.

[9] M. Morge and P. Beaunea, ”Negotiation Support System based on a
Multi-agent System specificity and preference relations on arguments”, In
Proceedings of the 2004 ACM symposium on Applied computing Pages
474 - 478 ,ACM New York, NY, USA 2004.

[10] M. Morge, ”Distributed Decision Making”,Textbook, Part of the Course
on MultiAgent Oriented Programming,2nd December 2008

[11] A. Filippoupolitis and E. GelenbeA, ”Distributed Decision Support Sys-
tem for Building Evacuation”, In Proceeding HSI’09 the 2nd conference
on Human System Interactions Pages 320−327.

[12] V. K. Mago1, M. S. Devi, and R. Mehta, ”Decision Making System
Based on Bayesian Network for an Agent Diagnosing Child Care Dis-
eases”, In D. Riao (Ed.): K4CARE 2007, LNAI 4924, pp. 127136, 2008.
Springer-Verlag Berlin Heidelberg 2008

[13] C. Smaili, C. Rose and F. Charpillet, ”Using Dynamic Bayesian Net-
works for a Decision Support System Application to the Monitoring of
Patients Treated by Hemodialysis”, In Proceeding ICTAI ’05 Proceedings
of the 17th IEEE International Conference on Tools with Artificial
Intelligence Pages 594 - 598

[14] W. Premchaiswadi, N. Jongsawat and W. Romsaiyud, ”Bayesian network
inference with qualitative expert knowledge for group decision making”,
In Intelligent Systems (IS), 2010 5th IEEE International Conference 2010

[15] S. Acharya, A. Dutta, ”Coordination ontology for multi agent based
distributed decision making”, In proceddings of Parallel Distributed and
Grid Computing (PDGC), 2012 2nd IEEE International Conference on
6-8Dec, .2012 vol., no., pp.508- 514.doi: 10.1109/PDGC.2012.6449873

689

Software Quality Assurance Ontology
from Development to Evaluation

Nada Bajnaid
Faculty of Computing, King Abdulaziz University

Jeddah, Saudi Arabia
nbajnaid@kau.edu.sa

Rachid Benlamri
Dept. of Software Engineering, Lakehead University

Thunder Pay, Canada
rbenlamr@lakeheadu.ca

Nada Bajnaid, AlgirdasPakstas, Shahram Salekzamankhani
School of Computing, London Metropolitan University

London, United Kingdom
(nab0378, a.pakstas, s.salekzamankhani) @londonmet.ac.uk

Abstract- Even though, Software Quality Assurance (SQA)
becomes one of the most important objectives of software
development and maintenance activities, yet there is no consensus
among most of the domain terminolog, concepts and techniques.
Inconsistency and terminology conflicts appear between standards
even within the same organization. There was an effort by different
bodies to improve consistency and coherency among standards. To
contribute to this effort, a Software Quality Assurance ontology that
represents both domain and operational knowledge of SQA is
proposed in this paper. SWEBOK and international standards are
used as the main sources to extract the ontology concepts and
realtionships. Different evaluation approaches were conducted to
validate the quality and usefulness of the proposed ontology .

Keywords-component; Software Quality Assurance, Ontology
Engineering, e-learning, context-awareness.

I. INTRODUCTION

Software is a key element of modern computing systems.
People are increasingly relying on software and demanding
higher quality products than ever before. Studies show that
software companies can make more money through increased
customer satisfaction and improved product quality [1]. Some
authors have defined the entire discipline of Software
Engineering (SE) as the production of quality software [2].
Although, Software Quality Assurance (SQA) becomes one of
the most important objectives of software development and
maintenance activities, yet there is no consensus among most
of the domain terminology, concepts and techniques. Hence,
meaning of terms may inter-relate or overlap.

In software engineering, people with different necessities
and viewpoints need to communicate and share knowledge
during all the stages of the software life cycle. Information
sharing helps to prevent inconsistency among teams that are
geographically dispersed and are participating in the software
development process.

Using ontology to model the SE knowledge shorts the
development time, improves productivity, decreases cost, and
increases product quality. Ontologies provide better
understanding of the required changes and the system to be
maintained [3; 4; 5]. Software engineering domain ontologies
are very useful in developing high quality, reusable software by

providing an unambiguous terminology that can be shared
through the development processes. Ontologies also help in
eliminating ambiguity, increasing consistency and integrating
distinct user viewpoints [6; 7; 8; 9].

Standardization plays an important role in software
engineering by providing organizations with agreed and well
organized practices that assists the users of software
development methods in their work. Despite the efforts in
research and international standardization, inconsistency and
terminology conflicts appear between standards even within the
same organization. Besides, there is still no single standard
which embraces the whole Software Quality Assurance (SQA)
knowledge. There was an effort by different bodies to develop
Software Engineering standards followed by the forming of the
ISO/IEC Joint Technical Committee 1 (JTC1) workgroup in
order to guarantee consistency and coherency among standards.
The IEEE Computer Society and the ISOJTC1-SC7 agreed to
harmonize terminology among their standards.

Aiming to contribute to the harmonization of SQA
standards and research proposals, this article presents an
ontology model that identifies and represents the SQA
knowledge, both conceptual and operational. The rest of the
paper is organized as follows: section 2 introduces the SQA
ontology development and conceptualization activities. Section
3 evaluates the developed ontology showing case study that
demonstrates the deployment of the developed ontology.
Finally, section 5 summarizes the main findings of this study
and suggests further research work.

II. FROM STANDARDS TO ONTOLOGY MODEL

There is no single standard which embraces the whole SQA
knowledge. Various standards and proposals have used
different terminologies and vocabularies. With a goal to
develop a consistent terminology for software quality
assurance, different ISO and IEEE standards were used in the
ontology conceptualization activity while the Software
Engineering Body of Knowledge (SWEBOK) [10] remains the
important and primary source for developing the SQA ontology
that includes both domain and operational knowledge. Table 1
shows part of the glossary of terms extracted from the previous
sources aided by domain experts.

690

TABLE I. GLOSSARY OF TERMS OF THE SQA DOMAIN ONTOLOGY

Term Super-
concept

Definition Source

Process SQAConcept A set of activities that can be recognized as implementation of practices for specific purpose
A set of interrelated actions and activities performed to achieve a specified set of products, results,
or services.

Adapted from
CMMI v1.2
PMBOK 2008

Project owl:Thing A temporary endeavour undertaken to create a unique product, service, or result. PMBOK 2008

Deliverable SQAConcept Any unique and verifiable product, result, or capability to perform a service that must be produced
to complete a process, phase, or project.

PMBOK 2008

Attribute SQAConcept A measurable physical or abstract property of an entity. IEEE 00100

Requirement owl:Thing Need or expectation that is stated, generally implied or obligatory ANSI/ISO/ASQ
Q9000-2000

Functional
Requirement

Requirement A requirement that specifies a function that a system or system component must be able to perform. IEEE 610-12

Resource SQAConcept Any capability that must be scheduled, assigned, or controlled by the underlying implementation to
assure no conflicting usage by processes.

IEEE 00100

Technique Resource A defined systematic procedure employed by a human resource to perform an activity to produce a
product or result or deliver a service, and that may employ one or more tool.

PMBOK 2008

Measurement SQAConcept The determination of the magnitude or amount of a quantity by comparison (direct or indirect) with
the prototype standards of the system of units employed.

IEEE 00100

Measurement
Metric

SQAConcept A quantitative measure of the degree to which a system, component, or process possesses a given
attribute.

IEEE 610-12

For any quality product, measures associated with its
attributes should collectively reflect likely user satisfaction
with the use of the product and therefore the product entire
quality [11].

Measurement plays an important part in software
development. It can be used to indicate the quality of the
product being developed [12]. According to Pressman’s
categorization of software metrics, quality metrics, which
measure how the customer requirements are fulfilled, indicate
how closely software conforms to explicit and implicit
customer requirements. In this study, software measurements
and metrics are at the heart of the SQA ontology design. All
aspects of SQA measurement and metric as described in the
ISO/IEC 9126 standard are reflected in the proposed SQA
ontology design.

A complete conceptual model of the SQA ontology is
illustrated in Figure 1 [13]. The figure shows the main SQA
concepts as OWL classes where the arrows represent
relationships (OWL object properties) between domain classes
(the head of the arrow) and range classes (the tail of the arrow)
where the name on the line depicts the name of the relationship.
The individuals are modeled as ‘objects’ or literals in the
rectangular boxes (see Figure 2). The is-a property relates an
SQA concepts with its instances (OWL individuals). In the
model, Process and Measurement are concepts (classes) while
Use Cases and Test Coverage are instances of the classes
Technique and Measurement-Metric respectively. Here we
have followed some of the RDF graph notation for describing
tuples.

Protégé 3.4.6 was used as the ontology editing and
knowledge acquisition tool. Jambalaya tab, a protégé plug-in is
used for ontology visualization. A class hierarchy of the
software quality domain ontology as displayed by the
Jambalaya tab of Protégé is shown in Figure 2 where blue

arrows represents SQA main classes and red arrows represents
individuals of a class. Due to space limitation not all
individuals of all classes are shown.

Figure 1. Class Hierarchy of the SQA Ontology

III. EVALUATING THE SQA ONTOLOGY

Before publishing an ontology or building a software
application that relies on ontologies, the ontology contents (its
concepts definitions, taxonomy and axioms) need to be
evaluated. Ontology evaluation consists of assessing its quality,
thus improving its users’ confidence and promoting its
reusability. A survey on ontology evaluation methods and tools
can be found in [14].

According to Gómez-Pérez [14] ontology evaluation
requires:

691

Figure 2. The SQA Conceptual Model

Class

SQAProcess

Class

Deliverable

Class

Project

Class

Resource

hasProcess

Class

Observable
Attribute

Class

NonObservable
Attribute

Class

Quality
Attribute

uses

Functionality

Reliability

Efficiency
(Performance)

Usability

is-a

Portability

Reusability

Interoperability

Maintainability

is-a

is-a

is-a

isInputTo

is-a

Walk Through

Prototyping

Check List

Meeting

Use Cases

Simulation

requiredQualityAttribute

Class

Measurement

measures

Class

Measurement
Metric

hasMeasurement
Metric

is-a

conductedUsing

Validation

Verification

Inspection

Audit

Testing

Review

Audit Strategy

Design

QA Plan

Req. Specification

Review Report

Source Code

Test Cases

Test Report

User Manual

Validation Plan

Verification Plan

Test Specification

Operation Report

User Monitoring Record

is-a

Class
Procedure

Class
Technique

Class
Method

is-a

is-a

Accuracy
Security
Maturity

Fault Tolerance

Recoverability
Learnability
Operability

Installability

Interoperability
understandability

Time Behavior
Resource Utilization

Efficiency Compliance
Maintainability Compliance

Portability Compliance
Suitability

Reliability Compliance
Analyzability
Changeability

Stability
Testability

Adaptability
Replaceability
Coexistence

MTBF
Precision

Ease of Installation
Installation Flexibility

Data Exchangeability
Access Controllability

Failure Resolution
Fault Density
Test Coverage
Fault Removal

Availability
Restartability
Restorability
Undoability

Completeness of Description
Error Correction

Input Validity Checking

Message Clarity
Response Time
I/O Utilization

Accuracy to Expectation
Computational Accuracy

Data Corruption Prevention
Fault Detection

Failure Avoidance
Understandable I/O

Ease of function Learning

invokes

Data Flow Analysis

Complexity Analysis

is-a

Class

Requirement

produces

Class

Functional
Requirement

Class

NonFunctional
Requirement

is-a

hasDeliverable

hasRequirement ensuresQA

isInputTo
Measurement

692

 Verification which refers to building the ontology correctly;
 Validation which refers to whether the ontology definitions

really model the domain for which the ontology was
created. Ontology validation ensures that the correct
ontology was built. The goal is to show that the world
model is compliant with the formal model;

 Assessment which focuses on judging the ontology from
users’ points of view (human judgment).

Many attributes were used to develop the above-mentioned
ontology assessments. The most used attributes are:
 Completeness: all knowledge that is expected to be in the

ontology is either explicitly stated in it or can be inferred.
 Consistency: refers to whether or not a contradictory

knowledge can be inferred from a valid input definition.
 Conciseness: ensures that the ontology is free from any

unnecessary, useless, or redundant definitions.
 Expandability: refers to the ability to add new definitions

without altering the already stated semantic.

A. Ontology Verification

During implementation, the developed ontology was
verified for consistency. We have used the Protégé consistency
checker tool to automatically validate the consistency and
conciseness of the developed ontology. The tool uses red color
highlighting to signal inconsistency. Only inconsistent classes
will be displayed by the tool. Fig. 3 shows the result generated
by Protégé and the Racer Pro reasoner for the consistency
checking where no inconsistence classes are listed.

Syntax checking is performed by Protégé OWL plugin
which generates OWL statements during creation of the
ontology using the Graphical User Interface. The plugin
ensures that the generated OWL statements adhere to the rules
of the OWL language. In addition, the Jambalaya tab (Protégé
visualization plugin), enables a view of the graph
representation of the ontology to ensure the ontology is
consistent with the conceptual model (see Figure 1). Fig. 4
illustrates the SQA ontology top level concepts that adhere
with the conceptual model.

Figure 3. Racer Pro Consistency Checking Result

Figure 4. The Top Level of the SQA Ontology

B. Assessing the Quality of the SQA Ontology

Ontology assessment was conducted by judging the
ontology content from the SE specialists’ point of view. A
survey based on an assessment questionnaire was developed
for experts to check whether the model matches the purpose it
was built for.

1) Assessment Questionaire Design
The ontology assessment questionnaire consists of four

parts:

Part I contains closed questions about the respondent, such as
their experience in the SQA and ontology domains, their
involvement in teaching the SQA domain and their opinion
about the usefulness of using ontologies in teaching SQA.

Part II consists of 7 closed questions with a scale of 1-5,
where 5 = strongly agree and 1 = strongly disagree, to validate
the following criteria [16; 17; 18; 19]:

Completeness: the model covers major concepts of the domain;

Structure: the taxonomy and relationships are represented
correctly in the model;

Clarity: the model is free from unnecessary and redundant
concepts;

Consistency: the model is free from explicitly or implicitly
contradictory knowledge;

Expandability: new knowledge can be added to the model
without altering the existing semantic.

Parts III and IV consist of open questions about the
respondent suggestions of non-relevant concepts to be
removed from the model and missing concepts to be added to
the model respectively.

2) Statistical Analysis and Results
The conceptual model, shown in Figure 1, with a hyperlink

to the questionnaire has also been sent to SE domain specialists
to participate in the survey. Collecting responses was a
challenge step due to the limited number of experts in the SE
domain and in SQA in particular. It took more than 7 months to
get 16 responses only where 11 of them rating themselves as
experts. The results of the survey are presented below where an
enhanced version of the ontology is being developed to reflect
the main suggestions from the questionnaire:

693

Completeness: Majority of the participants (86.7%) agreed
that the ontology developed in this research covers major
concepts of the SQA domain. 15.4% of them strongly agree
and none of the respondents disagree with the completeness of
the ontology. However, an important suggestion to add Testing
related concepts (black and white box, system and unit
test…etc.) was made. Though, the current ontology is not
heavily focused on testing techniques, it is worth investigating
this ontology aspect in future developments. Another
suggestion was made to add concepts such as Software type,
Software life cycle model, Architecture, Configuration
management, however, we strongly believe that these are not
SQA concepts. Nevertheless, these concepts can be added to
the ontology if the latter is to be mapped to other SE areas or to
an upper-level SE ontology.

Structure: A reasonable majority of the respondents
(66.7%) agreed with the ontology taxonomy as is, with no real
disagreements. There were few remarks such as having Design
comes after Review Report in the list of instances of the class
Deliverable, which we consider semantically insignificant.

Clarity: This criteria obtained a borderline score, just
around the mean (3.13). However, we believe that this a
reasonably good result due to the large number of overlapped
and redundant SQA terms in available proposals and sources of
SQA knowledge. It was noted that most reported disagreements
were related to the confusion between Measurements and
Metrics. A significant suggestion that will be adopted in the
enhanced version is to use the terms Quality_Characteristic
and Sub-characteristic instead of Quality_Attribute and
Measurements respectively. We can also replace the term
Measurement_Metric with the term Measure as per the latest
quality standard ISO/IEC 25010 [20].

Consistency: A reasonable majority of the responses (66.7)
agreed that the developed ontology is consistent where 30% of
them strongly agreed on its consistency. Ontology consistency
was verified using the Protégé consistency checker plugin.

Expandability: A good ontology is assumed to cover
necessary concepts of the domain and structure them in a way
that adding evolving concepts would not affect the existing
structure. A satisfactory result was obtained for this criterion as
the majority (80%) agreed on the expandability of the
developed ontology. Suggestions to include agile terminology
with new quality measurements and metrics (as in ISO/IEC
25010) will be considered as extensions in the enhanced
version of the ontology.

Although, there is no such a single ontology that can
unanimously represent any knowledge area, especially for an
evolving domain like SQA, the survey shows a high level of
agreement around the major assessment criteria. This is despite
the fact that each participant responds based on their own view,
background and context.

Participants’ responses to Part II of the assessment
questionnaire are illustrated in Figure 5. Responses of
participants who are considered to be expert in the field and
those with average expertise are represented in figures 6 and 7
respectively. The experts’ evaluation is significant and very
positive.

Figure 5. Participants’ Assessments of the SQA Ontology

Figure 6. Experts’ Assessments to the SQA Ontology

Figure 7. Assessments of Participants with Average Experience in the
Domain

C. Validation Using Application-Based Evaluation: SQAES
Case Study

Application-based (or task-based) evaluations offer a useful
framework for measuring practical results of ontology
deployment such as responses provided by the system and the
ease of use of the query component [18]. A proof of concept
prototype consisting of an SQA E-Learning System (SQAES)
has been designed and implemented [21]. The prototype system
aims at guiding software developers through the necessary QA
practices by providing resources that deal with SQA related
aspects of the software process in hand and hence improves
product quality. This is achieved by sensing the developer’s
current activity and suggesting relevant learning objects LOs
(e.g. recommendations for good practices, example code, and
graphical description of a related methodology/process) that
deal with all SQA aspects related to the current software

694

process. In this study, our context model is divided into a
higher level operational global ontology and domain specific
ontology (SQA ontology). The global ontology is a unified
ontology that models the software developer’s profile and
context. The system is able to determine the leaner’s current
software development context and infer related SQA
knowledge by invoking the appropriate reasoning mechanisms.
To achieve this goal, the system’s global ontology is
augmented with reasoning rules encoded using the Semantic
Web Rule Language (SWRL) [13].

Figure 8 shows a combined view of screen shots presented
by the system when the learner query about “Precision” metric.
Besides the learning resources associated with the queried
concept, the system provides the learner with suggested SQA
related topics for further investigation. Unnecessary and
overwhelmed information is prevented using ontology axioms
[21].

Figure 8. SQAES Responses to Learner’s Query

IV. CONCLUSION

Software Quality Assurance ontology provides consistent
terminology that may support communications between people
and software agents. In this paper an SQA ontology that
represents both domain and operational knowledge was
developed. The common vocabulary and relationships modeled
in the developed ontology is an attempt to resolve the problem
of inconsistency among current standards and proposals. The
ontology has been assessed and different evaluation approaches
were conducted to validate and assess the SQA ontology.
Future plans include the enhancement of the proposed ontology
to account applicable comments provided by participants of the
ontology assessment questionnaire.

ACKNOWLEDGMENT

The authors would like to thanks reviewers for their
assessments, comments, and suggestions that helped improve
the current work.

REFERENCES

[1] Boehm, B., Chulani, S., Verner, J., Wong, B., (2009). "Seventh
workshop on Software Quality," Software Engineering - Companion

Volume, 2009. ICSE-Companion 2009. 31st International Conference on
, vol., no., pp.449-450, 16-24 May 2009.

[2] Mnkandla, E., Dwolatzky, B. (2006). Defining Agile Quality Assurance.
Proc. ICSEA 2006: International Conference on Software Engineering
Advances.

[3] Mendes, O., and Abran, A., (2004). Software Engineering Ontology: A
Development Methodology, Position Paper, Metrics News 9:1, August,
pp. 68-76.

[4] Wille, C., Dumke R., Abran A. and Desharnais J.M., (2004). E-learning
Infrastructure for Software Engineering Educations: Steps on Ontology
Modeling for SWEBOK, Proceedings of the IASTED International
Conference on Software Engineering, pp. 520-525.

[5] Calero, C., Ruiz, F. and Piattini, M., (2006). Ontolgies in Software
Engineering and Software Technology, Springer

[6] Uschold, M., and Gruninger, M., (1996). Ontologies: Principles,
Methods, and Applications, Knowledge Engineering Review, Volume
11 number 2.

[7] Perez, A. and Benjamins, V., (1999). Overview of Knowledge Sharing
and Reuse Components: Ontologies and Problem Solving Methods,
IJCAI-99 workshop on Ontologies and Problem-Solving Methods
(KRR5), Stockholm, Sweden, August 2, 1999.

[8] Spyns, P., Meersman, R., and Jarrar, M., (2002). Data Modelling versus
Ontology Engineering, ACM SIGMOD Record, v.31 n.4, December
2002

[9] Zhao Y., Dong J., and Peng T., (2009). Ontology Classification for
Semantic-Web-Based Software Engineering, IEEE Transactions on
Services Computing, v.2 n.4, 303-317.

[10] SWEBOK, (2004). Guide to the Software Engineering Body of
Knowledge, ed. Bourque P., and Dupuis R. IEEE Computer Society
Press, 2004. Available at: http://www.swebok.org

[11] Bishop R., Lehman M.M. (1991). A View of Software Quality. IEEE
Col. on Designing Quality into Software Based Systems. London, 14
Oct. 1991.

[12] Pressman, R.S., (2005). Software Engineering: a Practitioner’s
Approach, Sixth edition. McGraw-Hill Inc.

[13] Bajnaid N., Benlamri R. and Cogan B. (2012), “An SQA e-Learning
System for Agile Software Development”, Proc. of the Fourth
International Conference on Networked Digital Technologies, Dubai,
UAE, April 24-26, 2012. Communications in Computer and Information
Science(CCIS 7899) Series of Springer LNCS (294), 2012, pp. 69-83.
ISBN: 978-3-642-30566-5. E-ISBN: 978-3-642-30567-2.

[14] Gómez-Pérez, A., Fernandez-López, M. & Corcho, O., (2004).
Ontological engineering: with examples from the areas of knowledge
management, e-commerce and the semantic Web, Springer-Verlag, New
York; London.

[15] Apache Jena, Java framework for building Semantic Web applications
(2012). http://incubator.apache.org/jena/index.html

[16] Gruber, T., (1995). Towards principles for the design of ontologies used
for knowledge sharing, Int. Journal of Human-Computer Studies,
Volume 43, No. 5/6.

[17] Gómez-Pérez A (2001) Evaluation of Ontologies. International Journal
of Intelligent Systems 16(3):391–409

[18] Obrst L., et al. (2007). The Evaluation of Ontologies: Toward Improved
Semantic Interoperability. Chapter in: Semantic Web: Revolutionizing
Knowledge Discovery in the Life Sciences, Christopher J. O. Baker and
Kei-Hoi Cheung, Eds., Springer.

[19] Vrandečić, D., (2009). Ontology Evaluation, Handbook on Ontologies,
International Handbooks in Information Systems, 2nd edition, Springer,
Heidelberg, 2009, pp. 293-313.

[20] ISO/IEC 25010: Systems and software engineering -- Systems and
software Quality Requirements and Evaluation (SQuaRE) -- System and
software quality models, 2011.

[21] Bajnaid, N.; Benlamri, R.; Cogan, B.; , "Context-aware SQA e-learning
system," Digital Information Management (ICDIM), 2011 Sixth
International Conference on , vol., no., pp.327-331, 26-28 Sept. 2011
doi: 10.1109/ICDIM.2011.6093327

695

DOPROPC: a domain property pattern system helping
to specify control system requirements

Fan Wu
School of Software
Tsinghua University

Beijing, China
wufan0924@yahoo.com.cn

Hehua Zhang
School of Software, TNList, KLISS

Tsinghua University
Beijing, China

zhanghehua@tsinghua.edu.com

Ming Gu
School of Software, TNList, KLISS

Tsinghua University
Beijing, China

guming@tsinghua.edu.com

Abstract—Model checking provides means to validate the
correctness of systems. It is often desired by the developing
process of safety critical control systems. However, it hasn’t been
widely used in industry. There are several causes for this problem.
We think a primary cause is that industry experts are not
familiar with formal logics, notations and formal semantics. On
the other hand, they are very familiar with the domain notations
in the applications. This paper describes domain property
patterns of control systems called DOPROPC, which builds a
bridge between domain knowledge and formal specifications by
using property patterns. With DOPROPC, domain experts can
easily understand the meaning of each pattern. Through the
automatic translation underlined in our method, the formal
specification of the properties can be easily obtained.

Keywords-property pattern; domain knowledge; control system;
formal specification

I. INTRODUCTION
Control systems are usually safety-critical. Recently, formal

methods are widely used to ensure correctness and safety of
control systems. Model checking is a formal method for
software behavioral compliance checking [1], which can
automatically check the behavior of software. Despite the
automation, users of this technique still have to specify the
system requirements in formal specification languages, such as
Linear Temporal Logic (LTL [9]), which are unfamiliar to
industrial engineers. This is also an important reason that
model checking hasn’t been widely adopted.

To overcome this difficulty, Dwyer et al. [2] firstly
developed a pattern system for property specification. The
property patterns are high-level abstractions of frequently used
temporal logic formulae. They enable people who are not
experts in temporal logics to read and write formal
specifications with ease and thus make model checking tools
more accessible to common software practitioners [3].
Although property patterns have already been in the abstract
level, we found there is still a long distance from requirements
to them. Existed property patterns are based on the semantic of
formal properties, for example in [2] they defined Response
pattern as ‘A state/event P must always be followed by a
state/event Q within a scope.’ When an engineer tries to map a
real property to Response pattern, he/she must recognize the

order relation hidden in the property and must clear up which
state/event is occurred before another one. This work is usually
difficult to industrial engineers, since it needs knowledge about
formal semantics. Intuitively, we come up with an idea: using
what industrial engineers are most familiar with -domain
knowledge- to do the work. That is to say adding domain
knowledge to property patterns which can be a bridge between
domain knowledge and formal semantics.

In this paper, we present a new property pattern system
called DOPROPC (DOmain PROperty Pattern for Control
systems), and an associated tool helping experts to use this
pattern system. DOPROPC is a domain property pattern system
to specify behavioral properties of control systems. It is a two-
layer pattern system. The top layer is domain based, which uses
domain knowledge of control systems. The bottom layer is
logic based, which extends from Dwyer et al. property patterns
[2]. This pattern system enables experts using their working
domain knowledge to specify system properties.

The rest of the paper is organized as follows. Section 2
includes related works. In section 3, we describe DOPROPC,
including the bottom layer and the top layer. In section 4, we
conclude this paper.

II. RELATED WORKS
Dwyer et al. [2] created Property Patterns in 1999. We call

it qualitative property patterns. In their work, Dwyer presented
8 property patterns and 5 scopes. Each pattern was represented
in Computation Tree Logic (CTL [10]), LTL and Quantified
Regular Expressions (QRE [11]). In their study, 92% of 500
properties can be described by their property patterns.

In the later work, V. Gruhn and R. Laue [4] presented real-
time property patterns, which added time feature based on
qualitative property patterns, and represented patterns to Timed
Observer Automata. Real-time property patterns can be used in
real-time model checking. S. Konrad and B. H. C. Cheng [5]
also presented real-time patterns in 2005. In their work, they
represented patterns in Metric Temporal Logic (MTL [12])
and Timed Computational Tree Logic (TCTL [13]). In 2008,
Lars Grunske [6] developed probabilistic property patterns that
was represented in Probabilistic Computation Tree Logic
(PCTL [14, 15]) and Continuous Stochastic Logic (CSL [16,

This research is sponsored in part by National Nature Science Foundation
(No.61202010, 91218302), National Key Tech. R&D Program
(No.SQ2012BAJY4052) and 973 Program (No.2010CB328003) of China.

696

17]). Probabilistic patterns can be used in probabilistic model
checking.

Property patterns have been used in different fields. M.
Haydar et al. [7] developed specification patterns for formal
web verification. They presented detailed patterns by
categorizing quality assurance properties of web applications. J.
Yu et al. [1] presented property patterns for service
composition domain. They used ontology to present property
patterns, and solved composition problems which have a great
use in web service composition domain. These works use
property patterns in certain domains, and provide evidence for
our idea. From their work, we can see that applying patterns
into certain domain is feasible and necessary. Control system
domain is pervasive in our life and is safety-critical, but we
haven’t found any study presenting property patterns for this
domain. Our work targets this problem and has practical
significance.

III. DOPROPC PROPERTY PATTERNS
In our work, we developed DOPROPC as a two layer

property pattern system. The bottom layer is the base of this
system. The top layer is domain related. Considering the two
layers are both abstracted, they can’t be complete. We design
the mapping relation, as shown in Fig. 1. Most of the top layer
patterns can be mapped to the bottom layer patterns, but some
may be mapped to formal logics directly. The mapping
between each layer is totally based on formal semantics. We
introduce each layer respectively as follows.

Figure 1. Structure of DOPROPC.

A. The Bottom layer of DOPROPC
The bottom layer depends on qualitative property patterns

[2], real-time property patterns [4, 5] and probabilistic
property patterns [6]. These three patterns have their own
obvious features, so users need to make a decision about which
pattern system to use at the first step to describe properties,
which is an extra burden to users. Moreover, these three
patterns have reduplications. For this reason, we merge these
three patterns together to gain an overall view.

We classify our basic property patterns into two categories
following Dwyer’s classification of patterns: Occurrence and
Order. Occurrence means something happen or not happen.
Order describes the relation between two or more things. We
present 15 property patterns. Table I gives a full view of them.
We explain each of them as follows:

 Recurrence: A given state/event occurs repeatedly
every k times.

 MinmumDuration: Once a given state/event is
satisfied, it remains at least c units of time.

 MaximumDuration: Once a given state/event is
satisfied, it remains less than c units of time.

 ResponseInvariance: If a given state/event P occurs,
then a given state/event Q holds continuously.

 Until: A given state/event P holds without interruption
until a given state/event Q holds.

 Others: Other patterns’ basic meaning is same as
qualitative property patterns. Due to the space
limitation, we omit explanations of them, you can see
[2] for more details.

TABLE I. BASIC PROPERTY PATTERNS

Pattern::= Occurrence | Order
Occurrence :: = Absence | Universality | Existence | Bounded Existence
 | Recurrence
 | MinimumDuration | maximumDuration
Order :: = Precedence | Response | PrecedenceChain1-2

| PrecedenceChain2-1| ResponseChain1-2
| ResponseChain2-1 | ResponseInvariance | Until

TABLE II. ABSENCE PATTERN

Pattern name Absence
Structured

natural language
description

It is never the case that [P] holds [(tl,tu)] [(pl,pu)]

Formal language
descriptions

LTL G(!P)
CTL AG(!P)

TCTL AG(tl,tu)(!P)

PCTL (!)tu
pG P

PRISM P>=pl [G[tl,tu] !P]
or P<=pu [G[tl,tu] !P]

Examples
The probability that the system is free of failures
in 2 hours is 0.98.

Our pattern template includes four parts elements: pattern
name, structured natural language description, formal language
descriptions and examples. Table II shows Absence pattern as
an example. Structured natural language description represents
pattern’s basic behavior, time and probability features. The
“Structured natural language description” part is the biggest
difference of our basic property patterns compared with those
three existed property patterns, for it can describe time and
probability features at the same time. In order to increase the
applicability of our basic property pattern, we provide 5
frequently used formal languages-LTL, CTL, TCTL, PCTL
and PRIMS- in the formal language description part.
Considering the ability of expression, LTL and CTL can
express qualitative properties. TCTL can express real-time
related properties. PCTL and PRISM can indicate probability
properties. Different model checking tool has different property

697

language, e.g. SPIN [18] can verify LTL properties, NuSMV
[19] receive LTL and CTL specifications. UPPAAL [20] is a
popular real-time model checking tool, and its specification
language is a simplified version of TCTL. PRISM [21] can
verify probability models, it subsumes several probabilistic
logics such as PCTL, and its own language-PRISM-also can
specify some probabilistic properties.

In Dwyer’s study, they presented 5 scopes: global, before,
after, between and after-until. In our basic property patterns, we
just use global scope. That is because in Dwyer’s survey [2],
most examples (80%) used a global scope.

B. The top layer of DOPROPC
We concluded 39 domain property patterns of control

systems, which are classified into 12 categories. The patterns
are generalized from 104 properties of several real control
systems, such as the Dual elevator PLC control system, the
Pump control system and the stage control system. In domain
property pattern, we use structured natural language description
to distinct different patterns, and each of the 39 domain
patterns is belong to a certain domain property category. To
save space, we briefly introduce each category below, and list
one domain pattern in the category as an example.

 Analog quantity: Express the range of variables in
system within time and probability scopes. It contains
three patterns, such as:

“variable [x] is still [in a certain range]”

 Time horizon: Time is important and common
features in control system properties. Actually, patterns
in other categories can also describe time features, but
it is more intuitive to single them out. This class
contains three patterns, such as:

“[P] continuously holds less than [c] units of time”

 Mutual exclusion: Two or more state/event can’t
occur at the same time within time and probability
scopes. In this category, we provide two patterns, for
example:

“[P] and [Q] can’t occur at the same time”

 State reachability: The system can reach a given
state/event within time and probability scopes. It
includes two refined patterns, for example:

 “After [P] holds, system can reach to [Q]”

 State hold: The system hold on a given state, or an
event continuously happens within time and
probability scopes. The difference between this and
State reachability is that State reachability emphasizes
something eventually happens, but this class stresses
something continuously happening. It includes three
patterns, for example:

 “When [P] holds, system will keep working in state
[Q]”

 Start up: It includes four patterns about the system’s
start-up action or other entity’s initialization in the
system. Below is one of the four domain patterns:

“Only after [P] holds, the [device/system] can start”

 Stop: It includes five patterns about the system’s stop
action or other entity’s break down in the system.
Below is one of the five domain patterns:

“the [device/system] will eventually stop”

 Manual control: Control system has interactions with
humans, and the system often receives control
commands from humans. This category contains six
patterns, for example:

“After push button [A], [P] will hold”

 Command control: Control system also has
interactions with physical devices, so the system can
send or receive commands, and do related actions. We
include two patterns in this category, for example:

“After received command [A], [P] will hold/happen”

 Fault handling: To ensure the reliability of control
system, fault handling is important in these systems.
This class has three patterns, for example:

“When the [system/device] break down, [P] will
hold/happen”

 Motion control: It expresses properties about
movement, motion distance and motion destination.
This category has two patterns, for example:

“After [P] holds, the [device] will move [x] units of
distance”

 Alarm: It expresses properties about alarms including
overtime alarm, fault alarm and alarm reset. This
category has three patterns, for example:

“After [P] holds, if [Q] don’t happen in [x] units of
time, then system will alarm”

TABLE III. ANALOG QUANTITY 2 DOMAIN PROPERTY PATTERN

Domain pattern name Analog quantity 2

Structured natural
language description

After [P] happens, variable [X] is [in a
certain range] [(tl,tu)] [(pl,pu)]

Mapped basic property
pattern ResponseInvariance

Parameters mapping P: P;
S: ([x][in a certain range])

Formal description
example G(P G ([x][in a certain range]))

Our domain property pattern template includes 5 parts, just
like Table III shows. “Structured natural language description”
represents the semantic of the pattern, and variable in brackets
should be instantiated by users. “Mapped basic property
pattern” and “Parameters mapping” together indicate the
transformation from domain property pattern to basic property

698

pattern. “Mapped basic property pattern” gives the mapped
basic pattern to the domain property pattern. “Parameters
mapping” explains how to map parameters in the two patterns,
and parameter in italic is the variable in the basic property
pattern.

IV. CONCLUSION AND FUTURE WORK
Property patterns have improved the adoption of formal

methods in industry. To move forward the usability of property
patterns, we have developed the Domain Property Pattern for
Control systems (DOPROPC). Our work has three
contributions: (1) merging existent property patterns [2-6] as a
full-scale basic property pattern system, which is the bottom
layer of DOPROPC, (2) presenting a domain based property
patterns of control system as the top layer of DOPROPC, and
(3) developed a specification editor to help users to use
DOPROPC easily, but for the space limitation, we haven’t
introduced the editor in this paper.

Markus Lumpe et al. developed a specification framework
called PSPWizard [8]. In their work, they also merged existed
property patterns. The difference between their work and our
basic property patterns is that we added Bounded Existence
pattern, and deleted their TransientState and SteadyState
patterns. We can describe TrainsientState using Existence
pattern when we set the upper time and lower time equally.
Similarly, we can replace SteadyState using Universality
pattern by not set time features. While our work has a different
focal point against theirs. Our work focus on control system
domain, but PSPWizard project is still focus on formal
semantics.

In the future, we will optimize domain property patterns of
control systems including the specification editor, and develop
other domain property patterns. Furthermore, we’ll try to
conclude a methodology from summarizing different domain
property patterns as a general method to help different domain
experts to develop their own domain property patterns.

ACKNOWLEDGMENT
This research is sponsored in part by National Nature

Science Foundation (No.61202010, 91218302), National Key
Tech. R&D Program (No.SQ2012BAJY4052) and 973
Program (No.2010CB328003) of China.

REFERENCES

[1] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, and J. Wang. Pattern based
property specification and verification for service composition. In K.
Aberer et al., editor, Proc. 7th Int. Conference on Web Information
Systems Engineering, WISE 06, volume 4255 of LNCS, 2006:156–168.

[2] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 1999
International Conference on Software Engineering (ICSE’99),
1999:411–421.

[3] Gruhn V. Laue R.: Specification Patterns for Time-Related Properties. In
12th International Symposium on Temporal Representation and
Reasoning (2005) 189 - 191, Burlington, Vermont, USA.

[4] V. Gruhn and R. Laue. Patterns for timed property specifications. Electr.
Not. Theor. Comp. Sci, 2006, 153(2):117–133.

[5] S. Konrad and B. H. C. Cheng. Real-time specification patterns. In G.-C.
Roman, W. G. Griswold, and B. Nuseibeh, editors, 27th Int. Conf. on
Software Engineering, ICSE 05, 2005:372–381.

[6] L. Grunske. Specification patterns for probabilistic quality properties. In
Robby, editor, 30th International Conference on Software Engineering
(ICSE 2008), 2008:31–40.

[7] M. Haydar, H. Sahraoui, and A. Petrenko. Specification patterns for
formal web verification. In ICWE '08: Proceedings of the 2008 Eighth
International Conference on Web Engineering, Washington, DC, USA,
2008: 240-246.

[8] Markus Lumpe, Indika Meedeniya, Lars Grunske. PSPWizard: Machine-
assisted Definition of Temporal Logical Properties with Specification
Patterns. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering.
ACM Press, New York, 2011.

[9] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems, Specification. Springer-Verlag, 1992.

[10] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244-263,
Apr. 1986.

[11] K. Olender and L. Osterweil. Cecil: A sequencing constraint language
for automatic static analysis generation. IEEE Transactions on Software
Engineering, 16(3):268-280, Mar. 1990.

[12] R.Koymans. Specifying Real-Time Properties with Metric Temporal
Logic. Real-Time Systems, 2(4):255–299, 1990.

[13] Henzinger, T. A., X. Nicollin, J. Sifakis and S. Yovine, Symbolic Model
Checking for Real-Time Systems, in: 7th. Symposium of Logics in
Computer Science (1992), pp. 394-406.

[14] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[15] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In P. S. Thiagarajan, editor, Proc. of the 15th
Conference on Foundations of Software Technology and Theoretical
Comp. Science, FSTTCS 95, volume 1026 of LNCS, pages 499–513.
Springer, 1995.

[16] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying
continuous time markov chains. In R. Alur and T. A. Henzinger, editors,
Proc. 8th International Conference on Computer Aided Verification,
CAV 96, volume 1102 of LNCS, pages 269–276. Springer, 1996.

[17] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model
checking of continuous-time markov chains. In J. C. M. Baeten and S.
Mauw, editors, Proc. 10th International Conference on Concurrency
Theory, CONCUR 99, volume 1664 of LNCS, pages 146–161. Springer,
1999.

[18] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, Boston MA, 2004.

[19] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In CAV ‘02: Proceedings of the 14th International Conference
on Computer Aided Verification, pages 359–364, London, UK, 2002.
Springer-Verlag.

[20] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1–
2):134–152, 1998.

[21] M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with PRISM: a hybrid approach. Int. Journal on
Software Tools for Technology Transfer(STTT), 6(2):128–142, Aug.
2004.

699

A Mixed-way Combinatorial Testing for Concurrent Programs
Xiaofang Qi Jun He Peng Wang

School of Computer Science and Engineering
Southeast University

Nanjing, China
xfqi@seu.edu.cn, hecelery@163.com, pwang@seu.edu.cn

Abstract—Reachability testing is an important approach to
testing concurrent programs. It can generate and exercise all
partially-ordered synchronization sequences automatically and
on-the-fly without constructing any static models. However, it
suffers from the problem that the number in synchronization
sequences is too large to be exhaustively exercised. In this paper,
we present a new combinatorial testing strategy, called mixed-
way reachability testing, which adopts the dynamic framework of
reachability testing but reduces the number in synchronization
sequences that are exercised. The reduction is based on the
mixed-way combinatorial strategy, which covers all the valid
combinations of receiving events in each subsystem of a
concurrent program. We present an algorithm that implements
the mixed-way testing and conduct our experiment on an
industrial control simulator program. The preliminary
experimental results indicate that the mixed-way reachability
testing can keep the same effectiveness of fault detection as
exhaustive testing while substantially reducing the number in
synchronization sequences. Compared to the other existing
reachability testing approaches, it achieves a good tradeoff
between the effectiveness and efficiency of testing.

