
SEKE
2011

Proceedings of the
Twenty-Third
International Conference on
Software Engineering &
Knowledge Engineering

Miami, July 7-9

PB 1

PROCEEDINGS

SEKE 2011
The 23rd International Conference on

Software Engineering &
Knowledge Engineering

Sponsored by
Knowledge Systems Institute Graduate School, USA

Technical Program
July 7-9, 2011

Eden Roc Renaissance Miami Beach, Florida, USA

Organized by
Knowledge Systems Institute Graduate School

ii iii

Copyright © 2011 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN-10: 1-891706-29-2 (paper)
ISBN-13: 978-1-891706-29-5

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:office@ksi.edu
http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

ii iii

SEKE 2011 Foreword
On behalf of the Program Committee Co-Chairs and the Program Committee of the 2011 International Conference
on Software Engineering and Knowledge Engineering (SEKE2011), we sincerely welcome you to contribute and
attend SEKE-2011 in Miami Beach, Florida, USA.

The International Conference on Software Engineering and Knowledge Engineering has entered its 23rd year. In
the past twenty-two years, the International Conference on Software Engineering and Knowledge Engineering has
provided a unique and important forum for academic and industrial researchers and practitioners to exchange
research ideas, results and application experience in software engineering and knowledge engineering.

This year’s technical program is prepared and organized by a great team of Program Co-Chairs, who are listed below.

Program Co-Chairs:
Du Zhang, California State University Sacramento, USA
Marek Reformat, University of Alberta, Canada
Swapna Gokhale, University of Connecticut, USA

It has been my great honor and pleasure to serve as the SEKE2011 Program Committee Chair and work with this
great team and the program committee members to prepare a rich and solid technical program as well as the high
quality conference proceedings. The published conference proceedings contain the papers accepted and selected
for presentation at SEKE2011 based on a rigorous review process. I hope it will serve as a valuable reference for the
research community in the coming years.

We received 224 submissions from 33 countries. The acceptance rate for full papers is 33%, and that for short papers
is 29%. This year, 150 authors from 30 countries (Australia, Austria, Brazil, Canada, China, Cyprus, Denmark, Egypt,
England, France, Germany, India, Italy, Japan, Korea, Malaysia, Mexico, New Zealand, Peru, Portugal, Scotland,
Senegal, Singapore, Spain, Sweden, Switzerland, Tunisia, Turkey, UK, and USA) will present 75 regular papers, 65
short papers, and 5 demo posters at the conference.

As the Program Chair for this Conference, I am very grateful to have this opportunity to work with three
distinguished SEKE2011 Program Committee Co-Chairs and the committed program committee members. Their
excellent support and prompt review efforts led to the successful organization of SEKE2011 technical program.
I want to extend my sincere and deepest thanks to Dr. Shihong Huang and Dr. Xiaoying Bai as the Publicity Co-
Chairs, Dr. Hironori Washizaki as the Asia Liaison, Dr. Jose Carlos Maldonado as the South America Liaison. My
appreciation also goes to the keynote speakers and special address presenter for sharing their visions, insights, and
experiences with the conference attendee about emergent technologies and trends, research topics and issues in both
academic research and industry applications. Moreover, I like to express my appreciation to the organizers of the
new poster/demo session, namely, Dr. Farshad Samimi, Dr. Ming Zhao, and Dr. Raul Garcia Castro for their great
contributions. In addition, I would like to thank Dr. S. K. Chang, the Steering Committee Chair, and Dr. Jerry Gao,
the Conference Chair, for their excellent guidance throughout the conference preparation process. Last but not the
least, I owe a special gratitude to the staff members of Knowledge Systems Institute, specially, to David Huang and
Rachel Lu, for their great efforts and timely support.

Finally, I truly hope you will enjoy the technical program of SEKE2011, have productive discussion, great
presentation and networking. Of course, I sincerely hope you will all explore and enjoy the sunshine state of Florida
and various attractions in Miami Beach area.

Masoud Sadjadi
SEKE2011 Program Chair

iv v

The 23rd International Conference on
Software Engineering & Knowledge Engineering

(SEKE 2011)

July 7-9, 2011
Eden Roc Renaissance Miami Beach, Florida, USA

Conference Organization

Steering Committee Chair
Shi-Kuo Chang, University of Pittsburgh, USA

Steering Committee
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

Advisory Committee
Natalia Juristo, Madrid Technological University, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada

Conference Chair
Jerry Gao, San Jose State University, USA

Program Chair
S. Masoud Sadjadi, Florida International University, USA

iv v

Program Co-Chairs
Marek Reformat, University of Alberta, Canada

Du Zhang, California State University Sacramento, USA
Swapna Gokhale, University of Connecticut, USA

Program Committee
Alain Abran, L’ecole de technologie superieure, Canada

Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain
Taiseera Albalushi, Sultan Qaboos University, Oman

Edward Allen, Mississippi State University, USA
Rosa Badia, Barcelona Supercomputing Center, Spain

Doo-hwan Bae, Korea Advanced Institute of Science and Technology, Korea
Ebrahim Bagheri, National Research Council Canada, Canada

Rami Bahsoon, University of Birmingham, United Kingdom
Xiaoying Bai, Tsinghua University, China

Purushotham Bangalore, University of Alabama at Birmingham, USA
Benoit Baudry, Institut de Recherche en Informatique et Systemes Aleatoires, France

Fevzi Belli, Univ. Paderborn, Germany
Ateet Bhalla, NRI Institute of Information Science and Technology, India
Alessandro Bianchi, Department of Informatics - University of Bari, Italy

Karun N. Biyani, Michigan State University, USA
Kai-yuan Cai, Beijing University of Aeronautics and Astronautics, China

Borzoo Bonakdarpour, University of Waterloo, Canada
Jean-michel Bruel, IRIT, Universite Paul Sabatier, France

Gerardo Canfora, Universita del Sannio, Italy
Jaelson Castro, Universidade Federal de Pernambuco - UFPE, Brazil

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain
Cagatay Catal, The Scientific & Technological Research Council of Turkey, Turkey

Christine Chan, University of Regina, Canada
Keith Chan, The Hong Kong Polytechnic University, Hong Kong

Kuang-nan Chang, Eastern Kentucky University, USA
Ned Chapin, InfoSci Inc., USA

Gerardo Antonio Castanon Avila, Tecnologico de Monterrey, Mexico
Shu-ching Chen, Florida International University, USA

Zhenyu Chen, Nanjing University, China
Yung-pin Cheng, Dept. of CS, National Taiwan Normal Univ., Taiwan

Stelvio Cimato, The University of Milan, Italy
Peter Clarke, Florida International University, USA

Esteban Clua, Universidade Federal Fluminense, Brasil
Nelly Condori-fernandez, Valencia University of Valencia, Spain

Julita Corbalan, Barcelona Supercomputing Center, Spain
Fabio M. Costa, Instituto de Informatica, Brasil

Maria Francesca Costabile, University of Bari, Italy
Karl Cox, University of Brighton, United Kingdom
Jose Luis Cuadrado, University of Alcala, Spain

vi vii

Juan J. Cuadrado-gallego, University of Alcala, Spain
Dilma Da Silva, IBM, USA

Ernesto Damiani, The University of Milan, Italy
Jose Luis De La Vara, Universidad Politecnica de Valencia, Spain

Deepak Dhungana, Lero, The Irish Software Engineering Research Centre., Ireland
Massimiliano Di Penta, University of Sannio, Italy

Scott Dick, University of Alberta, Canada
Jin Song Dong, NUS, Singapore

Jing Dong, University of Texas at Dallas, USA
Dirk Draheim, University of Innsbruck, Austria

Weichang Du, University of New Brunswick, Canada
Philippe Dugerdil, HEG - Univ. of Applied Sciences, Switzerland

Hector Duran, Centro Universitario de Ciencias Economico Administrativas, Mexico
Christof Ebert, Vector Consulting Services, Germany

Ali Ebnenasir, Michigan Technological University, USA
Raimund Ege, NIU, USA

Magdalini Eirinaki, Computer Engineering Dept, San Jose State University, USA
Faezeh Ensan, University of New Brunswick, Canada

Onyeka Ezenwoye, South Dakota State University, USA
Davide Falessi, University of Rome, TorVergata, Italy

Behrouz Far, University of Calgary, Canada
Robert Feldt, Chalmers University of Technology, Sweden
Eduardo B. Fernandez, Florida Atlantic University, USA
Marian Fernandez De Sevilla, University of Alcala, Spain

Gerardo Fernandez Escribano, Universidad de Castilla-La Mancha, Spain
Scott D. Fleming, Oregon State University, USA

Liana Fong, IBM, USA
Renata Fortes, Instituto de Ciencias Matematicas e de Computacao - USP, Brazil

Fulvio Frati, The University of Milan, Italy
Jerry Gao, San Jose State University, USA

Kehan Gao, Eastern Connecticut State University, USA
Felix Garcia, University of Castilla-La Mancha, Spain

Ignacio Garcia Rodriguez De Guzman, University of Castilla-La Mancha, Spain
Itana Gimenes, Universidade Estadual de Maringa, Brazil

Swapna Gokhale, Univ. of Connecticut, USA
Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Jeff Gray, University of Alabama, USA
Desmond Greer, Queen’s University Belfast, United Kingdom

Eric Gregoire, Universite d’Artois, France
Christiane Gresse Von Wangenheim, UFSC - Federal University of Santa Catarina, Brazil

Xudong He, Florida International University, USA
Miguel Herranz, University of Alcala, Spain

Howard Ho, IBM, USA
Mong Fong Horng, National Kaohsiung University of Applied Sciences, Taiwan

Shihong Huang, Florida Atlantic University, USA
Clinton Jeffery, University of Idaho, USA

Jason Jung, Yeungnam University, South Korea
Natalia Juristo, Universidad Politecnica de Madrid, Spain

Selim Kalayci, Florida International University, USA
Eric Kasten, Michigan State University, USA

vi vii

Taghi Khoshgoftaar, Florida Atlantic University, USA
Nicholas Kraft, The University of Alabama, USA

Sandeep Kulkarni, Michigan State University, USA
Vinay Kulkarni, Tata Consultancy Services, India
Gihwon Kwon, Kyonggi University, South Korea

Konstantin Laufer, Loyola University Chicago , USA
Juan Carlos Lavariega Jarquin, Institute de Monterrey, Mexico

Jeff Lei, University of Texas at Arlington, USA
Bixin Li, School of Computer Science and Engineering, Southeast University, China

Ming Li, Nanjing University, China
Tao Li, Florida International University, USA

Chien-hung Liu, National Taipei University of Technology, Taiwan
Shih-hsi Liu, California State University, Fresno, USA

Xiaodong Liu, Edinburgh Napier University, United Kingdom
Yan Liu, Pacific Northwest National Laboratory, USA

Yi Liu, GCSU, USA
Hakim Lounis, UQAM, Canada

Joan Lu, University of Huddersfield, United Kingdom
Heiko Ludwig, IBM Research, USA

Jose Carlos Maldonado, ICMC-USP, Brazil
Antonio Mana, University of Malaga, Spain

Vijay Mann, IBM, India
Hong Mei, Peking University, China

Hsing Mei, Fu Jen Catholic Unicersity, Taiwan
Emilia Mendes, University of Auckland, New Zealand

Ali Mili, NJIT, USA
Alok Mishra, Atilim University, Turkey

Ana M. Moreno, Universidad Politecnica de Madrid, Spain
Antonio Navidad Pineda, University of Alcala, Spain

Kia Ng, ICSRiM - University of Leeds, United Kingdom
Ngoc Thanh Nguyen, Wroclaw University of Technology, Poland

Allen Nikora, Jet Propulsion Laboratory, USA
Kunal Patel, Ingenuity Systems, USA

Eric Pardede, La Trobe University, Australia
Antonio Piccinno, University of Bari, Italy

Alfonso Pierantonio, University of L’Aquila, Italy
Zhou Qiang, TsingHua University in Beijing, China
Rick Rabiser, Johannes Kepler University, Austria
Lukasz Radlinski, University of Szczecin, Poland

Damith C. Rajapakse, National University of Singapore, Singapore
Rajeev Raje, IUPUI, USA

Jose Angel Ramos, Universidad Politecnica de Madrid, Spain
Marek Reformat, University of Alberta, Canada
Robert Reynolds, Wayne State University, USA
Daniel Rodriguez, Universidad de Alcala, Spain

Ivan Rodero, The State University of New Jersey, USA
Samira Sadaoui, University of Regina, Canada

Masoud Sadjadi, Florida International University, USA
Ramon Sagarna, The University of Birmingham, United Kingdom

Claudio Sant’Anna, Universidade Federal da Bahia, Brazil

viii ix

Salvatore Alessandro Sarcia, University of Rome “Tor Vergata”, Italy
Douglas Schmidt, Vanderbilt University ISIS, USA

Andreas Schoenberger, Distributed and Mobile Systems Group, University of Bamberg, Germany
Naeem (jim) Seliya, University of Michigan - Dearborn, USA

Tony Shan, Keane Inc, USA
Yi-dong Shen, Institute of software/Chinese academy of sciences, China

Michael Shin, Computer Science/Texas Tech University, USA
Yang Qiu Song, IBM, China

George Spanoudakis, City University, United Kingdom
Gerson Sunye, Institut de Recherche en Informatique et Systemes Aleatoires, France

Jeff Tian, Southern Methodist University, USA
Peter Troger, Humboldt-Universitat zu Berlin, Germany

Genny Tortora, University of Salerno, Italy
Mark Trakhtenbrot, Holon Institute of Technology, Israel

T.h. Tse, The University of Hong Kong, Hong Kong
Giorgio Valle, The University of Milan, Italy

Michael Vanhilst, Florida Atlantic University, USA
Sylvain Vauttier, Ecole des mines d’Ales, France

Silvia Vergilio, Federal University of Parana (UFPR), Brazil
Akshat Verma, IBM, India

Arndt Von Staa, PUC-Rio, Brazil
Huanjing Wang, Western Kentucky University, USA

Limin Wang, VMware Inc., USA
Hironori Washizaki, Waseda University, Japan

Victor Winter, University of Nebraska at Omaha, USA
Guido Wirtz, Distributed Systems Group, Bamberg University, Germany

Franz Wotawa, TU Graz, Austria
Haiping Xu, University of Massachusetts Dartmouth, USA

Jijiang Yan, Tsinghua University, China
Chi-lu Yang, Taiwan Semiconductor Manufacturing Company Ltd., Taiwan

Hongji Yang, De Montfort University, United Kingdom
Junbeom Yoo, Konkuk University, South Korea

Huiqun Yu, East China University of Science and Technology, China
Cui Zhang, California State University Sacramento, USA

Du Zhang, California State University, USA
Jing Zhang, Motorola Inc., USA

Min-ling Zhang, College of Computer and Information Engineering, Hohai University, China
Yong Zhang, TsingHua University in Beijing, China

Zhenyu Zhang, The University of Hong Kong, Hong Kong
Hong Zhu, Oxford Brookes University, United Kingdom

Xingquan Zhu, Florida Atlantic University, USA
Eugenio Zimeo, University of Sannio, Italy

Poster/Demo Sessions Co-Chairs

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain
Farshad Samimi, Trilliant, USA

Ming Zhao, Florida Int’l University, USA

viii ix

Publicity Co-Chairs
Xiaoying Bai, Tsinghua University, China

Shihong Huang, Florida Atlantic University, USA

Asia liaison
Hironori Washizaki, Waseda University, Japan

South America Liasion
Jose Carlos Maldonado, University of Sao Paulo, Brazil

Proceedings Cover Design
Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Conference Secretariat

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Norrjhan Ali, Knowledge Systems Institute Graduate School, USA
Dennis Chi, Knowledge Systems Institute Graduate School, USA

David Huang, Knowledge Systems Institute Graduate School, USA
Rachel Lu, Knowledge Systems Institute Graduate School, USA

x xi

Table of Contents

Foreword .. iii

Conference Organization ... iv

Sustainable Software Systems for Real Time Applications
S. Sitharama Iyengar ... xxiv

Applications & Services Exploration for the Broadband Mobile Systems
Bao-Shuh Lin .. xxv

Slow Intelligence System

Visual Specification of Component-based Slow Intelligence Systems
Shi-Kuo Chang, Yingze Wang, Yao Sun ... 1

Design of Component-based Slow Intelligence Systems and Application to Social Influence
Analysis
Shi-Kuo Chang, Yao Sun, Yingze Wang, Chia-Chun Shih, Ting-Chun Pen 9

Slow Intelligence System and Network Management: a case study
F. Colace, M. De Santo ... 17

Software Quality

Extending Software Quality Models - A Sample In The Domain of Semantic Technologies
Filip Radulovic, Raúl García-Castro ... 25

A Technology of Profiling Inter-procedural Paths
Lulu Wang, Bixin Li ... 31

Efficiency and Portability: Guidelines to Develop Websites (S)
Cleriston Araujo Chiuchi, Rogéria Cristiane Gratão de Souza, Adriana Barbosa Santos,
Carlos Roberto Valêncio ... 37

x xi

Model-Driven Development

Automatic Deployment and Monitoring of Software Processes: A Model-Driven Approach (S)
Marília Aranha Freire, Fellipe Araújo Aleixo, Uirá Kulesza, Eduardo Aranha,
Roberta Coelho .. 42

FBDtoVerilog: A Vendor-Independent Translation from FBDs into Verilog Programs (S)
Junbeom Yoo, Jong-Hoon Lee, Sehun Jeong, Sungdeok Cha ... 48

Modeling of Domain-Specific ECA Policies
Raphael Romeikat, Bernhard Bauer, Henning Sanneck .. 52

A Software Engineering Approach to User-Driven Control of the Microgrid
Mark Allison, Andrew A. Allen, Zhenyu Yang, Peter J. Clarke .. 59

Software Engineering with Computer Intelligence & Machine Learning

A Comparative Study of Different Strategies for Predicting Software Quality
Taghi M. Khoshgoftaar, Kehan Gao, Amri Napolitano ... 65

Criteria of Human Software Evaluation: Feature Selection Approach
Marek Z. Reformat, Sonal Patel ... 71

A Dual Clustering Approach to the Extract Class Refactoring
Keith Cassell, Peter Andreae, Lindsay Groves ... 77

An Empirical Study of Software Metrics Selection Using Support Vector Machine
Huanjing Wang, Taghi M. Khoshgoftaar, Amri Napolitano ... 83

Software Defect Prediction for High-Dimensional and Class-Imbalanced Data
Kehan Gao, Taghi M. Khoshgoftaar .. 89

BUGMINER: Software Reliability Analysis Via Data Mining of Bug Reports
Leon Wu, Boyi Xie, Gail Kaiser, Rebecca Passonneau ... 95

Formal Methods

Specification and Runtime Verification of API Constraints on Interacting Objects
Fang Deng, Haiwen Liu, Jin Shao, Qianxiang Wang .. 101

xii xiii

Applying Lightweight Formal Approach to Automatic Configuration Inspection (S)
Sachoun Park, Gihwon Kwon .. 107

Formalizing Reusable Aspect-Oriented Concurrency Control (S)
Neelam Soundarajan, Derek Bronish, Raffi Khatchadourian .. 111

Concurrent Software

PIPE+ - A Modeling Tool for High Level Petri Nets
Su Liu, Reng Zeng, Xudong He ... 115

A Novel Method for Formally Detecting RFID Event Using Petri Nets (S)
Jinan Sun, Yu Huang, Xin Gao, Shikun Zhang, Lifu Wang, Chongyi Yuan 122

Multithreaded Pointer Analysis Based on Petri Net (S)
Fei Liu, Bixin Li .. 127

Knowledge Engineering Tools and Techniques

Facilitate IT-Providing SMEs in Software Development: a Semantic Helper for Filtering and
Searching Knowledge
Riccardo Martoglia ... 131

Inconsistency-Induced Heuristics for Problem Solving
Du Zhang ... 137

Mapping CommonKADS Knowledge Models into PRR (S)
Nicolas Prat, Jacky Akoka, Isabelle Comyn-Wattiau .. 143

A Virtual Catalyst in the Knowledge Acquisition Process (S)
Geraldo Boz Jr, Milton P. Ramos, Gilson Yukio Sato, Cesar A. Tacla, Julio C. Nievola,
Emerson Cabrera Paraiso .. 149

A Real-Time Reliability Model for Ontology-Based Dynamic Web Service Composition (S)
Harmeet Chawla, Haiping Xu, MengChu Zhou ... 153

Learning Action Models with Indeterminate Effects (S)
Jie Gao, Hankz Hankui Zhuo, Dao-jun Han, Lei Li .. 159

Fraud Detection in Selection Exams Using Knowledge Engineering Tools (S)
Marcus de Melo Braga, Mario Antonio Ribeiro Dantas ... 163

xii xiii

An Approach For Retrieval and Knowledge Communication Using Medical Documents (S)
Rafael Andrade, Mario Antonio Ribeiro Dantas, Fernando Costa Bertoldi, Aldo von Wangenheim 169

Semantic Web Technologies

A WordNet-based Semantic Similarity Measure Enhanced by Internet-based Knowledge (S)
Gang Liu, Ruili Wang, Jeremy Buckley, Helen M. Zhou ... 175

Semantic Enabled Sensor Network Design
Jing Sun, Hai H. Wang, Hui Gu .. 179

Using Semantic Annotations for Supporting Requirements Evolution
Bruno Nandolpho Machado, Lucas de Oliveira Arantes, Ricardo de Almeida Falbo 185

Design Software Architecture Models using Ontology (S)
Jing Sun, Hai H. Wang, Tianming Hu .. 191

Software Testing and Debugging

Debug Concern Navigator
Masaru Shiozuka, Naoyasu Ubayashi, Yasutaka Kamei ... 197

PAFL: Fault Localization via Noise Reduction on Coverage Vector (S)
Lei Zhao, Zhenyu Zhang, Lina Wang, Xiaodan Yin ... 203

Using Coverage and Reachability Testing to Improve Concurrent Program Testing Quality
Simone R. S. Souza, Paulo S. L. Souza, Mario C. C. Machado, Mário S. Camillo,
Adenilso Simão, Ed Zaluska ... 207

Program Slicing Spectrum-Based Software Fault Localization
Wanzhi Wen, Bixin Li, Xiaobing Sun, Jiakai Li .. 213

Interface Testing Using a Subgraph Splitting Algorithm: A Case Study (S)
Sergiy Vilkomir, Ali Asghary Karahroudy, Nasseh Tabrizi ... 219

Machine Learning-based Software Testing: Towards a Classification Framework (S)
Mahdi Noorian, Ebrahim Bagheri, Wheichang Du .. 225

A Model-based Approach to Regression Testing of Component-based Software
Chuanqi Tao, Bixin Li, Jerry Gao .. 230

xiv xv

Multiple Fault Localization with Data Mining
Peggy Cellier, Mireille Ducassé, Sébastien Ferré , Olivier Ridoux .. 238

Constructing Subtle Concurrency Bugs Using Synchronization-Centric Second-Order
Mutation Operators
Leon Wu, Gail Kaiser .. 244

Automated Software Testing

The ucsCNL: A Controlled Natural Language for Use Case Specifications(S)
Flávia A. Barros, Laís Neves, Érica Hori, Dante Torres ... 250

A Brief Survey on Automatic Integration Test Order Generation (S)
Zhengshan Wang, Bixin Li, Lulu Wang, Qiao Li .. 254

Generation of Scripts for Performance Testing Based on UML Models (S)
Maicon B. da Silveira, Elder M. Rodrigues, Avelino F. Zorzo, Leandro T. Costa,
Hugo V. Vieira, Flávio M. de Oliveira .. 258

Software Engineering Case Studies and Experience Reports

How IT Professionals Face Negotiations (S)
Sergio Assis Rodrigues, Jano Moreira de Souza ... 264

Designing a Distributed Systems Architecture Testbed for Real-Time Power Grid Systems (S)
Yan Liu, Ian Gorton, Yousu Chen, Shuangshuang Jin ... 268

Supporting Software Engineering Education through a Learning Objects and Experience
Reports Repository (S)
Rodrigo Santos, Cláudia Werner, Heitor Costa, Simone Vasconcelos 272

Structuring Software Engineering Case Studies to Cover Multiple Perspectives
Emil Börjesson, Robert Feldt ... 276

Usability Evaluation: A Survey of Software Development Organizations
C. Ardito, P. Buono, D. Caivano, M.F. Costabile, R. Lanzilotti, A. Bruun, J. Stage 282

Maximizing the Financial Benefits Yielded by IT Projects While Ensuring their Strategic Fit
Antonio Juarez Alencar, Gustavo Taveira, Eber Assis Schmitz, Angelica Dias,
Alexandre Correa ... 288

xiv xv

Embedded, Pervasive, and Ubiquitous Software

Model Checking Framework-based Applications with AspectJ Assistance
Zebin Chen, Stephen Fickas ... 296

User-defined Scenarios in Ubiquitous Environments: Creation, Execution Control and Sharing
Matthieu Faure, Luc Fabresse, Marianne Huchard, Christelle Urtado, Sylvain Vauttier 302

SC-xScript: An Embedded Script Language for Scientific Computation in Embedded Systems
Reng Zeng, Yu Huang, Su Liu, Peter J. Clarke, Xudong He, Gwendolyn W. van der Linden,
Jon L. Ebert ... 308

Context-aware Services for Multiple-Users (S)
Ichiro Satoh ... 315

Dynamic Service Choreography using Context Aware Enterprise Service Bus
Swapan Bhattacharya, Jayeeta Chanda, Sabnam Sengupta, Ananya Kanjilal 319

Software Project Management

Web System to Aid Project Management
Rogéria Cristiane Gratão de Souza, Antonio Marcos Neves Esteca, Adriana Barbosa Santos,
Carlos Roberto Valêncio, Marcelo Takeshi Honda ... 325

A Composite Project Effort Estimation Approach in an Enterprise Software
Development Project (S)
Cagatay Catal, Mehmet S. Aktas .. 331

Project Risk Management Using Event Calculus (S)
Andreas Gregoriades, Vicky Papadopoulou Lesta, Petros Petrides .. 335

The Impact of Software Development Team Dynamics on the Knowledge Management Process (S)
Shuib Basri, Rory V. O’Connor .. 339

Knowledge Acquisition

Quick Acquisition of Topic-based Information/Knowledge from News Site Databases
Hao Han .. 343

xvi xvii

Using Contextual Information to Improve Awareness in Software Development (S)
Bruno Antunes, Joel Cordeiro, Pedro Costa, Paulo Gomes ... 349

Evaluation of Semi-Automatic Acquisition of Semantic Descriptions of Web Services (S)
Shahab Mokarizadeh, Peep Küngas, Mihhail Matskin ... 353

Knowledge Representation and Visualization

A Comparison and Analysis of Some Ontology Visualization Tools
Simon Suigen Guo, Christine W. Chan .. 357

Knowledge Management in Next Generation Networks
Samir Atitallah, Omar Abou Khaled, Maria Sokhn, Elena Mugellini 363

A Model for Knowledge Retrieval based on Semantic Images (S)
H. Andres Melgar S., Fabiano D. Beppler, Roberto C.S. Pacheco, Jose L. Todesco 369

Web and Data Mining

Graph Grammar Based Web Data Extraction
Amin Roudaki, Jun Kong ... 373

Cyclic Association Rules: Coupling Dimensions and Measures
Eya Ben Ahmed, Ahlem Nabli, Faїez Gargouri .. 379

Measuring Similarity in Large-scale Folksonomies
Giovanni Quattrone, Emilio Ferrara, Pasquale De Meo, Licia Capra 385

Exploiting Semantic Aspects to Evolve A Text-Based Search on A Legacy Document
Management System
Johann Grabner, Andreas Mauczka, Mario Bernhart, Thomas Grechenig 392

Ontologies and Methodologies

Extracting Ontology Hierarchies From Text (S)
Jone Correia, Rosario Girardi, Carla Faria .. 398

From Glossaries to Ontologies: Disaster Management Domain (S)
Katarina Grolinger, Kevin P. Brown, Miriam A.M. Capretz ... 402

xvi xvii

Packaging Controlled Experiments Using an Evolutionary Approach Based on Ontology (S)
Lilian Passos Scatalon, Rogério Eduardo Garcia, Ronaldo Celso Messias Correia 408

Knowledge Engineering in the domain of Carbon Dioxide Capture Process System
Q. Zhou, A. J. Wiebe, C. W. Chan .. 414

Software Maintenance and Evolution

Maintainability Predictors for Relational Database-Driven Software Applications:
Results from a Survey
Mehwish Riaz, Emilia Mendes, Ewan Tempero .. 420

How Annotations are Used in Java: An Empirical Study
Henrique Rocha, Marco Tulio Valente .. 426

Automated Extraction of Data Lifecycle Support from Database Applications
Kaiping Liu, Hee Beng Kuan Tan, Xu Chen, Hongyu Zhang, Bindu Madhavi Padmanabhuni 432

Measurement & Empirical Software Engineering

An Empirical Study on the Importance of Quality Requirements in Industry
Jose Luis de la Vara, Krzysztof Wnuk, Richard Berntsson Svensson, Juan Sánchez,
Björn Regnell .. 438

An Empirical Study on Classification of Non-Functional Requirements
Wen Zhang, Ye Yang, Qing Wang, Fengdi Shu ... 444

Assessing the Impact of Aspects on Design By Contract Effort: A Quantitative Study
Henrique Rebêlo, Ricardo Lima, Uirá Kulesza, Cláudio Sant’Anna, Roberta Coelho,
Alexandre Mota, Márcio Ribeiro, César A. L. Oliveira ... 450

Failure Prediction based on Log Files Using the Cox Proportional Hazard Model
Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko .. 456

Causal Networks Based Process Improvement (S)
D. Günther, R. Neumann, K. Georgieva, R. R. Dumke ... 462

Measuring Levels of Abstraction in Software Development (S)
Frank Tsui, Abdolrashid Gharaat, Sheryl Duggins, Edward Jung .. 466

xviii xix

Reusing Functional Testing in order to Decrease Performance and Stress Testing Costs (S)
Ismayle de Sousa Santos, Alcemir Rodrigues Santos, Pedro de Alcântara dos S. Neto 470

Empirical Analysis for Investigating the Effect of Control Flow Dependencies on
Testability of Classes (S)
Mourad Badri, Fadel Toure .. 475

Empirical Study Upon Software Testing Learning With Support From Educational Game (S)
Marcello Thiry, Alessandra Zoucas, Antônio C. da Silva ... 481

A Study on Performance Inconsistency between Estimation by Analogy and
Linear Regression (S)
Sousuke Amasaki .. 485

Component-Based Software Engineering

Recommending Component by Citation: A Semi-supervised Approach for Determination
Sibo Cai, Yanzhen Zou, Lijie Wang, Bing Xie, Weizhong Shao .. 489

Testing Configurable Component-Based Software - Configuration Test Modeling and
Complexity Analysis
Jerry Gao, Jing Guan, Alex Ma, Chuanqi Tao, Xiaoying Bai, David C. Kung 495

Data Uncertainty Model for Mashup
Xin Gao, Wenhui Hu, Wei Ye, Shi-kun Zhang ... 503

Presenting Software License Conflicts through Argumentation
Thomas A. Alspaugh, Hazeline U. Asuncion, Walt Scacchi .. 509

A Genetic Approach for Software Architecture Recovery from Object-Oriented Code
Abdelhak-Djamel Seriai, Sylvain Chardigny ... 515

An Ontology based Method for Building Understandable Hierarchical Classification
Structure for Software Assets Browsing (S)
Ge Li, Zhi Jin .. 521

Adaptive and Self-Managing Software

Mapping Non-Functional Requirements To Cloud Applications
David Villegas, S. Masoud Sadjadi ... 527

xviii xix

Computational Reflection in order to support Context-Awareness in a Robotics Framework
Sheila Mendez, Francisco Ortin, Miguel Garcia, Vicente García-Díaz 533

A Survey of Software Engineering for Self-Organization Systems (S)
Yi Guo, Xinjun Mao, Cuiyun Hu, Junwen Yin, Jiang Cao ... 539

Self-Management of External Device Failures in Embedded Software Systems
Michael E. Shin, Poonam Mane .. 543

Towards Modeling and Validating Analysis Processes for Software Adaptation (S)
Xiangping Chen, Gang Huang, Lingshuang Shao ... 547

A Reflective Model for Architecting Feedback Control Systems
Filip Křikava, Philippe Collet ... 553

A Metamodel for Distributed Ensembles of Virtual Appliances
Xabriel J. Collazo-Mojica, S. Masoud Sadjadi .. 560

Service-Oriented Architecture

Towards Automated Conformance Checking of ebBP-ST Choreographies and Corresponding
WS-BPEL Based Orchestrations
Matthias Geiger, Andreas Schönberger, Guido Wirtz .. 566

Proactive Problem Management and Event Correlation
Werner Zirkel, Guido Wirtz .. 572

A Regression Test Technique for Analyzing the Functionalities of Service Composition (S)
Huiqun Yu, Dongmei Liu, Guisheng Fan, Liqiong Chen ... 578

Agile-Based Software Engineering

A view towards Organizational Learning: An empirical study on Scrum implementation
Viviane Santos, Alfredo Goldman, Ana Carolina M. Shinoda, André L. Fischer 583

Current State of Reference Architectures in the Context of Agile Methodologies
Vinícius Augusto Tagliatti Zani, Daniel Feitosa, Elisa Yumi Nakagawa 590

Neglecting Agile Principles and Practices: A Case Study (S)
Patrícia Vilain, Alexandre Jonatan B. Martins ... 596

xx xxi

Software Engineering Tools and Environments

Simulations of Risks for Monitoring and Prevention
MariaGrazia Fugini, Filippo Ramoni, Ronald Israels, Claudia Raibulet, Ovidiu Constantin ... 602

Flexible Support for Adaptable Software and Systems Engineering Processes (S)
Richard Mordinyi, Thomas Moser, Stefan Biffl, Deepak Dhungana 608

Automated Detection of Likely Design Flaws in Layered Architectures
Aditya Budi, Lucia, David Lo, Lingxiao Jiang, Shaowei Wang ... 613

Software Dependability and Reliability

Exploiting Computational Redundancy for Efficient Recovery from Soft Errors in Sensor Nodes
Aly Farahat, Ali Ebnenasir ... 619

A Web Service Reliability Model Based on Birth-Death Process (S)
Chunli Xie, Bixin Li, Xifeng Wang .. 625

Architecture-based Reliability Analysis with Uncertain Parameters (S)
Derek Doran, Matthew Tran, Lance Fiondella, Swapna S. Gokhale 629

Architecture-based Reliability Analysis of Concurrent Software Applications using Stochastic
Reward Nets (S)
Rehab El Kharboutly, Swapna S. Gokhale .. 635

Software Process Modeling & Maturity

Ensuring Continuous Data Accuracy in AISEMA Systems (S)
Irina Diana Coman, Alberto Sillitti, Giancarlo Succi ... 640

Specification and Implementation of SPEM4MDE, a metamodel for MDE software processes
Samba Diaw, Redouane Lbath, Bernard Coulette ... 646

Conformance Checking of Software Development Processes Through Process Mining
Artini M. Lemos, Caio C. Sabino, Ricardo M. F. Lima, César A. L. Oliveira 654

SET-MM – A Software Evaluation Technology Maturity Model (S)
Raúl García-Castro ... 660

xx xxi

Software Security

A Feature-Based Modeling Approach to Configuring Privacy and Temporality in RBAC
Sangsig Kim, Yen-Ting Lee, Yuanlin Zhu, Dae-Kyoo Kim, Lunjin Lu, Vijayan Sugumaran 666

Using Security Patterns to Tailor Software Process
Rosana Wagner, Lisandra Manzoni Fontoura, Adriano Brum Fontoura 672

Security Analysis of FileZilla Server Using Threat Models (S)
Michael Sanford, Daniel Woodraska, Dianxiang Xu .. 678

Misuse Patterns for Cloud Computing (S)
Keiko Hashizume, Eduardo B. Fernandez, Nobukazu Yoshioka .. 683

Software Product Lines and Tools

A Meta-Process to Support Trade-Off Analysis in Software Product Line Architecture
Edson A. Oliveira Junior, Itana M. S. Gimenes, José C. Maldonado 687

Design of A UML Profile for Feature Diagrams and Its Tooling Implementation
Thibaut Possompès, Christophe Dony, Marianne Huchard, Chouki Tibermacine 693

Software Product Lines System Test Case Tool: A Proposal (S)
Crescencio Rodrigues Lima Neto, Ivan do Carmo Machado, Paulo Anselmo Mota Silveira Neto,
Eduardo Santana de Almeida, Silvio Romero de Lemos Meira .. 699

Scalability of Variability Management: An Example of Industrial Practice and
Some Improvements (S)
Yinxing Xue, Stan Jarzabek, Pengfei Ye, Xin Peng, Wenyun Zhao .. 705

RiPLE-TE: A Process for Testing Software Product Lines (S)
Ivan do Carmo Machado, Paulo Anselmo da Mota Silveira Neto, Eduardo Santana de Almeida,
Silvio Romero de Lemos Meira .. 711

An Agile Scoping Process for Software Product Lines (S)
Marcela Balbino, Eduardo Santana de Almeida, Silvio Meira ... 717

An Approach for Identifying and Implementing Aspectual Features in Software Product Lines (S)
Mohamed A. Zaatar, Haitham S. Hamza, Abd El Fatah Hegazy ... 723

xxii xxiii

Software Requirements Engineering

Automating the Detection of Complex Semantic Conflicts between Software Requirements
(An empirical study on requirements conflict analysis with semantic technology)
Thomas Moser, Dietmar Winkler, Matthias Heindl, Stefan Biffl .. 729

A Process Oriented Approach to Model Non-Functional Requirements Proposition
Extending UML (S)
Aneesh Krishna ... 736

Use Case Driven Extension of ProjectIT-RSL to Support Behavioral Concerns (S)
David de Almeida Ferreira, Alberto Rodrigues da Silva ... 740

Applying and Validating a UML Metamodel for the Requirements Analysis in
Multi-Agent Systems: The AME-A Case Study (S)
Gilleanes Thorwald Araujo Guedes, Rosa Maria Vicari ... 746

Software Architecture

A Panorama of Software Architectures in Game Development
Leonardo Bitencourt Morelli, Elisa Yumi Nakagawa ... 752

Detecting Architecture Erosion by Design Decision of Architectural Pattern
Lei Zhang, Yanchun Sun, Hui Song, Franck Chauvel, Hong Mei .. 758

A Flexible Event-Driven Architecture for Peer-to-Peer Based Applications
Leone Parise Vieira da Silva, Rajiv Geeverghese, Edward de Oliveira Ribeiro,
Genaína Nunes Rodrigues, Célia Ghedini Ralha ... 764

A Formal Approach for Incorporating Architectural Tactics into the Software Architecture
Hamid Bagheri, Kevin Sullivan .. 770

Towards Quality Based Solution Recommendation in Decision-Centric Architecture Design (S)
Lei Zhang, Yanchun Sun, Yuehui Peng, Xiaofeng Cui, Hing Mei ... 776

Representation of Reference Architectures: A Systematic Review (S)
Milena Guessi, Lucas Bueno Ruas Oliveira, Elisa Yumi Nakagawa .. 782

xxii xxiii

A Model-View-DynamicViewModel and its Performance in a Web-based
Component rchitecture (S)
Graeme Baillie, Brian Armour, Dave Allan, Robert Milne, Thomas M Connolly,
Richard Beeby ... 786

Analysis of the continuity of software processes execution in software organizations assessed in
MPS.BR using Grounded Theory
Carlos Diego Andrade de Almeida, Thiago Crystyan Macedo, Adriano Albuquerque 792

Poster/Demo

BDI Agents to Bridge Cloud Computing and End-Users (Case Study: An Agent-based Personal
Trainer to Copd Patients) (P)
Kasper Hallenborg .. A-1

Cloud Engineering Approach in Business Innovation (P)
Giorgio Valle, Bruno Apolloni .. A-3

Software Quality In Terms Of Academic Progress Of Developers (P)
Miriam Vázquez-Escalante, Jose Antonio Flores-Saucedo, Hector Gerardo Perez-Gonzalez,
Juan Carlos Cuevas-Tello ... A-5

Towards a Novel Statistical Method for Generating Test Sets with a Given Coverage Probability (P)
Cristiane Selem Ferreira Neves, Eber Assiz Schmitz, Fábio Protti, Antônio Juarez Alencar A-7

Architecture for Personalized and Semantic Information Retrieval: Approach Based on Content’s
Re-indexing Using User’s Profile (P)
Azza Harbaoui, Malek Ghenima, Henda Ben Ghezala, Sahbi Sidhom A-9

Author’s Index ... A-11

Reviewer’s Index .. A-16

Poster/Demo Presenter’s Index ... A-19

Note: (S) indicates a short paper.
 (P) indiecates a poster or demo, which is not a refereed paper.

xxiv xxv

Keynote I
Sustainable Software Systems for Real Time

Applications
Dr. S. Sitharama Iyengar

Ryder Professor of Computer Science
Director of School of Computing and Information Sciences

Florida International University
and

Roy Paul Daniels Professor and Chairman
Department of Computer Science

Louisiana State University

Abstract
Development of software systems for Real Time Applications is at a critical juncture. Investments
in software developments for these sytems will require transformative changes in the context of
science, design and policies. This talk provides an overview in achieving sustainable software
systems for sensor based real time applications. It will also focus on the consumer demand and
policy incentives of these applications.

About the Speaker
Dr. Iyengar is a Member of the European Academy of Sciences, a Fellow of the Institute of Electrical
and Electronics Engineers (IEEE), a Fellow of the Association of Computing Machinery (ACM), a
Fellow of the American Association for the Advancement of Science (AAAS), and a Fellow of the
Society for Design and Process Science (SDPS). He has received the Distinguished Alumnus Award
of the Indian Institute of Science, the IEEE Computer Society’s Technical Achievement Award,
and the IEEE Golden Core Member award. Dr. Iyengar has published over 400 research papers in
journals and conferences and has authored, co-authored, or edited 14 texts in the areas of parallel
algorithms, sensor networks, wavelets, robotics, and computer modeling of complex biological
systems. Cited well over 4,500 times, his research has been funded by DARPA, NSF, ONR, DOE,
MURI, NRL, ARO, NASA, and state governments and the industry. Dr. Iyengar has graduated 42
Ph.D. students. He is the founding Editor-In-Chief of the International Journal of Distributed Sensor
Networks and has been an Associate Editor for IEEE Transaction on Computers, IEEE Transactions
on Data and Knowledge Engineering, and guest Editor of IEEE Computer Magazine. Dr. Iyengar
is a pioneer in the field of distributed sensor networks, computational aspects of robotics, and
oceanographic applications. He is best known for introducing novel data structures and algorithmic
techniques for large scale computations in sensor technologies and image processing applications.
His work has had significant impacts in buy-at-bulk network design problems which further affect
a wide range of practical applications including the areas of communication and transportation
networks. He has also pioneered a universal technique for finding the Price of Anarchy of every
bottleneck congestion game, extending the game theory to applications in network routing,
scheduling and cloud computing.

xxiv xxv

Keynote II
Applications & Services Exploration for the

Broadband Mobile Systems
Bao-Shuh Lin, Director

Microelectronics and Information Systems Research Center (MIRC)
National Chiao Tung University, Taiwan

Abstract
The system characteristics of future broadband mobile systems are high throughput (data rate),
low latency (delay), high mobility (km/hr), and high capacity. The current recognized broadband
mobile systems should meet the requirements specified by IMT-Advanced. Those broadband mobile
systems include 3GPP-LTE/LTE-advanced and IEEE-802.16e/802.16m (Mobile WiMAX 1.0/
Mobile WiMAX 2.0). In the mean time, the smart phones with powerful embedded CPU/GPU,
high-resolution digital camera, GPS, various sensors and digital compass are becoming popular.
With the combination of the deployment of broadband mobile systems and the usage of smart mobile
phones, there are many potential appealing applications & services can be creating. In this talk, we
will explore several software intensive applications and services include mobile augmented reality,
mobile healthcare, and high speed rail.

About the Speaker
Prof. Bao-shuh P. Lin, an IEEE Fellow, is a Chair Professor of Department of Computer Science
and the Chief Director of Microelectronics and Information Systems Research Center (MIRC),
National Chiao Tung University (NCTU) in Hsinchu, Taiwan since September 2009. He was the
Vice President of Industrial Technology Research Institute (ITRI) and the General Director of the
Information & Communications Research Laboratories (ICL) of ITRI from 2001 to 2009. During
the same period, he was also the Director of Committee of Communication Industry Development
(CoCID), Ministry of Economic Affairs (MOEA) in Taiwan. He obtained his Ph.D. in Computer
Science from the University of Illinois at Chicago, USA, and has published more than 130 technical
papers and reports in ICT fields. In his long professional career, Dr. Lin has won numerous
significant awards, has been actively involved in science and technology policy formulation, and
helped initiate national programs on System on Chip, Broadband and Wireless Communications,
All-IP Networking and Services, and Mobile Digital Life technologies. All these efforts have exerted
tremendous impacts on economic and social benefits in Taiwan.

PB 1

Visual Specification of Component-based Slow Intelligence Systems

Shi-Kuo Chang1, Yingze Wang1 and Yao Sun1

1Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
{chang, yingzewang, yaosun}@cs.pitt.edu

Abstract

A new approach for the visual specification of
component-based software systems is proposed. The main
idea is to employ two visual representations - the I-card
(information card) and the C-card (control card) -
together to specify a component-based software system.
This approach is especially useful in the specification and
design of component-based slow intelligence systems.
This approach is currently being applied to the design of
slow intelligence system for social influence analysis.

Keywords

Visual specification, component-based software system,
slow intelligence system, super component

1 Introduction

In the specification of component-based software systems,
control and timing information is often unclear or even
lost. If a formal, mathematical approach is used, control
and timing information could be buried in the details and
become unclear to the designer/programmer. If a less
formal approach is used, such information could be lost.

In this paper, a new approach for the visual specification
of component-based software systems is proposed. The
main idea is to employ two visual representations - the I-
card (information card) and the C-card (control card) -
together to specify a component-based software system.
This approach is seemingly simple, but actually quite
powerful. This approach is also especially applicable to
the specification and design of slow intelligence systems
where super components are employed to search for
solutions.

A slow intelligence system (SIS) is a general-purpose
system characterized by being able to improve
performance over time through a process involving
enumeration, propagation, adaptation, elimination and
concentration [Chang2010]. A SIS is a component-
based software system, but it differs from ordinary
component-based systems by employing super
components, in the sense that multiple, similar
components can be activated either sequentially or in
parallel to search for solutions. The proposed visual
specification approach is especially suitable for the

specification and design of such systems with super
components.

The paper is organized as follows: Section 2 explains in
detail this visual specification approach using dual visual
representations. In Section 3, we describe the user
interface design to produce and manage the dual visual
representations for the generic SIS system. Finally,
Section 4 discusses future works.

As described in [Chang2011b], we are applying this
approach to design the slow intelligence system for social
influence analysis (SIA).

2 Visual Specification of Component-
based Software Systems

2.1. Dual Visual Representations

Figure 2.1. Dual visual representations.

The main idea is to employ two visual representations -
the I-card (information card) and the C-card (control
card) - together to specify a component-based software
system. A generic example is illustrated in Figure 2.1.
The I-card specifies the logical relationships among the
components, and the C-card specifies the control and
timing relationships among the components. Their inter-
relationships are represented by bi-directional arcs (the
dotted lines) connecting components, or other entities, in
the I-card and the C-card.

2 3
2

2.2. An Example

In the following example, the two components X1 and X2
can be either simple components or super components.
We will first give an example involving only simple
components. Suppose there are two components X1 and
X2. The component X1 is invoked first, followed by the
invocation of component X2.

Figure 2.2. Dual visual representations by components
and Petri net.

As shown in Figure 2.2, the two components are specified
in the I-card as two rectangles. This specification for
components can be further refined. For instance each
component can be described by a detailed class diagram
in UML. The timing relationships among the two
components are specified by the Petri net in the C-card,
where places are represented by small circles, and
transitions by vertical rectangles. The Petri net’s
transitions in the C-card correspond to the components in
the I-Card, therefore they are linked by dotted lines.

Although a Petri net is used in the above example, we can
also replace the Petri net by other kinds of timing
diagrams such as the sequence diagram or the activity
diagram in UML. We can now give another example as
illustrated by Figure 2.3. This example illustrates the
simplicity, flexibility and versatility of this approach. We
can use different diagrams in the I-card and the C-card to
present different views of the component-based software
system.

Figure 2.3. Dual visual representations by class diagram
and sequence diagram.

It is also possible to associate multiple diagrams for
multiple views of a component-based software system.
However our primary interest in this paper is to introduce
the notation for super components so that we can specify
and design slow intelligence systems using this extended
notation. Multiple view visualization and consistency
checking will be the topic for a subsequent paper.

2.3. Super Components

As mentioned before, in the above example the two
components X1 and X2 can be either simple components
or super components. A super component X1 is a
collection of similar components x1

1, x1
2, …, x1

j, retrieved
from some component database or generated by some
algorithm. As shown in Figure 2.4 the visual
representation of a super component is a box with double-
edged border.

With super components, the Petri net in the C-card is
actually a concise representation of a much larger
underlying Petri net, such as the one shown in Figure 2.5.
It should be pointed out this is by no means the only
possible expanded Petri net. As noted above, depending
upon the meaning of the association between the I-card
and the C-card, different expanded Petri nets can be
generated.

2 3
3

Figure 2.4. Super Components.

Figure 2.5. Expanded Petri net based upon super
components.

With different visual diagrams embedded in the C-card,
the interpretations could be different in each case. For
instance if sequence diagrams are used instead, we can
envision for each super component, a subsidiary sequence
diagram could be generated to render a precise and
detailed specification of the entire system.

2.4. SIS Design using Super Components

The super component can also be further refined. A
super component is essentially a concise representation of
a collection of components. Therefore we can employ a
generic design pattern or a component generator to
specify such a super component.