Keywords: combinatorial testing; reachability testing; mixed-way
testing; concurrent programming

1. INTRODUCTION
 With the wide spread of multi-core architectures,
concurrent programs are developed and used pervasively [1].
However, concurrent programs usually exhibit non-
deterministic behaviors. Multiple executions of a concurrent
program with a given input might select different
synchronization sequences and generate different outputs.
Non-deterministic testing and deterministic testing are adopted
to deal with such non-deterministic behaviors [2-10]. During
non-deterministic testing, a concurrent program with a given
input is executed many times without any control in order that
different synchronization sequences could be chosen [2]. In
contrast, a specific synchronization sequence is selected and
used to control the execution of the program during
deterministic testing [3-10].

Reachability testing is an approach that combines
nondeterministic and deterministic testing, in which program
information is dynamically collected and thus avoid the
inherent imprecision of static analyses [6-10]. It exercises all
partially-ordered synchronization sequences of a concurrent
program exactly once while no test history is needed to be
saved. This exhaustive strategy is valuable in theory, but it is
often impractical. Combinatorial strategy is adopted to reduce
the number in synchronization sequences [9]. The
combinatorial strategy, called t-way reachability testing,
generates race variants to cover not all the valid combination

of the race outcome changes in a given synchronization
sequence, but only all the valid t-way combinations, where t is
a small number.

In the t-way reachability testing, the strength of
combinations is preset and fixed. This strategy is often blind to
identify the strength of combinations, i.e. the value of t
because it does not consider the correlativity among
synchronization events in a program. If a concurrent system
consists of one or more subsystems, each of them usually has
different correlativity among synchronization events, i.e.
interactions with different values of way. So the t-way
combinatorial strategy is not appropriate for every subsystem.
In this paper, we present a new mixed-way combinatorial
strategy for reachability testing. This strategy first identifies
the value of combinatorial way for each subsystem by
analyzing synchronization events, and then implements the
mixed-way combinatorial reachability testing.

The remainder of this paper is organized as follows. Section 2
uses an example to illustrate the reachability testing process.
Section 3 describes the mixed-way reachability testing
strategy, and presents an algorithm that implements the
strategy. Section 4 reports experimental results that compare
exhaustive, t-way, and the mixed reachability testing. Section
5 concludes this paper.

2 BACKGROUND OF REACHABILITY TESTING
Reachability testing is allowed to be applied to several

commonly used synchronization constructs [7]. Fig.1 shows a
concurrent program CP and a reachability testing process of
the program. The program consists of three threads, which
interact by accessing monitor m. When a thread T calls a
synchronization method of m, i.e. read() or write(), a monitor
call event occurs on T and we refer to the calling as a sending
event. When T finally enters m, a monitor entry event occurs
on m and we refer to the entry as a receiving event. The
sending event s is said to be synchronized with the receiving r
and <s, r> is a synchronization pair. s is the sending part of r
and r is a receiving part of s.

Given an execution of a concurrent program, a SYN-
sequence, short for synchronization sequence, is defined to be
the totally ordered sequence of sending and receiving events
that occurred on a thread or a synchronization object, as well
as the synchronization pairs exercised in the execution. Fig.1(b)
shows six SYN-sequences, namely Q0, Q1, Q2, Q3, Q4 and Q5.
As illustrated in Q0, s1 r1 represents a synchronization, in
which s1 is a sending event indicating that T1 call m.read(), r1
is a receiving event indicating that T1 enters the monitor m.

700

Let s be a sending event, r be a receiving event, and <s, r>
be a synchronization pair in a SYN-sequence Q. Let s be
another sending event in Q. We say there exists a race between
s and s with respect to r, if s could be synchronized with r in
a different execution, in which all the events that happen
before s or r in Q, and the synchronizations between these
events are replayed. Note that the happen before relation is the
usually one as in [7]. If the following four conditions are
satisfied, s is in the race set of r:

1. s can be synchronized with r,
2. r does not happen before s ,
3. if <s , r > is a synchronization pair, then r happens

before r , and
4. if a sending event s has the same source and

destination as s but happens before s , then there
exists a receiving r such that <s , r > is a
synchronization pair and r happens before r.

The race set of r, denoted as race_set(r), is the set of

sending events that have a race with s w.r.t r. As shown in
Fig.1(b), in Q0, race_set(r1) is {s2, s3}, race_set(r2) is {s3}, and
race_set(r3) is empty.

A race variant V of a SYN-sequence Q is a prefix of Q by
changing the sending event of one or more receiving events in
Q while satisfying the following constraints for any one of
these receiving events. Suppose that r is a receiving event that
is synchronized with s in Q, and the sending part of r is
changed to be s in V. Then, (1) s must be in the race set of r
in Q; and (2) an event e must be not in V if r is in the control
structure of e. Note that the control structure of e, denoted as
c-struct(e), is the set of events in Q whose existence might
affect e. If e is the first event exercised by T, c-struct(e) is

empty; otherwise, it is the prefix of Q that contains the event e
that T exercised immediately before e and all the evens that
happened before e , as well as the synchronizations between
them. As an example, in Q0, c-struct(r2, Q0) is {s1, r1}.

For a SYN-sequence Q, one approach to generating race
variants is to build a race table. Each row of a race table
represents a unique race variant of Q. A race table contains a
column for each receiving event in Q whose race set is not
empty. Table 1 shows the race table for Q0 in Fig.1. In a race
table, the value v in the row for V and the column for r
indicates how r in Q is changed to generate V. When v is -1, it
indicates that r is removed from V. When v is 0, it indicates
that no new sending partner is specified for r. When v is
greater than 0, it indicates that the sending partner of r in V is
changed to the vth event in the race set of r. Once the sending
event of a receiving event r in V is modified, all the events in
Q whose control structure contains r must be removed.

Constructing a race table can be handled as a combination

issue. However, not every combination will derive a valid
variant. Each variant must be checked to ensure its validity.
Given a combination c, denote the component values as c[1],
c[2], …, c[n]. If it satisfies all the following rules, c is valid:

1. There exists at least one value c[i], 1 i n, such that
c[i]>0.

2. c[i]=-1, 1 i n, if and only if there exists an index j,
where 1 j n and j i, such that c[j]>0 and
rj c_struct(ri).

3. If c[i]>0, there does not exist an index j, 1 j n, such
that c[j]>0 and rj c_struct(s), where s is the c[i]th
sending event in the race set of ri.

Reachability testing begins by executing a program non-
deterministically. As for the example, we assume it exercises
SYN-sequence Q0 in Fig.1. Then, the race set of each
receiving event in Q0 is computed to derive the variants of Q0,
namely V1, V2, and V3, which are shown in Table 1. Each
variant is used to perform a prefix-based test run, in which the
events and the synchronizations in the variant are controlled to
be replayed. Thereafter, the test run continues non-
deterministically again without controlling which SYN-
sequence is exercised until it ends. Prefix-based testing with
V1, V2 and V3 exercises complete sequences Q1, Q2, and Q3,
respectively. Then new variant V4 and V5 are derived from Q2
and Q3, respectively. This process continues until no new
variants are derived. Finally, the reachability testing stops.

3. MIXED-WAY COMBINATORIAL REACHABILITY TESTING
Exhaustive reachability testing covers all the valid possible

combinations of the race outcome changes while t-way
reachability testing covers all the t-way valid combinations.
Assume there exist several groups of interaction relations

 T1 T2 M T3

s1 r1

s2 r2

Q0

r3 s3

 T1 T2 M T3

s1 r1

s2

r2

V1/Q1

r4

s3

 T1 T2 M T3

s1

r1 s2

r5

V2/Q2

r6 s3

 T1 T2 M T3

s1

r1

s2

r7

V3/Q3

r8

s3

 T1 T2 M T3

s1

r1 s2

r5

V4/Q4

r9

s3

V1

V4

V3

V5

V2

 T1 T2 M T3

r1 s3

s2 r7

V5/Q5

s1 r10

(b)
Fig.1. An example program and a reachability testing process

 of the program

T1 T2 T3
x=m.read(); m.write(); m.write();

(a)

Table 1 Race Table for Q0 in Fig.1
Race Variant r1 r2

V1 0 1
V2 1 -1
V3 2 -1

701

among the receiving events in Q. Instead, our mixed-way
reachability testing covers all the valid possible combinations
of the receiving events in every group.

In this paper, we present an approach to identifying the
interaction relations by analyzing communication activities.
When a monitor object in a concurrent program has no direct
or indirect communication activities with other monitor
objects, we say there exists an interaction relation among all
methods in the monitor. In monitor-based concurrent programs,
communication activities mainly include synchronization
between threads, such as wait() or notify(), and accessing
shared data member. If there exist direct or indirect
communication activities among a group of monitor objects,
an interaction relation among all methods in all monitor
objects of the group exists.

Assume R is a set that contains all receiving events in a

SYN-sequence Q, and there exist k groups of sub-interaction
relations among these receiving events. Let the k subsets

corresponding to the k groups of interaction relations be
denoted by f1, f2,.., fk, respectively. The set {f1, f2,.., fk },
denoted as F, is called the interaction relation of Q. Every
element in F is called a sub-interaction relation of Q. These
sub-interaction relations must be reduced before being used.
They must satisfy the following conditions:

1. Let fi, fj be any two elements in F. If fi fj, then fi is
removed from F, and vice versa,

2. For any receiving event r in Q, there exists at least one
sub-interaction relation f, which contains r.

Given a SYN-sequence Q and the interaction relation F, its
race table for the mixed-way combinations can be handled as a
matrix, denoted as A. For each fk in F, if there exists a sub-
matrix of A(denoted as Ak) such that all the valid combinations
of race outcomes of the receiving events in fk occur in Ak at
least once, we say that A satisfies fk. If A satisfies all fk in F,
we say that A satisfies F. If A is the matrix that has the
smallest number of rows, A is called an optimal race table for
the mixed-way combinations.

Constructing an optimal race table for the mixed-way is a

NP-Hard problem. As shown in Fig.2, we present a race table
construction algorithm for the mixed way combination. The
algorithm, named MixedWayRaceTable, adopts a merging
strategy to construct an approximately optimal race table. For
every sub-interaction relation, the algorithm builds one matrix
that satisfies it, and thereafter merges these matrices into one

ConstrcutMixedWayRT (Q: a SYN-sequence, F: an interaction relation)
1. initialize table=(heading, A) to be a an empty race table, where A is a matrix;
2. R={r Q race_set(r) >0};
3. let heading=(r1, r2, …, r R) be a topological order of R w.r.t the happen-

before relation;
4. let D={d1, d2, …, d R }, where di= race_set(ri)
5. for each fk in F do
 add each l-way complete combination =(rk1.vk1, rk2.vk2, …, rkl.vkl) that

satisfy rules 1, 2, and 3 into Ak, where l= fk , rk1, rk2, …, rkl fk, and -
1 rk1.vki dki, and Ak is a matrix with R columns;

7. add ‘-’ into each element in Ak, which has not been assigned a value;
 end for;
8. let W=F, remove an element from W, let the element be denoted as f1;
9. let DealedEvents be {r r f1}, A=A1;
10.while (W is not empty)
11. remove an element from W, let the element be denoted as fk;

12. if (DealedEvents fk =)
13. for each row in Ak do
14. if (there exists a row in A such that and can be directly

merged without violating rule 2 and 3)
15. for each i such that [i] ‘-’
16. replace each [i] by [i];
 end for;
17. else
18. add a new same row as in A ;
 end if;
 end for;
19. else
20. for each row in Ak do
21. if (there exists a row in A such that and matches and they

can be indirectly merged without violating rule 2 and 3)
22. for each i such that [i] ‘-’
23. replace [i] with [i];
 end for;
24. else
25. add a new same row as in A ;
 end if;
 end for;
 end if;
26. DealedEvents= DealedEvents fk ;

end while;
27. Fill an appropriate value into each element in A that is assigned with ‘-’

such that it does not violate rule 1, 2 and 3;
28. return table;

Fig.2 Algorithm ConstructMixedWayRT

Fig. 3 Illustration of Algorithm ConstructMixedWayRT
(a) An example SYN-sequence Q (b) A(1) and A(2)
(c) A mixed-way race table

 T1 T2 M T4

s1

T3 T5

s2

s3

s4

s5

r1

r2

r3

r4

r5

 (a)

r1 r3 r4

- 0 1

- 1 -1

- 2 -1

1 - -

A

r1 r3 r4

0 0 1

0 1 -1

0 2 -1

1 -1 -1

A

(c)

r1 r3 r4

1 - -

A(1) r1 r3 r4

- 0 1

- 1 -1

- 2 -1

A(2)

(b)

U

702

matrix, which satisfies all sub-interactions. Suppose that
matrix A has m rows, the total number of complete
combinations of all sub-interaction relations is c, the max
number in elements in all sub-interaction relations is l. Then
the worst complexity of the algorithm is O(m c l). Fig.3
shows an example. There exist two groups of sub-interaction
relations, i.e.f1={r1, r2} and f2={r3, r4, r5}. Then
race_set(r1)={s2}, race_set(r3)={s4, s5}, race_set(r4)={s5}, and
race_set(r2)= race_set(r2)={ }. In Fig.3(b), A(1) and A(2) are
generated respectively for f1 and f2. In Fig.3(c), A is generated
by merging A(1) and A(2). Finally, A is returned after filling.

4. EXPERIMENTAL RESULTS
 The goal of our experiments was to evaluate the
effectiveness of the mixed-way testing strategy, both in terms
of its effectiveness for detecting errors and the reduction in the
number of sequences that are exercised during mixed-way
reachabilty testing, as compared to exhaustive reachability
testing and t-way reachability testing. We adopted the
framework of RichTest and developed a tool called
MixedWayComRT, which implements our mixed-way
combinatorial reachability testing algorithm.

 The program under test is called MineDrainage, an
industrial simulator for controlling mine drainage [1].
MineDrainage was developed in Java with nearly seven
hundreds of lines. There are six monitors for representing the
state of a motor, water flow, water level, CH4 level, CO level,
and air flow. Accordingly, there are six threads for supervising
the six monitor objects. There are two another threads: the
water level processor for handling interruptions, and the main
thread for starting and coordinating all the other threads.
Synchronized methods in the air flow monitor generate one
sub-interaction relation, and those in CO level monitor
generate another one. Synchronized methods in the other four
monitors generate the third sub-interaction relation.

To measure the adequacy of the test sequences generated
during reachability testing, we use mutation testing. A mutant
introduces a single change, which simulates a program error.
A mutant is killed if an execution of the mutant caused a
runtime error or failed a correctness check. A mutant is said to
be alive after testing if it is not killed by any test run. Less
mutants alive indicates more effective testing. We generated a
batch of mutants of MineDrainage using the Java-based
mutation tool Java [11]. For MineDrainage, we checked
critical section and the main specifications of the program [1].

Table 2 summarizes the difference between the total
number of sequences exercised during 2-way, mixed-way, and
exhaustive reachability testing. We conducted 2-way and
mixed-way reachability testing for 5 times. Table 2 showed
the average number of sequences. Exhaustive reachability
testing was conducted once. As shown in table 3, our mixed-
way testing substantially reduced the number of sequences
exercised as compared to 2-way and exhaustive testing.

Table 3 showed the results of 2-way, mixed-way, and
exhaustive reachability testing. 2-way, mixed-way, and
exhaustive testing killed all the mutants. The result showed
that our mixed-way testing kept the same effectiveness of fault
detection as exhaustive testing while substantially reducing the
number in sequences. It is a good tradeoff between the
effectiveness and efficiency of fault detection, as compared to
the other two testing strategies.

Y. Lei et al presented a series of reachability testing
techniques, including exhaustive reachability testing, t-way
combinatorial reachability testing, and distributed reachbility
testing [6-10]. Exhaustive reachability testing is often
impractical. The hypothesis behind t-way reachability testing
is might not be correct in many cases.

5. CONCLUSIONS
In this paper, we presented a mixed-way combinatorial

strategy for reachability testing, which covers all the valid
combinations of receiving events in each subsystem of a
concurrent program. Our mixed-way reachability testing uses
a merging method to construct a race table. The preliminary
experimental results indicate that the mixed-way testing can
maintain the same the effectiveness of fault detection as
exhaustive testing while achieving a substantial reduction.

ACKNOWLEDGMENTS
This work is supported by the National Science

Foundation of China under Grant No.F020509, No.60873049
and No.60703086.

REFERENCES
 [1] A.Burns, A.Wellings. Real-Time systems and programming languages.

Addison Wesley Longman, 2001.
[2] O. Edelstein, E. Farchi, et al. Multithread Java Program Test Generation.

J. IBM Systems, 2002, 41(1): 111-125.
[3] C. Yang, A.L. Souter, L.L. Pollock. All-du-Path Coverage for Parallel

Programs. In Proc. of International Symposium on Software Testing and
Analysis(ISSTA), 1998, 153-162.

[4] R.N. Taylor, D.L. Levine, C.D. Kelly. Structural Testing of Concurrent
Programs. IEEE Trans. Software Eng., 1992, 18(3): 206-214.

[5] C. Flanagan, P. Godefroid. Dynamic Partial Order Reduction for Model
Checking Software. In Proc. of the 32nd Symposium on Principles of
Programming Languages (POPL), 2005, 110-121.

[6] G..H. Hwang, K.C. Tai, T.L. Huang. Reachability Testing: An Approach
to Testing Concurrent Software. J. Software Eng.and Knowledge Eng.,
1995, 5(4): 493-510.

[7] Y. Lei, R. H.Carver. Reachability Testing of Concurrent Programs. IEEE
Trans. Soft. Eng., 2006, 32(6): 382-403.

[8] R. H.Carver, Y. Lei. A Class Library for Implementing. Testing, and
Debugging Concurrent Programs. Soft. Tool. Tech. Trans., 2010, 12: 69-
88

[9] Y. Lei, R. H.Carver, et al. A Combinatorial Testing Strategy for
Concurrent Programs. J. Software Testing, Verification, and Reliability,
2007, 17:207-225.

[10] R. Carver, Y. Lei. Distributed Reachability Testing. Concurrency and
Computation: Practice and Experience, 2010, 22(18):2445-2466.

[11] http://cs.gmu.edu/~offutt/mujava

2-way Mixed-way Exhaustive

136 48 960

TABLE 2 NUMBER OF SEQUENCES EXERCISED DURING TESTING

TABLE 3 MUTANTS ALIVE AFTER TESTING
Mutants 2-way Mixed-way Exhaustive

185 0 0 0

703

Model Driven Development for Internet of Things
Application Prototyping

Ferry Pramudianto
ferry.pramudianto@fit.fraunhofer.de

Fraunhofer FIT
Schloss Birlinghoven

53754-Sankt Augustin, Germany

Indra Rusmita Indra
indrar14@gmail.com

Bonn-Aachen International Center for
Information Technology

Dahlmannstraße,53113-Bonn, Germany

Mathias Jarke
jarke@informatik.rwth-aachen.de

I5 RWTH Aachen University
Ahornstr. 55

52056-Aachen, Germany

Abstract—We present an architectural view for the Internet of
Things prototype development that emphasizes the separation of
domain modeling from technological implementations. Using the
provided model driven tool, domain experts are able to construct
domain models by composing virtual objects and link them to the
specific technologies. Having them linked, a Java prototype code
can be generated by the tool. The developers may extend it into full
applications simply by interfacing with the virtual objects without
dealing with the communication to specific sensors and actuators.
Subsequently, participants involved in the European research
projects evaluated the architecture and the model driven tool using
a software walk-through technique. The result shows that, for
rapid prototyping, the participants are in favor of a simple domain
specific language than a complex modeling language such as UML.

Keywords-component; internet of things, architecture, domain
model, code generation, model driven development, service oriented
architecture.

I. INTRODUCTION
The Internet of Things (IoT) refers to an emerging paradigm

which envisions seamless integration among smart physical
objects, applications, and services that interact and communicate
among themselves by exchanging data and information[1]. The
growth of IoT community has been encouraged by the rapid
development of wireless sensor and actuator networks,
identification tags such as barcode and RFID, and electronic
prototyping platforms such as Arduino1. Nonetheless, IoT is still
very young research field where researchers and industry are still
trying to find a common ground to establish standardized
approaches. This has made IoT prototype development
challenging.

According to our interviews to the developers involved in
several IoT research projects in Europe, they often face problems
during IoT developments caused by the lack of technology and
architecture standardization. This is caused by the existence of
different visions for IoT[2]. The network-oriented vision focuses
on the communication for IoT devices. The “Thing” vision
focuses on identification through ID tags. The semantic oriented
vision focuses on processing the massive information generated
by the IoT. Despite several IoT architectures exist there is still
an open question on how the architecture reference could be
designed in a way that the domain modeling could be decoupled
from the implementation of specific IoT technology. Decoupling
these allows the knowledge about the domain to be engineered

1 http://www.arduino.cc/

by domain experts while the technology experts focus on
addressing the implementation of the IoT technology.

Addressing this research question, this paper proposes a
unique perspective on IoT architecture that separates the design
of the domain model and the implementation of the IoT
technology. Supporting the proposed architecture, this work also
proposes a model driven development (MDD) tool for linking
the domain model with the IoT implementations. Based on the
model definition, the tool will generate Java artifacts consisting
of the domain model as a virtualization of smart objects linked
to the concrete implementation of IoT technology. This allows
application developers to develop IoT applications using the
virtual objects without having to deal with the complexities of
any IoT technology.

II. RELATED WORK
The first use of IoT term was coined by The Auto-ID Labs

in their work to solve product traceability problems for the
supply chain management[3]. Together with the EPCGlobal
they have proposed a standard architecture for universally
identifying goods with RFID tags and a service registry network
for querying information of the tagged goods through third party
service providers[4] (Fig.1). However a survey claims that RFID
is only a part of broader IoT vision where smart objects
autonomously cooperate with each other[2].

Figure 1. EPCGlobal Architecture[5]

Another survey presented a five layer architecture that
placed the internet as a middle layer which functions as the main

704

communication media (Fig.2) [6]. The edge layer manages
devices such as embedded systems, sensors, actuators, and ID
tags. The access gateway layer cares about bridging different
communication technologies to the internet. The main task of
this layer is performing a routing optimization, bridging the
different communication protocols to the internet protocols (e.g.
TCP/IP), and forwarding data from the edge nodes to the other
end across the internet.

Figure 2. Generic Layered Architecture for IoT[6]

The middleware layer provides generic interfaces for the
applications to communicate with the internet of things. Many
approaches have been used for abstracting IoT devices e.g.: data
oriented middleware uses SQL-like query languages to retrieve
information from the sensor nodes, service oriented architecture
(SoA) middleware has been proposed to support the integration
of among “Things”, legacy systems, and the necessary
infrastructure while providing interoperable web services for the
applications accessing them [7-9]. This layer may also perform
device and information management by utilizing data fusion,
semantic analysis, access control, information discovery.

Figure 3. SOA-based architecture for the IoT middleware[2]

SoA middleware also introduces a service management layer
that deals with service discovery, execution monitoring, and
configuration. For the discovery purposes, a service registry is
usually used. This approach provides an abstraction of various
communication technology by encapsulating them with web
services. SoA depends on workflow and web-service
composition languages such as WSBPEL2 to provide services
that are more complex.

2 https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=wsbpel

III. ARCHITECTURE
Our work offers a unique perspective of an IoT architecture

that places the domain modeling in the center of the architecture.
This is done so to emphasize the seperation of the knowledge
engineering that happens during domain modeling with the
technical engineering that happens during the implementations.
As a result, this approach enables domain knowledge to be
modeled by the domain experts that are not familiar with
programming languages but familiar with languages used for
managing knowledge in the domain e.g. ontology. This approach
will also allow the domain model and the device
implementations to evolve independently over time without
having to reengineer the whole systems.

Gateways, Device Drivers, Data Importery , , ppp

Applications

Fusion
Abstraction

Sensor/Actuator Network, Databases, Legacy Systems

Do
m

ai
n

M
od

el
AP

I
Ap

ps
Da

ta
 P

ro
vi

de
rs

Pr
e-

Pr
oc

es
sin

g

Data ases,

DDe

Domain Object Virtualization

Figure 4. Architecture for object virtualization in IoT Applications

As depicted in Fig.4, the domain model layer in our
architecture contains the domain knowledge such as the
relationship of the objects, their capabilities and their properties
as perceived by the domain experts. For instance when
developing a monitoring application for a smart building, these
objects may consist of the occupants, building structures (e.g.
floors, rooms, windows), appliances (e.g. radio, monitor, air
conditioner). Furthermore, this layer is responsible for
virtualizing the physical “Things” that participate in the
application domain. By virtualizing, we meant that the physical
objects alone might not be able to interact with the applications
without the support of devices such as sensors, actuators, and ID
tags. Therefore, the representation of these objects may be
composed of the supporting devices, which we refer as the
enabler devices. These enabler devices should be completely
transparent to the domain experts when they define the domain
model.

705

Modeling the relations among virtual objects can be done
using modeling languages such as UML, Ontology, or a
simplified Domain specific language (DSL) that can be
understood by the domain experts. As a proof of concept, this
work uses a simplified graphical DSL designed for rapid
prototyping (see section 4).

On the lowest layer, the enabler devices are managed and
abstracted with a common interface that is understood by the
upper layer. A common approach used in the lowest layer is the
use of bridge or gateways for different networks that allows
communication to be estabished with applications using TCP/IP
protocol. For instance in industrial automation, an OPC server is
often used as a bridge to access BUS networks. This architecture
pattern is also used by the emerging IoT technology such
Zigbee[10] and 6LowPAN[11]. In contrast, communicating with
legacy systems require various technologies which are diverse
from domain to domain. Some of the legacy applications offer
an application programming interface (API) in propriatery
languages, some of them use database and log files to retrieve
data, and some of them provide web services. In the industrial
setting where Enterprise Resource Planing (ERP) and
Manufacturing Execution System (MES) are invoved, ISA-
95[12] is the common standard to retrieve and store data from
these systems.

Additionally, since the internet and web provide a huge
amount of information that can be useful, the architecture should
take into account that the applications might need to access the
online services such as, weather forecasts, stock prices,
exchange rates, or information about people from their social
network sites. For this purposes normally web service
technologies can be used.

Abstracting the heterogenous technologies involved in the
lowest layer may use web service technologies such as
SOAP[13] and REST[14] since they offer interoperable services
supported by different programming languages. However, at the
moment the practicability of web service technology for time
critical applications and resource constrain devices is still
debatable. A more resource efficient protocols such as
CoAP[15] is being developed for this purpose.

On the upper layer, the data delivered from the lowest layer
sometimes must be be pre-processed to extract contextual
information that is useful for the applications. This information
could be as simple as determining a room temperature from the
thermometer readings to a more complex information such as
determining the activities, taking place in a room based on
several sensor readings, or providing a contextual information of
the users (e.g.: if the room temperature is too cold for this
particular user). Thus, the fusion layer provides several generic
pre-processing modules that are usefull for e.g.: filtering
outliers, averaging the data over time and space, applying high-
pass - low pass filter, interpolating the data (e.g.: Kalman Filter).
The fusion layer can be extended by providing more domain
specific fusion modules to derive information that is not possible
to be sensed by a type of sensor.

When the domain model has been defined and the
technology implementations in the first and second layer have
been done, these layers need to be mapped in order to produce a
functional application prototypes. The mapping follows a simple

input output interaction between components in different layers
and the virtual objects. For instance, the property of the virtual
object “room” is linked to a processing module “average” that is
linked to two thermometers. Based on this linked components,
the property of the room will automatically be updated with the
values coming out from the processing module, which contains
the averaged temperature data coming from the two linked
sensors. As the properties of the virtual objects always contain
the actual values, the developers simply need to work with the
virtual objects without worrying the technical details to access
the thermometers.

IV. DOMAIN MODELING TOOL DEVELOPMENT
As a proof of concept of the proposed architecture, we

developed a domain-modeling tool that supports domain experts
designing domain models containing virtual objects. We build
the tool based on the requirements of twelve developers involved
in several European research projects dealing with IoT. The
requirement elicitation was done through a focus group
workshop where the developers are given scenario to build IoT
prototypes. Then, we discussed about a visionary tool that could
help them solving their tasks rapidly. The outcome from the
focus group reveals that the developers are in favor of a graphical
model driven tool that would help the domain experts designing
the domain model and then allows them to map the virtual
objects to the sensor and actuators. They would like to have the
domain model defined using simple notations that can be quickly
explained to non-computer scientist users. Finally, the tool
should generate a Java code that can be extended to develop their
final applications. After the requirements are collected, we
designed the user interface mockup and iteratively evaluated it
with the users who.

A. User Interface Mockup

Figure 5. The mock up user interface for the development tool

The mockup GUI composed of several views including
Project View, Editor View, Palette View, and Properties View
(fig. 5). On the toolbar, there is a button to generate the necessary
Java artifacts from the defined model including the Java code of
the virtual objects, the mappings to the physical objects, and the
library to access the physical objects. The Project View may
contain several projects. Each project may consist of several
domain model diagrams, which each of them contains the
definition of the virtual objects, their properties, and links to the
processing modules, data providers, and actuators. We created a
set of simple notations to simplify defining a domain model and
the mappings to sensors and actuators. However, our notations
are not as expressive as UML and Ontology as it is not intended

706

to support development for complex applications. These
notations are presented in the Palette view. The notations consist
of rectangles that can be containers for other rectangles and
linked using arrows to map the relationship among the objects.
These atomic notations are grouped using a tabular menu
depending upon the type of the notations. The Editor View is the
main container where the developers could define the domain
model using the provided notations. In the Property View users
can modify the properties of the notations depending the type of
the notation.

B. Modeling Tool
The modeling tool is built with the Eclipse Modeling

Framework (EMF)3which is responsible for defining the meta
model of the proposed architecture depicted in Fig.4. We use
Graphical Modeling Framework (GMF) 4 for generating the
MDD editor used for our domain specific language. Firstly, the
tool was built by defining the ECore model, which is needed by
EMF(Fig.7) as the meta model for the tool. The ECore model
was defined to have a main container and several containers.
These containers include containers for the Data Provider, Pre-
Processing, Virtual Object, and Application Interface. Each of
these containers could contain more than an implementation of
the abstract classes depicted in the center row of Fig.7. We
implemented the abstract classes as examples that are useful for
evaluating the tool against the user requirements. These abstract
classes are extendable when further IoT technologies to be added
in the future.

After creating the meta-model, we use the EMF Generator
Model to generate the plugin projects that we need to implement
such as the “Model Code”, the “Edit Code”, the “Editor Code”,
and the Java Interfaces. After the skeleton is generated, we used
GMF to create a diagram editor using GMF Tooling. We edited
the gmfgraph to define the graphical notations and gmftool to
define the tooling of the editor such as menu, and palate.
Moreover, in the gmfmap, we mapped the notations to the
domain model of the tool defined by the EMF. We use EMF also
to provide serialization of the model defined by the users.
Currently it only supports XMI5 format, which can be stored and
opened back to the editor view when the users want to continue

3 http://www.eclipse.org/modeling/emf/
4 http://www.eclipse.org/modeling/gmp/

working on them. The serialization can be done in other formats,
however for the sake of simplicity we took the standard format
provided by EMF.

The base classes are implemented as Eclipse plugins. This
provides flexibility when further components need to be
integrated into the tool. For instance the Connection base is
implemented as an eclipse plugin which is extended by two other
eclipse plugins containing implementations to create
connections to the corresponding devices. These base classes
provide an abstract factory to be used by the wizards in the
eclipse IDE for retrieving the actual implementations of the
plugins.

C. The code generator
The code generator is implemented using Xpand for

generating Java code and the necessary artifacts based on a set
of template codes. The template codes contain all
implementations of the abstract classes defined in the ECore
model that take into account adjustments that the users will
define when modeling the prototype applications. These
adjustments include adjusting the package and class names,
assigning the values of the sensors to processing module,
assigning the output of the processing modules to the properties
of the virtual objects. These adjustments will be generated by the
Xpand plugins that we have developed. After the template code
is adjusted and generated, XPand additionally generate an
eclipse Java Project and all the necessary artifacts such as
libraries and a run configuration that the users need to run the
generated project properly.

In the current implementation, the generated java project will
consist of the chosen connections. There are two connections
supported Plugwise6 and Arduino which are connected through
the serial ports.

D. The workflow of the tool.
When developing a new application prototype with the tool,

several steps as depicted in Fig. 8 must be followed. The users
start with creating a new project and entering its name. Next, the
users create a new domain model diagram and enter its name.
Then, the users can start designing the domain model on the

5 http://www.omg.org/spec/XMI/
6 http://www.plugwise.com

Figure 7. ECore Model of the Proposed Tool

707

editor view as depicted in fig. 12(B). Designing the domain is
started by adding the main container for the virtual objects, and
the virtual objects themselves in the container. The virtual
objects can contain other virtual objects that denote “a part-of”
relationship.

Add Virtual
Object

Container

Add Virtual
Objects
in their

containers

Generate
Code

Extend
Code with

application logic

Link Pre
Processing

Modules with
Virtual Objects

Add & Configure
Application

Interface

Link Virtual
Objects with
Application
Interfaces

Add &
Configure Data

Providers

Add & Configure
Pre-Processing

Modules

Link Data
Providers with
Pre Processing

Modules

Implement the
missing Pre-
Processing
modules

Processing
Module

Complete

No

Yes

Figure 8. A simplified workflow of the development with the tool

After the domain model is defined, the users could add
predefined processing modules. In case the needed modules is
not available, software developers may implement the modules
by extending the corresponding plugins. When the needed
processing modules have been added to the Editor View, the
users link the properties of the virtual objects to the modules and
then the modules also have to be linked to the data providers.
Finally, the users add the application interface such as SOAP, or
REST, and link the application interface to the virtual objects so
that the tool knows which virtual objects it needs to expose to
the applications and with which technology it should be done.
After all necessary associations have been done, the user can
generate the Java project that can be run and accessed from their
application through the chosen application interfaces.

V. EVALUATION
A software walkthrough [16] was performed to evaluate the

users acceptance to the proposed architecture and the proposed
MDD tool. The evaluation was done with 7 participants (6 male
and a female). Six of them are system developers who are
working in Fraunhofer FIT and participate in European research
projects dealing with IoT implementations in different domains.
A participant is a student of the technical university of Aachen
(RWTH Aachen) who also works in an IoT project at Fraunhofer
FIT. Their experience in application developments range
between 2 until 6 years. The participants are between 25 and 35
years old.

Figure 9. Arduino Board(A), Light Sensor(B), Digital Thermometer (C),

Plugwise (D).

The equipment used to perform the evaluation consists of an
Arduino board (Fig. 9. A), a light intensity sensor (Fig. 9. B), a
digital thermometer (Fig. 9. C), and a Plugwise (Fig. 9. D). The
Arduino board was used to retrieve data from the light and
temperature sensors and send them through a serial port. To
communicate with Plugwise, a Zigbee USB receiver was used.

Figure 10. User satisfaction of the proposed architecture

The participants were given a task to display sensor values
from a temperature, a light sensor attached to an Arduino board,
and the power meter. After they had performed the task, they
were given a questionnaire to review the proposed architecture,
and the tool. To ensure the result of the study could be compared
to similar works in the future, some questions of the
questionnaire were taken from the IBM Computer System
Usability Questionnaire[17]. The questions were presented with
7-level Likert-scale options where “7” denotes “Strongly
Disagree” down to “1” which means “Strongly Agree”.

As depicted in Fig. 10, the result of the questionnaire
regarding the architecture shows that the users felt it was easy to
understand (M=1.86, SD=0.64) and its functions were clearly
defined (M=2, SD=0.82). Secondly, the proposed architecture
helped the user developing the intended functional prototype
(M=1.8, SD=0.4). Overall the users were satisfied to the
architecture design (M=1.89, SD=0.67).

Furthermore, to investigate the user satisfactions to the
overall work, the participants were given a task to solve with the
proposed tool and Eclipse’s EMF tool. The order of the tool used
by each participant was exchanged to minimize the learning
effect. Then the users were asked to rate the overall experience
working with the tool using DSL notations compared to the EMF
using UML notations.

The questions were divided into four categories that include
the overall experience with the framework (Overall), the
functionalities of the tool (Tool Functions), the workflow to be
done when working with the tool (Workflow), and the user
interface of the tool (UI). The questions are again adopted from
the [17].

Figure 11. Comparisson between EMF tool & IoT Modeling Tool

1.80 2.00 1.86 1.89

1

3

5

7

Q1 Q2 Q3 Overall

Q1 : The concept covers all the components for intended use.
Q2 : The flow between components is clearly defined.

2.8 2.5 2.6 2.6
3.6 3.5 3.8 3.6

1

3

5

7

Tool Functions Tool Workflow Tool UI Overall

Proposed Tool EMF Tool

A B C D

708

Figure 12. EMF with UML notation (A) vs. IoT Modeling Tool with DSL

notation (B)

The score comparison between our work and EMF Tool are
presented in Fig. 11. Overall, the writer’s work scored better
compare to the EMF tool with an UML diagram.

A paired sample T-Test analysis was performed to
investigate if the difference between user’s satisfaction to the
writer’s work and EMF tool is statistically significant. The result
of the questionnaire shows that even though the proposed tool
scored a better means in all categories there was no significant
differences of user satisfaction for the Functions, Workflow, and
Overall [T(7)=1.2, p>.5), (T(7)=-1.38, p>.5), (T(7)=-2.04, p>.5)
respectively]. Interestingly, the user opinions were significantly
affected by the user interface of the tools (T(7)=-2.66, p<.5).

The fact that the user opinions are affected by the user
interface indicates that a simplified domain specific language
serves a better purpose for simple prototyping tasks than
complex modeling languages such as UML since the users are
faced with simplicity and less options that may overwhelm them
in solving the tasks.

VI. CONCLUSSION & FUTURE WORK
The current approaches of IoT architectures have overlooked

the importance of domain modeling in the application
development. This work has presented a unique perspective that
positions domain modeling and object virtualization in the center
of the architecture. Moreover, this work has proposed a tool that
augments the proposed architecture by allowing the domain
model to be linked to the IoT implementations. Consequently,
the complexity of IoT implementations is transparent for the
application developers, as they only need to work with the
virtual objects generated by the tool. The results of the
preliminary evaluation support our claim that the proposed
architecture and the model driven tool have a potential to ease
IoT application development.

The next steps for this work are to provide an easy way for
the domain experts to express their domain knowledge related to
policies and rules that are difficult to express through a graphical
notations. For this purpose, the tool could be extended by

integrating a rule engine in the generated code. This approach
allows policies to be dynamically modified without recompiling
the application. Once the tool has enough features to support
complex application developments, we also would like to
perform evaluation with more users in a longer period of time.

VII. ACKNOWLEDGEMENT
This work was co-funded by the European Commission

through EBBITS (FP7-ICT-2009.1.3, GA No. 257852) and
BEMOCOFRA (FP7-ICT-2011-EU-Brazil, GA No. 288133)

VIII. REFERENCES
[1] Guillemin, P., and Friess, P.: ‘Internet of Things: Strategic Research

Roadmap’, CERP-IoT Project, 2009
[2] Atzori, L., Iera, A., and Morabito, G.: ‘The internet of things: A survey’,

Computer Networks, 2010, 54, (15), pp. 2787-2805
[3] Bose, I., and Pal, R.: ‘Auto-ID: managing anything, anywhere, anytime in

the supply chain’, Communications of the ACM, 2005, 48, (8), pp. 100-
106

[4] Johnson, F.A.J., Harrison, M., US, B.H.G., Mitsugi, J., Preishuber, J.,
CVS, O.R., and Suen, K.: ‘The EPCglobal Architecture Framework’,
2005

[5] Shih, D.-H., Sun, P.-L., and Lin, B.: ‘Securing industry-wide EPCglobal
network with WS-security’, Industrial Management & Data Systems,
2005, 105, (7), pp. 972-996

[6] Bandyopadhyay, D., and Sen, J.: ‘Internet of Things: Applications and
Challenges in Technology and Standardization’, Wireless Personal
Communications, 2011, 58, (1), pp. 49-69

[7] de Souza, L., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., and
Savio, D.: ‘Socrades: A web service based shop floor integration
infrastructure’, The Internet of Things, 2008, pp. 50-67

[8] Jammes, F., and Smit, H.: ‘Service-oriented paradigms in industrial
automation’, Industrial Informatics, IEEE Transactions on, 2005, 1, (1),
pp. 62-70

[9] Eisenhauer, M., Rosengren, P., and Antolin, P.: ‘A development platform
for integrating wireless devices and sensors into ambient intelligence
systems’, in Editor (Ed.)^(Eds.): ‘Book A development platform for
integrating wireless devices and sensors into ambient intelligence
systems’ (IEEE, 2009, edn.), pp. 1-3

[10] Alliance, Z.: ‘Zigbee specification’, ZigBee document 053474r06,
version, 2006, 1, pp. 378

[11] Mulligan, G.: ‘The 6LoWPAN architecture’, ‘Book The 6LoWPAN
architecture’ (ACM, 2007, edn.), pp. 78-82

[12] Scholten, B.: ‘The road to integration: A guide to applying the ISA-95
standard in manufacturing’ (Isa, 2007. 2007)

[13] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen,
H.F.: ‘Simple object access protocol (SOAP) 1.2’, World Wide Web
Consortium, 2003

[14] Fielding, R.T.: ‘Chapter 5: Representational State Transfer (REST)’,
Architectural Styles and the Design of Network-based Software
Architectures, Dissertation, 2000

[15] Shelby, Z., and Team, C.A.: ‘Constrained Application Protocol (CoAP)
draft-ietf-core-coap-04’, IETF work in progress, 2011

[16] Spencer, R.: ‘The streamlined cognitive walkthrough method, working
around social constraints encountered in a software development
company’, ‘Book The streamlined cognitive walkthrough method,
working around social constraints encountered in a software development
company’ (ACM, 2000, edn.), pp. 353-359

[17] Lewis, J.R.: IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use , International Journal
of Human Computer Interaction, 1995, 7, (1), pp. 5

A

B

709

Pattern-based Decentralization and Run-time
Adaptation Framework for Multi-site Workflow

Orchestrations
Selim Kalayci, S. Masoud Sadjadi

School of Computing and Information Sciences
Florida International University

Miami, FL, USA
{skala001, sadjadi}@cs.fiu.edu

Abstract—Scientific applications keep getting more complex,
resulting in the need for more computational resources than may
be available to scientists locally. As a result, for many scientists
utilization of remote and heterogeneous computational resources
has become a standard practice. However, effective utilization of
these resources, especially for large-scale workflow applications,
necessitates the employment of software tools that are efficient
and adaptive. In this study, we propose a generic framework for
the decentralization and run-time adaptation for the execution of
large-scale workflow applications that span across diverse and
heterogeneous resource domains. By exploiting the recurring
DAG patterns, we come up with corresponding decentralization
and adaptation patterns to be employed by peer workflow
orchestration tools to cope with various resource-based
challenges in the execution environment. Our framework adopts
separation of concerns and consequently does not alter the
business logic of the application. We provide a prototype
implementation of our framework on a standard workflow
orchestration tool. But, our framework is generic enough and can
be easily incorporated by other orchestration tools.

Keywords: workflow, DAG, orchestration, adaptation, pattern

I. INTRODUCTION
Scientific workflows are abstractions that capture the

business logic of many complex applications in different
scientific disciplines. More specifically, these workflows
encapsulate and represent all of the various tasks and data
artifacts associated with the application lifecycle. Regardless of
the size and complexity of the specific scientific workflow,
Directed-Acyclic-Graphs (DAGs) are a powerful and well-
established method used by many scientists/developers.

Lifecycle of a typical scientific workflow begins with the
specification of individual tasks and artifacts, and dependencies
among them. This specification is free of some concrete run-
time specific details, and it is mostly referred as the abstract
workflow. Abstract workflows more often than not do not
address run-time specific details, such as the exact names and
locations associated with data artifacts and details about the
exact mapping of tasks on physical resources. For such an
abstract workflow to run successfully to completion, those
details need to be determined prior to or during the execution
of the workflow. This process can be referred to as the
concretization of the workflow. However, the concretization of

the workflow should not be the responsibility of the scientist,
or even the application developer; as a matter of fact, it has to
be automated as much as possible based on the criteria
provided by the user.

During the concretization process, one essential step is the
mapping of workflow tasks onto physical resources. The main
goal here is to achieve the minimum makespan possible for the
execution of the whole workflow. As such, characteristics of
tasks (e.g. estimated runtime) and data artifacts (e.g. estimated
size), as well as the availability and characteristics of physical
resources play a major role during this mapping process. Based
on the availability of resources, the resulting concrete
workflow may span across multiple sites of resources. Such
multi-site resources may be made available to the usage of a
specific workflow application perhaps through research
collaboration among multiple partners or through a
national/international cyberinfrastructure platform (e.g.
XSEDE). The key common attributes of such multi-site
resources is the heterogeneity and dynamicity of the resources
in terms of size and capability, as well as heterogeneous access
and priority rights assigned to the users by local administrators.
All these factors pose many challenges to the successful
execution of workflows conforming to the makespan
requirements of the user.

In this paper, we propose a generic framework that utilizes
the common DAG patterns to alleviate some of the problems
stemming from the multi-site execution of workflows. First of
all, taking advantage of DAG patterns, we transform a concrete
workflow in a manner that makes it possible to be executed in a
peer-to-peer fashion. This transformation has the potential to
improve the efficiency of the execution of the workflow by
having local interactions to be managed by local workflow
execution managers rather than having a single central
workflow execution manager orchestrating the whole
workflow. Also, employment of local managers improves the
accuracy and efficiency involved within the decision-making
and adaptation process to the changes in the execution
environment at run-time. Second major contribution of this
paper is to propose a generic framework for the adaptation of
the workflow execution in response to the dynamic changes at
run-time. This adaptation framework also utilizes common

710

DAG patterns and suits well with the peer-to-peer execution
framework devised in the previous step.

A very important aspect of our proposed framework is the
separation of concerns. The modifications and adaptations to
the execution logic of the workflow due to our approach, do not
affect the business logic of the workflow. We showcase the
validity and generality of our approach via a prototype
implementation on a standard workflow execution manager.
Some of the implementation details are also discussed briefly.

To illustrate our ideas, first we introduce the concept of
DAG patterns in Section 2. In Section 3, we introduce our
decentralization framework utilizing DAG transformation
patterns. In Section 4, we discuss the need for run-time
adaptation and explain how we incorporate this behavior into
our decentralized execution environment. Section 5 illustrates
and discusses prototype implementation issues. In Section 6 we
overview related literature and Section 7 provides a summary
of the paper and a brief discussion about further issues.

II. DAG PATTERNS
In this section, we introduce the concept of recurring DAG

patterns that form the basic building blocks for the steps that
follow. The key point here is that all possible scientific
workflows in DAG form can be represented using a proper
combination of these DAG patterns.

Fig. 1 illustrates three DAG patterns, namely: Sequence
pattern, Fork/Branch pattern and Join pattern. In these graphs,
vertices correspond to the computational tasks, whereas
directed edges correspond to the control and/or data
dependencies between tasks.

Figure 1. DAG patterns

III. DECENTRALIZATION
Regardless of being in an abstract or concrete form, a

scientific workflow is usually crafted and enacted at a single
central location. This means, except for a few proprietary
solutions, the execution logic of the workflow is handled by a
single, central workflow execution manager. This central
manager keeps track of the progress of tasks and coordinates
the timely execution of each task based on the specifications of
the workflow.

The central workflow manager handles the execution of the
workflow even if the mapped tasks of the workflow span
across multiple sites. Especially in such a scenario,
employment of a single central workflow execution manager
raises several efficiency and decision-making accuracy issues.
First of all, employing a single central manager necessitates
each individual activity to be monitored and orchestrated by

this central manager. For a large-scale workflow (i.e.
comprised of a large number of tasks) that is mapped on
multiple and potentially long-distance sites, orchestration
efficiency becomes a real issue. Another important issue is the
level of information sharing among partnering sites. The more
detailed resource and workload information is shared among
partners, the better decisions can be made by the workflow
execution manager(s) to take actions in response to changing
conditions. However, due to administrative and technical
reasons (e.g. size of information, delay); it is not possible for a
remote workflow execution manager to have the same level of
information about a certain site resources compared to its local
counterpart. This can cause the central workflow execution
manager to make non-optimal decisions during run-time
adaptation.

To overcome these issues, our proposal is to transfer the
responsibility of orchestration of the whole workflow from a
single workflow execution manager to several collaborating
workflow execution managers. According to this, each local
workflow execution manager is going to be responsible for the
orchestration of the tasks that are mapped locally. At the same
time, peer local workflow execution managers synchronize
among each other when necessary, specifically, to fulfill the
requirements of those control/data dependencies that span
across them. By collaboratively carrying out these activities,
the orchestration of the whole workflow is achieved without
affecting the business logic of the workflow. Through this peer-
to-peer orchestration approach, we are able to provide (i)
improved efficiency for large-scale workflow executions, (ii)
better results from run-time adaptation.

We propose a systematic and generic framework for
transforming the centralized orchestration to a collaborative
orchestration via the utilization of DAG transformation
patterns. These patterns are built on basic DAG patterns
introduced in Section 2, and illustrate the transformations on
the original DAG specifications to meet the needs of the
collaborative orchestration style. Each local workflow
execution manager individually performs these transformations
appropriate to its circumstances.

 (a) (b) (c) (d)

Figure 2. DAG Transformations for the Sequence DAG Pattern

Fig. 2 illustrates the set of DAG transformations on the
Sequence DAG pattern corresponding to four possible mapping
scenarios. If both tasks comprising the Sequence DAG pattern
are mapped locally, as in Fig. 2(a), then no transformation is

711

necessary. If both tasks comprising the Sequence DAG pattern
are mapped remotely, as in Fig. 2(b), then these tasks are
marked to indicate that they will be orchestrated by another
manager. Fig. 2(c) illustrates the case where the parent task is
mapped locally, whereas the child task is mapped remotely. In
this case, the transformation incorporates a synchronization
task between these tasks. The purpose of this synchronization
task is to basically inform the remote workflow execution
manager of the completion of the parent task. Fig. 2(d)
illustrates the case where the parent task is mapped remotely,
and the child task is mapped locally. In this case, the
transformation again incorporates a synchronization task
between these tasks. However, in this case the local workflow
execution manager waits to be informed by its remote partner
about the completion of the parent task.

Fig. 3 illustrates the DAG transformations on the
Fork/Branch DAG pattern corresponding to two possible
mapping scenarios. We skip the two other possible mapping
scenarios, in which all the set of tasks are either mapped locally
or remotely, as the transformations will be very limited and
done similar to the ones in Fig. 2(a) and Fig. 2(b). Fig. 3(a)
illustrates the case where the parent task is mapped locally,
whereas the children tasks are mapped remotely. In this case,
the transformation incorporates a synchronization task after the
parent task. This synchronization task will be informing the
remote workflow execution manager(s) of the completion of
the parent task. Fig. 3(b) is similar to the previous scenario, but
this time parent task is mapped remotely and children tasks are
mapped locally. This time, the local workflow execution
manager is at the receiving side of the synchronization
operation, so it has to wait for its remote partner to perform the
associated synchronization task.

 (a) (b)

Figure 3. DAG Transformations for the Fork/Branch DAG Pattern

Fig. 4 illustrates the DAG transformations on the Join DAG
pattern corresponding to two possible mapping scenarios. As in
Fig. 3, we skip the two other possible mapping scenarios. Fig.
4(a) illustrates the case where the parent tasks are mapped
locally, and the child task is mapped remotely. In this case, the
transformation incorporates a single synchronization task
before the child task to inform the completion of the parent
tasks. According to the scenario in Fig. 4(b), parent tasks are
mapped remotely and the child task is mapped locally. This
time, the local workflow execution manager is at the receiving
side of the synchronization operation, so it has to wait for its

remote partner(s) to perform the associated synchronization
task.

 (a) (b)

Figure 4. DAG Transformations for the Join DAG Pattern

One thing to note for the transformation of Fork/Branch and
Join DAG patterns is that we incorporate a single
synchronization task among the parent and children tasks,
regardless of the number of parent and children tasks in the
original DAG. This design choice significantly reduces the
number of synchronization activities (hence overhead) among
peers, and also simplifies the transformation process.

IV. RUN-TIME ADAPTATION
Due to the dynamic nature of the execution environment,

certain changes may need to be made to the original workflow
execution plan at run-time to meet users’ QoS requirements.
The most common and obvious dynamic change in the
execution environment is the availability of hardware resources
for the utilization of workflow tasks. The availability of these
resources may change basically due to hardware failures,
increased workload, and higher priority tasks being deployed in
the system. Especially long-running and large-scale workflows
are highly susceptible to this kind of changes in the execution
environment. Under these circumstances, to be able to execute
a workflow successfully within QoS requirements, proper
changes have to be made to the original execution plan.

There are two main issues involved within the run-time
adaptation process. First major issue is the planning phase for
the run-time adaptation. This phase includes the continuous
monitoring of workflow progress and resources, and detecting
a situation that necessitates the run-time adaptation process.
After the detection, an appropriate corrective action has to be
planned to cope with the situation. Second major issue in the
run-time adaptation process is the enactment of the proposed
adaptation plan to the ongoing workflow execution process in
an efficient and non-intrusive manner. In this paper, we focus
on the second aspect of the run-time adaptation process.

A standard run-time adaptation plan basically makes
changes to the original execution plan by modifying the
mapping (hence, the execution) site of tasks. Modifications to
the mapping site of tasks needs to be reflected and
implemented accordingly by the workflow execution
manager(s). Here, we provide a run-time adaptation framework
that integrates with the decentralization framework explained

712

in the Section 3. One key aspect of our framework is the low-
level of intrusiveness to carry out the adaptation process. Our
pattern-based framework has little effect on the ongoing
workflow execution process. The peer workflow execution
managers implement the re-mapping of tasks without any
disruption to the orchestration of the rest of the whole
workflow.

We utilize DAG adaptation patterns at peer workflow
execution managers to implement the re-mapping of tasks at
run-time. Through this adaptation, the responsibility of
orchestration of the set of tasks being re-mapped (ST) is
transferred from the originating site to the destination site(s).

At the originating site, DAG adaptation patterns transforms
ST from being local tasks to remote tasks. Also, if there is a
synchronization task between ST and child(ren) task(s), it is
removed. Fig. 5(a) illustrates this scenario for the Sequence
pattern, Fig. 6(a) illustrates the same scenario for the
Fork/Branch pattern, and Fig. 7(a) illustrates the same scenario
for the Join pattern. But, if the child(ren) task(s) of ST is (are)
mapped locally, then a synchronization task is incorporated
after ST. Fig. 5(b) illustrates this scenario for the Sequence
pattern, Fig. 6(b) illustrates the same scenario for the
Fork/Branch pattern, and Fig. 7(b) illustrates the same scenario
for the Join pattern.

 (a) (b)

Figure 5. DAG Adaptations for the Sequence DAG Pattern

The destination site(s) basically captures the re-mapped
tasks (ST) and orchestrates them in accordance with the
resulting DAG structure. However, attempting to capture and
integrate this DAG structure with the transformed DAG
specification at destination site(s) proves to be cumbersome to
design and implement. For this reason, we propose the
orchestration of these DAG structures in isolation from the
transformed DAG structure(s) at destination site(s). In fact, we
refer to these DAG structures that result from run-time
adaptation processes and orchestrated in isolation as “patch
DAGs”. The combined orchestration of patch DAGs with the
transformed DAGs provide the same business logic as the
orchestration of the whole original DAG.

 (a) (b)

Figure 6. DAG Adaptations for the Fork/Branch DAG Pattern

The essential duty of a destination site involved in the run-
time adaptation process is to capture ST and compose the
corresponding patch DAG. Once the patch DAG is ready,
destination site orchestrates the patch DAG in isolation.

(a) (b)

Figure 7. DAG Adaptations for the Join DAG Pattern

Fig. 8 illustrates the corresponding patch DAGs for the
adaptation of Sequence patterns in Fig. 5. In both Fig. 8(a) and
Fig. 8(b), the corresponding patch DAG has the same structure.
The difference between them is the inner-workings of the
synchronization task. In Fig. 8(b), the synchronization task
synchronizes back with the originating site for the execution of
child task. On the other hand, synchronization task in Fig. 8(a)
synchronizes with a third site other than the originating site. In
fact, this third site is the one that is responsible for the
execution of the child task, and it is agnostic to the changes
made during the adaptation.

Patch DAGs corresponding to the adaptation of
Fork/Branch patterns look and operate the same way as in the
adapted Sequence patterns. The only difference between these
two patterns is the number of children tasks the patch DAG
synchronization task enables for progression.

713

 (a) (b)

Figure 8. Patch DAG Patterns corresponding to the Adapted Sequence

Patterns

The corresponding patch DAG structures to the adaptation
of Join Pattern in Fig. 7(a) and Fig. 7(b) are also identical. As
in the Sequence pattern, the difference between them is the
inner-workings of the synchronization task. However, in a Join
pattern, it is possible for more than one site to be involved in
the re-mapping of ST, due to the multiplicity of the number of
tasks in ST. To illustrate this point, we provide two alternative
scenarios for patch DAG composition and operation
corresponding to the case in Fig. 7(b). Fig. 9 illustrates the
corresponding patch DAG structure in a scenario where only
one site gets to re-map all the tasks in ST. For this scenario, the
composition and the operation of the patch DAG is quite
similar to the previous patterns.

Figure 9. Patch DAG Pattern corresponding to the Adapted Join Pattern in a

scenario where a single site re-maps ST

Fig. 10 illustrates the corresponding patch DAG structure in
a scenario where two destination sites are involved in re-
mapping of the tasks in ST. In this scenario, two patch DAGs
need to composed, and one of those DAGs is designated as the
primary patch DAG. Primary patch DAG is responsible for
handling the synchronization with the originating site. Also, in
this scenario, an additional layer of synchronization is needed
between the destination sites.

Figure 10. Patch DAG Pattern corresponding to the Adapted Join Pattern in a

scenario where two sites re-map the tasks in ST

V. PROTOTYPE IMPLEMENTATION
Our implementation is based on Condor DAGMan [5]

workflow execution engine. Condor DAGMan is a widely used
workflow execution tool that is available in most High-
Performance and High-Throughput Computing environments.
The original orchestration architecture is centralized and it does
not provide native run-time adaptation support.

Decentralization

Condor DAGMan specifies a DAG structure by listing the
tasks and their dependencies in a standard text file. This
specification is parsed and then the execution of tasks is
orchestrated by submitting them to local and/or remote
resources by Condor DAGMan.

In our decentralized framework, each site has its own
deployment of Condor DAGMan tool, and each engine submits
computational tasks only to their local resources.
Synchronization among peer engines is accomplished via
transferring light-weight sync files.

Each local Condor DAGMan tool needs to orchestrate a
transformed copy of the original DAG specification. The
transformation process is implemented by performing the
following basic actions. Remotely mapped tasks are labeled as
DONE, so that Condor DAGMan will not attempt to submit
them to local resources. DAG transformations illustrated in Fig.
2(c) and Fig. 3(a) is accomplished via insertion of a POST
Script accompanying the parent task. DAG transformations
illustrated in Fig. 2(d) and Fig. 3(b) is accomplished via
insertion of a PRE Script accompanying the child(ren) task(s).
DAG Transformations for the Join Patterns illustrated in Fig. 4
is accomplished via incorporation of a light-weight sync task in
the original DAG specification.

Run-time Adaptation

As a fault-tolerance feature, Condor DAGMan provides a
checkpoint-style recovery mechanism via the creation of rescue
DAGs. The rescue DAG represents the specification of a DAG
that was not run to completion, but specifies the completed
tasks as DONE so that they will not need to be re-run. At the
originating site, we utilize the rescue DAG mechanism to halt
the DAG specification prior to the adaptation and then to re-
enact the corresponding DAG specification after adaptation. To

714

generate the proper corresponding DAG specification,
adaptation decisions should be reflected on the standard rescue
DAG specification. This is achieved via labeling re-mapped
tasks as DONE and also performing similar DAG
transformation activities as was done for Decentralization
purposes.

At the destination site, corresponding patch DAG
specification needs to be generated. DAG pattern of the task(s)
received from the originating site gives enough information to
accomplish this. The destination site can then perform the same
kind of DAG transformation activities to generate the
corresponding patch DAG specification. Following this,
destination site parses and starts orchestration of the patch
DAG at its local site in isolation.

For more details about the prototype implementation and
system design issues, please refer to [13].

VI. RELATED WORK
Pegasus workflow management system [2] uses the Condor

DAGMan [5] as the underlying workflow execution engine.
Other DAG-based workflow management systems like Taverna
[10] and GrADS [11] also employ centralized execution model.
ASKALON workflow management system [4] is comprised of
a hierarchical architecture where a master engine provides all
enactment decisions whereas multiple slave engines perform
the orchestration of the workflow under the administration of
the master engine.

In the business process orchestration field, several studies
[8,9] propose decentralization mechanisms for centralized
BPEL process execution engines for scalability and
performance improvement. Also, the study in [7] provides a
pattern-based analysis of BPEL4WS workflows. Authors
provide a comprehensive set of patterns pertaining to all
aspects of BPEL4WS specification, whereas in our study the
investigation of patterns is limited to the orchestration
semantics of DAG-based workflow specifications.

Another pattern based study [12] investigates the usage of
workflow patterns to incorporate policy-based fault-tolerant
recovery mechanism at run-time.

Several studies [1, 3, 6] deal with run-time workflow
adaptation problem through periodically rescheduling the
workflow and re-enacting the workflow in correspondence with
the new mapping layout. However all these methods
necessitate the halting of the whole workflow execution in
progress, hence they are highly-intrusive and not scalable for
large scale workflows.

VII. CONCLUSION
In this paper, we propose a generic framework for the

decentralization and run-time adaptation of large-scale
workflow applications that span multiple sites of resources.
Our framework is applicable to any scientific workflow
application that is specified in a DAG form. By investigating
recurring DAG patterns, we devise corresponding
transformation and adaptation patterns to incorporate
decentralization and run-time adaptation capabilities to

standard workflow execution managers. As our framework
does not alter the business logic of a workflow application, it is
safe to use and can be evaluated under varying circumstances.
We also provide a prototype implementation of our framework
on a standard workflow execution manager.

In the future, we would like to investigate the
implementation of our framework on other workflow execution
managers as well. We are also interested in investigating
various business and technical aspects of cloud-bursting on the
orchestration and adaptation of workflow applications.

ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation under Grant Nos. OISE-0730065 and
HRD-0833093.

REFERENCES
[1] Sakellariou, R. and Zhao, H. 2004. “A low-cost rescheduling policy for

efficient mapping of workflows on grid systems.” Sci. Program. 12, 4
(Dec. 2004), 253-262.

[2] Deelman, E, et al., "Pegasus: A framework for mapping complex
scientific workflows onto distributed systems." s.l. : Scientific
Programming, 2005, Issue 3, Vol. 13.

[3] Lee, Kevin, Norman W. Paton, Rizos Sakellariou, Ewa Deelman, Alvaro
AA Fernandes, and Gaurang Mehta. "Adaptive workflow processing and
execution in pegasus." Concurrency and Computation: Practice and
Experience 21, no. 16 (2009): 1965-1981.

[4] Wieczorek, M, Prodan, R and Fahringer, T., "Scheduling of scientific
workflows in the ASKALON Grid environment." s.l. : ACM, 2005,
Issue 3, Vol. 34.

[5] Condor team, “The directed acyclic graph manager”,
www.cs.wisc.edu/condor/dagmang, 2002.

[6] Yu Z, Shi W. “An adaptive rescheduling strategy for grid workflow
applications.” IPDPS, IEEE Press, 2007; 1–8.

[7] Wohed, Petia, Wil MP van der Aalst, Marlon Dumas, and Arthur HM ter
Hofstede. “Pattern based analysis of BPEL4WS”. QUT Technical report,
FIT-TR-2002-04, Queensland University of Technology, Brisbane,
2002.

[8] Weihai Yu. 2009. “Decentralized Orchestration of BPEL Processes with
Execution Consistency.” In Proceedings of the Joint International
Conferences on Advances in Data and Web Management
(APWeb/WAIM '09), Qing Li, Ling Feng, Jian Pei, Sean X. Wang,
Xiaofang Zhou, and Qiao-Ming Zhu (Eds.). Springer-Verlag, Berlin,
Heidelberg, 665-670.

[9] Pantazoglou, Michael, Ioannis Pogkas, and Aphrodite Tsalgatidou.
"Decentralized Enactment of BPEL Processes." (2013): 1-1.

[10] Oinn, Tom, Matthew Addis, Justin Ferris, Darren Marvin, Martin
Senger, Mark Greenwood, Tim Carver et al. "Taverna: a tool for the
composition and enactment of bioinformatics workflows."
Bioinformatics 20, no. 17 (2004): 3045-3054.

[11] Berman, Francine, Andrew Chien, Keith Cooper, Jack Dongarra, Ian
Foster, Dennis Gannon, Lennart Johnsson et al. "The GrADS project:
Software support for high-level grid application development."
International Journal of High Performance Computing Applications 15,
no. 4 (2001): 327-344.

[12] Kalayci, Selim, Onyeka Ezenwoye, Balaji Viswanathan, Gargi
Dasgupta, S. Sadjadi, and Liana Fong. "Design and implementation of a
fault tolerant job flow manager using job flow patterns and recovery
policies." Service-Oriented Computing–ICSOC 2008 (2008): 54-69.

[13] Kalayci, Selim, Gargi Dasgupta, Liana Fong, Onyeka Ezenwoye, and S.
Masoud Sadjadi. "Distributed and Adaptive Execution of Condor
DAGMan Workflows." 22nd International Conference on Software
Engineering & Knowledge Engineering (SEKE'2010): 587-590.

715

716

•

•

•

•

•

•

•

•

•

•

•

•

•

•

717

718

•

•

•

•

719

720

721

How do You Execute Reuse Tasks Among Tools?
A RAS Based Approach to Assist Software Asset Tailoring

Fábio P. Basso, Cláudia M. L. Werner, Raquel M. Pillat, Toacy C. Oliveira
COPPE – PESC – Federal University of Rio de Janeiro (UFRJ)

Rio de Janeiro, Brazil
{fabiopbasso, werner, rmpillat, toacy}@cos.ufrj.br

Abstract—Software reuse practices and tools have been proposed
over the last three decades. From the reuser’s point of view, it is
necessary to provide facilitators in order to execute reuse tasks
among tools. We propose the use of Reuse Assistants (RA) as a
representation for tasks that tailors software assets to be used in
chained executions of reuse tools. Since many tools do not
interchange their input and output (IO) with others, reuse
processes are limited to executing reuse tasks from a single tool.
Moreover, reusers are required to manually adapt IO parameters
between tools aiming to execute a more complete reuse process.
However, such adaptations are subjected to inconsistencies and
errors. In this sense, by specifying RAs through a common
representation one would be able to execute a reuse process by
chaining tools in an assisted way. This paper presents a work in
progress to support software asset tailoring through RA.

Keywords-component; Reuse technique; Software reuse; Reuse
process; Tool chain; Reusable Asset Specification - RAS

I. INTRODUCTION
Software reuse has been used over the last three decades as

a practice that leads software engineers to leverage on past
experiences while creating new software systems [20]. As a
result, several techniques and their corresponding reuse tools
were developed, such as Product Line Architectures (PLA)
[12][14], Component Based Development (CBD) [28], source-
code generation based on Model Driven Development (MDD)
[4][22], and Object-Oriented Framework Instantiation (OOFI)
[23]. In this scenario, some tools are used together to develop a
software project. However, most of the time they have
incompatible input and output (IO) parameters (software
assets), making their execution in a chain of reuse tasks
complex. Thus, reusers are challenged to manually chain tools
by adapting these assets in an error-prone task. Accordingly,
this paper presents a reuse scenario composed by existing
solutions (a toolset) that promotes software reuse with different
reuse techniques. Therefore, we present a proposal to represent
assistants that tailors software assets to be interoperated among
reuse tools.

Software engineering practitioners commonly use more
than one tool and technique to support activities that involve
reuse. Such activities are executed using some software assets
that are refined from higher abstraction levels to specific needs
[3]. In this context, Aho et al. claim that, even in the case
where a single technique is used to support such activities,
interchanging information between reuse tools is a hard and
error-prone task [1]. Authors exemplify a scenario where many
tasks are required to support the development of web services

functionalities based on MDD technique such as to design a
UML model, to generate source-code for Java and SQL
schemas, and to finally integrate everything and deliver a
testable prototype. Each activity is supported by a specific tool
and is manually synchronized by technical stakeholders such as
developers and project leaders.

In this context, this work proposes a common
representation to specify reuse tasks among tools as Reuse
Assistants (RAs) [7]. RAs correspond to an EMF based model
[9] that represents in high-level of abstraction the executable
task required to adapt software assets to be used among tools.
Examples of assets are programming APIs, model transformers
or software domain designs. In this direction, we provided in [7]
a common representation for RAs to allow tools chain as an
extension of Reusable Asset Specification (RAS) [27]. RAS
supports some software activities with descriptions and
guidance tasks, helping reusers in performing reuse
independently from a tool support.

In this sense, this paper presents a proposal to specify and
adapt RAs to different execution environments. Experiences on
practical application regarding these adaptations are discussed
as well as ongoing work. Preliminary results are promising and
suggest that the usage of reuse techniques among tools can be
facilitated though the proposed approach.

Next sections are organized as follows. Section II provides
an introduction about reuse assistants with motivation based in
industry experiences. This section also presents an example of
tools chain and points to the lack of current approaches to
support reuse processes among tools. Section III presents a
proposed architecture and reports experiences as means to
validate the proposal. Section IV discusses the related work,
and Section V presents some concluding remarks and
limitations of our work.

II. MOTIVATION
We have large experience in supporting reuse techniques

[4][12][28][13][33]. More specifically, we tailor tools and
techniques to support model-driven based processes for
different development scenarios. These processes require
dealing with a set of reusable assets manipulated and executed
with some tools. In this context, it is important that each
activity be correctly executed and to ensure that assets used as
input for further tasks are in conformance. This implies in a
situation where tools must interoperate these assets with valid
IO parameters. Besides, each activity requires variant
guidelines to help stakeholders in executing transformations.

722

These are dependent on the adopted reuse techniques involved
in each activity and the tools used towards modeling and
source-code generation practices.

A. Illustrative Reuse Scenario
In this sense, the following activities can compose a reuse

scenario that requires asset adaptations among tools:

1. Functional requirements (asset 0) are specified using a
word processing template. Alternatively it could be
specified with SPEMArti [29], a Domain Specific
Language (DSL) to describe use cases.

2. A UML model (asset 1) is designed with Enterprise
Architect (EA). Other alternatives to EA are also used and
each one exports and imports models using different
versions of XMI.

3. A second tool named MockupToME [6] is used to
generate graphic user interfaces (asset 2) taking as input
asset 1. Alternatively, asset 1 can be imported by applying
a reverse engineering using WCT module for Java reverse
engineering from code to model [32] or be generated by a
PLA approach such as Odyssey [12] or RDL-FI [13].
Besides, in case of asset 0 being specified with the DSL
then the generated user interfaces must be traced to asset 0.

4. A database schema is modeled using an Object-Relational
Mapping (ORM) UML Profile [19] (asset 3). Alternatively,
one can use WCT wizards to help in the application of
some profiles. In any case, it is necessary to use guidelines
because this task requires a high know-how to execute.

5. A model transformation (asset 4) is executed with
FOMDA [4] to generate: a) SQL scripts (asset 5), used to
create database schemas; b) entity classes (asset 6)
annotated with ORM mapped for Hibernate [31]. Other
transformation tools can be used as alternative.

6. SQL scripts are imported into an SGBD, which creates a
database. Alternatively, one can leverage the database
creation to Hibernate. In this case SQL scripts generation
is optional as well as this step.

7. Other model transformers (assets N) are executed to
generate each web application layer such as view,
controller, validation and data access objects. Alternatively,
some applications support Java Swing. In this case, the
generation of graphical user interfaces for Java Swing and
also a remote layer are required.

8. Finally, the generated source-code is changed by
developers. Here, many assets are used such as Java APIs,
existing source-code, documentation, etc.

B. Difficulties to Interoperate Reusable Assets Among Tools
Based on such activities, we can highlight some difficulties

to chain assistants among tools and techniques: a) they support
reuse activities that require different asset as inputs
[15][11][30][25]. Some input must be changed after generated;
b) tools are developed to interchange files and not to
interoperate reuse tasks [24]. This was the reason why in [33]
Wizards were developed to help stakeholder in a UML Profile
application: UML modeling tools do not provide a simple

solution for specifying it; c) incompatibility between input and
output (IO) [1], which required manual adaptations from XMIs
generated by UML tools to be executed by model transformers;
d) tools do not allow to modify existing reuse tasks because
most of the time they are black-box [23]. In this case, wizards
must be developed outside reuse tools.

Due to the lack of appropriate guidance, important reuse
techniques may be missed. This situation occurred when a
company withdrew our proposed MDD techniques and tools to
program everything by hand [5][6]. This was motivated by the
following reasons: 1) It was required a long period of time to a
modeler to learn a UML tool, when executing the second task,
and by dealing with valid XMI files as input for
transformations in the fifth task. Here we learned a lesson, that
even in equal versions of XMI, tools export models differently.
As consequence, model transformers did not work properly; 2)
The learning curve was even bigger to execute the fourth task,
because the application of UML Profiles requires experienced
modelers. Here we learned that facilities such as guidelines
help inexperienced modelers. However, they are costly to
develop as wizards; 3) We learned about how to execute further
activities after executing each model transformation (fifth and
seventh tasks), such as to correct source-code pieces. With no
guidance to pinpoint what should be changed in each generated
source-code for each application layer, developers were
confused about the required procedures to apply glue-code.

To fix these problems, we provided wizards as a solution
for guidance and execution support [6]. This facilitated the
proposed activities adoption by non-experienced stakeholders.
Unfortunately, this scenario is not well explored by software
engineers, leveraging reuse assistants as options to support
reuse activities. Accordingly, in absence of a common
representation for reuse assistants, reuse tools are strictly
adapted by people who have strong know-how about the
internal structure of the software, because a wizard is typically
a black-box program. In this sense, it is not possible to know
the activities and the assets generated by each assistant. As
consequence, inconsistencies are faced in daily practice
regarding MDD.

C. Desirable Scenario
Currently, MDD practitioners must manually adapt reusable

assets interoperated among tools in an error-prone process [1].
The reason is that a non-common representation for reuse
activities exists to interoperate these IO parameters. They
change IO file formats and apply corrections to fit each
software asset with activity parameters. This requires abilities,
usually driven to highly technical stakeholders (i.e., software
developers). However, to change this scenario, we claim that
reuse assistants specification, which tailors software assets,
should be specified by non-technical stakeholders [23].

This would imply in a common representation for reuse
tasks, where each reuse tool interoperates simple information
such as: 1) IO parameter with some constraints; 2) descriptions
and guidance of assets; 3) reuse activities execution support.
Besides minimizing incompatibility errors, it would also bring
other benefits, such as to automate a software process.
Moreover, these assistants could be chained based on CBD
techniques and be interoperated using existing task execution

723

tools. Also, a common representation would allow a
deployment of reuse processes into existing development
environments such as Eclipse. However, tools are not prepared
to support this kind of approach.

III. PROPOSED APPROACH AND EXPERIENCES
In direction to facilitate the execution of reuse tasks among

tools, we propose the architecture shown in Figure 1 that
support reuse with three main steps: 1) asset specification; 2)
asset acquisition; 3) and asset usage and execution among tools.
The first step is to specify assets in a common representation
and store it into a Reusable Asset Specification (RAS) based
repository, discussed in Section III A and B. In the second step,
the reuser acquires these assets by searching the repository as
depicted in Section III C. Finally, a program called RAS Client
Deployer configures user workspaces using assistants as input
for transformations, as detailed in Section III D.

Figure 1: Proposed Architecture to Support Reuse Assistants

Existing reuse tools must be plugged into workspaces
without recurring to black-box configurations such as those
required by IDE plug-ins [10][21]. For this reason, we have
decided to define assistant deployment information as a RAS
model [7], since it allows detailing how artifacts must be used
in a reuse context. Accordingly, we propose that assistants
must contain a configuration about reuse practices and about
the deployment of their owned artifacts. Besides, it also serves
as a protocol between an asset repository and a user workspace.
Therefore, any tool that supports our extended RAS metamodel
can use a reuse assistant to configure a user workspace.

A. Reuse Assistant (RA) Model Specification
Figure 2 illustrates the activities used in the “Specification”

step towards designing reusable software elements. Thus, it is
important to know the differences between these elements.
Accordingly, following definitions are important.

(1) Artifacts are elements produced and consumed along
software process lifecycle. Examples are application models,
APIs and libraries, source-code, documentation, reuse tasks as
tutorials and how-to, etc.

(2) Assets or Reusable Assets are elements that document
one or more artifacts. They provide guidelines that describe
reuse activities required by artifacts to be adapted and used.
These elements are described with standard RAS metaclasses
and are packaged in a file composed by a single or a set of
artifacts, as illustrated in Figure 1 by the “RAS Asset” package.
However, despite RAS provides a rich set of data to detail
reuse activities, currently this standard has no support to
specify details such as execution and deploy support. Therefore,
extensions for reuse assistants are required.

(3) A Reuse Assistant (RA) is a model representation
about execution and deploy of reuse activities that allows

adapting one or more reusable assets to support interoperation
among different reuse tools. This means that it allows: a) to
organize a set of tasks that can be performed by (re)users, with
the help of a provided information through RAS assets; b)
and/or it can be executed with task and process execution
languages available, for example, in Eclipse IDE workspaces; c)
and/or it configures reuse tools to support the asset
development and refinement. This means that those assets
discussed in Section II.A must have a common representation
(as a RA) to be adapted and interoperated among those reuse
tools.

(4) Reuse tools are any executable program/application that
aims to facilitate the reuse of software artifacts. These
programs can be chained in software production tasks, which
can be represented in higher abstraction levels as reuse
assistants.

A reuse assistant is designed to facilitate reuse of software
artifacts. It is used to describe one or more reusable assets.
Information about RA must guarantee that reuse activities
(manual or executable), and artifacts are installed in the right
place, configuring the supporting tools/plug-ins contained in a
workspace. Thus, we assume that this kind of task is executed
in the (re)user local machine with a focus on defining a few
artifact specializations, such as the examples depicted in [23],
or generating a source-code fragment, as exemplified in [4].

Figure 2. Activities in Support for Asset Specification

B. RAS Based Repositories
Activities shown in Figure 2 are executed by an asset

producer. Thus, first two are used to specify artifacts, assets
and assistants in a RAS compliant metamodel presented in [7].

In the motivating example, a set of assets are used among
tools. To better support artifact reuse with RAs, asset
repositories, also known as reuse repository [28], are required.
A repository is recommended to place reusable software assets
[16][30]. However, existing asset based repositories are not
able to retrieve assets based on a reuse process context, a lack
that implies in inconformity between asset dependencies. In
Section II.A, an example of reuse process pointed that many
assets can be composed in alternative ways, dependencies
between assets must consider a tailored reuse process to bring
assets and respective dependencies as exemplified by those
three repositories shown in Figure 2. Thus, the main difference
from existing repositories is that the reuser searches for assets
and retrieves artifacts plus all RAs related to the selected
artifacts considering a tailored process.

The last activity shown in Figure 2 is used to define the
context for assets and RAs intending to tailor these elements
based on communality and variant designed in a Feature Model
[18]. In this sense, all this information must be stored into

724

specialized RAS based repositories that execute operation to
retrieve data based on a selected user context. In this sense, we
are extending an asset repository [28] to support contexts
related to artifacts.

C. Reuse Assistant Contextualization
This section depicts the proposal for the “Acquisition” step

shown in Figure 1. Activities shown in Figure 3 are executed
by asset users and also by a model repository in response to
user actions. In the first activity, a user searches the repositories
for an artifact and receives a context as response in activity 3.
As response, the repository must suggest reuse assistants that
best fit to support a user’s context (activity 2). After he/she
searches for reusable artifacts, the repository would also
suggest assets for acquisition/download packed in a RAS Asset
File. Thus, to reach this goal, it is required to capture the user’s
context as illustrated by activity 3.

Figure 3. Retrieving Assets and RA from Repositories

A context can be manually provided by (re)users or be
automatically captured, because the set of acquired assets can
provide information about the user’s intentions. Related works
propose solutions to contextualize a user environment, such as
[15] and [12]. These solutions can also be used in this research
to support a more detailed asset contextualization.

After activity 3 is executed, in activity 4 the repository
asserts that the selected context allows to return a set of reuse
assistants that match the user context. Finally it tailors assets
and packs a RAS file composed by reusable assets and reuse
assistants (activity 5). This is a detail that deserves deep
discussion because it validates the matching between the
selected context and the packaged reusable assets.

Practical Application: Our proposal uses the Feature
Model to contextualize reusable assets (see Figure 2 activity 3)
as done in other works to solve other problems regarding reuse
techniques [4][12]. It is the case for reuse tasks 5 and 7
discussed in Section II.A, where transformation
processes/chains has been tailored successfully for a set of
MDD tool configurations. Thus, these relationships between
context variables can be used to support tasks that only fit to a
selected feature model. In other words, associating features
with assets allows retrieving assets and all other RAs (e.g.,
model transformers and wizards) related to those assets in the
MDD technique example. This is illustrated by the RAS Asset
File elements shown in Figure 3.

D. Reuse Assistant Executions with a Reuse Process
RAS documentation also suggests that reuse activities

should be executed and assisted by programs. However, RAS
does not support details to specify tasks execution. To
overcome this deficiency, RAS suggests extending the

metamodel to support details about an asset. Accordingly, our
proposed extensions [7] allow linking executable assets with
reuse process languages such as RDL (Reuse Description
Language) [23] and also a transformation from a RAS model to
task execution languages. This is illustrated in Figure 4 as a
solution to support the “Transformation” step (see Figure 1).

A reuse assistant does not execute reuse tasks. Differently,
it is a specification that is transformed into configuration files
that allow execution support through workspaces plugins.
Accordingly, the first activity shown in Figure 4 illustrates a
transformation that is automatically performed from reusable
assets and reuse assistants (retrieved from tasks shown in
Figure 3) to configure workspace, guidance and executions.

Figure 4. Configuring User Environment Throgh Model Transformations

Link Between RAS Model to Reuse Processes Specified
with RDL: With our RAS extension it is possible to specify
RAs with a common representation as ensured in the proof of
concept [17] by generating RDL scripts. Currently, reuse
processes specified with RDL do not allow executing assistants
among tools without a reconfiguration/adaptation. In this sense,
we will extend RDL to support activities that are linked to RAS
elements, allowing the execution of RAs among tools.

Transformation from a RAS Model to Task Execution
Languages: The translation from a RAS model to target task
execution languages occurs by means of model transformations
[22] in activity 1 shown in Figure 4. Such target languages are
available in production environments such as Eclipse [10] in
support to ANT scripts. Accordingly, proposals to support
model-to-model and model-to-text transformations can be used
to transform a RAS model into ANT scripts [4][11]. Therefore,
our proposal is not to execute RAs, but to generate scripts
available in workspaces that support such execution.