Figure 2.6. A component generator for super components.

In Figure 2.6 the small circle indicates the sub-system
interface. The component generator produces
customized components by accessing the component
database. In practice, the component database could
contain the parameters to generate customized
components. In some cases the components can be
algorithmically generated without referring to a
component database. In which case, Figure 2.6 can be
further simplified by eliminating the component database.

As noted in [Chang2010] a slow intelligence system can
be designed based upon five SIS primitives (or five SIS
design patterns): enumerator, adaptor, eliminator,
concentrator and propagator. They can also be
specified using the notation of super components.
Therefore, with the notation of super components, and the
dual visual representations using I-card and C-card, we
can visually design a slow intelligence system. In the
following sections, we will describe the design of a
versatile user interface supporting visual design using the
dual visual representations.

3 User Interface for SIS System

In this section we describe the user interface design to
create and manage the dual visual representations for the
SIS system. Based on SIS system framework, the user
interface can be designed for three specific tasks: (1)
Interface for designing control card. In our generic SIS
system, control card (C-Card) can define functional
dependency repertoire. (2) Interface for designing
information card (I-Card). For SIS system, I-card can
define candidate functions repertoire. (3) Interface for
designing testing data, which in our SIS system is stored
in test data repertoire.

3.1. User Interface for designing C-card

Each functional component is a super component or a
simple component that can be represented by a transition
in a Petri Net. Here super component is a collection of
components; while simple component is a single
component. We need to define the dependencies between

4 5
4

different functional components. User interface is used to
draw Petri Net as shown in Figure 3.1.

We developed our user interface based on [Bonet 2007]
PIPE tool, which is a powerful software for editing Petri
Net. In Figure 3.1, particularly, unfilled rectangle
represents transition for defining simple component.
Filled rectangle represents super component. Circles
represent the places. User can utilize the Petri-net to
define the sequence and dependency among functional
components. Moreover, we extend the meaning of Petri
Net that places can represent the messages sending from
one transition to another, as shown in Figure 3.2. Since
slow intelligence system uses messages to communicate
among each component. Thus, in message editor, user can
define a list of messages related to the particular place,
which enhance the power of Petri Net. Note that messages
can be automatically mapped to MsgID defined in system,
so that users don’t need to know the exact MsgID. After
designing the Petri-net for a specific system, user can save
the diagram in xml format, such as the Petri Net Markup
Language (PNML), which is an XML-based syntax for
high-level Petri nets designed as a standard interchange
format for Petri net tools [Weber2003].

We give an example as shown in Figure 3.1. This is a
simple Petri Net with two transitions named
“Enumerator” and “Diffusion Model”. Enumerator
represents a simple component while “Diffusion Model”
represents a super component. This Petri Net shows that
Diffusion Model depends on Enumerator. Such
dependency relationship indicates that super component
Diffusion Model should execute after Enumerator’s
execution. Also Enumerator can send message
“Enumeration Notify” to Diffusion Model edited by place
P1. The saved xml file of this Petri Net in PNML format
is:

<pnml>
 <net id="net1">
 <name>
 <text>System C-Card</text>
 </name>
 <page id="page1-net1">
 <place id="p0">
 <graphics>
 <position x="30" y="55"/>
 <offset x="0" y="-10" />
 </graphics>
 </place>
 <place id="p1">
 <graphics>
 <position x="180" y="50"/>
 <offset x="0" y="-10" />
 </graphics>
 <messages>

<value>521 Enumerator Diffusion Model

</value>
 </messages>
 </place>
 <place id="p2">
 <graphics>
 <position x="335" y="50"/>
 <offset x="0" y="-10" />
 </graphics>
 </place>
 <transition id="Enumerator">
 <graphics>
 <position x="115" y="55"/>
 <offset x="0" y="0" />
 </graphics>
 </transition>
 <transition id="Diffusion Model">
 <graphics>
 <position x="265" y="50"/>
 <offset x="0" y="0" />
 </graphics>
 </transition>
 <arc id="a0" source="p0" target="Enumerator">
 </arc>
 <arc id="a1" source="Enumerator" target="p1">
 </arc>
 <arc id="a2" source="p1" target="Diffusion Model">
 </arc>
 <arc id="a3" source="Diffusion Model" target="p2">
 </arc>
 </page>
 </net>
</pnml>

3.2. User Interface for designing I-card

After designing the dependencies among functional
components for SIS generic system, the user needs to
devise the information card for each component (super
component and/or simple component). For a super
component containing a number of candidate components,
we need to use I-Card to add each candidate component
from database or from the template algorithm with
different parameters to this super component. For a
simple component in Petri-net, although there is only one
component, we still need to add it from database or
specific algorithm. In slow intelligence system, there are
two types of functional components: system components
like enumerator, eliminator, etc; algorithm components
like diffusion model for social influence analysis. Each
type of component can be simple or super. Usually system
component is simple one while algorithm component is
super one. The user interface design is shown in Figure
3.3.

When user right clicks on transition, the transition editor

4 5
5

will pop up. User can define the component type in comb
box and edit the corresponding component I-Card. If it is
the existing one, the user can load it. The system
component I-Card editor interface contains a comb box to
define name of component. Each type of system
component has specified Key. When user selects one, the
corresponding key will shown on table. The user only
needs to define the value of the Key. Figure 3.3 gives an

example. The system component I-Card is saved as a .txt
file using format:

$$BEGIN and END are keywords
BEGIN ConcurrentComps
5
END ConCurrentComps

Figure 3.1. Screenshot for C-card Design.

Figure 3.2. Screenshot for place editor and message editor design.

6 7
6

Algorithm component I-Card editor contains three Panels.
In panel “property”, if the transition is filled rectangle, the
type should be super component and the user can add
each candidate component to this super set. If the
transition is unfilled rectangle, the type should be simple
component and the user only needs to add one candidate
component. Since the candidate (simple or super)
components in each functional block do the same job
using different algorithms, thus in the interface,
“Functions” edit box describes the job of this functional
block. User should choose the way that enumerator of SIS
system (Component generator) performs, using all the
candidate components or using only one of them. If user
chooses “one candidate component”, he/she should input
the default candidate ID number that will be utilized. The
list on right shows the name of “Candidate components”
that user added. Also user can click “details” tab to see
the details of each candidate component in a table. For
each algorithm functional component (I-Card), there is a
test data set for testing each candidate component in this
block. Thus in panel “Testing Data”, user can edit the
dataset by T-Card editor in next subsection. This
algorithm component I-Card can be saved as xml format.

We give a simple example as shown in Figure 3.3. This I-
card corresponds to transition “Diffusion Model” in
Figure 3.1, which is a super component containing two
candidate components. The candidates are from template
algorithm with different parameters. Thus the user can
load the template and set different parameters as shown in
Figure 3.3. Since the user defines by enumerating all
candidate components, thus there is no default one. The
saved xml file of this Petri Net could follow the format:

<Msg>
 <Head>
 <Name>
 </Name>
 <Description>
 </Description>
 </Head>
 <Body>
<Item>

<Key>
</Key>

 <Value>
 </Value>
 </Item>
 <Body>
</Msg>

Tab <Name> shows the name of I-Card. Tab
<Description> shows brief description of this I-Card. Tab
<Key> indicates the key text such as: Type, Candidate
Name, etc. Tab <Value> indicates the value of user’s
input in textbox. Thus, <key> and <value> should be
pairs. For example, some pairs as shown in Figure 3.3 are:

 <Item>
 <Key>Candidate Name
 </Key>
 <Value>Diffusion Model 2
 </Value>
 </Item>
 <Item>
 <Key>ID Number
 </Key>
 <Value>2
 </Value>
 </Item>
 <Item>
 <Key>Template
 </Key>
 <Value>Yes
 </Value>
 </Item>
 <Item>
 <Key>Parameter
 </Key>
 <Value>3.0
 </Value>
 </Item>

3.3.User interface for designing test data

Figure 3.4 shows the interface of designing testing data
for testing each candidate component in algorithm
functional component block. This split panel includes two
parts. The left part is used to load testing data from
existing files and to specify the output results property.
User can browse existing file and define the place to store
the result. The right part is designed for the purpose of
simple testing and debugging. User can manually edit the
data on the table. The input data could be any value
including number, string, boolean variable. The output
data is the correct result corresponding to input. Then user
can compare their algorithm’s results to these standard
results.

We give an example as shown in Figure 3.4. This T-card
corresponds to algorithm component I-Card defined in
Figure 3.3. The T-Card is saved as a .txt file using format:

$$BEGIN and END are keywords
BEGIN InputDataList
/*List test data files*/
Twitter.txt D:\SIS\Data\Twitter.txt
END InputDataList

BEGIN OutputPro
/*List output results property*/
txt D:\SIS\Result
END OutputPro

6 7
7

Figure 3.3. Screenshot for I-Card design.

8 9
8

Figure 3.4. Screenshot for Testing Data design.

4 Discussion

In this paper we described a new approach for the visual
specification of component-based software systems by
employing two visual representations - the I-card
(information card) and the C-card (control card). The
user interface for visual specification of component-based
software system is currently being developed. For
practical convenience, a T-card can be used to specify test
data.

We can use different diagrams in the I-card and the C-
card to present different views of the component-based
software system. It is also possible to associate multiple
diagrams for multiple views. Furthermore, the bi-
directional arcs between the two visual representations
can be labeled to specify the meaning of the associations
so that different interpretations can be generated from the
visual specification. How to check the consistency of
multiple views, and how to synthesize a consistent spec
from multiple views, will be topics for further research.

References

[Chang2010] Shi-Kuo Chang, "A General Framework for
Slow Intelligence Systems", International Journal of
Software Engineering and Knowledge Engineering,
Volume 20, Number 1, February 2010, 1-16.

[Chang2011b] Shi-Kuo Chang, Yao Sun, Yingze Wang,
Chia-Chun Shih and Ting-Chun Peng, “Design of
Component-based Slow Intelligence Systems and
Application to Social Influence Analysis”, Proceedings of
2011 International Conference on Software Engineering
and Knowledge Engineering, Miami, USA, July 7-9, 2011,
9-16.

[Weber2003] Michael Weber and Ekkart Kindler, "The
Petri Net Markup Language ", Petri Net Technology for
communication-Based Systems – Advances in Petri Nets,
LNCS volume 472, 2003, 124-144.

[Bonet 2007] P. Bonet, C.M. Llado, R. Puijaner and W.J.
Knottenbelt, “PIPE v2.5: A Petri Net Tool for
Performance Modelling”, Proc. 23rd Latin American
Conference on Informatics (CLEI 2007), San Jose, Costa
Rica, October 2007.

8 9

Design of Component-based Slow Intelligence Systems
and Application to Social Influence Analysis

Shi-Kuo Chang1, Yao Sun1, Yingze Wang1, Chia-Chun Shih2 and Ting-Chun Peng2

1Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
{chang, yaosun, yingzewang}@cs.pitt.edu

and
2Institute for Information Industry, Taiwan, Republic of China

{chiachun, markpeng}@iii.org.tw

Abstract

We present the architecture and operational
characteristics of a generic SIS system. To design the
SIS system we also provide the data structures and
operating procedures to describe each system component.
We are applying this approach to design the Slow
Intelligence System for Social Influence Analysis. Some
initial experimental results are also reported.

Keywords

Component-based software system, slow intelligence
system, super component, social influence analysis

1 Introduction

A slow intelligence system (SIS) [Chang2010] is a
general-purpose system characterized by being able to

improve performance over time through a process
involving enumeration, propagation, adaptation,
elimination and concentration. A SIS continuously learns,
searches for new solutions and propagates and shares its
experience with other peers. A SIS is a system with
multiple decision cycles such that actions of slow decision
cycle(s) may override actions of quick decision cycle(s),
resulting in poorer performance in the short run but better
performance in the long-run.

A SIS is characterized by employing super components,
in the sense that multiple components can be activated
either sequentially or in parallel to search for solutions. In
[Chang2011a] we explained in detail a visual
specification approach using dual visual representations,
and described the user interface design to produce and
manage the dual visual representations for the generic SIS
system. In this paper we further present the design of
component-based slow intelligence systems, and the
application of SIS to social influence analysis. Some
initial experimental results are also reported.

Figure 2.1. System architecture of Component-based Slow Intelligence System.

10 11
2

The paper is organized as follows: In Section 2 we
present the architecture and operational characteristics of
a generic SIS system. To design the SIS system we also
provide the data structures (Section 3) and operating
procedures (Section 4) to describe each key system
component. In Section 5 we apply this approach to design
the Slow Intelligence System for Social Influence
Analysis (SIA).

2 A Generic Component-based SIS

2.1. System Architecture

Figure 2.1 illustrates the system architecture comprising
the key components of the SIS system. The slow
intelligence components are Enumerator, Eliminator,
Concentrator and Time Controller. In addition, a
customized Tester and a Transformer are included to
provide more functionalities.

The system works as follows. The Enumerator reads in
the specification of functional blocks and creates multiple
candidate components for each functional block. The
Tester tests all the functional blocks and records their
performance in the DB. The Eliminator selects the best
candidate components based upon their performance. The
Concentrator packs the selected candidate components
based on dependency specifications and generates a
generic software package. When there are terminological
and/or conceptual differences within the software package,
Transformer is used to transform the Concentrator-
generated software package to target software package
that serves specific purpose. The Time Controller is sort
of like an automatic system manager, it controls all the
above mentioned components, telling them when to
perform actions. That is to say, Enumerator, Eliminator
and Concentrator perform their tasks multiple times upon
Time Controller’s instructions.

2.2. Specification

Specification is the very first phase of the system. As
shown in Figure 2.2, a GUI program is used to specify a
certain system. The GUI can be divided into three
different parts. One for specifying functional blocks
dependency, one for specifying pools of candidate
components for functional blocks, and the other for
specifying test data for functional blocks.

All the three specifications are stored in three different
repertoires. Functional blocks dependency repertoire
stores the dependencies between different functional
blocks, for example, which functional block’s output is
which functional block’s input. As what their names
imply, candidate functions repertoire stores all the
candidate components for functional blocks, and test data

repertoire stores all the test data for use of testing
candidate components for functional blocks.

Figure 2.2. Specification of Component-based Slow
Intelligence System.

In practice, we will use the dual visual representation
method described in [Chang2011a] to design the GUI for
our component-based Slow Intelligence System. We can
use C-card to specify the functional block dependency, I-
card to specify pools of candidate components for
functional blocks, and T-card to specify test data.

2.3. Initial Run

In this phase, Enumerator first reads in the functional
blocks dependencies from the functional blocks
dependency repertoire and creates multiple candidate
components for each functional block. The candidate
components are selected from candidate functions
repertoire. In Figure 2.3, we show in detail what is called
components for functions in the whole system diagram. In
the components for functions, all candidate components
are classified into different functional blocks, which are
actually what we have introduced as super components in
[Chang2011a]. We use the same double-edged notation
as in [Chang2011a] to depict the super components in
Figure 2.3. And within each functional block, the
candidate components do the same job using different
algorithms or different parameters. We will discuss how
the candidate components are generated in Section 4.1.
Tester starts running in this phase and keeps running for
ever until the system halts. Tester tests each candidate
component with test data from test data repertoire and
record their performance into components performance
DB.

2.4. Multiple Runs

In this phase, Time Controller takes over the manager role
of the system. The system goes into its main cycle of life.
The system may go through multiple runs of Enumeration

10 11
3

and Elimination. Time Controller notifies Enumerator
when to create new candidate components from candidate
function repertoire and notifies Eliminator when to
eliminate some candidate components based upon their
performances recorded in components performance DB
and store the results into selected components repertoire.

Figure 2.3. Initial Run of Component-based Slow
Intelligence System.

Figure 2.4. Multiple Runs of Component-based Slow
Intelligence System.

2.5. Software Package Generation

This is the last phase of the system. The Concentrator
reads in functional blocks dependencies from functional
blocks dependency repertoire to determine the software

package structure and generate a generic software
package using the candidate components from selected
components repertoire. Concentrator is also under control
of Time Controller. When there are terminological and/or
conceptual differences within the software package, Time
Controller can notify Concentrator to generate
intermediate software package from currently selected
components and send it to the Transformer, which
accesses an ontology repertoire storing the terminological
and/or conceptual relations to map the intermediate
software package to the target software package for
specific applications.

Figure 2.5. Generate Software Package.

3 Data Structures
In this section we will discuss the data structure for each
repository mentioned in previous section.

3.1.Functional Blocks Dependency Repertoire

Functional blocks dependency repertoire stores the
functional blocks dependencies specified by GUI tools for
C-card interface described in [Chang2011a]. And it is
used by Enumerator for creating functional blocks (super
components)that is to be filled with candidate components.
And it is also used by Concentrator to determine the
functional blocks dependencies within a software package.

For functional blocks dependency repertoire, since it
stores the precedence and dependencies between
functional blocks, we can use structures very similar to a
directed graph to store the information. We treat
functional blocks as nodes and use edges to denote
functional dependencies. Thus we can design the data
structure as follows:

FunctionalBlockName1
FunctionalBlockName2
FunctionalBlockName3
… …
FunctionalBlockName1->FunctionalBlockName2
FunctionalBlockName1-> FunctionalBlockName2
… …

12 13
4

The first part of the data structure lists all the functional
blocks that will appear in the system, and the second part
lists all the functional blocks dependencies between
functional blocks.

3.2. Candidate Functions Repertoire

Candidate functions repertoire stores all the candidate
components specified using GUI tools for I-card interface
described in [Chang2011a]. And it is used by Enumerator
to generate candidate components to fill in the super
components (functional blocks).

For candidate functions repertoire, we design its data
structure as follows:

FunctionalBlockName1:[All or One]
Candidate1;Default;Generic
Candidate2;NonDefault;Specialized
… …
FunctionalBlockName2:[All or One]
Candidate1;Default;Generic
Candidate2;NonDefault;Specialized
… …

Basically, we store the candidate components by their
functional block type followed by several different
attributes. Here candidates denotes the address where the
candidate components stores. Functional blocks can have
an attribute called All or One. All means when
Enumerator is generating candidate components for this
functional block, it creates instances of all candidate
components. One means when Enumerator is generating
candidate components for this functional block, it creates
only one instance of the default candidate component.
Candidate components can also have different attributes.
Default or Non-Default denotes whether this candidate
component should be selected when the functional block
has the attribute One in enumeration process. Generic or
Specialized denotes whether this candidate component
can have multiple instances. Generic means we can pass
in different parameters to this candidate component to
generate different instances. Specialized means this
candidate component does not accept parameters and its
instance is determined. We can have different attributes
attached to candidate components when necessary.

3.3.Test Data Repertoire

Test data repertoire stores test data information for each
functional block, these test data are specified by what is
called T-card described in [Chang2011a]. It is used by
Tester to retrieve the test data when testing different
candidate components. For each functional block(super
component), all its candidate components share the same
test data.

For test data repertoire, the data structure is designed as
follows:

FunctionalBlockName1:
Input1;Output1
Input2;Output2
… …
FunctionalBlockName2:
Input1;Output1
Input2;Output2
… …

3.4. Components Performance DB

Components performance DB stores all the candidate
components’ performance evaluated by Tester. And it is
used by the Eliminator to select best or eligible candidate
components. For Component performance DB, the data
structure is designed as follows:

FunctionalBlockName1
CandidateName1: CorrectCount;IncorrectCount
Input1;Output1;Correctness;ResponseTime
Input2;Output2;Correctness;ResponseTime
… …
CandidateName2: CorrectCount;IncorrectCount
Input1;Output1;Correctness;ResponseTime
Input2;Output2;Correctness;ResponseTime
… …
… …
FunctionalBlockName2
… …

This means we use a list to store functional blocks, and
for each functional block, we use a sub-list to store its
candidate components and the candidate components’
overall performance, and for each candidate component,
we use another sub-list to store the candidate component’s
performance on certain inputs and outputs.

3.5. Selected Components Repertoire

Selected components repertoire stores all the eligible
candidate components selected by Eliminator, and it is
used by Concentrator to constitute a generic software
package.

For component performance DB, the data structure is
designed as follows:

FunctionalBlockName1:BestCandidate1
Candidate1
Candidate2
… …
FunctionalBlockName2:BestCandidate2
Candidate1
Candidate2
… …

12 13
5

This means we use a list to store functional blocks
together with its best candidate component, and for each
functional block, we use a sub-list to store its eligible
candidate components that pass Eliminator’s elimination
criteria.

4 Operating Procedures for SIS
System Components

In this section, we describe the operating procedures of
key system components to show their functions.

4.1. Enumerator

The input to the Enumerator are functional blocks
dependencies from functional blocks dependency
repertoire and candidate components from candidate
components repertoire. The output from Enumerator are
multiple instances of candidate components for all
functional blocks.

First the Enumerator reads in the functional blocks
dependency specifications, retrieves all functional block
names and generate a super component for each
functional block. These super components are empty
components that are to be filled with instances of
corresponding candidate components in the next step.
Next the Enumerator reads in information stored in
candidate components repertoire. It checks each
functional block if it needs only one candidate component
instance or multiple candidate component instances. If it
needs only one candidate component instance, it directly
instantiate the default candidate component and fill in the
super component. If it needs all candidate component
instances, it instantiate all candidate component instances
and fill them into the super component. There are also
two ways to instantiate a candidate component. If a
candidate component is generic, then we may pass in
different parameters to generate multiple instances of one
candidate component. If a candidate component is
specialized, then only one determined instance is created
for that candidate component.

4.2.Tester

The input to the Tester is all test data stored in the test
data repertoire, the output of the Tester is each candidate
component instance’s performance, and these
performances are recorded in the components
performance DB.

First, the Tester reads in the test data information and
classifies them by functional blocks (super components).
Then it retrieves from the test data the inputs by
functional block and sends the inputs to corresponding
candidate components, then it checks the results returned

from candidate components and compares them with the
correct outputs. Finally Tester records the corresponding
candidate components’ performance into components
performance DB. These performances are structured as
described in section 3.4 in components performance DB.
Tester should maintain the structure. It stores each
candidate component’s response time and correctness on
each test input. It also maintains each candidate
component’s overall performance, like correctness rate
and average response time.

4.3. Eliminator

The input to the Eliminator is candidate components’
performance information stored in components
performance DB and the output of Eliminator is eligible
candidate components and best candidate component for
each functional block(super component). The output is
stored in selected components repertoire.

First, the Eliminator reads in all candidate components’
performance information classified by functional block.
Then the Eliminator eliminates unqualified candidate
components by some threshold on correctness rate, i.e.
eliminate candidate components whose correctness rate is
below some value. The Eliminator stores the surviving
qualified candidate components in selected components
repertoire. We store these qualified candidate components
information for next round of Enumeration and
Elimination. Next, the Eliminator selects the candidate
component with highest correctness rate as the best
candidate for the corresponding functional block. If the
correctness rates are the same for multiple candidate
components, the Eliminator selects the one with shortest
average response time. The best candidate component
information is also stored in selected components
repertoire. We may also introduce weights for different
test data in the future to further evaluate candidate
components.

4.4. Concentrator

The input to the Concentrator is the best candidate
component information in selected components repertoire
and the functional blocks dependency information in
functional blocks dependency repertoire. The output is a
generic software package.

First, the Concentrator reads in the functional blocks
dependency information from the functional blocks
dependency repertoire, then it reconstructs the functional
blocks dependency graph from these information, that is a
graph with functional blocks(super components) as nodes.
Then the Concentrator retrieves the best candidate
component from the selected components repertoire for
each functional block and replace the functional blocks
with their best candidate components. Finally the

14 15
6

Concentrator packs all best candidate components and
generate a generic software package. When there are
terminological and/or conceptual relations within the
software package stored in an ontology repertoire, the
Transformer can take this generic software package as the
input and transform it into target software package to
serve different specific purposes.

5 Application to Social Influence
Analysis

In this section we describe how to apply this approach to
the specification and design of Social Influence Analysis
System. In large social networks, nodes (users, entities)
are influenced by others for different reasons. How to
model the diffusion processes over social network and
how to predict which node will influence which other
nodes in network have been an active research topic
recently. Many researchers proposed various methods
[Goval2010], [Yang2010], [Tang2009] in this area. How
to utilize these algorithms and evolutionarily select the
best one with the most appropriate parameters to do social
influence analysis is our objective in applying the generic
SIS system.

5.1. System Design and Implementation

First, we can utilize dual visual representations approach
[Chang2011a] to design the system’s control-card and
information-card for the social influence analysis
application. The generic SIS system architecture is shown
in Figure 2.1. Omitting the details, the partial visual
representations for SIA are shown in Figure 5.1.

In this SIA system, there is only one functional block
(super component) containing different candidate
components for social influence analysis. All the
candidate components in this super component are the
different specified algorithms or the generic algorithm
with different parameters doing the same job for
analyzing social influence. In realization and
implementation, we apply the algorithm proposed in
[Yang2010], in which the authors developed a linear
influence model (LIM) to analyze global influence a node
has on the rate of diffusion through the implicit network.
In its model, there are two parameters to control the
performance. Thus we design the information card
containing this generic algorithm with different
parameters as the candidate components to build the super
component for social influence analysis. Then our SIS
system can test each parameterized algorithm and
eliminate the worse ones and concentrate on the best one
based on relative reduction in error.

Figure 5.1. Partial visual representations for SIA system.

As described in Section 2, an SIS system is a component
based software system. In implementation, we use Java
language. First a SIS server is implemented. The SIS
server deals with all the messages between components.
Messages are the only way components could
communicate with each other and all the messages within
the SIS system are routed through the SIS server.
Components could be classified into two classes: system
components and candidate components. Enumerator,
Eliminator, etc. could all be treated as system components.
They are responsible for initializing and managing the SIS
system. And all the social influence analysis algorithms
could be wrapped as candidate components in this case
and provide a service to analyze social network data.
They start running and wait to receive data message from
the SIS server. Upon receiving the data message, they will
work on the dataset and return the analysis results to SIS
server. The SIS server could route the results to
corresponding components such as Eliminator. Unless
Eliminator closes a certain candidate component,
candidate components are always running and servicing.

In social influence analysis case, the SIS system runs in
the following manner. Enumerator sends initialization
messages to SIS server and starts candidate components
with different parameters. A data sender sends data to SIS
server, SIS server routes the data to candidate components
and wait for their response. When SIS server receives the
response messages containing results from candidate
components, the results are routed to Verifier and
Eliminator for selection. After one round of elimination,
the next round of enumeration starts.

We use Key/Value pairs to constitute a message. A
message contains at least two Key/Value pairs, they are
MsgID and Description. Customized Key/Value pairs
could be added into messages. For instance, a Key/Value
pair for dataset file could be added to data message. Fig.
5.2 and Fig. 5.3 provide examples of messages captured
from the administrator tool of SIS system.

14 15
7

Figure 5.2. Data Message.

Figure 5.3. Result Message.

5.2. Experimental Setup and Initial Results

We did initial experiments on two different datasets. First,
we collect the posts and responses over the Facebook
between January 25th to April 22nd 2011. We choose five
concepts of interest that related to some commercial
products. All the concepts are in Chinese. Top 1000
active users are selected based on the number of posts in
historical data. We use the model in [Yang2010] based on
the influence of these 1000 users. We set the time interval
unit to 3 hours. To form the matrix M , we give a
number either 1 if the user u mentions the concept k
in time interval t and 0 otherwise. To form the
volume vector V , we count the number of users who
mention/relate_to each concept k at each time t .
Second, similarly we use the same scheme to collect the
posts and response over Plurk between February 23rd,
2009 to April 21st, 2011. We use the same concepts of
interest as facebook dataset and select 1000 active users
over Plurk as well.

In [Yang2010], LIM model has a parameter L (i.e.
influence of a node decays to zero after L time units).
In solving the constrained linear least-squares problem:

2 2
2 2min || || || ||V M I I

there is a regularized parameter . Thus, two parameters
in the model can be modified. Different combinations of
these two parameters lead to different performance of the
model. The SIS system can select the algorithm with the
best combination. In Fig. 5.4 and Fig. 5.5, we show the
comparison between the ground-truth volume V of a
concept and the predicted volume by LIM with different
parameters for the concept in each sub-figure. Due to the
limited space, we only report the results of two concepts
in both datasets with two different combinations of
parameters L and . In practice, our SIS system can
enumerate generic algorithm LIM with lots of
combinations of different parameters, eliminate the worse
ones, and concentrate on the best one based on the least
error between the real volume and the predicted volume.

Acknowledgements

This study is conducted under the "Innovative and
Prospective Technologies Project" of the Institute for
Information Industry, which is subsidized by the Ministry
of Economy Affairs of the Republic of China.

References

[Chang2010] Shi-Kuo Chang, "A General Framework for
Slow Intelligence Systems", International Journal of
Software Engineering and Knowledge Engineering,
Volume 20, Number 1, February 2010, 1-16.

[Chang2011a] Shi-Kuo Chang, Yingze Wang and Yao
Sun, “Visual Specification of Component-based Slow
Intelligence Systems”, Proceedings of 2011 International
Conference on Software Engineering and Knowledge
Engineering, Miami, USA, July 7-9, 2011, 1-8.

[Goval2010] A. Goyal et al., “Learning Influence
Probabilities In Social Networks”, WSDM 2010.

[Tang2009] Jie Tang, Jimeng Sun, Chi Wang and Zi
Yang, “Social influence analysis in large-scale networks”,
KDD 2009.

[Yang2010] J. Yang and J. Leskovec, “Modeling
Information Diffusion in Implicit Networks”, ICDM 2010.

16 17
8

L=2, =1 L=2, =0.0001

Concept 1

Concept 3

Figure 5.5. Results of concept 1 and concept 3 with two combinations of parameters in Facebook dataset.

L=2, =1 L=2, =0.0001

Concept 1

Concept 3

Figure 5.4. Results of concept 1 and concept 3 with two combinations of parameters in Plurk dataset.

16 17

1

Abstract — The last decade has witnessed an intense spread of
computer networks that has been further accelerated with the
introduction of wireless networks: this growth has increased
significantly the problems of network management. Especially
in small companies the management of such networks is often
complex and faults have significant impacts on their businesses.
A possible solution is the adoption of the S imple Network
Management Network administrators can manage network
performance, find and solve network problems, and plan for
network growth by the use of the SNMP. Over the past years
much efforts has been given to make more effective the S imple
Network Management Protocol and new approaches has been
developed. In particular a promising approach involves the use
of Ontology. The ontology based network management has
recently evolved from a theoretical proposal to a more mature
technology and this is the starting point of this paper where a
novel approach to the network management based on the use of
the S low Intelligence System methodologies and Ontology
based techniques is proposed. The Slow Intelligence System is a
general-purpose system characterized by being able to improve
performance over time through a process involving various
phases as enumeration, propagation, adaptation, elimination
and concentration. Therefore, the proposed approach aims to
develop a system able to acquire, according to the S imple
Network Management Protocol, information from the various
hosts that are in the managed networks and apply actions in
order to solve problems. To check the feasibility of this approach
and its performance an experimental campaign in a real
scenario has been designed and the first experimental results in
a real scenario are showed.

Index Terms— Ontology – Network Management – S low
Intelligence System

I. INTRODUCTION

Networks and distributed computing systems are becoming
increasingly important. This rash spread, however, resulted in
increased difficulty in configuring and managing computer
networks. The concept of network management is quite

articulated. It involves activities such as the identification and
management of various devices, monitoring their performance
and much more. So efficient and intelligent configuration
management techniques are to reach an automatic or semi-
automatic configuration for these devices [1]. A solution for
this problem can be the adoption of the Simple Network
Management Protocol (SNMP). The SNMP is not only a
protocol but can be considered as a general framework for the
network management. This framework provide the following
components [18][19]:

- network management objects known as MIB objects. In
fact in the framework management information is represented
as a collection of managed objects that together form a virtual
information store, known as the Management Information Base
(MIB)

- a data definition language known as SMI (Structure of
Management Information) that defines the data types, an
object model and rules for writing and revising management
information

- a protocol SNMP for conveying information and
commands between a managing entity and an agent executing
on behalf of that entity within a managed network device

- security and administration capabilities
In literature ontology is considered a good way for supporting
the network management and many papers deal with ontology
based methodologies for network management [2]. Ontology
based network management, in fact, has recently evolved from
a theoretical proposal to a more mature technology. The main
reason of this is in the significant role that ontology plays in
the information model harmonization [3]. In the network
management there are many management information models
and a harmonization is needed. This harmonization can not be
made just as a syntactic translation but a semantic translation
is needed. Many papers deal with this approach: in [4]
ontologies are used to provide this harmonized information
model with an approach to map and merge different information
model definitions, taking into account their semantics in a
common ontology based model. A similar approach is in [5]
where the management information is merged from several
sources. Other works in recent years have also included related
proposals about using ontologies for different aspects of

Slow Intelligence System and Network
Management: a case study

F. Colace, M. De Santo

DIEII – Università degli Studi di Salerno, Via Ponte Don Melillo, 1, 84084 Fisciano (Sa) Italy

e-mail: {fcolace, desanto}@ unisa.it

18 19

2

network management. For instance [6] proposed using
ontologies for the integration of network management policies.
That previously showed is the starting point of this paper. In
fact it introduces a novel approach to the network management
based on the use of the Slow Intelligence System
methodologies [7] and ontology. The Slow Intelligence System
is a general-purpose systems characterized by being able to
improve performance over time through a process involving
enumeration, propagation, adaptation, elimination and
concentration phases. This approach works at its best when
adopts the ontology for the representation of its knowledge
base. So the proposed approach aims to develop a system able
to acquire information from the various devices that are in the
managed networks and apply solutions in order to solve
problems. In particular the proposed system can handle
multiple networks and adopt solutions that have proved
successful in some other context. By the use of ontologies the
system will be able to choose the right action to take when
some hosts send alerts. The use of the Slow Intelligence
System approach will allow the system to automatically infer
the actions to take. In order to test the effectiveness of the
proposed approach, it has been applied to various LANs that
adopt the SNMP protocol for the network management. This
paper is organized as follows. The next section introduces the
proposed approach and describes the Slow Intelligence
System and the ontology approach. The third section gives
more details on the proposed approach and describes its
operative workflow while the fourth section shows the
experimental results. Finally some conclusions are provided.

II. A NETWORK MANAGEMENT FRAMEWORK BASED ON THE
SIS APPROACH

In this section we will describe the architecture of the
proposed Network Management tool through the description
of its main components. In particular it will be showed how the
framework works according to the Slow Intelligence System
approach and by the use of the ontological formalism for the
management of the knowledge base. The architecture of the
proposed system is described in figure 1.

Figure 1 A possible working scenario

Each server manages a computer network and works according
to the principles of the Slow Intelligence System.

II.1 The Slow Intelligence System

A Slow Intelligence System is a general-purpose system
characterized by being able to improve performance over time
[7]. A Slow Intelligence System continuously learns, searches
for new solutions and propagates and shares its experience
with other peers. It differs from expert systems in that the
learning is implicit and not always obvious. A Slow
Intelligence System seems to be a slow learner because it
analyzes the environmental changes and absorbs that into its
knowledge base while maintaining synergy with the
environment. Usually a Slow Intelligence System solves
problems by trying different solutions, is context-aware to
adapt to different situations and to propagate knowledge and
may not perform well in the short run but continuously learns
to improve its performance over time [7]. A Slow Intelligence
System workflow is typically composed by the following
phases:
- Enumeration: In problem solving, different solutions are
enumerated until the appropriate solution or solutions can be
found.
- Propagation: The system is aware of its environment and
constantly exchanges information with the environment.
Through this constant information exchange, one SIS may
propagate information to other (logically or physically
adjacent) SISs.
- Adaptation: Solutions are enumerated and adapted to the
environment. Sometimes adapted solutions are mutations that
transcend enumerated solutions of the past.
- Elimination: Unsuitable solutions are eliminated, so that only
suitable solutions are further considered.
- Concentration: Among the suitable solutions left, resources
are further concentrated to only one (or at most a few) of the
suitable solutions.
The sixth one, on the other hand, is rather unique for a Slow
Intelligence System:
- Slow decision cycle(s) to complement quick decision cycle(s):
SIS possesses at least two decision cycles. The first one,
defined as the quick decision cycle, provides an instantaneous
response to the environment. The second one, defined as the
slow decision cycle, tries to follow the gradual changes in the
environment and analyze the information acquired by experts
and past experiences. The two decision cycles enable the SIS
to both cope with the environment and meet long-term goals.
Sophisticated SIS may possess multiple slow decision cycles
and multiple quick decision cycles. Most importantly, actions
of slow decision cycle(s) may override actions of quick
decision cycle(s), resulting in poorer performance in the short
run but better performance in the long run. The structure of a
Slow intelligence System by the introduction of the basic
building block and advanced building block.

18 19

3

Figure 2 A basic building block BBB
Problem and solution are both functions of time, thus we can
represent the time function for problem as x(t)problem, and the
time function for solution as y(t)solution. The timing controller
is also a time function timing-control(t). For the two-decision-
cycle SIS, the basic building block BBB can be expressed as
follows:

if timing-control(t) == 'slow'
then /* timing-control(t) is ‘slow’ */
 y(t)solution = gconcentrate (geliminate (gadapt
(genumerate(x(t)problem))))
else /* timing-control(t) is not ‘slow’ */
 y(t)solution = fconcentrate (feliminate (fadapt
(fenumerate(x(t)problem))))

where genumerate, gadapt, geliminate, gconcentrate are the transform
functions for enumeration, adaptation, elimination and
concentration respectively during slow decision cycles, and
fenumerate, fadapt, feliminate, fconcentrate are the transform functions for
enumeration, adaptation, elimination and concentration
respectively during quick decision cycles. An Advanced
Building Block can be a stand-alone system as shown in Figure
3. The major difference between an ABB and a BBB is the
inclusion of a knowledge base, further improving the SIS’s
problem solving abilities.

Figure 3 The advanced building block ABB

As showed in figure 3 the advanced building block works
using a Knowledge Domain that contains all the information
that the ABB needs in order to manage the various problems.
Each ABB works with a well defined Knowledge Domain that
can change through the interaction with the other peers. An
effective way for the representation of the Knowledge Domain

is the adoption of the ontology formalism. In the next
paragraph more details on the Ontology formalism will be
given.

II.2 The role of the Ontology in a Slow Intelligence System

The definition of ontology is still a challenging task [8]. The
term ‘ontology’ has its origin in the Greek word ‘ontos’, which
means ‘being’. So in this sense ontology could be defined as a
branch of philosophy dealing with the order and structure of
reality. In the 1970s ontology came to be of interest in the
computer science field. In particular the artificial intelligence
community started to use the concept in order to create a
domain of knowledge and establish formal relationships among
the items of knowledge in that domain for performing some
processes of automated reasoning, especially as a means for
establishing explicit formal vocabulary to be shared among
applications. The term ‘ontology’ was first used in the
computer science field by Gruber who used the term to refer to
an explicit specification of a conceptualization [9]. The use of
this term is rapidly growing due to the significant role it plays
in information systems, semantic web and knowledge-based
systems, where the term ‘ontology’ refers to “the
representation of meaning of terms in vocabularies and the
relationships between those terms” [10]. Also this kind of
definition is still satisfactory for each field where ontology can
be applied and so perhaps a good practical definition would be
this: “an ontology is a method of representing items of
knowledge (ideas, facts, things) in a way that defines the
relationships and classification of concepts within a specified
domain of knowledge” [8]. Following this point of view,
ontologies are “content theories”, since their principal
contribution lies in identifying specific classes of objects and
the relations that exist in some knowledge domains [11][12].
Ontologies are usually classified into lightweight and
heavyweight ontologies [12]. Lightweight ontologies include
concepts, simple relationships among concepts (such as
specialization is_a) and properties that describe concepts.
Heavyweight ontologies add axioms and constraints to
lightweight ontologies. Axioms and constraints clarify the
intended meaning of the terms gathered in the ontology.
Heavyweight and lightweight ontologies can be modelled by
the use of different knowledge modelling techniques and they
can be implemented in various kinds of languages which are
usually divided in two groups: classical and ontology mark-up
language [13]. The ontology mark-up languages, mainly used
in the context of semantic web and of which the most important
is OWL [10], have their own syntax, their own expressiveness,
different knowledge representation paradigms and their own
reasoning capabilities provided by different inference engines
[13]. It is important to underline how database community as
well as the object oriented design community build models
using concept, relations and properties but they usually
impose less semantic constraints. Ontologies are typically not
static entities and so in recent years ontology evolution
processes have drawn considerable attention of the
researchers. The ontology evolution can be considered as the

20 21

4

“timely adaptation of an ontology to the arisen changes and
the consistent management of these changes” [14]. This
definition suggests that a successful evolution can only be
achieved by having both “adaptation” and “change
management”. In the literature there aren’t many approaches
capable of handling these two tasks within one framework.
Another core aspect of ontology evolution is how to
guarantee the consistency of the ontology and the dependent
applications [14][15]. In this sense many papers are
introducing approaches and methodologies for the ontology
evolution management and its change requirement description.
In particular frameworks for the management of atomic and
complex changes have been introduced [16]. A particular
aspect of ontology application is in the analysis and
comparison of particular ontologies that could be used to
derive information beyond operational data. In this case
ontologies could be for management support. This is a very
interesting application field but some critical problems remain
to be solved. In fact usually the lightweight ontology furnishes
a very simple and generic representation of a context and so is
not able to well manage a system or supporting users in the
interactions with it. In particular if it represents the services
and components of a system probably its computational and
functional optimization could be not reached. However
heavyweight ontology could be very difficult to define and
includes some aspects that are not all the time useful and the
risk of wasting system’s resources to maintain heavyweight
ontology is quite high. With the aim to avoid the above
described problems, in this paper a lightweight plus ontology
is proposed, which can be defined as O = {C, A, RH, R} where
C is the concept set, A is the concept attributes set, RH

expresses the hierarchical relationships among the concepts
and R is the set of non-hierarchical relations. By the
introduction of the non-hierarchical relations, a lightweight
plus ontology is more complex and semantically richer than the
lightweight ontology, but is not as complex as heavyweight
ontology because there are no axioms to consider. The
lightweight plus ontology will be the starting point for the
representation of the knowledge domain that is involved in the
ABB.

III. THE PROPOSED NETWORK MANAGEMENT APPROACH

The aim of this paper is the design and the implementation of a
network management tool based upon the s low intelligence
system approach. The system follows the architecture showed
in figure 1 and in this paragraph more details on the operative
workflow will be given. First of all the local server is described:
it has the role to collect the information about the faults that
are happening in the network and to solve them according the
slow intelligence approach. At this aim each local server needs
a knowledge domain represented by the following lightweight
plus ontologies:

- OSNMP_i {CSNMP_i, ASNMP_i, RHSNMP_i, RSNMP_i}:
this ontology defines the entire structure of SNMP protocol
events’ signals that the local server “i” can manage. This

ontology is part of a more general ontology OSNMP
developed by the analysis of SNMP standard (RFC 1157) and
of the related Structure of Managed Information (RFC 2578)
- OFault_i = {CFault_i, AFault_i, RHFault_i, RFault_i}: this
ontology describes each kind of possible errors that can occur
within a LAN. This ontology is part of a more general ontology
OFault developed by network manager experts that express
also the relationships with the events that are in the OSNMP
ontology
- OCause_i = {CCause_i, ACause_i, RHCause_i, RCause_i}:
this ontology defines the causes of the faults that may occur in
a LAN. This ontology is part of a more general ontology
OCause developed by network manager experts that express
also the relationships with the faults that are in the OFault
ontology
- OSolution_i = {CSolution_i, ASolution_i, RHSolution_i,
RSolution_i}: this ontology defines the solutions that can be
taken to recover from fault situations which occurred within a
LAN. This ontology is part of a more general ontology
OSolution developed by network manager experts that express
also the relationships with the faults that are in the OFault
ontology
- OAction_i = {CAction_i, AAction_i, HAction_i,
RHAction_i, RAction_i}: this ontology aims to identify the
actions to be taken in order to recover from fault’s situations.
This ontology is part of a more general ontology OAction
developed by network manager experts that express also the
relationships with the faults that are in the OSolution ontology
- OComponent_i = {CComponent_i, AComponent_i,
RHComponent_i, RComponent_i}: this ontology describes the
components that are within the LAN “i”. This ontology has to
be developed by the network administrator of LAN “i” that
defined also the relationships among the components and the
SNMP events.
- OEnvironment_i = {CEnvironment_i, AEnvironment_i,
RHEnvironment_i, REnvironment_i}: this ontology describes
the operative context where the LAN “i” works. This ontology
has to be developed by the network administrator of LAN “i”
that defined also the relationships among the environment and
the SNMP events.

These ontologies represent the knowledge base of each
advanced building block. The local server works as depicted in
figure y and it acts like a slow intelligence and follows the
following phases:

Enumeration Phase: in this phase the Local server tries to find
all the actions that can be adopted in order to s olve a fault. In
particular the input of this stage is the SNMP event and the
outputs are the actions that can be adopted. If the event has
been managed in the past, the system adopts the previous
actions and passes in the concentration phase. If the SNMP
event has not been ever managed the enumeration module
adopts the following functions:

FEnumeration: E x OSNMP_i x OFault_i x OSolution_i x OAction_i -> AN

20 21

5

where E is the space of SNMP events and A is the space of the
actions. In other words this function accepts as input the
SNMP event that could be in the OSNMP_i ontology. In this way
it is possible, analyzing the ontologies, to find the actions that
can lead to the solution of the fault. In general this function
gives more than one actions that can be adopted and each of
them has an effectiveness grade established by experts. At this
point the system can evolve in the adaptation phase. If the
function is not able to find an action the propagation phase
has to be invoked.
Propagation Phase: in this phase the local server sends the
SNMP event to the central server that tries to calculate the
actions by the use of the function:

FEnumeration: E x OSNMP_CS x OFault_CS x OSolution_CS x OAction_CS -> AN

If the central server is able to find the actions, it will send them
to the local server “i” and it will send also the parts of
ontologies that are needed for the event’s resolution. In
particular the following function will be invoked:

SPropagation: E x OSNMP_CS x OFault_CS x OSolution_CS x OAction_CS -> ON

This function sends to the local server “i” the following
ontologies

O’SNMP_CS OSNMP_CS

O’Fault_CS OFault_CS

O’Solution_CS OSolution_CS

O’Action_CS OAction_CS

these ontologies have to be merged to the ontologies that are
in the local server “i” in the following way

OSNMP_i = OSNMP_i O’SNMP_CS

OFault_i = OFault_i O’Fault_CS

OSolution_i = OSolution_i O’Solution_CS

OAction_i = OAction_i O’Action_CS

If the central server is not able to infer the actions the SNMP
event has to be send to the other local servers in order to infer
the actions. Also in this case each local server “j” calculates
the actions by the use of the following function:

FEnumeration: E x OSNMP_j x OFault_j x OSolution_j x OAction_j -> AN

and send to the central server the parts of ontologies that need
for the actions’ inference by the use of the function:

 SPropagation: E x OSNMP_j x OFault_j x OSolution_j x OAction_j -> ON

The central server collects the actions and updates its
ontologies according to the previous described method. It
sends the actions and the ontologies to the local server “i”. If
both the central server both the various local servers are not
able to infer actions, the local server “i” has to send an error
signal to the network administrator. The local server “i”
collects the actions and the ontologies from the central server
and invokes the adaptation phase.
Adaptation Phase: in this phase the inferred actions has to be
customized according to the components that are in the LAN
and the environment where the LAN works. In particular for
each action the following function is invoked:

AAdaptation: A x OSNMP_j x OFault_j -> A
At the end of this phase the system obtains a list of adapted
actions. Obviously not all the actions can be adapted and so
for each adapted action an improvement for its effectiveness
grade is set.
Elimination Phase: the system collects all the actions inferred
in the previous phases ranking them according to this
function:

FElimination: AN-> A
This function can be implemented in various ways according
to predefined strategy. In this case the adopted approach is
the following:

FElimination = maxi=1…N effectiveness grade (Ai)
At the end of this phase the concentration phase can be
invoked

Concentration Phase: In this phase the local server “i” adopts
the selected action. If this action leads to the problem’s
resolution and comes from the central server the local server
“i” updates its ontologies. If the action does not lead to the
problem’s resolution a message is send to the network
administrator that can decide both to adopt one of the other
actions retrieved in the other phases both to solve the fault in
a manual way.

Summarizing the operational workflow of the system can be
described as follows:
Step 1: a SNMP message as result of a fault generated by a
LAN’s device is sent to a local server “i”
Step 2: The local server “i” receives the SNMP message. This
is the beginning of the enumeration phase.
Step 3: The local server “i” tries to identify the problem
through analysis of various ontologies that describe its
knowledge base. If the SNMP event was managed in the past
the concentration phase can start (step 9). Otherwise the
system infers a list of actions that can applied for the
resolution of the problem and generates the solutions and the
actions that the various hosts in the LAN have to be apply. At
this point the adaptation phase can start (step 7). If the local
server “i” is not able to infer any actions the request is sent to
the local server. In this way the propagation phase (step 4) can
start.
Step 4: The central server tries to infer the actions that can
solve the faults that the SNMP event sent by local server “i”
represents. If it is able to find actions the central server sends
them and the ontologies parts that are needed for the event
management. In this way the adaptation phase (step) can start.
Otherwise the central server sends the SNMP events to the
other local servers
Step 5: The various local servers try to infer the actions from
the received SNMP event. If actions are retrieved each local
server sends them and the parts of ontologies needed for their
inference.