E. Ensuring Consistency in Tool Chain
Another need to facilitate the execution of the scenario

discussed in Section II.A is related to tool chaining [1] to
orchestrate RAs. Accordingly, a tool inclusion in a chain is also
dependent on the assistant’s IO parameters that must be
interchanged between the corresponding supporting tools. This
is subjected to errors, since the absence of a common
representation does not allow programs to verify consistencies
on bindings between tasks interoperated assets (parameter
matching) [4]. Thus, a common representation presented in [7]
can be used to fulfill activity 4 shown in Figure 3, by ensuring
that tasks interoperate consistent reusable assets (parameters).
Moreover, this requires the usage of rules that can be specified

725

using a Business Rule Management System (BRMS) [26] to
check constraints inside the proposed asset repository.

Practical Application: An important work was recently
presented that discussed about dynamic reconfiguration of
features models using BRMS [26]. Thus, next step will focus in
specifying rules to constraint RA compositions regarding a
context defined by a feature model.

F. Final Considerations
We developed an Eclipse plug-in to deploy the RAS model

into an Eclipse workspace as a solution to activity 1 shown in
Figure 4. It enables the configuration of executable tasks as
ANT tasks and Eclipse Mylyn tasks (to support documentation).
Besides, by using the deployer plug-in, we successfully
executed the first proof of concept [17], leading to conclude
that our extension allows representing information to
interoperate reuse tasks among tools [7].

IV. RELATED WORK
In this section, we describe existing work on RAs and tool

support that promotes execution guidance and asset
specification that can help to achieve an automated chain of
reuse activities. This work is divided in four main contribution
areas: a) asset specification; b) asset repositories; c) asset
contextualization; and d) asset execution.

RAS is the OMG proposal to describe reuse assets.
Accordingly, some related work focuses on asset
documentation and classification to support a better cataloging,
search and retrieval from a component repository [15][11]
[16][25]. However, we have not found in literature evidence of
work that extends RAS to support the specification of reuse
task execution. Given that RAs are mostly like executable
activities, this work proposed a RAS extension to grant a
successful task deployment and consistency for program
execution. Thus, our proposal is to formalize assets with
deployment and execution support information as a
complement to related work.

RAS related work exemplifies scenarios where assets are
only documented. Therefore, it requires less formal definition
when compared to what is needed to express executable
activities. Nevertheless, some RAS proposals are suggestive to
describe reuse tasks: 1) Hadji et al. [15] propose a RAS
extension to improve user interactions with component
repositories, suggesting the acquisition of artifacts according to
the user’s context. Our proposal is similar because the
developer must acquire a RAS package according to the artifact
context defined by a Feature Model [18]. In this sense, despite
our work not being focused on contextualized reusable assets
as it is required by the exemplified Figure 1, from steps 4 to 6,
some PLA related work such as Atkinson et al. [3], Oliveira et
al. [13], Gomaa et al. [14], Czarnecki et al. [8] and Antkiewicz
et al. [2] and Odyssey [12] are important to contextualize assets
using Feature Model; 2) Elgedawy et al. [11] propose a RAS
extension to support a better description about SOA reusable
components. With more formal specification, SOA components
can be acquired and used in the developer’s production
environment. However, authors do not present a solution to
deploy these assets; 3) HongMin et al. [16] propose a
component repository to store, search and retrieve RAS assets

with extensions to support better cataloging; 4) Accordingly,
Park et al. [25] propose RAS extensions to support cataloging
and documentation of reusable assets. All RAS extension
proposals were added into the RAS metamodel designed with
EMF and complemented our work.

Another class of related work proposes a non RAS
compliant approach used to specify and to execute assistants.
This means the usage of DSLs to describe reuse processes [23].
Ortigosa and Campo [24] claim that Software Agents are
important to describe an execution flow in regards to an
assistant for OOFI. This is a reuse technique where reuse
assistants are programmed to generate source-code that
specializes classes and operations of an O.O. framework.
Accordingly, Oliveira et al. [23] propose a language named
RDL to orchestrate reuse activities and a tool named
ReuseTool to support execution. On the other hand, we are
proposing that reuse tasks be specified using a RAS extension
in an EMF based solution. Thus, by using model
transformations, one can transform a RAS input model,
designed with a generated EMF-based Eclipse plug-in, into a
RDL program or ANT scripts.

Reuse guidance tools are related to IDEs. In environments such
as Eclipse [10] and Netbeans [21], wizards are represented as a
set of forms codified in Java that guides a reuser through a
predefined sequence of data-collection tasks. Ortigosa and
Campo [24] and Oliveira et al. [23] claim that a simpler
solution to describe wizards is preferable, suggesting that
wizard tasks be specified with reuse process specification
languages. These proposals are interesting to describe and to
execute a reuse process task. However, as they are focused in
task sequences execution, they fail in detailing reuse activities
that provide important instruction information along the
execution of reuse assistants. On the other hand, approaches
based on RAS provide extensive information about guidance
instruction, but lack support to execution. Therefore, our
proposal is to use the best of both worlds and bring the link
between reuse process execution and guidance instruction
provided by RAS.

V. CONCLUDING REMARKS AND LIMITATIONS
Reusable assets such as reuse practices documentation,

reuse assistants and software assets exist in many reuse
techniques but they lack integration capabilities. Our proposal
is to aggregate such assets as interoperable reuse assistants. To
achieve this goal we have discussed about a set of adaptations
required to a tool set. Accordingly, we pointed to practical
experiences, some in industry, which provide validity of this
proposal. More important, recently, a study [17] ensured that a
RAS extension [7] can be used to interoperate some reuse
assistants.

Although this study suggests some success towards our
proposal; some ongoing work is still being conducted: to
support executable tasks as a RAS model it is necessary to
check model element constraints. Thus, in activity 4 shown in
Figure 3 of our proposed architecture, to ensure asset’s model
correctness, we are planning to support constraints in a RAS
model by using a BRMS.

726

ACKNOWLEDGMENT
This work was partially supported by the Brazilian agencies

CAPES and CNPq.

REFERENCES
[1] Aho, P.; Mäki, M.; Pakkala, D.; Ovaska, E. MDA-Based Tool

Chain for Web Services Development. In Proceedings of the 4th
Workshop on Emerging Web Services Technology. 2009. pp 11-
18.

[2] Antkiewicz, M., Czarnecki, K., Stephan, M., 2009. Engineering
framework-specific modeling languages. IEEE Trans. Software
Eng. 35 (6). pp 795–824.

[3] Atkinson, C.; Bostan, P.; Fink, F. Reuse-Oriented Deployment of
Software Components: Congregation in Service-Oriented
Development. In Fourth International Conference on Software
Engineering Advances, 2009. pp 65-72.

[4] Basso, F.P.; Oliveira, T.C.; Becker, L.B. Using the FOMDA
Approach to Support Object-Oriented Real-Time Systems
Development; In Proc. of Ninth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed
Computing. Gyeongju, Korea. 2006. pp 374-381.

[5] Basso F. P.; Basso R. M. P; Oliveira T. C. An Experience Report
in Agile Development with MDA (in protuguese: Um Relato de
Experiência no Desenvolvimento Ágil de Software com a MDA).
In First Brazilian Workshop on Model Driven Development (I
BW-MDD), 2010, Salvador – Bahia, Brazil. In Portuguese.

[6] Basso F. P; Basso R. M. P; Oliveira T. C. Towards a Web
Modeling Environment for a Model Driven Engineering
Approach. In Third Brazilian Workshop on Model Driven
Development (III BW-MDD), 2012, Natal – Rio Grande do
Norte, Brazil.

[7] Basso F. P; Werner, C. M. L; Basso R. M. P; Oliveira T. C. A
Common Representation for Executable Reuse Tasks. In ICSR
2013 - 13th international Conference on software Reuse, 2013,
Pisa – Italy. pp. 283–288.

[8] Czarnecki, K., 2004. Overview of generative software
development. In: Proceedings of Unconventional Programming
Paradigms (UPP) 2004, 15–17 September, Mont Saint-Michel,
France, Revised Papers, volume 3566 of Lecture Notes in
Computer Science, Springer-Verlag. pp 313–328.

[9] Eclipse EMF. Av. at < http://www.eclipse.org/modeling/emf/>.
At 15/12/2012

[10] Eclipse IDE. Av. at <http://www.eclipse.org>. At 15/12/2012
[11] Elgedawy I. Reusable SOA Assets Identication Using E-Business

Patterns. In World Conference on Services - II, 2009.
[12] Fernandes, P.; Werner, C.; Murta, L. Feature Modeling for

Context-Aware Software Product Lines. In International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, USA, july 2008. pp 758-763.

[13] Filho, M. I.; Oliveira, T. C.; Lucena, C. J. P. A framework
instantiation approach based on the Features Model. In Jornal
of Systems and Software 73 (2004). pp 333–349.

[14] Gomaa, H., July 2004. Designing Software Product Lines with
UML. Software: Practice Experience 36 (13), 1443–1465 (11,
2006).

[15] Hadji, B. H.; Kim, S.; Choi, H. A Representation Model for
Reusable Assets to Support User Context. In IEEE International
Symposium SOSE ’08 - Service-Oriented System Engineering,
2008. pp.91-96, 18-19 Dec. 2008

[16] HongMin, R.; Zhi-ying, Y.; JingZhou, Z. Design and
Implementation of RAS-Based Open Source Software
Repository. Sixth International Conference on Fuzzy Systems
and Knowledge Discovery, 14-16 Aug. 2009. pp: 219-223

[17] Interchangeable Reuse Assistants - White Paper 01. Available at
<prisma.cos.ufrj.br/wct/irawp01.pdf> At 06/02/2013.

[18] Kang, C. K.; Cohen, S. G.; Hess, J. A.; Novak, W. E. ; Peterson
A. S. Feature-Oriented Domain Analysis (FODA) Feasibility
Study (CMU/SEI-90-TR-21). Software Engineering Institute,
Carnegie Mellon University. November, 1993.

[19] Kim, Y.; Stohr, E.A. Software Reuse: Issues and Research
Directions. Published in: Center for Digital Economy Research;
Stem School of Business; Working Paper Series. IS-9 1- 15.
1991. Available at
<http://archive.nyu.edu/bitstream/2451/14370/1/IS-91-15.pdf>

[20] Krueger C. W. Software Reuse. In ACM Computing Surveys
(CSUR) Volume 24 Issue 2, June 1992. pp 131 – 183.

[21] Netbeans IDE. Available at <http://netbeans.org>. At
15/12/2012

[22] Object Management Group MDA Specifications. October 2004.
Available at <http://www.omg.org/mda/specs.htm>.

[23] Oliveira, T.C.; Alencar, P. S. C.; Cowan, D. D. ReuseTool - An
extensible tool support for object-oriented framework reuse.
Journal of Systems and Software 84(12): 2234-2252 (2011).

[24] Ortigosa, A., Campo, M., 1999 June. Smartbooks: a step beyond
active-cookbooks to aid in framework instantiation, Technology
of Object-Oriented Languages and Systems 25. IEEE Press.

[25] Park, S.; Park, S.; Sugumaran, V. Extending reusable asset
specification to improve software reuse. In Proceeding of SAC
'07 Proceedings of the 2007 ACM symposium on Applied
computing, 2007. pp 1473 – 1478.

[26] Pillat, R. M., Basso, F. P.; Oliveira, T. C., Werner, C. M.,
Ensuring Consistency of Feature-based Decisions with a
Business Rule System, International Workshop on Variability
Modeling of Software-intensive Systems (VaMoS), January 23-
25, 2013, Pisa. pp 81-88.

[27] Reusable Asset Specification. Av. at
<http://www.omg.org/spec/RAS/>. At Mar. 2013.

[28] Santos, R.; Werner, C. Analyzing the Concept of Components in
the Brechó-VCM Approach through a Sociotechnical and
Software Reuse Management Perspective. In Fourth Brazilian
Symposium on Software Components, Architectures and Reuse
(SBCARS), 2010. pp 26-35.

[29] Silva M.; Oliveira T. Towards detailed software artifact
specification with SPEMArti. In Proceedings of the 2011
International Conference on Software and Systems Process
(ICSSP '11). ACM, New York, NY, USA. pp 213-217.

[30] Schuenck, M. , Negócie, Y. , Elias, G. , Miranda, S. , Dias Jr., J.,
Cavalcanti, G. X-ARM: An Asset Representation Model for
Component Repository Systems. In Proceedings of SAC’06,
April, 23-27, 2006, Dijon, France. pp 1690-1694.

[31] Shan T. C; Hua W. W. Taxonomy of Java Web Application
Frameworks. In 2006 IEEE International Conference on e-
Business Engineering (ICEBE 2006), 24-26 October 2006,
Shanghai, China. pp 378-385.

[32] WCT: Work CASE Toolkit - Project Description. At March
2013. Available at <http://prisma.cos.ufrj.br/wct>

[33] WCT: Adapit Company - Tutorials and Softtwares. At March
2013. <http://www.adapit.com.br/portal.html?sys=wct>

727

Using Prolog Rules to Detect Software Design
Patterns: Strengths and Weaknesses

Hamdi A. Al-Jamimi and Moataz Ahmed
King Fahd University of Petroleum and Minerals
Information and Computer Science Department

Dhahran, Saudi Arabia
{aljamimi, moataz}@kfupm.edu.sa

Abstract- Software design patterns reflect best practice solutions
applied to frequent design problems. In the literature, various
approaches have been proposed to detect the occurrences of
design patterns. Prolog rules and similar formalisms have
already been utilized for reasoning about the structural and
behavioral properties of the software design. Nevertheless, these
approaches suffer some weaknesses that we aim to reveal and
discuss. In this paper, we discuss Prolog based approaches to
detect the design patterns in software. In addition, we evaluate
the capability of Prolog rules and highlight the strengths and
weaknesses.

Keywords— design pattern; software design; prolog rules;
detection.

I. INTRODUCTION
As models become larger and more complex, they become

more difficult to comprehend and maintained. Since design
patterns are recurring and well-understood design fragments, it
follows that analyzing models in terms of design patterns as
well as detecting occurrences of these patterns support models
maintenance and comprehension. The design patterns are
adopted to reuse the best practices solutions applied to
reoccurring problems for the sake of software quality
improvement [1].

The design pattern describes the design solution and the
different roles and responsibilities. It specifies also the pattern’s
applicability, and the collaborations occurring between the
components [2]. Each design pattern comprises a number of
participants (classes, attributes, and operations). Each
participant plays a certain role manifested by its name.
However, when applying or composing the design pattern in an
application, there is a need to adapt the roles names to reflect
the application domain. Moreover, overlapping between design
patterns makes it hard to identify the patterns. For instance, in
software system design containing several design patterns, it is
not easy to identify the participants of each design pattern. This
is due to the implicit nature of design patterns in software
system design. Therefore, detection of design patterns needs to
be automated as much as possible. Furthermore, when
detecting the occurrences of design patterns, it is beneficial to
use the two aspects of the design pattern namely the static and
dynamic aspects. The static aspect represents the structural
connections, while the dynamic aspect represented by protocol
of actions. Design patterns detection has received a great deal
of attention in the literature. The logic approaches tried to

detect the design patterns by using Prolog to represent software
designs and patterns, and utilizing the Prolog engine to
accomplish the search [3]. In general, logic based approaches
use Prolog rules to represent the design patterns while the
software design is described as Prolog facts. Then, Prolog
queries are used to detect the occurrence of design patterns and
identify them. Despite of the power of logic queries, these
approaches suffer some weaknesses. This paper state the
capability of using Prolog rules to represent the structural and
behavioral aspects of the design pattern, in order to search for
design pattern instances in the design. This paper details the
strengths and weaknesses of the logic-based approaches based
on the analysis of the previous studies and the Prolog programs
we implemented.

The remaining of the paper is organized as follows. Section
II surveys related work. The design patterns representation
using Prolog rules is presented in Section III. Section IV
discusses the strengths and weaknesses of Prolog rules-based
detection approaches. Section V concludes and introduces open
issues to be considered as future work.

II. RELATED WORK
In the literature, some detection approaches use logic based

formalisms to encode pattern constraints and inference engines
to detect them. Some of these approaches are discussed in the
sequel.

Kramer and Prechelt [4] provide one of the first
implementations to automatically recognize design patterns
using Pat system. The Pat system detects structural design
patterns, where rules are used to represent the patterns and
prolog queries to execute the search. The design constructions
are also represented in Prolog as facts. Kramer and Prechelt
focus only on one type of design patterns i.e. the structural
design patterns. For each pattern they only consider a single
implementation variant [1]. Their evaluation shows that design
patterns detection precision based on four benchmarks is
between 14 and 50 percent which is not sufficient. Although
the recall reaches 100 percent the result may still have false
negatives1. Similarly, Wuyts [5] uses a logic meta language,
called SOUL, to express, reason about and extracts a system’s
structure. The programs entities and the hierarchy structure of
system are described as facts, where they were extracted using

1 We mean by false negatives the set of design patterns occurrence that were
not detected by a pattern detector but they are contained in the design.

728

static analysis. The design motifs are described as Prolog
predicates on the facts. However, due to the use of a Prolog
engine this approach has performance issues. Specifically, it
cannot deal with variants automatically, also the inherent
complexity when identifying subsets of classes matching
design motif descriptions.

The static and dynamic analyses were combined by
Heuzeroth et al. [6] to detect design patterns. To allow
automatically generating the static and dynamic analyses, they
provide two Prolog-based languages to specify design patterns.
They use SanD-Prolog which is a low-level language that
includes Prolog predicates to depict the static structure and
dynamic behavior of design patterns. A high-level language,
called SanD, has been used to specify design patterns. Despite
of its effectiveness, this approach suffers some limitations: the
specifications of SanD-Prolog seem to be lengthy and complex.
SanD is tend to be more intuitive, however less powerful.
Additionally, Huang et al. [7] present an approach to support
pattern recovery. Their approach is based on the structural and
run time behavioral analysis. Different types of design patterns
are considered; structural, creational and behavioral patterns.
The structural and behavioral aspects have been utilized. To
depict this representation, they introduce a combination of
predicate logic and Allen's interval-based temporal logic. Then
to support pattern recovery, the formal specifications could be
easily converted into Prolog representations. Stoianov and Sora
[8] propose a logic-based detection approach used to detect a
set of patterns and antipatterns. The approach defines Prolog
predicates to describe the structural and behavioral aspects of
design patterns and antipatterns. Prolog predicates simplify the
description of patterns and antipatterns characterized by
structural and complex behavioral aspects. They compared the
results of the proposed approach with the results provided by a
common tool on the same analyzed systems. In the case of two
patterns out of five there are significant differences between the
obtained results. TABLE I summarizes the studies presented in
this section. Despite their scientific contributions, we believe
that these approaches have a number of drawbacks that will be
discussed in details in Section IV.

TABLE I SUMMARY OF THE LOGIC-BASED APPROACHES

Study

Evaluation Criteria

St
ru

ct
ur

al

B
eh

av
io

ra
l

Pa
tte

rn

R
ep

re
se

nt
at

io
n

Sy
st

em

R
ep

re
se

nt
at

io
n

M
at

ch
in

g
Te

ch
ni

qu
e

Kramer et al.[4] √ Prolog Prolog Exact
Wuyts [5] √ Prolog Prolog Exact

Heuzeroth et al. [6] √ √ Prolog-based
 language Prolog Exact

Huang et al. [7] √ √ Prolog -- Exact
Stoianov et al. [8] √ √ Prolog Prolog Exact

III. PROLOG REPRESENTATION
A knowledge representation (KR) is defined as reasoning

about the world instead of taking action in it. The power of KR
is reflected by the ability to make inferences, i.e. draw new
conclusions from existing facts. In this work, Prolog facts
represent the software design, while Prolog rules represent the

design patterns. The design pattern describes structural
connections between two classes through call, delegation or
inheritance relations. In addition, it depicts interactions
between objects of these classes and sequences of actions. In
the following, we demonstrate an experiment where we
represent design patterns and software design by a set of Prolog
rules and facts respectively. Our goal is purely to determine
whether a given fact (software design) can be inferred
efficiently from the specified rules (design patterns) or not. The
implemented Prolog program consists of three sets: first, rules
that represent each design pattern in terms of its participating
classes and their relations. Second, facts corresponding to the
software design. The classes name might be different from the
classes presented in the rules; however, they might be matched
in the relations, methods and exchanged messages. Third, a
Prolog inference algorithm unifies the defined predicates and
extracted facts to recognize classes playing roles in a particular
design pattern.

A. Pattern Representation
Our representation is inspired by earlier work of Kramer et

al. [4]. Here, we consider the structural and behavioral aspects
of the design pattern. Conversely, in [4] they consider only the
structural aspect. We represent a set of design patterns, using a
set of Prolog rules which can be defined as a predicate
expression. The presented rule specifies essential and adequate
characteristics of classes, their different relations, and method
invocations to form a pattern instance. In the following we
demonstrate the syntax of the design pattern representation that
we used in our experiment.

patternName(participating classes):-
 class(classType ,participatedClass),
 attribute(participatedClassM,attrName),
 operation(oprType,oprScope

participatedClassM,oprName,calleeClass),
 inheritance(participatedClassX, participatedClassY),
 association(participatedClassX, participatedClassY),
 aggregation(participatedClassX,MultiplicityX

participatedClassY, MultiplicityY).

The above representation of the design pattern starts by the
pattern’s name and classes participating in the pattern. Then for
each participated class, its name and type either abstract or
concrete are provided. Similarly, another clause is added to
describe the mandatory attributes and their classes. The clause
describing the operation provides more information; since it
describes operation type (abstract or concrete), operation scope
(public, private, or protected), name of the class to which
operation belongs, operation name, and the callee class in case
the operation is called by another class. Finally, the
representation contains three additional clauses to represent the
relations between the participating classes. The represented
relations include inheritance, association and aggregation. For
each design pattern, Prolog rule assembles all the required facts
in order to identify a pattern instance. Our Prolog program
contains the representation for five design pattern namely
Strategy, Bridge, Factory Method, Strategy, and Iterator. We
focus to represent at least one pattern from each design pattern
category; creational, structural and behavioral patterns. Due to
space limitation, we cannot show the representations of the
considered patterns.

729

Figure 1. A design of system sort

B. System Representation

A set of Prolog facts is used to represent the extracted
knowledge from a design of software system. Furthermore,
information about the interactions among classes is required to
detect the design patterns occurrences. Figure 1, adapted from
[9], presents a design of system sort that includes the
applications of several design patterns namely: Adapter,
Strategy, Bridge, Iterator, and Abstract Factory. In the diagram,
for each design element it is not clear in which patterns the
design element participate. In our representation, Prolog facts
are used to represent the system design. The Prolog fact can be
defined as a predicate expression used to formulate a
declarative statement about the problem domain. Prolog
interpreter answers queries about the rules and facts
represented and stored in its database. It is assumed, to
represent what is true about the existence of design patterns.
When asking Prolog whether it can prove that a certain design
pattern is in the presented software design. It answers ‘yes’, if
so, and it shows any variable bindings to the design pattern.
Otherwise, it answers ‘no’ when it fails to prove the query is
true.

C. Results
We used the above representation to query about the

occurrences of the prescribed design patterns. The recall and
precision measures were used to measure the performance of
the detection. While recall indicates the portion of relevant
design pattern instances that are retrieved, precision refers to
the portion of retrieved design pattern instances that are
relevant. As shown in Figure 1, the number of existing patterns
is varying from a design pattern to another. Indeed, the results
of the experiment show a full recall and precision, means that
all the design patterns could be detected by using Prolog rules.
Nevertheless, we were able to conclude several comments
confirming the restrictions and weaknesses of the logic-based

design pattern detection. Section IV discusses these comments
based on the analyzed survey and the conducted experiment

IV. EVALUATION AND DISCUSSION
In general, a KR language can be evaluated through four

properties: representational adequacy, inferential adequacy,
inferential efficiency and acquisitional efficiency. In the light
of these properties, this section discusses the strengths and
weaknesses of using Prolog rules to detect the design patterns.

A. Strengths
Representational adequacy is the ability of the language to

depict all sorts of knowledge required in the described domain.
When Prolog is used as a repository of design knowledge, a
number of features can be gained.

1. Prolog rules represent the characteristics and constraints of
each design element. Thus, these rules can be utilized to
verify the design elements consistencies.

2. Prolog can perform exhaustive search for solutions during
its execution. As a result, Prolog engine has the ability to
detect all occurrences of a specific pattern.

3. Logic based languages in general are able to represent the
real world more accurately.

Inferential adequacy refers to the capability to drive new
knowledge from the available one through manipulating the
representational structures.

1. Prolog assert and retract clauses can be utilized to add and
remove structural facts about design elements.

2. Prolog is able to derive new rules from the existing rules
contained within the knowledge base.

B. Weakneseys
Although the strengths and the scientific contributions of

the Prolog-based studies [4, 6-8], in the following we list
several drawbacks of Prolog when detecting design patterns.

730

The weaknesses are discussed in terms of inferential efficiency
and acquisitional efficiency. The former refers to the ability to
integrate more information into the knowledge structure to
focus the attention on a promised way; while the latter indicates
the capability of utilizing automatic methods to gain new
knowledge when possible instead of human intervention.

1. Exact matching has been considered in all the surveyed
papers (see TABLE I), also in the example we
implemented. In case of the binary detection, even if high
percentage of the design is corresponding to the design
pattern, it cannot be detected. Moreover, the ranking for the
detected patterns is not supported. In reality, the fuzzy
conditions need to be represented when describing the
patterns; also the detection approach should be able to
detect the partially matching.

2. Due to the variations of design pattern instances, it is not
easy to decide entirely whether a set of classes in software
design is accurately a design pattern instance. The patterns
can be formalized by different variants, i.e. a separate rule
represents each variant even if the variation is minimal.

3. Prolog engine can detect the classes represented and their
relations using the logical rules. That means it is difficult to
detect directly similar, not identical, design pattern
instances. Thus, the rules may need to be extended to
include all the missing design elements. Accordingly, the
rules grow rapidly and become impractical to manage.

4. The recall and precision measures show good results either
in our experiment or in the surveyed studies. However,
when referring to the aforementioned points this accuracy
measures are satisfactory with exact matching to instances
occurrences and with a specific design pattern variant.

5. Prolog is closed world assumption, means that it requires
that all the atoms in a domain must be specified. For the not
specified rules they will be considered there unless we put
restriction which is difficult to be specified. For example,
when querying about the occurrence of the adapter pattern,
the proxy pattern may be reterived as adapter. The
association between the subclasses is not considered
because this relation was not described in the rule.

6. Prolog-based approaches have no ability to work directly on
the given design models. These approaches require pre-
processing to convert the original model representation into
more suitable representation for the proposed formalism. In
this case, there is a need to convert the design patterns into
predicates to allow operating on them. Like this conversion
may complicate the live integration with modeling tools.

7. The logic approaches require skills in mathematics and
logic that might not be available or hard to learn. Pattern
designers in the industry might not be familiar with the
proposed mathematical formalisms, making them difficult
to use to specify patterns.

8. Most of the surveyed approaches reproduce the design form
the source code, which usually doesn’t represent the actual
design of the system. Not all the relations and interactions
are reflected in this conversion.

V. CONCLUSION AND FUTURE WORK
Prolog rules and similar formalisms have been utilized in

several conducted studies for reasoning about the structural and
behavioral properties of the software design. In this paper, we
discuss Prolog-based approaches used to detect design patterns.
The objective is to emphasize the capability of Prolog rules in
representing and detecting the design patterns. We analyzed
representative Prolog-based approaches. We also conducted an
experiment where the structural and behavioral of a number of
design patterns are represented using Prolog predicates. Our
analysis and evaluation revealed a list of strengths and
weaknesses of the Prolog-based detection approach.

Future work will focus on exploiting the strengths of the
Prolog representation in building custom tool that overcome the
encountered weaknesses. For instance, there is a need to make
flexible query where it is possible to return the partial
occurrences of design patterns with a degree of completeness.
While previous detection appraoches often detect some patterns
with good recall and precision; there is a need to investigate the
generalization and scalability of these approaches for complex
systems. Through this work we emphasized the importance of
considering the static and dynamic analyses when representing
the design patterns. However, several patterns have similar
structural and behavioral features; as a result it is not easy to
recognize them correctly. Therefore, semantic analysis is also
required to improve the detection accuracy.

ACKNOWLEDGMENT
The authors would like to acknowledge the support

provided by the Deanship of Scientific Research at King Fahd
University of Petroleum and Minerals, Saudi Arabia, under
Research Grant 11-INF1633-04.

REFERENCES
[1] Gamma, E., et al., Design Patterns: Elements of Reusable Object-

Oriented Software, 1995, New York, NY: Addison-Wesley Professional
Computing Series, Addison-Wesley Publishing Company.

[2] Qiu, Q.J.M., et al., Detecting Design Pattern using Subgraph Discovery,
in The 2nd Asian Conference on Intelligent Information and Database
Systems(ACIIDS).2010.

[3] Clocksin, W.F. and C.S. Mellish, Programming in Prolog. Fifth ed. ed,
2003: Springer-Verlag.

[4] Kramer, C. and L. Prechelt, Design recovery by automated search for
structural design patterns in object oriented software, in proceedings of
the 3rd Working Conference on Reverse Engineering.1996. p. 208-216.

[5] Wuyts, R., Declarative reasoning about the structure of object oriented
systems, in In proceedings of the 26th conference on the Technology of
Object-Oriented Languages and Systems, 1998. p. 112-124.

[6] Heuzeroth, D., S. Mandel, and W. L¨owe, Generating Design Pattern
Detectors from Pattern Specifications, in In Proc. of the 18th IEEE
International Conference on Automated Software Engineering2003,
IEEE Computer Society Press: Montreal, Quebec, Canada. p. 245-248.

[7] Huang, H., et al., A practical pattern recovery approach based on both
structural and behavioral analysis. Journal of Systems and Software,
2005. 75 (1-2): p. 69-87.

[8] Stoianov, A. and I. Sora, Detecting Patterns and Antipatterns in Software
Using Prolog Rules. Proceedings of International Joint Conference on
Computational Cybernetics and Technical Informatics, 2010: p.253-258.

[9] Dong, J., Adding pattern related information in structural and behavioral
diagrams. Information and Software Technology, 2004. 46(5):p.293-
300.

731

Runtime Monitoring and Auditing
of Self-Adaptive Systems

Daniel H. Carmo*, Sergio T. Carvalho*+, Leonardo G. P. Murta*, Orlando Loques*
*Instituto de Computação, Universidade Federal Fluminense (UFF), Niterói, Brazil

+Instituto de Informática, Universidade Federal de Goiás (UFG), Goiânia, Brazil
{dheraclio, scarvalho, leomurta, loques}@ic.uff.br

Abstract— Self-Adaptive Systems are target of frequent research
regarding different aspects. However, they still present several
challenges related to assurance, dependability, verification, and
validation. Adaptations can be related to a set of concerns (i.e.,
why, what, when, where, who, and how), which are evaluated
during, operation and post operation phases. We propose the
application of configuration management techniques to provide
means for monitoring and auditing Self-Adaptive Systems. We
introduce a tool named CM@RT that registers how the system
architecture configuration evolves over time and provides
different visualizations to track such evolution. For evaluating
our approach, some Self-Adaptive Systems scenarios were
tackled with the help of CM@RT. The results show that our
approach is capable of providing means to perform monitoring
and auditing with valuable benefits to the selected Self-Adaptive
scenarios.

Keywords- Self-Adaptive Systems; Configuration Management;
Monitoring; Auditing; Product Lines

I. INTRODUCTION
Self-Adaptive Systems (SAS) adapt their behaviour in

reaction to changes in the runtime context [1]. Today, there is
an increasing demand for SAS [2], even for safety-critical
applications [3], since SAS are capable of operating in highly
dynamic environments [3]. However, considering that SAS are
conceived to autonomously react to changes in the runtime
context, researches on dependability [4], verification and
validation [3], quality [5], among others [1], [2], [6] are
crucial, especially for safety-critical applications.

SAS may perform different types of adaptations in
response to changes in the runtime context. These adaptation
types are based on techniques ranging from parameterization
to architecture reconfiguration [2]. The later allows deeper
adaptations because parts of the system (i.e., components) can
be added, removed, replaced, or reconnected with the
remaining parts, resulting in new architecture configurations
(AC) [2]. Investigations on AC level adaptation have provided
significant results for SAS [7], [8], [9]. For instance, when
considering safety-critical applications, the use of Dynamic
Software Product Lines (DSPL) techniques leverages
dependability by allowing software architects to define, in a
preplanned manner, possible AC and transitions among them
[10], [11], [12], [13].

However, tracking the AC evolution of SAS, even when
adopting DSPL techniques, is a complex task [14]. SAS
adaptations can be described in terms of six basic concerns

(5W+1H) [2]: where, when, what, why, who, and how.
Identifying and closely following such concerns is expected
during operation phase [2]. In addition to this phase, safety-
critical applications also require post-operation analysis, for
example, to assign responsibilities in the context of a given
health care system failure [6]. In this case, software auditing is
essential to verify compliance with design specifications.
Therefore, these tasks require specific support for evaluating
5W+1H concerns during two phases:

 Operation phase. This could help to answer questions
such as “why the system did lots of adaptations in the
last week?”

 Post-operation phase. This could help answer
questions such as “which adaptation patterns led to a
system failure?”

A natural way to support such tasks is adopting
Configuration Management (CM) techniques during runtime,
helping to track the architectural evolution in terms of the
5W+1H concerns. Evolution of AC in SAS and its relation to
CM has been explored before. First, van der Hoek [15] made
initial efforts to track runtime AC evolution via architecture
description languages. After, van der Hoek et al. [16] extended
the previous work and applied CM to support DSPL anytime
variability. Latter, Georgas et al. [4], [17] leveraged
dependability by recording adaptations and providing
architecture recovery operations and visualization features
over SAS historic behavior. However, such researches do not
consider ways for describing adaptations in terms of the main
SAS 5W+1H concerns [2], concentrating only on the
architectural modifications themselves and ignoring the
motivation behind them. This lack of information may
jeopardize the comprehension of SAS evolution.

This paper proposes the application of CM techniques to
provide support for evaluating 5W+1H concerns with
monitoring and auditing purposes. To do so, we designed a
CM system to work at runtime, named CM@RT. Our
approach comprises two complementary phases: information
acquisition and information analysis. First, during information
acquisition, CM@RT registers in a repository adaptation
related aspects, e.g., runtime contexts and AC achieved. Then,
during information analysis, CM@RT supports the
visualization of the AC evolution via different perspectives,
described in Section III. With this tool, users are able to
closely follow the SAS evolution during operation and post-
operation.

732

To evaluate the benefits of CM@RT, some scenarios
associated to monitoring and auditing tasks were tackled. With
the use of our tool, we were able to collect enough information
to answer the 5W+1H concerns for these relevant scenarios.

The remaining sections of this paper are organized as
follows. Section II gives more details about SAS and
highlights the importance of monitoring and auditing for SAS.
Section III introduces the CM@RT approach. Section IV
provides some implementation details of CM@RT. Section V
presents how to perform monitoring and auditing analyses
with CM@RT. Section VI describes some related work.
Finally, Section VII presents final considerations and outlines
some future work.

II. SELF-ADAPTIVE SYSTEMS
SAS usually adopt the MAPE-K adaptation loop [2], [5] to

manage their behaviour. This adaptation loop consists of four
phases [18]: (1) monitoring the external environment in which
the system is executing, (2) analysing the context attributes of
the environment, (3) planning for a possible adaptation to react
from changes in the environment, and (4) enforcing the
adaptation in the system. The adaptation loop usually counts
on some kind of adaptation knowledge that supports each of
the four previously mentioned adaptation phases.

Researchers have explored different techniques to
implement adaptation loops. Among them, we can cite model-
driven [10], [13], [19] and contract-based (also called strategy
or policy) [2], [12], [20] techniques. However, despite of the
differences in adaptation techniques, it is possible to describe
and further comprehend the adaptation decisions through the
evaluation of the 5W+1H concerns [2]:

 Where: questions over adaptation location, e.g.,
which layer or components should be adapted?

 When: questions over temporal aspects, e.g., when to
adapt or how often?

 What: questions over adaptation strategies, e.g.,
should we reconfigure the AC or substitute a
component?

 Why: questions over reasons to adapt, e.g., which is
the adaptation goal?

 Who: questions over sources of adaptation, e.g., was
it a human-driven or context-based adaptation?

 How: questions over actions performed in the
adaptation, e.g., in which order the changes should
take place?

Controlling software evolution is one of the main concerns
of CM. It traditionally works at development time and has
files as first class artifacts [21]. In an usual CM setting, a
version control system is responsible for registering detailed
information about modifications in different artifacts, e.g.,
source code [22] and architecture configuration [15]. On the
other hand, an issue tracking system is responsible for
registering change requests, which identify the issue context,
affected artifacts, and required corrections. In addition,
integration between version control and issue tracking has
demonstrated as an effective way to clarify 5W+1H concerns
[23].

The expected operation of a SAS consists on performing
adaptations if and only if they are necessary. However, in
some situations the SAS may not perform a prescribed
adaptation (i.e., false negative) or perform an unnecessary one
(i.e., false positive). The evaluation of the internal conditions
would help to identify the reasons of false positive (FP) or
false negative (FN) adaptations. In addition, replicating the
conditions that lead to them is also complex. Appropriate
development and test processes would help to identify such
problems at development time, before they actually happen.
However, it is very difficult to guarantee that all problems are
caught during development. This motivates the use of a
monitoring mechanism at runtime. Finally, an auditing
mechanism could help to identify after-the-fact malfunctions.
For example, wrong adaptations (FP or FN), which were not
caught at development time or at runtime. This can be useful
considering highly dynamic current pervasive computing
scenarios.

III. THE CM@RT APPROACH
The CM@RT approach performs runtime CM over SAS in

order to provide means for evaluating 5W+1H concerns during
monitoring and auditing activities. These activities are
performed through the integration between the CM@RT-
Repository and the CM@RT-Visualizer modules. Technology
specific components integrate CM@RT to the SAS
infrastructure. Thus, allowing both on-line and off-line
analysis. The following subsections present how information
is acquired by CM@RT-Repository, and subsequently
analyzed through CM@RT-Visualizer.

A. Information Acquisition
The runtime information gathering is performed by the

before mentioned integration component. This component is
responsible for mapping the application specific SAS entities
into the CM@RT-Repository metamodel.

After importing the SAS into CM@RT-Repository, the
runtime information captured is registered in the metamodel
shown in Figure 1. Its relationship to the 5W+1H concerns is
described in the following.

Figure 1 CM@RT metamodel

To answer where the adaptation should be performed,
CM@RT tracks Architecture Configurations materialized

733

during runtime. This tracking enables comparing AC to reveal
the differences between them. The relationship between the
AC before and after adaptation is represented by the
Transition Record entity. It also includes references to the
Issue entity, which is described further in following
paragraphs.

The answer to when to adapt depends on when the demand
arose and when it was detected. Since SAS are context-aware,
the demand appears first on the runtime context, represented
by the Runtime Context entity. The moment of the demand
detection is the time of the Issue entity creation. However, not
every runtime context results in new demands. In addition,
when to adapt involves deciding whether to adapt or not, so
demands may go unattended. The CM@RT-Repository stores
Runtime Contexts and Issues even if they do not result in AC
transitions.

The answer to who detected the issue can be found in the
attribute creator of the Issue entity, and it may consist on the
SAS itself or on a human. SAS issues are generally concerned
with self-* properties [21], e.g., self-healing, or user needs,
e.g., controlling room temperature. On the other hand, human-
driven issues may have different concerns, e.g., corrective
maintenance during operation, testing components during
development, or evaluating system behaviour after
adaptations. In any case, they relate to the current runtime
context and determine modifications in the AC.

The answer to why the SAS adapts requires evaluation
over the Runtime Context and the Issue associated to a
transition between AC. The runtime context shows detailed
information over SAS runtime environment, allowing
engineers to reason over them. Issues deal with several
concerns (discussed in the previous paragraph), which can be
registered in the attribute description for future analysis. Thus,
Runtime Contexts and the corresponding Issues complement
each other for answering this question.

The answer to how the adaptation occurred is also
associated with the Issue through adaptive actions it registers.
However, these actions may consist on high-level
modifications over the current AC, which leave aside low-
level dependencies among components and required services.
For example, contracts are concerned with DSPL composition
rules only [24], thus not required to address version conflicts
of shared libraries among components. It is necessary to
evaluate the differences between AC before and after the
adaptations to realize the full extent of how the SAS was
adapted. This could reveal if the SAS low-level dependency
solution harmed contract results.

B. Information Analysis
The CM@RT-Visualizer is intended to work connected to

CM@RT-Repository, retrieving information from its
repository and exposing update events. Through a combination
of views, the application provides analysis features that can be
applied during monitoring and auditing.

Monitoring support allows software architects and
engineers to evaluate system behavior during runtime. For
example, they may evaluate transitions among AC online,
since the CM@RT-Visualizer updates its representations just

after adaptations are recorded in CM@RT-Repository. It is
also possible to evaluate the runtime contexts and issues as
soon as they are recorded.

Auditing support is only viable because all information is
recorded in a repository, allowing after-the-fact analysis. It
includes, among other features, a retrospective view. It is able
to graphically replay the transitions performed at runtime in
terms of AC diffs, runtime contexts diffs, and associated
issues (see Section IV.D for more details).

IV. CM@RT PROTOTYPE
With the aim of evaluating our approach, we develop four

prototypes. The first is a SAS framework, which follows the
MAPE-K principle. The second is a version of the SCIADS1
[12], [24], [26] compliant to the SAS framework. The third is
the CM@RT-Repository module and the fourth is the
CM@RT-Visualizer module.

The main adaptation technology employed in our
prototypes is OSGi2. OSGi leverages the construction of
dynamic systems as sets of components, which can bind to
services dynamically and automatically. The following
subsections describe the developed prototypes.

A. The SAS Framework
The SAS Framework was implemented as independent

OSGi components. The main component is the SelfAdapter. It
supplies the basis of the framework, defining service
interfaces, and model classes, and providing utility classes for
others SAS Framework components. Other OSGi components
(Knowledge, Monitor, Analyzer, Planner, and Adapter)
implement specific services following the interfaces required
by the SelfAdapter component. For example, the Monitor
component implements the monitoring service of MAPE-K
defined by the Monitor interface.

B. The SCIADS Version Compliant to the SAS Framework
SCIADS is a safety-critical DSPL-based SAS. Its AC is

reconfigured according to adaptation actions determined by
contracts and DSPL composition rules [12], [24]. The
contracts use runtime context variables to determine high-level
modifications in current AC, e.g., insertion or removal of
components. In addition, SCIADS AC considers its patient
specifics needs and residence characteristics. The combination
of these factors results in a great number of possible AC and
directly jeopardizes the predictability of system states [13].

C. The CM@RT-Repository Module
The CM@RT-Repository information acquisition module

is the main element of our approach, as it provides services to
all the other elements. The CM@RT-Repository provides a
single API, which follows the Facade pattern, hiding internal
services and their relationship.

There are two service groups: repository and diffing.
Repository services include SAS registration, information

1 SCIADS is a home health care system developed at UFF
(http://www.tempo.uff.br/sciads/).
2 Official site: http://www.osgi.org

734

storage, and querying over metamodel elements such as
runtime context, issues, AC, and theirs transitions (see Figure
1). The diffing service supports runtime context and AC
comparison.

D. The CM@RT-Visualizer Module
The CM@RT-Visualizer module depends on services

provided by the CM@RT-Repository module. For example,
the query services of CM@RT-Repository are used to
populate the views of CM@RT-Visualizer.

After selecting a SAS among those registered in the
repository, the information available for analysis is shown in
the Repository view. It is organized in four groups: Runtime
Contexts, Issues, Transitions, and Architecture Configurations.
These groups can be seen in Figure 2, on the left hand side.
Selected or general information can be analyzed through seven
different views during monitoring or auditing activities, which
are described in the following.

Figure 2 History view

The History view presents the SAS evolution as a whole
through a graph. Figure 2 shows an example of runtime
evolution history, in which SCIADS performed four different
transitions. The nodes represent AC and the edges represent
the transitions.

The Architecture Configuration view presents the SAS
AC also through a graph notation (see Figure 3). In this case,
the nodes represent components and are identified by name
and version, while edges represent the AC topology. Figure 3
also shows metrics for assessing the quality of the AC [27].
The metrics are based in component provided service
utilization (PSU) and required service utilization (RSU). The
metrics are Average PSU, Average RSU, Compound PSU, and
Compound RSU.

The Architecture Configuration Diff view (see Figure 4)
shows the differences between two AC selected from the
Repository view through check boxes. It uses the same graph
representation used in Architecture Configuration view,
annotated with color codes, indicating added (green), removed
(red), replaced (blue), and unchanged components (gray). In
addition, there is a textual description identifying the
differences found between the selected AC. This feature also
uses the before mentioned color codes to favor visual
identification.

Figure 3 Architecture Configuration view

The Runtime Context view represents the context
information monitored by the SAS in the form of a grid. This
grid contains the date of last update, the source, the attribute
name, and the collected value. Similarly, the Runtime
Context Diff view (see Figure 5) shows the differences
between two runtime contexts selected from the Repository
view. The diffing is performed considering each attribute and
its value, but ignoring dates and sources, as these data are
expected to always change. The Status column shows the
results using the same designation and color code of the
Architecture Configuration Diff view.

Figure 4 Architecture Configuration Diff view

Figure 5 Runtime Context Diff view

The Issue view shows details of the registered issues.
Figure 6 shows the inclusion date in the repository, the
demand description, the actions required to modify the AC,
and a textual description of the effects over the AC before the
adaptation. It also has buttons to show the runtime context
(Runtime Context view) and the difference between the AC
before and after the adaptation (Architecture Configuration
Diff view).

735

Finally, the Retrospective view uses the transition records
from CM@RT-Repository to present an animation of the
adaptations performed by the SAS system, replaying its
operation for a chosen period. It is a composition of three
views: Architecture Configuration Diff view (see Figure 4),
Runtime Context Diff view (see Figure 5), and Issue view
(see Figure 6).

Figure 6 Issue view

V. MONITORING AND AUDITING ANALYSES WITH CM@RT
This section describes how CM@RT can help performing

monitoring and auditing analyses under three scenarios. These
scenarios use SCIADS as a concrete example. In this section,
we assume that all prototypes are active during runtime in the
OSGi platform. Monitoring and auditing performed using
CM@RT-Visualizer features occurs as follows.

A. False Positive and False Negative Adaptations Detection
In SCIADS, identifying FP or FN adaptations require the

evaluation of several contracts, considering their internal
conditions. In Figure 5, the CM@RT-Visualizer shows
examples of these internal conditions in the first 2 rows, along
with corresponding values. The internal conditions were added
to runtime context to enable their evaluation based in value
differences between two runtime contexts.

To identify a FP the user can also check the registered
issues. The Issue view reveals which demands the SAS found
on a particular runtime context in the description field. To
identify FN, it is necessary to go through the registered
runtime contexts. The Runtime Context Diff view helps to
identify significant changes between runtime contexts,
necessary to locate situations where adaptations should have
occurred but did not.

B. Adaptation Cycles Detection
Another possible monitoring scenario consists on

evaluating the SCIADS adaptation rate in a patient’s home.
Besides adopting massive tests at development time, each
patient home has its own requirements and features.
Sometimes these features cannot be fully predicted, thus being
a source of uncertainty to the SAS [28]

Monitoring new AC transitions thought CM@RT-
Visualizer reveals the adaptation rate. Furthermore, it is
possible to monitor the rate of runtime context updates and
issues found. Monitoring runtime context and issues could
reveal anomalies during operation which were missed during

development. For example, the temperature thresholds
configured according to the development site may be
inadequate to the operation site, leading patient discomfort.

C. After-the-fact Adaptations Tracking
In SCIADS, if the patient is under dangerous health

conditions, adaptations are severely restricted. During auditing
of such behaviour, the manual analysis of textual system
runtime logs would be counterproductive and error prone. The
existence of a tool capable of representing historical
information with semantic driven visualizations, make the
auditing process more efficient and trustable if compared to
textual analysis.

The Retrospective view represents the progression of the
SAS adaptations, enabling their evaluation by specialists. The
view shows at the same time what changed, why it did, when
it happened, and who requested it. In addition, the progression
of the runtime context may reveal the effect of the adaptations
in the SAS environment.

VI. RELATED WORK
Few works provide runtime CM infrastructure to manage

AC evolution. Van der Hoek et al. [15], show that the AC of
dynamic system evolve as well as source code, and were the
first to propose the use of CM for managing this evolution.
They developed an integrated architecture-driven environment
called Mae. Mae provides features such as architecture
evolution control, runtime adaptation patch generation, and
product variant selection. In [16], van der Hoek continues to
explore architecture evolution control for any time variability
on DSPL. The approach comprises two applications: Ménage
for evolution control and SelectorDriver for evolution
handling. Ménage is part of the Mae environment, but focus
only on the development phase. Our approach is
complementary to these in the sense that we propose an
infrastructure for tracking the architectural evolution during
operation and post-operation phases, while their approach
focuses on the development phase.

Georgas et al. [4] use runtime CM to control architectural
evolution and to leverage dependability on SAS through the
use of Architectural Runtime Configuration Management
(ARCM). ARCM is integrated to Eclipse IDE through a plugin
[4], and comes with three main features: runtime architectural
evolution control, graph-based visualization of architectural
evolution, and architectural recovery facilities. In [17],
Georgas et al. describe the use of ARCM to provide visibility
and understandability over SAS runtime behavior and means
for human intervention over the adaptation process. Despite
the fact that it has some similarities with our approach, it is
limited to AC evolution. Our approach tracks several other
architectural evolution concerns, such as runtime context and
related issue, and encompasses operation and post-operation
phases.

VII. CONCLUSION
CM@RT represents our initial efforts on supplying CM at

Runtime to provide a monitoring and auditing infrastructure
for SAS, with special attention to DSPL. CM@RT-Repository

736

provides tracking functionalities over AC evolution and
related information. Complementing the core application, we
provide a repository visualization tool that supplies
consolidated information and mechanisms for monitoring and
auditing. Thus, CM@RT enables short, medium, and long
time analysis over SAS behavior. In addition, since the
CM@RT was designed to be deployed with the target SAS, it
runs on-line in production and development environment.

We also demonstrated how to perform monitoring and
auditing with CM@RT. This provides some initial evidences
that CM@RT is capable of providing behavior information for
monitoring and trace information for auditing. In addition, we
provide some SPL metrics for quality assessment and analysis
support (see Figure 3). In the future, we intend to perform
user-centered experiments to raise more evidence of its
benefits.

We believe the application of data mining on the repository
would reveal the existence of significant adaptation patterns.
For example, policies conflicts, components interoperability
conflicts, or singular situations at runtime environment could
be detected. With these patterns in hand, it would be possible
to enhance the effectiveness of the adaptation contracts by
treating previous patterns causes and, consequently, avoiding
unstable architecture configurations. In addition, there are
plans to use this information for developing automated
analysis features.

ACKNOWLEDGMENT
The authors would like to thank CAPES, CNPq, and

FAPERJ for their financial support.

REFERENCES
[1] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,

B. Becker, N. Bencomo, Y. Brun, B. Cukic, and others, “Software
engineering for self-adaptive systems: A research roadmap,” Software
Engineering for Self-Adaptive Systems, pp. 1–26, 2009.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
1–42, May 2009.

[3] G. Tamura, N. M. Villegas, H. A. Müller, J. P. Sousa, B. Becker, M.
Pezzè, G. Karsai, S. Mankovskii, W. Schäfer, L. Tahvildari, and Wong,
Kenny, “Towards practical runtime verification and validation of self-
adaptive software systems,” in in Software Engineering for Self-Adaptive
Systems 2, vol. 7475, Springer, 2013, pp. 108–132.

[4] J. C. Georgas, A. Van Der Hoek, and R. N. Taylor, “Architectural
runtime configuration management in support of dependable self-
adaptive software,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–6,
Maio 2005.

[5] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas,
“A framework for evaluating quality-driven self-adaptive software
systems,” in Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, Waikiki,
Honolulu, HI, USA, 2011, pp. 80–89.

[6] O. Loques and A. Sztajnberg, “Adaptation issues in software
architectures of remote health care systems,” in Proceedings of the 2010
ICSE Workshop on Software Engineering in Health Care, 2010, pp. 24–
28.

[7] D. Garlan, B. Schmerl, and S. W. Cheng, “Software architecture-based
self-adaptation,” In Autonomic computing and networking, no. Springer,
pp. 31–55, 2009.

[8] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N.
Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” Intelligent
Systems and Their Applications, IEEE, vol. 14, no. 3, pp. 54–62, 1999.

[9] B. Hayes-Roth, “An architecture for adaptive intelligent systems,”
Artificial Intelligence: Special Issue on Agents and Interactivity, vol. 72,
pp. 329–365, 1995.

[10] N. Bencomo, P. Sawyer, G. Blair, and P. Grace, “Dynamically adaptive
systems are product lines too: Using model-driven techniques to capture
dynamic variability of adaptive systems,” in 2nd International Workshop
on Dynamic Software Product Lines, Limerick, Ireland, 2008, vol. 2, pp.
23–32.

[11] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini, “A Dynamic
Software Product Line Approach Using Aspect Models at Runtime,” 5th
Domain-Specific Aspect Languages Workshop, Mar. 2010.

[12] S. T. Carvalho, O. Loques, and L. Murta, “Dynamic Variability
Management in Product Lines: An Approach Based on Architectural
Contracts,” presented at the IV Brazilian Symposium on Software
Components, Architectures and Reuse, Bahia, Brazil, 2010, pp. 61–69.

[13] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Solberg,
“Models@ Run.time to Support Dynamic Adaptation,” IEEE Computer,
vol. 42, no. 10, pp. 44–51, Oct-2009.

[14] N. López, R. Casallas, and A. Van Der Hoek, “Issues in mapping
change-based product line architectures to configuration management
systems,” in Proceedings of the 13th International Software Product
Line Conference, 2009, pp. 21–30.

[15] A. Van Der Hoek, M. Mikic-Rakic, R. Roshandel, and N. Medvidovic,
“Taming Architectural Evolution,” in ACM SIGSOFT Software
Engineering Notes, 2001, vol. 26, pp. 1–10.

[16] A. Van Der Hoek, “Design-Time Product Line Architectures for Any-
Time Variability,” Science of Computer Programming, vol. 53, no. 3, pp.
285–304, 2004.

[17] J. C. Georgas, A. Van Der Hoek, and R. N. Taylor, “Using Architectural
Models to Manage and Visualize Runtime Adaptation,” IEEE Computer,
vol. 42, no. 10, pp. 52–60, 2009.

[18] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[19] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[20] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable
infrastructure,” IEEE Computer, vol. 37, no. 10, pp. 46–54, 2004.

[21] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” International Business Machines Corporation,
278606109, 2001.

[22] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version
Control with Subversion, 2nd ed. Sebastpol, CA, USA: O’Reilly Media,
2008.

[23] C. R. Dantas, L. G. P. Murta, and C. M. L. Werner, “Mining Change
Traces from Versioned UML Repositories,” in Brazilian Symposium on
Software Engineering (SBES), João Pessoa, Brazil, 2007, pp. 236–252.

[24] S. T. Carvalho, L. Murta, and O. Loques, “Variabilities as First-Class
Elements in Product Line Architectures of Homecare Systems,” in 4th
International Workshop on Software Engineering in Health Care,
Zurich, Switzerland, 2012, pp. 33–39.

[25] K. Suzaki, T. Yagi, K. Iijima, N. A. Quynh, C. Artho, and Y. Watanebe,
“Moving from logical sharing of guest OS to physical sharing of
deduplication on virtual machine,” in Proc. 5th USENIX Workshop on
Hot Topics in Security (HotSec 2010), USENIX, Washington DC, USA,
2010.

[26] S. T. Carvalho, A. Copetti, and O. Loques, “Ubiquitous Computing
System in Home Health Care,” Journal of Health Informatics, vol. 3, no.
2, pp. 51–57, 2011.

[27] A. Van Der Hoek, E. Dincel, and N. Medvidovic, “Using service
utilization metrics to assess the structure of product line architectures,” in
Software Metrics Symposium, 2003. Proceedings. Ninth International,
2003, pp. 298–308.

[28] N. Esfahani and S. Malek, “Uncertainty in Self-Adaptive Software
Systems,” in in Software Engineering for Self-Adaptive Systems 2, vol.
7475, Springer, 2012, pp. 214–238.

737

An ontology-based user model for personalization of educational content

Joice B. Machado, Gustavo L. Martins, Seiji Isotani, Ellen F. Barbosa

University of São Paulo (ICMC/USP)
São Carlos (SP), Brazil

email: joicebm@icmc.usp.br, gustavolivrare@gmail.com, sisotani@icmc.usp.br, francine@icmc.usp.br

Abstract—Personalization of educational content is a com-
plex issue that needs to be addressed in order to enable
learning systems to adapt the didactic materials and meet
students’ needs. Current educational approaches have been
developed with interactive and personalized environments to
fit the profiles of their users. Although many user models have
been developed to date, most of them are specific for a given
domain. Our research introduces the flexibility of considering
different knowledge domains and its personalization for each
learner, based on content modeling and ontologies mapping. We
developed an ontological approach to content personalization
based on user model, including learning styles, goals and back-
ground. In particular, this paper focuses on the presentation
and validation of an ontology-based user model, referred as
to ONTO-USERMODEL. To achieve our goal, we instantiated
ONTO-USERMODEL with 300 user profiles and executed a
variety of queries to check if the proposed ontology helps to
store and retrieve information that support personalization
of educational content. As a result different granularities
were identified for each learner and content presentation was
personalized according to the mapped profiles in the ontologies.

Keywords-content personalization; ontologies; user model;
educational content.

I. INTRODUCTION

The increasing of semantic technologies has provided to

the developments computational systems the ability of deal-

ing with the meaning and relationships among information in

a variety of applications. In this research line, user-oriented

searches, focused on personalization issues, have emerged

as a mean for promoting information retrieval [1].

Personalization aims at providing customized replies to

particular actions of the users in order to achieve specific

requirements. Besides that, it intends to give meaning to

information that is not intelligently used in systems [2].

Several approaches [3], [2] for dealing with personaliza-

tion have been investigated. Among them, we highlight the

use of the semantic technologies and, particularly, the use

of ontologies. Ontologies can be defined as formal specifi-

cations of a shared conceptualization [4]. In the educational

context, they have been investigated in order to provide

facilities such as recovery of learning objects and content

personalization [5], [6], [7].

On the other hand, to support the implementation of

personalization mechanisms a well-designed and structured

user model is fundamental to provide information that can

be used to change the materials according to individual’s

characteristics. Although many user models have been de-

veloped to date, most of them cannot be easily used and

reused in different contexts due to their domain specificity.
Our approach were developed in order to enable the

personalization of different knowledge domain to users

distinct. Moreover, it allows the content modeling according

to the IMA-CID approach [8], that facilitates the reuse of

modeled learning objects. In a previous work, we proposed

ONTOTOLEARNER, an ontological infrastructure for content

personalization [9], [10]. It is composed of four main on-

tologies: (i) ONTO-IMACID; (ii) ONTO-USERMODEL; (iii)

ONTO-NAVIGATION; and (iv) ONTO-DOMAIN.
In this paper we focus on the presentation of ONTO-

USERMODEL, an ontology-based user model, discussing

its role in ONTOTOLEARNER as well as its implications

for the personalization of educational content. The results

suggest that ONTO-USERMODEL enables the extraction and

combination of information about users.
This paper is organized as follows. In Section II we pro-

vide a literature review regarding the ontological approaches

for representing user models. In Section III we present an

overview of the set of ontologies we have worked on. In

Section IV we describe ONTO-USERMODEL, focusing on

the benefits and impacts for personalization that the ontology

provides. In Section V we discuss the automatic instantiation

of ONTO-USERMODEL. Finally, in Section VI we present

our conclusions and perspectives for further work.

II. RELATED WORK

Several ontological approaches for representing user’s

models can be found in the literature. Jovanovic et al.
[7] used ontologies to enable the automatic annotation of

content. As a result, content can be assembled in different

learning objects and customized according to the students’

knowledge, preferences and learning styles. However, the

management of educational ontologies is not an easy task.
In this direction, Gaeta et al. [5] propose an approach to

manage the life-cycle of ontologies that define personalized

e-Learning experiences in blended learning environments.

From the content annotated with well-managed ontologies it

is possible to create rules to adapt the content presentation

considering students’ characteristics.
Our ontological approach for personalization differs from

the initiatives in this section since it is based on an ontolog-

738

ical infrastructure that uses semantic mappings of relations

as a mean to provide different granularities for content

presentation and navigation.

Furthermore, despite the great benefits of previous re-

search findings, there are still many challenges to be ad-

dressed regarding personalization. As discussed by Isotani

& Mizoguchi [3], one of the main problems when devel-

oping systems that support some kind of personalization

of content is to link well-designed domain-independent

knowledge (ontologies) with domain content. Our research

fits in this direction and our ultimate goal is to contribute

for the development of semantic applications for information

recovery and its adoption in semantic educational systems.

III. AN ONTOLOGICAL INFRASTRUCTURE FOR

CONTENT PERSONALIZATION

Ontologies, combined with personalization approaches,

contribute to knowledge representation/sharing and content

personalization can occur simultaneously. In this case, the

insertion of semantic relations and the use of inferences

ontology concepts, performed during domain and user’s in-

stantiation, are essential to support knowledge formalization.

In this perspective, we have established of an onto-

logical infrastructure for content personalization [9], [10].

In short, four ontologies were developed (available at

http://www.labes.icmc.usp.br/∼joice/ontologies/): (i) ONTO-

IMACID, which formalizes the concepts of an integrated

approach for content modeling, called IMA-CID [8]; (ii)

ONTO-USERMODEL, which extends other previous achieve-

ments to further describe the student’s characteristics and

preferences; (iii) ONTO-NAVIGATION, which represents dif-

ferent ways to deliver and explore the content; and (iv)

ONTO-DOMAIN, which refers to the subject domain.

Based on the proposed ontologies, we developed an infras-

tructure, referred to as ONTOTOLEARNER, responsible for

integrating all concepts and relationships. A set of rules and

mapping mechanisms were also defined and associated with

this infrastructure in order to support the reasoning on the

information presented in the ontologies. Figure 1 illustrates

the composition of ONTOTOLEARNER. Properties relating

the concepts of the ontologies were defined and mapped

according to their meaning in the subject knowledge domain.

By the instantiation of user’s models, the inferences

can be extracted through queries, which are performed to

present different content granularities for each student. In

this paper we focus on the ONTO-USERMODEL and its use

to personalization of content. This process is highlighted on

the right side of the ONTOTOLEARNER in Figure 1.

ONTOTOLEARNER combines a content modeling ap-

proach (IMA-CID) with capabilities of content personal-

ization without hindering the maintenance, evolution or

individual applicability of each developed ontology. The

ontological infrastructure is also flexible to handle multiple

domain ontologies and different personalization rules. To

check the potential of ONTOTOLEARNER, we instantiated

its concepts with several information. For instance, infor-

mation of different types of users (novice, intermediate,

advanced) were created and included in the user model [10].

Additionally, the created queries were also executed in

the inference engine of Protégé in order to: (i) extract the

elements of IMA-CID ontology; (ii) check the instances of

the domain ontology; (iii) relate concepts from the other

ontologies to concepts in the user model ontology; and (iv)

check the navigation features in the navigation ontology.

Finally, more complex queries involving the ontologies and

their properties, characteristics of available educational con-

tent and other instances of concepts were described aiming

at modeling and personalizing the content.

IV. THE USER MODEL ONTOLOGY

A user model can be defined as the representation of the

user information in such a way that systems can consistently

extract information from the model and use it to behave

differently for different users [11]. ONTO-USERMODEL

encompasses the main characteristics and similarities found

in the existing ontologies. Concepts such as Performance,

Preference, Role, Feedback and Learning Style were ex-

tracted from the ontology proposed by Jovanovic et al. [7].

Similarly, concepts such as Goal, Knowledge, Individual
Traits, Competency, Activity, Background, Context Of Work
and Identification were considered based on the character-

istics established by Brusilovsky & Peylo [12]. Moreover,

concepts such as Competence, Interest and Activity were

inherited from IMS LIP and IEEE PAPI patterns.

The concepts that integrates the ONTO-USERMODEL are

linked to the ONTOTOLEARNER (Figure 1 (a)) allowing

us to represent different user profiles (Figure 1 (b)) and

use them in different situations for different purposes. The

personalization is performed for each user, based on his/her

personal characteristics (Figure 1 (c)). Also, while some

information can be extracted by the system during user

registration (about 38,5% of the concepts), other information

can be entered by the user through questionnaires (about

54% of the concepts) and other can be provided by the

instructor himself/herself (about 7,7% of concepts).

Another important feature of ONTO-USERMODEL is that

a concept can be updated by the instructor either during

the execution of the application (e.g., during the class) or

later (e.g., through the reviews and reports obtained from the

students’ activities). In this case, the queries (by inference)

provide results that allow to update some concepts.

Besides concepts, ONTO-USERMODEL also defines the

properties (i.e., relations) between concepts for creating

axioms, mappings and inference rules. For example, we

have created a property isResult, which gives the meaning

of a feedback of the system when the user performs a

proposed activity. Properties are created according to the

concepts definitions, focusing on the context and on the

739

Figure 1. Composition of ONTOTOLEARNER.

inter-relationships that generate the user model. Another

example of property is related to the concept Performance,

which is necessary for analyzing the student’s Feedback
regarding a particular activity. This observation leads to the

specification of the property isNecessaryFor.

The adoption of ONTO-USERMODEL can assist both in

the creation of the educational content as well as in the

assessments and in the activities required for a given course.

Actually, the construction of a user model ontology allows

the instructor to identify the general student’s profile as well

as its changes after each execution of a set of proposed

activities.

V. A CASE STUDY: ONTO-USERMODEL APPLICATION

In order to validate the ONTO-USERMODEL ontology,

we instantiated it with 300 user profiles and executed a

variety of queries to check if the model helps to store

and retrieve information that support personalization of

educational content. Basically, the user profiles were created

by automatically filling three questionnaires regarding users’

learning styles, personal characteristics and knowledge. To

ensure that the information from the questionnaires was

properly stored and, at the same time, meaningful to adapt

the content, we created a set of queries often used in

personalization activities.

It is also important to notice that the concepts of the

domain ontology (ONTODOMAIN) are directly involved in

the queries performed. Thus, the knowledge domain is

one of the parameters considered. In our case study, a

domain ontology in the context of Function Point Analysis

was developed, covering key concepts from the Software

Engineering literature related to this metric.

To perform the personalization in agreement with the

learning style and the preferences of each user, queries were

created to identify the results inferred from the established

relationships. Two queries are presented in Figure 2. In Fig-

ure 2(a) we intend to extract information regarding the user’

learning styles; in Figure 2(b) we intend to get information

about users’ knowledge levels.

Figure 2. Examples of queries.

As a result, views of users and their profiles were gen-

erated. Also, different levels of granularity to present the

content were established. Figure 3 presents the results of

the queries executed in order to identify the different users’

profiles in ONTOUSERMODEL.

Figure 3. Results of the queries for the users’ profiles
The users’ profiles can be identified by means of semantic

relations formally defined in the ontologies. Furthermore, not

only the explicit results can be extracted, but also the implicit

ones, which become known due to the combinations of

relationships and properties, associated with the concepts of

the ontologies. Thus, by knowing the learning style, interest,

740

knowledge level and preferences, the instructor is able to

prepare a course accordingly, taking into account the profiles

identified in order to better achieve the learning goals.
Additionally, the instructor can also combine the users’

characteristics extracted in order to generate groups of

students with similar profiles. As a consequence, significant

new information can arise. For instance, it is possible to

establish comparison parameters with respect to the per-

formance of the groups of students identified aiming at

applying more suitable evaluations. Figure 4 summarizes

the queries results from the combination among learning

styles in the ONTOTOLEARNER. Considering groups 7 and

8, for instance, the reflexive and visual styles are prevalent;

therefore, a course designed for students of these groups

should focus on activities that match the reflexive profile

with a visual content.

Figure 4. Percentage of learning style for each user profile.

In summary, ONTO-USERMODEL enables the extraction

and combination of information about the students, con-

tributing to the creation and delivery of more suitable,

personalized content to them. The ontology also supports

a better interaction between user and content; indeed, the

media presented according to the student’s preferences may

provide a better user involvement.

VI. CONCLUSIONS AND FUTURE RESEARCHES

In this paper, we presented an ontology-based user model,

referred as to ONTO-USERMODEL, which is part of a

broader ontological infrastructure for personalization of edu-

cational content. In short, relations in ONTO-USERMODEL

were semantically mapped, associating the content of the

domain ontology (in this paper, the Function Point Analysis

domain) to the user’s profile. The user model ontology

was automatically instantiated with 300 users with different

profiles. As a result, personalized content was generated and

delivered to each student, according to characteristics such

as learning style and knowledge level.
From the results of the inferences in ONTO-USERMODEL,

some remarks can be highlighted: (i) the educational content

can be automatically personalized for each user through

associations and semantic mappings among ontologies; (ii)

the establishment of the student’s learning style can help

the instructor to choose the best evaluation method; and (iii)

when the learning goals are not achieved (i.e., the learning

is not effective), the reasons can be tracked more accurately

based on the set of personal characteristics and learning

profile of the user.

As future researches we point out the need of: (i) perform-

ing the semantic mappings automatically; (ii) building the

queries in a formal rule language; (iii) extracting the user’s

characteristics implicitly; and (iv) investigating the general-

ity of content in the ONTOTOLEARNER with experiments

conducted in classrooms.
ACKNOWLEDGMENTS

The authors would like to thank the Brazilian funding

agencies (FAPESP, CAPES, CNPq) and INCT-SEC (CNPq

573963/2008-8, FAPESP 08/57870-926) for their support.

REFERENCES

[1] L. Zhuhadar and O. Nasraoui, “Augmented ontology-based
information retrieval system with external open source re-
sources,” ser. ITNG ’10. IEEE, 2010, pp. 144–149.

[2] M. Baldoni, C. Baroglio, and N. Henze, “Personalization
for the semantic web,” in LNCS Tutorial in Reasoning Web.
Springer, 2005, pp. 173–212.

[3] S. Isotani and R. Mizoguchi, “Adventures in the boundary
between domain-independent ontologies and domain content
for CSCL,” in International Conference on Knowledge-based
Intelligent Information and Engineering Systems. Springer-
Verlag, 2008, pp. 523–532.

[4] T. R. Gruber, “Toward principles for the design of ontologies
used for knowledge sharing,” Int. J. Hum.-Comput. Stud.,
vol. 43, no. 5-6, pp. 907–928, Dec. 1995.

[5] M. Gaeta, F. Orciuoli, and P. Ritrovato, “Advanced ontol-
ogy management system for personalised e-learning,” Know.-
Based Syst., vol. 22, pp. 292–301, May 2009.

[6] S. Jain and J. Pareek, “Automatic identification of granularity
level of learning document,” in Technology for Education
(T4E), 2010 International Conference on, 2010, pp. 72 –75.

[7] J. Jovanovic, D. Gasevic, and V. Devedzic, “Ontology based
automatic annotation of learning content,” International Jour-
nal on Semantic Web and Information Systems, vol. 2, pp.
91–119, 2006.

[8] E. F. Barbosa and J. C. Maldonado, “Towards the estab-
lishment of IMA-CID: An integrated modeling approach for
developing educational modules,” vol. 17. Journal of the
Brazilian Computer Society, 2011, pp. 207–239.

[9] J. B. Machado, “Estudo e definição de ontologias como apoio
ao desenvolvimento de módulos educacionais,” Master’s the-
sis, Universidade São Paulo, Brasil, mar 2012, in Portuguese.

[10] J. B. Machado, S. Isotani, M. B. Ribeiro, and E. F. Barbosa,
“Towards an ontological infrastructure for content modeling
and personalization,” in (SMAP), 2012, pp. 107 –112.

[11] E. Knutov, P. De Bra, and M. Pechenizkiy, “Ah 12 years later:
a comprehensive survey of adaptive hypermedia methods and
techniques,” New Rev. Hypermedia Multimedia, vol. 15, pp.
5–38, April 2009.

[12] P. Brusilovsky and C. Peylo, “Adaptive and intelligent web-
based educational systems,” Int. J. Artif. Intell. Ed., vol. 13,
pp. 159–172, April 2003.

741

Architectural Design Spaces for Feedback Control Concerns
in Self-Adaptive Systems

Sandro S. Andrade† §
sandros@ufba.br

§GSORT Distributed Systems Group

Federal Institute of Education, Science

and Technology of Bahia (IFBa)

40110-150. Salvador-Ba. Brazil

Raimundo José de A. Macêdo†
macedo@ufba.br

†Distributed Systems Laboratory (LaSiD)

Department of Computer Science

Federal University of Bahia (UFBa)

40170-110. Salvador-Ba. Brazil

Abstract

A lot of current research efforts in self-adaptive systems
community have been dedicated to the explicit modeling of
architectural aspects related to system self-awareness and
context-awareness. This paper presents a flexible and exten-
sible representation of architectural design spaces for self-
adaptation approaches based on feedback control loops. We
have defined a generic representation for design spaces meta-
modeling and have instantiated it in order to provide direct
support for early reasoning and trade-off analysis of self-
adaptation aspects with the aid of a set of feedback control
metrics. The proposed approach has been fully implemented
in a supporting tool and a case study with a distributed in-
dustrial data acquisition service has been undertaken. Whilst
preliminary experiences with the proposed approach indi-
cate useful reasoning support when comparing alternative
design solutions for self-adaptation, further investigation re-
garding scalability aspects and automatic handling of con-
flicting goals has been identified as future work.

Keywords: software architecture design, self-adaptive sys-
tems, feedback control, model-driven software engineering.

1. Introduction

The increasing cost of handling complexity and changing

environments in modern large-scale distributed systems has

motivated significant efforts [15] towards the design and de-

velopment of self-adaptive systems [7]. Architecture-based

approaches with explicit (first-class) modeling of feedback

control loops [5, 9, 13] have currently been advocated as a

promising research landscape, establishing the foundations of

This research is partially supported by grant 006/2012/PRPGI from the

IFBa’s Research and Innovation Supporting Program.

domain-independent mechanisms and enabling early reason-

ing about self-adaptation quality attributes.

In addition, software engineering researchers have been

urged to drive their efforts towards an engineering discipline

for software [16], which mostly involves the prospection of

theories [8, 18] and organization of knowledge for routine

use [3]. In particular, the use of design theories [11] for self-

adaptive systems is still on its infancy.

A great number of diverse feedback control schemes for

regulating and optimizing distinct software performance vari-

ables have been proposed over the last past years [14]. De-

spite some successful achievements of control goals under

disturbances and environment uncertainties, most of these

work propose ad-hoc domain-specific feedback control ap-

proaches. Software architects willing to endow their systems

with self-adaptive behavior still have no systematic guidance

about choosing among different feedback control strategies,

evaluating alternative design trade-offs, and assessing the

resulting self-adaptation quality attributes.

In this paper, we present DuSE1, which is an extensible,

navigable and machine-consumable representation of archi-

tectural design spaces for self-adaptation feedback control-

based approaches. Our approach entails: i) a set of effectors

which enable architecture model manipulation when navigat-

ing through the design space; ii) a group of OCL (Object Con-
straint Language) rules to verify the availability of variation

points in a given design space dimension; and iii) a set of

metrics for evaluating self-adaptation quality attributes in a

given design space location.

The proposed architectural design space infrastructure re-

lies on three models which address different supporting as-

pects: i) an architectural model (logical view) of the system to

be endowed with self-adaptive behavior, ii) an auto-regressive

with exogenous input (ARX) model [10] representing the

system dynamics, and iii) the design space model describing

the dimensions and associated architecture manipulations.

1 http://duse.sf.net

742

DuSE−MT XMI architectural
generator plugin

introspection
data

XMI
architectural model

Target System

architect

Plugin
Control Probing

System
Identification

Dimensions
Design Architectural

Changes

Metrics

ARX model

inputs

outputs

inputs

outputs

Design Space Representation

Figure 1. DuSE overview

The target system’s architectural model is an UML rep-

resentation annotated with a specific UML profile which

enables the identification of available control parameters and

performance variables. Such an UML model provides the

means to accomplish automatic black-box system identifica-

tion, yielding the ARX model which supports the use of self-

adaptation quality metrics to guide navigation through design

space.

We have implemented the proposed platform on top of

the Qt Modeling Framework2 as a multi-platform tool with

a flexible architecture which enables its use in a range of

technologies for the target system. The quality and feasibility

of the architectural designs resulting from design space navi-

gation have been evaluated in a case study undertaken on top

of CIAO (Component Integrated ACE ORB) middleware.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the most prevalent design dimensions when

using feedback control for achieving self-adaptation. Section

3 describes the proposed approach, supporting technologies,

and implementation aspects. The evaluation of our approach

when supporting reasoning about self-adaptation design alter-

natives for a distributed system based on CIAO is presented

in section 4. Section 5 provides pointers to related work and

section 6 draws some conclusions and presents future work.

2. Design Dimensions in Self-Adaptive Systems

Making design decisions concerned to system self-

awareness, environment monitoring, adaptation strategies,

and enacting mechanisms constitutes a central activity when

developing self-adaptive systems. Preliminary studies about

design dimensions for self-adaptive systems [1, 5, 7, 14] have

2 http://qt-project.org/wiki/QtModeling

identified degrees of freedom related to run-time system rep-

resentation, system/environment observation, control strate-

gies, adaptation identification, and adaptation mechanisms.

Whilst defining a comprehensive set of design concerns is

paramount to further understand solution opportunities and

analyze trade-offs, in this work we focus on sub-dimensions

related to control strategies, control schema, and their impacts

on overall system quality attributes. When dealing with

such control aspects, architects should make decisions, for

instance, about target system modeling (e.g., first-principles

vs black-box models), control strategy (e.g., fixed-gain PID,

adaptive model identification, model predictive), and control

schema (e.g., single loop, nested control, hierarchical control,

decentralized control) [10].

Although any guideline for selecting an effective feedback

control solution from that design space would still require a

careful assessment against local domain/requirements drivers,

we believe the use of flexible and powerful tools to support

trade-off analysis of alternative control designs may further

advance the use of effective model-based approaches.

3. The Proposed Approach

The feedback control architectural analysis environment

we propose defines a model-based meta-architecture which

includes: i) a self-adaptation design space representation; ii)

changes to be enacted in target system’s original model when

navigating through the design space; iii) OCL rules which

define valid variation points in each dimension; and iv) a set

of metrics to guide architects during design trade-off analysis.

As depicted in Figure 1, DuSE provides a technology-

independent framework for reasoning about feedback-control

approaches by combining run-time target system dynamics

(represented by a first-order ARX model), target system’s

structural architecture XMI descriptions, and a design space

representation.

A design space [4, 17] is represented as a tuple DS=

<DD,M>, where DD is a set of design dimensions and M is

a set of metrics defined for that design space. A design dimen-

sion DDi is a set of variation points V Pij=<CTij , CHij>,

where CTij is a set of OCL constraints that must be satisfied

in the target system’s original architecture model in order to

that design dimension point be available for use, and CHij is

a set of changes to be enacted in the target system’s original

model SM0.

Therefore, a specific design space location <V P1i,

V P2j , ..., V P|DD|m> is only defined for SM0 if SM0 sat-

isfies the set of constraints CT1i ∪ CT2j ∪ ... ∪ CT|DD|m.

Likewise, the changes to be enacted in the origi-

nal model SM0 for a given design space location

<V P1i, V P2j , ..., V P|DD|m> are the merge of all archi-

tectural contributions from each design dimension loca-

tion: CH1i ∪ CH2j ∪ ... ∪ CH|DD|m. We denote by

743

Design Dimension Variation Points OCL Constraints Architectural Changes

(DD1) Control

Adaptiveness: refers

to the moment

(design-time,

run-time with

predefined

alternatives, run-time

with full control

reconfiguration) in

which control tuning

is undertaken

(V P11) Fixed

Gain: PID control

with pre-defined

gain values

(CT111) allOwnedElements()->
selectAsType(Component).provided->
exists(extension MonitorInterface->notEmpty())

(CH111) nPack.addOwnedType(s =
sensorFactory(”QPSensor”, target.mInterface()));

(CH112) nPack.addOwnedType(a =
actuatorFactory(”QPActuator”, target.cInterface()));(CT112) allOwnedElements()->

selectAsType(Component).provided->
exists(extension ControlInterface->notEmpty())

(CH113) nPack.addOwnedType(c =
controllerFactory(”QPIDController”, s, a));

(V P12)
Model-Identification

Adaptive Control

(MIAC): on-line

model estimation

and control tuning

(CT121) as defined in (CT111)

(CH121), (CH122) and (CH123) as defined in

(CH111), (CH112) e (CH113)

(CH124) nPack.addOwnedType(e = new
QARXEstimator(s, a));

(CT122) as defined in (CT112)
(CH125) nPack.addOwnedType(t = new
QPIDPolePlacement(c, e, st));

(DD2) Control

Nesting Degree: the

number of nested

control loops applied

to the target system

(V P21) Single

loop

(CT211) as defined in (CT111)
<no changes required>

(CT212) as defined in (CT112)

...

(V P2d) d nested

loops

(CT2d1) allOwnedElements()->
selectAsType(Component)->
select(shortestControllableChain()->size()=d)

(CH2d1) var i = 0;
var currentTarget = lowestTarget;
while(i < d) {

instantiateControlLoop(currentTarget);
currentTarget = currentTarget->

nestingControllableComponent();
++i;

}

(CT2d2) post: target.loop.stime() >
target.longestControllableChain()->
collect(stime())->sum()

Table 1. Feedback control design space dimensions

SM{i,j,...,m} the architectural model resulting after applying

contributions from all specific locations in each design space

dimension. A metric Mi is a tuple <MEi,MGi>, where

MEi is the metric evaluation expression and MGi describes

if the metric is intended to be maximized (1) or minimized

(−1). Metrics M1 and M3 can be evaluated at any design

space location defined for the original SM0 model. Metric

M2 is undefined when DD1 component is V P12 since set-

tling time information is not available off-line.

3.1. Analysing Feedback Control Strategies

In order to support early reasoning and analysis of feed-

back control approaches for self-adaptation, we have instan-

tiated our design space model in terms of design dimensions,

architectural changes, metrics, and constraints directly related

to most prominent feedback control concerns.

As presented in Table 1, we have defined two initial

design dimensions related to feedback control loops in self-

adaptation. Dimension DD1 captures the robustness of feed-

back loops and provides two variation points: i) V P11: fixed-

gain, which uses a set of pre-defined parameters systemati-

cally derived to work on a specific operating region; and ii)

V P12: MIAC, a sort of adaptive control that continuously

identifies the target system and reconfigures control param-

eters. Deciding about such dimension involves a trade-off

analysis between robustness vs control overhead. Dimension

DD2 represents the nesting degree of feedback loops. Hier-

archically interacting loops have successfully been applied to

support self-management in different scopes, simplifying the

handling of non-linearities and widening control possibilities.

On the other hand, hierarchical feedback control requires a

more careful analysis so that the time-scales of loops at differ-

ent levels do not intervene each other and control scalability

is kept at accepted levels. The corresponding OCL rules and

architecture changes are also presented in Table 1.