22 23

6

Step 6: The central server collects the various answers from the
local servers and send them local server “i” and the adaptation
phase (step 7) can start. If no answers from local servers are
received an empty action is sent to the local server.
Step 7: The local server “i” starts to adapt the actions
according to the environment and components LAN’s
ontologies. After this phase the elimination phase can start. If
in this phase no actions have been inferred a message to the
network administrator have to be sent.
Step 8: The local server “i” selects the action to apply from the
other ones collected in the other phases according to a
predefined rule.
Step 9: The local server “i” can apply the action in order to
recover the fault situation and update, if needed, its ontologies

IV. EXPERIMENTAL RESULTS

In order to test the performance of the proposed system an
experimental campaign has been designed. First of all the
working scenario has been set: the system has to manage three
laboratories during their normal working time. These
laboratories are equipped in the following way:

First Laboratory
1 Cisco Router Cisco
3 Cisco Catalyst Switches
56 Personal Computers equipped with heterogeneous
operative systems and applications
2 Network Printers

Second Laboratory
1 Cisco Router
2 Nortel Switches
40 Personal Computers equipped with heterogeneous
operative systems and applications
2 Network Printers

Third Laboratory
1 Cisco Router Cisco
2 Cisco Catalyst Switches
42 Personal Computers equipped with heterogeneous
operative systems and applications
1 Network Printers

In each of these laboratories a local server was settled and the
system monitored the three LANs for one week collecting the
various SNMP signal and managing the various faults. The
local servers have been furnished by the various ontologies
and in particular they adopted an OSNMP_i covering about the
60% of concepts of the full OSNMP that can manage about 250
events. Starting from the OSNMP_i the experts has built the
others ontologies. The system’s performances have been
evaluated according various approaches. The first parameter is
the following:

Events
tsSolvedFaulCA S

The aim of this index is the evaluation of the effectiveness of
the system in the resolution of the faults. For the evaluation
also the precision and recall parameters has been introduced.
The precision is defined in the following way:

iveFalsePositveTruePositi
veTruePositiprecision

FT
n

iveFalseNegatveTruePositi
veTruePositirecall

FT
l

These parameters are typically used in information retrieval
where a perfect precision score of 1.0 means that every result
retrieved by a search was relevant whereas a perfect recall
score of 1.0 means that all relevant documents were retrieved
by the search. In our case the precision means how many
events have been resolved in the correct way (the true
positive) respect the number of events that system tried to
solve. So in this case a false positive is a fault that the system
managed in a wrong way. The recall represents how many
events have been resolved in the correct way (the true
positive) respect the number of events that system could
solve. For the evaluation of the propagation phase the
following parameters has been introduced:

tsSolvedFaul
requestServerCentralAfterFaultsSolvedRCA _____S

In order to evaluate the capacity of the system to share
knowledge among the various local servers also the following
ontological parameters [17] has been introduced:
• NOC: Number of Concepts in the ontology
• NOL: Number of Leaf Concepts in the ontology
• NONHR: Number of “non-hierarchical” relationships
• NOF: Number of Fanouts
• AF-C: Average Fanout per Class
• MaxDIT: Maximum Depth of Inheritance Tree
All these parameters have been evaluated each 24 hours for
each local server “i” and an average value has been expressed
for the evaluation of the system. The obtained CA, Precis ion,
Recall and RCA are depicted in the appendix of this paper as
the ontological parameters for the full OSNMP ontology and the
various OSNMP_i ontologies. The obtained results confirm the
effectiveness of the proposed approach. The system allows an
effective sharing of knowledge among the various servers as
the ontological parameters show. In fact after about the 30% of
the managed events each system reaches good results in their
management and the local servers improve their knowledge
domains. The system shows a very good CA result and more
in general after a first training phase achieves very good
performances both from the precision both from the recall point
of view. It is important to underline that the various local
ontologies show a less complex structure of the full ontology
and so, in this way, it is easier to manage them.

V. CONCLUSION

In this paper a novel method for network management has
been introduced. This method is based on Ontology and Slow
Intelligence System approach. It has been tested in an
operative scenario and the first experimental seems to be good.
In particular the proposed approach showed how an ontology
based interoperability framework can help to improve several
tasks in the network management value chain. The proposed
approach introduces a powerful way for the improvement of
the information model interoperability and allows the
introduction of services for the automatic resolution of
networks fault. The opportunity to continuosly upgrade the
knowledge base allows to continuosly upgrade the capacity of
the system to manage new faults. In particular network
administrators will not only benefit from more powerful

22 23

7

applications, but they can transfer their expert knowledge into
the management applications and in this way automating more
and more network management tasks. The future works aim to
improve the system by the use of new and effective
methodologies for the ontology management and the use of
some artificial intelligence approach for the automatic inference
of action when the system is not able to find anyone.

REFERENCES

[1] Hui Xu, Debao Xiao, “A Common Ontology -based Intelligent
Configuration Management Model for IP Network Devices”,
Proceedings of the First International Conference on Innovative
Computing, Information and Control, pp. 385-388, 2006

[2] López de Vergara J.E., Guerrero A., Villagrá V.A., Berrocal J.,
Ontology Based Network Management: Study Cases and Lessons
Learned, Computer Science Journal of Network and Systems
Management, Volume 17, Number 3, pp. 234-254, 2009

[3] Wong A.K.Y., Ray P., Parameswaran N., Strassner J., Ontology
mapping for the interoperability problem in network management,
IEEE Journal on Selected Areas in Communications, 23(10), 2058-
2068, 2005

[4] López de Vergara J.E., Villagrá V.A., Asensio J.I., Berrocal J.,
Ontologies: giving semantics to network management models,
IEEE Network, Volume 17, Number 3, pp. 15-21

[5] Keeney J., Lewis D., O’Sullivan D., Roelens A., Boran A.,
Richardson R., Runtime semantic interoperability for gathering
ontology-based network context, Proceedings of IEEE/IFIP
Network Operations and Management Symposium (NOMS 2006),
56-65,Vancouver, 2006

[6] Van der Meer, S., Jennings B., O’Sullivan D., Lewis D., Agoulmine
N., Ontology based policy mobility for pervasive computing,
Proceedings 12th Workshop of the HP Open University
Association, 2005, 211-224

[7] Shi-Kuo Chang, “A General Framework for Slow Intelligence
Systems”, International Journal of Software Engineering and

Knowledge Engineering, Volume 20, Number 1, February 2010, pp.
1-15.

[8] Jepsen, T ., Just What Is an Ontology, Anyway?, IT Professional,
vol. 11, no. 5, pp. 22-27, Sep./Oct. 2009

[9] Gruber, T .R, Translation approach to portable ontology
specification, Knowledge Acquisition, vol. 5, pp. 199-220, 1993

[10] “OWL Web Ontology Overview”, W3C Recommendation, 10
february 2004, http://www.w3.org/TR/2004/REC-owl-features-
20040210/

[11] Maedche A., Staab S., Ontology Learning for the Semantic Web,
IEEE Intelligent Systems, vol. 16 no. 2, Mar/Apr 2001, Page(s):
72-79

[12] Corcho, O., A Layered Declarative Approach to Ontology
Translation with Knowledge Preservation, Vol. 116 Frontiers in
Artificial Intelligence and Applications, 2005

[13] Corcho, O., Gómez-Pérez, A., A Layered Model for Building
Ontology Translation Systems, International Journal on Semantic
Web and Information Systems, 1(2): 22-48, 2005.

[14] Haase, P., Stojanovic, L., Consistent evolution of OWL
Ontologies, ESWC, Lecture Notes in Computer Science, vol. 3532,
Springer

[15] Yinglin Wang, Xijuan Liu, Rongwei Ye, "Ontology Evolution Issues
in Adaptable Information Management Systems," E-Business
Engineering, IEEE International Conference on, pp. 753 -758,
2008

[16] Zhang, L., Xia, S., Zhou, Y., Xia, Z., User Defined Ontology
Change and its Optimization, Control and Decision Conference,
2008. CCDC 2008. Chinese, pp. 3586-3590, 2008

[17] Orme, A.M., Haining, Y., Etzkorn, L.H., Indicating Ontology Data
Quality, Stability and Completeness Throughout Ontology
Evolution, Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, pp. 49-75, 2007

[18] Stallings, W., SNMP, SNMPv2, SNMPv3, and RMON1 and 2,
Addison-Wesley, Reading, MA, 1999

[19] Case, J., Mundy, R., Partain, D., Introduction and Applicability
Statements for Internet Standard Management Framework, RFC
3410, 2002, ftp://ftp.rfc-editor.org/in-notes/rfc3410.txt

APPENDIX

SNMP_Events_1 SNMP_Events_2
SNMP_Events_

3

SNMP_Events_

4

SNMP_Events_

5

SNMP_Events_

6
SNMP_Events_7 Total

Local_Server_1 1423 1562 1233 1321 1401 720 603 8263

Local_Server_2 1378 1492 1541 1647 1230 601 532 8421

Local_Server_3 1401 1351 1321 1678 1345 654 472 8222

CA_1 CA_2 CA_3 CA_4 CA_5 CA_6 CA_7 Average_Value

Local_Server_1 60,01% 77,40% 90,84% 91,07% 91,29% 95,83% 98,84% 84,12%

Local_Server_2 64,73% 73,93% 84,23% 87,37% 96,50% 97,67% 98,31% 83,47%

Local_Server_3 60,17% 75,94% 87,51% 89,27% 96,21% 97,55% 98,94% 84,19%

Precision_1 Precision_2 Precision_3 Precision_4 Precision_5 Precision_6 Precision_7 Average_Value

Local_Server_1 72,01% 85,93% 91,58% 95,55% 96,75% 98,29% 99,67% 90,31%

Local_Server_2 72,05% 85,04% 92,78% 94,98% 96,98% 99,83% 99,81% 90,29%

Local_Server_3 73,05% 84,65% 88,11% 97,08% 98,40% 99,69% 99,79% 90,55%

Recall_1 Recall_2 Recall_3 Recall_4 Recall_5 Recall_6 Recall_7 Average_Value

Local_Server_1 86,61% 93,29% 95,40% 96,94% 99,22% 100,00% 100,00% 95,59%

Local_Server_2 85,03% 91,61% 94,68% 96,25% 97,70% 98,49% 99,81% 94,30%

24 PB

8

Local_Server_3 83,38% 89,30% 95,54% 98,23% 98,85% 99,07% 99,36% 94,59%

RCA_1 RCA_2 RCA_3 RCA_4 RCA_5 RCA_6 RCA_7 Average_Value

Local_Server_1 22,13% 12,90% 8,93% 7,15% 3,36% 3,33% 2,01% 8,76%

Local_Server_2 17,60% 9,16% 5,62% 3,89% 2,36% 1,53% 0,19% 6,05%

Local_Server_3 24,08% 15,89% 10,64% 5,21% 3,17% 2,51% 0,86% 9,07%

Table 1 Obtained Results

SNMP_Full_Ontology

NOC 378

NOL 250

NONHR 9

NOF 1732

AF_C 4,58

MaxDIT 7

OSNMP_i NOC_1 NOC_2 NOC_3 NOC_4 NOC_5 NOC_6 NOC_7

Local_Server_1 189 223 278 289 302 315 318

Local_Server_2 176 218 267 281 298 306 311

Local_Server_3 183 197 253 278 293 301 305

 OSNMP_i NOL_1 NOL_2 NOL_3 NOL_4 NOL_5 NOL_6 NOL_7

Local_Server_1 150 172 184 195 200 203 204

Local_Server_2 158 171 181 190 198 202 203

Local_Server_3 143 162 176 184 191 193 194

 OSNMP_i NONHR_1 NONHR_2 NONHR_3 NONHR_4 NONHR_5 NONHR_6 NONHR_7

Local_Server_1 6 7 8 8 8 9 9

Local_Server_2 5 6 7 8 8 9 9

Local_Server_3 7 8 9 9 9 9 9

OSNMP_i NOF_1 NOF_2 NOF_3 NOF_4 NOF_5 NOF_6 NOF_7

Local_Server_1 754 903 1163 1201 1278 1332 1389

Local_Server_2 730 930 1034 1175 1208 1299 1326

Local_Server_3 734 892 979 1078 1189 1256 1301

 OSNMP_i AF_C_1 AF_C_2 AF_C_3 AF_C_4 AF_C_5 AF_C_6 AF_C_7

Local_Server_1 3,99 4,05 4,18 4,16 4,23 4,23 4,37

Local_Server_2 4,15 4,27 3,87 4,18 4,05 4,25 4,26

Local_Server_3 4,01 4,53 3,87 3,88 4,06 4,17 4,27

 OSNMP_i MaxDIT_1 MaxDIT_2 MaxDIT_3 MaxDIT_4 MaxDIT_5 MaxDIT_6 MaxDIT_7

Local_Server_1 7 7 7 7 7 7 7

Local_Server_2 7 7 7 7 7 7 7

Local_Server_3 7 7 7 7 7 7 7

Table 2 Ontological Parameters for the full OSNMP and the various OSNMP_i

PB 25

Extending Software Quality Models - A Sample In
The Domain of Semantic Technologies

Filip Radulovic
Ontology Engineering Group

Departamento de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid

Madrid, Spain
fradulovic@delicias.dia.fi.upm.es

Raúl Garcı́a-Castro
Ontology Engineering Group

Departamento de Lenguajes y Sistemas Informáticos
e Ingenierı́a Software

Facultad de Informática, Universidad Politécnica de Madrid
Madrid, Spain

rgarcia@fi.upm.es

Abstract—In order to correctly evaluate semantic technologies,
which have become widely adopted in recent years, we need to put
evaluations under the scope of a unique software quality model.
This paper presents a quality model for semantic technologies.
First, some well-known software quality models are described,
together with methods for extending them. Afterwards, a new
method for extending quality models is proposed and it is then
used to define a quality model for semantic technologies by
extending the ISO 9126 quality model. Finally, the proposed
model is validated by analyzing existing semantic technology
evaluations.

I. INTRODUCTION

Software product quality has become an important concern
in almost every domain or technology, and the specification
and evaluation of quality during the software development
process is of crucial importance for obtaining high quality
software [1].

Quality models provide the basis for software evaluation
and give a better insight of the characteristics that influence
software quality by specifying a consistent terminology for
software quality and by providing guidance for its measure-
ment. Nevertheless, in order to use a quality model in a
specific domain, it usually has to be extended to include the
particularities of such domain.

Various methods for extending quality models have been
proposed in the literature. They all follow a top-down ap-
proach, starting from general characteristics to concrete mea-
sures; for some cases, however, a bottom-up approach would
be more effective as is the case of those which have many of
evaluations to extract the quality model.

An example of this occurs in the semantic technology
field. Semantic technologies provide new ways to express in
machine processable formats knowledge and data that can be
exploited by software agents. We have seen an exponential
growth of semantic technologies in recent years and multiple
evaluations of such technologies have been proposed, from
general evaluation frameworks [2] to tool-specific evaluations
[3], [4] and even characteristic-specific evaluations [5].

However, it is very difficult to compare semantic technolo-
gies because of the different evaluation characteristics used.
Furthermore, there is no consistent terminology for describing
the quality of semantic technologies, and available software

quality models do not specify the quality characteristics spe-
cific to them.

This paper describes a bottom-up approach for specifying
a software quality model by extending an existing one. Using
this approach, we have defined a quality model for semantic
technologies, starting from real semantic technology evalua-
tions and extending the ISO 9126 quality model.

Clearly, during the definition of the quality model not every
available evaluation can be taken into account. To validate and
complete the quality model, we have performed a literature
review over those semantic technology evaluations presented
in the most relevant conferences in the semantic research field.

The reminder of this paper is organized as follows. Sec-
tion II gives an overview of existing software quality models.
Section III describes top-down methods for extending software
quality models, while Section IV presents the bottom-up
method that we have defined. Section V describes how we have
applied such method to define a quality model for semantic
technologies. Section VI presents the validation of the quality
model and, finally, Section VII draws some conclusions and
includes ideas for future work.

II. REVIEW OF SOFTWARE QUALITY MODELS

Various software quality models have been described in the
literature: McCall’s model, Boehm’s model, ISO 9126 model,
and SQuaRE model. This section describes the models most
used and identifies their main elements.

ISO 9126’s Model. The International Organization for Stan-
dardization (ISO) identified the need for a unique and complete
software quality standard and, therefore, produced the ISO
9126 standard for software quality [6]. The ISO 9126 standard
defines three types of quality: internal quality, external quality,
and quality in use.

Six main software quality characteristics for external and in-
ternal quality are specified: functionality, reliability, usability,
efficiency, maintainability, and portability, all of which are fur-
ther decomposed into sub-characteristics that are manifested
externally when the software is used and are the result of
internal software attributes [6]. The standard also provides the
internal and external measures for sub-characteristics.

26 27

Regarding quality in use, the model proposes four charac-
teristics: effectiveness, productivity, safety, and satisfaction.

The ISO 9126 standard gives a complete view of soft-
ware quality with evaluation criteria and definitions of every
software characteristic and sub-characteristic. Some authors
also suggest that according to the nature of the product itself
some new sub-characteristics can be added, the definitions
of existing ones changed, or some sub-characteristics can be
eliminated from the model [7].

However, as pointed out in [8], some practical problems
with ISO 9126 arise, namely, the ambiguity in metric defi-
nitions and usability interpretation. Furthermore, the authors
argue that the number of attributes and measures are missing,
that some characteristics are too abstract, and that the stan-
dard itself is open to interpretations, which, according to the
authors, questions its purpose.

SQuaRE’s Model. Because of advances in technologies and
changes of users’ needs over time, some problems and issues
have arisen with the ISO 9126 standard. Therefore, it is
currently being redesigned and has been renamed SQuaRE
(System and software Quality Requirements and Evaluation).
At the time of writing this paper, the parts of the SQuaRE
standard related to the quality model and evaluations are still
under development (ISO 25010 and ISO 25040 respectively)
and their final versions will be published during 2011.

As a summary of this section, Table I presents the elements
of the quality models mentioned. In our work, and in the rest
of the paper, we have adopted the terminology of the ISO 9126
standard.

TABLE I: Elements of mentioned quality models.

Structure/Model McCall Boehm ISO 9126

First level Factor High level
characteristic Characteristic

Second level Criteria Primitive
characteristic

Sub-
characteristic

Third level Metrics Metrics Measures
Relationships
between entities Factor-Metric / Measure-

Measure

III. APPROACHES FOR EXTENDING SOFTWARE QUALITY
MODELS

Existing software quality models (e.g., the ISO 9126 one)
provide insight into characteristics that are general and com-
mon for almost every type of software. However, different
types of software products have characteristics which are
specific to them and, therefore, the actual application of
software quality models usually requires reusing an existing
quality model and extending it for a specific software product
or domain.

To this end, starting from a certain quality model, its qual-
ity characteristics and sub-characteristics should be adapted
according to the nature of the domain by excluding those out
of scope, redefining others, and introducing new ones.

Some authors have proposed software quality models for
various types of applications: B2B [1], mail servers [9], web-
based applications [10], e-learning systems [11], and ERP

systems [7]. All those authors have used the ISO 9126 standard
as the basis software quality model, and have extended it to
fit their particular domain.

Software quality model extensions can be performed fol-
lowing two main approaches [12]:

• A top-down approach that starts from the quality char-
acteristics and continues towards the quality measures.

• A bottom-up approach that starts from the quality mea-
sures and defines the quality sub-characteristics that are
related to each specific measure.

Franch and Carvallo proposed a method based on a top-
down approach for customizing the ISO 9126 quality model
[13]. After defining and analyzing the domain, their method
proposes six steps:

1) To determine quality sub-characteristics. In this first
step, according to the domain, some new quality sub-
characteristics are added while other are excluded, or their
definitions are changed.

2) To define a hierarchy of sub-characteristics. If needed,
sub-characteristics are further decomposed according to
some criteria.

3) To decompose sub-characteristics into attributes. In this
step, abstract sub-characteristics are decomposed into
more concrete concepts that refer to some particular
software attribute (i.e., observable feature).

4) Decomposing derived attributes into basic ones. At-
tributes not directly measurable are further decomposed
into basic ones.

5) To state relationships between quality entities. Rela-
tionships between quality entities are explicitly defined.
Three possible types of relationships are identified: a)
collaboration means that increasing the value of one
entity implies increasing the value of another entity; b)
damage means that increasing the value of one entity
implies decreasing the value of another entity; and c)
dependency implies that some values of one entity require
that another entity fulfills some conditions.

6) To determine metrics for attributes. To be able to compare
and evaluate quality, it is necessary to define metrics for
all attributes in the model.

In building their quality model for B2B applications, Behka-
mal et al. proposed a method to customize the ISO 9126
quality model in five steps [1]. The main difference with
the previous method is that in Behkamal’s approach the
quality characteristics are ranked by experts; thus, the experts
should provide weights for all quality characteristics and sub-
characteristics and these weights are later used to establish
their importance, which can be time consuming and resource
demanding. Besides, Behkamal’s approach does not contem-
plate defining relationships between quality entities.

IV. A BOTTOM-UP APPROACH FOR EXTENDING
SOFTWARE QUALITY MODELS

The approaches presented in the previous section follow
a top-down approach and, at the time of writing this paper,

26 27

we have not found any example of a bottom-up approach in
the literature. However, there are scenarios where it would
be convenient to base on real practices the extension of the
quality model because of the existence of a significant body
of software evaluations and evaluation results (as in the case
of the semantic technology field).

In our approach, evaluation results are used as the starting
point from which the quality measures, sub-characteristics, and
characteristics are specified.

The method for extending a software quality model consists
in performing the following six consecutive steps:

1) To identify basic measures. The output of evaluating a
software product with some input data (i.e., executing
a test case) allows identifying the basic measures of a
certain evaluation execution.

2) To identify derived measures. Basic measures can be
combined to obtain derived ones, which are also related
to one particular evaluation execution (i.e., test case).

3) To identify quality measures. Quality measures are mea-
sures related to a whole evaluation (i.e., multiple test
cases using different input data) and are obtained by the
aggregation of basic and derived measures.

4) To specify relationships between measures. In this step,
which can be performed in parallel with the previous
ones, relationships between measures are expressed either
in an informal way (e.g., the collaboration, damage and
dependency categories proposed in [13]) or more formally
(e.g., with the formulas used for obtaining the measures,
as proposed in [14]). For any derived measure defined
it is recommendable to specify the function (or set of
functions) that allows obtaining such derived measure
from the basic ones. Similarly, for any quality measure
it is also recommendable to identify the function that
defines it based on other measures.

5) To define domain-specific quality sub-characteristics. Ev-
ery software product from a particular domain has some
sub-characteristics that are different from other software
products and those sub-characteristics, together with more
generic ones, should be identified and precisely defined.
Every quality measure provides some information about
one or several software sub-characteristics; therefore,
based on the software quality measures defined in the
previous step, software quality sub-characteristics are
specified. Furthermore, it is not necessary that every
quality sub-characteristic has only one measure that deter-
mines it, but rather a set of measures. Finally, if needed,
some quality sub-characteristics can be combined into
more general ones.

6) To align quality sub-characteristics with a quality model.
In this step, the alignment with an existing quality model
is established; i.e., the software quality sub-characteristics
that have been previously defined are related to others
already specified in the existing model. Depending on
the domain and nature of the software product, some new
quality characteristics can be specified, or existing ones
can be modified or excluded.

V. DEFINING A QUALITY MODEL FOR SEMANTIC
TECHNOLOGIES

This section describes the definition of a software quality
model in the domain of semantic technologies by following
the bottom-up method presented in the previous section.

A. Identifying Basic Measures

The starting point for defining software quality measures
has been the set of evaluation results obtained in the SEALS
project1, which has produced evaluation results for different
types of semantic technologies (ontology engineering tools
[15], reasoning systems [16], ontology matching tools [17],
semantic search tools [18], and semantic web service tools
[19]).

For each type of technology, different evaluation scenarios
were defined, using in each of them different test data as input.
In this step we identified the basic measures of each evaluation
scenario (i.e., those outputs directly produced by the software
during the evaluation).

Due to space reasons, we cannot present details about all
evaluation scenarios. Therefore, we just present the outcomes
of each step for one concrete scenario, that of evaluating the
conformance of ontology engineering tools.

Different test suites are used for evaluating the conformance
of ontology engineering tools, which are composed of different
test cases each containing

• Origin ontology. The ontology to be used as input.
A test case execution consists in importing the file contain-

ing an origin ontology (Oi) into the tool, and then exporting
the imported ontology to another ontology file (OII

i), as shown
in Fig 1.

Fig. 1: Steps of a conformance test execution.

The basic measures obtained after a test case execution are
• Final ontology. The ontology that is produced by the tool

when importing and exporting the origin ontology.
• Execution Problem. Whether there were any execution

problems in the tool when importing and exporting the
origin ontology.

B. Identifying Derived Measures

Based on the test data and the basic measures of one test
execution, the following derived measures were specified:

• Information added. The information added to the origin
ontology after importing and exporting it.

• Information lost. The information lost from the origin
ontology after importing and exporting it.

1http://www.seals-project.eu

28 29

• Structurally equivalent. Whether the origin ontology and
the final one are structurally equivalent.

• Semantically equivalent. Whether the origin ontology and
the final one are semantically equivalent.

• Conformance. Whether the ontology has been imported
and exported correctly with no addition or loss of infor-
mation.

C. Identifying Quality Measures

From the derived measures in the conformance scenario, the
following quality measures were obtained:

• Ontology language component support. Whether the tool
fully supports an ontology language component.

• Ontology language component coverage. The ratio of
ontology components that are shared by a tool internal
model and an ontology language model.

• Ontology information persistence. The ratio of informa-
tion additions or losses when importing and exporting
ontologies.

• Execution errors. The ratio of tool execution errors when
importing and exporting ontologies.

Similarly to the example of the conformance evaluation
presented above, we have defined measures for the other types
of tools. Table II summarizes the results obtained.

TABLE II: Number of measures obtained for semantic tech-
nologies.

Tool\Measures Basic Derived Quality
Ontology engineering tools 7 20 8
Ontology matching tools 1 3 4
Reasoning systems 7 0 8
Semantic search tools 12 11 21
Semantic web service tools 5 10 11
Total 27 40 50

D. Specifying Relationships Between Measures

We have identified the relationships between measures in a
formal way by defining the formulas used for obtaining derived
and quality measures.

For example, the formula for the Information added derived
measure calculates the structural difference between the origin
and final ontologies:

Final ontology − Origin ontology

Similarly, the formula for the Execution errors quality
measure calculates the percentage of tests with execution
problems:

tests where Execution problem = true
tests

× 100

E. Defining Domain-Specific Quality Sub-characteristics

In this step, from the quality measures previously identified,
we defined the set of quality sub-characteristics that are
affected by those measures. In some cases we were able to
reuse existing quality sub-characteristics but, in others, we had
to define domain-specific ones.

In the conformance evaluation scenario, based on the mea-
sures and analysis presented above, we have identified three
quality sub-characteristics:

• Ontology language model conformance. The degree to
which the knowledge representation model of a software
product adheres to the knowledge representation model
of an ontology language. It can be measured with two
different quality measures: Ontology language component
coverage, and Ontology language component support.

• Ontology processing accuracy. The accuracy of the pro-
cess of importing and exporting ontologies. It can be
measured with Ontology information persistence.

• Ontology processing robustness. The ability of the soft-
ware product to process ontologies correctly in the pres-
ence of invalid inputs or stressful environmental condi-
tions. It can be measured with Execution errors.

Fig. 2 presents the basic measures, derived measures, qual-
ity measures, and quality characteristics of the conformance
evaluation for ontology engineering tools.

In total, we have identified twelve semantic quality sub-
characteristics. Three of them are those described for the
conformance evaluation and the others are the following:

• Ontology language interoperability. The degree to which
the software product can interchange ontologies and use
the ontologies that have been interchanged.

• Reasoning accuracy. The accuracy of the reasoning pro-
cess.

• Ontology alignment accuracy. The accuracy of the match-
ing process.

• Semantic search accuracy. The accuracy of the semantic
search process.

• Semantic web service discovery accuracy. The accuracy
of the process of finding services that can be used to
fulfill a given requirement from the service requester.

• Ontology interchange accuracy. The accuracy of the
interchange of ontologies between tools.

• Ontology processing time behaviour. The capability of
the software product to provide appropriate response and
processing times when working with ontologies.

• Reasoning time behaviour. The capability of the software
product to provide appropriate response and processing
times when performing reasoning tasks.

• Semantic search time behaviour. The capability of the
software product to provide appropriate response and
processing times when performing search tasks.

Apart from these domain-specific quality sub-
characteristics, we have identified the following general
ones: Operability, Productivity, and Satisfaction.

Finally, we have also identified those sub-characteristics that
are contained into others (e.g., Reasoning time behaviour is a
sub-characteristic of Ontology processing time behaviour).

F. Aligning Quality Sub-Characteristics with a Quality Model
As ISO 9126 has been used by a number of authors,

as mentioned in Section III, we have also adopted it for
constructing the quality model for semantic technologies.

28 29

Fig. 2: Entities in the conformance scenario for ontology engineering tools.

In the previous step we have identified the set of quality sub-
characteristics specific for semantic technologies. In this step,
all the identified sub-characteristics were properly assigned to
the ones that already existed in the ISO 9126 quality model.

For instance, Ontology language model conformance is de-
fined as a sub-characteristic of Functionality compliance (i.e.,
the capability of the software product to adhere to standards,
conventions or regulations in laws and similar prescriptions
relating to functionality).

VI. QUALITY MODEL VALIDATION

Since we started from a specific set of evaluations in order
to define the quality model for semantic technologies, we
performed a literature review to validate the quality model and
to complete it if needed. The review was performed according
to the procedures described in [20] and, due to space reasons,
we will only present the final results.

We have analysed the proceedings of the two most relevant
conferences in the semantic area: the International Semantic
Web Conference (nine editions) and the European Semantic
Web Conference (seven editions) to identify those publications
that deal with semantic technology evaluation. We focused
on publications that describe evaluation methods or suggest
measures for evaluation as well as on publications that suggest
new algorithms (e.g., for reasoning or semantic web service
discovery) that are also evaluated.

In total, we have analysed fifty seven publications. Table
III shows an overview of this analysis including, for each type
of semantic technology, the evaluation measures used. Every
evaluation measure is classified according to the quality sub-
characteristics that our model describes and the number of
occurrences is shown in brackets.

From the analysis we can observe that the quality model
that we have proposed is quite complete regarding current
semantic technology evaluations. Almost all the measures
described in the publications fit the quality characteristics that
our model describes. However, some measures found did not
fit our model, and therefore we have defined new quality
characteristics for them. These are

• Semantic web service time behaviour. The capability of
the software product to provide appropriate response and
processing times when performing semantic web service
discovery tasks.

TABLE III: Measures used in conference publications.

Ontology engineering tools (2)
Ontology processing robustness: execution (1)
Ontology processing time behaviour: execution time (1)
Ontology import/export accuracy: information added/lost (1)
Ontology matching tools (21)
Ontology alignment accuracy: precision (19), recall (19), f-measure (13),
measure at cut-off point (1)
Reasoning and storage systems (18)
Reasoning time behaviour: classification time (5), execution time (5),
reasoning time (5), entailment time (1), labeling time (1), lattice operation
time (1), justification time (1)
Ontology processing time behaviour: loading time (4)
Reasoning accuracy: reasoner errors (1), correct results (7), wrong
classifications (1), fitness value (1)
Semantic search tools (5)
Semantic search time behaviour: query execution time (2), speed (1)
Semantic search accuracy: recall (4), precision (3), reciprocal rank (1),
f-measure (1), relevance (1)
Ontology processing time behaviour: loading time (1)
Operability: usability (2)
Semantic web service tools (11)
Semantic web service discovery accuracy: precision (12), recall (8), f-
measure (1), returned sources (1), bpref (1), reciprocal rank (1)

• Matching time behaviour. The capability of the software
product to provide appropriate response and processing
times when performing matching tasks.

Fig. 3 shows an overview of the quality model for semantic
technologies after completing it during the validation.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a new method for extending software
quality models, which is based on a bottom-up approach. It
starts from existing evaluations and continues defining quality
measures and quality sub-characteristics, which are aligned
with an existing quality model.

In practice, the quality model to be extended is taken
into account from the beginning of the method, even if the
alignment to such quality model is the last step of the method.
Therefore, it seems natural to follow a hybrid approach, which
combines the bottom-up and top-down approaches, and a
future extension of the method should also cover this approach.

We have used the method for defining a quality model for
semantic technologies, which extends the ISO 9126 software
quality model. Such quality model can provide a framework
for the evaluation and comparison of semantic technologies.

30 31

Fig. 3: External and internal quality characteristics for semantic technologies.

Although some problems with ISO 9126 have been identified
(as described in [8]), we have introduced quality measures
specific to semantic technologies, and we have also specified
functions for all derived and quality measures, which result in
reducing ambiguities in our model.

Furthermore, we can note that our quality model is easily
extensible and that new quality measures or characteristics
can be easily introduced and categorized, as shown during
the validation process.

During such validation, we have concentrated only on the
most relevant conferences in the semantic field. In order to get
more complete results, we plan to extend our analysis to other
conferences, as well as to relevant journals. This will help us
to further extend and validate the model.

The ISO 9126 standard is being replaced by the SQuaRE
standard; when the SQuaRE software quality model becomes
available, the proposed quality model for semantic technolo-
gies will be adapted to it.

A future use of the proposed quality model, based on
the evaluation results that are being obtained in the SEALS
project, is to build a recommendation system for semantic
technologies that will allow extracting semantic technology
roadmaps. Such a system will provide users with guidance
and recommendation of the semantic technologies that better
suit their needs.

Acknowledgments

This work is supported by the SEALS European project
(FP7-238975) and by the EspOnt project (CCG10-UPM/TIC-
5794) co-funded by the Universidad Politécnica de Madrid and
the Comunidad de Madrid.

Thanks to Rosario Plaza for reviewing the grammar of this
paper.

REFERENCES

[1] B. Behkamal, M. Kahani, and M. Akbari, “Customizing ISO 9126
quality model for evaluation of B2B applications,” Information and
software technology, vol. 51, no. 3, pp. 599–609, 2009.

[2] OntoWeb, “Ontoweb deliverable 1.3: A survey on ontology tools,” IST
OntoWeb Thematic Network, Tech. Rep., May 2002.

[3] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 3, no. 2-3, pp. 158–182, 2005.

[4] P. Lambrix, M. Habbouche, and M. Perez, “Evaluation of ontology
development tools for bioinformatics,” Bioinformatics, vol. 19, no. 12,
p. 1564, 2003.

[5] R. Garcı́a-Castro and A. Gómez-Pérez, “Interoperability results for
Semantic Web technologies using OWL as the interchange language,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 8, pp. 278–291, November 2010.

[6] ISO, “ISO/IEC 9126-1:2001, Software engineering – Product quality –
Part 1: Quality model,” International Organization for Standardization,
Tech. Rep., 2001.

[7] P. Botella, X. Burgués, J. Carvallo, X. Franch, J. Pastor, and C. Quer,
“Towards a quality model for the selection of ERP systems,” Component-
Based Software Quality, pp. 225–245, 2003.

[8] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use and usefulness of
the ISO/IEC 9126 quality standard,” in 2005 International Symposium
on Empirical Software Engineering, 2005. IEEE, 2005, p. 7.

[9] J. Carvallo, X. Franch, and C. Quer, “Defining a quality model for mail
servers,” in COTS-based software systems: second international confer-
ence, ICCBSS 2003, Ottawa, Ont., February 10-13, 2003: proceedings.
Springer-Verlag New York Inc, 2003, p. 51.

[10] H. Zulzalil, A. Ghani, M. Selamat, and R. Mahmod, “A Case Study to
Identify Quality Attributes Relationships for Web-based Applications,”
IJCSNS, vol. 8, no. 11, p. 215, 2008.

[11] I. Padayachee, P. Kotze, and A. van Der Merwe, “ISO 9126 external
systems quality characteristics, sub-characteristics and domain specific
criteria for evaluating e-Learning systems,” in The Southern African
Computer Lecturers’ Association, University of Pretoria, South Africa,
2010.

[12] R. Dromey, “Software Product Quality: Theory, Model, and Practice,”
Software Quality Institute, Brisbane, Australia, 1998.

[13] X. Franch and J. Carvallo, “Using quality models in software package
selection,” Software, IEEE, vol. 20, no. 1, pp. 34–41, 2003.

[14] M. Bombardieri and F. Fontana, “A specialisation of the SQuaRE quality
model for the evaluation of the software evolution and maintenance
activity,” in Automated Software Engineering-Workshops, 2008. ASE
Workshops 2008. 23rd IEEE/ACM International Conference on. IEEE,
pp. 110–113.

[15] R. Garcı́a-Castro, S. Grimm, I. Toma, M. Schneider, A. Marte, and S. Ty-
maniuk, “D10.3 Results of the first evaluation of ontology engineering
tools,” SEALS Consortium, Tech. Rep., 2010.

[16] M. Yatskevich and A. Marte, “D11.3 Results of the first evaluation of
advanced reasoning systems,” SEALS Consortium, Tech. Rep., 2010.

[17] J. Euzenat, C. Meilicke, C. Trojahn, and O. Šváb Zamazal, “D12.3
Results of the first evaluation of matching tools,” SEALS Consortium,
Tech. Rep., 2010.

[18] S. N. Wrigley, K. Elbedweihy, D. Reinhard, A. Bernstein, and
F. Ciravegna, “D13.3 Results of the first evaluation of semantic search
tools,” SEALS Consortium, Tech. Rep., 2010.

[19] S. Tymaniuk, L. Cabral, D. Winkler, and I. Toma, “D14.3 Results of the
first evaluation of Semantic Web Service tools,” SEALS Consortium,
Tech. Rep., 2010.

[20] B. Kitchenham, “Procedures for performing systematic reviews,” Joint
Technical Report NICTA Technical Report 0400011T1, vol. 33, 2004.

30 31

A Technology of Profiling Inter-procedural Paths

Lulu Wang, Bixin Li

School of Computer Science and Engineering, Southeast University, Nanjing, China
Key Lab of Computer Network and Information Integration (Southeast University), Ministry of Education

Email: {wanglulu, bx.li}@seu.edu.cn

Abstract

This paper presents a novel approach (called PIP) for
profiling inter-procedural paths, which makes extensions
of previous work to inter-procedural situations. An inter-
procedural profiling model, PCCG (Polymorphic Cluster
Call Graph), is presented, which describes polymorphism,
divides procedures into clusters, and improves profiling
efficiencies. Theoretical analysis and experimental results
show that different clustering strategies of PCCG have
different advantages (lower cost in instrumentation or in
execution) can meet custom needs. Compared with existing
work, PIP is more practical as it profiles more cyclic paths,
deals with polymorphism, and is totally accurate.

Keywords—Path profiling; inter-procedural paths; poly-
morphism; dynamic analysis;

I. Introduction

Path profiling records the frequency of each executed
path. It was introduced by Ball and Larus [1] in Efficient
Path Profiling (EPP), which could enable the collection of
profiles for acyclic intra-procedural paths at a reasonable
cost. Since then, path profiles have been extensively used
in a wide variety of areas such as computer architecture,
compilers, debugging, program testing, and software main-
tenance. But same as EPP, most of these extensions work
in single-procedure situations, that is, with inter-procedural
paths still untreated. However, it is often desirable to obtain
frequency counts of paths that extend across procedure
boundaries [2].

Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and no. 60973149, and partially
Supported by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, and partially by National High Technology
Research and Development Program under Grant No.2008AA01Z113.

Correspondence to: Bixin Li, School of Computer Science and Engi-
neering, Southeast University, Nanjing, China. E-mail: bx.li@seu.edu.cn

Melski et al. have proposed an approach for profiling
inter-procedural paths. They connect the flows of all pro-
cedures together and use EPP to enumerate the paths in
this combined flow graph [3]. But this method can only
profile paths without any backedges in any procedures.

Tallam et al. propose an approximate profiling which
can deal with backedges, and extend this approach to
profile inter-procedural paths [2]. But this method is not
completely accurate and has severe restrictions on loops.

So in a word, existing inter-procedural profiling meth-
ods can only profile paths without backedges accurately,
or profile certain cyclic paths inaccurately. In this paper,
we gives an extension of PAP (Profiling All Paths) [4]
to address the problem of collecting accurate profiles for
inter-procedural paths (including loop iterations and proce-
dure calls), which is called PIP (Profiling Inter-procedural
Paths). PIP algorithm is based on an inter-procedural con-
trol flow model, PCCG (Polymorphic Cluster Call Graph),
which describes polymorphic relations.

The rest of this paper is organized as follows: Section
II illustrates the preliminaries; Section III discusses the
details of PIP; Section IV gives experimental evaluations;
Section V summarizes related work and Section VI con-
cludes the paper.

II. Preliminaries

This section gives necessary basis. First EPP is used to
explain the basic methodology of path profiling, then PAP
is illustrated in details since PIP is quite related to it.

A. EPP

In order to collect path profiles, existing techniques use
probe variable(s), that is, they instrument probe statements
for the variable(s) into the program under profiling, and
these statements are executed as the program runs. When

32 33

an execution is over, the value of the variable(s) (so called
pathid) will determine the path of the execution. This
profiling process requires a unique pathid for each path
to make profiles correct and accurate.

EPP uses one integer variable 𝑟𝑟, and its probes are in
the form of “𝑟𝑟 := 𝑟𝑟 + 𝑖𝑖”, where “𝑖𝑖” is the edge weight,
computed by BL algorithm [1]. Fig.1(a) shows how EPP
computes the edge weights in a DAG (Directed Acyclic
Graph, “𝑁𝑁𝑎𝑎” means the number of paths from node “𝑎𝑎”).
EPP gives each acyclic path a unique pathid, so that the
probe value of variant “𝑟𝑟” can identify the corresponding
path after the execution.

Fig. 1. Probes of EPP and PAP

B. PAP

In order to profile all paths (especially cyclic paths), we
have presented PAP algorithm, which instruments probes
in the form of “𝑟𝑟 := 𝑟𝑟 ∗ 𝑠𝑠 + 𝑖𝑖” (“𝑠𝑠(𝑖𝑖)” for short, 𝑠𝑠 is
called weight and i is called remainder) on the inedges
of each CFG node 𝑁𝑁 , where 𝑠𝑠 is the indegree of 𝑁𝑁 , and
𝑖𝑖 is the serial number of the inedge, as Fig.1(b) shows
(single-inedge nodes don’t need probes). After executions,
using the probe value of 𝑟𝑟 we can acquire the whole path
by iteratively finding out the former node and restoring the
former probe value (this phase is called backwalk).

Different from EPP, PAP does not need to change
backedges, and can accurately profile both acyclic and
cyclic paths.

In order to deal with the probe-value overflowing that
may happen during executions, a breakpoint mechanism is
devised to use more storage to handle longer paths, i.e.,
when overflowing occurs, the position and probe value
before overflowing (called a breakpoint, which contains
an integer and a node), are recorded, and then the probe
variable is reset and current execution is continued. As
studied in [4], with several breakpoints for each path, PAP
can profile paths that are much longer and with more loops.

III. Inter-procedural Profiling

PIP’s steps can be briefly shown in Fig.2: code splitting
is used to handle polymorphism, as discussed in Section

III.A; procedure clustering and PCCG is used to reduce
the cost of code splitting, as discussed in Section III.B;
instrumentation and optimization of probes are discussed
in Section III.C; program execution and backwalking in
PIP make no differences to those in PAP, and are not
specially discussed here. For convenient explanation, intra-
procedural structures is ignored for PIP, since those can be
handled by PAP.

Fig. 3. An example of code splitting

A. Code Splitting

In polymorphic situations, every call edge, where poly-
morphism may happen, can be equally replaced by several
edges, which each stands for an actual call relation that
possibly occurs in some executions. By such replacement,
a polymorphic inter-procedural CFG can be transferred
into the same form of an intra-procedural CFG. As Fig.3
shows, class B extends class A, and overwrites A.m(). C.f()
calls A.m(), and in dynamic scenarios, B.m() may be called
instead of A.m(). To deal with such a polymorphic call,
we can simply split the call statement. As shown in Fig.3,
in the code of C.f(), the input parameter is verified and
the target callee procedure can be precisely fixed. And
correspondingly, the call edge is divided into two ones.

B. PCCG and Procedure Clustering

Though code splitting can handle polymorphic rela-
tions, it is still hard to perform when the inheritance
relations are very complicated, as one call may need to be
replaced by many calls. It is thought to make procedures
classified into clusters, and some code splitting may be
saved if the callees fall into one cluster.

In order to describe the polymorphic information which
uses one procedure to replace another in executions, this

32 33

Fig. 2. Framework of PIP

paper presents a new method-call model, PCCG, which is
a directed graph, and consists of three sets, 𝐶𝐶𝐶𝐶, 𝑃𝑃𝐶𝐶 and
𝐶𝐶𝐶𝐶:

∙ 𝐶𝐶𝐶𝐶 is the cluster set, where each cluster consists of
at least one procedure;

∙ 𝑃𝑃𝐶𝐶 is the procedure set, where each procedure is
contained by one cluster;

∙ 𝐶𝐶𝐶𝐶 is the set of call edges (including return edges),
where each edge points from a procedure to a cluster.

PCCG can be generated based on a call graph and
𝑃𝑃𝐶𝐶 (polymorphic edges), according to following steps:
first, the potential call edges are added to PCCG based
on 𝑃𝑃𝐶𝐶 (like how Fig.3 does); then the procedures with
polymorphic relations are clustered and redundant edges
are removed; at last, corresponding return edges are added
to the graph.

Fig. 4. A PCCG example

Fig.4 shows an example of how to generate a PCCG.
Fig.4(a) has five procedures (each is a single-procedure
cluster), and originally, there are only two calls, (A, C) and
(B, D). Based on three polymorphic relations (described as
dotted arrows) in it, three potential call edges are put on
the graph, (A, D), (A, E) and (B, E). Fig.4(b) classifies all
five procedures into two clusters, and removes redundant
call edges. After that, Fig.4(c) adds return edges on the
graph.

Based on PCCG, procedure clustering can be per-
formed, which leads to less code splitting because calling

procedures in one cluster does not need to be split.

C. Instrumentation and Optimization

1) Instrumentation: As given in [4], PAP instruments
all inedges of each CFG node sequentially. Here on PCCG,
PIP instruments all inedges of each cluster in the same
way, which also ensures a unique pathid for each inter-
procedural path. The difference is, in PAP, paths consist
of edges from node to node in CFG; while in PIP, paths
consist of edges from procedure to cluster in PCCG. Such
a difference does not affect the accuracy, because the latter
path representation can precisely identify the former one.

2) Optimization: In a PCCG, each call edge points
from a procedure to a cluster, so does each return edge.
For a procedure in the callee cluster, if all its return edges
have the same probe on them, then these probes can be
replaced by only one probe, which is at the end of the
procedure instead of on return edges. This replacement
does not influence the execution of probes along any path,
but reduces the probe amount and makes instrumentation
easier to perform.

To make more probes replaceable, if a callee cluster has
multi return edges, the weight of probes on these edges is
increased, then the remainders of them could be reassigned
same if possible.

Fig. 5. An example of optimization

An example is shown in Fig.5 to explain such an
optimization. Fig.5(a) displays three clusters, and the callee

34 35

cluster contains two procedures, C and D, which are called
by A and B. The cluster of A has one other inedge, and
the cluster of B has three other inedges (call edges and
return edges). Since C and D return into both A and B, A
has three inedges in all and the weight of probes on them
is 3, while B has five and the weight is 5. The probe on
the return edge (C, A) is 3(1), and the probe on (C, B)
is 5(4). To make the probes on (C, A) and (C, B) same,
5 is used as the uniform weight, and the probes can be
reassigned as Fig.5(b) shows, where all return edges from
C has the same probe 5(4). After that, this probe can be
put to the end of C, and only one probe is needed instead
of two. So does procedure D. By such a process, weights
“spread” along the return edges from a procedure, and the
amount of probes gets reduced.

From all discussed above, PIP algorithm is given in
Algorithm 1.

Input: 𝑃𝑃𝑃𝑃 : the set of procedures
𝐶𝐶𝐶𝐶 : call edges
𝑃𝑃𝐶𝐶 : polymorphic edges
𝑠𝑠𝑠𝑠 : the cluster strategy

Output: 𝑝𝑝𝑠𝑠 : the probe set
/* generate the PCCG */
use 𝑠𝑠𝑠𝑠 to cluster procedures and get 𝐶𝐶𝑃𝑃;1
initialize a PCCG with 𝐶𝐶𝑃𝑃, 𝑃𝑃𝑃𝑃 and 𝐶𝐶𝐶𝐶;2
remove redundant call edges and add return edges to the PCCG;3
/* compute probes */
foreach cluster 𝑠𝑠 in 𝐶𝐶𝑃𝑃 do4

int 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑠𝑠.fanIn(); //the indegree of c5
int 𝑤𝑤 = 0;6
foreach inedge 𝑤𝑤 → 𝑠𝑠 do7

𝑝𝑝𝑠𝑠.addProbe(𝑤𝑤, 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑤𝑤++);8
end9

end10
/* optimize probes on return edges */
foreach procedure 𝑝𝑝 in 𝑃𝑃𝑃𝑃 do11

if 𝑝𝑝 returns into more than one cluster and can be optimized12
then

spread the weight to make return edges from 𝑝𝑝 have the13
same probe, assumed to be (w, i);
foreach return edge 𝑤𝑤 from 𝑝𝑝 do14

ps.remove(𝑤𝑤);15
end16
𝑝𝑝𝑠𝑠.add(𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤, w, i);17

end18
end19

Algorithm 1: PIP

D. The Trade-Off

From former parts of this section, PIP has been pre-
sented, which works on PCCGs, combines procedures into
clusters, and brings following benefits.

First, it reduces probes by optimizing their placements;
second, it saves code splitting when polymorphic calls
exist; third, it generates a chance of custom selection: the
bigger the clusters are, the easier instrumentation is; but
on the other hand, the more storage is needed since the
pathids get bigger as the weights grow.

So in clustering there is a trade-off between the conve-
nience of instrumentation and the storage cost of execu-
tions: fewer probes bring more storage.

IV. Experiment

As Fig.2 shows, for a program under profiling, PIP
needs the clustering strategy to perform. So here ex-
periments are carried out to watch the performances of
different strategies.

A. Measured Aspects

PIP’s overhead be classified into three categories, static
cost (the cost for instrumentation), storage cost (the cost
for storing pathids), and dynamic cost (mainly influenced
by the backwalk cost). Section III.D displays a trade-off
between static cost and storage cost. Here we explore the
relationship between static cost and dynamic cost.