Table 2 presents the defined architectural metrics. Metric

M1 captures how much of control adaptiveness exists in the

system. A highly control-adaptive system exhibits higher

robustness, with the cost of increasing control overhead due

to continuous system identification and control tuning.

Metric M2 estimates high discrepancies in hierarchical

loops. In order to prevent control interference, hierarchical

loops should be time-separated and the outer loop time-scale

is usually dominated by the slower inner loop stabilization

time. M2 measures the highest difference between the slower

and faster inner loops at level d. Levels with high values in

M2 should be further designed if faster self-adaptation is to

be achieved.

Finally, M3 measures how much control operation de-

pends upon a single top-level controller. High values for

M3 indicates better control scalability although probably de-

manding a more complex control programming model. A

design solution is a function that maps each lowest-level

744

Description Evaluation Expression Goodness
Factor

(M1) Control Overhead ME1=
allOwnedElements()−>selectAsType(QARXEstimator)−>size()
allOwnedElements()−>selectAsType(QPIDController)−>size() MG1 = −1

(M2) Maximum Settling Time

Difference at level l
ME2=cll−>product(cll)−>iterate(t:Tuple(first:QPIDController,second:QPIDController);

maxDiff :Integer=0 |
maxDiff.max((first.stime()−second.stime()).abs()))

; where cll=allOwnedElements()−>selectAsType(QPIDController)−>

select(allNestingLoops()−>size()=l)

; QPIDController::stime()=−4/log(maxi|pi|)
; maxi|pi| is the magnitude of the largest closed-loop pole

MG2 = −1

(M3) Control Decentralization

Degree
ME3=cl−>select(nestingLoops()−>size()=0)−>

iterate(c:QPIDController;

minDepth:Integer=1 |
minDepth.min(1/[c.allNestedLoops()−>size()+1]))

; where cl=allOwnedElements()−>selectAsType(QPIDController)

MG3 = 1

Table 2. Feedback control design space metrics

controllable component into a location in the proposed design

space.

4. Case Study

The definition of new design spaces, its dimensions, vari-

ation points and corresponding OCL constraints and met-

rics, as well as the analysis of feedback control approaches

against a specific target system model are currently available

in DuSE-MT - our supporting tool. DuSE-MT supports the

workflow depicted in Figure 1 by defining a flexible archi-

tecture which enables the use of connector plugins for system

identification in a variety of platforms. Each connector plugin

enables the probing of target systems developed for that spe-

cific platform, gathering input/output relationships between

system’s controlled/measured parameters and allowing off-

line and on-line system identification. DuSE-MT currently

provides connector plugins for the CIAO and Qt/DBus tech-

nologies.

A case study aimed at analyzing feedback control loops

in a CORBA-based data acquisition service has been under-

taken. The ARCOS platform [2] is a flexible component-

based framework for industrial data acquisition, implemented

on top of CIAO middleware. This case study investigated

alternative feedback control approaches aimed at controlling

service response time in the presence of disturbances, by

adjusting three component parameters: thread pool’s size,

data cache size, and thread pool priority.

Figure 2 illustrates the initial non-adaptive architectural

model provided as input in the case study. The case study’s

goal was to investigate to which extent our platform helps the

architect when choosing among different control strategies

and provides insights for trade-off analysis.

For that purpose, a running instance of the data ac-

Figure 2. Initial (non-adaptive) DAIS server ar-
chitectural model

quisition server was probed by DuSE-MT and ARX mod-

els for the three controllable components (ThreadPool,

CacheManager, and DAISLeaderFollowers) have

been generated. In that particular scenario there are [2

(#V P1) x 2 (#V P2; since d=2 is the longest chain of nested

controllable components)] ˆ 2 (number of lowest-level con-

trollable components) = 16 different feedback control strate-

gies available. Each of those solutions exhibits different

values for the defined self-adaptation metrics and, therefore,

favors different quality attributes. For those cases where a

running instance/prototype of the original non-adaptive sys-

tem is not available, metrics M1 and M3 still provide valuable

guidance when choosing among alternative candidate archi-

tectures.

Figure 3 shows the values for metrics M1 and M3 in the

case study. Whilst obviously there may exist no single solu-

tion which fully maximizes all involved metrics, the obtained

results may serve as helpful subsidies to support and well-

inform the adoption of a specific feedback control architec-

745

(a)

(b)

Figure 3. Metrics M1 and M3 in case study

ture in detriment of alternative designs. For example, if

control overhead is a prominent concern, perhaps because of

target system deployments in embedded resource-restrictive

platforms, then architects could use M1 distribution as a guide

to choose feedback schemas with associated low overhead

implications. As a side effect, the target system must be

carefully identified and operating environment should not be

amenable to non-linearities and uncertainties. The analysis

environment presented in this work provides the means for a

more quantitative and interactive investigation of such design

trade-offs.

5. Related Work

Over the past years some approaches for early architectural

reasoning by explicit modeling of control loops have been

proposed. In [20], a reference model for self-adaptation

(FORMS) is presented. FORMS provides an unified view

which integrates perspectives from reflexive, distributed com-

puting, and MAPE-K [15] technologies. FORMS elements

are described in Z specification language, which enables the

formal reasoning of self-adaptation properties.

The use of megamodels at run-time to describe self-

adaptation behavior is presented in [19]. The proposed no-

tation entails the definition of multiple interacting feedback

loops and relies on a model interpreter to dynamically adjust

the adaptation logic. An UML Profile for feedback con-

trol modeling is presented in [9], along with a set of well-

formedness rules to validate control schemas. Guidelines for

modeling of multiple loops and elicitation of loop interfer-

ences are also presented. Actor-based approaches [12] and

notations for self-adaptation with multiple objectives [6] have

also been proposed.

Although some of the aforementioned proposals - such

as FORMS - provide expressive and rigorous notations for

feedback control modeling, they are mostly based on non-

standardized and/or low-parsimony languages, provide no

tool support, and still heavily depends on architect’s skills,

as a consequence of the lack of explicit design space repre-

sentations.

Our work tries to overcome some of these shortcomings by

rather proposing an architectural analysis environment based

on MOF (Meta Object Facility) and UML (Unified Model-
ing Language) standards, an explicit domain-specific design

space representation, and a set of effective metrics to assess

adaptation-related architectural quality attributes. Finally,

we observe that our tool leverages rapid modeling/analysis

and the proposed design space representation is also liable

to be applied in other application domains since we aim at

a proper balance between modeling notation generality and

expressiveness.

6. Conclusion and Future Work

The design and development of large-scale distributed

systems with flexible and robust self-adaptation capabilities

have become a promising approach to cope with continu-

ous increases in system complexity. Furthermore, stringent

demands to provide quality of service assurances in un-

predictable and uncertain environments introduce additional

challenges in such scenarios.

In this paper, we have presented DuSE - a flexible anal-

ysis environment for representing and comparing alternative

architectural design choices related to feedback control ap-

proaches to self-adaptation. We have described the under-

lying design space model representation and its instantiation

devoted to support early reasoning of architectural trade-offs

regarding control loop robustness and interaction.

Our reference implementation, DuSE-MT, integrates the

mechanisms we have proposed and allows for rapid mod-

eling and analysis of self-adaptation scenarios. While our

preliminary experience with DuSE indicates useful reasoning

support, several avenues of future work may be identified.

We are currently performing experiments with larger de-

sign spaces and metrics sets in order to assess DuSE scala-

bility aspects when dealing with large-scale models. DuSE

746

has currently no automatic support for handling conflicting

design goals and deciding between metric satisfaction trade-

offs. The use of search-based optimization approaches to

find out a Pareto-optimal set of candidate architectures is

also currently being investigated. The definition of annotated

design space navigation traces to document design rationale

and support for sharing models and design spaces over a

network are also currently being considered.

References

[1] Jesper Andersson, Rogério Lemos, Sam Malek, and
Danny Weyns. Software engineering for self-adaptive
systems. chapter Modeling Dimensions of Self-
Adaptive Software Systems, pages 27–47. Springer-
Verlag, Berlin, Heidelberg, 2009.

[2] Sandro Santos Andrade and Raimundo José
de Araújo Macêdo. A non-intrusive component-based
approach for deploying unanticipated self-management
behaviour. In Proceedings of IEEE ICSE 2009
Workshop Software Engineering for Adaptive and
Self-Managing Systems, May 2009.

[3] Muhammad Ali Babar, Torgeir Dingsyr, Patricia Lago,
and Hans van Vliet. Software Architecture Knowledge
Management: Theory and Practice. Springer Publish-
ing Company, Incorporated, 1st edition, 2009.

[4] Frederick P. Brooks. The Design of Design: Essays from
a Computer Scientist. Addison-Wesley Professional, 1st
edition, 2010.

[5] Yuriy Brun, Giovanna Marzo Serugendo, Cristina
Gacek, Holger Giese, Holger Kienle, Marin Litoiu,
Hausi Müller, Mauro Pezzè, and Mary Shaw. Soft-
ware engineering for self-adaptive systems. chapter
Engineering Self-Adaptive Systems through Feedback
Loops, pages 48–70. Springer-Verlag, Berlin, Heidel-
berg, 2009.

[6] Shang-Wen Cheng, David Garlan, and Bradley Schmerl.
Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006 Interna-
tional Workshop on Self-Adaptation and Self-Managing
Systems, SEAMS ’06, pages 2–8, New York, NY, USA,
2006. ACM.

[7] R. de Lemos et al. Software Engineering for Self-
Adaptive Systems: A second Research Roadmap. In
R. de Lemos, H. Giese, H. Müller, and M. Shaw,
editors, Software Engineering for Self-Adaptive Sys-
tems, number 10431 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany., 2011. Schloss Dagstuhl.
Leibniz-Zentrum fuer Informatik, Germany. Full cita-
tion: http://dx.doi.org/10.1007/978-3-642-02161-9 1.

[8] Shirley Gregor. The nature of theory in information sys-
tems. MIS (Management Information Systems Research
Center) Quarterly, 30(3):611–642, September 2006.

[9] Regina Hebig, Holger Giese, and Basil Becker. Making
control loops explicit when architecting self-adaptive
systems. In Proceedings of the 2nd International
Workshop on Self-Organizing Architectures, SOAR ’10,
pages 21–28, New York, NY, USA, 2010. ACM.

[10] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. Feedback Control of Computing
Systems. John Wiley & Sons, 2004.

[11] David Jones and Shirley Gregor. The anatomy of a de-
sign theory. Journal of the Association for Information
Systems, 8(5), 2008.

[12] Filip Křikava, Philippe Collet, and Robert B. France.
Actor-based runtime model of adaptable feedback con-
trol loops. In Proceedings of the 7th Workshop on
Models@run.time, MRT ’12, pages 39–44, New York,
NY, USA, 2012. ACM.

[13] Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility
of control in adaptive systems. In Proceedings of the 2nd
international workshop on Ultra-large-scale software-
intensive systems, ULSSIS ’08, pages 23–26, New York,
NY, USA, 2008. ACM.

[14] T. Patikirikorala, A. Colman, Jun Han, and Liuping
Wang. A systematic survey on the design of self-
adaptive software systems using control engineering
approaches. In Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2012 ICSE Workshop
on, pages 33 –42, june 2012.

[15] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive
software: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems,
4(2):14:1–14:42, May 2009.

[16] Mary Shaw. Research toward an engineering discipline
for software. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, FoSER ’10,
pages 337–342, New York, NY, USA, 2010. ACM.

[17] Mary Shaw. The role of design spaces. IEEE Software,
29(1):46–50, January 2012.

[18] Dag I. K Sjøberg, Tore Dybå, Bente Cecilie Dahlum
Anda, and Jo Erskine Hannay. Building Theories
in Software Engineering, chapter 12, pages 312–336.
Springer-Verlag London, 2008.

[19] Thomas Vogel and Holger Giese. A language for feed-
back loops in self-adaptive systems: Executable runtime
megamodels. In Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2012), pages 129–138.
IEEE Computer Society, 6 2012.

[20] Danny Weyns, Sam Malek, and Jesper Andersson.
Forms: Unifying reference model for formal specifica-
tion of distributed self-adaptive systems. ACM Transac-
tions on Autonomous and Adaptive Systems, 7(1):8:1–
8:61, May 2012.

747

Towards Coupled Evolution of Metamodels, Models,
Graph-Based Transformations and Traceability Links

Chessman Corrêa Toacy Oliveira Cláudia Werner

Federal University of Rio de Janeiro
COPPE – System Eng. and Computer Science

Rio de Janeiro, Brazil
{chessman,toacy,werner}@cos.ufrj.br

Abstract — Model-Driven Development (MDD) approaches use
metamodels, models and transformations specifications as the
main artifacts for software development. Metamodels are used
as blueprints for models and transformation specifications, creat-
ing a conformance dependency between them. Moreover, models
can be generated from other models through transformations,
which also creates dependencies. In this scenario, changes in one
artifact can propagate to others creating a set of cascading fixes
that might overwhelm software developers. In this work we pro-
pose a coupled evolution approach that encompasses metamodels,
transformation specifications, models and traceability links. The
conformance of transformation specifications and models with
metamodels is supported by automatic transformation. However,
differently from other approaches, the same transformation is
used to recover the conformance of models and transformation
specifications.

Keywords- model-driven development; evolution; migration;
synchronization, maintenance.

I. INTRODUCTION
Model-Driven Development (MDD) [1] aims at using mod-

els as the main development artifacts, transformations to au-
tomate the repetitive tasks related to artifacts creation [2] and
traceability links to represent dependencies between elements
from different models [3]. In MDD approaches based on the
principle that “everything is a model” [4], transformation
specifications and traceability links are also models [5-6].

The use of models, automatic transformations and traceabil-
ity links requires formal specifications [7], typically represent-
ed as a metamodel [8-9]. A metamodel describes model ele-
ments, their properties, relationships between elements and
constraints. Metamodels are also used in transformation map-
pings (or rules) for reading source models and generating the
elements for target models. Metamodels are defined by a me-
ta-metamodel, such as MOF [10] and Ecore [8].

The creation of artifacts from others establishes a depend-
ency relationship between their elements. Therefore, there are
dependencies between (1) metamodels and models (including
transformation specifications and traceability links) and (2)
between interrelated models, transformation specifications and
traceability links.

A common scenario in software development is software
evolution. Software evolution is achieved by adapting devel-
opment artifacts to accommodate new functionalities or to fix
defects. Due to existing dependencies, an artifact may need to
be modified when an interrelated artifact is changed. There-
fore, if a metamodel is modified, models and transformation
specifications must be migrated (vertical co-evolution). It
means that new versions of these artifacts have to be created,
non changed elements must be copied, and corrections must be
done to make them in conformance with the new version of
the metamodel. Moreover, if models or transformation specifi-
cations are changed, other interrelated models and traceability
links must be synchronized to conform to the new version of
the changed model or transformation specification (horizontal
co-evolution), i.e., it is necessary to create correspondent ele-
ments in interrelated artifacts according to the transformation
rules.

The dependent (or coupled) evolution of metamodels, mod-
els and transformation specification is a known problem. Solu-
tions for the co-evolution of metamodel and model were pro-
posed in [11-15]. Solutions for the co-evolution of metamodel
and transformation specifications can be found in [16-18]. A
broader approach which can lead to metamodel/model and
metamodel/transformation co-evolution is proposed in [19].
Although these works are related to vertical co-evolution,
none of them considers the integrated coupled evolution of
metamodel/model/transformation specifications. Moreover, in
a real MDD scenario, if model or transformation specifications
are changed, it is necessary to synchronize interrelated models
and update traceability links.

The main contributions of this paper are the integration of
vertical and horizontal co-evolution and the use of corre-
spondences between the elements of two metamodel versions
to migrate transformation specifications and models. Moreo-
ver, we believe that horizontal co-evolution can reduce the
effort to perform vertical co-evolution in cases when synchro-
nization can be executed to complete elements.

The remaining of this paper is organized as follows. In Sec-
tion 2, dependencies and coupled evolution are discussed. In
Section 3, we present the proposed solution and an example.
Related works are discussed in Section 4 and conclusions are
presented in Section 5.

748

II. CHANGES AND CO-EVOLUTION
The co-evolution of artifacts depends on the type of chang-

es. A change classification for metamodel changes proposed
by Gruschko et al. [13] was expanded to include transfor-
mation specifications and interrelated models [20]. Non-
breaking changes (NBC) refer to changes that do not break
consistency. Therefore, no change propagation is necessary.
Breaking but resolvable changes (BRC) break consistency
but these can be automatically solved. Breaking and unre-
solvable changes (BUC) also break consistency, but it is not
possible to automatically resolve the problem, which means
that the developer needs to make the corrections manually.

A. Metamodel Changes
The inclusion of any non-mandatory element in a

metamodel is NBC. Therefore models and transformation
specification don’t need to be updated when a new optional
metaclass (define the instance of a model element) or attribute
(define a property for a metaclass instance) is included in the
metamodel. On the other hand, if a new metaclass or attribute
is mandatory, then changes are needed in both artifacts. In this
case, transformation specifications should be modified to gen-
erate the mandatory metaclass instances or to define values for
the corresponding property. Moreover, the mandatory instanc-
es must be created and property values must be defined for
models. At a first glance, these changes are BUC, since the
developer needs to create metaclass instances, resolve associa-
tions, define the correct values for new properties and create
transformation mappings to generate mandatory metaclass
instances or define the values for not null properties. However,
if the creation of metaclass instances or assignment of proper-
ty values can be performed through synchronization, BUCs
can turn to BRCs. The most common synchronization ap-
proach is to execute again the transformation specification.
Hence, if there exists a transformation mapping to generate an
instance of a mandatory new metaclass or define the value of a
property, the developer does not have to perform this task
manually. However, if the model is not generated from anoth-
er, the change remains BUC.

The main metamodel updates are renaming and modifica-
tion of the lower bound of attributes or references. The rename
operation is BRC, since it can be performed automatically to
update models and transformation specifications. The change
of a metaclass or attribute to non-mandatory is NBC (lower
bound is reduced to zero); and the opposite is BUC (lower
bound is increased). In the last case, one or more values have
to be defined for the property corresponding to the changed
attribute or new instances of the referenced metaclass have to
be created (or associated). Transformation mappings also have
to be modified to generate the correct property values or
metaclass instances.

The exclusion of metamodel elements is BRC. If a literal is
removed from an enumeration, it has to be replaced by another
in the models and transformation specifications. The exclusion
of an attribute means that the correspondent property values
have to be removed from models. Moreover, value assign-

ments and guard conditions associated with transformation
mappings have to be deleted from transformation specifica-
tions. If a metaclass is removed, the corresponding instances
have to be excluded from models and transformation map-
pings have to be removed from transformation specifications.

B. Model Changes
Models have to be consistent with interrelated models.

When a transformation is used, these models must also be in
conformance with the transformation specification. Moreover,
traceability links must reference valid model elements and
transformation mappings, if one of the elements has been gen-
erated by transformation.

The change operations that can be applied to models are
inclusion and exclusion of metaclass instances and the change
of properties values. Changes are NBC when applied to specif-
ic elements of a model. If a modified element is related to an
element of another model and can be generated by automatic
transformation, changes on this element are BRC since interre-
lated elements can be automatically synchronized and tracea-
bility links can be generated through the execution of the
transformation. On the other hand, if the element is not deriv-
able through automatic transformation, the changes are BUC,
which means that elements of dependent models and traceabil-
ity links will have to be updated manually. It is worth men-
tioning that the exclusion of a metaclass instance can be BRC
even if there is no transformation mapping to be used during
synchronization. This is because traceability links can be used
to automatically identify interrelated elements that should be
deleted.

C. Transformation Specification Changes
Transformation specifications may need changes for error

corrections, refactoring, technology evolution or metamodel
changes. The inclusion, update and exclusion of transfor-
mation mappings are BRC in relation to models, since the ex-
ecution of the new version of the transformation specification
allows the synchronization of models with it. It is worth men-
tioning that the inclusion of transformation mappings can re-
sult in the creation of metaclass instances and traceability
links. In the same way, the exclusion of transformation map-
pings results in the exclusion of metaclass instances and trace-
ability links.

The rename is the change operation that can be applied to
the transformation mapping. This is BRC, since traceability
links can be automatically corrected to reference the new trans-
formation mapping name.

III. THE PROPOSED APPROACH
The proposed approach is based on Software Configuration

Management principles and tools [21] to control the evolution
of MDD artifacts in time and space. The evolution in time is
controlled by the preservation of the change history of
metamodels, transformation specifications and models, as well
as maintaining existing traceability links between elements of

749

different model versions. The evolution in space is controlled
by migration (vertical co-evolution) and synchronization (hor-
izontal co-evolution). Due to space limitations, only evolution
in space is considered in this paper. The example used to ex-
plain the proposed approach is described in Section A and the
approach is detailed in Section B.

A. Example
This example illustrates the generation of a database model

from a domain model through a triple graph-based transfor-
mation specification [22]. A partial representation of the
metamodel for domain models is shown in Figure 1a. Entity,
Attribute and Reference are domain elements. Therefore they
have a name. The Entity element represents a concept from the
problem domain; Attribute represents a characteristic on an
Entity, and Reference defines a relationship among two entities.
An entity can have many attributes. The first version of the
database metamodel is presented in Figure 1b (partial view).
The Relation and Field are database elements (DbElement).
Therefore they also have a name. A relation can have one or
more fields.

Figure 1. Metamodel for domain models.

The transformation specification 1 to generate a database
model from a domain model is shown in Figure 2. This trans-
formation has two rules: one for creating relations and identi-
fication fields from entities (rule 1) and other for creating
fields from attributes (rule 2). These rules are executed to gen-
erate the elements of the database model from the domain el-
ements and vice-versa (graph-based transformations were con-
ceived to be bidirectional). The elements on the left hand side
(LHS) reference the Entity and Attribute elements on the do-

1 The notation was adapted from triple graph-based transformation

specifications defined for some known tools.

main metamodel. The elements of the right hand side (RHS)
reference the Relation and Field elements of the database
metamodel. The middle elements are the corresponding map-
pings. Therefore, the e2r mapping defines the generation of
relations from entities (forward engineering) and entities from
relations (reverse engineering). In the same way, a2f mapping
defines the generation of fields from attributes and attributes
from fields. The composition relationship between Relation
and Field means that Field instances is associated with a Rela-
tion instance. This is the same for attribute instances. The
composition with the stereotype create among Relation and
Field in Rule 1 means that an identifier field is created to a
table.

Figure 2. Transformation specification.

The domain model for the example is shown in Figure 1a.
The model contains the following Entity instances: Client,
Sale, Product and Item. The execution of the transformation
specification results in the database model shown in Figure 3.
Some fields were created manually. The dashed arrow lines
represent traceability links between the correspondent ele-
ments of the domain and database model generated during the
transformation.

Figure 3. First version of the domain and database models.

 After the generation of the database model, the
metamodel is modified (Figure 1c).

B. Description of the Approach
When a new version of a metamodel is released, the two-

model comparison algorithm of EMF Compare [23] is used to
create a model that records the matching and differences (in-
clusions, updates and exclusions) of the two versions of the

a

b

c

750

metamodel. The matching algorithm was adapted to use ver-
sioning information to match elements. In our approach, each
element of a metamodel, transformation specification or a
model is a configuration item identified by an id. The ids are
kept together with their model elements (as well as other ver-
sioning data) and are preserved if elements are renamed, allow-
ing precise matching of existing elements. In the example, Re-
lation was renamed to Table, but they are matched because
their id is the same.

Following the example, the changes described in Table I
are identified. The second step is to classify the change opera-
tions as NBC, BRC and BUC (Table I).

TABLE I. DATABASE METAMODEL CHANGES

Operation Classifi
-cation

Correction
Needed

Correspond-
ence (↔)

Relation is renamed to Table BRC Yes Relation ↔
Table

Field is deleted BRC Yes -
Column is created do replace Field BUC*

Yes Field ↔

Column
PrimaryKey is created to define the
primary key of the tab (in this example,
primary keys are mandatory)

BUC*

Yes Field ↔
PrimaryKey

ForeignKey is created to define optional
foreign keys

NBC** - Field ↔
ForeignKey

*Becomes BRC after the creation of the migration transformation.
**Becomes BRC in relation to the domain model after the new version of the
 transformation specification is ready.

After the classification, the last version of transformation
specifications and models that depend on the metamodel are
analyzed. The objective is to verify if these artifacts really have
the identified breaking changes. For example, a model may not
have instances of a metaclass deleted from the metamodel and
the transformation specification may not have transformation
mappings related to the deleted metaclass. Existing breaking
changes are recorded as correction needed. The objective of
this task is to reduce the effort necessary to update transfor-
mation specifications and migrating models, since only existing
breaking changes will be considered. In the example, the trans-
formation specification has mappings and the database model
has instances of the changed metaclasses. Therefore, these arti-
facts need corrections due to the breaking changes identified, as
specified in the column Correction Needed of Table I.

Figure 4. Migration specification.

The next step is the creation of the correspondence model
(Figure 4) using the same language of the transformation speci-
fication. This model is the migration specification to be execut-
ed for migrating transformation specifications and models. The
mappings of this model relate elements of the previous and
new releases of the database metamodel. The mappings are
created based on the matching and difference model created by
EMF Compare.

The correspondence mappings between elements that have
not been changed are generated automatically. This results in a
simple copy of non-modified elements. Correspondence map-
pings are also created for identifiable BRC. In the example, a
correspondence mapping is created to generate tables from
relations (Rule 1 in Figure 4). However, correspondence map-
pings must be manually defined for BRCs that cannot be auto-
matically identified and BUCs. This is the case of Column and
PrimaryKey. Although Column was created to replace Field,
the second was deleted and the first was included. Therefore,
Column has no versioning data to be used for associating it
with Field, as happens with the Relation. Therefore, the corre-
spondence mapping must be created manually (Rule 2).
PrimaryKey is a new element. Hence, there is no transfor-
mation mapping related to this element and no instance of this
metaclass in the database model. However, since this element
is mandatory and the database model is generated from the
domain model, the transformation specifications need a map-
ping to generate this element and the database model needs an
instance of it. Due to that, a correspondence mapping is neces-
sary to generate instances of this element during migration. In
the example, Rule 1 was hand complete to generate the primary
key and the corresponding column. Since ForeignKey is op-
tional, a migration mapping is not necessary.

Worth to mention that although the creation of PrimaryKey
is BUC, the migration mapping generates complete instances,
including the necessary references to other elements. There-
fore, this change becomes BRC in relation to models.

Next, the transformation specifications need to be migrated.
The migration is necessary because the breaking changes can-
not be read when the transformation specification is opened.
Hence, our approach is to automatically create a new transfor-
mation specification and copy all mappings, making the neces-
sary corrections during the copy, according to the correspond-
ence (migration) mapping. Our strategy to migrating transfor-
mation specification is based on the mathematical transitive
principle (if A = B and B = C then A = C). This approach en-
sures that the transformation specification will generate the
same model after migration. Going back to the example, e2r
mapping (Figure 2) associates Entity (A) to Relation (B) and
r2t mapping (Figure 4) associates Relation to Table (C). Hence,
the RHS of Rule 1 of the transformation specification (Figure
2) is replaced by the RHS of the migration transformation
(Figure 4). The correction of the assignments is performed ac-
cording to the same principle. For example, the assignment
name := relation.name of the LRS Entity of Rule 1 (Figure 2)
is replaced by name := table.name (it is realized only when
there are correspondent properties). The same is done for Rule
2 (a2f mapping - Figure 2). It is important to mention that, at
first glance, a2f mapping should be deleted, since Field has
been removed from the metamodel. However, since Column

751

corresponds to Field, the mapping a2f mapping can be reused.
During this process, new traceability links are generated to
relate the new instances with the metaclass instances of the
domain model.

Figure 5. New version of the transformation specification.

After the generation of the new transformation specifica-
tion, the mapping to generate the ForeignKey instance needs to
be created manually. This turns the change as BRC, since it
breaks the consistency of the database model with the trans-
formation specification. The new version of the transformation
specification is shown in Figure 5 (the changes are in gray).

Next, the model is migrated through the execution of the
migration transformation. It results in the copy of the instances
of the metamodel elements that have not been modified and the
generation of new instances. This results in the replacement of
Relation by Table and Field by Column. Moreover, primary
keys are created and linked with the identification columns. At
his moment, the database model is in conformance with the
metamodel. However, a new rule (Rule 3 in Figure 5) has been
included in the transformation mapping. Therefore, the data-
base model is not consistent with the transformation specifica-
tion. Hence, synchronization is necessary.

The synchronization process is based on the execution of
the transformation specification. In the example, the second
version is executed. Since the RHS metamodel has been modi-
fied (database metamodel), the transformation is performed
from left to right (forward engineering). This results in the cre-
ation of the foreign keys that didn´t exist in the first version of
the database model and the correspondent traceability links.
After the synchronization, the database model becomes con-
sistent in relation to the transformation specification. At this
moment, the project is completely consistent.

IV. RELATED WORK
The co-evolution of metamodels, models and transfor-

mation specification is a known research problem. The simplest
approach is to create all the migration mappings manually [24].
However, this solution is tedious and mistakes can be made.
Therefore, automatic co-evolution is necessary to reduce the
effort and errors. Most of the works goes into this direction
[11-15, 19], but considerable attention has been given to auto-
mate metamodel and model co-evolution [11-15]. However,

transformation specification must also be considered. In [19]
migration strategies (migration specifications) can be created
for co-evolution of models and transformation specifications,
but it is necessary to create distinct migration strategies for
models and transformation specifications. In [18], correspond-
ences are defined among two versions of transformation speci-
fications. In the approach proposed in this paper, the same cor-
respondence mapping is used to perform the migration of both
artifacts.

In real MDD scenarios, models are generated from others.
Therefore, the migration of models and transformation specifi-
cations are not enough to keep the consistency in MDD pro-
jects. Hence, synchronization is necessary after migration to
keep consistency among models and transformation specifica-
tions and to keep traceability links up to date. Moreover, some
BUCs can be solved during synchronization, reducing the ef-
fort to keep consistency in MDD projects. This is one of the
objectives of our approach and works encompassing migration
and synchronization together have not been found.

Our approach has some similarities to [13] since the change
classification proposed by them are used in this work. Moreo-
ver, some of the tasks are the same. However, our approach has
the following differences: (1) in [13], the changes are recorded
in real time and the differences are calculated from this record;
in our approach the differences are calculated from the previ-
ous version of the metamodel; (2) our approach takes into con-
sideration the co-evolution of transformation specifications; (3)
we analyze transformation specifications and models to verify
if these artifacts really have breaking changes; and (4) we use
synchronization to solve BUCs whenever possible. The last
two contribute to the reduction of vertical-co-evolution effort.

A similar co-evolution concern is related to database sche-
ma evolution [25-26]. The schema and the database correspond
to the metamodel and model, respectively. However, the co-
evolution of schema and databases is a kind of vertical co-
evolution. There is no concern related to transformation speci-
fications and interrelated models.

Although there are more sophisticated solutions for detect-
ing differences between two versions of an artifact [27-29], in
our approach, we are focused on matching elements and identi-
fying model structural changes. In the same way, there are also
more sophisticated approaches related to traceability link detec-
tion and recovering, such as in [30]. In our approach, the objec-
tive is to keep existing traceability links between evolved mod-
el elements and generating them for new elements.

V. CONCLUSIONS
Consistency between different kinds of models (including

transformation specifications and traceability links) is essential
to the success of model-driven projects. Therefore, if
metamodel is evolved, models and transformation specifica-
tions must be migrated to be in conformance with the new ver-
sion of the metamodel. However, since models have a depend-
ency relationship with other models, changes must be propa-
gated between interrelated models. Therefore, if a model is
migrated, interrelated models must be synchronized. Other-
wise, the migrated model will be in conformance with the
metamodel but not with other models. Moreover, traceability

752

links must be up to date, since this resource is essential to keep
the evolution of MDD artifacts.

In this paper we have presented an approach to keep the
consistency between metamodels, transformation specifications
and models and to keep traceability links up to date. The corre-
spondence model used for model migration can also be used to
partially update transformation specifications. Moreover, we
have demonstrated through an example that synchronization
can help to solve BUCs, thus reducing the effort to migrate
models.

One key factor to reduce the effort is the verification if
models and transformation specifications really have breaking
changes. The objective is to avoid the creation of migration
mappings for metamodel changes that don´t have impact on
models and transformation specifications. We consider scenar-
ios where development organizations have their own domain
specific languages and control the evolution of their develop-
ment artifacts.

As future work, we intend to apply our approach in real
MDD projects that use transformation specifications based on
triple graph grammars. Another future work is to compare our
approach to others to evaluate the reduction of the effort neces-
sary to preserve consistency due to the metamodel evolution.
Moreover, we used Emorf [5] as the graph based transfor-
mation tool. We intend to generalize the transformation migra-
tion to migrate any graph-based transformation specification.

REFERENCES
[1] A. Kepple, J. Warmer, and W. Bast, MDA Explained: The Model

Driven Architecture: Practice and Promice: Addison-Wesley, 2002.
[2] G. Deng, G. Lenz, and D. C. Schimidt, "Addressing Domain Evolution

Chalenges in Software Product Lines," in Satellite events at the
MoDELS 2005 Conference, Montego Bay, Jamaica, 2005, pp. 247-261.

[3] N. Anquetil, et al., "Traceability for Model Driven, Software Product
Line Engineering " in ECMDA Traceability Workshop Proceedings,
Berlin, Germany, 2008, pp. 77-86.

[4] J. Bézivin, "On the Unification Power of Models," Software and System
Modeling (SoSyM), vol. 4, pp. 171-188, 2005.

[5] L. Klassen and R. Wagner, "EMorF - A tool for model transformation,"
in Proceedings of the 7th International Workshop on Graph Based
Tools (GraBaTs 2012), Bremen, Germany, 2012, pp. 1-6.

[6] E. Biermann, C. Ermel, J. Schmidt, and A. Warning, "Visual Modeling
of Controlled EMF Model Transformations using Henshin," in
Proceedings of the 4th International Workshop on Graph Based Tools,
Enschede, The Netherlands, 2010, pp. 1-14.

[7] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi, Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools: Wiley, 2004.

[8] D. Steiberg, F. Budinsky, E. Merks, and M. Paternostro, Eclipse
Modeling Framework, 2nd ed.: Addison Wesley, 2009.

[9] S. A. Ajila and S. Alam, "Using a formal language constructs for
software model evolution," Berkeley, CA, 2009, pp. 390-395.

[10] OMG, "Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification - Version 1," Object Management Group (OMG)2008.

[11] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio, "Automating
Co-evolution in Model-Driven Engineering," in Proceedings of the
2008 12th International IEEE Enterprise Distributed Object Computing
Conference, Munich, Germany, 2008, pp. 222-231.

[12] G. Wachsmuth, "Metamodel Adaptation and Model Co-adaptation," in
21st European Conference on Object Oriented Programming (ECOOP
2007), Berlin, Germany, 2007, pp. 600-624.

[13] B. Gruschko, D. S. Kolovos, and R. F. Paige, "Towards Synchronizing
Models with Evolving Metamodels," in Proceedings of the
International Workshop on Model-Driven Software Evolution,
Amsterdam, The Netherlands, 2007.

[14] M. Herrmanndoerfer, S. Benz, and E. Juergens, "COPE - Automating
Coupled Evolution of Metamodels and Models," in 23rd European
Conference on Object-Oriented Programming, Genova, Italy, 2009, pp.
52-76.

[15] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack, "Model
Migration with Epsilon Flock," in Third International Conference on
Theory and Practice of Model Transformations (ICMT 2010), Malaga,
Spain, 2010, pp. 184-198

[16] S. Roser and B. Bauer, "Automatic generation and evolution of model
transformations using ontology engineering space," Journal on Data
Semantics XI, vol. 5383, pp. 32-64, 2008.

[17] D. Mendez, A. Etien, A. Muller, and R. Casallas, "Towards
Transformation Migration After Metamodel Evolution," in 13th
International Int.l Workshop on Models and Evolution (ME2010), Oslo,
Norway, 2010, pp. 84-89.

[18] J. García, O. Diaz, and M. Azanza, "Model Transformation Co-
evolution: A Semi-automatic Approach," Lecture Notes in Computer
Science, vol. 7745, pp. 144-163, 2013.

[19] D. Wagelaar, L. Iovino, D. D. Ruscio, and A. Pierantonio,
"Translational semantics of a co-evolution specific language with the
EMF transformation virtual machine," in Proceedings of the 5th
International Conference ob Model Transformation (ICMT 2012),
Prague, Czech Republic, 2012, pp. 192–207.

[20] C. K. F. Corrêa, T. C. Oliveira, and C. M. L. Werner, "An Analysis of
Change Operations to Achieve Consistency in Model-Driven Software
Product Lines," in International Workshop on Model-driven
Approaches in Software Product Line Engineering, Munich, Germany,
2011.

[21] A. Leon, Software Configuration Management Handbook, 2 ed.
Boston: Artech House, 2004.

[22] A. Schürr, "Specification of Graph Translators with Triple Graph
Grammars," in Proceeecings of 20th International Workshop on
Graph-Theoretic Concepts in Computer Science, Herrsching, Germany,
1994, pp. 151–163.

[23] C. Brun, L. Goubet, M. Barbero, and C. Notot. (2013, 02/05/2013).
EMF Compare. Available: http://wiki.eclipse.org/EMF_Compare

[24] M. Paternostro and K. Hussey. (2006, Accessed 07 January 2013).
Advanced features of EMF. Tutorial at EclipseCon. Available:
http://www.eclipsecon.org/2006/Sub.do?id=171

[25] C. A. Curino, H. J. Moon, and C. Zaniolo, "Graceful database schema
evolution: the PRISM workbench," presented at the 34th International
Conference on Very Large Databases, Auckland, New Zealand, 2008.

[26] J. Andany, M. LConard, and C. Palisser, "Management Of Schema
Evolution In Databases," in 17th International Conference on Very
Large Data Bases Barcelona, Catalonia, Spain, 1991, pp. 161-170.

[27] T. Apiwattanapong, A. Orso, and M. J. Harrold, "A Differencing
Algorithm for Object-Oriented Programs," in 19th IEEE International
Conference on Automated Software Engineering, Linz, Austria, 2004,
pp. 2-13.

[28] D. Jackson and D. A. Ladd, "Semantic Diff: A Tool for Summarizing
the Effects of Modifications," in International Conference on Software
Maintenance Victoria, BC, Canada, 1994, pp. 243-252.

[29] Z. Xing and E. Stroulia, "UMLDiff: An Algorithm for Object-Oriented
Design Differencing," in 20th IEEE/ACM International Conference on
Automated Software Engineering, Long Beach, California, USA, 2005,
pp. 54-65

[30] A. Egyed, "A Scenario-Driven Approach to Trace Dependency
Analysis," IEEE Transactions on Software Engineering, vol. 29, pp.
116-132, 2003.

753

Measuring the Structural Similarity
between Source Code Entities

Ricardo Terra∗, João Brunet†, Luis Miranda∗, Marco Túlio Valente∗,
Dalton Serey†, Douglas Castilho∗, and Roberto Bigonha∗

∗Universidade Federal de Minas Gerais, Brazil

Email: {terra,luisfmiranda,mtov,douglas.castilho,bigonha}@dcc.ufmg.br

†Universidade Federal de Campina Grande, Brazil

Email: {jarthur,dalton}@dsc.ufcg.edu.br

Abstract—Similarity coefficients are widely used in software
engineering for several purposes, such as identification of refac-
toring opportunities and system remodularizations. Although the
literature provides several similarity coefficients that vary on the
computing strategy, there is a tendency among researchers to
make habitual use of certain coefficients that others in their
field are using. Consequently, some approaches might be using
an inadequate coefficient for their purpose. In this paper, we
conduct a quantitative study that compares 18 coefficients to
identify which one is the most appropriate in determining where
a class should be located. Our evaluation contemplates 111 open
source systems from Qualitas Corpus, which totalizes more than
70,000 classes. As a result, we observed that Jaccard—one of the
most used coefficients in our area—has not presented the best
results. While Jaccard correctly indicated the suitable module to
22% of the classes, other coefficients were able to indicate 60%.

I. INTRODUCTION

Similarity coefficient measures the degree of correspon-

dence between two entities according to an established cri-

terion. This concept is widely used in software engineering

area for several different purposes, such as identification of

refactoring opportunities [1]–[3] and system remodulariza-

tions [4], [5]. For example, Fokaefs et al. employ a well-

known similarity coefficient—named Jaccard [6]—to measure

similarity between methods of a given class in order to

recommend a Extract Class refactoring for those methods with

low similarity. As another example, Simon et al. also employed

Jaccard coefficient to propose a set of cohesion metrics that

help developers to identify refactoring opportunities, such as

Move Method and Move Attribute [3].
The literature is prolific and provides several similarity co-

efficients that vary on their computing strategy. Nevertheless,

there are few works comparing similarity coefficients using

structural dependencies as source of information [4]. This lack

of knowledge may lead researchers to choose an inadequate

coefficient to this purpose, once there is a tendency among

researchers to make habitual use of certain coefficients that

others in their field are using, even without sound scientific or

empirical reasons [7].
In this paper, we conduct a quantitative study that compares

18 coefficients to identify which one is the most appropriate

in determining where a class should be located. We computed

the similarity between classes and packages of 111 open

source systems from Qualitas Corpus [8]. From our results,

we can point out three main findings:

1) Structural dependencies are indeed precise enough to

determine where a class should be located. In our

evaluation, we achieved an overall precision of 80% in

indicating the correct package of a class up to rank 3.

2) Considering the dependency type or the multiplicity of

dependencies does not improve the overall precision.

Our results show that simply relying on the existence

of dependencies between two entities—i.e., without

considering the dependency type and multiplicity—

achieves the best precision results.