For a strategy used by PIP, its static cost can be
measured by the probe number (which also represents
the storage cost) and code splitting; its dynamic cost can
be measured by the number of unique breakpoints since
fewer unique breakpoints lead to less backwalk cost since
duplicate breakpoints only need to be backwalked once.

So in order to test the efficiencies of different strategies,
we collect their probe amounts on the same PCCG and the
number of unique breakpoints on the same paths.

B. Tested Strategies

Some clustering strategies are presented and measured
in experiments:

∙ 𝑠𝑠𝑠𝑠: each cluster contains a single procedure;
∙ 𝑠𝑠𝑠𝑠: two procedures in one cluster if they have poly-

morphic relations;
∙ 𝑠𝑠𝑠𝑠: all procedures are in one cluster;
∙ 𝑠𝑠(𝑛𝑛): two procedures are in one cluster if they are

commonly called by 𝑛𝑛 or more procedures.
Obviously, 𝑠𝑠(1), 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 can avoid code splitting, and

𝑠𝑠(𝑘𝑘) needs no more code splitting than 𝑠𝑠(𝑘𝑘 + 1).
𝑠𝑠𝑠𝑠, 𝑠𝑠(2), 𝑠𝑠(3), 𝑠𝑠(4), 𝑠𝑠(5), 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠 are chosen to be

experimentally inspected on probe numbers.

C. Experimental Results

To perform these strategies, we randomly generate
PCCGs (sized of 100 procedures) and paths based on three
parameters:

∙ 𝑅𝑅𝑅𝑅 : the ratio of calls between each two procedures;
∙ 𝑁𝑁𝑅𝑅: the number of polymorphic relations;
∙ 𝐴𝐴𝑅𝑅𝐴𝐴: the average length of random paths.

34 35

Fig. 6. Experimental results of breakpoints with 1 path and 500 unique paths

Based on random PCCGs and random paths, we count
the probes needed by each strategy given above, and collect
the unique breakpoints of the paths.

With different assignments of parameters, the experi-
mental results of probe numbers and unique breakpoints
are shown in Fig.6, which contains two parts, each deals
with one path and 500 unique paths.

D. Analysis

From the results in Fig.6, we can draw following
observations and conclusions.

First, as in 1-path situation, the number of unique
breakpoints increases almost linearly as the path lengths
grow;

36 37

TABLE I. Comparison of related work
Techniques [3] [2] PIP

Cyclic no yes yes
Completely accurate yes no yes

Polymorphism handled no no yes
Overflowing handled no no yes

Second, generally in 1-path cases, if a strategy needs
fewer probes, then it needs more unique breakpoints; but
in case 3 of 1-path situation, compared with 𝑠𝑠(3), 𝑠𝑠𝑠𝑠 uses
fewer probes and still fewer unique breakpoints, which
means it is possible to find a strategy which performs well
in both aspects;

Third, as in 500-path situation, the growths of unique
breakpoints of some strategies, such as 𝑠𝑠𝑠𝑠, show obvious
nonlinearity. So it is known 𝑠𝑠𝑠𝑠 is more efficient than others
in both static cost and dynamic cost. Furthermore, it is
inferred that with longer unique paths executed, PIP can
use less average dynamic cost on a certain length; and
compared with 1-path situation, with more paths executed,
less average dynamic cost on each path.

V. Related work

As we know, during various profiling techniques, only
three papers [2, 3, 5] involve inter-procedural profiling.

Ammons et al. present Flow Sensitive Profiling and
Context Sensitive Profiling, which are combined together
to provide an efficient approximation for inter-procedural
path profiling [5].

Different from [5], [3] truly profiles paths with call and
return edges. It also makes an optimization on “multi calls”
to avoid profiling on some invalid paths.

In [2], Tallam et al. have extended their profiling into
inter-procedure scenarios, which can profile overlapping
paths. But though with high precision, their method is
approximate, and still has limitations on loops. On the
storage cost, a four-dimensional array is used to represent
inter-procedural overlapping paths, so it may cost much
space in complicated scenarios.

Moreover, neither of them consider polymorphic rela-
tions.

PIP extends PAP into inter-procedural situations, and
can profile all paths with finite loops accurately (with
enough storage). It divides procedures into clusters, and
perform an optimization in instrumentation, which can
reduce the amount of probes and improve the efficiency.

As shown in Table.I, PIP is compared with the ap-
proaches of [2, 3] in details. On one hand, PIP’ ability
is higher than other two techniques, i.e., PIP can profile
longer paths as well as paths with more loop iterations;

On the other hand, profiling longer paths leads to bigger
cost, as bigger pathids need more storages.

VI. Conclusion

Focused on profiling inter-procedural paths, this paper
has presented a profiling model PCCG and the PIP algo-
rithm. PIP can handle paths with loops, across procedural
boundaries, and under polymorphic situations, i.e., it gives
an accurately profiling for cyclic inter-procedural paths,
which would be useful in program understanding, profile-
directed optimizations, and so on. By optimizations on
procedure clustering and probe locations, it is easier to
perform and achieves higher efficiency.

From theoretical analysis and experimental results
based on random PCCGs and paths, we can draw following
conclusions:

∙ Bigger clusters, which need less code splitting and
fewer probes, result in less static cost;

∙ A trade-off exists between static cost and storage
cost;

∙ With certain strategies used, PIP’s dynamic cost is
more efficient as more and longer paths are executed:
its growth is obviously sublinear as the number of
unique path and the average path length increase;

∙ Different clustering strategies for clustering give dif-
ferent benefits.

Furthermore, as discussed in Section IV.D, a proper
strategy needs to be chosen based on the three types
of cost. Although four types of strategies are tested in
experiments, it is still a further problem to inspect more
types, and to explore an algorithm for searching optimal
strategies.

References

[1] T. Ball and J. R. Larus. Efficient path profiling.
In: International Symposium on Microarchitecture
(MICRO), 1996. 46-57

[2] S. Tallam, X. Zhang, and R. Gupta. Extending path
profiling across loop backedges and procedure bound-
aries. In: International Symposium on Code Genera-
tion and Optimization (CGO), 2004. 251-264

[3] D. Melski, T. W. Reps. Interprocedural Path Profiling.
In: Proceedings of the 8th International Conference
on Compiler (CC), 1999. 47-62

[4] L. Wang, B. Li, X. Zhou. Profiling of All Paths.
Submitted to JSS.

[5] G. Ammons, T. Ball, J. R. Larus. Exploiting Hard-
ware Performance Counters with Flow and Con-
text Sensitive Profiling. In: SIGPLAN conference on
Programming language design and implementation
(PLDI), 1997. 85-96

36 37

Efficiency and portability: guidelines to develop
websites

Cleriston Araujo Chiuchi, Rogéria Cristiane Gratão de Souza, Adriana Barbosa Santos, Carlos Roberto Valêncio
Computer Science and Statistics Departament

UNESP – São Paulo State University
São José do Rio Preto, São Paulo, Brazil

cleriston_cac@hotmail.com, {rogeria, adriana, valencio}@ibilce.unesp.br

Abstract— The use of the Internet as a means of ensuring greater
visibility for products, services and information offered by
companies is gaining strength in recent decades. However, it is
known that to ensure satisfaction and subsequent virtual
customer loyalty, it is necessary to guarantee the quality of the
websites, allowing indiscriminate access regardless of the
resources used, as well as rapid responses to possible requests. In
order to assist this process, this paper presents a set of guidelines
for the development of websites having quality characteristics,
efficiency and portability as per ISO 9126 norms. An
observational analysis of e-commerce websites was done which
showed that they are inadequate as to the proposed guidelines,
making them difficult to access available content. Therefore, the
adoption of the proposed guidelines can greatly contribute to
increasing the quality of websites and, consequently, enable quick
and effective access regardless of the resources used.

Keywords - websites quality assurance; websites development
guidelines; efficiency and portability characteristics

I. INTRODUCTION

Internet use has grown amazingly and is increasing in the
number of new users. This has encouraged many companies to
migrate the publicity of their products and services to the
Internet, seeking access to a larger public. However, this
entails the need to guarantee the users indiscriminate access to
documents, products and services, regardless of where they are
and the device used. With this scenario, it is necessary to
develop new techniques to help the process of quality
assurance, since the websites have unique features not offered
by traditional software engineering.

This article then presents a set of guidelines that
contributes to the creation of websites with emphasis on
quality characteristics of efficiency and portability, as defined
in ISO / IEC 9126 [1], including the need to ensure agility and
indiscriminate access to information.

This article is organized as follows: section 2 presents
related work in software quality; section 3 presents the
guidelines established in this work; section 4 presents the
results of an observational analysis undertaken in the context
of Brazilian e-commerce websites in relation to proposed
guidelines; and finally section 5 presents the conclusion.

II. RELATED WORK

Quality is an important factor for any software, regardless
of their characteristics and restrictions. The ISO / IEC 9126
[1] established a standard of quality characteristics to be
measured against during the development of software systems.

However, the Web environment is an even greater challenge
because of its unique characteristics, spawning various works
([2] [3] [4] [5] [6] [7]) which seek to establish elements that
will ensure the quality of a website project. In this context, it is
observed that quality efficiency and portability represent key
aspects in websites, since their quality and interaction
experience may be jeopardized by various factors, such as
access device, means of access and implementation of specific
features present in websites.

Works related to efficiency usually focus on usability, i.e.,
although important, efficiency is often not dealt with explicitly
in works that cover the quality theme in websites ([8] [9] [10],
[11]). The use of mobile devices to access websites makes it
necessary to adapt the websites to the hardware characteristics
of those devices [10]. Thus, the work related to portability
seeks to minimize such problems ([12], [13], [14],[15]), often
caused by lack of concern for quality when websites are
developed.

Because of the above, this paper focuses on providing a set
of guidelines in order to direct the development of quality
websites, with emphasis on efficiency and portability
characteristics, as defined in ISO / IEC 9126 [1]. With this, it
is possible to improve the quality of websites, helping to
ensure user satisfaction and guarantee indiscriminate access to
information.

III. GUIDELINES FOR DEVELOPING WEBSITES

Creating quality websites is a challenge to designers and
developers. To define the guidelines presented in this study,
current information regarding the use of websites was gathered
in order to assist the developers in the creation, with available
resources, of a website with quality that meets today’s
demands. In this context, we emphasize that today, although it
is possible to access the Web through various types of
networks and different connection speeds, the Internet speed
available to most of the population is less than 56 Kbps [9]. In
Brazil, the newest CETIC [16] research points out that about
34% of the population has an Internet connection of up to 256
Kbps, a fact that causes a number of problems to access some
websites, because it can create a barrier between the user and
application, substantially hindering access to useful
information. Against this scenario, in establishing guidelines,
this study considered only three speed levels: below 256 kbps;
from 256 kbps to 1 Mbps; and above 1Mbps.

The presentation of each of the proposed guidelines was
conducted according to a defined set of relevant information in

38 39

order to facilitate their understanding and use. This
combination is shown schematically in Figure 1 and detailed
below. It should be noted that for a given category, different
guidelines can be established.

Category: reflects the group that belongs to the established
guideline(s).

Name: assigns a unique identifier for the corresponding
guideline, based on the context of the metric considered as a
basis [3].

Guideline: defines rules to guide the design of websites as a
way to contribute to the production of results that meet the
requirements of portability and efficiency.

In the following subsections, the guidelines established to
aid in the development of websites following the proposed
structure are presented.

3.1 Category: Media

The use of media to interact with the user in the form of
tutorials or newsletters has been an element used in websites
as a means of assisting users in the performance of a task.

a) Name: Duration.

Guideline: Due to the high volatility of Internet users, videos
should not be too long, i.e., the recommended duration should
be between two and ten minutes [17], to ensure effective
execution and portability to different access devices.

b) Name: Response time.

Guideline: As to efficiency, the size of the videos and audios
can be defined by taking into account three factors: the first is
that a user needs to receive a response from the website up to
one second after the click [6], i.e., the user must be able
initiate the execution of video or audio until one second; the
second factor is the use of streaming data, which is the ability
to play media while downloading the rest of the file; finally,
the last factor is to consider the connection speed of the user.
Thus, in order to provide a satisfactory interaction with the
user, it is necessary that the download of a new second of
media be possible for each second done. Therefore, the media
size is defined by the equation 1:

Average size = download per second X display time
 (1)

In this context, based on a time range of two to ten minutes
from the previous guideline and the proposed levels of access
speed considered in this work, you can establish the following
maximum size of videos and audios described in Table 1. In
the item portability, it should be noted that most mobile
devices that are used to access videos and audios do not have
great processing power and storage capacity. Cell phones, for
instance, seldom have an internal memory size greater than
100 MB. Thus, the adoption of media to support the use of a

website should be done with caution so as to always consider
the size of such media related to desired portability.

Table 1. Maximum size of videos and audios
Media

Speed 2 minutes 10 Minutes
up to 256 kbps up to 3,840 KB up to 19,200 KB
between 256 kbps
and 1 Mbps

between 3,840 KB and
17,520 KB

between 19,200 KB
and 87,600 KB

above 1 Mbps from 17,520 KB from 87,600 KB

c) Name: Image.

Guideline: Whereas a user can access information from a
website from a mobile device, more precisely with less
processing power such as cell phones, some precautions
should be taken in relation to the use of images. Therefore, to
improve the portability of the website, we suggest the
preferred use of JPEG and GIF in an attempt to ensure a better
user experience. To improve efficiency, we recommend that
the resolution be set correctly inside the tags, specifying the
value of the image that is loaded by the browser to prevent the
resizing of images loaded by the browser [17]. As an example
of the effectiveness of this policy, considering the use of
HTML, the implementation could be done by adding the width
and height attributes within the HTML image tag, as follows:

The use of actual image values of width and height helps the
browser to build the page properly, improving aspects of
portability and efficiency of websites related to different
devices and thus improving user experience.

3.2 Category: Maximum access time

The access time to a website represents an element that
will be part of the quality evaluation of the user, directly
influencing the user's decision about whether or not to
continue using that website.

Name: Loading rate

Guideline: The metrics considered in this guideline are
heavily dependent on the maximum download time that the
user is willing to wait to see the website or any additional
element. An additional feature is defined as being any external
component from the page the user wants to see, for example,
downloading a text file, an image with higher resolution, etc.
Nielsen [11] defines ten seconds as being the maximum time
users will wait before they decide to choose another page.
Taking into account this time and the download speed, it is
possible to calculate what the recommended size of a page or
additional element of the website should be. The page size is
the sum of all the sizes of each element that composes it, or is
the sum of all images, texts, scripts, animations, and other
elements that make up the website page. You can calculate the
maximum size with the following equation 2:

Maximum Size = download speed X maximum waiting time
(2)

There are videos that do not need a complete loading when
opening a page, since the total size of the video can be
accessed by streaming if the user so wishes. Therefore, the
size of the videos only represents the size of the application
that will play them. In developing websites focused entirely on

Figure 1 Structure of the guidelines.

Category:XXXXXXXX
Name : yyyyyyyyyyyyyyyyyy.
Guideline:yyyyyyyyyyyyyyyyyy.

Legend

Category

Guidelines

38 39

mobile phones, it is recommended that pages have sizes of up
to 20 KB [15]. As for the other devices, based on levels of
access speed considered in this work, you can establish the
following maximum sizes for a page described on Table 2:

Table 2. Maximum size for a page
Speed Size

up to 256 kbps up to 320 KB
between 256 kbps and 1 Mbps between 320 KB and 1,280 KB
above 1 Mbps from 1,280 KB

3.3 Category: Interface

The quality of the interface of a website aims to facilitate its
use by the user through the organization of its established
features.

a) Name: Text.

Guideline: It is recommended that websites be developed to
make available a version where the images are not loaded by
the browser whenever the user so wishes. This guideline is
motivated by two factors: the first is the inability of some
browsers to display the images and the second is to reduce the
amount of downloaded data, thus reducing the access time to
websites [18]. Moreover, it is necessary to allow the user to
browse the page without any loss, even without viewing the
images. As an example of how to put this guideline into effect,
considering the use of HTML, the implementation of a text-
only version could be done by adding the alt image tag within
the HTML, as follows:

< img alt=”Name of the picture” ...>
With this, instead of viewing the image, the user will only see
the information according to the tag. This is a feature that
provides benefits to access websites via mobile devices, since
it reduces the amount of information to be accessed, and
consequently stored, without affecting the usability of the
website.

b) Name: Title.

Guideline: The use of titles for all images of the website helps
the overall readability of the site and its use is recommended.

c) Name: Reading.

Guideline: The overall reading of the site is the user's ability
to understand the information contained in it. The overall
readability of the site, even when it is not displaying images,
should remain unchanged. Therefore, the guidelines related to
the text-only version and inclusion of titles in the images must
be implemented, so that the user has no trouble in
understanding the information even when not viewing the
images.

d) Name: Compactness.

Guideline: The navigation map is a representation in the form
of a tree structure of possible paths to be followed in a
website. Map compacting considers the number of levels
required to gain access to pages that have the desired
information. It is known that the less effort made by the user
to access the information he wants, better will be the
compactness of the navigational map. Therefore, the amount
of levels established in this guideline for the maximum size of
the navigational map, takes into account that the pages have

used the maximum loading rate proposed in the maximum
access time guideline. In addition, three other facts were
considered: 1) studies show that users should be able to
perform simple tasks within a website in one minute [10], 2)
the time visiting a website lasts from one to two minutes, so
the user must be able to reach the target website within that
time or he will give up [19], 3) a user would spend, on more
than 50% of the times, at least ten seconds to see each page of
the website [19]. Therefore, considering that of the two
minutes (average maximum time of one visit) the user can use
up to one minute to perform the proposed task, we can then
calculate the maximum amount of pages that can be visited
before reaching the last one through the following equation 3:

(3)

The remaining time is the time of the visit less the time spent
performing the task the user wants to accomplish. With that,
the maximum use of up to three pages is indicated for the
desired task to be accomplished. The high compactness of the
navigational map contributes to the ease of access to websites
through mobile devices, since they do not always have
elements of interaction, such as mouse or keyboard.

e) Name: Scroll.

Guideline: The need for scrolling or rolling of the website
page should be avoided. Studies show that the user will
choose, in more than 75% of the times, a link which is
available on the interface after the loading time. Therefore, the
developer should avoid the use of long pages. Mainly for cell
phones, this should be done due to the small size of their
screens.

f) Name: Words.

Guideline: Users of websites tend to read only a little of the
information contained on a page, and the more information
available, the less will the user read. Studies show that users
read at least 50% of the information contained on page that
has 111 words or less [8]. Above this amount, the percentage
of words read falls. Therefore, the use of short texts, with an
option to expand them if the reader so desires, is
recommended [8]. The use of few words improves
visualization of websites when accessed by mobile devices,
since they have very small screens.

g) Nome: Scripts and flash.

Guideline: The use of scripts and flash on websites influences
the user’s experience in different ways, depending on the
means of access used. The use of scripts can be very useful to
developers, providing a powerful tool which can often
improve elements related to the usability of websites.
However, the use of scripts and the use of flash animation
must be seen through a different perspective when developing
an application that will be accessed via mobile devices. The
different browsers used to access websites do not always have
today’s technologies so can cause serious problems,
preventing the user from accessing the desired information.
Therefore, one should avoid incorporating scripts and flash on
items considered essential in the website.

40 41

h) Name: Map.

Guideline: The use of a navigational map, when downloading
several pages of the website, helps the user to quickly locate
the desired information without the need for extensive
searching. Accessing the website through networks that have a
low speed or high cost per KB, the use of the navigational map
can reduce the time needed to reach the desired information.

i) Name: Dimension.

Guideline: Setting the size of the resolution established for a
monitor may affect the experience that the user will have with
the website. According to a study conducted by Market net
share1, about 21% of Internet users use a 1024x768 resolution
and 17% a 1280x800. Due to this, the use of one of the two
aforementioned resolutions is recommended to better serve
users. In the category of mobile devices, specifically for
mobile phones, the instruction is to use pages having a width
of at least 120 pixels. Currently most mobile browsers
implement functions that facilitate the viewing of websites
with resolutions greater than this value [19].

j) Name: Frame.

Guideline: A frameset is a tag used in the HTML that gives
the developer the division of the website in multiple frames,
including the loading of other pages within each of these
frames. When the Web started, the use of frames to create sites
was very common, but due to problems related to navigation
and location of pages by search engines, frames were
gradually forgotten and currently only a few websites still use
them. Therefore, it is recommended not to use frames in a
website.

k) Name: Search.

Guideline: It is recommended that a search engine on the
website be created for users to be able to quickly look for the
content they want without the need for an exhaustive search
through the site.

IV. WEBSITES ANALISIS

The Internet has changed the way how companies conduct
their business; it has become increasingly vital to their
success. In recent years, e-commerce has grown and now
moves billions of dollars in the global economy. In Brazil, e-
commerce profit grew 30% in 2009 and peaked at 6.3 billion
dollars2. According to [20], 33% of the people already use
mobile phones to buy goods over the Web and 47% to
compare prices of products before purchasing. Another
important fact is that users prefer to access the websites
available on www instead of applications developed
specifically for mobile phones.

Given the importance of the use of Internet for
dissemination of company products and the need to develop
quality websites accessible through any device, which are
decisive factors for customer satisfaction, this article examined
five Brazilian e-commerce websites: Americanas.com
(www.americanas.com.br); Submarino

1 http://marketshare.hitslink.com/report.aspx?qprid=17

2 http://www.e-bit.com.br

(www.submarino.com.br) ; NetShoes (www.netshoes.com.br);
Compra Fácil (www.comprafacil.com.br); Saraiva
(www.saraiva.com.br). The purpose of this analysis was to
verify the impact of the adequacy, or not, to guidelines which
aim to ensure indiscriminate access to information on
websites, thus increasing the visibility of products and services
and ensuring user satisfaction.

The analysis was done to rate total adequacy (T), partial
(P) or inadequacy (I) of websites regarding the proposed
guidelines, using the following access devices: a desktop, a
laptop and a smartphone. To do this, we adopted that for the
guidelines that have a set of values that vary according to the
provided resources, we analyze the narrower range of values.
Thus, the established connection speed for analysis was up to
256 kbps, which is the most used in Brazil. Moreover, it was
observed that the browser used by smartphones and notebooks
did not display images. Results are shown in Table 3.

Table 3. Web Site Analysis
Analyzed Websites

Guidelines

A
m

er
ic

an
as

Su
ba

m
rin

o

N
et

sh
oe

s

Co
m

pr
a

Fá
ci

l

Sa
ra

iv
a

Media
 01- Length T T T T -
 02- Size I I I I -
 03- Images P I I T I
Maximun access time
 04- Loading Rate I I I I I
Interface
 05- Text P P P P P
 06- Title T T T T T
 07- Reading T P P T T
 08- Compactness I I I I I
 09- Scroll I I I I I
 10- Word I I I I I
 11- Scripts and flash I I I I I
 12- Map I I I I T
 13- Dimension I I I I I
 14- Frame T T T T T
 15- Search T T T T T

4.1 Media
For this category, we found that this feature is beginning to

be explored by Brazilian e-commerce websites as a way to
demonstrate the benefits offered by their products.
Furthermore, we observed that, generally, video viewing is
done through a video portal available on the Internet, which
makes access via smartphone difficult. Among the five
analyzed websites, four had videos which only rated total
adequacy for the "Length” guideline. Moreover, the guideline
"Size" was not followed in any of the analyzed cases so,
consequently, the efficiency of devices used for accessing was
lacking. As for the "Images", only one of the websites had
total adequacy to the guideline. The remaining images had
been resized or without its actual size defined in the tag, which
resulted in a partial rate for one site and inadequacy for the
other three. This deficiency has led to problems related to
portability and efficiency during the analysis, reducing the

40 41

quality of user experience when accessing the site and causing
the unnecessary loading of information and poor design of the
page by the browser to a smartphone or notebook.

4.2 Maximum access time
In the guideline "Loading Rate" all websites examined had

pages that exceeded the size limit to the speed selected. As a
result, there were difficulties in accessing information through
different devices, significantly jeopardizing desired efficiency.

4.3 Interface

In this category it was possible to observe some critical
points regarding the efficiency and portability of analyzed
websites. The guideline "Text" had been partially followed in
the five analyzed websites as it was found that none of the
websites provided a function that allowed the user to not
access the images. This led to serious problems because the
purchase button disappeared and was not easily found.

During the use of a smartphone, it became evident that the
deficiency in this category was because guidelines were not
followed, endangering, in many cases, the use of the website
and causing a loss of quality. The guideline "Title" was fully
met in all websites. The guideline "Reading" was met in part
in two websites, jeopardizing the quality of interaction with
websites when it was not possible to view images.

 The guideline "Compactness" could be considered as met
only in situations where you used the search as way to find the
desired product. However, we found that when this feature
was not used, the amount of levels needed to access the page
with the desired information went beyond the limit with three
pages. Moreover, the guidelines "Scroll", "Word" and
"Dimension" were not met in any of the analyzed websites,
making it difficult to visualize the information shown. The
inadequacy of websites in relation to the "Scripts and flash”
guideline caused a big problem when accessed via smartphone
as this device does not support these technologies.

Thus, during tests with smartphones, the use with scripts
that were not supported by the device prevented the access to
links and thus denied access to various areas of the websites.
The guideline "Map", rated total adequacy in only one of the
analyzed websites. This made it difficult to search for
information in the other websites. Finally, we observed that
the guidelines "Frame" and “Search” were fully met on all
websites. The guideline "Search" is used as a tool to aid
navigation in all analyzed websites, which could not be
otherwise when it comes to e-commerce.

V. CONCLUSION

It is undeniable that the search for websites that
satisfactorily meet the needs of users is a requirement of the
market and becomes a factor influencing customer loyalty and
consequently the visibility of organizations. This paper
therefore presented a set of guidelines that can help with the
construction of websites that allow indiscriminate access to
information regardless of resources.

Towards this end, the priority is for quality characteristics,
portability and efficiency. In e-commerce websites,
availability and easy access for users is an important element

for the success of the enterprise. As a result of the validation
performed on five Brazilian e-commerce websites, we
observed that the ones that only partially met the guidelines
established in this work, or simply did not follow them, had
their access to information jeopardized by low efficiency and
lack of portability. Therefore, we conclude that more attention
is needed to the design quality of a website as a way of
ensuring greater availability and ease of access, regardless of
the devices and network used.

REFERENCES

[1] ISO/IEC 9126. (2001) Software engineering — Product quality, 2001.
[2] DiLucca, G.A., Fasolino, A.R., Tramontata, P., Visagio, C.A. (2004) .

Towards the definition of a maintainability model for web applications.
8º European Conference on Software Maintenance and Re-engineering.
Tempere, 2004.

[3] Calero, C., Ruiz, J., Piattini, M. (2005). Classifying web metrics using
the web quality model. Online Information Review. vol. 29, Nº 3, pp.
227-248. 2005.

[4] Welling, R., White, L. (2006). Website Performance measurement:
promise and reality. Managing Service Quality. vol. 6, pp. 654-670.
2006.

[5] Lee, Y., Yeom, G. (2007). A Quality Chain Methodology for Ternary
Web Services Quality View. 5th ACIS International Conference on
Software Engineering Research, Management & Applications (SERA
2007), pp. 91-97. 2007.

[6] Behkamal, B., Kahani, M., Akbari, M. K. (2009). Customizing ISO/IEC
9126 quality model for evaluation of B2B applications. Information and
Software Technology. vol. 51. pp. 599-609. 2009.

[7] Choudhury, M. M., Choudhury, M. A. Identification of the caracteristics
of e-commerce websites. Webology, 7(1), Article 77. Available at:
http://www.webology.org/2010/v7n1/a77.html 2010.

[8] Nielsen, J. (2008) Velocity How Little Do Users Read?
http://www.useit.com/alertbox/percent-text-read.html . 2008.

[9] Nielsen, J. (2009a) Mobile Web 2009 = Desktop Web 1998
http://www.useit.com/alertbox/mobile-usability.html . 2009.

[10] Nielsen, J. (2009b). Mobile Usability.
http://www.useit.com/alertbox/mobile-usability.html. 2009.

[11] Nielsen, J. (2009c) Powers of 10: Time Scales in User Experience .
Disponível em: http://www.useit.com/alertbox/timeframes.html. 2009.

[12] Bertini, E., Santucci, G. (2004). Modelling Internet based applications
for designing mult-devices adaptative interfaces. Proceedings of the
Working Conference on Advanced Visual Interfaces AVI’04, Gallipoli,
Italy. pp. 252 – 256. 2004.

[13] Lencevicius, R., Metz, E. (2006). Performance Assertions for Mobile
Devices. Proceedings of the 2006 International Symposium on Software
Testing and Analysis ISSTA’06. Portland, EUA. pp. 225 – 232. 2006.

[14] Ahmadi, H., Kong, J. (2008). Efficient Web Browsing on Small Screens.
Proceedings of the Working Conference on Advanced Visual Interfaces,
AVI’08. Napoli, Italy. pp. 23-30. 2008.

[15] Ravi, J.; Yu, Z.; Shi, W. (2009). A survey on dynamic Web content
generation and delivery techniques. Journal of Network Computer
Applications. pp. 943-960 2009.

[16] CETIC pesquisa -- TIC DOMICÍLIOS e USUÁRIOS 2009 - ÁREA
URBANA. http://www.cetic.br/usuarios/tic/2009/index.htm. 2009. (in
portuguese)

[17] Nielsen, J. (2009d) Velocity of Media Consumption: TV vs. the Web.
http://www.useit.com/alertbox/media-velocity.html. 2009.

[18] W3C Web Content Accessibility Guidelines 2.0
http://www.w3.org/TR/WCAG20/ 2008.

[19] Weinreich, H.; Obendorf, H.; Herder, E.; Mayer, M. (2008). Not Quite
the Average: An Empirical Study of Web Use . ACM Transactions on
the Web, vol. 2, Nº. 5. 2008.

[20] Ertel, K. (2011) Explosion in Mobile Retail Provides Opportunity
for Retailers. For See Results. 2011 .

42 43

Automatic Deployment and Monitoring
of Software Processes: A Model-Driven Approach

Marília Aranha Freire, Fellipe Araújo Aleixo
Federal Institute of Education, Science and

Technology of Rio Grande do Norte (IFRN)

Natal, Brazil

{marilia.freire, fellipe.aleixo}@ifrn.edu.br

Uirá Kulesza, Eduardo Aranha, Roberta Coelho
Federal University of Rio Grande do Norte (UFRN),

Natal, Brazil

{uira, eduardo, roberta}@dimap.ufrn.br

Abstract— This paper presents a model-driven approach that
aims at monitoring the software development processes, through
the adoption of workflow management systems in order to allow
the automatic collection of quantitative measures during software
development project execution. Our approach provides support
to the definition, deployment, execution and monitoring of
software processes. It has been designed and implemented using
existing model-driven technologies, which promote the
transformation of process descriptions, specified using the
Eclipse Process Framework (EPF), to workflow specifications
that can be installed in the jBPM workflow engine.

Keywords: Software Processes, Model-Driven Development,
Process Metrics

I. INTRODUCTION

The increasing scale and complexity of software systems
requires the definition and application of systematic methods,
techniques and tools along the software life cycle. Large and
medium software projects demand the definition and
continuous improvement of software processes in order to
promote the productive development of high-quality software.
Over the last decades, the software engineering community has
proposed many methods and techniques for the definition and
improvement of software processes, such as: process models
[1], process productivity metrics [6], maturity models, and
process methodologies. All of them contribute to provide a
more systematics process definition, execution, measurement
and improvement. As a consequence, they contribute to the
quality and productivity of the software development process.

Recent research work has proposed notations and
formalisms to the process definition [1, 2]. Rational Method
Composer (RMC) [1] consists of a suite of commercial tools
for editing, modeling, viewing, configuration and publishing
specifications of software processes. The Eclipse Process
Framework (EPF) [2] is an open-source framework used for
process definition based on the Unified Modeling Architecture
(UMA) metamodel. In addition, there are many recent studies
that investigate the integration of approaches and languages for
process modeling and execution [3] [4] [5].

Despite the recent advances in the software process
research area, little effort has been made to integrate techniques
and tools that allow the definition, execution and monitoring of
software processes. The integration of such techniques and

tools can support the automated monitoring of software
processes, thus contributing to the process activity estimation,
quality control, productivity assessment, and project
management. Moreover, current research work has not
explored: (i) the adoption of existing and modern workflow
systems to execute software processes specified in workflow
languages; and (ii) the modeling, specification and integration
of process metrics with software processes, and their respective
deployment in workflow systems.

In this context, this paper presents a model-driven approach
to the definition, execution and monitoring of software
processes. The approach allows: (i) the modeling and
specification of software processes with their respective
productivity metrics; (ii) the automatic transformation of
software process specifications to workflow specifications; (iii)
the deployment and execution of these workflow specifications
that represent software processes in workflow engines; and (iv)
the monitoring of the process execution through a set of
specific metrics automatically collected.

Our approach has been implemented using existing model-
driven technologies. Software processes are specified using the
Eclipse Process Framework (EPF) and automatically
transformed to a specification written in the jPDL workflow
language, which can then be deployed and executed in the
jBPM workflow engine. QVTO and Accelleo languages are
used to support the model-to-model and model-to-text
transformations, respectively.

In addition to the support of automatic mapping of process
elements to workflow abstractions, our approach still
addresses: (i) the automatic weaving of metric collection
actions inside process model elements that are subsequently
refined to workflow actions or events - which will be
responsible to gather information used to quantify each process
productivity metric; and (ii) the process specification is also
refined to customize Java Server Faces (JSF) web pages, which
are used during the workflow execution to collect valuable
information about the current status of the software process.

The remainder of this paper is organized as follows. Section
II presents our model-driven approach for the definition,
execution and monitoring of software processes. Section III
details its current implementation and illustrates its application

42 43

to a software process instantiated from the OpenUP framework.
Section IV presents related works. Finally, Section V presents
the conclusions and points out future work directions.

II. AUTOMATIC EXECUTION AND MONITORING OF
SOFTWARE DEVELOPMENT PROCESSES

This section gives an overview of our model-driven
approach that provides support to the definition, deployment,
execution and monitoring of software processes. Next, we
describe the main systematic activities that define our
approach.

1. Process Modeling and Specification. The first activity of
our approach is the modeling and specification of a software
process. The EPF framework and associated tools are used to
support the process definition. Existing process frameworks,
such as OpenUP (available in the EPF repository), can be
reused and customized in this activity. The main responsible
for this activity is the process engineer, who produces EPF
process specifications (output artifact of this activity).

2. Metric Integration with Software Processes. After the
modeling and specification of the software process, our
approach allows process engineers to select and specify the
metrics that will be automatically monitored and collected
during the process execution. A pre-defined set of process
metrics is already available to be selected and composed with
the software process. The metrics integration involves the
definition of the start and the end activities of the monitored
software process. In order to support the metrics inclusion, we
defined a new metamodel which helps the definition and
integration of the metrics with EPF specifications. The output
of the metrics inclusion is the EPF process specification refined
with activities related to the automatic collection of the metrics.

3. Process to Workflow Transformation. In this activity, the
refined EPF process specification is automatically transformed
to a workflow description. To do so, we apply model-to-model
and model-to-text transformations to automatically map
abstractions from the process domain to the workflow domain,
thus enabling the instantiation and deployment of the software
process in a workflow engine. In the current implementation of
our approach, the EPF process is transformed to a workflow
specification described in the jPDL language, which is used by
the jBPM workflow system.

4. Workflow Deployment and Execution. The final activity
of our approach aims at deploying and executing the workflow
specification which represents a software process in the target
workflow engine. It allows monitoring the software process
activities, including the quantification of specific process
metrics related to the team and project productivity. Team
members of the software project under development must
interact with the workflow system in order to maintain updated
the progress of the process activities.

III. OUR APPROACH IN ACTION

In this section, we detail the implementation our approach
for process definition, customization and execution, using the
EPF framework and the jBPM workflow engine. In addition,
we illustrate the application of our approach to the OpenUP
software process through three different stages. Next

subsections describe how each activity of the proposed
approach was applied in order to define a software process
based on the OpenUP framework.

A. Process Modeling and Specification
The first activity of our approach is the process modeling

and specification. The Eclipse Process Framework (EPF) and
associated tools are used to support this activity. Existing
process frameworks, such as OpenUP, can be used as a base to
define the elements (activities, roles, artifacts, iterations) of the
development process to be modeled. Fig. 2 (Step 1) shows a
fragment of a process derived from the OpenUP. It models an
iteration of OpenUp Elaboration phase, with the following
activities highlighted: Identify and Refine Requirements,
Develop Solution Increment and Test Solution. Such activities
will be subject to be monitored during the execution of the
software processes.

The processes from the EPF framework are specified
according to the Unified Metamodel Architecture (UMA),
which is a subset of the Software Process Engineering
Metamodel (SPEM) defined by OMG. The UMA is specified
as an Ecore metamodel using the Eclipse Modeling Framework
(EMF). This brings facilities to the subsequent activities of our
approach, which requires the EPF model transformation with
different purposes. In addition, there are many existing model-
driven platforms and technologies that were developed based
on the EMF. We have also extended our approach to support
the specification and integration of metrics for the process
defined. After the process specification is necessary to define
the metrics that have to be intercalated with the process tasks.
Next subsection describes how this extension is implemented.

B. Metrics Integration in Software Processes
The metrics integration activity starts when the process

engineer selects and specifies the metrics from a pre-defined
set of process metrics, already available. In our current
approach implementation, we have initially focused in metrics
that quantify the duration of significant project tasks, such as
process tasks, activities, steps and iterations.

During the modeling of an OpenUP based process, we have
selected 2 project metrics: “Duration of UC requirements
tasks” and “Duration of UC development tasks”. The first one
is defined to intercept the process activities to count the time
interval required to accomplish activities related to the
specification of use cases. The last one is responsible to
intercept the process activities to count the time interval related
to activities for developing use cases (UC).

In order to promote the metric modeling and integration
with an EPF process model, it was necessary to define a
separate metric model. Fig. 1 shows the metamodel for
composing metrics in software processes. It allows specifying
where the metric will be quantified in the workflow that
represents the process execution. It supports process activities
and tasks like intervention points for the metrics collection.
Therefore, it is necessary to specify for each metric which
activities or tasks it must operate through a simplified metric
model. The metric metamodel defines several abstractions
related to a metric plan for a development process. The

44 45

MetricPlanModel element aggregates the set of metrics defined
for the process (Fig. 1).

The central model element is the Metric. It is used to
describe all metrics defined for the process. Each metric has a
unique identifier (id attribute), and a name and description that
provide information about the metric. The type parameter of
the Metric abstraction contains the metric type that can be one
of the following: hardData, softData and normalizedData. It is
specified as an enumeration named MetricType. This
classification identifies the kind of information used in
measurement [6]. The hard data information can be quantified
with little or no subjectivity. The soft data information refers to
the kind of information in which human opinions must be
evaluated or, in other words, information where precision is not
possible. Finally, the normalized data is used to more fairly
evaluate projects that have different characteristics. They
represent standard metrics for comparative purpose. Our
approach focuses currently only on the hard data
measurements.

The form property represents the type of event (task)
quantified by the metric. The continuous ColectType means
that the task cannot be paused and the metric value is computed
as the interval from start until the end of the task or activity
under measurement. The intercalated ColectType means that
the task can be paused and the metric value is the sum of each
timeslice spent on it. Finally, the unit property is used for
indicating the unit of the metric. For the metrics modeled for
our case study, we have the following option for the MetricUnit
enumeration: minutes or UC.

While modeling a metric plan, we have to choose a base
process model element that is used for the metric monitoring.
These model elements can be currently process activities
(ActivityMetric) or tasks (TaskMetric). The ActivityMetric
element is used to define that a metric must intercept processes
elements of the activity type. It adds two attributes for the
metric. The “activityBegin” and “activityEnd” attributes store,
respectively, the begin and end activity names that this metric
will intercept, thus representing a sequence of tasks to be
monitored. If the metric is intended to intercept only one
activity, the activityEnd attribute must be blank. If there is not a
direct flow between the activities, only these two activities will
be considered. Finally, the TaskMetric element adds only one
new attribute, named tasksBase, that must contain the names of
all tasks affected by the metric being defined.

Fig. 2 illustrates a metric model for our OpenUp based
process. It specifies two metrics for activities interceptions:
Duration of UC development tasks and Duration of UC
requirements tasks. The Duration of UC development tasks
metric, for example, is defined to intercept and count the time
spent the process activities related to the development of a use
case (UC). The model exemplified in Fig. 2 (Step 2) sets
activities from “develop_solution” activity to “test_solution”
activity. It means that all activities between them have to be
monitored. The value continuous setting to the form attribute
implies that the time measured by this metric is the time
interval between the start and the end of each activity specified.

C. Process to Workflow Transformation
After the modeling of a software process and the respective

metrics that must be collected during its execution, our
approach focuses on the model-to-model and model-to-text
transformations of the process model to a workflow
specification, which can be deployed in a workflow engine.

1) Model to Model Transformation

The M2M transformation is responsible for both: (i)
realizing the process and metrics integration; and (ii)
transforming the process model to a workflow specification.
When applying this transformation, all process activities and
tasks specified in the metric model must derivate new elements
that will be responsible for the automatic collection of the
productivity metrics. In addition, the transformation also maps
all the process abstractions modeled using the UMA
metamodel to workflow abstractions modeled using the jPDL
language, which is adopted by the jBPM workflow system.

Table 1 shows the mapping from the process abstractions
from the UMA metamodel to their respective jPDL workflow
element produced by the M2M transformation. As you can see,
there is a direct mapping between existing Activity elements in
the UMA process models to specific node elements from the
jPDL language. For example, the “Activity without
predecessor” is mapped to the “start-node”, and the “Activity
with more and one successor” is mapped to the “fork-node”.

TABLE I. MAPPINGS FOR JPDL ELEMENTS

UMA or Metric Element JPDL Element

Activity task-node

Worker-order transition

Activity without predecessor start-node

Activity without successor end-node

Activities with more than one successor fork-node

Activities with more than one predecessor join-node

Task task

Metric event and action

Figure 1 Metric Metamodel

44 45

On the other hand, each metric is associated with JPDL
actions elements that are triggered by JPDL event elements at
the end of each task execution. These actions elements are
responsible for the data collection through their association
with existing Java classes. Fig. 2 (Stage B), for example, shows
the result of the process-to-workflow transformation. As we
can see, there are two jPDL event elements responsible to
quantify the use case productivity metric for the different.

The integration between the UMA process model and our
metric model can be seen as a transversal composition. The
integration is performed using the QVTO transformation
language, which receives a UMA process model and a metric
model as input, and it produces as output a jPDL process
execution model (workflow model). Fig. 2 presents the metric
and process input models in the Stage A, as well as the jPDL
source code output in the Stage B. At the end of this stage, we
have a workflow model that is produced as the weaving of the
process and metrics models. Every measurement event can be
seen as an aspect advice that acts on the task execution. We
must consider that the jPDL elements that enable the
measurements (actions and events) are not mapped visually to
the workflow definition, but they are represented as elements
that can be triggered and processed in background during the
workflow execution. The task-node Test Solution, for example,
has an event of “task-end” type which contains an action
named UCDevTime that is associated with the
UCDevActionHandler class responsible for the metric
calculation.

2) Model to Text Transformation:

The model-to-text transformation is used in our approach to
map and refine the resulting jPDL specification – produced as
output from the model-to-model transformation – to workflow
code assets that will be deployed in the jBPM engine to
tracking and monitoring the software process execution. This
transformation has been written in Acceleo template language.
The jBPM workflow engine used in our approach enables the
creation of web forms implemented in Java Server Faces (JSF)
framework, from a jPDL workflow model definition. Such
forms can be used to track the process workflow with the aim
of storing information about the tasks and/or decisions taken
during its execution. The transformation was created for the
composition of the JSF dynamic web pages that will collect
additional information for the tasks of our workflow. Specific
jBPM taglibs are used in these JSF pages to indicate to the
workflow engine to run the form and associate it with the
process.

The model-to-text transformation is also responsible for
generating a configuration file (forms.xml) that associates each
task of our workflow to a JSF form and Java classes that
represent the custom actions responsible to quantify the
specified measurements.

The following code assets are produced as result of the
transformation: (i) process-definition.xml – the jPDL

specification that represents the process workflow; (ii)
forms.xml – a configuration file that associates the JSF pages
to the jPDL model generated by M2M transformation; (iii) JSF
web pages with forms for each process task; and (iv) Java
classes associated with each existing metric that will be
executed after the conclusion of specific workflow tasks as
described in the jPDL workflow specification. Due to space
restriction, these code assets are not presented in this paper, but
they can be found at [7].

D. Workflow Deployment and Execution
All code assets generated from the process-to-workflow

transformation are organized and stored in a jPDL project in
Eclipse IDE. Through simple manual settings, the jPDL project
and associated code assets can be easily deployed and run on
the jBPM workflow engine.

Fig. 2 (Stage C) shows the process execution after the
deployment of workflow code and configuration assets in the
jBPM engine. The execution can be monitored in the engine
console deployed as a web application in the JBoss application
server. After the deployment of the process workflow, the user
can run a new process instance. Step 4 of Fig. 2 shows a
process instance summary where links are displayed for
viewing information about the process execution, such as start
date, status, tasks instances, process image, process variables,
among other information.

Step 5 shows the Test_Solution task form during execution.
When performing each task, the software engineer (or project
manager) informs required information in the task execution
interface (JSF form), and she/he can end the task after its
completion by using the transition button. The process instance
can be checked for tracking issues at any time. All information
from the process workflow and process instances is stored in a
database.

Step 7 presents the task form during its execution. It shows
the id, name, status, start date, end date and actions regarding
the tasks that belong to the execution of the process workflow
instance. As you can see, the “Identify and Refine
Requirements” and “Develop Solution” tasks are running. Step
6 shows the values of process variables after the end of their
associated tasks. The form displays the value 1265 for the
variable UCDevTime, and the value 608 for the variable
UCReqTime. The values of these variables were quantified in
minutes and they are associated with the metrics responsible for
the measurement of time spent in the use cases requirements
specification and development during an iteration of the
OpenUP Elaboration phase. These metrics are collected for
each process iteration.

IV. RELATED WORK

Recent studies have promoted the integration of approaches
and languages for modeling the process execution. However,
these research works mainly emphasize the modeling of
processes using new proposed modeling languages. None of
them focuses monitoring software processes with automatic
metric gathering in workflow systems.

46 47

Figure 2 Approach in Action

46 47

Bendraou et al [3] presents a model-driven approach that
includes the mapping between UML4SPM and WS-BPEL
languages. Each language operates in a different domain:
software process definition and process execution, respectively.
The rationale for this choice was that both languages have their
strengths in both the modeling and execution purposes. The
transformation from process to workflow models has been
defined by a program written directly in the Java language.

Maciel et al [5] also defines a model-based approach to
software process modeling using MDA. The authors mention
that the approach is totally based on OMG standards, such as
SPEM 2.0, UML 2.0, MDA. However, the main focus of this
work is on the specification of processes elements. The
approach does not propose a complete transformation of
software processes specification in order to enable their
execution in workflow systems.

The approach proposed in this paper has in common with
the works mentioned above the aim of addressing the process
execution from existing process specification. However, our
work differs from the most research carried out because: (i) our
approach proposes automated model transformations between
technologies of process definition (EPF) and execution (jBPM)
widely used in industry and academia; (ii) it promotes the
generation of workflow code assets (configuration files, JSF
components and Java classes) that provides support to the
effective processes execution and monitoring in workflow
systems; and, last but not least, (iii) it enables the automatic
collection of metrics during the execution of the process while
minimizing the cost and cultural issues traditionally involved in
manual collection of measures in software projects.

V. CONCLUSIONS

This paper presented an approach to the definition,
deployment, execution and monitoring of software
development processes that supports the automatic collection
of quantitative measures during project execution. The
approach was implemented and evaluated using existing
model-driven technologies and platforms. Our implementation
enables the transformation of process specifications from the
Eclipse Process Framework (EPF) to jBPM workflow
specifications.

Our approach also proposes extensions to the process
modeling in order to support the collection of productivity
metrics during the process workflow execution. Each new
metric to be adopted in a software project must be specified in
a specific model. When modeling each process metric, it is
necessary to specify its points of intersection in the process.
These join points can be the beginning and end of
tasks/activities execution, or even the tasks/activities creation
and deletion. The task and activity model elements from the
process model act as join points, which can be intercepted to
collect information of interest to be stored for the metrics. As

described in the paper, the model-to-model transformation
from the process and metric models to a jPDL workflow
specification can be seen as a weaver that produces as output a
process execution description with a set of actions responsible
to automatically collect information during the process
execution.

As future and ongoing work, several refinements of the
approach can be done and some of them are already under
development. Currently, an industrial case study in applying
new metrics to measure productivity of a project is being
modeled and implemented. New measures are being explored
to extend our approach, such as the effort spent by team
members on project tasks or activities, and the number of bugs
or defects found, reported and corrected. In addition, we are
integrating the approach proposed in this paper with variability
management techniques and mechanisms previously proposed
[8]. The main goal is to provide support to the variability
modeling of process lines [9] and the automatic derivation,
deployment and monitoring of software processes in workflow
systems.

REFERENCES

[1] IBM. (2010) Rational Method Composer. [Online] . http://www-
01.ibm.com/software/awdtools/rmc

[2] Eclipse Foundation. (2010) Eclipse Process Framework (EPF)
Composer 1.0 Architecture Overview. [Online].
http://www.eclipse.org/epf/composer_architecture/

[3] Reda Bendraou, Andrey Sadovykh, and Marie-Pierre Gerva, "Software
Process Modeling and Execution: The UML4SPM to WS-BPEL
Approach," in 33rd EUROMICRO Conference SEAA., 2007.

[4] Reda Bendraou, Jean-Marc Jézéquel, and Franck Fleurey, "Combining
Aspect and Model-Driven Engineering Approaches for Software
Process Modeling and Execution," in International Software Process
Conference (ICSP 2009), Vancouver, Canada, 2009, pp. 148-160.

[5] Rita Suzana Pitangueira Maciel, Bruno Carreiro da Silva, Ana Patrícia
Fontes Magalhães, and Nelson Souto Rosa, "An Integrated Approach
for Model Driven Process Modeling and Enactment," in XXIII
Simpósio Brasileiro de Engenharia de Software, 2009.

[6] Capers Jones, Applied Software Measurement , 3rd ed.: McGraw-Hill ,
2008.

[7] Marília Freire, Fellipe Aleixo, Uirá Kulezsa, Roberta Coelho, and
Eduardo Aranha. Software Process Monitoring. [Online].
https://sites.google.com/site/softwareprocessmonitoring/

[8] Fellipe Aleixo, Marília Freire, Wanderson Câmara, and Uirá Kulezsa,
"Automating the Variability Management, Customization and
Deployment of Software Processes: A Model-Driven Approach," in
Enterprise Information Systems, Joaquim Filipe and José Cordeiro,
Eds.: Springer Berlin Heidelberg, 2011, pp. 372-387.

[9] Ove Armbrust et al., "Scoping software process lines," Software
Process: Improvement and Practice 14, vol. 3, pp. 181-197, 2009.

[1]

48 49

1

FBDtoVerilog: A Vendor-Independent Translation
from FBDs into Verilog Programs

Junbeom Yoo , Jong-Hoon Lee
Div. of Computer Science and Engineering

Konkuk University
Seoul, Republic of Korea

{jbyoo , kirdess}@konkuk.ac.kr

Sehun Jeong , Sungdeok Cha
Dept. of Computer Science and Engineering

Korea University
Seoul, Republic of Korea

{gifaranga , scha}@korea.ac.kr

Abstract—FBD (Function Block Diagram) is one of the widely
used PLC (Programmable Logic Controller) programming
languages in plant automation industry. Many vendors and
products have their own forms and formats, which are not
compatible with others. Formal verification techniques and tools
for FBDs should have provided vendor- and product-specific
versions. PLCopen, a vendor/product independent worldwide
association, provides a standardized way to define FBDs in an
XML format. This paper proposes a CASE tool, FBDtoVerilog,
which translates the PLCopen-FBDs into Verilog programs.
Verilog is an input programming language for formal verification
tools such as VIS (Verification with Interaction and Synthesis). It
had been efficiently used as an input front-end of formal
verifications, when developing software controllers of nuclear
power plants in Korea. We demonstrate its usefulness and
effectiveness with a prototype version of FBDs which had
developed for APR-1400 nuclear power reactor in Korea.

Keywords-Translation; PLCopen; FBD; Verilog; CASE

I. INTRODUCTION

FBD is one of the five widely used PLC programming
languages defined by International Electrotechnical
Commission (IEC) [1]. It visually expresses PLC controller’s
behavior as sequentially interconnected function blocks. The
KINCS project [2] developed a new RPS (Reactor Protection
System) for Korean nuclear power plants and implemented its
software in FBDs. Rigorous quality demonstration of RPS
software was also required by the regulation agency (e.g.,
KINS [3] in Korea) prior to issuing operational approval.
Automated and formal verification techniques such as model
checking [4, 5] and equivalence checking [6] was applied to the
FBDs in order to ensure adequate quality assurance.

Formal verification techniques have their own input front-
ends. For example, the VIS verification system [7] needs
Verilog program, while the SMV [8] model checker does SMV
input program or Verilog program. Translation from FBDs into
these front-ends is therefore the first step to applying various
formal verification techniques into FBD programs. Our former
researches on FBD verifications, ‘FBD Verifier’ and ‘PLC
Verifier’ [9, 10] had to use a FBD format specific to POSCO
ICT [11], which generated from its PLC engineering tool
‘pSET’ [12]. Some changes in the format, however, made us
difficult to keep consistency and correctness of the automatic

translators and verification tools. This paper proposes a CASE
tool, ‘FBDtoVerilog’ translating FBDs into Verilog programs,
but uses a de facto standard XML format of FBD, proposed by
PLCopen [13]. PLCopen is a vendor- and product-independent
worldwide association. FBDtoVerilog can translate into
Verilog programs FBDs from any vendors complying with the
association’s standard.

We demonstrated correctness and effectiveness of the
proposed translator through a case study, formal verification of
FBD programs using the SMV and the VIS. We used a
prototype version [14] of FBD programs which had developed
for a nuclear reactor protection system in Korea. The remainder
of the paper is as follows. Section 2 introduces the FBD and
PLC open association briefly. It also introduces relevant
features of Verilog programming language, which are pertinent
to our discussion. Section 3 introduces the CASE tool
FBDtoVerilog. Section 4 explains a case study of formal
verification using the proposed tool. Section 5 concludes the
paper.

II. BACKGROUND

A. Function Block Diagram
An FBD (Function Block Diagram) consists of an arbitrary

number of function blocks, ‘wired’ together in a manner similar
to a circuit diagram. The international standard IEC 61131-3
defined 10 categories and all function blocks. For example, the
function block ADD performs arithmetic addition of n+1 IN
values and stores the result in OUT variable. Others are
interpreted in a similar way.

Fig.1 shows a part of preliminary FBD programs for the
KNICS RPS BP (Bistable Processor) logic. The former was
generated mechanically [15] from a formal requirements
specification [14], while the latter was developed by domain
experts. Even though they look different in appearance, they
show the same behavior. We used these FBDs as examples to
keep consistent with our former work and aid understanding of
FBD programs. These FBDs both creates a warning signal
‘th_X_Pretrip’ when the pre-trip condition (i.e., reactor
shutdown) remains true for k_Trip_Delay time units as
implemented in the TOF function block. The number in
parenthesis above each function block denotes its execution

48 49
2

order. The output ‘th_Prev_X_Pretrip’ from MOVE stores
current value of ‘th_X_Pretrip’ in order to use in the next
execution cycle. A large number of FBDs similar to Fig.1 and
Fig.2 are assembled hierarchically and executed according to a
predefined sequential execution order.

Figure 1. An FBD for th_X_Pretrip logic, generated mechanically

Figure 2. An FBD for th_X_Pretrip logic, developed by domain
experts

B. PLC open
PLCopen [13] is a vendor- and product-independent

worldwide association, aiming to resolve topics related to
control programming and to support the use of international
standards IEC 61131-3 [1]. A working group named TC6 for
XML (eXtended Markup Language) in PLCopen has defined
an open interface between all different kinds of software tools,
which provides the ability to transfer one’s information to other
platforms. This paper used the XML specification defining
FBD programming languages. The format unfortunately does
not include all items which we need to translate FBDs into
Verilog programs, so we used a few items in the specification
for our specific purpose. The details will be introduced in
Section 4.

C. Verilog Programming
Verilog is one of the most common Hardware Description

Languages (HDLs) used by Integrated Circuit (IC) designers.

Many verification and analysis techniques and tools widely use
Verilog as an input programming language.

Fig.3 shows a Verilog program translated from the FBD
described in Fig.2 according to the translation rules [15]. There
are two inputs and two outputs. As input prefixes “k_” indicate
constants variables. th_Prev_X_Pretrip is used as both input
and output. Since it stores the value of th_X_Pretrip using the
MOVE function block, we defined it as a reg variable in lines
(8) and (32). The FBD’s output is produced in the assign
statements (12) ~ (18) by composing several function blocks in
the FBD. It also uses the variable timer to emulate the TOF
function block, which we emulate with procedural assignments
using always statements (19) ~ (31). We restricted the number
of TOF internal states to six in this example as defined in (1).
In addition, we used the clk variable, reserved for simulation
purposes in the VIS verification system, to simulate cyclic
executions of PLCs.

Figure 3. A Verilog program translated from the FBD in Fig.3

III. FBDTOVERILOG

We have used the proposed, but not fully refined, FBD
definition and translation rules [16] to formally verify FBD
programs in the KNICS project. Fig.4 briefly shows how we
have used them to verify the FBD programs with various
verification techniques and tools. It is a part of PLC-based
software development framework we proposed in [15]. We
planned to apply two formal verification techniques into the
FBDs, the model checking and the equivalence checking.
While the former can prove mathematically whether the FBD
satisfies important properties, the latter can conclude whether
two different FBDs show the same behavior or not.

Figure 4. The use of the proposed translator in formal verifications

50 51
3

Figure 5. FBDtoVerilog v1.0 Screen-dump

We had developed automatic translator and verification
assisting tool FBD Verifier [9], and applied them into the
KNICS project in part [17]. However, our former work started
with a specific version of FBDs specialized for POSCON ICT.
In order to apply useful formal verification techniques with no
hindrance from the compatibility problem, we decided to
separate the translator from the specific FBD and used standard
XML format of FBD. Fig.5 depicts a screen-dump of
FBDtoVerilog 1.0 CASE tool which we have developed. It is
embedded in NuSCRtoFBD 3.0 and reads standard FBDs of
PLCopen and produces (synchronous) Verilog programs.

FBDtoVerilog used an addData, general-purpose element
of the PLCopen XML specification [13]. NuSCRtoFBD 3.0
generates PLCopen specific XML that every single function
block element belongs to an externally visible output which
addData element stores its name. Fig.6 shows LE_INT block
cooperate with computing output th_X_Pretrip. FBDtoVerilog
uses the information to translate an FBD’s flat structure into a
Verilog module’s hierarchy structure.

Figure 6. Usage of addData element in th_X_Pretrip FBD
specification

The current version of FBDtoVerilog 1.0 has some room to
improve. First, it produces incomplete Verilog code that
requires manual post-process to supply variable size in bit
vectors. Performing formal verification activities such as
equivalence checking and model checking require complete
size determination. Second, it translates every function block,
even though they are too simple to be defined as a Verilog
function. We suggest practically possible translation option in

Table 1. These aspects will implement in next version of
FBDtoVerilog.

Table 1. Alternative optimized function block translation rule
Current rule Optimized rule

SEL

var = SEL(a, b, c);
…
function SEL;

input in1;
input in2;
input in3;
begin

 SEL = (in1 == 1) ? in3 :
 in2;

end
endfunction

var = (a == 1) ? b : c;

ADD

var = ADD(a, b);
…
function [0:6] SUB_INT;

input [0:6] in1;
input [0:6] in2;
begin

 SUB_INT = (in1 - in2);
end

endfunction

var = a + b;

IV. CASE STUDY

We performed a case study as described in Fig.7 to validate
correctness of FBDtoVerilog 1.0. We translated the system
FBD g_LO_SG1_Level depicted abstractly in Fig.1 and Fig.2
into Verilog programs. And we applied manual post-processing
on the translated code with preserving its original semantic as
we mentioned in Section 3 (see Fig.8). We had plan performing
Cadence SMV model checking and the VIS equivalence
checking against the Verilog program. When preparing the case
study, we only focused on checking the validity of the CASE
tool.

Figure 7. Case study plan

The VIS equivalence checking result shows "sequentially
equivalent" message as we can see in Fig.9, which means two
Verilog programs have same output behavior against same
inputs. We also conducted flawless examination of two source
codes to validate our tool’s correctness, since source codes
have quite different coding style. For example, original domain
expert generated code doesn’t contain user-define functions
that our code has.

Cadence SMV model checker cannot read the Verilog
program which the current version of FBDtoVerilog produced.
We found out that the model checker forbid the reuse of
functions such as SEL or ADD in our code. We are working on
this issue with more refined translation rules. From the results,
we can say that our proto-type FBDtoVerilog archived its main
purpose at minimum that the translated Verilog code has same
behavior with the original code developed and certified by
domain experts.

50 51
4

Figure 8. Translated Verilog code from the FBD in Fig.3

Figure 9. VIS equivalence checking result

Our future work will focus on implementing next version of
FBDtoVerilog. First issue is fully automatic Verilog code
generation feature that includes variable size determination
algorithm. Second issue is Cadence SMV compatible code
generation feature. And we will plan the case study that verifies
further correctness of the FBDtoVerilog through VIS
equivalence checking and Cadence SMV model checker using
all FBDs used in the KNICS project.

V. CONCLUSION

As safety critical systems are using FBD as standard
representation of software design, software verification on
FBDs becomes indispensable. Our former researches on FBD
verifications used a vendor-specific format of FBD, and it
made us difficult to keep consistency and correctness of the
automatic translator and verification tools. This paper proposes
a CASE tool, ‘FBDtoVerilog’ translating FBDs into Verilog
programs, but uses a de facto standard XML format of FBD,
proposed by PLCopen. We demonstrated correctness and
effectiveness of the assisting tool through a case study, formal
verification of FBD programs using the VIS. We used a
prototype version of FBD programs developed for a nuclear
reactor protection system in Korea. The case study
demonstrated that the CASE tool, FBDtoVerilog translates
standard FBDs into Verilog programs correctly and efficiently.

ACKNOWLEDGMENT

This research was partially supported by the MKE (The
Ministry of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion
Agency (NIPA-2011-(C1090-1131-0008) and NIPA-2010-
(C1090-1031-0003)). This research was also supported by the
Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (2010-0002566).

REFERENCES

[1] IEC (International Electrotechnical Commission), International standard
for programmable controllers: Programming languages: Part 3 (IEC
61131-3), 1993.

[2] KNICS (Korea Nuclear Instrumentation & Control System R&D Center),
http://www.knics.re.kr/english/eindex.html.

[3] KINS (Korea Institute of Nuclear Safety), http://www.kins.re.kr.
[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic verification

of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Programming Languages and Sysems, Vol. 8, No. 2,
pp.244-263, 1986.

[5] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, Model
Checking, MIT Press, 1999.

[6] Shi-Yu Huang and Kwang-Ting(Tim) Cheng, Fromal Equivalence
Checking and Debugging, chapter 4, Kliwer Academic Publishers, 1998.

[7] Robert K. Brayton, Gary D. Hachtel, Alberto Sangiovanni-Vincentelli,
Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen A. Edwards,
Sunil P. Khatri, Yuji Kukimoto, Abelardo Pardo, Shaz Qadeer, Rajeev K.
Ranjan, Shaker Sarwary, Thomas R. Shiple, Gitanjali Swamy, and
Tiziano Villa, “VIS : A system for verification and synthesis,” In the
Eighth International Conference on Computer Aided Verification, CAV
'96, pages 428-432, 1996.

[8] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[9] Eunkyoung Jee, Seungjae Jeon, Sungdeok Cha, Kwanyong Koh,
Junbeom Yoo, Geeyong Park, and Poonghyun Seong, “FBD Verifier:
Interactive and Visual Analysis of Counterexample in Formal
Verification of Function Block Diagram,” Journal of Research and
Practice in Information Technology, Vol.42, No.3, pp.255-272, August,
2010.

[10] Junbeom Yoo, Sungdeok Cha, and Eunkyoung Jee, “Verificatin of PLC
Programs written in FBD with VIS, Nuclear Engineering and
Technology, Vol.41, No.1, pp.79-90, 2009.

[11] POSCO ICT, http://www.poscoict.co.kr.
[12] S. Cho, K. Koo, B. You, T.-W. Kim, T. Shim, and J.S. Lee,

“Development of the loader software for PLC programming,” In
Conference of the Institute of Electronics Engineers of Korea, Vol.30,
pp.959-960, 2007.

[13] PLCopen for efficiency in automation, http://www.plcopen.org.
[14] KAERI (Korea Atomic Energy Rearch Institute). Fromal SRS for

Reactor Protection System, KNICS-RPS-SVR131-01 Rev.00, 2005.
[15] Junbeom Yoo, Sungdeok Cha, Chang Hwoi Kim, and Duck Yong Song,

“Synthesis of FBD-based PLC Design from NuSCR Formal
Specification,” Reliability Engineering and System Safety, Vol.87, No.2,
pp.287-294, 2005.

[16] Junbeom Yoo, Eunkyoung Jee, and Sungdeok (Steve) Cha, “Formal
Modeling and Verification of Safety-Critical Software,” IEEE Software,
Vol.26, No.3, pp.42–49, May/June 2009.
Junbeom Yoo, EunKyoung Jee, and Sungdeok Cha, “A Verificatin
Framework for FBD based Software in Nuclear Power Plants,” In The
15th Asia Pacific Software Engineering Conference (APSEC), pages
385–392, 2008

52 53

Modeling of Domain-Specific ECA Policies

Raphael Romeikat

University of Augsburg
Institute of Compter Science

Augsburg, Germany
romeikat@ds-lab.org

Bernhard Bauer

University of Augsburg
Institute of Compter Science

Augsburg, Germany
bauer@ds-lab.org

Henning Sanneck

Nokia Siemens Networks
Research

Munich, Germany
henning.sanneck@nsn.com

Abstract

Policy-based management is a flexible approach for the
management of complex systems as policies make context-
sensitive and automated decisions. For their effective de-
velopment it is desired to specify policies at a high level of
abstraction initially and to refine them until they are rep-
resented in a machine-executable way. We present an ap-
proach for the modeling of event-condition-action (ECA)
policies at different levels of abstraction. A relational al-
gebra is used to formally specify and validate the models
at each level. Finally, executable policy code is generated
from the low-level models. The approach is generic as it can
be applied to any domain and supports a flexible number of
abstraction layers. It is applied to the network management
domain and demonstrated with policies for coverage opti-
mization in a mobile network.

Keywords–policy-based management; model-driven en-
gineering; network management

1. Introduction

Increasing complexity of information systems compli-
cates their development and management. This evolution
calls for changes in the way those systems are built. The
aspect of development is addressed by the model-driven en-
gineering (MDE) approach, which moves the focus from
a code-centric to a model-centric point of view [1]. Mod-
els raise the level of abstraction and reduce complexity by
separating different concerns of a system from each other.
Models in MDE are no longer used for discussion and doc-
umentation purposes only, but they are used as primary ar-
tifacts from which implementations are generated [2]. In-
creasing complexity also affects the management of infor-
mation systems at runtime. This issue is addressed by the
idea of self-organizing systems. One example is the Auto-
nomic Computing Initiative (ACI) by IBM, which proposes

self-manageable systems in order to reduce human interven-
tion necessary for performing administrative tasks [3].

Policies represent a promising technique for realizing au-
tonomic capabilities within managed objects as they allow
for a high level of automation and abstraction. Policy-based
management has gained attention in research and industry
as a management paradigm as it allows administrators to
adapt the behavior of a system without changing source
code or considering technical details. A system can con-
tinuously be adjusted to externally imposed constraints by
changing the determining policies [4]. A well-known appli-
cation domain is network management, where policies are
widely used for performing configuration processes. The
usage of policy-based systems for the management of mo-
bile networks was recently considered in [5–10].

The event-condition-action (ECA) model is a common
way to specify policies. ECA policies represent reaction
rules that specify the reactive behavior of a system. An ECA
policy correlates a set of events, a set of conditions, and a
set of actions to specify the reaction to a certain situation.
The conditions are evaluated on the occurrence of an event
and determine whether the policy is applicable or not in that
particular situation. The actions are only executed if the
conditions are met. Multiple policy frameworks share this
model as for example Ponder2 [11].

Policy-based management is a layered approach where
policies exist at different levels of abstraction. The num-
ber of abstraction layers depends on the system to manage.
Strassner defines a flexible number of abstraction layers as
the Policy Continuum [5]. The idea is to specify and man-
age policies at each level in a domain-specific terminology,
and to refine them from a business level down to a technical
level. To support this we present a generic approach for the
modeling of domain-specific ECA policies at different lev-
els of abstraction. Policies are specified at the highest level
initially and iteratively refined by re-writing them with the
means of the lower levels until they are represented in a
machine-executable way.

52 53

This paper is structured as follows. Section 2 describes
how domain-specific policies are modeled at different lev-
els of abstraction before executable code is generated. Sec-
tion 3 provides an example from a case study. Related work
is discussed in section 4. The paper concludes with a sum-
mary and future work in section 5.

2. Modeling

We use different models at different abstraction layers
in order to specify policies as indicated in [12] and illus-
trated in figure 1. The domain model allows domain ex-
perts to specify concepts of a domain or system. The policy
model allows policy experts to specify policies that are used
to manage the system. The linking model allows policy
and domain experts to link the policy model to the domain
model in order to use the domain-specific concepts within
the policies. These models are actually parts of one large
model. For each of them a metamodel exists that defines the
structure of the model. Two layers i and j are shown exem-
plarily in figure 1 with layer i providing a higher level and
layer j providing a lower level of abstraction. Actually, the
approach supports a flexible number of abstraction layers.
The lowest layer represents the models such that executable
policy code can be generated from them.

Layer j

Layer i

System

Domain
Modelj

Policy
Modelj

Linking
Modelj

Domain
Metamodel

Policy
Metamodel

Domain
Modeli

Policy
Modeli

Linking
Modeli

Linking
Metamodel

Policy
Code

E…C…A…

System
ComponentsSystem

ComponentsSystem
Components

Figure 1. Overview

We are develpoing a relational algebra to formally spec-
ify the domain, policy, and linking metamodels, i.e. the
abstract syntax of the models. The algebra will be used to
validate whether model instances conform to the respective
metamodel. For this purpose, a concrete syntax should pro-
vide a transformation into the relational algebra. Excerpts
of the algebra are presented in this paper.

2.1. Domain Modeling

Different expert groups are involved in the management
of a system such as business managers or system admin-
istrators. Depending on their focus and their background,
members of an expert group have a particular view on the
system and they use special terminology to describe their
knowledge. The domain represents a common understand-
ing of those expert groups and covers the context of a sys-
tem at the different layers.

Any relevant information about the domain is covered by
the domain model. The domain model covers the domain-
specific concepts across all layers and specifies which con-
cepts are available. Its purpose is to specify domain knowl-
edge independently from any policies, which will later con-
trol a system in that domain. Thus it represents the basis
for building policies, which will then use domain-specific
concepts in their event, condition, and action parts. The do-
main model offers a particular view at any layer, which only
contains the part of the domain model that is relevant at the
respective layer. The domain model is an instance of the do-
main metamodel, which allows to specify domain models in
a way that is more expressive than just a domain-specific vo-
cabulary and close to the structure of an ontology. For this
purpose, the metamodel represents domain-specific knowl-
edge as shown in figure 2. It represents the abstract syntax
of the domain, i.e. it defines the structure of the domain
model.

Figure 2. Domain metamodel

The domain metamodel contains the following entities.
Concepts and operations in the domain metamodel have
a name and are assigned to layers. The layers specify
at which levels of abstraction concepts and operations are
available. Each layer contains an arbitrary number of con-
cepts and operations. Each concept and operation is as-
signed to one layer at least. A concept may have named
properties assigned and each property belongs to one con-
cept. An operation may have named parameters assigned
and each parameter belongs to one operation. Any two con-
cepts may be assigned to each other by named relationships.

54 55

The connection points between a relationship and a concept
are called relationship ends and have a name, a navigability,
and a multiplicity.

The domain metamodel allows to build a tree-like hierar-
chy of concepts. A concept may be assigned other concepts
as subconcepts and is called their superconcept in this case.
A subconcept inherits the properties and relationships from
its superconcept. Thus any property and relationship of a
superconcept is also available at its subconcepts. Of course,
a subconcept may be assigned additional properties and re-
lationships which are not assigned to its superconcept. A
subconcept does not interit the layers from its superconcept.
This allows to extend the concept hierarchy by specifying
additional subconcepts at lower layers. If subconcepts also
inherited the layers from their superconcept, they would be
available at the higer layer as well, which is not intended.

2.2. Policy Modeling

Any information about the policies is covered by the pol-
icy model. The policy model offers a particular view at any
layer, which only contains the part of the policy model that
is relevant at the respective layer. The policy model is an
instance of the policy metamodel, which contains the essen-
tial aspects required to specify ECA policies. It is shown in
figure 3 and represents the abstract syntax of policies, i.e. it
defines the structure of the policy model.

Various policy languages are available for different do-
mains and application areas. A policy language usually pro-
vides some structured notation for policies and can be in-
terpreted by an execution engine. Typically, such engines
provide means to cope with priorities and conflict resolu-
tion, which reduces complexity for the developer. When
developing a policy-based system, a decision for a policy
language has to be made at some point. Unfortunately, no
policy language is general and powerful enough to meet the
requirements of any system in any domain. It is desired
to specify policies independently from a particular policy
language and to generate code for a particular language.
For this purpose, we analyzed some well-known policy lan-
guages such as PonderTalk [11], KAoS [13], and Rei [14]
and integrated them into the policy metamodel.

The policy metamodel contains the following entities.
Policies in the policy metamodel have a name and are ac-
tive or not. They are assigned to layers to specify at which
levels of abstraction they are available. Each layer contains
an arbitrary number of policies. A policy is assigned to one
layer at least. A policy has at least one named event as-
signed. A policy optionally has a named condition assigned.
A condition is one out of the following boolean expressions.
A binary expression performs a comparison, which is one
out of equal, greater, greater or equal, lower, and lower or
equal. A negation expression negates another expression.

Figure 3. Policy metamodel

An and expression combines two other expressions as con-
junction. An or expression combines two other expressions
as disjunction. A special type of expression is the opera-
tional expression, which refers to some operation and uses
its return value as the result of the expression. A policy also
has at least one named action assigned. The sequence of
action execution within that policy is specified by assigning
a number to each action within that policy.

2.3. Domain-Specific Policy Modeling

Any information about how domain-specific information
is used within the policies is covered by the linking model.
It specifies how the domain and the policy model are linked
to each other. For this purpose, it allows to create links from
the entities in the policy model to the entities in the domain
model at the respective layers. The linking model offers a
particular view at any layer, which only contains the links
that are relevant at the respective layer. The linking model is
an instance of the linking metamodel, which provides means
to create links from the policy model to the domain model
as shown in figure 4. It represents the abstract syntax of the
links, i.e. it defines the structure of the linking model.

An event in the policy metamodel corresponds to a con-
cept in the domain metamodel that is used as event. The
properties of that concept are regarded as the properties of
the event. Multiple events may correspond to the same con-
cept. A binary expression in the policy metamodel com-
pares two arguments with each other. The simplest form
of an argument is a literal value. A property in the domain
metamodel whose concept is used as event of the respective
policy may also be used as argument. This allows to use
contextual information within the policy that was passed as

54 55

Figure 4. Linking metamodel

event parameter. Another form of an argument is the return
value of an invoked operation in the domain metamodel.
When invoking an operation, one argument may be passed
to each parameter of the operation again. An operational
expression in the policy metamodel invokes an operation in
the domain metamodel and uses the return value of that op-
eration as value of the expression. An action in the policy
metamodel also invokes an operation in the domain meta-
model.

The relational algebra imposes some restrictions on the
models. One example is the usage of contextual information
within a policy. Contextual information is usually passed to
a policy via its events. The event properties contain infor-
mation to be used within the policy and can be referenced
in the policy condition and action. It is important that only
properties are used within a policy that are visible for that
policy. A property is visible for a policy if its concept is
used as event of that policy. This restriction is covered by
(1) to (3) in the relational algebra.

arg ∈ argumentsO fCondition(cd)⇒
(arg ∉ Properties∨∀po ∈ policiesO fCondition(cd).
arg ∈ visibleProperties(po))

(1)

arg ∈ argumentsO f Action(ac)⇒
(arg ∉ Properties∨∀po ∈ policiesO f Action(ac).
arg ∈ visibleProperties(po))

(2)

visibleProperties ∶ IdPo →P(IdPr)
po↦ ⋃

co∈visibleConcepts
propertiesO fConcept(co)

with visibleConcepts =
⋃

ev∈eventsO f Policy(po)
conceptO f Event(ev)

(3)

2.4. Code Generation

Refinement is performed by subsequently providing the
models at the lower layers until they are represented in a
machine-executable way. The domain model then repre-
sents the necessary concepts of the underlying system com-
ponents and the policy and linking models represent poli-
cies that control the behavior of those components. Ex-
ecutable code in a policy language can now be generated
from the models. This applies to any language that is able to
express ECA policies as defined by the policy metamodel.

For this purpose, model transformations generate the
policy code in a fully automated way. This involves model-
to-model and model-to-text transformations, which first
transform the policy and linking models into an interme-
diate model representation of the target language and then
into executable policy code. Transformation is realized as
proof of concept for the Ponder2 policy framework [11],
which was developed at Imperial College over a number of
years. Details of the transformation are presented in [15].

3. Case Study

Management of information systems is a complex task
especially in the management of mobile networks. Com-
plexity arises from the distributed architecture of the un-
derlying cellular network with its high number of network
elements (NEs) to be deployed and managed and from in-
terdependencies between their configurations.

Operation, administration, and maintenance (OAM) of a
mobile network is usually based on a centralized informa-
tion system which is organized in different management do-
mains. Configuration management (CM) deals with a con-
sistent configuration of all NEs, performance management
(PM) analyzes the efficiency of the current network configu-
ration and seeks a more efficient one, and fault management
(FM) detects and resolves errors that occur in the network.
Any management domain focusses on different aspects and
has a special view onto the network and the configurations
of the NEs.

3.1. Policy-Based Coverage Optimization

One important management task within any cellular net-
work is coverage optimization. The cells of the network
should always provide a complete coverage without areas
having no coverage at all. The detection and resolution of
converage holes is a complex task as any of the CM, PM,
and FM domains are affected. The coverage area of each
cell is determined through multiple factors.

• Position: Location and direction of an antenna are the
main determining factors for the coverage area of a
cell. These parameters are preplanned and are almost

56 57

not adjustable after deployment as this would require
expensive human on-site intervention.

• Transmission power: Later adaptations of the trans-
mission power (TXP) have a direct impact on the size
of a cell’s coverage area. Adaptations can be per-
formed remotely through the operation and mainte-
nance system.

• Antenna tilt: The tilt describes the angle between the
antenna and the ground. A rough mechanical adjust-
ment is done when the antenna is deployed. Adapta-
tions of the antenna tilt are performed through remote
electrical tilt changes (RET) within the antenna.

In order to optimize coverage within the network, usu-
ally a sequence of power and tilt adaptations is used since
they can be performed remotely. After each change the sit-
uation is re-evaluated by analysis of measurement reports.
The results of this evaluation are used to determine whether
additional adaptions are required or not. Due to the cellu-
lar structure of the network, power and tilt adaptations have
a strong impact. Adaptions at a single cell may have im-
pact on adjacent cells and may result in a conflict and thus
undesired state of the network.

The dependencies between power and tilt adaptions re-
quire subsequent adaptions to be coordinated with each
other in order to ensure that no logical errors, oscillations,
or even deadlocks occur in the configuration. For this pur-
pose, a policy-based coordination mechanism was devel-
oped that takes decisions in an automated way [9, 10]. The
coordination policies express the decision logic to deter-
mine if a change request should be acknowledged, rejected,
or rescheduled, and if previously executed requests should
be rolled back. The policies are represented at multiple ab-
straction layers. The highest layer represents a management
point-of-view whereas the lowest layer represents a specific
implementation for the underlying management system [16]
that uses Ponder2 [11] as policy framework.

3.2. Policy Modeling and Code Generation

The behavior of coverage optimization is controlled by
a set of ECA coordination policies. For this purpose, a do-
main model is specified that covers the relevant concepts
for coverage optimization. This happens at a high layer,
i.e. from a functional point of view initially. At the same
layer the necessary coordination policies are specified as a
policy model and they are linked to the domain model with
a linking model. Figure 5 shows a coordination policy that
reschedules tilt change requests if a power change is already
active. A simplified graphical notation with UML models
and textual annotations is used as concrete syntax.

In order to enable a technical view, a refined domain
model is specified at a lower layer that represents the un-

derlying management system. A refined policy and a re-
fined linking model is specified at the same layer in accor-
dance with the refined domain model. Figure 6 shows the
refined coordination policy, which provides the same func-
tionality but uses the technical concepts of the underlying
management system. Through refinement, some high-level
entities must be replaced with the respective low-level ones,
e.g. the powerChangeRequest and tiltChangeRequest con-
cepts with the reconfRequest one or the isPowerChange-
Active.cell and isTiltChangeActive.cell parameters with the
isReconfActive.property one. Furthermore, information is
added by means of the additional parameter isReconfAc-
tive.type and the passed value ”TXP” in the invoking of the
isReconfActive operation. The policy is now represented in
a machine-executable way.

Finally, the refined models are automatically trans-
formed into the executable Ponder2 code shown in listing 1.
The respective model transformations are provided in [15].
The resulting code is directly used in the underlying man-
agement system.

1 policy := root/factory/ecapolicy create.
2 policy event: root/event/reconfRequest;
3 condition: [:reconfRequest.id :reconfRequest.

type :reconfRequest.property :reconfRequest.
changeValue | root/op isReconfActive:"TXP"
property:reconfRequest.property];

4 action: [:reconfRequest.id :reconfRequest.type :
reconfRequest.property :reconfRequest.
changeValue | root/op
rescheduleReconfRequest:reconfRequest.id].

5 root/policy at:"coordinationPolicy" put:policy.
6 policy active: true.

Listing 1. Generated Ponder2 code (excerpt)

4. Related Work

This section summarizes comparable approaches for the
modeling of policies. All approaches are compared to each
other with regard to their features and outlined in table 1.
A + in the table indicates that a feature is available in an
approach, a o indicates a limited feature, and a - indicates
that a feature is not available at all.

The authors of [17] present a model-driven approach to
design policies and integrate them into the software devel-
opment process. The approach is based on MDE concepts
and uses a UML profile for modeling policies. The general
policy modeling language (GPML) supports ECA policies
amongst different types of policy. The ability to define a
particular vocabulary allows to adapt policies to different
domains. Policies are modeled at a low level of abstraction
and cannot be refined. Model transformations are used to
map GPML policies via an interchange format to existing
policy languages. No formal specification is provided.

56 57

Figure 5. High-level model (excerpt)

Figure 6. Low-level model (excerpt)

The CIM Policy Model [18] by the Distributed Man-
agement Task Force (DMTF) addresses the management of
complex multi-vendor environments with a huge number of
heterogeneous devices. Policies are specified in a language-
independent way and abstract from hardware characteris-
tics. A UML profile is provided for the graphical repre-
sentation of policies. The CIM Policy Model is a domain-
specific model with a focus on network management. Dif-
ferent abstraction levels and policy refinement are not sup-
ported. The approach does not address code generation for
existing policy languages. A formal specification is not pro-
vided.

DEN-ng [6] by the TM Forum provides an information
model for system entities and policies to manage those en-
tities. It allows entities and policies to be modeled in an
implementation-independent way while omitting technical
details. ECA policies are modeled in a UML diagram.
DEN-ng allows to specify a domain and resources within
that domain on which policies operate. DEN-ng is based
on the Policy Continuum and considers policies at different

levels of abstraction. Specification of policies is addressed
but policies cannot be refined automatically into a lower
level of abstraction, nor transformed into an existing lan-
guage. No formal specification is provided.

5. Conclusion

A model-based approach to the specification of ECA
policies was presented in this paper. The usage of mod-
els allows to specify policies at a high level of abstraction
initially and avoids the direct implementation of policies at
a technical level. The approach is novel as it is generic with
respect to the domain, to the language, and to the number
of abstraction levels and nevertheless allows to generate ex-
ecutable code. The separation of knowledge into different
models or model parts allows for an effective collaboration
of domain and policy experts. The usage of different ab-
straction layers faciliates the collaboration of business and
technical experts. A relational algebra is being developed to
precisely define the abstract syntax of the models and allow

58 59

G
PM

L
[1

7]

C
IM

Po
lic

y
M

od
el

[1
8]

D
E

N
-n

g
[6

]

M
od

el
in

g
of

D
om

ai
n-

Sp
ec

ifi
c

E
C

A
Po

lic
ie

s

ECA policies + o + +
Graphical modeling + + + +
Language-independent + + + +
Customizable domain + - + +
Abstraction levels - - + +
Formal specification - - - o
Automated refinement - - - -
Code generation + - - +

Table 1. Comparison of related work

for their validation, which is a prerequisite for the transfor-
mation into executable code.

The possibility to generate code eliminates the depen-
dency from a particular policy language as the same models
can be used to generate code for various languages. A pro-
totype of a graphical policy editor that supports code gen-
eration for Ponder2 has already been developed [19]. The
case study showed that a purely graphical syntax for the
models might be confusing as diagrams take a lot of space
in complex scenarios. An effective textual syntax is sub-
ject to future work. A representation of the models in the
relational algebra for purposes of validation should be gen-
erated automatically. Automation of the refinement process
is also subject to future work. Currently, the lower-level
models are created manually based on the higher-level ones.
However, it should be sufficient to specify the refinement of
the domain model once and then apply that refinement to
the policy and linking models in order to generate their re-
fined representation whenever they are created or modified.
In the end the objective is to automatically reflect changes
of the high-level models in their low-level implementation.

References

[1] J. Bézivin, “On the Unification Power of Models,” Software
and Systems Modeling, vol. 4, no. 2, pp. 171–188, May 2005.

[2] D. W. Flater, “Impact of Model-Driven Standards,” in 35th
Annual Hawaii International Conference on System Sciences
(HICSS). IEEE CS, January 2002, p. 285.

[3] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41–50, January
2003.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The
Ponder Policy Specification Language,” in 2nd Workshop on
Policies for Distributed Systems and Networks (POLICY).
Springer LNCS, January 2001, pp. 18–38.

[5] J. Strassner, Policy-Based Network Management: Solutions
for the Next Generation. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 2003.

[6] J. Strassner, “DEN-ng: Achieving Business-Driven Network
Management,” in 8th Network Operations and Management
Symposium (NOMS). IEEE CS, April 2002, pp. 753–766.

[7] S. van der Meer, A. Davy, S. Davy, R. Carroll, B. Jen-
nings, and J. Strassner, “Autonomic Networking: Proto-
type Implementation of the Policy Continuum,” in 1st In-
ternational Workshop on Broadband Convergence Networks
(BcN), April 2006, pp. 1–10.

[8] T. Bandh, H. Sanneck, L.-C. Schmelz, and G. Carle, “Auto-
mated Real-time Performance Management in Mobile Net-
works,” in 1st WoWMoM Workshop on Autonomic Wireless
AccesS (IWAS). IEEE CS, June 2007, pp. 1–7.

[9] R. Romeikat, B. Bauer, T. Bandh, G. Carle, H. Sanneck, and
L.-C. Schmelz, “Policy-driven Workflows for Mobile Net-
work Management Automation,” in 6th International Wire-
less Communications and Mobile Computing Conference
(IWCMC). ACM, June 2010, pp. 1111–1115.

[10] T. Bandh, R. Romeikat, and H. Sanneck, “Policy-based Co-
ordination and Management of SON Functions,” in 12th In-
ternational Symposium on Integrated Network Management
(IM). IEEE ComSoc, May 2011, to be published.

[11] K. Twidle, E. Lupu, N. Dulay, and M. Sloman, “Ponder2 - A
Policy Environment for Autonomous Pervasive Systems,” in
9th Workshop on Policies for Distributed Systems and Net-
works (POLICY). IEEE CS, June 2008, pp. 245–246.

[12] R. Romeikat and B. Bauer, “Specification and Refinement
of Domain-Specific ECA Policies,” in 4th International
Workshop on Domain-specific Engineering (DsE@CAiSE).
Springer LNBIP, June 2011, to be published.

[13] A. Uszok, J. M. Bradshaw, and R. Jeffers, “KAoS: A Policy
and Domain Services Framework for Grid Computing and
Semantic Web Services,” Lecture Notes in Computer Sci-
ence, vol. 2995, pp. 16–26, January 2004.

[14] L. Kagal, T. Finin, and A. Joshi, “A Policy Language for
a Pervasive Computing Environment,” in 4th International
Workshop on Policies for Distributed Systems and Networks
(POLICY), June 2003, pp. 63–74.

[15] R. Romeikat, M. Sinsel, and B. Bauer, “Transformation of
Graphical ECA Policies into Executable PonderTalk Code,”
in 3rd International Symposium on Rule Interchange and Ap-
plications (RuleML). Springer LNCS, November 2009, pp.
193–207.

[16] T. Bandh, H. Sanneck, and R. Romeikat, “An Experimen-
tal System for SON Function Coordination,” in International
Workshop on Self-Organizing Networks (IWSON). IEEE
VTS, May 2011, to be published.

[17] N. Kaviani, D. Gasevic, M. Milanovic, M. Hatala, and
B. Mohabbati, “Model-Driven Engineering of a General Pol-
icy Modeling Language,” in 9th Workshop on Policies for
Distributed Systems and Networks (POLICY). IEEE CS,
June 2008, pp. 101–104.

[18] Distributed Management Task Force, “CIM Policy Model
White Paper,” DSP0108, June 2003.

[19] University of Augsburg, “PolicyModeler,” http:
//policymodeler.sf.net, August 2009.

58 59

A Software Engineering Approach to User-Driven
Control of the Microgrid

Mark Allison, Andrew A. Allen, Zhenyu Yang and Peter J. Clarke
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

Email: {malli002, aalle004, yangz, clarkep}@cis.fiu.edu

Abstract—
The smart grid has been proposed as the panacea to address

systemic challenges of the over fifty year old legacy electrical
grid, the single largest machine on the planet. A core component
central to realizing the smart grid concept is the microgrid. The
microgrid is a self-sustaining entity, capable of data interchange
and real-time monitoring and control of its distributed genera-
tion, storage and load components.

In this paper we introduce ongoing research that uses a
software engineering approach to user-driven control of the
microgrid. Our approach uses a domain-specific modeling lan-
guage (DSML), MGridML, and a virtual machine, MGridVM,
which interprets user-defined models representing domain-level
abstractions of the microgrid. MGridML captures high-level
representations of pertinent domain features, based on a central-
ized hierarchical model of demand side energy management. A
metamodel for MGridML and a prototype of the MGridVM are
presented to show the feasibility and practicality of our approach.

Index Terms—Smart Grid, Microgrid, Domain-Specific Mod-
eling Languages, Model-Driven Engineering.

I. INTRODUCTION

The changes in energy consumption patterns are being dic-
tated by rising energy costs and higher demand while increas-
ingly being aware that thes unsustainable energy sources near
depletion. These changes manifest themselves as additional
requirements of the legacy electrical grid. The United States
Department of Energy and similar entities across the globe
have been tasked to upgrade the single largest interconnected
machine on the planet, the electrical grid [1]. The existing
grid, heavily reliant on fossil fuels, has effectively remained
unchanged since the early twentieth century and is reaching
its functional limits. The smart grid is seen as the successor to
the lagacy grid and a core component central to realizing the
smart grid concept is the microgrid. The microgrid is a self-
sustaining entity, capable of data interchange and real-time
monitoring and control of its distributed generation, storage
and load components.

This paper introduces ongoing research that uses a software
engineering approach to user-driven control of the micro-
grid. Our approach uses a domain-specific modeling language
(DSML), MGridML, and a virtual machine, MGridVM, which
interprets user-defined models representing domain-level ab-
stractions of the microgrid. A metamodel for MGridML was
developed based on a feature analysis of the microgrid and
will be briefly described in the paper. To demonstrate the

feasibility and practicality of our software engineering ap-
proach to energy management within the microgrid we provide
a discussion of our prototype. The prototype includes the
MGridML modeling environment, the MGridVM and a low
voltage laboratory testbed which captures the essence of the
microgrid.

This paper is organized as follows: Background technolo-
gies to provide context are reviewed in the next section. Sec-
tion III provides our motivation for embarking on this research
direction. The modeling language and virtual machines are
described in Sections IV and V respectively. We place this
work in perspective by presenting related work in Section VII.
Finally we discuss future directions of this work and conclude
in Section VIII.

II. BACKGROUND

In this section we introduce the concepts and technologies
required for our research. This background material include
energy management within the microgrid and the use of
domain-specific modeling languages (DSMLs) to model and
realize applications in a specific domain.

A. The Microgrid Concept

The smart grid is the conceptualized solution to the ailing
aspects of our existing grid infrastructure. The smart grid is
challenged with balancing demand and supply through real-
time communication and distributed generation accommodat-
ing renewable sources with self-healing capabilities [2]. All of
this while reducing the carbon footprint and still maintaining
the affordability of energy to the consumer [2]. It is expected
that the smart grid will achieve much of the proposed goals
through the integration of the microgrid concept.

Lasseter et al. [3] define the Consortium for Electric Relia-
bility Technology Solutions (CERTS) concept of a microgrid
as an aggregation of loads and microsources operating as a
single system providing both power and heat. It is further
stated that the majority of the microsources must be power
electronic based. The key features of the microgrid include
power electronics, control and communications capabilities
that allows it to function as a semi-autonomous power system.
The microgrid is expected to maintain stable operation and
perform as a good citizen of the grid [4].

60 61

The production of electrical energy within the current elec-
trical grid is demand based whereby the energy consumed
drives the amount of energy being generated as storage is
generally infeasible. Additionally, the means of energy produc-
tion is centralized and far removed from the area of demand
leading to heavy energy losses [5]. The microgrid advantage
is in the proliferation of distributed energy resources (DERs)
and energy storage and is the focus of our research. To
further assist readers who maybe unfamiliar with the microgrid
concept, we define the following terms:

• Islanding - In this state the microgrid operates indepen-
dently of an external source.

• Load - A device which consumes electrical power.
• Point of Common Coupling (PCC) - The point at which

the utility may be disconnected from the microgrid.
• MGCC - The Microgrid Central Controller, responsible

for centrally directing energy flow within the microgrid.

B. Domain Specific Modeling Languages

Domain specific languages (DSL’s) or little languages [6],
are so called as they are usually small with well focused
expressive power. The benefits of the DSL approach has
been extensively researched. Sirer et al. [7], states that DSLs
bring the solution domain closer to the problem domain,
improve testability and simplifies maintenance. Empirical data
from [8] suggests that the use of DSL’s increases reliability,
usability and flexibility. Bell Labs using the Family-Oriented
Abstraction, Specification and Translation (FAST) approach to
domain engineering reports at least a factor of four increase
in productivity. [9]. DSLs were originally text-based, however
there has been an increase focus on graphical DSLs or domain-
specific modeling languages (DSMLs) since there are now
tools to easily create modeling environments for DSMLs [10].

In order for this solution to apply, the problem domain
has to be suitably qualified. According to [11], candidate
domains should be reasonably stable and economically viable.
We argue that the scope of our domain, microgrid energy
management, falls within these parameters due to its maturity
and its relevance within the global energy vision. Stahl et al.
[12] outline the steps required to create a DSML, these include
(1) an analysis of the domain, (2) the creation of a meta-model
consisting of the abstract syntax of the language and the static
semantics, (3) the concrete syntax for the language, (4) the
dynamic semantics of the language. We applied Stahl et al.
approach to define and design the MGridML language.

III. MOTIVATION

The motivation for initially developing the MGridML and
MGridVM was partially the result of observing the short-
comings of implementing a distributed generation and storage
functionality within a local single family dwelling to facilitate
islanding. We observed several issues which plague the realiza-
tion of a robust microgrid capable of responding to instability
in power distribution or the users economic preference. State
of the art control systems typically require domain expertise
far beyond that of the end-user of the system and are not

programmable by the end-user. In the sequel we describe a
scenario that typifies the challenges of an end-user faces when
implementing a mircogrid.

A. Motivating Scenario

The primary actor in the scenario is Mary and the equipment
in the microgrid comprises of distributed generation in the
form of a photovoltaic generator, a storage system (batteries),
and three loads, one of which is considered to be critical.
The microgrid is connected to the local utility via a point
of common coupling (PCC) which is capable of isolating or
islanding the microgrid.

Microgrid Scenario: Our scenario begins when the utility
grid is experiencing power fluctuations as observed in Mary’s
flickering lights and the erratic behavior of her appliances.
Mary is not aware of how long this situation will last and is
afraid of damage to costly equipment so she decides to remove
herself from the grid and use stored energy. Mary is unsure of
how long her energy storage will last. Mary, using a hardware
solution, manually disconnects the microgrid at the PCC then
engages the storage. Power is restored but Mary is left with
an uneasy feeling. How long before she will have to switch to
her batteries and how long will those last? Maybe she should
turn off the non-critical appliances. She looks worryingly at
the window at her neighbors house to see if power is restored.

Although this scenario is based on a manual approach, it
raises critical questions as to the base requirements and issues
yet to be addressed by alternate approaches in the context
of user facilitated energy management. Our methodology
conceives the solution as a black box then describe its core
functionality and desired qualities. We postulate that the black-
box requires realtime data and component state information
from sources internal and external to the microgrid. It should
conceptually describe Mary’s directives in an intuitive manner
and act accordingly within a reasonable time-frame, keeping
her updated of the systems current state and near future
projections.

Storage depletion estimates at current usage levels during
islanding would assist the user, Mary, in modifying her load
profile in the short term. It should alert her whenever the
utility power level is stable as defined by some threshold
and have the ability to automate a sequential restoration to
pre-islanding operation. There is the need for a planning
mechanism to optimize performance; the blackbox should be
capable planning according to load and source forecasting and
not depend on the lay user to perform complex calculations
to facilitate optimization.

Should the user require the capacity of optimizing for
economic purposes, the blackbox solution necessitates real-
time monitoring of tariff information from the smart grid
as in the case where Mary chooses to disconnect from the
utility if the rates become too high and use stored energy
if she anticipates sunshine the next day. With the advent
of time-varying pricing, flattening the demand curve is a
paramount consideration. Should additional hardware be intro-

60 61

Smart Microgrid

Power Supply

Privacy

Load

Energy Mangement

Power Infrastructure

ProtectionConnection

External Internal

Generation Storage

Forecasting Data Servers and
Repositories

Voltage
Control

External Data
Interface

Smart
Meter Sensors Diagnostics

Tolerance Scalability

Power Data

OptionalRequired
Combination of

features may exists
Only one of the

features must exists

Key

Fig. 1. Feature diagram for the microgrid.

duced within the microgrid, the black box should absorb and
compensate. Lastly, thresholds, which if exceeded could result
in equipment damage or raise safety concerns, will need to be
identified and anticipated during operation. The consolidation
of these considerations become the basis of our feature model
addressed next.