3) Jaccard—one of the most used coefficients in our

area— has not presented the best results. While Jaccard
indicated the correct package to only 22% of the

classes, other coefficients—such as Relative Matching,

Kulczynski, and Russell and Rao—were able to indicate

to slightly over 60%.

A usual problem that developers face during software

refactoring or remodularization is to indicate the suitable

package in which a particular class should be located. In

this context, our findings might improve software engineering

approaches that need to determine the suitable package of

a class. As aforementioned, Jaccard is not the most precise

coefficient in the context of measuring the similarity between

classes and packages using structural dependencies as source

of information.

The remainder of this paper is structured as follows.

Section II provides a description of similarity coefficients.

Section III describes strategies for extracting structural de-

pendencies from a class. Section IV presents and discusses

results on comparing our strategies and coefficients in 111 real-

world systems. Finally, Section V presents related work and

Section VI concludes the paper.

754

II. SIMILARITY COEFFICIENTS

Table I shows 18 similarity coefficients that we have

evaluated to determine the most appropriated one in the

context of measuring similarity among classes [7], [9]. To

calculate these coefficients, we assume that a given source

code entity (method, class, or package) is represented by the

dependencies it establishes with other types. Therefore, the

measure of the structural similarity between two source code

entities i and j (i.e., Sij) considers the following variables:

a = the number of dependencies on both entities,
b = the number of dependencies on entity i only,
c = the number of dependencies on entity j only, and
d = the number of dependencies on neither of the entities.

For instance, Jaccard—one of the simplest and most used

coefficient in our field—is defined by:

Sij =
a

a+ b+ c
(1)

Basically, Jaccard indicates maximum similarity when two

entities have identical dependencies, i.e., when b = c = 0
and thus Sij = 1.0. On the other hand, it indicates minimum

similarity when there are no dependencies in common, i.e.,

when a = 0 and thus Sij = 0.0.

class Bar extends X { class Foo extends X {
A a; B b;
B b; G g;

exampleBar(D d){ exampleFoo(E e){
a.f(); e.j();
d.g(); new A().f()

} }
} }

Code 1. Hypothetical classes to explain the measurement of similarity

As an illustrative example, Code 1 presents two hypothetical

classes. In order to measure the similarity between Bar and

Foo, we first determine the value of the variables a, b, c, and d.

In this example: a = 3 since both classes rely on A, B, and X;

b = 1 since only Bar relies on D; c = 2 since only Foo relies

on E and G; and d = 3 since none establishes dependencies

with three other classes of the system (namely C, F, and Y).

Next, we choose a similarity coefficient and solve the formula.

For example, the similarity between Bar and Foo using

Jaccard results in 0.5, whereas using Phi decreases to 0.35
or using Kulczynski increases to 0.675.

Each coefficient has a unique property that differs it from

others. For example, while Jaccard does not consider what the

both entities do not have in order to compute their similarity

(variable d), Simple matching and 10 other coefficients con-

template it. The Yule and Hamann coefficients are mathemat-

ically related. Although both have the same variables in their

numerators and denominators, Hamann relates the variable by

addition whereas Yule relates them by multiplication.
As another example, Sorenson1 gives twice the weight

to what the entities have in common (variable a), while

1Sorenson is also referred on the literature as Czekanowski or Dice.

TABLE I
GENERAL PURPOSE SIMILARITY COEFFICIENTS

Coefficient Definition Sij Range

1. Jaccard a/(a + b + c) 0–1*

2. Simple matching (a + d)/(a + b + c + d) 0–1*

3. Yule (ad − bc)/(ad + bc) -1–1*

4. Hamann [(a + d) − (b + c)]/[(a + d) + (b + c)] -1–1*

5. Sorenson 2a/(2a + b + c) 0–1*

6. Rogers and Tanimoto (a + d)/[a + 2(b + c) + d] 0–1*

7. Sokal and Sneath 2(a + d)/[2(a + d) + b + c] 0–1*

8. Russell and Rao a/(a + b + c + d) 0–1*

9. Baroni-Urbani and Buser [a + (ad)
1
2]/[a + b + c + (ad)

1
2] 0–1*

10. Sokal binary distance [(b + c)/(a + b + c + d)]
1
2 0*–1

11. Ochiai a/[(a + b)(a + c)]
1
2 0–1*

12. Phi (ad − bc)/[(a + b)(a + c)(b + d)(c + d)]
1
2 -1–1*

13. PSC a2/[(b + a)(c + a)] 0–1*

14. Dot-product a/(b + c + 2a) 0–1*

15. Kulczynski 1
2
[a/(a + b) + a/(a + c)] 0–1*

16. Sokal and Sneath 2 a/[a + 2(b + c)] 0–1*

17. Sokal and Sneath 4 1
4
[a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)] 0–1*

18. Relative Matching [a + (ad)
1
2]/[a + b + c + d + (ad)

1
2] 0–1*

The symbol “∗” denotes the maximum similarity.

the Rogers and Tanimoto coefficient gives twice the weight

to what each entity has independently (variables b and c).
Except for the d variable in the denominator, Russell and
Rao resembles Jaccard. On the other hand, the Sokal and
Sneath coefficient, which is quite similar to Simple matching,

reduces the importance of what each entity has independently

(variables b and c) by half.

Kulczynski and Sokal and Sneath 4 are based on conditional

probability. Kulczynski assumes that a characteristic is present

in one item, given that it is present in the other, whereas the

Sokal and Sneath 4 coefficient assumes that a characteristic

in one item matches the value in the other. Finally, Relative
Matching considers a set of similarity properties such as no

mismatch, minimum match, no match, complete match, and

maximum match.

III. STRATEGIES

In order to measure the similarity between two source

code entities, we assume that a given source code entity

(a class or a package, in this paper) is represented by the

structural dependencies it establishes with other types. We

also distinguish the type of the dependency, i.e., whether

a given dependency was established by accessing methods

and fields (access), declaring variables (declare), creating

objects (create), extending classes (extend), implementing

interfaces (implement), throwing exceptions (throw), or us-

ing annotations (useannotation). Structural dependencies

are extracted from the source code using a function named

Deps(E,S). Basically, this function returns E’s dependencies

according to a strategy S. A strategy is a pair [C, D] that defines

the collection2 and the data information to be employed in the

extraction. The collection C can assume one of the following

values:

2We use the generic term “collection” when we do not need to be specific
about the kind of structure (set or multiset) under consideration.

755

1) set: a collection that contains no duplicated elements.

In other words, if a class establishes more than one

dependency to java.sql.Statement, it considers only

one.

2) multiset: a generalization of the notion of set in which

elements are allowed to appear more than once. For

instance, if a class establishes three dependencies to

java.sql.Statement, we actually consider all of them.

The data information D can assume one of the following

values:

1) target type (tt): in this case the extraction function

returns a collection of target types that the entity

establishes dependencies with. Thus, an element is

a single [T], denoting the existence of at least one

dependency between the entity under analysis and T.

2) target and dependency type (dtt): in this case the

extraction function returns a collection whose elements

are pairs [dt, T], denoting the existence of a dependency

of type dt between the class under analysis and T.

public class Bar {
public void foo (Date d){

if (d == null){
d = new Date();

} else {
new Date()

}
}

}

Code 2. An example class that explains our strategies

As an illustrative example, consider the class presented in

Code 2. The collection returned by function Deps(Bar, S)
differs according to the strategy S employed. More specifically,

the following calls (and respective results) are possible:

Deps(Bar, [set, tt]) = {Date}
Deps(Bar, [set, dtt]) = {[declare, Date], [create, Date]}
Deps(Bar, [mset, tt]) = {Date, Date, Date}
Deps(Bar, [mset, dtt]) = {[declare, Date], [create, Date],

[create, Date]}
Strategies that rely on target and dependency type may

be particularly important when the classes of the system

rely on types differently according to their location. For

example, a factory method that creates a DTO (Data Transfer

Object) and a logic presentation method that handles a DTO

may not be similar. As another example, a class that imple-

ments java.io.Serializable and a method that declares

java.io.Serializable may also not be similar. Although

this strategy clearly performs better in particular cases, our

evaluation is concerned with the overall precision.
Last but not least, the set of dependencies of a package Pkg

is calculated by the union of the set of the dependencies of its

classes as follows:

Deps(Pkg, S) =
⋃

Ci ∈ Pkg

Deps(Ci, S)

IV. EVALUATION

A. Research Questions

We designed a study to address the following overarching

research questions:

RQ #1 – Are structural dependencies precise enough to

indicate whether a class is located in the correct package?

RQ #2 – Considering the multiplicity of dependencies—i.e.,

a multiset rather than a set—improves the overall precision?

RQ #3 – Considering the dependency type—i.e., representing

a target dependency as a pair [dt, T] rather than only a single

type [T]—improves the overall precision?

RQ #4 – Which coefficient is the most suitable to measure

the similarity among classes of object oriented systems?

B. Target Systems

Our evaluation relies on the Qualitas Corpus3, which is

a collection of software systems intended to be used for

empirical studies of code artifacts [8]. In its current version,

the corpus includes the source code of many popular systems,

such as JRE, Eclipse, NetBeans, and Apache Tomcat. Table II

summarizes information about our data set.

TABLE II
QUALITAS CORPUS

systems 111
total of packages 6,841
total of analyzed classes 71,823

It is worth noting that our data set is large and heteroge-

neous, ranging from text processors and small frameworks to

complete IDEs and virtual machines.

C. Major Assumption

We made the following assumption due to the infeasibility

in obtaining a 100% accurate oracle for thousands of classes.

“In order to conduct our experiment, we assume that every
class under analysis is in its right package.”

Therefore, similarity coefficients should indicate the current
package of the class as its most suitable one.

D. Methodology

To provide answers to our research questions, we performed

the following tasks:

1) Setup: First, we have set all system up, i.e., we imported

and compiled the 111 projects from Qualitas Corpus.

2) Data Extraction: Second, we extracted the structural

dependencies of classes using the four possible

strategies described in Section III, i.e., [set, tt],
[set, dtt], [mset, tt], and [mset, dtt].

3Qualitas Corpus v20120401. Available at: http://qualitascorpus.com.

756

3) Comparative Analysis: Third, we have measured the

similarity using all coefficients described in Section II.

The coefficients were applied to measure the similarity

between pairs [class, package] from our corpus.

4) Qualitative Analysis: Last, we have conducted a qualita-

tive analysis in order to answer our research questions.

E. Experimental Setup

In order to conduct this experiment, the following policies

have been proposed:

1) We have disregarded the class under analysis while

searching for its right location. For example, when

measuring the similarity between a class A and its

package Pkg, we actually consider its own package Pkg

as being Pkg− {A}.

Thereupon, we have not sought the suitable location

of classes whose package contains only such class.

For example, assume that package Pkg contains only

class A. The measure of similarity will be unfair because

Deps(Pkg− {A}, S) = φ.

2) We have disregarded a particular class Ci when

|Deps(Ci, S)| < 5, i.e., we have not evaluated classes

that establish less than five dependencies. These classes

contain too little information to make any inference

based on their structural dependencies.

3) We have not evaluated test classes, since most of

the systems organize their test classes on a single

package. Consequently, the test package contains

classes related to different parts of the system—i.e.,

they are not structurally related—which certainly

reduces the precision of any approach based on

structural dependencies.

4) We have filtered trivial dependencies, such as those

established with primitive and wrappers types (e.g., int

and java.lang.Integer), java.lang.String, and

java.lang.Object. Since virtually all classes establish

dependencies with these types, they do not actually

contribute for the measure of similarity. This decision

is quite similar to text retrieval systems that exclude

stop words because they are rarely helpful in describing

the content of a document.

F. Results

Figure 1 illustrates the overall precision for each coefficient

regarding the four analyzed strategies. The overall precision is

defined by the ratio between the number of classes that have

their location (package) correctly predicted by the similarity

coefficient and the total number of analyzed classes. We have

also provided the Top 1, 2, and 3 ranking, which stands for

the position of the correct package of a class. As an example,

considering strategy [set, tt], the Relative Matching precision

has reached 60% on Top 1, 72% on Top 2, and 78% on Top 3.

In other words, it means that Relative Matching located the

correct package of a class 60% on the first position of its

ranking, 12% on the second position, and 6% on the third

position.

Before we provide answers to our research questions, it

is worth noting that many similarity coefficients presented

very similar (mostly identical) results. In fact, the Spearman

correlation among these coefficients was very close to 1,

which allowed us to group them. The multiple correlation

among Simple Matching, Hamann, Rogers and Tanimoto,

Sokal and Sneath, and Sokal Binary Distance presented lowest

correlation value of 0.999994. Similarly, Jaccard, Sorenson,

Dot-product, and Sokal and Sneath 2 presented lowest corre-

lation value of 0.999999. Finally, Ochiai and PSC presented

correlation equal to 0.998251. These results explain why there

is no variance in the ranks within the same group.

Next, we answer our research questions based mainly

on Figure 1. In all answers, our data interpretation always

considers the Top 3 ranking—when not stated differently.

RQ #1: Are structural dependencies precise enough to
indicate whether a class is located in the correct package?

Yes. As can be observed in Figure 1, there are coefficients

that achieved a high precision to determine the package where

a class should be located. In particular, Relative Matching,

Kulczynski, Russell and Rao, and Sokal and Sneath 4 indicate,

in the worst scenario, over than 70% of precision.

RQ #2: Considering the multiplicity of dependencies—i.e., a
multiset rather than a set—improves the overall precision?

No. Figure 1 shows that strategies that use the traditional set

([set, tt] and [set, dtt]) perform better than an equivalent

multiset-based strategy for all coefficients. The only exception

is the Russell And Rao coefficient, which presented results

slightly better for the [mset, tt] strategy. More important,

if we consider only Top 1, a traditional set-based strategy

performs better than multiset-based one for all coefficients.

RQ #3 – Considering the dependency type—i.e., representing
a target dependency as a pair [dt, T] rather than only a
single type [T]—improves the overall precision?

No. On one hand, Figure 1 shows that multiset-based data

(i.e., [mset, tt] and [mset, dtt]) presents very similar results

for all coefficients. It is expected since the extracted collection

is very similar. For instance, assume a collection A extracted

using strategy [mset, dtt] and a collection B extracted using

strategy [mset, tt]. If A(i) = [access, Foo] for an index i,

then B(i) = [Foo].

On the other hand, analyzing set data, we can observe that

[set, tt] provides better results for all coefficients, except for

Russell and Rao and Sokal and Sneath 4 that presented results

slightly better using the dependency type ([set, dtt]).

From now on, our discussion only considers strategy

[set, tt], since we have demonstrated that the use of multiset

757

Simple Matching
Hamann

Rogers and Tanimoto
Sokal and Sneath

Sokal Binary Distance

Baroni−Urbani Phi
Jaccard

Sorenson
Dot Product

Sokal and Sneath 2

Ochiai
PSC Yule Sokal and Sneath 4 Russell and Rao Kulczynski Relative Matching

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

Strategy

O
ve

ra
ll

Pr
ec

is
io

n

Ranking

1st

2nd

3rd

Fig. 1. Top 3 ranking of similarity coefficients using all strategies

(mset) and dependency type (dtt) does not actually improve

the overall precision.

RQ #4: Which coefficient is the most suitable to measure the
similarity among classes of object oriented systems?

Relative Matching, Kulczynski, and Russell and Rao.

These coefficients have reached the highest precision values in

our study. As can be observed in Figure 1, Relative Matching
(60.83%) and Russell and Rao (60.27%) achieved the highest

similarity values of the Top 1, and Relative Matching (72.78%

and 78.18%) and Kulczynski (72.15% and 79.23%) of the Top 2 and 3.

As the central finding of our study, these three coefficients

significantly outperform Jaccard—one of the most used simi-

larity coefficients. While Jaccard indicated the correct package

to 22% (Top 1) and 39% (Top 3) of the classes, Relative Match-
ing, Kulczynski and Russell and Rao were able to indicate the

correct package to 60% (Top 1) and 79% (Top 3).

To better explain this behavior, we anecdotally analyzed

some systems to understand the influence of the variables a,

b, c, and d (see Section II) on their precision. We performed

this analysis by plotting each variable against the ranking.4 Our

major finding regards to the fact that large packages negatively

influence Jaccard and other coefficients that presented very

low precision (e.g., Simple Matching). Usually, large packages

imply a large difference between c and d, which negatively

impacts the precision of certain coefficients like Jaccard.

On the other hand, by their nature, this scenario does not

influence Relative Matching, Kulczynski, and Russell and Rao.

It explains why these coefficients have presented the best

results on both small and large packages.

G. Supplementary Results

Figure 2 illustrates the Top N ranking of every coefficient

using strategy [set, tt]. In contrast to Figure 1 that displays

only the Top 3, it displays the full distribution of the ranks

4Due to space constraints, we have not graphically presented this analysis.

Fig. 2. General ranking using strategy [set, tt]

until full coverage (i.e., precision of 1.0). As a second relevant

finding from our study, Figure 2 demonstrates that there is no

coefficient that drastically improves its precision right after the

top 3 ranking (e.g., Top 4 or Top 5). This behavior reinforces

our decision in using Top 3. As can also be observed in

Figure 2, Russell and Rao achieved precision of 1.0 in the

rank 79. It means that the suitable package of a class was

detected, in the worst case, on its 79th position. This result

is quite relevant, since the other coefficients only achieved

precision of 1.0 from the rank 347.

Since our analysis so far has considered the overall pre-

cision, we also analyzed the results of each coefficient per

758

system. Figure 3 summarizes the number of systems in which

a particular coefficient has presented the best result (i.e.,

better identified the correct package of a class). For instance,

Relative matching has better determined correct modules to

Eclipse classes, whereas the Russell and Rao coefficient has

behaved better to ArgoUML classes. Furthermore, we have not

graphically presented some coefficients (e.g., Simple Matching
and Jaccard) because they have not presented the best result

for any system.
As can be observed in Figure 3, Relative Matching, Kul-

czynski, and Russell and Rao have presented the best results

for most systems, which reinforces our claim that these coef-

ficients are the most suitable ones to measure the similarity

among classes in object-oriented systems.

Phi
PSC/Ochiai

Sokal And Sneath 4
Yule

Russel and Rao
Kulczynski

Relative Matching

1 4 22 40 62
systems

Fig. 3. # systems in which a particular coefficient presented the best result

H. Threats to Validity
We must state at least one major threat to the conclusion

validity of the reported evaluation. Our experiment assumes

that every class is in the right location. Although there might

be misplaced classes, we rely on a stable and trustworthy

collection of systems.

V. RELATED WORK

There are few research works that compares similarity co-

efficients using structural dependencies as source of informa-

tion [4]. Despite this lack of knowledge, similarity coefficients

have been widely used for several different purposes [1]–[3],

[5]. For example, the Jaccard distance between a method and

a class is employed to support the automated identification

of Feature Envy bad smells [1], [2]. Similarly, Simon et

al. employ Jaccard distance to analyze similarity between

classes and to identify refactoring opportunities [3]. They

have proposed a cohesion metric based on Jaccard distance in

order to suggest refactorings that improve the measurements

of the metric. Our results suggest that the precision of the

aforementioned approaches may be improved by using other

coefficients that outperform Jaccard (e.g., Relative Matching
and Kulczynski).

Fokaefs et al. employed Jaccard coefficient to develop a

clustering method to suggest Extract Class refactorings for

those entities with low level of similarity [5]. However, it

is not clear in their paper how the authors handle structural

dependencies to measure similarity among classes.

VI. CONCLUSION

First, we take the position that the choice of a similarity

coefficient should not continue to be made without well-

founded reasons. To address this shortcoming, we conducted

a quantitative study that compares 18 coefficients to identify

which one is the most appropriate in determining where a

class should be located. As the major result, we observed that

Jaccard—one of the most used coefficients in our area—has

not presented the best results. While Jaccard indicated the cor-

rect package to only 22% of the classes, other coefficients—

such as Relative Matching, Kulczynski, and Russell and Rao—

were able to indicate to slightly over 60%.
Next, we have observed that the simplest strategy to extract

structural dependencies from a class—set with only types

([set, tt])—is indeed the best one. Stated differently, consid-

ering multisets of dependencies (mset) or considering also the

dependency type (dtt) does not improve the overall precision.
Plans for future work include: (i) a sensitivity analysis of

the factors a, b, c, and d in the ranking to statistically explain

the behavior of each coefficient; (ii) an investigation of the

impact on the results when measuring similarity of each pair

[class, class] and hence the similarity between a class C and

a package Pkg will be calculated considering the average of

the resulting similarity between C and Pkg’s classes; (iii) the

extension of our comparative study to determine the most

suitable class for a method; and (iv) the development of a

tool that points out misplaced methods or classes.
Furthermore, we also have plans to use the main findings

of the present study in the implementation of ArchFix [10],

the recommendation system we are currently proposing to

help developers to reverse software architecture erosion.

Acknowledgments: Our research has been supported by

CAPES, FAPEMIG, and CNPq.

REFERENCES

[1] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 99, pp. 347–367, 2009.

[2] ——, “Identification of extract method refactoring opportunities for the
decomposition of methods,” Journal of Systems and Software, vol. 84,
no. 10, pp. 1757–1782, 2011.

[3] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refac-
toring,” in 5th European Conference on Software Maintenance and
Reengineering (CSMR), 2001, pp. 30–38.

[4] R. Naseem, O. Maqbool, and S. Muhammad, “Improved similarity
measures for software clustering,” in 15th European Conference on
Software Maintenance and Reengineering (CSMR), 2011, pp. 45–54.

[5] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 33rd
International Conference on Software Engineering (ICSE), 2011, pp.
1037–1039.

[6] I. H. Moghadam and M. Ó. Cinnéide, “Automated refactoring using
design differencing,” in 15th European Conference on Software Main-
tenance and Reengineering (CSMR), 2012, pp. 43–52.

[7] H. C. Romesburg, Cluster Analysis for Researchers. Lifetime Learning
Publications, 1981.

[8] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The Qualitas Corpus: A curated collection of Java
code for empirical studies,” in 17th Asia Pacific Software Engineering
Conference (APSEC), 2010, pp. 336–345.

[9] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster Analysis,
5th ed. Wiley, 2011.

[10] R. Terra, M. T. Valente, K. Czarnecki, and R. Bigonha, “Recommending
refactorings to reverse software architecture erosion,” in 16th European
Conference on Software Maintenance and Reengineering (CSMR), Early
Research Achievements Track, 2012, pp. 335–340.

759

On Use Case Identification

David Kung
Department of Computer Science and Engineering

The University of Texas at Arlington
Arlington, Texas 76019-0015, USA

Abstract

Identifying the real requirements is the single hardest
part of system development. While requirements specify
the capabilities of the software system, use cases specify
how to deliver these capabilities. It is important to iden-
tify real use cases because wrong use cases make it diffi-
cult to design, implement, test and maintain the software
system. This increases effort and costs, and reduces soft-
ware quality. Unfortunately, identifying real use cases is
not easy for many software engineers, due to the lack of
a clear definition. In this paper, we provide a definition
and present a use case derivation methodology. Exper-
iments and experiences show that the proposed method
improves the correctness and completeness of the use
cases identified.

Keywords Software engineering, requirements, use

case modeling, deriving use cases, software quality, use

case metrics, case study and experience.

1. Introduction

Brooks pointed out that “the hardest single part of build-

ing a software system is deciding precisely what to build

— i.e., the requirements.” [6]. Use cases provide a par-

tial solution to this problem. While requirements spec-

ify the capabilities or WHAT the software system must

deliver, use cases specify HOW the software system will

deliver the capabilities. Since the inception of the notion

of a use case [9], numerous books and articles on use

case modeling have been published. Today, use cases

are widely used in agile as well as plan-driven devel-

opment. Despite these efforts, identifying use cases re-

mains a challenge for many software engineers. It is

not uncommon that some real use cases are not identi-

fied and wrong use cases are identified. This increases

development costs and reduces software quality because

efforts are required to correct errors.

One reason that use cases are not identified correctly is

due to the lack of a clearly defined use case concept. An-

other reason is the lack of a use case derivation method-

ology. This paper is aimed to fill these gaps. In partic-

ular, section 2 presents a use case definition that is easy

to understand and use. It also clarifies related notions

that often lead to identifying wrong use cases. Section 3

discusses use cases in the software life cycle to justify

the importance of identifying correct use cases. In Sec-

tion 4, we present a use case derivation methodology.

Assessments of the methodology are presented in Sec-

tion 5. In particular, we define the correctness and com-

pleteness metrics, and show that the methodology led to

significant improvement of these metrics. Related work

is presented in Section 6 and Section 7 presents the sum-

mary and future work.

2. Basic Concepts

In this paper, use cases are identified using the following

definition:

Definition 1. A use case is a business process. It begins

with an actor, ends with the actor, and accomplishes a

business task for the actor.

An actor is a (business) role played by and on be-

half of a set of (business) entities or stakeholders that

are external to the system and interact with the system.

Consider, for example, an ATM has use cases such as

Deposit Money, Check Balance, Withdraw Money, and

Transfer Money because these are business processes of

a bank. Moreover, these processes begin and end with

the ATM customer, and accomplish these business tasks

for the customer.

Business processes are often confused with steps,

operations, and actions of a business process. For ex-

ample, “contact bank server,” and “enter password” are

sometimes identified as use cases but in fact the former

is a step and the latter is an action of a business pro-

760

Application Use Case Step/Operation Action

Open Report click File, select Open, navigate to appropriate directory, select file, click OK button

Make Changes add, delete and modify texts and graphics (these are editor specific editing actions)

Save Report click File, select Save

Text Editor Edit

Report

Exit Editor click File, select Exit

Open Diagram click File, select Open, navigate to appropriate directory, select file, click OK button

Add Class right click in canvas, select Add Class, fill in class information, click OK button

Save Diagram click File, select Save

Class

Diagram

Editor

Edit

Diagram

Exit Editor click File, select Exit

Start insert card

Authenticate enter password, press Enter key

Do transaction select transaction type, enter deposit/withdraw amount, insert cash/take cash, take

deposit/withdraw slip

ATM Deposit

Money /

Withdraw

Money

Finish press Exit button, take ejected card

Figure 1. Use cases, steps, operations and actions

cess. Therefore, it is desirable to distinguish a business

process with related concepts, as illustrated in Figure 1:

1. A business process is a series of information pro-

cessing steps to complete a business task. Identify-

ing business processes is the most important in use

case identification.

2. An operation is a series of acts or instructions to

carry out a step of a business process. For example,

“get balance from database” is a step of a business

process.

3. An action is an indivisible act, movement, or in-

struction that is performed during the performance

of an operation. Examples are “enter password”

and “click Submit button.” Sometimes, an opera-

tion is an action, and vice versa.

3. Use Case in Life Cycle

The importance of identifying real use cases is ex-

plained in the context of a software life cycle, as shown

in Figure 2. Use cases are derived in the early stage

of the life cycle and affect architectural design, actor-

system interaction modeling (ASIM), and object inter-

action modeling (OIM). For example, the functional co-

hesions of the subsystems represented by the use case di-

agrams affect the quality of the architectural design. For

each use case, ASIM specifies how a user interacts with

the system to carry out the business process. The actor-

system interaction behavior is used to prepare user’s

manual and conduct use case based acceptance testing

during testing and deployment. Actor requests needing

internal computation are analyzed by OIM, which spec-

ifies how objects collaborate to produce the desired re-

sponses. These are represented by sequence diagrams.

During maintenance, use cases and architectural design

are useful for functional enhancement, error correction,

and re-engineering. For example, requirements change

may introduce additional business processes, add fea-

tures to existing use cases. These show that use case

derivation has significant impact on software quality,

and effort to perform subsequent development activities.

In particular, if steps, operations, or actions are identi-

fied as use cases, then the number of so-called use cases

is large. This could lead to more work in subsequent

activities and more effort to correct errors.

4. Methodology

Use cases should be derived from requirements

and satisfy the requirements. This ensures that no use

cases are redundant and all requirements are fulfilled by

some use cases. The methodology for deriving use cases

consists of the following steps:

1. Examine each functional requirement, look for or

infer a domain-specific verb-noun phrase that rep-

resents an business process.

2. Answer the following questions for the verb-noun

phrase identified: (1) Is it a complete business pro-

cess of the application? (2) Does it begin with an

actor? (3) Does it end with the actor? (4) Does it

accomplish a business task useful for the actor?

3. If all the answers to above questions are “yes,” then

continue — the verb-noun phrase is a use case, else

goto Step 1 — examine the next functional require-

ment.

4. Assign a unique identifier to the use case and enter

the relationship that the requirement derives the use

761

requirements

Requirements Elicitation

Domain

Modeling

Deriving

Use Cases

Actor-System

Interaction

Modeling

Architectural

Design

Object Interaction Modeling

Deriving Design

Class Diagram

domain

model

use case

diagrams

domain

model use cases

nontrivial

actor requests

sequence diagrams

domain

model

architecture

Coding, Integration

Testing, & Deployment

design class diagram

Maintenance

use cases &

subsystems

actor-system

interaction

behavior

Figure 2. Use cases in the software life cy-
cle

case into a requirement-use case traceability matrix

(RUCTM).

5. If the appropriate actor has not been identified in

Step 2, then from the requirement or its context,

look up or infer the subject, who initiates the busi-

ness process, or the object for which the business

process is initiated. This identifies the actor for the

use case.

6. Similarly, look up or infer the organizational unit,

context, system, or subsystem within which the

business process is performed. This identifies the

system or subsystem for the use case.

7. Repeat above steps until all functional require-

ments are examined.

Figures 3 shows how use cases, actors and sub-

systems are identified for a library information system

(LIS). Sometimes, the verb-noun phrase cannot be liter-

ally identified from a requirement. Inference is needed

to identify the functionality and then the business pro-

cess. These are shown in Figure 4, which is a part of

a project we performed for the Office of International

Education (OIE) of our university.

Use cases are also derived from nonfunctional re-

quirements such as security requirements. For example,

an authentication requirement implies that the software

system must provide functions to authenticate users.

From these, one may derive login and logout use cases.

R1. The LIS must allow a patron to

 check out documents.

R2. The LIS must allow a patron to

 return documents.

Verb-Noun Phrase

Checkout

Documents

Return

Documents

Allow a

Patron

Is it a business

process? Y Y N

Does it begin with

an actor? Y Y N

Does it end with

the actor? Y Y N

Does it accomplish

a business task for

the actor? Y Y N

Is it a use case? Y Y N

Actor Patron Patron NA

Subsystem LIS LIS NA

Legend: oval=verb-noun phrase underline=actor

 rectangle=system

Figure 3. Identify use cases for an LIS

Nonfunctional requirements may be affected by a use

case. In this case, the relationship is entered into the

RUCTM.

Subsystems should achieve high cohesion. Low

cohesion may occur when a subsystem contains too

many use cases. High cohesion can be obtained by par-

titioning the use cases and assign them to separate sub-

systems. In particular, the following rules are repeatedly

applied, in the order listed:

1. Role-Based Partition. Use cases for a common ac-

tor tend to exhibit role-specific business processes.

Therefore, use cases can be partitioned according

to their common actors.

2. Communicational Partition. Use cases that operate

on a common object tend to perform object-specific

tasks. For example, use cases of a UML diagram

editor can be partitioned according to the objects

they process, resulting in a project-specific parti-

tion containing use cases such as New Project, Edit
Project (properties), Open Project, Close Project,
and Delete Project.

3. Type-based Partition. Sometimes, the object that

modifies the noun of the use case can be used to

partition the use cases. For example, Edit Class
Diagram and Edit State Diagram should belong to

different partitions.

Inheritance relationships are useful for arranging

the use cases among subsystems. For example, students,

762

R1. SAMS must provide a search capability

for oversea exchange programs using a

variety of search criteria.

R2. SAMS must provide a hierarchical

display of the search results to facilitate user

navigation from a high level summary to

detail about an oversea exchange program.

R3. SAMS must allow students to submit

online applications for oversea exchange

programs.

Figure 4. Identify use cases for a Study
Abroad Management System (SAMS)

OIE staff members, and OIE advisors are account users,

who can login and logout. Thus, Login and Logout can

be assigned to an Authentication subsystem. The actor-

specific subsystems do not need to show these use cases.

To reduce the number of use cases of a subsystem, use

cases of an actor subclass can be separated from use

cases of the actor superclass to form a subsystem of their

own. This is in fact role-based partition applied in the

inheritance context. Use cases of an actor subclass can

be merged with use cases of an actor superclass to re-

duce the number of subsystems if desired. For example,

SAMS has 26 use cases, partitioned into 7 subsystems

as follows, where “A → B” means A is a subclass of B

and inherits the use cases of B:

1. Web User (Actor: Web User): Search for Pro-
grams, Display Program Detail, View Feedback.

2. Account-User (Actor: Account User → Web
User): Edit Preferences, Logon, Log-off.

3. Administrator (Actor: Admin → Account
User): Create User Account, Delete User Ac-
count, Update User Account, Edit System Settings,
Startup System, Shutdown System.

4. Student (Actor: Student → Account User): Sub-
mit Online Application, Edit Online Application,
Check Application Status, Post Feedback.

5. OIE Advisor (Actor: OIE Advisor → Account
User): Review Online Application, Notify Student,
Notify Academic Advisor

6. Academic Department (Actor: Faculty → Ac-
count User, Academic Advisor → Account
User): Submit Recommendation Letter, Approve
Course Equivalency Form, View Application Re-
view Results.

7. OIE Staff (Actor: OIE Staff → Account User):
Add Program, Delete Program, Update Program,
Upload Programs.

5. Assessment

To evaluate the usefulness of the proposed use

case derivation method, we define two metrics — cor-
rectness and completeness. Let RUC be the set of real

use cases implied by the requirements. In practice, RUC

can be determined jointly by domain experts, use case

modeling experts and users. In our experiments, the

RUCs are determined by the instructor and the graduate

teaching assistants using Definition 1. Let UC denote

the set of use cases identified by an experiment partici-

pant. The correctness and completeness metrics for UC

are defined as follows:

Correctness Qcr(UC) = |UC∩RUC|
|UC|

Completeness Qcp(UC) = |UC∩RUC|
|RUC|

That is, correctness is the percentage of all use

cases identified by the participant that are real use

cases. Completeness is the percentage of all real

use cases identified by the participant. For exam-

ple, let uc1, uc2, ..., uc5 be the real use cases and

uc1, uc2, uc3, uc6, uc7, uc8 be the use cases identified by

a participant. Then the Qcr and Qcp of the identified use

cases are 0.50 and 0.60, respectively. Note: UC-RUC is

the set of non-use cases identified, and RUC-UC is the

set of use cases missed. It should be pointed out that a

use case may be named differently, such as “Edit Dia-

gram” and “Update Diagram.” Therefore, we renamed

the use cases, if needed, before calculating UC ∩ RUC
and UC − RUC in our experiments.

The first experiment involved six teams that ap-

plied the use case derivation methodology and six teams

that did not. The case study required the teams to de-

rive use cases for a portion of a domain modeling tool.

It had three use cases: Derive Domain Model Concepts,
Display Domain Model, and Show Context-Dependent
Help. The case study was scaled down so the teams

could complete the tool in one semester. The results

are given in Figure 5, which shows that the methodology

leads to significantly better correctness average (71.03%

versus 26.49%), and completeness average (88.89% ver-

sus 61.11%). The average number of use cases (| UC |)

763

Teams Applying Methodology (DM Tool)

 |UC˙

RUC| |UC|

|UC-

RUC| Qcr Qcp

T1 3 3 0 100.00% 100.00%

T2 3 3 0 100.00% 100.00%

T3 2 3 1 66.67% 66.67%

T4 3 6 3 50.00% 100.00%

T5 3 7 4 42.86% 100.00%

T6 2 3 1 66.67% 66.67%

Avg 2.67 4.17 1.5 71.03% 88.89%

Teams Not Applying Methodology (DM Tool CG)

 |UC˙

RUC| |UC|

|UC-

RUC| Qcr Qcp

G1 2 5 3 40.00% 66.67%

G2 1 4 3 25.00% 33.33%

G3 0 7 7 0.00% 0.00%

G4 2 6 4 33.33% 66.67%

G5 3 11 8 27.27% 100.00%

G6 3 9 6 33.33% 100.00%

Avg 1.83 7.00 5.17 26.49% 61.11%

|RUC|=3

Figure 5. Results of modeling tool case
study

and non-use cases (| UC−RUC |) identified by the con-

trol group are significantly higher (7 versus 4.15, and

5.17 versus 1.50). This means many non-use cases, such

as steps and operations, were identified. It confirms our

observation that without a methodology students tend to

include steps and operations as use cases. The complete-

ness average for the control groups looks better than

its correctness counterpart. This is because the control

groups tend to include everything as well as the real use

cases.

The second case study was performed in a differ-

ent semester and required five teams to design and im-

plement a part of a large online office patient medical
record (OPMR) management system. The system had

30 use cases but the case study involved only 5 (i.e.,

RUC=5): Record Phone Call, Add Special Note, Edit
Special Note, Delete Special Note, and Generate Re-
ports. All teams were required to apply the use case

derivation methodology. Figure 6 shows that the teams

achieved similar performance although the correctness

average is slightly better (79.05% versus 71.03%). Prob-

ably, this is due to that the OPMR case study is easier to

understand and less confusing.

Thirty-eight subjects participated in the third case

study, which was conducted in a third semester. It re-

quired the subjects to individually derive use cases from

requirements for a National Trade Show Service (NTSS)

system, which had 14 real use cases. Because steps,

operations and actions are often misidentified as use

cases, this case study required the subjects to classify

domain-specific verb-noun phrases into business pro-

cesses, steps, operations, or actions before deriving the

Team |UC˙RUC| |UC| Qcr Qcp

1 5 6 83.33% 100.00%

2 5 6 83.33% 100.00%

3 5 7 71.43% 100.00%

4 4 7 57.14% 80.00%

5 3 3 100.00% 60.00%

Average 4.4 5.80 79.05% 88.00%

|RUC|=5

Figure 6. Results of Office Patient Medical
Record case study

0

10

20

30

40

50

60

70

80

90

100

DM Tool CG 26.49 61.11

DM Tool 71.03 88.89

OPMR 79.05 88.00

NTSS 85.21 65.23

Correctness average Completeness average

Figure 7. Comparing results of case stud-
ies

use cases. The correctness and completeness averages

were 85.21% and 65.23%, respectively. Noticeably, 15

subjects or 39.47% achieved 100% correctness. Figure 7

compares the two metrics for the case studies. It shows

that the methodology results in significantly higher cor-

rectness averages than the control group. The complete-

ness averages are also significantly higher except for the

NTSS case study, which is still better than the control

group. The NTSS completeness average is not signifi-

cantly higher because it had more requirements and use

cases. It was more likely for a subject to miss a real use

case and result in lower completeness measurement.

6. Related Work

Use cases are widely discussed in the literature,

e.g. [4, 5, 7, 9, 10, 11, 14, 16]. Usefulness of use

case in the software life cycle is discussed in various

papers including [1, 2, 3, 13]. However, few publica-

tions provide a clear, easy to use definition of the notion

of a use case. Definition 1 given in Section 2 fills this

gap. A practically useful methodology for identifying

use cases is also lacking in the literature. In particu-

lar, one that can be used by beginners to identify real

use cases. One related work is found in [12], where

764

a context-free language is proposed for specifying re-

quirements, from which use cases and actors can be de-

rived automatically. The limitations are that the syntax

is very restrictive, and it is a challenge for a software

engineer to use a formal language. In comparison, our

methodology works with requirements specified using

the natural language. Another related work is found in

[15], which describes a method for generating use case

diagrams from use cases and architectural designs. Our

methodology generates use case diagrams directly and

use case diagrams are used to derive an architectural de-

sign. It is beyond the scope of this paper to discuss the

differences further.

7. Summary and Future Work

We define the notion of a use case and distin-

guish it from other related concepts such as steps, op-

erations and actions. We present a methodology for use

case derivation. Experiments show that the methodol-

ogy greatly improves the correctness and completeness

of use cases identified. A tool supporting the method-

ology has been prototyped. It works in two modes: (1)

manual derivation, and (2) automatic derivation of use

cases from requirements. In manual derivation, the user

highlights and identifies the use cases, actors and sub-

systems. The tool presents the four questions stated in

Definition 1 and asks the user to verify. In the automatic

mode, the tool derives the use cases automatically and

the user verifies them. In either mode, use case diagrams

are generated automatically. Future work is to improve,

and evaluate the tool.

References

[1] Bente Anda, Dag Sjberg, “Towards an inspection

technique for use case models,” Proceedings of the

14th International Conference on Software Engi-

neering and Knowledge Engineering, SEKE ’02,

July 15-19, 2002. pp. 127-134.

[2] Bente Anda and Dag I.K. Sjberg, “Investigating the

role of use cases in the construction of class dia-

grams,” Empirical Software Engineering, vol. 10,

no. 3, September 2005 pp. 285-309.

[3] Flvia A. Barros, Las Neves, rica Hori, Dante Tor-

res, “The ucsCNL: A controlled natural language

for use case specifications,” Proceedings of the

23rd International Conference on Software Engi-

neering and Knowledge Engineering, SEKE ’11,

pp. 250-253.

[4] Michael R. Blaha and James R Rumbaugh,

“Object-Oriented Modeling and Design with UML

(2nd Ed.),” Prentice Hall, 2004.

[5] G. Booch, J. Rumbaugh and I. Jacobson, “The Uni-

fied Modeling Language User Guide (2nd Ed.),”

Addison Wesley, 2005.

[6] F. P. Brooks, Jr. “The Mythical Man-Month (2nd

Ed.),” Addison-Wesley Professional, 1995.

[7] Bernd Bruegge and Allen H. Dutoit, “Object-

Oriented Software Engineering: Using UML, Pat-

terns, and Java (3nd Ed.),” Prentice Hall, 2009.

[8] Stefania Gnesi, “Use case-based testing of product

lines,” Proceedings of the ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering,

2003. pp. 355-358.