B. Domain Analysis

A crucial aspect within the development of any DSML is
a detailed and methodological introspection of the application
domain to ascertain the predominant features and concepts
[13]. Feature analysis is at times an ad-hoc learning process
requiring constant and consistent refinement as domain objects
are identified, abstracted and structured [13]. Following the
Feature Oriented Domain Analysis methodology (FODA) [14],
introspection begins by defining the scope of our domain.

The developmental methodologies engaged within the re-
search of the microgrid required a familiarity with the domain
terminology, to communicate effectively with domain experts
for the purposes of verifying the abstraction of the essence of
the domain. The primary artifact of analyzing the microgrid
is the feature diagram [15], as seen in Figure 1, which shows
the composite and atomic features of the microgrid.

Figure 1 shows the feature diagram for the mictrogrid. The
feature diagram shows that a microgrid must have a power
infrastructure, an energy management component, provide tol-
erance and be scalable. From our analysis privacy is currently
an optional feature. Using the key for the symbols, shown to
the lower right of the diagram, the remainder of the diagram
can be interpreted. Note that power supply may have an
external power supply, internal power supply, or both.

IV. THE MICROGRID MODELING LANGUAGE

The development of the graphical DSML, MGridML was
accomplished utilizing Microsoft DSL tools, a part of the
the Visual Studio SDK [16]. The DSML is defined by its
metamodel which comprises of the abstract syntax and static
semantics. Figure 2 shows the partial abstract syntax for
MGridML. A model of the microgrid is referred to as an

MGridSchema

Controller

LoadController
-LCOperationState

1

1..*

coordinatedBy

SourceController
-SCoperationState

MGridContoller
-GridID

1

*
coordinates

AtomicController

Storage
-StorageID
-StorageCapacity
-Current Charge

1

*

Utility
-Operational : Boolean
-Downtime : Decimal
-Uthreshold : Decimal

1

0..*

MGrid-
Policy

Every MGridML schema is
composed of 0 or more policies.

GridMonitor SmartMeter
-Urate : Decimal
-Usage

1
1..*

PCC
-PCCState

Load

*

*

controlledBy

1

*

StorageController
-ChargeState

*

*

controlledBy

CriticalLoad
-CloadID
-CloadType

NonCritical
-NCloadID
-NCloadType
-Scheduleable

Source

* *

controlledBy

1

*

ControllableSource
-CsourceID
-CsourceType

NonControllable
-NsourceID
-NsourceType

**
appliedTo

1

*

1

*

Fig. 2. Partial abstract syntax for MGridML.

MGrid schema. The MGrid schema is composed of one or
more grid monitors, one or more controllers, one or more
storage units, one or more loads, one or more sources and
zero or more utilities. The schema may also contain zero or
more MGrid policies not describe in this paper. We use the
polices to constrain the behavior of the system based on the
environment or end-user preferences.

The CERTS microgrid concept provides the basis for the

62 63

architecture and acceptable behavior of elements within our
models. Key to the structure of the modeling language is
its mapping to unique critical functions. Figure 3 shows an
MGrid schema using a concrete syntax produced using the
matamodel in Figure 2. Due to space limitations we do not
define the concrete syntax for MGrdiML. The computer shape
in the middle of the model represents the MGrid controller that
coordinates the activities of loads (lower left of the figure),
the sources (right of the figure) and the PCC shown as the
smart meter. Policies are attached to the various entities in the
model. For example one policy that is defined for safety is
that a storage source cannot be charging and discharging at
the same time. This policy is shown in the lower right corner
of the model. Note that the model shown in Figure 3 would
be created by an expert, such as a technician.

Fig. 3. MGrid schema for the scenario.

V. THE VIRTUAL MACHINE

In this section we describe the MGridVM which follows
a similar structure to the Communication Virtual Machine
(CVM) developed by Deng et al. [17]. The MGridVM uses a
four layered architecture similar to CVM.

Figure 4 shows the structure of the MGridVM. The key
on the right side of the figure uses a color code to identify
with components belong to which layer. The layers of the
MGridVM are described as follows.
Microgrid Management Interface (MMI) - Gives the user
the ability to conceive, describe and obtain the feasibility
of desired behaviors and contingencies of the underlying
physical components of the microgrid through MicroGridML,
the DSML described earlier. Facilitation is at an abstract level
to be intuitive yet expressive enough to describe most of the
configurations and functionality of the microgrid. The output
to the underlying layer is a feasible schema or instantiation
of the grid model with artifacts which describe possible
transformations. The user may chose to to run a simulation
based on the current hardware configuration over a specified
period of time. In this case the hardware negotiation layer is
disconnected and a mockup based on repository data is used as

Fig. 4. The MGrid Virtual Machine

Fig. 5. MGridVM Management Interface.

data-source. Figure 5 shows the user interface for our current
prototype for the MMI.
Synthesis Engine (SE) - Transforms the behaviors and contin-
gencies in the declarative MicroGridML into an executable
MicroGrid Control Script (MGCS). The actions and com-
mands inherent within the MGCS, serve as directives to
manage the physical grid components. This layer contains a
runtime model which reflects the current state of the micro-
grid. Changes to the runtime model are either user initiated,
whereby the user sends a new model to be implemented, or by
changes in the microgrid hardware states. A schema analyzer
transforms the difference between the new model and the
executing model into system events. We defined our policies in
terms of a targeted triple of Events, Conditions and Actions;
system events determine which policies become active, but
only after policy manager scrutiny. The final component of

62 63

this layer is a state analyzer which updates the runtime model
to be consistent with the state of the hardware.
Grid Control Middleware - Transforms the platform indepen-
dent control script into hardware specific commands. It is
at this layer whereby the virtual machine may amalgamate
diverse devices with distinct commands.
Hardware Brokerage - This layer is primarily responsible
for executing device specific commands upon the physical
hardware below and monitoring the status of its devices.

VI. VALIDATION

To validate the efficacy and feasibility of our approach,
we developed a microgrid testbed (see Figure 7). The testbed
was based on the running scenario outline earlier in Section
III-A, but the abstraction took into consideration the critical
features of a microgrid. The testbed operates on approximately
5V DC, eliminating the need for DC/AC PWM inversion
for the PV minisource. The MGridVM serially communicates
with the testbed via two USB interfaces. The first, a sensory
interface, monitors voltage and current levels at specific points
in the testbed. The second, a relay bank, actuates component
switching. Storage is in the form of one Lithium Ion battery
producing at 4.75V and the LV grid source is represented by
a 5.0V AC/DC adapter rated at 100mA. Figure 6 shows a
schematic drawing of the testbed used to validate the feasibility
of our approach.

RELAY BANK

Load1 Load2

DC IN

Storage

pcc

FAN

PV Array

Charge Controller

VE
Connector

Block

+VE
Connector

Block

CHARGE

DISCHARGE

Temp
Sensor

Current
Sensor

Voltage
Sensor

Sensor Interface

Current
Sensor

Voltage
Sensor

GRIDVM
Hardware Brokerage

USB2

USB1

Uncontrolled Loads

Fig. 6. Schematic of the testbed.

Voltage and current levels within the testbed are contin-
uously monitored by sensors according to a defined data
acquisition rate and sent to the sensory interface. The hardware

brokerage layer of the MGridVM receives these monitored
updates and analyzes the values to determine changes in
component states. Values that fall outside the scope of the
defined threshold levels indicate an important state change and
an appropriate event will be generated. For example, should
the grid source voltage level drop to 2.0V, the brokerage layer
would receive the new voltage value, compare the value to
the predefined threshold of 4.0V and generate a UtilityDown
event. Based on the policies in effect that are driven by the
UtilityDown event, the appropriate control script would be
generated. Assuming there exists a policy Pn such that:

Fig. 7. Hardware implementation for the testbed.

Pn = <event> UtilityDown
<condition> StoreLevel > StoreThreshold
<action> DischargeBattery()

In our scenario Pn would cause a control script to be
generated for the storage to be discharged into the mircogrid,
assuming the current condition of the storage level exceeds
that of the storage threshold level. The round trip is completed
when the control script is sent down to the hardware brokerage
level to be executed via the USB connection to the relay bank
on the testbed itself.

VII. RELATED WORK

There has been significant effort in the research community
to address energy management. In general, the challenge of
operating a microgrid lies in the fact that at all times the
balance between generation and demand has to be maintained.
Much of the work in the area of microgrids tend to focus on
the electrical aspects such as efficient designs and hierarchical
integration [18], [19], [20] of generation and load into existing
electric power distribution infrastructure. This work compli-
ments much of the aforementioned research by providing
orthogonally, a simplified software engineering approach to
support the management of the microgrid through models.

Other researchers have also investigated software ap-
proaches to support energy management. Zaidi et al. [21]
proposes an approach for self-configuring microgrids that
focuses on the demand side management. Individual load are

64 PB

assigned to intelligent control nodes containing switching and
power measuring features that are remotely accessible through
wireless radios. Control algorithms are used to identify the
type of loads by looking at their power consumption profiles,
which are measured by the control nodes and communicated
to the micgrogrid controller. Similar to Zaidi’s work, our
approach leverages intelligent controller to support demand
side energy management. Unlike Zaidi’s work, where loads
are assigned predefined priorities and load isolation decisions
are based on the predefined priorities, our work provides a
user-centric focus to energy management. End users define
load priorities and preferences as user defined policies which
influences the weighting of the load isolation algorithms.

Livengood et al. [22], proposes a software energy manage-
ment systems, an energy box, capable of optimizing residential
energy consumption through a suite of stochastic dynamic
programming algorithms centered around demand pricing.
Livengood et al.’s approach however introduces some com-
plexity for the creation and modification of the management
algorithms. Our approach differs in the use of a DSL and an
intuitive modeling environment that supports the manipulation
of management rules. MgridML captures domain expertise
within the language enabling the end user to make fine
grained adjustments to the microgrid activities, while still
being sheltered from its complexity.

The DSL approach is utilized in Habitation [23], a domain
specific language for home automation system design. Similar
to our work, a model-driven paradigm is employed, providing
a higher level of abstraction to the user of the tool. the
Habitation language however, targets the representation and
manipulation of loads. MGridML is designed to address the
complete energy system with algorithms concerned with the
balancing of energy between loads and sources. Addition-
ally, Habitation uses a code generation methodology while
MGridVM uses a runtime model interpretation technique to
support dynamic reconfiguration of the microgrid.

VIII. CONCLUDING REMARKS

In this paper we presented a model-driven technique to
address the need for robust, user-driven software overlay
for energy management. This approach provides for energy
management of the microgrid and is furthermore an enabling
technology for automated demand response. Our user-driven
approach to energy management considers the role of the
microgrid user as critical to overall consumption reduction.
Future directions of this research will be geared towards load
and source forecasting and extending the virtual machine to
facilitate mobility. We will further fine tune our human com-
puter interface according to design dimensions with Embodied
Conversational Agent feedback.

ACKNOWLEDGEMENTS
The authors would like to acknowledge support in part by a
Florida International University Dissertation Year Fellowship
- Andrew Allen, and the NSF under grant HRD-0833093.

REFERENCES

[1] Litos Strategic Communication, “The smart grid: An introduction,”
US Department of Energy, Tech. Rep., 2008, http://www.oe.energy.
gov/DocumentsandMedia/DOE SG Book Single Pages(1).pdf (March
2011).

[2] A. Vojdani, “Smart integration,” Power and Energy Magazine, IEEE,
vol. 6, no. 6, pp. 71–79, 2008.

[3] R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson,
A. S. Meliopoulous, R. Yinger, and J. Eto, “White paper on integration
of distributed energy resources. the certs microgrid concept,” Consortium
for Electric Reliability Technology Solutions, prepared for the U.S.
Department of Energy, Tech. Rep., April 2002.

[4] N. Hatziargyriou, H.Asano, R. Iravani, and C. Marnay, “Microgrids,”
IEEE Power & Energy Magazine, vol. july, pp. 78–94, 2007.

[5] R. Lasseter and P. Piagi, “Microgrid: A conceptual solution,” in IEEE
Power Electronics Specialists Conference, vol. 6. Citeseer, 2004, pp.
4285–4291.

[6] A. Van Deursen and P. Klint, “Little languages: Little maintenance?”
Journal of Software Maintenance: Research and Practice, vol. 10, no. 2,
pp. 75–92, 1998.

[7] E. Sirer and B. Bershad, “Using production grammars in software
testing,” in Proceedings of the 2nd conference on Domain-specific
languages. ACM, 1999, pp. 1–13.

[8] R. Kieburtz, L. McKinney, J. Bell, J. Hook, A. Kotov, J. Lewis,
D. Oliva, T. Sheard, I. Smith, and L. Walton, “A software engineering
experiment in software component generation,” in Proceedings of the
18th international conference on Software engineering. IEEE Computer
Society, 1996, p. 552.

[9] D. Weiss, “Creating domain-specific languages: The fast process,” in
First ACM-SIGPLAN Workshop on Domain-Specific Languages; DSL,
vol. 97, 1997.

[10] D. Forum, “Domain specific modeling,” 2011, http://www.dsmforum.
org/(March).

[11] M. Simos, “Organization domain modeling (odm): Formalizing the core
domain modeling life cycle,” ACM SIGSOFT Software Engineering
Notes, vol. 20, no. SI, pp. 196–205, 1995.

[12] T. Stahl, M. Voelter, J. Bettin, A. Haase, S. Helsen, and K. Czarnecki,
Model-Driven Software Development: Technology, Engineering, Man-
agement, 1st ed. John Wiley & Sons, 2006.

[13] R. Prieto-Diaz, “Domain analysis: an introduction,” ACM SIGSOFT
Software Engineering Notes, vol. 15, no. 2, p. 54, 1990.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis,” CMU, Tech. Rep. CMU/SEI-90-TR-
21, Nov 1990.

[15] K. Czarnecki, K. Osterbye, and M. Voelter, “Generative program-
ming,” in Object-Oriented Technology ECOOP 2002 Workshop Reader.
Springer, 2002, pp. 15–29.

[16] S. Cook, G. Jones, S. Kent, and A. Wills, Domain-specific development
with visual studio DSL tools. Addison-Wesley Professional, 2007.

[17] Y. Deng, S. M. Sadjadi, P. J. Clarke, C. Zhang, V. Hristidis, R. Ran-
gaswami, and N. Prabakar, “A communication virtual machine,” in
COMPSAC ’06: Proceedings of the 30th Annual International Computer
Software and Applications Conference. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 521–531.

[18] Z. Jiang and R. Dougal, “Hierarchical microgrid paradigm for integration
of distributed energy resources,” in Power and Energy Society General
Meeting - Conversion and Delivery of Electrical Energy in the 21st
Century, 2008 IEEE, July 2008, pp. 1 –8.

[19] J. Driesen and F. Katiraei, “Design for distributed energy resources,”
Power and Energy Magazine, IEEE, vol. 6, no. 3, pp. 30 –40, May
2008.

[20] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids
management,” Power and Energy Magazine, IEEE, vol. 6, no. 3, pp. 54
–65, May 2008.

[21] A. Zaidi and F. Kupzog, “Microgrid automation - a self-configuring
approach,” in Multitopic Conference, 2008. INMIC 2008. IEEE Interna-
tional, Dec 2008, pp. 565 –570.

[22] D. Livengood and R. Larson, “The energy box: Locally automated
optimal control of residential electricity usage,” Service Science, vol. 1,
no. 1, pp. 1–16, 2009.

[23] M. Jimenez, F. Rosique, P. Sanchez, B. Alvarez, and A. Iborra, “Habita-
tion: A domain-specific language for home automation,” IEEE Software,
vol. 26, pp. 30–38, 2009.

PB 65

A Comparative Study of Different Strategies for Predicting
Software Quality

Taghi M. Khoshgoftaar
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu

Kehan Gao
Eastern Connecticut State University

Willimantic, Connecticut 06226
gaok@easternct.edu

Amri Napolitano
Florida Atlantic University
Boca Raton, Florida 33431

amrifau@gmail.com

Abstract—Various methods have been developed for improving the
quality of a software product, especially for high-assurance and mission-
critical software systems. One commonly used approach is software
quality modeling, in which software practitioners utilize software metrics
and defect data collected during the software development process to
build defect prediction models that will help to find poor-quality program
modules. Those modules predicted to be fault-prone will receive more
inspection and testing, thereby improving their quality. Efficacy of defect
prediction models is influenced by relevance between software metrics and
fault data. Usually not all software metrics in data repositories contribute
equally to the occurrence of faults. Choosing the most important metrics
(features) prior to the model training process is needed to improve the
effectiveness of defect predictors. In this paper, we study 18 filter-based
feature selection techniques and evaluate their effectiveness through a
case study performed on 16 different software data sets. Among the
18 techniques, six of them are standard filter-based methods, while
11 of them are threshold-based feature selection (TBFS) techniques
proposed by our research team recently. The last one is based on
signal to noise ratio (S2N), which is a widely used concept in electrical
and communication engineering, but which is rarely used in feature
selection. The experimental results demonstrate that the TBFS techniques
perform similarly to the standard techniques and the S2N technique
shows significantly better performance than the other 17 approaches.

Index Terms—threshold-based feature selection, filter-based feature
ranking techniques, software defect prediction, software metrics, software
quality, signal to noise ratio.

I. INTRODUCTION

One effective method for improving the quality and reliability of
a high-assurance software project/product is to detect and correct
software defects (bugs) early enough during the software development
process and prior to system deployment and operation, since for such
high-assurance systems certain defects or failures can have disastrous
consequences. Various techniques and approaches have been created
for this purpose. Among them, software quality modeling is an
effective and attractive approach. In software quality assurance, prac-
titioners often use software metrics (attributes or features) gathered
during the software development process and various data mining
techniques to build classification models for predicting whether a
given program module (instance or example) is in the fault-prone (fp)
or not fault-prone (nfp) class [1]. Such a strategy allows practitioners
to intelligently allocate project resources and focus more on the
potentially problematic modules.

However, in the practice of software quality estimation, we find
that not all collected software metrics are useful or make equally
important contributions to classification results. Simply training a
defect prediction model using the available set of software metrics
without regard to the quality of the underlying software measurement
data is not recommended. Selecting a subset of features that are most
relevant to the class attribute is necessary and may result in better
predictions.

In this paper, we investigate 18 filter-based feature ranking tech-
niques to select subsets of features (metrics or predictors). Among the
18 techniques, six of them are commonly used, namely, chi-square
(CS), information gain (IG), gain ratio (GR), symmetrical uncertainty
(SU), and ReliefF (two types, RF and RFW) [2]. Eleven of them are
threshold-based feature selection techniques (TBFS) proposed by our
research team; a preliminary investigation of one of these 11 TBFS
techniques has been reported in our recent work [3]. The remaining
technique is based on signal to noise ratio (S2N), which is a widely
used concept in electrical and communication engineering, but which
has only been used in data mining research very recently.

Our proposed threshold-based feature selection (TBFS) techniques
substantially extend the FAST algorithm proposed by Chen and
Wasikowski [4]. FAST is based on the area under a ROC (Receiver
Operating Characteristic) curve generated by moving the decision
boundary of a single feature classifier with thresholds placed using an
even-bin distribution. This means that they calculated a ROC curve
by discretizing the distribution, while our technique is much more
general than their work. Our technique does not require discretization,
making it more precise and avoiding the determination of how wide
the bins should be. Further, there are 11 different versions of TBFS
which are based on 11 different classifier performance metrics for
feature ranking. Another nice property of our technique is that it can
be extended to incorporate additional metrics.

In order to evaluate the effectiveness of the 18 filter-based feature
selection methods, we perform a case study on 16 software data sets.
The case study data consists of software measurement and defect
data from three real-world software projects, including four data
sets from a very large high-assurance telecommunications software
system (LLTS) [5], three data sets from NASA software project
KC1 [6], and nine data sets from the Eclipse project [7].

Following feature selection, defect prediction models are con-
structed using the Naı̈ve Bayes classifier with the training data con-
sisting of the software metrics selected by the 18 different approaches.
The empirical results demonstrate that our proposed TBFS techniques
have similar performance to the six commonly used feature selection
approaches. In addition, the S2N technique shows significantly better
performance than the other 17 techniques (6 standard methods +
11 TBFS methods). Moreover, some techniques exhibit more stable
performance than other techniques with respect to different data
sets. One thing we would like to emphasize is that from a software
engineering point of view, a practitioner appreciates working with a
smaller set of metrics for defect prediction than analyzing a large
number of metrics.

The remainder of the paper is organized as follows: Section II
summarizes some key related work. Section III describes the 18 filter-
based feature ranking techniques and other methodologies used in
this study. Section IV presents an empirical case study, including

66 67

software measurement data, results and analysis. Section V draws
the conclusion of the paper and provides some directions for future
work.

II. RELATED WORK

One of the challenging problems in the data mining process is high
dimensionality of data, which not only requires extensive computation
during the learning process but also may deteriorate learning results.
Feature selection (or attribute selection) is an effective method for
handling high dimensional data. In the selection process, the most
important and relevant features will be selected to build classi-
fiers. Feature selection techniques are broadly categorized into two
groups: wrapper-based and filter-based. The wrapper-based approach
involves training a learner during the feature selection process, while
a filter-based approach uses the intrinsic characteristics of the data
for feature selection and does not rely on training a learner. The
primary advantage of the filter-based approach over the wrapper-
based approach lies in its faster computation.

Hall and Holmes [8] investigated six attribute selection techniques
that produce ranked lists of attributes and applied them to several
data sets from the UCI machine learning repository. Ilczuk et al.
[9] investigated the importance of feature selection in judging the
qualification of patients for cardiac pacemaker implantation. Forman
[10] studied a few number of filter-based feature ranking techniques
in the context of text mining.

Although feature selection has been widely applied in various data
mining problems, its application in software quality and reliability
engineering has been rather limited. Rodrı́guez et al. [11] applied
feature selection to five software engineering data sets using three
filter-based models and two wrapper-based models. The authors stated
that the reduced data sets maintained the prediction capability of
the original data sets while using fewer attributes. Chen et al. [12]
have studied feature selection using wrappers in the context of
software cost/effort estimation. In their study, serval COCOMO-I and
COCOMO-II data sets were used. They concluded that the reduced
data set could improve the estimation and recommended feature
selection in cost modeling, particularly when dealing with very small
data sets. Pizzi et al. [13] described a stochastic metric selection
method to identify the software metric subset that is most effective
at predicting software module complexity. This classification method
was empirically evaluated and validated against three benchmark
approaches. The main advantage of this research, claimed by the
authors, is that a project manager or software architect could utilize
the predictions to identify highly complex modules for review and
possible revision. In a recent study [14], we investigated feature
selection techniques using the filter-based method for software defect
prediction. It was concluded that the performances of the classifica-
tion models either improved or were not affected when only 15% of
the original features were used.

III. METHODOLOGY

A. Standard Filter-Based Feature Ranking Techniques

The procedure of feature ranking is to score each feature according
to a particular method, allowing the selection of the best features. The
six commonly used filter-based feature ranking techniques examined
in this work include [2]: chi-square (CS), information gain (IG), gain
ratio (GR), two types of ReliefF (RF and RFW), and symmetrical
uncertainty (SU).

The chi-square (χ2) statistic is used to evaluate the distribution of
the class as it relates to the values of the target feature. The values

Algorithm 1: Threshold-Based Feature Selection

input :
1. Data set D with features F j , j = 1, . . . ,m;
2. Each instance x ∈ D is assigned to one of two classes
c(x) ∈ {P,N} where P = fp and N = nfp;
3. The value of attribute F j for instance x is denoted F j(x);
4. Metric ω ∈ {FM, OR, PO, PR, GI, MI, KS, DEV, GM, AUC, PRC}.
output: Ranking R = {r1, . . . , rm} where rj represents the rank for

attribute F j , i.e., the rj -th most significant attribute as
determined by metric ω.

for F j , j = 1, . . . ,m do
Normalize F j �→ F̂ j =

F j−min(F j)

max(F j)−min(F j)
;

Calculate metric ω using attribute F̂ j and class attribute
{c(x)|x ∈ D}, ω(F̂ j) ; (The detailed formula of each metric ω is
provided in Sections III-B1 through III-B11.)

Create attribute ranking R using ω(F̂ j) ∀j

of the features must be discretized into a number of intervals before
performing the test. The χ2 statistic is defined as follows:

χ2 =

I∑
i=1

nc∑
j=1

(Oi,j − Ei,j)
2

Ei,j

where I is the number of different values (or intervals) of the feature,
nc is the number of classes (nc=2 for a binary classification problem),
Oi,j and Ei,j are the observed number and the expected number of
instances corresponding to value (or interval) i and class j. The larger
the χ2 statistic, the more likely it is that the distribution of values
and classes are dependent; that is, the feature is relevant to the class.

Information gain, gain ratio, and symmetrical uncertainty are
measures commonly used in the field of information theory [2].
Information gain (IG) is the information provided about the target
class attribute Y, given the value of another attribute X. IG measures
the decrease of the weighted average impurity of the partitions
compared to the impurity of the complete set of data. IG tends
to prefer attributes with a larger number of possible values. If one
attribute has a larger number of values, it will appear to gain more
information than those with fewer values, even if it is actually no
more informative. One strategy to solve this problem is to use the gain
ratio (GR), which penalizes multiple-valued attributes. Symmetrical
uncertainty (SU) is another way to overcome the problem of IG’s
bias toward attributes with more values, doing so by dividing by the
sum of the entropies of X and Y.

Relief is an instance-based feature ranking technique introduced
by Kira and Rendell [15]. It measures the importance of features
by considering how much their values change when comparing a
randomly chosen instance with its nearest hit (an instance from
the same class) and its nearest miss (one from a different class).
ReliefF is an extension of the Relief algorithm that can handle noise
and multiclass data sets, and is implemented in the WEKA tool [2].
When the WeightByDistance (weight nearest neighbors by their
distance) parameter is set as default (false), the algorithm is referred
to as RF; when the parameter is set to ‘true’, the algorithm is referred
to as RFW.

B. Threshold-Based Feature Selection

The threshold-based feature selection (TBFS) technique was pro-
posed by our research team and implemented within WEKA [2]. The
procedure is shown in Algorithm 1. Each independent attribute works
individually with the class attribute, and that two-attribute data set
is evaluated using different performance metrics. More specifically,

66 67

the TBFS procedure includes two steps: (1) normalizing the attribute
values so that they fall between 0 and 1; and (2) treating those values
as the posterior probabilities from which to calculate performance
metrics. Note that no classifiers were built during the feature selection
process.

Analogous to the procedure for calculating rates in a classification
setting with a posterior probability, the true positive (TPR), true
negative (TNR), false positive (FPR), and false negative (FNR)
rates can be calculated at each threshold t ∈ [0, 1] relative to the
normalized attribute F̂ j . Precision PRE(t) is defined as the number
of positive examples with F̂ j > t divided by the total number
of examples with F̂ j > t. The feature rankers we propose utilize
these five rates as described below. The value is computed in both
directions: first treating instances above the threshold (t) as positive
and below as negative, then treating instances above the threshold
as negative and below as positive. The better result is used. Each
of the 11 metrics are calculated for each attribute individually, and
attributes with higher values for FM, GM, PR, PO, AUC, PRC, MI,
KS and OR and lower values for GI and DEV are determined to
better predict the class attribute. In this manner, the attributes can be
ranked from most to least predictive based on each of the 11 metrics.

1) F-Measure: The F-measure (FM) is derived from recall (or true
positive rate) and precision.

FM = max
t∈[0,1]

2× TPR(t)× PRE(t)

TPR(t) + PRE(t)
.

Recall and precision are calculated at each point along the normalized
attribute range of 0 to 1. The maximum F-measure obtained by each
attribute represents how strongly that particular attribute relates to
the class, according to the F-measure.

2) Odds Ratio: The odds ratio (OR) is defined as:

OR = max
t∈[0,1]

TPR(t)(1− FPR(t))

(1− TPR(t))FPR(t)

= max
t∈[0,1]

(
TPR(t)

FPR(t)

)(
TNR(t)

FNR(t)

)

OR is the maximum value of the ratio of the product of correct to
incorrect predictions.

3) Power: Power (PO) is defined as:

PO = max
t∈[0,1]

(
(1− FPR(t))k − (1− TPR(t))k

)

= max
t∈[0,1]

(
(TNR(t))k − (FNR(t))k

)

for some integer k ≥ 1. Note that if k = 1, Power is equivalent to
KS (described in Section III-B7). In this work, we use k = 5 as in
Forman [10].

4) Probability Ratio: The probability ratio (PR) is defined as:

PR = max
t∈[0,1]

TPR(t)

FPR(t)

5) Gini Index: The Gini index (GI) was first introduced by
Brieman et al. [16] within the CART algorithm. For a given threshold
t, let St = {x | F̂ j(x) > t} and S̄t = {x | F̂ j(x) ≤ t}. The Gini
index is calculated as:

GI = min
t∈[0,1]

[
1− (

P 2(TP (t) | St) + P 2(FP (t) | St)
)]

+
[
1− (

P 2(TN(t) | S̄t) + P 2(FN(t) | S̄t)
)]

= min
t∈[0,1]

[2PRE(t)(1− PRE(t)) + 2NPV (t)(1−NPV (t))] .

where TP (t) is the number of true positives given threshold t
(and similarly for TN(t), FP (t) and FN(t)). NPV or negative
predictive value represents the percentage of examples predicted to be
negative that are actually negative and is very similar to the precision
— in fact, it is often thought of as the precision of instances predicted
to be in the negative class. The Gini index for the attribute is then
the minimum Gini index at all decision thresholds t ∈ [0, 1].

6) Mutual Information: Let c(x) ∈ {P,N} denote the actual class
of instance x, and let ĉt(x) denote the predicted class based on
the value of the attribute F j and a given threshold t. The mutual
information (MI) computes the criterion with respect to the number
of times a feature value and a class co-occur, the feature value occurs
without the class, and the class occurs without the feature value. The
MI metric is defined as:

MI = max
t∈[0,1]

∑
ĉt∈{P,N}

∑
c∈{P,N}

p(ĉt, c) log
p(ĉt, c)

p(ĉt)p(c)

where

p(ĉt = α, c = β) =
| {x | (ĉt(x) = α) ∩ (c(x) = β)} |

| P | + | N | ,

p(ĉt = α) =
| {x | ĉt(x) = α} |

| P | + | N | ,

p(c = α) =
| {x | c(x) = α} |

| P | + | N | ,

α, β ∈ {P,N}.
7) Kolmogorov-Smirnov Statistic: The Kolmogorov-Smirnov

Statistic (KS) measures the maximum difference between the
cumulative distribution functions of examples in each class based
on the normalized attribute F̂ j . The distribution function Fc(t) for
a class c is estimated by the proportion of examples x from class c
with F̂ j(x) ≤ t, t ∈ [0, 1]. In a two class setting with c ∈ {N,P},
KS is computed as

KS = max
t∈[0,1]

|FP (t)− FN (t)|.

The larger the KS value, the better the attribute is able to separate
the two classes, and hence the more significant the attribute is. The
range of KS is between 0 and 1.

8) Deviance: The deviance (DEV) is the minimum residual sum
of squares based on a threshold t. It measures the sum of the squared
errors from the mean class given a partitioning of the space based on
the threshold t. As it represents to total error found in the partitioning,
lower values are preferred.

9) Geometric Mean: The geometric mean (GM) is the square root
of the product of the true positive rate and true negative rate. GM
ranges from 0 to 1, and an attribute that is perfectly correlated to the
class provides a value of 1. GM is a useful performance measure since
it is inclined to maximize the true positive rate and the true negative
rate while keeping them relatively balanced. GM is calculated at each
value of the normalized attribute range, and the maximum value of
GM is used as a measure of attribute strength.

10) Area Under the ROC Curve: Receiver Operating Character-
istic, or ROC, curves graph true positive rate on the y-axis versus
the false positive rate on the x-axis. The resulting curve illustrates
the trade-off between true positive rate and false positive rate. In this
study, ROC curves are generated by varying the decision threshold
t used to transform the normalized attribute values into a predicted
class. In other words, the true positive and false positive rates are
calculated as the threshold for the normalized attribute varies from
0 to 1. The area under the ROC curve (AUC) is used to provide a

68 69

single numerical metric for comparing the predictive power of each
attribute. This definition is different than the one used by Chen and
Wasikowski [4], which consider only a small subset of the possible
threshold values when calculating the true positive and false positive
rates.

11) Area Under the Precision-Recall Curve: The area under the
precision-recall curve (PRC) is a single-value measure that originated
from the area of information retrieval. A precision-recall curve is
generated by varying the decision threshold t from 0 to 1 and plotting
the recall (y-axis) and precision (x-axis) at each point in a similar
manner to the ROC curve. The area under the PRC ranges from 0
to 1, and an attribute with more predictive power results in an area
under the PRC closer to 1.

C. Signal to Noise Ratio Technique

Signal to noise ratio (S2N) [17] is a simple univariate ranking
technique which defines how well a feature discriminates two classes
in a two class problem. S2N, for a given feature, separates the means
of the two classes relative to the sum of their standard deviation. The
equation to calculate S2N is

S2N =
(μP − μN)

σP + σN

where μP and μN are the mean values of a particular attribute for
the samples from class P and class N , and σP and σN are the
corresponding standard deviations.

D. Classification Algorithm

The software defect prediction models are built using the naı̈ve
Bayes (NB) [2] algorithm. This learner was selected for two key
reasons: (1) it does not have a built-in feature selection capability,
and (2) it is commonly used in both the software engineering and data
mining domains. Prior research has shown that naı̈ve Bayes classifiers
often perform well, even on real-world data where the variables are
related [18]. The WEKA data mining tool [2] is used to implement
the classifier and the default parameter settings are adopted.

E. Performance Evaluation

The Area Under the ROC (Receiver Operating Characteristic)
curve, abbreviated as AUC, is used for evaluating the defect pre-
diction models in this study. The AUC metric is illustrated earlier in
the paper. It is worthwhile to mention that AUC is commonly used
to evaluate software defect prediction models [1]. An ROC curve
illustrates the classifier’s performance across all decision thresholds,
i.e., a value between 0 and 1 that theoretically separates the fp and
nfp modules. The AUC values range from 0 to 1, where a perfect
classifier provides an AUC value of 1 [2].

IV. CASE STUDY

A. Software Measurement Data

Experiments conducted in this study used software metrics and
defect data collected from three real-world software projects, includ-
ing a very large high-assurance telecommunications software system
(denoted as LLTS) [5], NASA software project KC1 [6], and the
Eclipse project [7].

LLTS consists of 42 software metrics, including 24 product met-
rics, 14 process metrics, and four execution metrics. The dependent
variable is the class of the program module. A module with one or
more faults is considered fp, and nfp otherwise. The LLTS software
system consists of four successive releases labeled SP1, SP2, SP3,
and SP4, where each release is characterized by the same number
and type of software metrics, but has a different number of instances

TABLE I
SOFTWARE DATA SET CHARACTERISTICS

Data #Attri. #Inst. #fp %fp #nfp %nfp
SP1 42 3649 229 6% 3420 94%

LLTS SP2 42 3981 189 5% 3792 95%
SP3 42 3541 47 1% 3494 99%
SP4 42 3978 92 2% 3886 98%
KC1-5 62 145 36 25% 109 75%

NASA KC1-10 62 145 21 14% 124 86%
KC1-20 62 145 10 7% 135 93%
E2.0-10 208 377 23 6% 354 94%
E2.0-5 208 377 52 14% 325 86%
E2.0-3 208 377 101 27% 276 73%
E2.1-5 208 434 34 8% 400 92%

Eclipse E2.1-4 208 434 50 12% 384 88%
E2.1-2 208 434 125 29% 309 71%
E3.0-10 208 661 41 6% 620 94%
E3.0-5 208 661 98 15% 563 85%
E3.0-3 208 661 157 24% 504 76%

(program modules). The SP1, SP2, SP3, and SP4 data sets consist of
3649, 3981, 3541, and 3978 program modules, respectively.

The original NASA project KC1 [6] includes 145 instances, each
containing 94 independent attributes. After removing 32 Halstead
derived measures, we have 62 attributes left. We used three different
thresholds to define defective instances, thereby obtaining three
versions of the preprocessed KC1 data set. The thresholds are 20, 10,
and 5, indicating instances with number of defects greater or equal
to 20, 10, or 5 belong to the fp class, or the nfp class otherwise.

From the PROMISE data repository [7], we obtained the Eclipse
defect counts and complexity metrics data set. The original data for
the Eclipse packages consists of three releases denoted 2.0, 2.1, and
3.0, respectively. We chose three post-release defects thresholds (thd)
to determine the defective instances for each release. Similar to the
NASA KC1 data sets, a program module with thd or more post-
release defects is labeled fp, while those with fewer than thd defects
are labeled nfp. In our study, we use thd � {10, 5, 3} for release 2.0
and 3.0, while we use thd � {5, 4, 2} for release 2.1. All nine derived
data sets contain 208 independent attributes. Releases 2.0, 2.1, and
3.0 contain 377, 434, and 661 instances, respectively. The sixteen
data sets used in this work reflect software projects of different sizes
with different proportions of fp and nfp modules. Table I lists the
characteristics of the sixteen data sets utilized in this work.

B. Experiments

Before using a filter-based feature ranking technique, the practi-
tioner must choose how many features to select. To our knowledge, no
guidance is provided in related literature on the appropriate number of
features to select. A recent study [19] recommended using �log2 n�
features (n is the total number of the independent attributes) to build
Random Forests learners for binary classification for imbalanced data
sets. Moreover, a preliminary investigation showed that �log2 n� is
also appropriate for various learners. Consequently, we still choose
�log2 n� attributes that have the highest scores. That is, for the four
LLTS data sets, �log2 n� = 6, where n = 42; for the three NASA
KC1 data sets �log2 n� = 6, where n = 62; and for the nine Eclipse
data sets, �log2 n� = 8, where n = 208.

1) Results of the Feature Selection Techniques: Following the
feature selection algorithms, the NB classification models are con-
structed with data sets containing only the selected attributes. The
defect prediction models are evaluated with respect to the AUC
performance metric.

68 69

TABLE II
CLASSIFICATION PERFORMANCE IN TERMS OF AUC

LLTS NASA Eclipse
Filters SP1 SP2 SP3 SP4 KC1-5 KC1-10 KC1-20 E2.0-10 E2.0-5 E2.0-3 E2.1-5 E2.1-4 E2.1-2 E3.0-10 E3.0-5 E3.0-3 Avg.

CS 0.7846 0.8108 0.8184 0.7696 0.7484 0.7513 0.8525 0.7904 0.8421 0.7963 0.8419 0.8226 0.7536 0.8742 0.8866 0.8130 0.8098
GR 0.7346 0.7613 0.7808 0.7519 0.7489 0.7729 0.8669 0.8074 0.8078 0.7458 0.7919 0.7917 0.7614 0.8463 0.8785 0.7974 0.7903
IG 0.7831 0.8081 0.8118 0.7795 0.7438 0.7546 0.8569 0.8070 0.8562 0.8002 0.8547 0.8281 0.7542 0.8963 0.8851 0.8122 0.8145
RF 0.7879 0.8053 0.8305 0.7731 0.7990 0.7585 0.8296 0.8455 0.8617 0.7857 0.8022 0.7688 0.7993 0.8044 0.8481 0.7789 0.8049

RFW 0.7882 0.8081 0.8190 0.7735 0.7832 0.7639 0.8987 0.8107 0.8607 0.8107 0.8188 0.7302 0.7966 0.8101 0.8732 0.8024 0.8093
SU 0.7865 0.7729 0.7882 0.7592 0.7468 0.7719 0.8532 0.8158 0.8464 0.7940 0.8269 0.8170 0.7551 0.8540 0.8817 0.8072 0.8048
FM 0.7822 0.8074 0.8176 0.7731 0.7479 0.7119 0.8519 0.8463 0.8588 0.7868 0.8491 0.8131 0.7619 0.8936 0.8863 0.8129 0.8125
OR 0.7405 0.8060 0.7181 0.7558 0.7364 0.7700 0.8541 0.8147 0.8567 0.8001 0.8225 0.8109 0.7554 0.8606 0.8830 0.8092 0.7996
PO 0.7891 0.8071 0.8141 0.8023 0.7358 0.7627 0.8405 0.8398 0.8464 0.7985 0.8126 0.8050 0.7522 0.8966 0.8885 0.8163 0.8130
PR 0.7345 0.7963 0.7179 0.7605 0.7667 0.7641 0.8378 0.8116 0.8081 0.7963 0.7543 0.7841 0.7034 0.8408 0.8810 0.8107 0.7855
GI 0.7341 0.7982 0.7678 0.6997 0.7671 0.7645 0.8398 0.8116 0.8079 0.7963 0.7539 0.7858 0.7056 0.8439 0.8813 0.8108 0.7855
MI 0.7739 0.8010 0.8119 0.7788 0.7602 0.7413 0.8556 0.8335 0.8558 0.7897 0.8531 0.8234 0.7542 0.8715 0.8845 0.8124 0.8125
KS 0.7723 0.7750 0.8125 0.7588 0.7754 0.7169 0.8574 0.8243 0.8533 0.7914 0.8510 0.8238 0.7594 0.8713 0.8862 0.8109 0.8087

DEV 0.7821 0.8099 0.8163 0.7874 0.7559 0.7480 0.8504 0.8350 0.8558 0.7866 0.8563 0.8240 0.7563 0.8986 0.8856 0.8140 0.8164
GM 0.7716 0.7740 0.8165 0.7586 0.7665 0.7137 0.8588 0.8168 0.8423 0.7914 0.8464 0.8187 0.7627 0.8622 0.8858 0.8123 0.8061
AUC 0.7685 0.8072 0.7947 0.7683 0.7682 0.7066 0.8404 0.8763 0.8588 0.7932 0.8507 0.8163 0.7544 0.8988 0.8847 0.8101 0.8123
PRC 0.7885 0.8131 0.8120 0.7953 0.7147 0.7349 0.8300 0.8405 0.8474 0.7917 0.8506 0.8245 0.7569 0.8936 0.8852 0.8106 0.8118
S2N 0.7995 0.8142 0.8067 0.8130 0.7847 0.7508 0.8646 0.8623 0.8767 0.8003 0.8681 0.8560 0.8063 0.9175 0.9099 0.8759 0.8379

TABLE III
ONE-WAY ANOVA

Source Sum Sq. d.f. Mean Sq. F p-value
Techniques 0.4039 17 0.0238 10.38 0
Error 6.5513 2862 0.0023
Total 6.9552 2879

The classifier performance results are presented in Table II. In our
experiments, ten runs of five-fold cross-validation were performed
for model training. The values presented in the tables represent the
average AUC for every classification model constructed over the
ten runs of five-fold cross-validation. All the results of 18 feature
selection techniques and over 16 different software data sets are
reported. The best feature selection technique in terms of classifi-
cation performance (AUC) for each data set (column) is highlighted
in bold. We also summarize the average performance (last column
of the table) for each feature selection technique across the 16 data
sets. The results demonstrate that S2N outperformed the other feature
selection techniques for 10 out of 16 data sets and also on average.
For the other six data sets the best feature selection techniques are
scattered at GR(1), RF(2), RFW(2) and AUC(1), where the value in
parenthesis represents the number of best cases.

We also performed a one-way ANalysis Of VAriance (ANOVA)
F-test on the classification performance for each technique across all
the data sets to examine the significance level of the performance
differences. The underlying assumptions of ANOVA were tested and
validated prior to statistical analysis. The main factor of our ANOVA
experiment is the 18 feature ranking techniques. The null hypothesis
for the ANOVA test is that all the group population means are
the same, while the alternate hypothesis is that at least one pair
of means is different. Table III shows the ANOVA results. The p-
value is less than the typical cutoff of 0.05, implying that for the
main factor, the alternate hypothesis is accepted, namely, at least two
group means are significantly different from each other. We continued
our statistical validation by performing a multiple comparison test on
the main factor with Tukey’s Honestly Significant Difference (HSD)
criterion. Note that for both ANOVA and multiple comparison tests,
the significance level was set to 0.05.

The multiple comparison results, as shown in Figure 1, display a
graph with each group mean represented by a symbol (◦) and the
95% confidence interval as a line around the symbol. Two means

0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85

S2N

PRC

AUC

GM

DEV

KS

MI

GI

PR

PO

OR

FM

SU

RFW

RF

IG

GR

CS

Fig. 1. Multiple Comparison

are significantly different if their intervals are disjoint, and are not
significantly different if their intervals overlap. Based on the multiple
comparison results, we can conclude the following points:

• For the six standard filter-based feature selection techniques, GR
performed worst, IG performed best and the other four methods
sit in between.

• For the 11 proposed threshold-based feature selection tech-
niques, PR and GI performed poorly, DEV, PO, FM, MI, AUC,
and PRC performed relatively better than other techniques, and
OR, KS, and GM performed moderately.

• Overall, the proposed threshold-based feature selection tech-
niques had fairly similar performance to the six standard filter-
based feature selection methods. However, the S2N technique
showed significantly better performance than the other 17 tech-
niques.

• Moreover, some techniques demonstrated relatively stable per-
formance with respect to different data sets such as MI, KS,
S2N and SU, while other techniques, such as RF and RFW,
showed more fluctuational performance with respect to different
data sets.

2) Discussion on Selected Software Metrics: From a software
engineering point of view, a discussion on which software metrics
were selected is warranted. Due to paper size limitations, we only
present the results on LLTS SP1 (see Table IV). Table IV presents
the six selected software metrics for each of the top three feature
selection techniques (S2N, PO and PRC). It is found that the selected

70 71

TABLE IV
SOFTWARE METRICS SELECTED FOR SP1

Ranked attributes ID
Top 3 Filters 1 2 3 4 5 6

S2N 19 31 32 36 27 21
PO 13 11 37 39 23 17

PRC 16 29 36 42 32 11

TABLE V
SOFTWARE METRICS FOR LLTS DATA SETS

ID Symbol Description
11∗ UNQ DES # of different designers making changes.
13 LO UPD # of updates to this module by designers who had between 11

and 20 total updates in entire company career.
16 CALUNQ # of distinct procedure calls to others.
17 CAL2 # of second and following calls to others.
19 CNDSPNMX Maximum span of branches of conditional arcs.
21 FILINCUQ # of distinct include files.
23 LOC # of lines of code.
27 NDSENT # of entry nodes.
29 NDSPND # of pending nodes (i.e., dead code segments).
31 LGPATH Base 2 logarithm of the number of independent paths.
32∗ STMCTL # of control statements.
36∗ VARSPNSM Total span of variables.
37 VARSPNMX Maximum span of variables.
39 VARUSD2 # of second and following uses of variables.

VARUSD2=VARUSD-VARUSDUQ where VARUSD is the
total # of variable uses.

42 TANCPU Execution time (microseconds) of an average transaction on
a tandem system.

* the metrics selected by two of the top three methods (S2N, PO and PRC)

attributes were spread over 15 different software metrics, and there
were very few overlaps of the selected metrics between the top three
methods, only three metrics {11, 32, 36} selected twice. Table V lists
more detailed information of the 15 metrics.

Our recent work [20] has shown that classification models built on
smaller subsets of attributes via the six commonly used filter-based
feature selection techniques had similar or better performances than
those built with a complete set of attributes. Thus, we did not present
the results for full data sets in this paper.

V. CONCLUSION

In the software quality modeling process, one problem often
encountered by software practitioners is the presence of excessive
metrics in a training data set. In this study, we presented 18 filter-
based feature ranking techniques to choose the most important soft-
ware metrics. Among the 18 techniques, six are standard filter-based
techniques, while 11 are the threshold-based techniques we proposed,
and the remaining one is the signal to noise ratio (S2N) technique
rarely used in feature selection. We used the naı̈ve Bayes classifier to
build classification models with data sets containing only the selected
attributes. The experiments were performed on 16 different data sets
obtained from three types of software projects. The key conclusions
include: (1) our proposed threshold-based feature selection techniques
performed similarly to the standard feature selection techniques; (2)
the S2N technique showed significantly better performance than the
other 17 techniques; and (3) some techniques (such as MI, KS, S2N,
and SU) demonstrated more stable performance than other techniques
(such as RF and RFW) with respect to different data sets. Future work
will include more case studies with software measurement data sets
of other software systems. In addition, evaluation of the classification
models using different learners such as multilayer perceptron, support
vector machine, and k-nearest-neighbors will be examined.

REFERENCES

[1] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, July-August 2008.

[2] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[3] T. M. Khoshgoftaar and K. Gao, “A novel software metric selection
technique using the area under roc curves,” in Proceedings of the
22nd International Conference on Software Engineering and Knowledge
Engineering, San Francisco, CA, July 1-3 2010, pp. 203–208.

[4] X.-w. Chen and M. Wasikowski, “Fast: a roc-based feature selection
metric for small samples and imbalanced data classification problems,”
in KDD ’08: Proc. 14th ACM SIGKDD Int’l Conf. Knowledge Discovery
and Data Mining. New York, NY, USA: ACM, 2008, pp. 124–132.

[5] T. M. Khoshgoftaar, L. A. Bullard, and K. Gao, “Attribute selection
using rough sets in software quality classification,” International Journal
of Reliability, Quality and Safty Engineering, vol. 16, no. 1, pp. 73–89,
2009.

[6] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 293–304,
2009.

[7] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2007, p. 76.

[8] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transaction on Knowledge and
Data Engineering, vol. 15, no. 6, pp. 1437–1447, Nov/Dec 2003.

[9] G. Ilczuk, R. Mlynarski, W. Kargul, and A. Wakulicz-Deja, “New feature
selection methods for qualification of the patients for cardiac pacemaker
implantation,” Computers in Cardiology, vol. 34, no. 2-3, pp. 423–426,
2007.

[10] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of Machine Learning Research, vol. 3,
pp. 1289–1305, March 2003.

[11] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting fault modules applying feature selection to classifiers,” in
Proceedings of 8th IEEE International Conference on Information Reuse
and Integration, Las Vegas, Nevada, August 13-15 2007, pp. 667–672.

[12] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, vol. 22, no. 6, pp. 38–46,
November 2005.

[13] N. J. Pizzi, A. B. Demko, and W. Pedrycz, “The analysis of software
complexity using stochastic metric selection,” Journal of Pattern Recog-
nition Research, vol. 1, pp. 19–31, 2011.