[9] Ivar Jacobson, “Object-Oriented Software Engi-

neering: A Use Case Driven Approach” Reading,

MA: Addison-Wesley, 1992.

[10] Ivar Jacobson, James Rumbaugh and Grady

Booch, “Unified Software Development Process,”

Addison-Wesley, 1999.

[11] Craig Larman, “Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and De-

sign and Iterative Development (3rd Ed.),” Prentice

Hall, 2005.

[12] Dipankar Majumdar, Sabnam Sengupta, Ananya

Kanjilal, Swapan Bhattacharya, “Adv-EARS: A

Formal Requirements Syntax for Derivation of Use

Case Models,” in Advances in Computing and In-

formation Technology Communications in Com-

puter and Information Science Vol. 198, 2011. pp.

40-48.

[13] Martyn Ratcliffe and David Budgen, “The appli-

cation of use cases in systems analysis and design

specification,” Information and Software Technol-

ogy, vol. 47, no. 9, 2005. pp. 623-641.

[14] J. Rumbaugh, I. Jacobson and G. Booch, “The

Unified Modeling Language Reference Manual,”

Addison-Wesley, 1999.

[15] Maribel Yasmina Santos and Ricardo J. Machado,

“On the derivation of class diagrams from use

cases and logical software architectures,” Proceed-

ings of 5th International Conference on Software

Engineering Advances, ICSEA 2010. pp. 107-113.

[16] Stephen R. Schach, “Object-Oriented Software

Engineering,” McGraw-Hill Companies, Inc.

2007.

A-1

ScubAA: A Human Plausible Reasoning Approach
to Agent Trust Management

Sadra Abedinzadeh
Dept. of Computer Science,

University of Regina,
Regina, SK, Canada
sadra@cs.uregina.ca

Samira Sadaoui
Dept. of Computer Science,

University of Regina,
Regina, SK, Canada
sadaouis@uregina.ca

Abstract— Agent Trust Management (ATM) is becoming very
important because of the growth of the number of autonomous
service providers in open systems such as the Web. By modeling
open systems with agent technology, ATM methods are able to
identify a set of the most trusted service agents. The goal of this
paper is to highlight important features of ScubAA, an ATM
framework that is based on the Human Plausible Reasoning
(HPR) theory. Thanks to HPR, ScubAA is able to evaluate and
manage the agents' trust by considering several features, such as
the context of the user's request, third-party references from
both trustees (i.e. users) and trustors (i.e. service agents) and the
hierarchy of relations the trustees may have, in one single
framework.

Keywords - Agent Trust Management; Human Plausible
Reasoning; Multi Agent Systems.

I. OBJECTIVES

In this paper, we highlight major features of ScubAA, a
general purpose ATM framework based on the theory of HPR
[1]. We discuss how these features are important in addressing
ATM problems [1, 2] as well as provide the results of our
evaluation of ScubAA based on the statistical method named
ANOVA [2].

II. AN OVERVIEW OF SCUBAA

For each submitted request, ScubAA first recommends to the
user a ranked list of the most trusted service agents, associated
to the same context of the request, and then forwards the
request to those trusted services only. ScubAA divides the
agents into trustors (users) and trustees (service agents). It
makes use of HPR to relate a user to their trusted service
agents. For this purpose, it maintains a Knowledge Base (KB)
that includes the hierarchies representing all the agents in the
society as well as the relations between them. Furthermore,
ScubAA utilizes the HPR transformation functions to generate
new relations between trustors, between trustees, and between
the agents in the hierarchy of trustors and trustees. Each
relation in KB is bound to a certainty parameter γ which states
the degree of certainty that the corresponding statement is true.
ScubAA uses this parameter as the degree of trust. Moreover,
by identifying the context of the user's request, it is able to
associate a context to each statement in KB. This context is
then used to retrieve those agents which are able to provide
trust references within the same context. ScubAA takes into

account the values of trust provided by related agents as well
as the degree of certainty of the identified context. Finally, to
update the trust relations in KB, our system gets the values of
interaction rating from the user and by applying several
aggregation functions (such as mathematical average and
Dempster-Shafer Theory [5]), it is able to calculate the trust
for different service agents.

III. MAJOR FEATURES OF SCUBAA

Table 1 summarizes the major features of ScubAA that are
important to manage the trust of trustees. ScubAA considers
different metrics w.r.t. the user’s request, system inputs and
outputs as well as the properties of both trustors and trustees.

TABLE 1. MAJOR FEATURES OF SCUBAA

Category Feature

User's request Context

Trustor Agent
Third Party References

History of Interactions

Trustee Agent

Third Party References

Current Value of Trust

User’s Interaction Rating Value

Other Features
Degree of Certainty

Tuning Parameters

Output Ranked List of Most Trusted Service Agents

1. Context: ScubAA identifies the context of the request w.r.t
to the properties of both the user's profile (such as the history
of interactions) and request (such as its domain). The context
plays an important role in ATM in the sense that a trustor
evaluates trustees within a specific context. For instance, you
may trust your physician in the context of diagnosing diseases,
but not in the context of repairing a watch.

2. Third-Party References from Trustors: ScubAA uses third-
party references from other trustors. By applying the HPR
transformation functions, i.e. generalization, specialization and
similarity, it is able to find related trustors to the trustor of
interest. Our system determines the related entities only in the

A-2

context of the request. Third-party references are important as
they provide more trust evidences for trustees that are already
trusted by a trustor. Further, they deliver valuable information
regarding the trustees for which the trustor does not have any
trust information, and as a result, they can extend the trust
network of trustors.

3. History of Interactions: ScubAA utilizes the history of
trustors' requests in order to find the degree of similarity
between them in a specific context. This value is then used by
ScubAA to update the certainty parameters of the similarity
relations between trustors in the KB.

4. Third-Party References from Trustees: ScubAA also
considers the references from other trustees. It uses the HPR
transformation functions to determine the related trustees in
the context of the request.

5. Current Value of Trust: To evaluate the trust for each
trustee, ScubAA aggregates several factors to obtain a single
quantitative value. Current value of trust of a trustee is the one
of these factors. The aggregation functions can be customized
according to the ATM applications.

6. Interaction Rating Value: ScubAA employs the interaction
rating value provided by the user to update its KB. This
complies with the fact that the trust is subjective, and
consequently the user’s opinion plays an important role in the
evaluation process of trust.

7. Degree of Certainty: ScubAA associates with each
statement in KB (hierarchy, relation and context) a certainty
value γ. Then, it uses these values, by employing several
aggregation functions, to calculate the trust for each trustee.

8. Tuning Parameters: There are a number of tuning
parameters introduced to ScubAA to make it possible to adjust
how the trust evaluation process is performed in different
ATM scenarios and applications.

9. Ranked List of Most Trusted Agents: In ScubAA, each
agent in the list of trusted service agents is associated with a
degree of trust, a value between 0 and 1. This implies that the
trusted agents are sorted based on their degree of trust.

IV. IMPLEMENTATION AND EVALUATION

The main components of ScubAA are the HPR engine and the
service agent system. We implemented a generic engine for
the HPR theory. Moreover, a friendly GUI allows ScubAA to
be used by any ATM application. To assess the accuracy of
ScubAA, we conducted an experiment on the domain of Web
search in order to manage trust for an agent-based system
consisting of three search engines, Yahoo!, Bing, and Google.
We employed CAPNET [3], an agent development
framework, to implement the service agent system. Then,
using a set of 40 queries, we compared the results of ScubAA
with the actual values of trust returned by the three search
engines. These results are computed with the statistical model
ANOVA [2]. As illustrated in Figure 1, the analysis reveals
that there are no statistically significant difference between the

actual values of trust and the values of trust returned by
ScubAA.

Figure 1. Result of ANOVA

V. COMPARISON

We compare ScubAA to three other ATM systems, AFRAS
[4], FIRE [5] and TRAVOS [6], from a theoretical point of
view w.r.t. the features they utilize to address ATM problems.
This comparison reveals that ScubAA takes into account
several features within the same framework to provide a more
accurate value of trust. However, the other three methods lack
such characteristic since ScubAA contains all the features that
each of them expose separately. For instance, FIRE uses
references from trustees but does not consider the context of
the request and references from trustors.

VI. FUTURE WORKS

To better assess ScubAA, we can apply it to another domain
(e-commerce for instance) in order to compare its results with
other ATM systems in that domain. Customizing ScubAA
with other aggregation functions, such as Fuzzy OWA [7], and
comparing the results is another future research work. Due to
the importance of context in ScubAA, one can extend this
work by improving the accuracy of the process of identifying
the context. ScubAA only uses the certainty parameter γ
amongst nine different parameters available in HPR. A future
extension of this work would be to incorporate those
parameters in order to improve the accuracy of trust values.

VII. REFERENCES
[1] A. Collins and R. Michalski, “The Logic of Plausible Reasoning: A Core
Theory,” Cognitive Science, vol. 13, 1989, pp. 1-49.

[2] D.C. LeBlanc, Statistics: Concepts and Applications for Science., Jones &
Bartlett Publishers, 2004.

[3] E. German and L. Sheremetov, “An agent framework for processing
FIPA-ACL messages based on interaction models,” Proceedings of the 8th
international conference on Agent-oriented software engineering., Springer-
Verlag, 2008, pp. 88-102.

[4] J. Carbo, J. Molina and J. Davila, “Trust management through fuzzy
reputation,” International Journal of Cooperative Information Systems, vol.
12, no. 01, 2003, pp. 135-155.

[5] H. Trung Dong, R.J. Nicholas and R.S. Nigel, “An integrated trust and
reputation model for open multi-agent systems,” Autonomous Agents and
Multi-Agent Systems, vol. 13, no. 2, 2006, pp. 119-154.

[6] W.T.L. Teacy, J. Patel, N.R. Jennings and M. Luck, “Travos: Trust and
reputation in the context of inaccurate information sources,” Autonomous
Agents and Multi-Agent Systems, vol. 12, no. 2, 2006, pp. 183-198.

[7] J.M. Merigó and M. Casanovas, “The fuzzy generalized OWA operator
and its application in strategic decision making,” Cybernetics and Systems: An
International Journal, vol. 41, no. 5, 2010, pp. 359-370.

A-3

Attribute-Value based Reconfiguration Model
for Sensor Network Environment

Hyunjun Jung, Sukhoon Lee, Doo-Kwon Baik†
Dept. of Computer and Radio Communications Engineering, Korea University, Seoul, Korea

E-mail: {darkspen, leha82, baikdk}@korea.ac.kr

Abstract— Software reconfiguration is indispensable in Wireless
Sensor Networks (WSNs) environment. A sensor network system
requires reconfiguration to approve energy efficiency, change
actions of sensor, and set alternative network routing. This paper
proposes a reconfiguration model in WSNs. For attribute-value
based reconfiguration, we define attributes of sensor network and
reconfiguration processes. The attributes are used for updating
attribute values of sensor network nodes. And the
reconfiguration processes describe actions for the nodes. The
proposed model is low cost and needs minimal user intervention.

Keywords - reconfiguration model; attribute based
reconfiguration;

I. INTRODUCTION
Wireless Sensor Networks (WSNs) have gained worldwide

attention in recent years. The sensor nodes used are small and
have limited processing and computing resources. Sensor
nodes are typically deployed in the natural environment to
sense data such as temperature, humidity, illumination, sound,
vibration, pressure, motion, and pollution. The sensor nodes are
also embedded in part of the infrastructure such as buildings,
forests, and machinery, and are used in uncontrollable
environments. Therefore sensor nodes are needed to be
changed for adapting variable situations [1].

Nodes comprising WSNs have attribute values. The nodes
reconfigure attribute values themselves to adapt changeable
situation. The attribute-value based reconfiguration is able to
approve energy efficiency, change actions of sensor, and set
alternative network routing.

This paper proposes an attribute-value based
reconfiguration model in WSNs. For attribute value based
reconfiguration, we define attributes and reconfiguration
process. For an evaluation, we compare attribute value based
model to full image based model and module based model.

II. ATTRIBUTE-VALUE BASED RECONFIGURATION MODEL
FOR SENSOR NETWORK

Figure 1 gives an overview of the reconfiguration system.
The WSNs application system comprises sensor nodes, sink
nodes, routers, and actuator nodes. Sensor nodes play the role
of sensors and sense data that they then transmit to a
coordinator node. Router nodes act as both routers and
coordinators, and they control sub-networks and accept data

from other nodes. A sink node has both a sink role and a
Personal Area Network (PAN) coordinator role. It controls the
entire network. A sink node collects data from other nodes in
the sensor network. An actuator node, which plays the role of
actuator, controls devices [2]. The measured data store is an
ontology registry and ontology uses reasoning for situation
awareness. The W3C Semantic Sensor Network (SSN)
Incubator group (the SSN-XG) produced SSN ontology to
describe sensors and observation [3]. A sink node uses SSN
ontology for reasoning. This is necessary for it to adapt to
situations. The sink node creates update code using inferred
policy and sensed data. Update code is transferred to target
nodes. The sensor nodes that receive the update code carry out
the update process.

Figure 1. Overview of Attribute-value based Reconfiguration Model

TABLE I. ATTRIBUTES CLASSIFICATION AND FEATURES

Attribute
classification Feature

Network

Network comprises communication attributes shared
with other nodes.
E.g., NodeID, SensingPeriod, MACAddr,
AdjacentActuatorNodeID,
NextHopRoutingFirstNodeID,
NextHopRoutingSecondNodeID, RFChannel,
ScanChannel, Zigbee RF

Scheduler Scheduler is scheduler selection.
E.g., Scheduler_Enable

Device driver
Device driver comprises functional attributes.
E.g., EEPROM_Enable, UART,
FlashMemory_Enable, RSSI_Enable

Sensor type

Sensor type comprises sensing attributes.
E.g., Sensor_Temperature_Enable,
Sensor_Light_Enable, Sensor_Gas_Enable,
Sensor_Humidity_Enable

This research was supported by Next-Generation Information Computing
Development Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and Technology
(2012M3C4A7033346).

† Corresponding author

A-4

III. ATTRIBUTE CLASSIFICATION FOR RECONFIGURATION
Attributes represent the capability of a node. They are used

to determine the type of a node. The reconfiguration attribute is
a functional capability of the USN application. It comprises
network, scheduler, device driver, sensor type, and so on. USN
application systems have various reconfiguration attributes.

Table 1 lists our proposed attribute classification and
features. Self-reconfiguration attributes are classified into four
categories: network, scheduler, device driver, and sensor type.
Figure 2 shows examples of self-reconfiguration attribute
settings. In the examples, the four classifications include
attributes for a Gas and Light Monitoring System [4].

Figure 2. Examples of attribute-value pairs

Figure 3. Process for attribute-value based reconfiguration

IV. ATTRIBUTE-VALUE BAESD RECONFIGURATION PROCESS
Attribute-value based reconfiguration process comprises

two main processes: the sink node process and the sensor node
process.

Figure 3 outlines the attribute-value based reconfiguration
procedure. The sink node receives sensing data from the sensor
nodes, which it saves in the store. The sink node needs
situational awareness and reasoning based on ontology. It
decides on the reconfiguration policy from the policy manager.
If there is a relevant policy, it creates program code based on
that policy. If there is no relevant policy, it requests a policy
from the user. The sink node requires the target nodes to be in
reconfiguration mode. Finally, it transmits the program code. If
a sensor node receives a reconfiguration mode packet from the
sink node, it changes to reconfiguration mode. (Otherwise, the
program code is transmitted to other nodes.) The sensor node
then waits to receive the program code, and carries out
reconfiguration after receiving it. Finally, the sensor node
transmits the reconfiguration results to the sink node.

V. EVALUATION
We conducted a qualitative evaluation. The evaluation

factors are a reconfiguration cost and a unit size. Table 2 shows
the results of our evaluation.

TABLE II. A QUALITATIVE EVALUATION

System Reconfiguration
cost Unit size

Attribute-value based model
(proposal) Low Small

Full image based model [5] High Large
Module based model [6] Middle Medium

VI. CONCLUSION
This paper addressed the problem of reconfiguration in

sensor network environments and proposed a reconfiguration
middleware model. The model uses attribute classification and
reconfiguration mechanisms, and needs minimal user
intervention. We also defined a middleware structure and
described and analyzed the process of sensor network self-
reconfiguration. Future work in this area will include the
implementation of our proposed model.

REFERENCES
[1] B. Greenstein, A. Pesterev, C. Mar, E. Kohler, J. Judy,S. Farshchi, and D.

Estrin, "Collecting high-rate data over low-rate sensor network radios,"
Technical report, CENS Technical Report 55, UCLA, 2005.

[2] R. Balani,C.-C. HAN, R. Rengaswamy, M. Srivastava, "Multi-level
software reconfiguration for sensor networks," In Proceedings of the 6th
ACM & IEEE International Conference on Embedded Software
(EMSOFT’06). ACM, 2005, pp.112–121.

[3] Compton M et al. (2012) The SSN Ontology of the W3C Semantic
Sensor Network Incubator Group. Journal of Web Semantics. 2012.

[4] Lee, W.J., Kim J.I., Kang J. M., “Automated Construction of Node
Software Using Attributes in a Ubiquitous Sensor Network
Environment”, Sensors 2010, 10, p. 8664.

[5] J. W. Hui and D. Culler, "The dynamic behavior of a data dissemination
protocol for network programming at scale," In Proceedings of the
second internation conference on Embedded Networked Sensor Systems,
2004.

[6] A. Dunkels, B. Gr¨onvall, and T. Voigt, "Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proceedings of
the First IEEE workshop on Embedded Networked Sensors, 2004.

A-5

DuSE-MT: From Design Spaces to Automated Software Architecture Design

Sandro S. Andrade† §
sandros@ufba.br

§GSORT Distributed Systems Group

Federal Institute of Education, Science

and Technology of Bahia (IFBa)

40110-150. Salvador-Ba. Brazil

Raimundo José de A. Macêdo†
macedo@ufba.br

†Distributed Systems Laboratory (LaSiD)

Department of Computer Science

Federal University of Bahia (UFBa)

40170-110. Salvador-Ba. Brazil

Abstract

The design of effective software architectures which ful-
fill complex and conflicting demands for stringent quality at-
tributes is usually a challenging task. Despite the availabil-
ity of some forms of structured architectural knowledge, like
styles catalogs and reference architectures, effective tool sup-
port for systematic representation of domain-specific design
knowledge and well-informed trade-off decisions is still miss-
ing. This extended abstract presents DuSE-MT: a support-
ing tool for the DuSE automated architecture design process.
Major DuSE-MT features currently available include: i) the
definition of domain-specific architecture design spaces; ii)
the definition of related quality evaluation metrics; and iii)
a multi-objective optimization mechanism which elicits a set
of Pareto-optimal candidate architectures and supports well-
informed trade-off analysis. DuSE-MT has been fully im-
plemented in C++/Qt and a case study regarding the design
of architectural self-adaptation capabilities in a cloud-based
media encoding service has been undertaken.

Keywords: software architecture design, self-adaptive sys-
tems, feedback control, model-driven software engineering.

1. Introduction

The well-orchestrated use of refined experience, good aes-

thetics, and right balance when making trade-off decisions is

imperative if we are to design effective architectures for com-

plex software-intensive systems. Over the past years, soft-

ware engineering researchers have been urged to drive their

efforts towards an engineering discipline for software [4],

which mostly involves the prospection of theories and orga-

nization of knowledge for routine use [3].

For that purpose, the development of supporting tools

which systematically captures highly specialized design

This research is partially supported by grant 006/2012/PRPGI from the

IFBa’s Research and Innovation Supporting Program.

Figure 1. DuSE architecture design process.

knowledge, supports effective solution space exploration,

and helps when making well-informed trade-off decisions

is mandatory. Our approach – DuSE1 [1, 2] – integrates

model-based software engineering and search-based architec-

ture design mechanisms to address the aforementioned as-

pects. DuSE-MT, the tool we present here, is intended to fully

support the automated design process provided by DuSE and

depicted in Figure 1.

DuSE defines a domain-independent metamodel (lan-

guage) for design spaces representation which can be instan-

tiated in order to specify degrees of freedom for specific ap-

plication domains. Currently, a DuSE instance representing

a design space for architecting self-adaptive systems is avail-

able (SA:DuSE).

1http://duse.sf.net

A-6

Figure 2. DuSE-MT: the DuSE supporting tool.

Our approach assumes an initial architectural model is fed

into DuSE-MT (shown in Figure 2), which then enables the

automated redesign of such initial model when navigating

through the design space. Each resulting candidate architec-

ture can be evaluated according with the defined metrics and

usually denote a solution favoring a specific quality attribute.

In order to tackle the issue of navigating through huge de-

sign spaces, a search-based mechanism based on evolutionary

multi-objective optimization has been implemented. The out-

come of such mechanism is a set of Pareto-optimal candidate

architectures: solutions for which it is impossible to make any

one architecture better off without make at least another one

worse.

2. DuSE-MT Requirements and Architecture

From its outset, DuSE-MT has been aimed to extend basic

modeling capabilities towards a higher level representation

of design expertize and enhanced elicitation of architectural

trade-offs. With this in mind, the core foundations of DuSE-

MT were designed to provide a metamodel-agnostic platform

for defining architecture design spaces (representing alterna-

tive solutions in a given application domain) and quality eval-

uation metrics.

Figure 3 presents a simplified Component&Connector ar-

chitectural view of DuSE-MT. DuSE builds upon Qt2 and

Qt Modeling Framework3 technologies, responsible for basic

UML model manipulation. A plugin-based architecture eas-

ily supports the addition of new design space instances (DuSE

instance plugins) and provides the underlying mechanism for

solution space exploration and optimization.

DuSE and DuSE-MT have currently been applied to the

particular domain of self-adaptive systems. In [2] we provide

details about such specific instance of DuSE and the findings

of using our approach when designing a self-adaptive cloud-

based media encoding service.

2http://www.qt-project.org
3http://qt-project.org/wiki/QtModeling

Figure 3. DuSE-MT C&C architectural view.

3. Conclusion and Future Work

This extended abstract presents an overview of DuSE-MT:

a supporting tool for automated architectural design. We have

presented its major requirements, current available features,

and some structural aspects of its architecture. Future work

include the implementation of effective metric visualization,

sharing DuSE artifacts over a network, and mapping from de-

sign space navigation traces to higher level design theories.

References

[1] Sandro S. Andrade and Raimundo José de A. Macêdo.
Architectural design spaces for feedback control con-
cerns in self-adaptive systems. In Proceedings of the 25th
International Conference on Software Engineering and
Knowledge Engineering, SEKE 2013, New York, NY,
USA, 2013. ACM.

[2] Sandro S. Andrade and Raimundo José de A. Macêdo.
A search-based approach for architectural design
of feedback control concerns in self-adaptive sys-
tems, May 2013. Technical Report. Available at
http://dusearchitects.files.wordpress.com/2013/05/duse-
techrep.pdf.

[3] Muhammad Ali Babar, Torgeir Dingsyr, Patricia Lago,
and Hans van Vliet. Software Architecture Knowledge
Management: Theory and Practice. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[4] Mary Shaw. Research toward an engineering discipline
for software. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, FoSER ’10,
pages 337–342, New York, NY, USA, 2010. ACM.

A-7

A
Tamer Abdou, 306
Alain Abran, 483

Sudipta Acharya, 685
Sébastien Adam, 650
Lokesh Agrawal, 283

Rui L. Aguiar, 1
Moataz Ahmed, 727

Yamine Aït-Ameur, 262
Hamdi A. Al-Jamimi, 727

R. AL-msie’deen, 244
Emil Alégroth, 178
André Almeida, 67

Bandar Alshammari, 394
Aleem Khalid Alvi, 277
Junia C. Anacleto, 137
Rafael T. Anchiêta, 48

Sandro S. Andrade, 741
Nicolas Anquetil, 375
Eduardo Aranha, 504

Wesley Klewerton Guez Assunção, 632
Saulius Astromskis, 147

Hazeline U. Asuncion, 184
Jorge L. N. Audy, 196
Paris Avgeriou, 568

B
Nada Bajnaid, 689

Ellen Francine Barbosa, 141, 350, 737
Moncef Bari 674
Eric Barnes, 59

Rodolfo M. Barros, 95
Fábio P. Basso, 721

Gleison Brito Batista, 668
Thais Batista, 67, 662

Youness Bazhar, 262
Alvine Boaye Belle, 344

Ayse Bener, 461
Salem Benferhat, 388

Fabiane Barreto Vavassori Benitti, 488
Rachid Benlamri, 689

Swapan Bhattacharya, 685
Mariza Bigonha, 375
Roberto Bigonha, 753
Hudson Borges, 447

Thouraya Bouabana-Tebibel, 388
Lydia Bouzar-Benlabiod, 388

Paola Britos, 83
João Brunet, 753

Frederico M. Bublitz, 405
Corentin Burnay, 30

C
Patricia Dousseau Cabral, 715

Nélio Cacho, 67
Danilo Caivano, 644

Gul Calikli, 461
Edmilson Campos, 504

Buqing Cao, 59
Erran Carmel, 196

Daniel H. Carmo, 731
Robert Carreras, 73

Luciano Augusto Fernandes Carvalho, 206
Sergio T. Carvalho, 731
Douglas Castilho, 753
Everton Cavalcante, 67

Shi-Kuo Chang, 273
Daniel Yuh Chao, 417

Meiru Che, 8
Feng Chen, 400

Author’s Index

A-8

Jianxun Chen, 455
Liqiong Chen, 77

Wen-Hui Chen, 273
Zhenyu Chen, 210, 312, 318

Esteban Walter Gonzales Clua, 668
Tayana Conte, 172, 190

Diane Corney, 394
Luis Corral, 520

Chessman Corrêa, 747
Ronaldo C. M. Correia, 338

Daniel Costa, 504
Heitor Augustus Xavier Costa, 447

Valéria Oliveira Costa, 656

D
Roberto Silvino da Cunha, 715
Elthon A. da S. Oliveira, 405

Ivonei F. da Silva, 238
Luiz Eduardo da Silva, 488

Thiago P. da Silva, 662
Aldo Dagnino, 107
M.A.R Dantas, 435
Robin Dawes, 277

Raimundo José de A. Macêdo, 741
Marcelo de A. Maia, 494

Eduardo Santana de Almeida, 238, 584
Hyggo O. de Almeida, 405

Gibeon Soares de Aquino Júnior, 510
Rodolfo M. de Barros, 552
Renata M. de Carvalho, 26

Valeria de Castro, 256
Ignacio García-Rodríguez de Guzmán, 516

Itamir de Morais Barroca Filho, 510
Andre de O. Bueno, 137

Káthia Marçal de Oliveira, 638

Vânia de Oliveira Neves, 200, 206
Rogério F. de Sousa, 48

Diego Spillere de Souza, 220
Márcio Eduardo Delamaro, 200
Fernanda Madeiral Delfi m, 531

Flavia C. Delicato, 67, 662
Yong Deng, 421

Christian Desrosiers, 344
Lijuan Diao, 14

S. M. Didar-Al-Alam, 89
Junhua Ding, 411

Christophe Dony, 250
Derek Doran, 107

Alinne C. Corrêa dos Santos, 500
Elanne Cristina Oliveira dos Santos, 668

Xingzhong Du, 312, 318
Nathan Duncan, 184
Animesh Dutta, 685

E
Lenardo C. e Silva, 405

Ricardo Pereira e Silva, 715
 Armin Eberlein, 63

Ghizlane El Boussaidi, 344, 441, 650
Mohamed Elshaarawy, 479

Hugo Estrada, 42

F
Sandra Fabbri, 36
R. A. Falbo, 562
Guisheng Fan, 77

Chunrong Fang, 210
Behrouz Far, 261

Behrouz H. Far, 63
Stéphane Faulkner, 30

A-9

James W. Fawcett, 153
Daniel Feitosa, 451

Katia Romero Felizardo, 141
Jude Fernandez, 196

Maria Fernandez-Ropero, 516, 644
Vinícius Ramos Toledo Ferraz, 500

Johnny Maikeo Ferreira, 232
Colin Fidge, 394

Alexandre Azevedo Filho, 101
Maria Lydia Fioravanti, 350
Lisandra M. Fontoura, 548

Luiz Leandro Fortaleza, 190
Ellen Francine, 500
Marília Freire, 504

Yoshiaki Fukazawa, 594, 600

G
Fernando H. Gaffo, 552

Matthias Galster, 451, 568
Jerry Gao, 356

Kehan Gao, 612
Rogério Eduardo Garcia, 338 531

Vinicius Cardoso Garcia, 584
Ramón García-Martínez, 83

Tamer Fares Gayed, 674
Jidong Ge, 411

Itana Gimenes, 214
Swapna S. Gokhale, 107

Everton Gomede, 95
João Gomes, 101

Rafael Gómez-Cornejo, 516
Peter Grogono, 306

Junzhong Gu, 14
Ming Gu, 695

Milena Guessi, 451

Ting Guo, 578

H
Irit Hadar, 574

Haitham Hamza, 473
Klaus Marius Hansen, 326

Aya Hassani, 483
Michael Hausenblas, 113

Jun He, 699
Tieke He, 312, 318

Marco I. Hisatomi, 552
Shinichi Honiden, 159

André Hora, 375
Flávio E. A. Horita, 552

D. Frank Hsu, 421
Marianne Huchard, 244, 250

Chengfeng Hui, 318

I
Ali Idri, 483

Indra Rusmita Indra, 703
Aftab Iqbal, 113
Seiji Isotani, 737

J
S K Jain, 54

Tahir Jameel, 525
Andrea Janes, 147, 226

Carlos Mario Zapata Jaramillo, 268
Mathias Jarke, 703
Stéphane Jean, 262

Zhenyuan Jiang, 525
Wenpin Jiao, 362

Renato C. Juliano, 494
Ivan J. Jureta, 30

A-10

K
Selim Kalayci, 709
Amr Kamel, 473

Pankaj Kamthan, 306
Ben Kao, 294

Muhammad Rezaul Karim, 332
Marcel Karnstedt, 113
Mohamad Kassab, 441

Fumiya Kato, 594
Mehmet Kaya, 153

Taghi M. Khoshgoftaar, 467, 612
Aneesh Krishna, 685

Josiane Kroll, 196
Uirá Kulesza, 504
David Kung, 759

L
Rogene Lacanienta, 166

Jörg Lenhard, 18
Meira Levy, 574

Bixin Li, 356, 606
He Li, 525

Xiang Li, 624
Yihan Li, 589

Zengyang Li, 556
Peng Liang, 556

Ricardo M. F. Lima, 26
Mengxiang Lin, 525

Sihai Lin, 455
Chao Liu, 381, 400, 589

Dongmei Liu, 77
Fei Liu, 606

Jia Liu, 312, 318
Xiaoqing (Frank) Liu, 59

Eric Lo, 294

Frederico Lopes, 67, 662
Marcos López-Sanz, 256

Orlando Loques, 731
Bell Manrique Losada, 268

Yihua Lou, 131
Hakim Lounis, 674

Saulo O. D. Luiz, 405

M
Jiakuan Ma, 537
Yutao Ma, 455

Ivan do Carmo Machado, 584
Joice B. Machado, 737

Yuta Maezawa, 159
Cristiano Maffort, 375

Ronald Maier, 125
José Maldonado, 214

José Carlos Maldonado, 141, 350
Konstantinos Manikas, 326

Ingrid Marçal, 338
Sarunas Marciuska, 226

Anderson Marcolino, 214
Esperanza Marcos, 256

Ashwag Omar Marghraby, 681
Alicia Martinez, 42

Gustavo L. Martins, 737
Paulo Cesar Masiero, 200, 206

Pedro Reales Mateo, 300
Aditya P Mathur, 119

Olavo Olimpio Matos, 190
William Joseph Matthies Jr., 184

Tainá Medeiros, 504
Luciano Meira, 101

Silvio R. L. Meira, 238
Caio César Teodoro Mendes, 200

A-11

Jonata Menezes, 375
Hafedh Mili, 344

Sunghyun Min, 368
Luis Miranda, 753

Jefferson Seide Molléri, 488
Mohammad Moshirpour, 63

Malek Mouhoub, 332
Raimundo S. Moura, 48

Leonardo Gresta Paulino Murta, 656, 731
Swetha Myneni, 618

N
Karen Najera, 42

Elisa Yumi Nakagawa, 350, 451
Amri Napolitano, 467, 612

André Nascimento, 101
Crescencio Rodrigues Lima Neto, 584

See-Kiong Ng, 119
Kazuki Nishiura, 159

O
Morihide Oinuma, 166
Guilherme Olivato, 36

Cesar A. L. Oliveira, 26
Hilário Oliveira, 101
Paloma Oliveira, 447
Toacy Oliveira, 747

Toacy C. Oliveira, 22, 721
Edson Oliveira Junior, 214

João M. B. Oliveira Junior, 656
Celso Olivete Junior, 338

Jinsong Ouyang, 73

P
Algirdas Pakstas, 689

Sooyong Park, 368
Soojin Park, 368

Óscar Mortágua Pereira, 1
Vinicius Pereira, 500

Ricardo Pérez-Castillo, 516, 644
Anna Perini, 42

Angelo Perkusich, 405
Dewayne E. Perry, 8

Dietmar Pfahl, 89
Mario Piattini, 516, 644
Raquel M. Pillat, 721

Paulo Pires, 67
Paulo F. Pires, 662
D. R. Plante, 542
Robert Porter, 184

Ivens da S. Portugal, 22
Thibaut Possompès, 250

Karen Potts, 184
Ferry Pramudianto, 703

Rafael Prikladnicki, 190, 196
Ricardo Prudêncio, 101

Pablo Pytel, 83

Q
Xiaofang Qi, 699

Marcos Antonio Quinaia, 232

R
Karthikeyan Rajasekharan, 119

Rajeev Raje, 429
Cristiane Soares Ramos, 638

Sreya Reddy, 618
Thiago Ribeiro, 36
Luis Rivero, 172

Dave Robertson, 681

A-12

Ana Regina Rocha, 638
Rafael Rovina, 36
Guenther Ruhe, 89

Ryan Rybarczyk, 429

S
Haitham S.Hamza, 479

Mohd Sadiq, 54
S. Masoud Sadjadi, 709

Kazunori Sakamoto, 594, 600
Shahram Salekzamankhani, 689

H. Eyal Salman, 244
Johannes Sametinger, 125

José Filipe Marreiros Santos, 451
Maribel Yasmina Santos, 1

Alessandro Sarcia, 226
Dalton Serey, 753
A.-D. Seriai, 244

Fabrício S. Severo, 548
Mojtaba Shahin, 556
Khaled Shams, 473

Wei She, 14
Macneil Shonle, 184

Alberto Sillitti, 147, 520
Caio Silva, 435

Luís A. L. Silva, 548
Natalia C. Silva, 26

Michel S. Soares, 494
Sérgio Soares, 504

Hui Song, 362
E. F. Souza, 562

Francisco Carlos M. Souza, 500
Catherine Stringfellow, 618

Giancarlo Succi, 147, 226, 520
Yanchun Sun, 362

T
Ismail Taha, 479

Shingo Takada, 166
Mingdong Tang, 59
Haruto Tanno, 166
Chuanqi Tao, 356
Yuxing Teng, 322
Ricardo Terra, 753

Andre Di Thommazo, 30
Chouki Tibermacine, 250

Dan Tofan, 568
Durga Toshniwal, 283

Bruno A. N. Travençolo, 494
Feliu Trias, 256

Mihran Tuceryan, 429

U
Naomi Unkelos-Shpigel, 574

C. Urtado, 244
Macario Polo Usaola, 300

V
Tassio Vale, 238

Marco Tulio Valente, 375, 447, 753
S. Vauttier, 244

Raaji Vedala-Tiramula, 618
Silvia Regina Vergilio, 232, 632
Sérgio Roberto Costa Vieira, 190

N. L. Vijaykumar, 562
Patrícia Vilain, 220

W
Randall Wald, 467

Huaimin Wang, 624
Huanjing Wang, 467

A-13

Jiangtao Wang, 322, 537
Jinwu Wang, 59
Lulu Wang, 606
Peng Wang, 699

Weiqing Wang, 312
Yasha Wang, 322, 537

Ziyuan Wang, 578
Hironori Washizaki, 159, 594, 600

Ran Wei, 287
Vera Werneck, 36

Cláudia M. L. Werner, 721, 747
Guido Wirtz, 18

Denis Fernando Wolf, 200
Fan Wu, 695

Wenjun Wu, 131
Zhonghai Wu, 421

X
Bing Xie, 537

Baowen Xu, 578
Dianxiang Xu, 411
Haiping Xu, 287

Y
Cheng Yang, 624

I-Ling Yen, 14
Gang Yin, 624

Seonghye Yoon, 368
Huiqun Yu, 77

Lili Yu, 381, 400
T. H. Yu, 417
Yue Yu, 624

Zi Yuan, 381, 400, 589

Z
Du Zhang, 73
Fan Zhang, 59

Hehua Zhang, 695
Weifeng Zhang, 578
Xiaofang Zhang, 210

Yiwei Zhang, 294
Junfeng Zhao, 322
Zhihong Zhao, 210
Wujie Zhou, 578
Yunxiao Zou, 210

A-14

Reviewer’s Index

A
Silvia Teresita Acuna

Taiseera Albalushi
Edward Allen
Omar El Ariss

B
Doo-hwan Bae

Ebrahim Bagheri
Hamid Bagheri
Rami Bahsoon
Xiaoying Bai

Purushotham Bangalore
Fevzi Belli

Ateet Bhalla
Swapan Bhattacharya
Alessandro Bianchi

Borzoo Bonakdarpour
Ivo Bukovsky

C
Gerardo Canfora
Jaelson Castro

Raul Garcia Castro
Peggy Cellier
Keith Chan

Kuang-nan Chang
Ned Chapin

Shu-Ching Chen
Wen-Hui Chen
Zhenyu Chen

Stelvio Cimato
Peter Clarke
Esteban Clua

Nelly Condori-fernandez

Fabio M. Costa
Maria Francesca Costabile

Jose Luis Cuadrado
Juan J. Cuadrado-gallego

D
Aldo Dagnino

Jose Luis De La Vara
Massimiliano Di Penta

Scott Dick
Junhua Ding
Jing Dong

Weichang Du
Philippe Dugerdil

E
Christof Ebert
Ali Ebnenasir
Raimund Ege

Magdalini Eirinaki

F
Davide Falessi
Behrouz Far

Scott D. Fleming
Liana Fong

Renata Fortes
Ellen Francine Barbosa

Fulvio Frati

G
Jerry Gao

Felix Garcia
Ignacio Garcia Rodriguez De Guzman

Itana Gimenes

A-15

Swapna Gokhale
Wolfgang Golubski

Desmond Greer
Eric Gregoire

Christiane Gresse Von Wangenheim
Katarina Grolinger

H
Hao Han

Xudong He
Miguel Herranz

J
Clinton Jeffery

Jason Jung
Natalia Juristo

K
Selim Kalayci

Eric Kasten
Taghi Khoshgoftaar

Jun Kong
Nicholas Kraft

Aneesh Krishna
Vinay Kulkarni
Gihwon Kwon

L
JJeff Lei
Bixin Li
Ming Li
Tao Li

Yuan-Fang Li
Zhi Li

Shih-hsi Liu
Xiaodong Liu

Yi Liu
Hakim Lounis

Joan Lu

M
Marcelo de Almeida Maia

Antonio Mana
Vijay Mann

Riccardo Martoglia
Hong Mei
Hsing Mei
Ali Mili

Alok Mishra

N
Kia Ng

Allen Nikora
Amjad Nusayr

O
Edson A. Oliveira Junior

P
Erick Passos

Xin Peng
Oscar Pereira

Antonio Piccinno
Alfonso Pierantonio

Daniel Plante

R
Rick Rabiser

Filip Radulovic
Damith C. Rajapakse

Rajeev Raje
Jose Angel Ramos
Henrique Rebelo
Marek Reformat
Robert Reynolds

A-16

Daniel Rodriguez
Ivan Rodero

S
Samira Sadaoui
Masoud Sadjadi

Claudio Sant’Anna
Salvatore Alessandro Sarcia

Andreas Schoenberger
Tony Shan

Michael Shin
Qinbao Song

George Spanoudakis
Jing Sun

Yanchun Sun
Gerson Sunye

 T
Jeff Tian

Genny Tortora
Mark Trakhtenbrot

Peter Troeger
T.h. Tse

V
Giorgio Valle

Sylvain Vauttier
Silvia Vergilio
Akshat Verma

Sergiy Vilkomir
Arndt Von Staa

W
Gurisimran Walia
Huanjing Wang

Jiacun Wang
Linzhang Wang

Hironori Washizaki
Victor Winter
Guido Wirtz
Eric Wong

Franz Wotawa

X
Dianxiang Xu

Frank Xu
Haiping Xu

Y
Chi-lu Yang
Hongji Yang
Jijiang Yang
Huiqun Yu

Z
Cui Zhang
Du Zhang

Hongyu Zhang
Yong Zhang

Zhenyu Zhang
Hong Zhu

Xingquan Zhu
Eugenio Zimeo

A-17

Poster/Demo Presenter’s Index
A

Sadra Abedinzadeh, A-1
Sandro S. Andrade, A-5

B
Doo-Kwon Baik, A-3

D
Raimundo José de A. Macêdo, A-5

J
Hyunjun Jung, A-3

L
Sukhoon Lee, A-3

S
Samira Sadaoui, A-1

SEKE
2013

Proceedings of the Twenty-Fifth
International Conference on

Software Engineering
& Knowledge Engineering

Boston
June 27-29

Copyright © 2013
Printed by
Knowledge Systems Institute
Graduate School
3420 Main Street
Skokie, Illinois 60076
(847) 679-3135
office@ksi.edu
www.ksi.edu
Printed in USA, 2013
ISBN 1-891706-33-0 (paper)
ISSN 2325-9000 (print)