[14] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience. Special Issue: Practical
Aspects of Search-Based Software Engineering, vol. 41, no. 5, pp. 579–
606, April 2011.

[15] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in
Proceedings of 9th International Workshop on Machine Learning, 1992,
pp. 249–256.

[16] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Boca Raton, FL: Chapman and Hall/CRC Press,
1984.

[17] L. Goh, Q. Song, and N. Kasabov, “A novel feature selection method
to improve classification of gene expression data,” in Proceedings of
the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New
Zealand, 2004, pp. 161–166.

[18] P. Domingos and M. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Machine Learning, vol. 29, no. 2-3, pp.
103–130, 1997.

[19] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An empirical study
of learning from imbalanced data using random forest,” in Proceedings
of the 19th IEEE International Conference on Tools with Artificial
Intelligence, vol. 2, Washington, DC, USA, 2007, pp. 310–317.

[20] H. Wang, T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Mining data from
multiple software development projects,” in Proceedings of 2009 IEEE
Intl. Conf. on Data Mining Workshops, Miami, FL, 2009, pp. 551–557.

70 71

Criteria of Human Software Evaluation:
Feature Selection Approach

Marek Z. Reformat
Electrical and Computer Engineering

University of Alberta
Edmonton, AB, Canada

Marek.Reformat@ualberta.ca

Sonal Patel
Electrical and Computer Engineering

University of Alberta
Edmonton, AB, Canada

sonal1@ualberta.ca

Abstract—Software maintenance includes activities related to
keeping already developed software up to the needs and wishes of
its users. In order to accomplish that there is a need to
understand how this software works. This task can be simplified
when the software is built using simple, easy to use and maintain
components.
In order to learn more about software artifacts programmers
estimate their quality. They inspect the code, and based on their
experience they offer their judgment and provide a score in a
specific scale. An important aspect of that process is to
understand how programmers perform such evolution. What
software measures are subconsciously used during the
evaluation? What kinds of measures are used to evaluate
different software quality attributes?
In order to answer some of those questions we present a
procedure suitable for estimating importance of software metrics
and their subconscious utilization by programmers. The
proposed approach is based on feature selection techniques.

Keywords: software maintenance, usability, and complexity;
feature selection techniques; software evaluation process; software
metric-based representation of programmers, tag-clouds

I. INTRODUCTION

Among all phases of a software life cycle the maintenance
phase seems the most often forgotten. Yet at the same time it
determines a long-term success of a software system. The
activities related to maintenance depend on the level of
understanding of software artifacts that constitute the software.
This, on the other hand, depends on quality of artifacts – how
they are design and implemented.

Quality of software artifacts is the subject to many research
activities. Many aspects of that quality – especially reliability
and defectiveness – are topics of numerous publications [1-4].
An important facet of defining and identifying software quality
is related to a process of human evaluation of software objects.
This process raises a number of questions: What does it mean
for a programmer that a piece of code is of good quality, i.e.,
that it is usable, simple and easy to understand, or
maintainable? Is a programmer consistent with his/her
evaluations across multiple artifacts? Can we see some patterns
among programmers – do they recognize the same software
measures as important?

In order to identify important metrics for a programmer
during an evaluation process, we propose a simple feature

selection-based approach. The approach is suitable for finding
important software measures that “describe” and “represent” an
individual preforming a software object evaluation process.
The proposed process uses a number of feature selection
techniques, i.e., techniques that identify the most suitable
software data features for representing software artifacts. The
obtained results are combined together in order to find a single
view characterizing a programmer performing evaluation. We
also use tag-clouds [6] for visualization purposes.

We illustrate application of the proposed approach on a
software engineering data. The data represents 366 software
object described with 64 software metrics. Three programmers
examined each object, and evaluated it from the point of view
of complexity, usability and maintainability.

II. FEATURE SELECTION METHODS

Feature selection also known as attribute selection is an
important pre-processing step in most data mining and
machine learning problems. Apart from improving the quality
of the machine learning data set, the main goal of a feature
selection process is to look for a subset of features that is
equivalent to the set of all features for a specific task [7].

There are two categories of feature selection methods:
wrappers and filters. Wrappers are algorithms that use
feedback from a learning algorithm in order to determine
which feature(s) are needed in order to build a classification
model. Filters are algorithms in which a feature subset is
selected without any involvement of a learning algorithm
(classifier). An additional categorization leads to feature
selection techniques and feature ranking techniques. Feature
selection methods select subsets of attributes that have good
predictive power when used together. Feature ranking
techniques ranks the attributes according to their individual
predictive power [7].

A. Software for feature selection
There are several data analysis software systems already

equipped with feature selection algorithms, such as MATLAB,
SciLab, NumPy, and the R language. Apart from these, there
are software systems that have been customized specifically
for feature-selection tasks: Weka, RapirMiner, and Orange, to
name just a few [8].

72 73

In Weka [9], feature selection can be performed in three
different ways: 1) using selection methods directly; 2) using a
meta classifier; or 3) using a filter. In the paper, the attribute
selection has been done using two types of techniques: SubSet
evaluators, and Attribute (Ranking) evaluators.

B. SubSet Evaluators
In the type of SubSet Evalutors we have applied three different
methods.
ConsistencySubsetEval: The value of a subset of attributes is

assessed by the level of consistency in the class values
when the training instances are projected onto the subset of
attributes. The common practice is to use it in conjunction
with a Random or Exhaustive search which looks for the
smallest subset with consistency equal to that of the full set
of attributes [10].

CfsSubsetEval: A subset of features is evaluated by taking
into consideration the individual predictive capability of
each feature along with the degree of redundancy between
them. Subsets of features which are highly correlated with
the class while having low inter-correlation are preferred.

FilteredSubsetEval: A method for running a random subset
evaluator on data that has been passed through an arbitrary
filter. The structure of the filter is entirely based on the
training data.

Those methods are combined with different serach techniques.
A list of all applied combinations is included in Table I.

TABLE I. SUBSET EVALUATORS

Subset Evaluator: Search Method:
ConsistencySubsetEval BestFirst
CfsSubsetEval GenericSearch
ConsistencySubsetEval GenericSearch
FilteredSubsetEval GreedyStepwise
ConsistencySubsetEval LinearForwardSelection
CfsSubsetEval RankSearch
CfsSubsetEval ScatterSearchV1
CfsSubsetEval SubsetSizeForwardSelection

C. Attribute Evaluators (Ranking Methods)
Weka provides a number of Attribute Evaluators. Among
them we have used the following ones.
FilteredAttributeEval: Similar to FilteredSubsetEval.
GainRatioAttributeEval: Assesses the value of an attribute

by measuring the gain ratio with respect to the class.
ChiSquaredAttributeEval: Assesses the importance of an

attribute by calculating the value of the chi-squared
statistic with respect to the class.

InfoGainAttributeEval: Assesses the importance of an
attribute by measuring the information gain with respect to
the class.

OneRAttributeEval: Assesses the value of an attribute by
using the OneR classifier.

ReliefFAttributeEval: Assesses the value of an attribute by
recurrently sampling an instance, and taking into
consideration the value of the given attribute for the
nearest instance of the same and different class.

SVMAttributeEval: An SVM Classifier is used to assessed
the value of an attribute. Attributes are ranked by the
square of the weight assigned by the SVM. For multiclass
problems, attribute selection is performed by ranking
attributes for each class independently using a one-vs-all
method, and then processing the top of each pile to
determine a final ranking.

SymmetricalUncertAttributeEval: Assesses the value of an
attribute by measuring the symmetrical uncertainty with
respect to the class.

All of these methods are run with Ranker as a selection
method.

III. MULTI-METHOD ALGORITHMS

The process of identifying the most important criteria used
subconsciously by programmers evaluating quality of the
software artifacts is replaced by selection of the most important
features of data generated via the human evaluation process.
The process embraces number of selection techniques (Section
III) and a simple procedure of fusing the results obtained from
the selection processes.

A. Fusing Results of SubSet Evaluators
Every time we run a SubSet Evaluator we obtain a subset of

features that according to the method we ran is the most
discriminative. This means that using multiple selection
methods we obtain multiple subsets of “super” features.

There are a number of ways in which we could combine
these subsets – where the simplest ones are to do a union, or
perform an intersection. However, we would like to make the
merge in more conscious manner, and take advantage of
utilization of multiple selection methods. A very simple
algorithm applied for selecting the most significant features
based on multiple different SubSet Evalators is presented in
Figure 1.

// initialization
create counter for each feature
initialize counters to 0

// feature evaluation
for each subset of features

for each feature from the subset
increase the counter of that feature by 1

 rof
rof
sort features based on the value of their counters

// selection process
calculate a threshold value

= 0.75*no_SubSet_methods
select features with values above the threshold
normalization of counters of the selected features

__
Figure 1. Algorithm SF_SubSetE:

Selection of Features from SubSet Evaluators

The algorithm SF_SubSetE is applied after all eight SubSet
Evaluators (Table I) are run on the data. The result of that is a

72 73

single subset of best features. The example of its utilization is
shown in Section VI.

B. Fusing Results of Attribute Evaluators
As for the SubSet Evaluators, a similar algorithm has been

constructed for identification of the best features obtained from
Attribute Evaluators, Figure 2. Its application to the software
data is also presented in Section VI.

__

// initialization
create counter for each feature
initialize counters to 0

// feature evaluation
for each ranking

for each feature from the ranking
increment the counter of that feature by a number
representing the position of the feature in
the ranking

 rof
rof
sort features based on the value of their counters

// selection process
calculate a threshold value

= 0.25*no_Rank_methods*no_features
select features with values below the threshold
normalization of counters of the selected features

__
Figure 2. Algorithm SF_AttrE:

Selection of Features from Attribute Evaluators

IV. DATA DESCRIPTION

An experiment has been performed to generate data
required for illustration of the proposed approach to support
quality analysis. In the experiment, objects of the system
EvIdent [5] have been independently analyzed and ranked by
three programmers based on three quality attributes:
complexity, maintainability and usability. Independently,
quantitative software measures of these objects have been
compiled.

A. Exeprimantal Setup
EvIdent is a user-friendly, algorithm-rich, graphical

environment for the detection, investigation, and visualization
of novelty/change in a set of images as they evolve in time or
frequency. It is written in Java and C++ and is based upon
VIStA, an application-programming interface (API) developed
at the National Research Council, Figure 3.

The VIStA API is written in Java and offers a generalized
data model, an extensible algorithm framework, and a suite of
graphical user interface constructs. Using the Java Native
Interface, VIStA allows seamless integration of native C++
algorithms. Figure 3 shows the class model and relationships
between the three main Java packages used in VIStA.

B. Data Set
All Java-based EvIdent/VIStA objects have been used in

this study (C++-based objects have been excluded). For each

of the 366 software objects, three programmers, called ‘#1’,
‘#2’ and ‘#3’, were asked to independently rank objects’
maintainability, complexity and usability in the scale from 1 to
5 (where 1 means VERY POOR, 2 means POOR, 3 means
OKAY, 4 means GOOD, and 5 means VERY GOOD). The
programmers determined maintainability, complexity and
usability of objects based on their own judgment and
experience.

EvIdent

VIStA GUI Package

Data Models Algorithms

Native Methods
C++

Java

Figure 3. EvIdent software model with VIStA

At the same time, a set of 64 software metrics was
calculated for each object. As the result, the collected data set
consists of 366 data points represented by a set of 64 software
metrics and three value assigned to each point by three
programmers. A list of the extracted metrics can be found in
Appendix.

V. SOFTWARE DATA ANALYSIS

The available software data (Section IV) is processed using
described feature selection methods (Section III). The whole
procedure for identifying the best features is as follow:

StepA: the SubSet Evaluators are applied to the data; the
results are processed using the algorithm SF_SubSetE

StepB: the Attribute Evaluators are applied to the data, and
the algorithm SF_AttrE is used to identify the most significant
features

StepC: the correlation between each pair: feature-quality
attribute is calculated; a simple threshold (value of 0.7 is used
here) is applied to select sets of most related features

StepD: the obtained three sets of features are fused using an
arithmetic average of their scores; the features in the upper
quartile (the one with the score above 0.75) are selected

The procedure is repeated for each programmer and each
quality attribute. In total there are nine sets of best features
selected for each combination of programmer-quality attribute.
The following subsections illustrate details of the procedure for
the programmer_#1 and the quality attribute complexity.

A. SubSet Evalutor Results
In the first step – StepA – SubSet Evaluators are applied to

the software data. The algorithm for fusing the results
presented in Section IV has been applied next. The overall
results are presented in Table II. As it can be seen in the table,
the application of the StepA leads to the sequence of nine
software metrics. We can say that these metrics represent the

74 75

programmer_#1 during evaluation of complexity of software
objects. In other words, we can assume that these metrics are
“important” indicators of complexity for the programmer_#1.

TABLE II. FEATURES OBTAINED USING SUBSET EVALUATORS FOR:
PROGRAMMER_#1 – COMPLEXITY

LOC
WDC
CYCO
HLUR
MIC
TOK

MNL1
HLDF
HLVL

B. Attribute Evaluator Results
The Attribute Evaluators and the algorithm SF_AttrE have

been also used to process the software data, StepB. The results
are shown in Table III.

TABLE III. FEATURES OBTAINED USING ATTRIBUTE EVALUATORS FOR:
PROGRAMMER_#1 – COMPLEXITY

HLPL
HLUR
HLOR
HLEF
HLON
WDC
HLDF
HLVL
HLVC
TOK

HLUN
DEC

These eleven metrics also represent the programmer_#1
as the evaluator of complexity of software objects.

C. Correlation Results
The third set of processing methods is a simple calculation

of correlations, StepC. It is performed for each pair software –
complexity. The results are in Table IV.

TABLE IV. FEATURES OBTAINED USING CORRELATION FOR:
PROGRAMMER_#1 – COMPLEXITY

HLUR
HLDF
HLVC
HLUN
CBO

FNOT
WMC1
CYCO

The set of metrics obtained using correlations is the third
representation of the programmer_#1’s view at the
complexity of objects.

D. Fusion of Results
The results obtained using StepA, StepB and StepC are

fused together in order to achieve a single representation of the

programmer_#1. As it has been indicated earlier, an
arithmetic average has been used to combine scores of the
metrics, and then all metrics with the combined score below
0.75 are rejected. The obtained set of the metrics characterizes
the programmer_#1, Table V.

TABLE V. FEATURES REPRESENTING
PROGRAMMER_#1 – COMPLEXITY

HLUR
LOC
WDC
HLDF
CYCO
HLVL
TOK

HLOR

The above described process has been applied to all
available data, i.e., other quality attributes and other
programmers. The final result – the metrics representing
programmers as th evaluators of different quality attributes are
included in Table VI.

TABLE VI. COMPLEXITY, MAINTAINABILITY AND USABILITY OBTAINED
USING A FUSION OF SUBSET AND ATTRIBUTE EVALUATORS AND

CORRELATION FDSFDS

programmer_#1 programmer_#2 programmer_#3
complexity

HLUR HLDF LOC
LOC ATOK HLDF
WDC CBO WDC
HLDF HLVC CYCO
CYCO HLVL HLVL
HLVL DEC HLPL
TOK

HLOR
maintainability

HLON HLDF HLVC
HLUR RFO DAC
LOC DEC DEC

HLVC WDC CBO
FNOT DAC REMM

 HLVL HLUN
 LOC

usability
WMC2 CYCO CBO
OPER MEMB HLPL
CYCO OPER FNOT
HLUR LOC DAC
WMC1 ADDM MIC

LOC LOC
 IMST

VI. ANALYSIS OF RESULTS

A. Single Quality Attribute Across Multiple Programmers
At first, we look at “the description” of all three

programmers when they evaluated objects from the point of
view of different quality attributes. Figure 4 shows sets of
mutually overlapping features that represent the programmers
when they evaluate complexity of objects. We could say that
each of them “uses” Halstead program volume (HLVL). There
are also features that are “shared” between pairs of

74 75

programmers. A single-metric-overlap exists between the
programmer_#1 and the programmer_#2, while a large
overlap is between the programmer_#1 and the
programmer_#3. There is no overlapping between
programmer_#2 and _#3.

Figure 4. Complexity

The diagram in Figure 4 gives an interesting insight into a
practice of describing, characterizing and evaluating
programmers. We could hypothesize that programmer_#1 and
_#3 could think in a similar way when they estimate
complexity. Another interesting conclusion is that lines of code
(LOC) and number of decisions (WDC) and pathways (CYCO)
are important factors influencing estimation of complexity.

Similar diagrams are presented for the other two quality
attributes: maintainability (Figure 5), and usability (Figure 6).

Figure 5. Maintainability

Figure 6. Usability

It seems that for maintainability, Figure 5, the programmers
share at least one “common” metric describing maintainability.
We see that lines of code (LOC), sum of operators and
operands (HLVC), and number of decision keywords (DEC)
and number of reference types (DAC) influence programmers’
evaluation processes.

 For the case of usability, all programmers where
recognizing lines of code (LOC) as an important judging

criteria. Additionally, for both programmers_#1 and _#2
number of loops (CYCO) and number of operations (OPER)
are deciding factors about usability of objects.

B. Single Individual Across Multiple Quality Attribues
Let us take a look how each programmer has evaluated

software objects when he/she was asked to appraise
complexity, usability, and maintainability of objects.

The programmer_#1 consistently “use” two factors for all
three evaluations, Figure 7 (a). These two factors are lines of
code (LOC) and number of unique operators (HLUR). A
number of pathways (CYCO) is an important factor in
estimating usability and complexity. There is no common
metric describing evaluation of usability and maintainability.
Figure 7 (b) represents a tab-cloud [6] that characterizes the
programmer. The tag-cloud has been created based on metrics
obtained during StepA, StepB and StepC of the data analysis
process (Section VI). The size of the fonts indicates importance
of shown matrics. Once again we see HLUR, LOC, CYCO,
HLVC as important “labels” describing the programmer.

(a) (b)

Figure 7. Programmer_#1: overlapping metrics (a), and tag-cloud (b)

The programmer_#2 is “shown” in Figure 8. Once again
we see lines of code (LOC) as an important factor together with
number of decision keywords (DEC), Halstead difficulty
(HLDF), and program volume (HLVL). It seems that the
programmer_#2 thinks differently when evaluating usability
and complexity/maintainability. The tag-cloud, Figure 8 (b),
confirms importance of LOC, HLVC, HLUN, and CBO.

(a) (b)

Figure 8. Programmer_#2: overlapping metrics (a), and tag-cloud (b)

The factors influencing evolution of objects preformed by
the programmer_#3 are shown in Figure 9. It seems that once
again some of the metrics we have already seen in the case of
the other two programmers are also important for the
programmer_#3: lines of codes (LOC) and Halstead program
length (HLPL) for usability and complexity; number of
reference types (DAC) and coupling (CBO) for usability and
maintainability. The tag-cloud “adds” HLUN, WDC, RFO,
CYCO and REMM.

76 77

(a) (b)

Figure 9. Programmer_#3: overlapping metrics (a), and tag-cloud (b)

VII. CONCLUSIONS

The importance of quality of software attributes is
unquestionable. It is essential to understand what programmers
mean when they say that an object is of high quality, and to
know what aspects of software component influence their
behavior. The approach we proposed uses multiple feature
selection techniques for identifying a small set of software
metrics describing a human evaluator. Some metrics
representing programmers and relationships among them have
been determined. To verify these findings we need to confront
the obtained results with the programmers.

REFERENCES

[1] K. El-Emam, W. Melo, and J.C. Machado, “The Prediction of Faulty
Classes Using Object-Oriented Design Metrics,” J. Systems and
Software, 56(1), 2001, pp 63-75.

[2] N. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Trans. Software Eng., 25(3), 1999, pp 675-689.

[3] T.M. Khoshgoftaar and N. Seliya, “Comparative Assessment of
Software Quality Classification Techniques: An Empirical Case Study,”
Empirical Software Eng., 9(3), 2004, pp 229-257.

[4] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and Validity in
Comparative Studies of Software Prediction Models,” IEEE Trans.
Software Eng., 31(5), 2005, pp. 380-391.

[5] N.J. Pizzi, R.A. Vivanco, and R.L. Samorjai, “EvIdent: a functional
magnetic resonance image analysis system”, Artificial Intelligence in
Medicine, 21, 2001, pp. 263-269.

[6] G. Smith, Tagging: People-powered Metadata for the Social Web, New
Riders Press, 2008.

[7] H. Wang, T.M. Khoshgoftaar, and K. Gao, “High-Dimensional Software
Engineering Data and Feature Selection”, ICTAI 2009, pp 83-90.

[8] http://en.wikipedia.org/wiki/Feature_selection
[9] http://www.cs.waikato.ac.nz/ml/weka/
[10] http://weka.sourceforge.net/packageMetaData/consistencySubsetEval/in

dex.html
APPENDIX

The attributes of the data used in this paper are briefly
described in the Table III.

TYPE Type: GUI (=1), Data Model (2), Algorithm (3), Other (4)
METH Number of methods
LOC Number of lines of code
ALOC Mean LOC per method
MLOC Median LOC per method
RCC1 Ratio of comment lines of code to total lines of code including

whitespaces and comments
RCC2 True comment ratio
TOK Number of tokens
ATOK Mean TOK per method
MTOK Median TOK per method

DEC Number of decisions: for, while, if, switch, etc.
ADEC Mean DEC per method
MDEC Median DEC per method
WDC Weighted number of decision based on nesting level
AWDC Mean WDC per method
MWDC Median WDC per method
INCL Number of inner classes
DINH Depth of inheritance
CHLD Number of children
SIBL Number of siblings
FACE Number of implemented interfaces
RCR Code reuse: ratio of overloaded inherited methods to methods that

are not overloaded
CBO Coupling between objects
LCOM Lack of cohesion of methods
RFO Response for an object (response set contains the methods that can

be executed in response to a message bing received by the object
RFC Response for class
MNL1 Maximum method name length
MNL2 Minimum method name length
MNL3 Mean method name length
MNL4 Median method name length
ATCO Attribute complexity
CYCO Cyclomatic complexity
DAC Data abstraction coupling
FNOT Fan out
HLDF Halstead difficulty
HLEF Halstead effort
HLPL Halstead program length
HLVC Halstead program vocabulary
HLVL Halstead program volume
HLON Halstead number of operands
HLOR Halstead number of operators
HLUN Halstead number of unique operands
HLUR Halstead number of unique operators
MIC Method invocation coupling
MAXL Maximum number of levels
MAXP Maximum number of parameters
MAXO Maximum size operations
ATTR Number of attributes
ADDM Number of added methods
CLAS Number of classes
CHCL Number of child classes
CONS Number of constructors
IMST Number of import statements
MEMB Number of members
OPER Number of operations
OVRM Number of overridden methods
REMM Number of remote methods
PKGM % of package members
PRVM % of private members
PROM % of protected members
PUBM % of public members
DEMV Violations of Demeters Law
WMC1 Weighted methods per class (each method weighted by is CYCO)
WMC2 Weighted methods per class (inherited methods excluded)

76 77

A Dual Clustering Approach to the Extract Class Refactoring

Keith Cassell, Peter Andreae, Lindsay Groves
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

{kcassell, pondy, lindsay}@ecs.vuw.ac.nz

Abstract—Large classes typically have many internal in-
teractions between their members, making them difficult to
understand and expensive to maintain. When large classes are
split into smaller, more cohesive classes, maintainability costs
can be reduced; however, the very complexity that makes the
classes costly to maintain also makes them difficult to split. Our
ExtC tool uses clustering techniques to help solve this problem.
By clustering based on the structural characteristics of the
class, followed by additional clustering based on semantics,
ExtC divides the members of large classes into groups. These
groups provide the basis for refactoring the large classes into
smaller, more cohesive ones.

Keywords-Refactoring; betweenness; clustering; cohesion;
extract class; graph theory; maintainability; object-oriented.

I. INTRODUCTION

Code maintenance is expensive. We propose a solution to
a common maintenance problem in object-oriented systems
– the presence of large, complex classes, sometimes known
as god classes [1].

In his book on refactoring [2], Fowler identifies a large
class as being a “bad smell” that may be a symptom of
an underlying software problem, and he recommends the
Extract Class refactoring as a potential remedy for the prob-
lem. One of the challenges in performing this refactoring is
determining how to split a large class, i.e. how to group the
original class’s attributes and methods into revised classes.

Our novel contribution is the sequential use of two com-
plementary clustering techniques to determine how to revise
Java classes. We first use a divisive structural clustering
technique to separate a class’s members into groups based
on statically determined dependencies between the members.
This typically breaks a large class into multiple groups, some
of which may consist of only one or two members. Then we
use an agglomerative “semantic”1 clustering technique to
combine the smaller groups with the larger ones. In many
cases, these groups can be used to form the basis of two
nontrivial classes, both of which are more cohesive than the
original.

1Some “semantic” techniques, including the vector space model we use,
are based on statistics. However, when given sufficient data, some statistical
techniques approximate the results given by knowledge-based semantic
techniques. We use “semantic” in this paper for convenience and to be
consistent with other researchers [3], [4], [5].

II. REFACTORING APPROACH

To help show how the structure of a class relates to its
amenability to Extract Class, consider the portion of the
intraclass dependency graph shown in Figure 12. Intraclass
dependency graphs are concise representations of single
classes built from a static analysis of source code. The nodes
of a graph represent a class’s members – circles for methods
and stars for attributes, and each edge represents a method
calling a method or a method accessing an attribute.

Figure 1. FreeColClient Dependency Graph

The disconnected nature of the example graph shows that
this class has several loosely related responsibilities. For ex-
ample, the members represented by the three nodes in the up-
per right (loggedIn, isLoggedIn, and setLoggedIn)
are not accessed by any other code in the class.

A. Goals

When refactoring to improve maintainability, it is useful
to keep as much of the existing structure of the code as possi-
ble, while addressing the potential maintainability problems

2generated from code at https://svn.freecol.org/svnroot/freecol/freecol/trunk:
/src/net/sf/freecol/client/FreeColClient.java

78 79

of large classes. Extract Class breaks a class into two classes.
We refer to the class that gets refactored as the original
class, the post-refactoring class that is most like the original
class as the modified class, and the other post-refactoring
class as the extracted class. Following refactoring, we want
the modified and extracted classes to be smaller and more
cohesive than the original class, and the modified class
should implement the same interfaces as the original class.

In addition, we want to avoid situations where we replace
one maintenance problem with another. For example, in
breaking up a large class, we do not want to create trivial
classes that do too little (the lazy class smell [2]). For
example, although it would be cohesive, we would not
create a new class from loggedIn, isLoggedIn, and
setLoggedIn, because such a class would do too little.

B. Design

Unsupervised clustering techniques group together entities
that are highly related, so clustering algorithms should be
useful for identifying cohesive new classes, given infor-
mation about existing classes [6]. Our initial approach to
extracting classes [7] used a structural divisive clustering
algorithm. By using an algorithm that creates clusters by
splitting an intraclass dependency graph, we can be conser-
vative and group members together while keeping existing
inter-member relationships intact.

However, while inspecting the dependency graphs of
hundreds of large classes, we observed that a significant
percentage of the graphs were composed of disconnected
subgraphs, and many of these subgraphs consisted of three
or fewer members. Our divisive clustering technique does
not assist in determining how those isolated members should
be assigned to classes, so our initial implementation kept
the members represented by the small subgraphs with the
original class.

While we still feel that the intraclass structural infor-
mation should be the primary guide for refactoring, there
is additional information available that we had not used.
Semantic information embedded in identifier names and
comments has been used to measure cohesion [4], to identify
topics in source code [5], [8], and to help refactor [3], [4].
We decided to use semantic information as a secondary
information source for clustering. Because semantic clus-
tering techniques partially rely on meaningful terms being
embedded in the identifiers, we feel they are less reliable
than structural information.

Our current dual clustering approach consists of divi-
sive clustering based on structural information, followed
by agglomerative clustering based on semantic information.
Divisive clustering splits the members of the class into at
least two groups, and the agglomerative clustering connects
the small groups of members with the larger groups. The
two resultant groups serve as inputs for the Extract Class
refactoring.

1) Divisive clustering based on structure: We use a
structural divisive clustering algorithm known as between-
ness clustering [9] for our initial step of breaking apart a
large class. Betweenness clustering is a general graph-based
technique that has been applied to many domains, including
software refactoring [7]. For refactoring large classes, the
graph represents the class, the nodes represent the class’s
members, and the edges represent a dependency between
the members, e.g. a method calling a method or a method
accessing an attribute. The betweenness value of an edge is
the number of shortest paths between pairs of nodes that pass
through it. The high betweenness edges tend to be within
the centrally located “thin areas” of a graph.

Betweenness clustering operates by iteratively removing
the edge with the maximum betweenness value. After each
edge removal, the algorithm recalculates the betweenness
values of the edges prior to the next edge removal. The
successive removal of edges will disconnect the connected
portions of the graph and form new clusters.

We run betweenness clustering on undirected versions
of intraclass dependency graphs and stop the clustering
once the first new cluster is formed. The disconnected
subgraphs represent the members of the class that have high
interconnectivity (cohesion) amongst themselves relative to
members outside the cluster. The two largest clusters serve
as seeds for agglomerative clustering.

2) Agglomerative clustering based on semantics: Ag-
glomerative clustering is an iterative process of combining
clusters of one or more entities – it starts with seed clusters
and adds closely related clusters to them until some stopping
criterion is reached. For the purpose of restructuring classes,
the entities to be clustered are attributes and methods. The
determination of the clusters to combine is done using a
similarity function or distance function that calculates how
similar (or distant) two entities are based on the character-
istics (or feature set) of the entities. Because a similarity
function can be considered a kind of distance function (two
similar things are less distant conceptually), we generally
use the term “distance function” in this paper.

Several researchers [3], [10], [11] have used structural
information to create a feature set for use in agglomeratively
clustering class members. Because we already make use
of structural information in betweenness clustering, we use
semantic information instead.

Consider the retire method in Figure 2. The only
class member it references directly is the client at-
tribute; however, there is a wealth of other information
available. Some of this is structural information pertaining
to other classes, for instance, it calls the Message class’s
createNewRootElement method. There is also seman-
tic information encoded in variable names, e.g. reply and
in string constants, e.g. “highScore”.

We use document clustering techniques and treat the
class’s methods and attributes as “documents”. The docu-

78 79

public boolean retire() {
Element retireElement =
Message.createNewRootElement("retire");

Element reply=client.ask(retireElement);
boolean result = reply != null
&& "true".equals(

reply.getAttribute("highScore"));
return result;

}
Figure 2. FreeColClient’s retire method

ments’ contents are the words present in the identifiers and
constants (but not words within comments). Code adapted
from TopicXP [8] extracts this information. The words
stored include the stemmed form of the full identifier,
e.g. createnewrootel, and the stemmed form of its
components, e.g. creat and root. Certain common words
are filtered out, including Java reserved words like new or
boolean. Words are stored together with their number of
occurrences in the document.

We use UCLA’s S-Space package [12] to create a vector
space model of these documents. In a vector space model,
documents are represented as vectors, where each element
in the vector corresponds to a unique word in the corpus (the
collection of documents). We can then compute the distance
between two documents (class members) based on the cosine
similarity [13] of their vectors.

III. EXTRACT CLASS EXPERIMENTS

A. Experimental Design

To test the hypothesis that dual clustering provides an
effective way of determining how to split large Java classes,
we ran experiments consisting of the following steps:

1) Software metrics identify large noncohesive classes
from within open-source software projects.

2) Clustering algorithms form two clusters from each
class’s members.

3) Using the two clusters as input, an automated Extract
Class refactoring separates each of the original classes
into two classes.

4) Software metrics quantify the changes caused by the
refactoring.

Most of the analysis and clustering in these experiments is
done using a series of plug-ins for the Eclipse platform [14].
We use the open-source Metrics2 [15] Eclipse plug-in to
collect metric data. Our open-source ExtC (Extract Class)
Eclipse plug-in [16] provides capabilities for identifying
god classes using metrics, visualizing those classes, and
proposing class splits based on clustering.

1) Identifying large, noncohesive classes: Our god class
query checks the following conditions:

1) number of instance methods (NOM) > 20
2) weighted method count (WMC) [17] ≥ 47.0

3) tight class cohesion (TCC) [18] < 0.34
4) depth in the inheritance hierarchy = 1.0

The first three conditions specify the class’s size, cohesion,
and complexity. The fourth simplifies the analysis by elim-
inating the effects of inherited members. We use Metrics2
to collect the measurements and store them in a database.

We ran this query on data gathered from four mature
open-source projects – FreeCol3 0.94, Heritrix4 1.8.0, Jena5

2.5.5, and Weka6 3.6.3, covering a variety of domains. Thirty
classes matched the query.

2) Clustering the members: Semantic clustering requires
a document corpus from which similarity can be deter-
mined. We use code adapted from TopicXP [8] to extract
semantic information from the source code and to create
documents from the classes’ members. We store a corpus of
documents for each project. Then, we use UCLA’s S-Space
package [12] to build vector space models for each of these
corpora, which are saved and used later in the clustering
step.

ExtC provides a batch mode of operation to cluster the
members of the classes that match the god class query. The
results determine whether the classes are good candidates for
an Extract Class refactoring. If the clustering steps produce
two clusters of seven or more members, we refactor. We use
a cluster size of seven as a threshold to avoid producing
new classes that do too little (lazy classes). (Seven is
approximately the average number of methods per class [1].)
The dual clustering step does not take long – on average less
than seven seconds per class when run on a low end PC.

3) Refactoring the large classes: We use an automated
Extract Class refactoring to reduce the variability of how
the classes are refactored. This helps reduce the risk of
the refactoring and makes evaluation and comparison of the
refactoring results more consistent.

Because Eclipse does not have an Extract Class capability
capable of moving methods into a new class, we use IntelliJ
IDEA’s [19] Extract Class refactoring to split off a new class.
We manually input the results of the clustering into the IDEA
GUI. IDEA does the code manipulation necessary to form
the new class and to modify other classes that might be
affected by the refactoring.

4) Measuring the modified software: We use Metrics2
to collect measurements on the modified software. The data
collected includes the number of instance methods, weighted
method count, and tight class cohesion.

B. Data Collected

We collected connectivity data on the intraclass depen-
dency graphs of the matching classes after removing some
“special” methods (e.g. constructors and toString) that might

3http://www.freecol.org/
4http://crawler.archive.org/
5http://jena.sourceforge.net/
6http://www.cs.waikato.ac.nz/ml/weka/

80 81

link together functionally unrelated members. The following
observations are particularly interesting:

1) Not one of the 30 classes had a completely connected
dependency graph.

2) Multiple large groups are relatively rare. Only 20% of
the classes had more than one large group, and none
had more than two large groups.

3) Multiple small groups are extremely common, with
50% of the classes having seven or more.

These observations lend support to our belief that divisive
clustering techniques alone do not adequately address the
allocation of all of the class members to revised classes.

Based on the results of the clustering, seven of the 30
classes did not warrant refactoring, because they did not
produce two clusters with at least seven members each. Four
of those classes did not even produce two clusters of at least
four members.

Table I summarizes the results for the 22 classes7 where
a class of seven or more members could be extracted based
on the clustering results. The letter in parentheses after each
class name indicates the project from which the class came.
Following a column that indicates the change in cohesion
values (ΔTCC), there are three groupings of columns. The
Original Class columns contain the measurements for the
class before refactoring, while the Modified Class columns
contain the measurements for that class after a class was
extracted from it. The Extracted Class columns contain the
measurements for the class that was extracted from the
original. The following measurements are shown:

• #A - number of attributes.
• #M - number of instance (non-static) methods.
• TCC - Tight Class Cohesion ranges from 0 (least

cohesive) to 1 (most cohesive).
• WMC - Weighted Methods per Class ranges from 0

(least complexity) upwards.
The classes are sorted according to the change in TCC values
between the original class and the modified class.

There is a peculiarity in the table. In the first row,
the extracted class for Rule has no instance attributes or
methods and has a TCC of 0. This class is entirely composed
of static methods. Because TCC is calculated based on the
connections between methods and attributes (of which there
are none), the TCC score is 0, even though the methods of
the class call each other.

C. Analysis of Results

In general, there were slight improvements in both cohe-
sion (TCC) and complexity (WMC). 55% of the 22 classes
showed cohesion increasing or staying the same for both
the modified and extracted classes, and an additional 41%

7IDEA’s Extract Class failed to operate on one of the classes to be
refactored.

showed cohesion increasing for either the modified or the
extracted class.

The modified classes that had a poor ΔTCC generally
had an associated extracted class with a high TCC score.
All told, 45% of the 22 extracted classes had a TCC of at
least 0.5, indicating that these classes are relatively cohesive.
Two of these classes had the maximal score of 1.0.

It is not surprising that most improvements in TCC are
small. TCC measures the proportion of connected methods
to the maximum possible number of connected methods. The
large classes that were selected by our god class query had
low TCC scores largely because they had many disconnected
members, as indicated by the large number of disconnected
subgraphs in the dependency graphs. Splitting such a class
can eliminate some of the disconnectedness; however, many
of the small, structurally disconnected portions of the orig-
inal class become small, structurally disconnected portions
of either the modified class or the extracted class.

One class, Weka’s Node, showed decreased cohesion for
both the modified and extracted classes. It is interesting to
see why. Node’s intraclass dependency graph contains 11
disconnected subgraphs, most of which consist of a single
field and its accessors. Only one of the subgraphs has seven
members or more, and this larger subgraph is relatively
cohesive. However, due to how our algorithm works, the
large group gets broken apart to form seeds and the smaller
groups agglomerate with them. This contrasts with the more
typical case of FreeColClient (Figure 1), where the
initial seeds were not derived from the same cohesive group.

One result that may be surprising is that the modified class
often has about the same number of methods as the original.
One might expect that the count would have decreased by
the number of methods that had migrated to the extracted
class. This “surprise” is due to the conservative nature of
IDEA’s Extract Class refactoring, which maintains the public
interface of the class by using delegation. The logic of
the original method is moved to the extracted class, while
the class from which it was extracted has a proxy method
that calls the moved method. This conservative approach is
necessary to avoid potentially breaking an external client’s
code. If it is known that there are no external clients, then
the delegation could be removed in many cases, because the
calling code of the internal clients could be adjusted at the
time of the refactoring.

As expected, almost all classes showed a decrease in
complexity as measured by WMC. Because WMC is not a
normalized metric, removing methods from a class generally
decreases the class’s WMC score.

IV. COMPARISON WITH RELATED WORK

A variety of techniques have been proposed for making
large classes more maintainable. In this section, we discuss
those that concentrate on refactoring large classes using

80 81

Table I
REFACTORING RESULTS

Class Δ Original Class Modified Class Extracted Class
Name TCC #A #M TCC WMC #A #M TCC WMC #A #M TCC WMC

Rule (J) 0.15 6 32 0.17 109 6 32 0.32 76 0 0 0.00 33
Node (J) 0.14 1 30 0.08 51 1 30 0.21 44 2 15 0.30 22
FreeColClient (F) 0.13 26 46 0.05 94 17 46 0.18 89 10 19 0.11 24
CandidateURI (H) 0.12 10 54 0.13 84 11 56 0.25 81 1 18 0.01 23
ParserBase (J) 0.11 18 34 0.06 93 16 34 0.17 44 3 12 0.17 61
BruleEngine (J) 0.09 8 21 0.26 57 7 21 0.35 57 2 10 0.50 10
N3JenaWriterC... (J) 0.06 19 40 0.22 136 17 42 0.28 119 4 16 0.07 35
FreeColServer (F) 0.06 18 48 0.14 181 13 48 0.20 166 6 12 0.09 27
SettingsHandler (H) 0.05 4 25 0.32 60 4 25 0.37 48 2 16 0.87 28
Specification (F) 0.05 36 86 0.14 155 34 86 0.18 139 8 40 0.51 73
RegOptimizer (W) 0.04 20 22 0.29 48 5 24 0.33 36 17 28 0.21 42
ImageLibrary (F) 0.04 1 61 0.22 109 2 6 1 0.26 93 1 19 0.02 35
CommandLine (J) 0.02 8 36 0.22 66 8 36 0.25 59 1 16 0.87 23
DatabaseUtils (W) 0.01 17 44 0.26 194 16 44 0.26 190 2 7 0.60 11
FreeColObject (F) 0.01 2 51 0.11 99 2 52 0.12 95 1 15 1.00 29
Script (W) 0.00 6 31 0.30 72 9 39 0.31 82 2 7 0.73 9
CrawlController (H) 0.00 38 98 0.02 247 37 98 0.20 230 2 7 0.67 24
ResultMatrix (W) 0.00 37 127 0.13 305 36 127 0.13 303 2 9 0.71 11
Heritrix (H) -0.01 7 48 0.20 293 7 48 0.20 291 2 11 1.00 13
LPBRuleEngine (J) -0.02 8 26 0.32 47 6 27 0.30 43 4 13 0.41 18
Node (W) -0.05 15 29 0.12 63 14 30 0.07 39 3 8 0.04 33
XMLDocument (W) -0.07 7 35 0.27 61 7 3 6 0.20 52 2 8 0.47 18
Average 0.04 13.6 44.5 0.18 114.1 12.0 45.3 0.22 103 3.35 13.3 0.41 26
Max 0.15 38 127 0.32 305 37 127 0.37 303 17 40 1.00 73
Min -0.07 1 21 0.05 47 1 21 0.07 36 0 0 0 9

clustering, rather than on those that do more extensive
reorganizations of class hierarchies [20].

Other researchers have used agglomerative clustering to
determine how to refactor. Serban and Czibula’s CASYR
algorithm [11] creates feature sets for classes, methods and
attributes based on structural information about methods
calling other methods or methods accessing attributes. For
example, a method’s feature set will include the names of
the method itself and the attributes accessed by it, and an
attribute’s feature set will include the names of the attribute
itself and the methods accessing it. Serban and Czibula use
a Jaccard similarity function to determine the similarity
between feature sets, where the similarity score is equal to
the number of common features divided by the total number
of features for the entities being compared. The JDeodorant
Eclipse plug-in uses a similar agglomerative technique to
extract classes [10] but uses a slightly different feature set.

We contend that betweenness clustering using an intra-
class dependency graph has advantages over agglomerative
clustering using local structural information. Betweenness
clustering’s primary advantage is that it uses extended
structural information in addition to local information –
the overall relationship of a member to other members is
embedded in the intraclass dependency graph on which
the betweenness algorithm works, and this information is
used when determining clusters. Furthermore, due to how
it operates, betweenness clustering retains most existing
intraclass member relationships. The edges removed from

the graph to form a cut set are relationships that will be
re-established between the members of the evolved classes.

Researchers based predominately at the University of
Salerno [3], [4] are the only ones that we know of who
use both structural and semantic information to cluster
members and extract classes; however, their approach is sig-
nificantly different from ours. Their most recent approach [3]
combines structural and semantic information to calculate
pairwise similarities between all of a class’s members. Their
similarity function has three weighted terms. Two pertain to
structural characteristics of the code, while the third uses
latent semantic indexing to compute the semantic similarity
between members.

Using these similarity measures, they create a graph
whose nodes are the class’s members and whose weighted
edges contain the similarity scores between the connected
nodes, so initially, the graph is fully connected. Then, all
edges with a weight below a certain threshold are removed,
which disconnects the graph. In their second step, they
combine the small groups with the larger ones using the
same similarity function discussed above.

We believe that betweenness clustering on the actual
intraclass dependency graph is superior to their first step
of creating a disconnected graph whose nodes are linked by
similarity scores. Because their graph is built using similarity
scores, it does not necessarily retain existing call relation-
ships between members within the class. Betweenness does
retain most of the existing intraclass relationships, so using

82 83

it as the basis for new class formation should generally entail
less change, and therefore, less risk.

V. CONCLUSIONS

In this paper, we advocate using clustering techniques to
determine how to refactor large classes. Our approach to
identifying extract class opportunities goes beyond previous
attempts by using two distinct clustering phases. The first
uses structural information to split the members of a large
class into groups. The second uses semantic information to
combine the smaller groups with the larger ones.

To test the hypothesis that our clustering techniques offer
useful advice for splitting classes, we ran the algorithm
against 30 open source classes and collected metric data
both on the original classes and on the refactored classes.
Based on this data, it appears that our clustering techniques
can effectively identify how to split some large classes, but
not others. For 40% of the 30 classes, we were able to create
two more cohesive classes from the original class.

There is much potential future work. There are many
uncertainties about how best to apply clustering techniques
to software, including a need for additional study of semantic
clustering. While semantics have an intuitive appeal, it is not
clear how they can best be applied to software engineering in
general, and refactoring in particular. Besides the techniques
themselves, there are also questions about the “data” on
which they should operate, for example, whether both code
and comments should be considered as input.

While there is still much work to do, we feel that
clustering techniques already provide benefit for a number
of software engineering tasks. In particular, this paper has
demonstrated how complementary clustering techniques can
be used to refactor large classes to make them measurably
more more cohesive and less complex.

REFERENCES

[1] M. Lanza and R. Marinescu, Object-Oriented Metrics in
Practice. Springer-Verlag New York, Inc., 2006.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring : Improving the Design of Existing Code.
Boston: Addison-Wesley, 1999.

[3] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “A
two-step technique for extract class refactoring,” in Proc. of
the IEEE/ACM International Conf. on Automated Software
Engineering. Antwerp, Belgium: ACM, 2010, pp. 151–154.

[4] A. D. Lucia, R. Oliveto, and L. Vorraro, “Using structural
and semantic metrics to improve class cohesion,” in IEEE
International Conf. on Software Maintenance, 2008., Beijing,
Sep. 2008, pp. 27 – 36.

[5] A. Marcus, “Semantic driven program analysis,” in Proc. of
the 20th IEEE International Conf. on Software Maintenance.
IEEE Computer Society, 2004, pp. 469–473.

[6] N. Anquetil, C. Fourrier, and T. C. Lethbridge, “Experiments
with clustering as a software remodularization method,” in
Proc. of the Sixth Working Conf. on Reverse Engineering.
IEEE Computer Society, 1999, p. 235.

[7] K. Cassell, P. Andreae, L. Groves, and J. Noble, “Towards
automating class-splitting using betweenness clustering,” in
24th IEEE/ACM International Conf. on Automated Software
Engineering, Auckland, NZ, Nov. 2009, pp. 595–599.

[8] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “TopicXP:
exploring topics in source code using latent dirichlet alloca-
tion,” in Proc. of 26th IEEE International Conf. on Software
Maintenance, Timioara, Romania, Sep. 2010.

[9] M. Girvan and M. Newman, “Community structure in social
and biological networks.” Proc Natl Acad Sci U S A, vol. 99,
no. 12, Jun. 2002.

[10] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing object-oriented class modules using an ag-
glomerative clustering technique,” in IEEE International
Conf. on Software Maintenance. Los Alamitos, CA, USA:
IEEE Computer Society, 2009, pp. 93–101.

[11] G. Serban and I. Czibula, “Object-oriented software systems
restructuring through clustering,” in Artificial Intelligence
and Soft Computing - ICAISC 2008. Berlin / Heidelberg:
Springer-Verlag, 2008, pp. 693–704.

[12] D. Jurgens and K. Stevens, “The S-Space package: An open
source package for word space models,” in System Papers
of the Association of Computational Linguistics, Uppsala,
Sweden, Jul. 2010, pp. 30–35.

[13] A. Strehl, J. Ghosh, and R. Mooney, “Impact of similarity
measures on web-page clustering,” Workshop on Artificial
Intelligence for Web Search (AAAI 2000), pp. 58—64, 2000.

[14] S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman,
and P. McCarthy, The Java(TM) Developer’s Guide to Eclipse.
Addison-Wesley Professional, May 2003.

[15] F. Sauer and G. Boissier, “Eclipse metrics plugin continued,”
http://metrics2.sourceforge.net/, 2010.

[16] K. Cassell, C. Anslow, L. Groves, and P. Andreae, “Visualiz-
ing the refactoring of classes via clustering,” in Thirty-Fourth
Australasian Computer Science Conf. (ACSC 2011), Perth,
Australia, Jan. 2011, pp. 63–72.

[17] S. Chidamber and C. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[18] J. M. Bieman and B. Kang, “Cohesion and reuse in an object-
oriented system,” SIGSOFT Softw. Eng. Notes, vol. 20, no. SI,
pp. 259–262, 1995.

[19] S. Saunders, D. K. Fields, and E. Belayev, IntelliJ IDEA in
Action. Manning Publications, Mar. 2006.

[20] G. Snelting and F. Tip, “Reengineering class hierarchies using
concept analysis,” in Proc. of the 6th ACM SIGSOFT inter-
national symposium on Foundations of software engineering.
Lake Buena Vista, Florida, USA: ACM, 1998, pp. 99–110.

82 83

An Empirical Study of Software Metrics Selection Using
Support Vector Machine

Huanjing Wang
Western Kentucky University

Bowling Green, Kentucky 42101
huanjing.wang@wku.edu

Taghi M. Khoshgoftaar
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu

Amri Napolitano
Florida Atlantic University
Boca Raton, Florida 33431

amrifau@gmail.com

Abstract—The objective of feature selection is to identify irrelevant
and redundant features, which can then be discarded from the analysis.
Reducing the number of metrics (features) in a data set can lead to faster
software quality model training and improved classifier performance.
In this study we focus on feature ranking using linear Support Vector
Machines (SVM) which is implemented in WEKA. The contribution of
this study is to provide an extensive empirical evaluation of SVM rankers
built from imbalanced data. Should the features be removed at each
iteration? What should the recommended value be for the tolerance
parameter? We address these and other related issues in this work.

I. INTRODUCTION

Software quality models are trained using software measurement
data (metrics) and various data mining techniques to get useful infor-
mation that can be used to find higher quality software production.
The characteristics of software metrics (a.k.a. features or attributes)
influence the performance and effectiveness of the quality model.
Previous studies [1], [2], [3] have shown that the performance of
software quality models are improved when irrelevant and redundant
features are removed before modeling. In this study, we investigated
feature selection by the means of a feature ranking method using
linear support vector machines (SVM ranker). This SVM ranker
has been implemented in WEKA [4]. WEKA is an open source
data mining and machine learning package implemented in JAVA
at the University of Waikato. Many researchers and practitioners
in the data mining and machine learning community commonly
use WEKA, but past work has provided no empirically proven
recommendation on the appropriate default values for the parame-
ters percentToEliminatePerIteration (percentage of attributes
to be removed at each iteration) and toleranceParameter (for
checking the stopping criterion) for the SVM ranker. The pa-
rameter values are critical to the performance and running time
of the ranker (see Section III). In fact, a bad selection of pa-
rameter values can entirely prevent experiment completion. We
contend that default values built into WEKA for SVM ranker
are not reasonable for experimentation. This work, as far as we
know, is the first to conduct comprehensive experimentation with
the SVM ranker in WEKA and recommend empirically proven
default values for the percentToEliminatePerIteration and
toleranceParameter parameters.

Since the introduction of SVM ranker [5], there has been little
empirical work on the topic. As far as we know, there is no
related work that empirically recommends default settings for the
percentToEliminatePerIteration and toleranceParameter
parameters for the SVM ranker in the WEKA tool. There-
fore, we present, in this work, a comprehensive empirical
evaluation of learning from imbalanced data by varying the
percentToEliminatePerIteration and toleranceParameter
parameters.

In this study, we built classification models using naı̈ve Bayes
(NB), multilayer perceptron (MLP), k-nearest neighbors (KNN),
support vector machines (SVM), and logistic regression (LR) on
the smaller subsets of selected attributes. Each classification model
is assessed with the Area Under the ROC (Receiver Operating
Characteristic) curve (AUC). The empirical validation of the different
models was implemented through a case study of three consecutive
releases of a very large telecommunications software system (denoted
as LLTS), nine data sets from the Eclipse software project, and
three data sets from NASA software project KC1. Our experimen-
tation is done in WEKA using the 15 different data sets with
varying degrees of class imbalance. In the experiments, ten runs of
five-fold cross-validation were performed. Statistical analysis using
Analysis of Variance (ANOVA) models is used to determine rea-
sonable default values for the percentToEliminatePerIteration
and toleranceParameter parameters. By varying the parameters
percentToEliminatePerIteration and toleranceParameter,
this work is the first to compare the SVM ranker on imbalanced
data and recommend a default setting for each of the parameters.

Experimental results demonstrate the default setting in WEKA for
toleranceParameter (1.0E-10) is not appropriate value, but 1.0E-
03 is reasonable. This work further shows that SVM ranker with no
backward elimination performs similar to or better than the ranker
with full backward elimination. Thorough experimentation makes
our work extremely comprehensive and dramatically augments the
reliability of our conclusions.

The remainder of the paper is organized as follows. Section II
presents the feature selection techniques. Section III describes the
data sets, experimental design, and a discussion of the results. Sec-
tion IV presents background on feature selection and the SVM ranker
in different domains. Finally, we conclude the paper in Section V and
provide suggestions for future work.

II. FEATURE SELECTION

Feature selection has been applied in many data mining and
machine learning applications [6]. The main goal of feature selection
is to select a subset of features that minimizes the prediction errors
of classifiers. It is broadly classified as feature ranking and feature
subset selection, where feature ranking sorts the attributes according
to their individual predictive power, and feature subset selection finds
subsets of attributes that collectively have good predictive power. In
this study, we investigated a feature ranking method, called SVM
ranker.

The Support Vector Machine (SVM) classifier is one of most com-
monly used classifiers. It builds a linear discrimination function using
a small number of critical boundary instances (called support vectors)
from each class while ensuring a maximum possible separation [7].

84 85

SVM has been extended to form an embedded method of feature
selection. A linear classifier is trained and features are ranked based
on the weight (calculated from the support vectors) of each feature.
The larger the weight, the more important role the feature plays in the
decision function. This ranking procedure can be applied recursively.
Guyon et al. [5] introduced recursive feature elimination for support
vector machines, SVM-RFE. SVM-RFE uses a backward elimination
procedure recursively. At each iteration one or more features with the
lowest score (weight) are eliminated. The process is repeated until a
predefined number of features remains.

SVM ranker has been implemented in WEKA,
called SVMAttributeEval. By default, WEKA uses
percentToEliminatePerIteration = 0 and
attsToEliminatePerIteration = 1 (one feature is removed
at each iteration) and toleranceParameter = 1.0E-10. The
tolerance parameter defines the stopping criterion for SVM model
optimization. The lower the tolerance parameter, the higher the
computational complexity. In our experimentation we first change the
tolerance parameter to 1.0E-03 to reduce computational cost. Along
with the default value of percentToEliminatePerIteration
and attsToEliminatePerIteration, this variation is called
SVM ranker with full backward elimination. Our experiments also
set percentToEliminatePerIteration to 100 (regardless of
value of attsToEliminatePerIteration), indicating no backward
elimination, and consider different values for toleranceParameter,
specifically 1.0E-03, 1.0E-05, 1.0E-07, and 1.0E-10. In total, five
SVM rankers are evaluated in this study (tolerance of 1.0E-03
with full backward elimination, and tolerance of 1.0E-03, 1.0E-
05, 1.0E-07, and 1.0E-10 with no backward elimination). Our
experiments demonstrated that 1.0E-10 is not an appropriate value,
and in particular 1.0E-03 is more reasonable. We also showed that
SVM ranker with no backward elimination performed similar to
or better than the ranker with full backward elimination, while the
computational cost of no backward elimination is much lower than
full backward elimination.

SVM ranker has been used as feature selection method in
several domains. However, for imbalanced data in the software
engineering domain, a comprehensive evaluation of the ranker,
with varying values for percentToEliminatePerIteration and
toleranceParameter, has not been performed. Researchers and
practitioners who use WEKA have no guidance on these settings
and too often rely on the default values in the WEKA tool. Our
work shows that the default value for toleranceParameter is not
appropriate for experimentation with imbalanced data. To our knowl-
edge, there has been no previous study to empirically recommend
percentToEliminatePerIteration and toleranceParameter
values for SVM ranker in the WEKA tool.

III. EXPERIMENTS

A. Experimental Data Sets

Experiments conducted in this study used software metrics and
fault data collected from real-world software projects, includ-
ing a very large telecommunications software system (denoted as
LLTS) [1], the Eclipse project [8], and NASA software project KC1
[9].

The software measurement data set of LLTS contains data from
four consecutive releases, which are labeled as SP1, SP2, SP3, and
SP4. We only provide results for SP2, SP3, and SP4 since we couldn’t
get results for SP1 when tolerance parameter was set to 1.0E-10 for no
backward elimination due to computational complexity. The software
measurement data sets consist of 42 software metrics, including 24

TABLE I
SOFTWARE DATA SETS CHARACTERISTICS

Data #Metrics #Modules %fp %nfp
SP2 42 3981 4.75% 95.25%

LLTS SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

Eclipse2.0-10 208 377 6.1% 93.9%
Eclipse2.0-5 208 377 13.79% 86.21%
Eclipse2.0-3 208 377 26.79% 73.21%
Eclipse2.1-5 208 434 7.83% 92.17%

Eclipse Eclipse2.1-4 208 434 11.52% 88.48%
Eclipse2.1-2 208 434 28.8% 71.2%
Eclipse3.0-10 208 661 6.2% 93.8%
Eclipse3.0-5 208 661 14.83% 85.17%
Eclipse3.0-3 208 661 23.75% 76.25%

KC1-20 62 145 6.90% 93.10%
NASA KC1-10 62 145 14.48% 85.52%

KC1-5 62 145 24.83% 75.17%

product metrics, 14 process metrics, and four execution metrics [1].
The dependent variable is the class of the program module: fault-
prone (fp) or not fault-prone (nfp). A program module with one or
more faults is considered fp, and nfp otherwise.

From the PROMISE data repository [8], we also obtained the
Eclipse defect counts and complexity metrics data set. In particular,
we use the metrics and defects data at the software package level.
The original data for the Eclipse packages consists of three releases
denoted 2.0, 2.1, and 3.0 respectively. We transform the original data
by: (1) removing all nonnumeric attributes, including the package
names, and (2) converting the post-release defects attribute to a binary
class attribute: fault-prone (fp) and not fault-prone (nfp). Membership
in each class is determined by a post-release defects threshold t, which
separates fp from nfp packages by classifying packages with t or more
post-release defects as fp and the remaining as nfp. In our study, we
use t � {10, 5, 3} for release 2.0 and 3.0, while we use t � {5, 4, 2}
for release 2.1. These values are selected in order to have data sets
with different levels of class imbalance. All nine derived data sets
contain 208 independent attributes. Releases 2.0, 2.1, and 3.0 contain
377, 434, and 661 instances respectively.

The original NASA project, KC1 [9], includes 145 instances
containing 94 independent attributes each. After removing 32 Hal-
stead derived measures, we have 62 attributes left. We used three
different thresholds to define defective instances, thereby obtaining
three structures of the preprocessed KC1 data set. The thresholds
are 20, 10, and 5, indicating that instances with numbers of defects
greater than or equal to 20, 10, or 5 belong to the fp class. The three
data sets are named KC1-20, KC1-10, and KC1-5.

The fifteen data sets used in the work reflect software projects
of different sizes with different proportions of fp and nfp modules.
Table I lists the characteristics of the 15 data sets utilized in this
work.

B. Classification Algorithms

The software defect prediction models were built with five com-
monly used classification algorithms including naı̈ve Bayes, multi-
layer perceptron, K-nearest neighbors, support vector machine, and
logistic regression. The five learners were selected because of their
common use in software engineering and other application domains.
Unless stated otherwise, we use the default parameter settings for
the different learners as specified in WEKA. Parameter settings are
changed only when a significant improvement in performance is
obtained.

84 85

1) Naı̈ve Bayes (NB) [10] utilizes Bayes’s rule of conditional
probability and is termed ‘naive’ because it assumes conditional
independence of the features.

2) Multilayer Perceptron (MLP) [11] is a neural network of simple
neurons called perceptrons. Some related parameters of MLP
were set as follows. The ‘hiddenLayers’ parameter was set to
3 to define a network with one hidden layer containing three
nodes. The ‘validationSetSize’ parameter was set to 10 to cause
the classifier to leave 10% of the training data aside to be
used as a validation set to determine when to stop the iterative
training process.

3) K-Nearest Neighbors (KNN) [12], also called instance-based
learning, uses distance-based comparisons. The choice of dis-
tance metric is critical. KNN was built with changes to two
parameters. The ‘distanceWeighting’ parameter was set to
‘Weight by 1/distance’ and the ‘kNN’ parameter was set to
5.

4) Support Vector Machine (SVM) [13], also called SMO in
WEKA, had two changes to the default parameters: the com-
plexity constant ‘c’ was set to 5.0 and ‘build Logistic Models’
was set to true. By default, a linear kernel was used.

5) Logistic Regression (LR) [14] is a statistical regression model
for categorical prediction by fitting data to a logistic curve.

C. Performance Metric

The classification models are evaluated using the Area Under
ROC (Receiver Operating Characteristic) Curve (AUC) performance
metric. AUC has been widely used, providing a general idea of
predictive potential of the classifier. The ROC curve is used to
characterize the trade-off between true positive rate and false positive
rate. An ROC curve illustrates the classifier’s performance across all
decision thresholds, i.e., a value between 0 and 1 that theoretically
separates the fp and nfp modules. AUC is a single-value measurement
that ranges from 0 to 1, where a perfect classifier provides an AUC
value of 1. It has been shown that AUC has lower variance and
is more reliable than other performance metrics (such as precision,
recall, or F-measure) [15].

D. Results Analysis

Before using a feature ranking technique, the practitioner must
choose how many features to select. These selected features will be
used for modeling. In this study, we choose the top �log2 n� features
that have the highest scores, where n is the number of independent
features for a given data set. The reasons why we select the top
�log2 n� features include (1) no general guidance has been found in
related literature on the number of features that should be selected
when using a feature ranking technique; (2) a software engineering
expert with more than 20 years experience recommended selecting
�log2 n� number of metrics for software quality prediction; and (3)
a recent study [16] showed that �log2 n� is appropriate for various
learners. Thus, for the three LLTS data sets, �log2 42� = 6; for the
nine Eclipse data sets, �log2 208� = 8; and for the three NASA KC1
data sets �log2 62� = 6.

Following the feature selection algorithm (SVM ranker in this
study), the classification models are constructed with data sets
containing only the selected features. The defect prediction models
are evaluated with respect to the AUC performance metric. We
used WEKA for the defect prediction model building and testing
process. In the experiments, ten runs of five-fold cross-validation were
performed. The ten results from the five folds were then combined to

produce a single estimation. In total 18,750 models were evaluated
during our experiments.

E. Experimental Results

The classification performance results are reported in Table II
and III. Note that each value presented in the table is the average
over the ten runs of five-fold cross-validation outcomes. Due to
paper size limitations, we could not present each individual ranker’s
performance. We only present results of no backward elimination
with tolerance parameters 1.0E-03 and 1.0E-10, and full backward
elimination. All the results of three rankers over 15 different software
data sets are reported. We also summarize the average performance
(last row of table) for each feature selection technique across 15 data
sets. The best model across all data sets is indicated in boldfaced
print. The results demonstrate that, on average, SVM ranker with no
backward elimination and tolerance parameter 1.0E-03 outperformed
the other SVM rankers when four classifiers (NB, MLP, SVM, and
LR) are applied to the selected subset of features. For the KNN
learner, SVM ranker with full backward elimination performed best.

We also performed a two-way ANalysis Of VAriance (ANOVA) F
test on the classification performance of learners and SVM rankers for
the LLTS data sets and over all 15 data sets separately to statistically
examine the various effects on performance of the classification
models. Due to size limitation, we didn’t present ANOVA results
for the Eclipse and KC1 data sets. The underlying assumptions
of ANOVA were tested and validated prior to statistical analysis.
The two factors were designed as follows. Factor A represents five
classifiers and Factor B represents five SVM rankers (no backward
with four different tolerance parameters and full backward elimina-
tions). The null hypothesis for the ANOVA test is that all the group
population means are the same, while the alternate hypothesis is that
at least one pair of means is different.

Table IV shows the ANOVA results. It includes two subtables, and
each represents the result for each individual case (three data sets of
LLTS and all 15 data sets). All the p-values for Factor A and the
p-value for Factor B of the LLTS data sets are less than the typical
cutoff value of 0.05, indicating that for the classification performance
(in terms of AUC), the alternate hypothesis is accepted, namely, at
least two group means are significantly different from each other for
at least one pair of groups in the corresponding factors or terms. For
Factor B of all 15 data sets, the p-value (0.9795) is much greater
than the cutoff value of 0.05, which implies no significant difference
exists between the five rankers across all 15 data sets. The p-values
for the interaction terms A×B are greater than 0.05, indicating Factor
A is the same at every level of B.

We further conducted multiple comparisons for the main factors
and interaction term A×B with Tukeys Honestly Significant Differ-
ence (HSD) criterion. The multiple comparison results are shown
in Figure 1 and 2, where each sub-figure displays graphs with
each group mean represented by a symbol (◦) and 95% confidence
interval around the symbol. Two means are significantly different
if their intervals are disjoint, and are not significantly different if
their intervals overlap. Matlab was used to perform the ANOVA and
multiple comparisons presented in this work. Based on the multiple
comparison results, we can conclude the following points:

• For Factor A, LR performed best. This is true regardless of
which data sets are used to build classification models. KNN,
MLP, and NB produced moderate performance and SVM per-
formed poorly.

• For Factor B, no backward elimination with tolerance parameter
1.0E-03 performed better than full backward elimination .

86 87

TABLE II
CLASSIFICATION RESULTS: NB, MLP, AND KNN LEARNERS

NB MLP KNN
No Backward Full Backward No Backward Full Backward No Backward Full Backward

Data Set 1.0E-03 1.0E-10 1.0E-03 1.0E-03 1.0E-10 1.0E-03 1.0E-03 1.0E-10 1.0E-03

SP2 0.7271 0.7412 0.7336 0.7660 0.7626 0.7645 0.7498 0.7361 0.7263
SP3 0.7227 0.7146 0.7255 0.7104 0.7035 0.7092 0.7445 0.7289 0.7273
SP4 0.6741 0.6612 0.6706 0.7520 0.7442 0.7406 0.7750 0.7497 0.7575

Eclipse2.0-10 0.8786 0.8787 0.8602 0.8646 0.8645 0.8504 0.8694 0.8696 0.8780
Eclipse2.0-5 0.8594 0.8587 0.8776 0.8713 0.8701 0.8872 0.8541 0.8538 0.8665
Eclipse2.0-3 0.8017 0.8017 0.8136 0.7970 0.7970 0.8020 0.7844 0.7844 0.8100
Eclipse2.1-5 0.8496 0.8496 0.8249 0.8105 0.8105 0.8129 0.8547 0.8547 0.8578
Eclipse2.1-4 0.8049 0.8055 0.8076 0.8252 0.8263 0.8409 0.8416 0.8418 0.8493
Eclipse2.1-2 0.8155 0.8156 0.8005 0.8542 0.8543 0.8434 0.8019 0.8010 0.8302
Eclipse3.0-10 0.8870 0.8868 0.8911 0.8535 0.8535 0.8673 0.8715 0.8710 0.8926
Eclipse3.0-5 0.8868 0.8868 0.8926 0.9094 0.9094 0.8978 0.8783 0.8783 0.9115
Eclipse3.0-3 0.8584 0.8593 0.8489 0.8913 0.8919 0.8851 0.8415 0.8412 0.8719

KC1-20 0.7285 0.7283 0.7105 0.7423 0.7415 0.7504 0.7411 0.7370 0.7734
KC1-10 0.7373 0.7363 0.7386 0.7161 0.7134 0.7186 0.7286 0.7273 0.7900
KC1-5 0.8647 0.8647 0.8711 0.7617 0.7630 0.7425 0.8136 0.8136 0.8384

Average 0.8064 0.8059 0.8045 0.8084 0.8070 0.8075 0.8100 0.8059 0.8254

TABLE III
CLASSIFICATION RESULTS: SVM AND LR LEARNERS

SVM LR
No Backward Full Backward No Backward Full Backward

Data Set 1.0E-03 1.0E-10 1.0E-03 1.0E-03 1.0E-10 1.0E-03

SP2 0.6444 0.6052 0.5979 0.7803 0.7803 0.7800
SP3 0.6019 0.6128 0.5739 0.7401 0.7359 0.7139
SP4 0.6179 0.6356 0.6049 0.7599 0.7488 0.7503

Eclipse2.0-10 0.8737 0.8743 0.8582 0.8546 0.8557 0.8398
Eclipse2.0-5 0.8987 0.8982 0.9102 0.8886 0.8878 0.9017
Eclipse2.0-3 0.8363 0.8363 0.8533 0.8323 0.8323 0.8487
Eclipse2.1-5 0.8559 0.8560 0.8367 0.8504 0.8504 0.8277
Eclipse2.1-4 0.8490 0.8486 0.8499 0.8334 0.8325 0.8536
Eclipse2.1-2 0.8788 0.8787 0.8672 0.8742 0.8742 0.8595
Eclipse3.0-10 0.8903 0.8903 0.8897 0.8825 0.8825 0.8874
Eclipse3.0-5 0.9337 0.9337 0.9247 0.9292 0.9292 0.9216
Eclipse3.0-3 0.9098 0.9097 0.9002 0.9151 0.9151 0.9106

KC1-20 0.7632 0.7623 0.7673 0.7467 0.7465 0.7563
KC1-10 0.7393 0.7394 0.7417 0.7167 0.7188 0.7273
KC1-5 0.8086 0.8085 0.8109 0.7617 0.7617 0.7147

Average 0.8068 0.8060 0.7991 0.8244 0.8234 0.8195

TABLE IV
TWO-WAY ANALYSIS OF VARIANCE

(a) LLTS
Source Sum Sq. d.f. Mean Sq. F p-value
A 2.16446 4 0.54111 499.23 0
B 0.01316 4 0.00329 3.03 0.017
A×B 0.01809 16 0.00113 1.04 0.4081
Error 0.78582 725 0.00108
Total 2.98153 749

(b) Fifteen Data Sets
Source Sum Sq. d.f. Mean Sq. F p-value
A 0.1738 4 0.04346 6.79 0
B 0.0028 4 0.0007 0.11 0.9795
A×B 0.0486 16 0.00304 0.47 0.9598
Error 23.8446 3725 0.0064
Total 24.0699 3749

• For interaction A × B, 25 groups produced by five learners
combined with 5 rankers are presented. It can be seen that
Factor A was different at every level (groups) of Factor B.
For example, LR performed better than other learners when no
backward elimination with tolerance parameter 1.0E-03 ranker
is used to select features.

F. Threats to Validity

A typical software development project is very human intensive,
which can affect many aspects of the development process including
software quality and defect occurrence. Consequently, software engi-
neering research that utilizes controlled experiments for evaluating the
usefulness of empirical models is not practical. Experimental research
commonly includes a discussion of two different types of threats to
validity.

In an empirical software engineering effort, threats to external
validity are conditions that limit generalization of case study results.
The analysis and conclusion presented in this article are based upon
the metrics and defect data obtained from 15 data sets of three
software projects. The benchmark WEKA data mining tool was used
for feature selection (SVM ranker) and all learners, and all of the
parameter settings have been included in this work to allow the
experiments to be repeated. The parameters for the SVM rankers were
chosen to ensure good performance in many different circumstances
and to be reasonable for the imbalanced data sets. Experimentation
with different settings for the toleranceParameter provides guid-
ance to the research community as to the recommended value for
that parameter. Our comparative analysis can easily be applied to
another software system. Moreover, since all our final conclusions
are based on ten runs of five-fold cross-validation and statistical tests
for significance, our findings are grounded in using sound methods.

Threats to internal validity are unaccounted for influences on the
experiments that may affect case study results. Poor fault proneness
estimates can be caused by a wide variety of factors, including
measurement errors while collecting and recording software metrics,
modeling errors due to the unskilled use of software applications, er-
rors in model-selection during the modeling process, and the presence
of outliers and noise in the training data set. Measurement errors are
inherent to the data collection effort. In our experiments we utilize
15 real-world imbalanced software data sets, which greatly enhances
the reliability of our conclusions. Performing numerous repetitions of
cross validation greatly reduces the likelihood of anomalous results
due to selecting a lucky or unlucky partition of the data. Moreover,
the experiments and statistical analysis were performed by only one
skilled person in order to keep modeling errors to a minimum.

86 87

0.65 0.7 0.75 0.8

LR

SVM

KNN

MLP

NB

(a) Factor A

0.695 0.7 0.705 0.71 0.715 0.72 0.725 0.73 0.735 0.74

FullBackward

NoBackward_1.0E−10

NoBackward_1.0E−07

NoBackward_1.0E−05

NoBackward_1.0E−03

(b) Factor B

0.55 0.6 0.65 0.7 0.75 0.8

LR−fullBackward

SVM−FullBackward

KNN−FullBackward

MLP−FullBackward

NB−FullBackward

LR−1.0E−10

SVM−1.0E−10

KNN−1.0E−10

MLP−1.0E−10

NB−1.0E−10

LR−1.0E−07

SVM−1.0E−07

KNN−1.0E−07

MLP−1.0E−07

NB−1.0E−07

LR−1.0E−05

SVM−1.0E−05

KNN−1.0E−05

MLP−1.0E−05

NB−1.0E−05

LR−1.0E−03

SVM−1.0E−03

KNN−1.0E−03

MLP−1.0E−03

NB−1.0E−03

(c) Factor A×B

Fig. 1. LLTS: Multiple Comparison in Terms of AUC

IV. RELATED WORK

The main goal of feature selection is to select a subset of features
that minimizes the prediction errors of classifiers. Feature selection
has been applied in many data mining and machine learning applica-
tions. A good overview on feature selection was provided by Guyon
and Elisseeff [17]. They outlined key approaches used for attribute
selection, including feature construction, feature ranking, multivariate
feature selection, efficient search methods, and feature validity assess-
ment methods. Liu and Yu [18] provided a comprehensive survey of
feature selection algorithms and presented an integrated approach to
intelligent feature selection.

In this paper, we examine a feature ranking technique, called
SVM ranker. Mladenic et al. [19] investigated three feature weighting
methods and conclude that feature selection using weights from linear
SVMs yields better classification performance than other feature

0.795 0.8 0.805 0.81 0.815 0.82 0.825 0.83 0.835

LR

SVM

KNN

MLP

NB

(a) Factor A

0.8 0.805 0.81 0.815 0.82 0.825

FullBackward

NoBackward_1.0E−10

NoBackward_1.0E−07

NoBackward_1.0E−05

NoBackward_1.0E−03

(b) Factor B

0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

LR−fullBackward

SVM−FullBackward

KNN−FullBackward

MLP−FullBackward

NB−FullBackward

LR−1.0E−10

SVM−1.0E−10

KNN−1.0E−10

MLP−1.0E−10

NB−1.0E−10

LR−1.0E−07

SVM−1.0E−07

KNN−1.0E−07

MLP−1.0E−07

NB−1.0E−07

LR−1.0E−05

SVM−1.0E−05

KNN−1.0E−05

MLP−1.0E−05

NB−1.0E−05

LR−1.0E−03

SVM−1.0E−03

KNN−1.0E−03

MLP−1.0E−03

NB−1.0E−03

(c) Factor A×B

Fig. 2. Fifteen Data Sets: Multiple Comparison in Terms of AUC

weighting methods when combined with the three explored learning
algorithms including NB, Perceptron, and SVM. Chang and Lin [20]
showed that linear SVMs with simple feature rankings are effective
on data sets in the Causality Challenge. The goal of Causality
Challenge [21] is to investigate problems in which the training and
testing sets might have different class distributions.

SVM ranker is used in the bioinformatics domain recently [22],
[23]. Canual-Reich et al. [22] compared a feature perturbation method
to SVM-RFE, 50% of features were removed at every iteration
until 10% of total initial features remain. Results demonstrates that
the perturbation method outperformed SVM-RFE for most sets of
features. Abeel et al. [23] studied an ensemble feature selection
method for biomarker identification. An ensemble of a single feature
selection method (SVM-RFE, 20% features were removed at each
iteration) was built. Experimental results show that the ensemble

88 89

feature selection method improves classification performances and
biomarker stability.

We also noticed that although feature selection has been widely
applied in many application domains for many years, its applications
in the software quality and reliability engineering domain are limited.
Chen et al. [24] have studied the applications of wrapper-based
feature selection in the context of software cost/effort estimation.
They conclude that the reduced data set improved the estimation.
Rodriguez et al. [3] evaluated three filter- and three wrapper-based
models for software metrics and defect data sets, with the conclusion
that wrappers were better than filters but at a high computational cost.

V. CONCLUSION

This work presented a comprehensive experimental analysis
of the performance of linear SVM for feature ranking (SVM
ranker) with different percentToEliminatePerIteration and
toleranceParameter parameters. Much of the related work on
SVM ranker has not focused on selecting reasonable values for the
two important parameters, percentToEliminatePerIteration
and toleranceParameter. In most previous studies, researchers
and practitioners simply utilize a particular value for
percentToEliminatePerIteration and toleranceParameter
without much supporting evidence. Our analysis provides guidelines
to researchers and practitioners in data mining and machine learning
to select a value of 100 for percentToEliminatePerIteration
and 1.0E-03 for toleranceParameter when selecting a subset of
features.

In the experiments, we first set
percentToEliminatePerIteration to 100 (no backward
elimination) and considered four different toleranceParameter
values (1.0E-03, 1.0E-05, 1.0E-07, and 1.0E-10). We then set
percentToEliminatePerIteration to 0 and using the default
value of 1 for attsToEliminatePerIteration (full backward
elimination) and toleranceParameter to 1.0E-03. In total,
five SVM rankers are considered. Our experimentation on the
SVM rankers is done in WEKA using 15 different data sets
from three real-world software projects with varying degrees
of class imbalance. Classification models were built using five
commonly used learners: naı̈ve Bayes (NB), multilayer perceptron
(MLP), K-nearest neighbors (KNN), support vector machines
(SVM), and logistic regression (LR) with the selected features.
These models are used to identify faulty software modules. The
conclusions of our experimentation show that the default settings
in WEKA for percentToEliminatePerIteration (0) and
toleranceParameter (1.0E-10) are not appropriate values, and in
particular 100 for percentToEliminatePerIteration and 1.0E-03
for toleranceParameter are more reasonable. This work further
shows the robustness of the LR learner when compared to four
other learners. Thorough experimentation makes our work extremely
comprehensive and dramatically augments the reliability of our
conclusions.

Future work may include experiments using additional data sets
from the software engineering domain as well as from other applica-
tion domains. In addition, different data sampling techniques can be
considered in the feature selection process of imbalanced data.

REFERENCES

[1] K. Gao, T. M. Khoshgoftaar, and H. Wang, “An empirical investigation
of filter attribute selection techniques for software quality classification,”
in Proceedings of the 10th IEEE International Conference on Informa-
tion Reuse and Integration, Las Vegas, Nevada, August 10-12 2009, pp.
272–277.

[2] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “A comparative
study of ensemble feature selection techniques for software defect
prediction,” in Proceedings of the Ninth International Conference on
Machine Learning and Applications, Washington DC, USA, December
12-14 2010, pp. 135–140.

[3] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting fault modules applying feature selection to classifiers,” in
Proceedings of 8th IEEE International Conference on Information Reuse
and Integration, Las Vegas, Nevada, August 13-15 2007, pp. 667–672.

[4] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Mach. Learn.,
vol. 46, pp. 389–422, March 2002.

[6] H. Wang, T. M. Khoshgoftaar, K. Gao, and N. Seliya, “High-dimensional
software engineering data and feature selection,” in Proceedings of 21st
IEEE International Conference on Tools with Artificial Intelligence,
Newark, NJ, USA, Nov. 2-5 2009, pp. 83–90.

[7] H. Liu, J. Li, and L. Wong, “A comparative study on feature selection
and classification methods using gene expression profiles and proteomic
patterns,” Genome Informatics, vol. 13, pp. 51–60, 2002.

[8] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in ICSEW ’07: Proceedings of the 29th International Con-
ference on Software Engineering Workshops. Washington, DC, USA:
IEEE Computer Society, 2007, p. 76.

[9] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Trans. Software Eng., vol. 35, no. 2, pp. 293–304, 2009.

[10] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Proceedings of Eleventh Conference on Uncer-
tainty in Artificial Intelligence, vol. 2, San Mateo, 1995, pp. 338–345.

[11] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Prentice-Hall, 1998.

[12] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 1573–0565, January
1991.

[13] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[14] S. Le Cessie and J. C. Van Houwelingen, “Ridge estimators in logistic
regression,” Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[15] Y. Jiang, J. Lin, B. Cukic, and T. Menzies, “Variance analysis in software
fault prediction models,” the 20th IEEE international conference on
software reliability engineering, pp. 99–108, 2009.

[16] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An empirical study
of learning from imbalanced data using random forest,” in Proceedings
of the 19th IEEE International Conference on Tools with Artificial
Intelligence, vol. 2, Washington, DC, USA, 2007, pp. 310–317.

[17] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, March 2003.

[18] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[19] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling, “Feature
selection using linear classifier weights: interaction with classification
models,” in Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval. New
York, NY, USA: ACM, 2004, pp. 234–241.

[20] Y. wen Chang and C. jen Lin, “Feature ranking using linear svm,” in
JMLR Workshop and Conference Proceedings, vol. 3, June 1-6 2008,
pp. 53–64.

[21] I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes,
and A. Statnikov, “Design and analysis of the causation and prediction
challenge,” in JMLR Workshop and Conference Proceedings, vol. 3, June
1-6 2008, pp. 1–33.

[22] J. Canul-Reich, L. Hall, D. Goldgof, and S. Eschrich, “Feature selection
for microarray data by auc analysis,” in IEEE International Conference
on Systems, Man and Cybernetics, 2008, pp. 768 –773.

[23] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys, “Robust
biomarker identification for cancer diagnosis with ensemble feature
selection methods,” Bioinformatics, vol. 26, pp. 392–398, February 2010.

[24] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, no. 22, pp. 38–46, 2005.

88 89

Software Defect Prediction for High-Dimensional and
Class-Imbalanced Data

Kehan Gao
Eastern Connecticut State University

Willimantic, Connecticut 06226
gaok@easternct.edu

Taghi M. Khoshgoftaar
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu

Abstract—Software quality and reliability can be improved using
various techniques during the software development process. One ef-
fective method is to utilize software metrics and defect data collected
during the software development life cycle and build defect predictors
using data mining techniques to estimate the quality of target program
modules. Such a strategy allows practitioners to intelligently allocate
project resources and focus more on the potentially problematic modules.
Effectiveness of a defect predictor is influenced, among other factors,
by the quality of input data. Two problems which often arise in the
software measurement and defect data are high dimensionality and class
imbalance. This paper presents an approach for using feature selection
and data sampling together to deal with the problems. Three scenarios
are considered: 1) feature selection based on sampled data, and modeling
based on original data; 2) feature selection based on sampled data,
and modeling based on sampled data; and 3) feature selection based
on original data, and modeling based on sampled data. Several software
measurement data sets, obtained from the PROMISE repository, are used
in the case study. The empirical results demonstrate that classification
models built in scenario 1) result in significantly better performance than
the models built in the other two scenarios.

Index Terms—software quality classification, high dimensionality, class
imbalance, feature selection, data sampling

I. INTRODUCTION

The success or failure of a software project depends on the prod-
uct’s quality and reliability. Software practitioners collect software
metrics and fault data during the software development process, and
then analyze the data for defect prediction modeling. Typically, a
software quality estimation model is trained using software metrics
and defect data collected from prior development experiences of the
organization, and then the trained model is applied to the project
under development. This helps practitioners strategically allocate
project resources, for example by assigning more inspection and
testing to the potentially problematic modules.

The effectiveness of software quality estimation models is influ-
enced, among other reasons, by two key quality of data factors: (1) the
set of software metrics (predictors or independent attributes) used to
build the models, and (2) the proportion of minority (i.e., fault-prone)
instances in the software measurement data set. Related literature has
shown that an overabundance of features (i.e., attributes) exists in
various software project data repositories [1], [2]. In addition, studies
also show that not all features make equally important contributions
to the dependent variable. Selecting a subset of features that are most
relevant to the class attribute is necessary and may result in better
predictions [3]. In the context of the software quality classification
problem (e.g., classifying program modules into fault-prone (fp)
and not-fault-prone (nfp) groups), class imbalance (or skewed data)
occurs frequently [4]. The class imbalance problem occurs when,
for a given data set, instances (program modules) of one class are
clearly outnumbered by the instances of the other class. For software
measurement and defect data, the fp modules are often much fewer
than the nfp modules. A classic learner trained on such an imbalanced
data set is likely to have a large number of misclassifications of

the minority class (e.g., fp modules) instances. This is an extremely
severe problem in the software quality assurance domain, as the
model would lead to missed opportunities to re-inspect and correct
a poor quality module prior to system deployment. Data sampling is
a proven method for alleviating the problems associated with class
imbalance [4].

This study investigates a process that combines feature selection
and data sampling to deal with the problems of high dimensionality
and class imbalance that exist during software defect prediction. We
used nine filter-based feature selection techniques, which come from
three different families. Among the nine techniques, three of them are
standard feature ranking methods, five of them are threshold-based
feature selection techniques we recently proposed [5], and the last
one is signal-to-noise, a rarely-used feature ranking method. We used
only one data sampling technique, that is random undersampling.

The process of using feature selection and data sampling may lead
to several different scenarios depending on whether feature selection
takes place before or after data sampling and which data set, sampled
or unsampled data, is used to build a classifier. Three scenarios are
examined in this study:

• Scenario 0: data sampling takes place before feature selection
is performed, and then a classifier is built using the features
selected and unsampled (original) data.

• Scenario 1: data sampling takes place before feature selection
is performed, and then a classifier is built using the features
selected and sampled data.

• Scenario 2: data sampling takes place after feature selection
is performed, and then a classifier is built using the features
selected and sampled data.

Two more scenarios are also produced, where one technique (feature
selection or data sampling) is used alone, However, we ignore these
two options in this study, because all software data sets investigated
exhibit both the class imbalance and high-dimensionality problems.
To our knowledge, this paper is one of the very few studies which
have considered both feature selection and data sampling together.

In order to compare the effectiveness of the three approaches
(scenarios), we conducted a case study based on nine software
measurement and defect data sets obtained from the PROMISE
software project repository [6]. The key contributions of this paper
are summarized as follows: (1) Using filter-based feature selec-
tion techniques combined with sampling to deal with the common
problems of software data sets, i.e., high dimensionality and class
imbalance. (2) Exploring three approaches (scenarios) when using
feature selection and data sampling simultaneously. (3) Employing
nine different feature ranking techniques from three different families
to make the results easier to generalize.

The remainder of the paper is organized as follows. Section
II describes related work. The nine filter-based feature selection
techniques and the random undersampling method, as well as the

90 91

classifier and the associated performance metric used in this study
are presented in Section III. A case study is described in Section IV.
Finally, conclusions and future work are summarized in Section V.

II. RELATED WORK

Feature selection, as an effective method for handling high-
dimensional data, has been extensively studied for a long time in
the data mining and machine learning community. Generally, feature
selection is divided into two categories, wrapper-based feature selec-
tion and filter-based feature selection. For wrapper-based techniques,
the same classifier or inductive algorithm is used to both select the
relevant features and execute the mining process [7]. Therefore, for
a given data set, a wrapper-based technique may produce different
feature subsets when using different learners. The potential problems
of a wrapper-based technique lie in its high computational cost and
a risk of overfitting to the model. In contrast, a filter-based technique
is learner-independent. Once the data set is given, the filter-based
technique will produce a feature subset (or feature subsets) that is
(or are) correlated to the dependent attributes irrespective of which
learner will be used after. In this study, the nine feature selection
techniques used belong to the filter-based category.

Numerous variations of feature selection have been employed in a
range of fields [1], [8], [9], [10], [11]. Jong et al. [8] introduced
methods for feature selection based on support vector machines
(SVM). Ilczuk et al. [9] investigated the importance of attribute
selection in judging the qualification of patients for cardiac pacemaker
implantation. In the context of text mining, Forman [10] investigated
multiple filter-based feature ranking techniques. Rodrı́guez et al. [1]
applied feature subset selection with three filter-based models and two
wrapper-based models to five software engineering data sets. Chen et
al. [11] have studied feature selection using wrappers in the context
of software cost/effort estimation.

Class imbalance, which appears in various domains [12], [13], is
another significant problem in data mining. One effective method for
alleviating the adverse effect of skewed class distribution is sampling,
which will add or remove instances from a data set until it becomes
more balanced with respect to its class distribution [14], [15]. In
this study, we used random undersampling due to its simplicity and
effectiveness [15]. We will leave other sampling techniques as our
future work.

While considerable work has been done for feature selection and
data sampling separately, limited research can be found on investigat-
ing them both together, particularly in the software engineering field.
Chen et al. [11] have studied data row pruning (data sampling) and
data column pruning (feature selection) in the context of software
cost/effort estimation. However, the data sampling in their study was
not specific for the class imbalance problem, and unlike this study, the
classification models are meant for non-binary problems. Moreover,
they focused only on the case in which data sampling is used prior
to feature selection.

A recent work of our research team investigated both feature selec-
tion and data sampling in the domain of software quality engineering
[16]. The paper presented four approaches (scenarios) which include
the three scenarios studied in this paper and the scenario where
feature selection is used alone. In that paper, six standard filter-
based feature ranking techniques were adopted. The conclusion was
that data sampling performed prior to feature selection resulted in
significantly better performance than data sampling performed after
feature selection. The present study is an extension of the earlier
work, exploring new ground in three ways: (1) We used nine different
feature selection techniques from three different families instead

of only six commonly used (standard) filter-based feature ranking
techniques, which makes our conclusion more generalized; (2) In
addition to considering the different scenarios, this study also looked
at the different feature ranking techniques and examined their impact
on the classification performance; and (3) The conclusion of this
study is different than the previous one, possibly as a result of the
aforementioned changes. We try to keep all the experimental settings
the same as we did before to ensure effectiveness of the comparisons
between the two studies.

III. METHODOLOGY

A. Feature Selection Techniques

In this paper, we investigate nine filter-based feature ranking
techniques from three different families, including three standard
methods, five threshold-based feature selection techniques, and the
signal-to-noise approach. Following is an overview of each ranker
family.

1) Standard Filter-Based Feature Rankers: Feature ranking as-
signs a score to each feature according to a particular method
(metric), allowing the selection of the best set of features. Due to the
space limitation, we only present three filter-based feature ranking
techniques [17]: chi-square (CS), information gain (IG), and ReliefF
(RF). More details are shown as follows.

i. The chi-square (CS) statistic, denoted as χ2, is used to examine
the distribution of the class as it relates to the values of the
target feature. The null hypothesis is that there is no correlation.
Given the null hypothesis, the χ2 statistic measures how far
away the actual value is from the expected value:

χ2 =

r∑
i=1

nc∑
j=1

(Oi,j − Ei,j)
2

Ei,j

where r is the number of different values of the feature, nc is
the number of classes (nc = 2 in this work), and Oi,j and Ei,j

are the observed and expected number of instances with value
i which are in class j, respectively. The larger the χ2 statistic,
the more likely the feature is relevant to the class.

ii. Information gain (IG) is a measure based on the concept of
entropy from information theory [17]. IG is the information
provided about the target class attribute Y, given the value of
another attribute X. IG measures the decrease of the weighted
average impurity of the partitions compared to the impurity of
the complete set of data. IG tends to prefer attributes with a
larger number of possible values.

iii. Relief is an instance-based feature ranking technique introduced
by Kira and Rendell [18]. ReliefF (RF) is an extension of the
Relief algorithm that can handle noise and multiclass data sets,
and is implemented in the WEKA tool [17].

2) Threshold-Based Feature Rankers: The family of threshold-
based feature selection (TBFS) techniques was developed and im-
plemented by our research group within WEKA. A full discussion of
this approach (although limited to cover only the AUC performance
metric) can be found in [5]. In TBFS, each independent attribute is
paired individually with the class attribute, and that two-attribute data
set is evaluated using a number of different performance metrics. This
feature ranking framework includes normalizing the attribute values
(so that they fall between 0 and 1) and treating those values as the
posterior probabilities from which to calculate performance metrics.
In fact, this allows the use of performance metrics to describe how
well the feature correlated with the class. Note that no classifiers were

90 91

built during the feature selection process. Five performance metrics
used in TBFS are listed below.

i. Mutual Information (MI). Let c(x) denote the actual class of
instance x, and let ĉt(x) denote the predicted class based on
the value of the attribute F j and a given threshold t. Then MI
is defined as:

MI = max
t∈[0,1]

�
ĉt∈{P,N}

�
c∈{P,N}

p(ĉt, c) log
p(ĉt, c)

p(ĉt)p(c)

where

p(ĉt = α, c = β) =
| {x | (ĉt(x) = α) ∩ (c(x) = β)} |

| P | + | N | ,

p(ĉt = α) =
| {x | ĉt(x) = α} |

| P | + | N | ,

p(c = α) =
| {x | c(x) = α} |

| P | + | N | ,

α, β ∈ {P,N}.
ii. Kolmogorov-Smirnov (KS) statistic measures the maximum

difference between the cumulative distribution functions of
examples in each class based on the normalized attribute �F j .

FP (t) =
| {x ∈ D | (F̂ j(x) ≤ t) ∩ (c(x) = P)} |

| {x ∈ D | c(x) = P} | ,

FN (t) =
| {x ∈ D | (F̂ j(x) ≤ t) ∩ (c(x) = N)} |

| {x ∈ D | c(x) = N} | .

KS is computed as

KS = max
t∈[0,1]

|FP (t)− FN (t)|.

With respect to KS, an attribute provides the best performance
at a specific t value when the distance between the two
distribution functions is maximized. The larger the KS value,
the better the attribute is able to separate the two classes. The
range of KS is between 0 and 1.

iii. Deviance (DV). For a given threshold t, define v(x) = 1 if
example x belongs to the positive class, otherwise, v(x) = 0.
Then DV is defined as:

DV = min
t∈[0,1]

⎡
⎣�

x∈St

�
v(x)− v(St)

�2
+

�
x∈S̄t

�
v(x)− v(S̄t)

�2
⎤
⎦

where v(St) = |St|−1 �
x∈St

v(x). In other words, the equa-
tion measures the sum of the squared errors from the mean
class given a partitioning of the space based on each possible
threshold t. The minimum value is preferred.

iv. Area Under the ROC Curve (AUC). The receiver operating
characteristic [19], or ROC, curve graphs true positive rate
on the y-axis versus the false positive rate on the x-axis.
ROC curves are generated by varying the decision threshold
t (between 0 and 1) used to transform the normalized attribute
values into a predicted class. AUC is used to provide a single
numerical metric for comparing the predictive power of each
attribute. The range of AUC is between 0 and 1, and larger
value is preferred.

v. Area Under the Precision-Recall Curve (PRC) is a single-value
measure that originated from the area of information retrieval.
A precision-recall curve is generated by varying the decision
threshold t from 0 to 1 and plotting the recall (y-axis) and
precision (x-axis) at each point in a similar manner to the ROC
curve. The area under the PRC ranges from 0 to 1, and an

attribute with more predictive power results in an area under
the PRC closer to 1.

3) Signal-to-Noise: Signal to noise (S2N) [20], in the context of
the feature ranking problem in data mining, defines how well a feature
discriminates two classes in a two class problem. The equation to
calculate S2N is

S2N =
(μP − μN)

σP + σN

where μP and μN are mean values of a particular attribute for the
samples from class P and class N , and σP and σN are standard
deviations of this attribute from the sample set for class P and class
N . Because of its discriminating power among the classes, S2N is
highly efficient to properly order the features in terms of their relation
to the output class. But this technique has not been used as often for
feature selection.

B. Data Sampling Techniques

A number of data sampling techniques have been studied in
the literature, including both majority undersampling and minority
oversampling techniques [14], [15]. We consider random undersamp-
ing (RUS) as the data sampling technique in this study. Random
undersampling is a simple, yet effective, data sampling technique that
achieves more balance in a given data set by randomly removing
instances from the majority (nfp) class. The post-sampling class
distribution is a parameter for any data sampling technique. In our
study, the post-sampling distribution of the nfp and fp instances is
65% and 35% respectively. Other settings such as 50:50 were also
considered, but those results are not presented due to similarity of
conclusions.

C. Classification Performance Metric

The effectiveness of each approach is assessed by evaluating the
classification performance of the models subsequently trained and
tested with that particular approach. In our experiments, we use
AUC as the classification performance metric. Our selection of AUC
is based on one of its characteristics, namely its invariance to a
priori class probability distributions. AUC does not emphasize one
class over the other as may be the case in some other performance
metrics, thus it is not biased against the positive (fp) class. Given the
imbalanced nature of our data sets (see in later section), AUC is an
appropriate measure for comparing the classification performance of
the learners. In fact, AUC serves as an aid to both feature ranking
and final classification evaluation in this study.

D. Classifier

In this study, the software quality prediction models are built
with support vector machine (SVM) [21]. This learner was selected
because of its common use in the software engineering domain and
data mining, and also because it does not have a built-in feature
selection capability. SVM, also called SMO in WEKA, had two
changes to the default parameters: the complexity constant c
was set to ‘5.0’ and build Logistic Models was set to ‘true’.
By default, a linear kernel was used.

IV. A CASE STUDY

A. Data Sets

In our experiments, we use publicly available data, namely the
Eclipse defect counts and complexity metrics data set obtained from
the PROMISE data repository [6]. In particular, we use the metrics
and defects data at the software packages level. The original data
for the Eclipse packages consists of three releases denoted 2.0, 2.1,

92 93

TABLE I
DATA CHARACTERISTICS

Data# Rel. thd #Attr. #Inst. #fp %fp #nfp %nfp
1 2.0 10 209 377 23 6.1 354 93.9
2 2.0 5 209 377 52 13.8 325 86.2
3 2.0 3 209 377 101 26.8 276 73.2
4 2.1 5 209 434 34 7.8 400 92.2
5 2.1 4 209 434 50 11.5 384 88.5
6 2.1 2 209 434 125 28.8 309 71.2
7 3.0 10 209 661 41 6.2 620 93.8
8 3.0 5 209 661 98 14.8 563 85.2
9 3.0 3 209 661 157 23.8 504 76.2

and 3.0 respectively. Each release as reported by Zimmermann et
al. [22] contains the following information: the name of the package
for which the metrics are collected (name), the number of defects
reported six months prior to release (pre-release defects), the number
of defects reported six months after release (post-release defects),
a set of complexity metrics computed for classes or methods and
aggregated in terms of average, maximum, and total (complexity
metrics), and the abstract syntax tree of the package consisting of the
node size, type, and frequency (structure of abstract syntax tree(s)).
For our study we transform the original data by: (1) removing all non-
numeric attributes, including the package names, and (2) converting
the post-release defects attribute to a binary class attribute with fault-
prone (fp) being the minority class and not-fault-prone (nfp), the
majority class. Membership in each class is determined by a post-
release defects threshold thd, which separates fp from nfp packages
by classifying packages with thd or more post-release defects as fp
and the remaining as nfp. In our study, we use thd = {10, 5, 3}
for releases 2.0 and 3.0 while we use thd = {5, 4, 2} for release
2.1. This results in three groups. Each group contains three data sets,
one for each release. The reason why a different set of thresholds
is chosen for release 2.1 is that we would like to keep similar class
distributions for the data sets in the same group. All data sets contain
209 attributes (208 independent attributes and 1 dependent attribute).
Table I shows the characteristics of the data sets after transformation
for each group. These data sets exhibit different distribution of class
skew (i.e., the percentage of fp examples).

B. Design

The primary objective of the experiments is to evaluate the ef-
fectiveness of feature selection techniques when combined with data
sampling. Different scenarios may be produced depending on whether
sampling is performed prior to or after feature selection and which
data set, sampled or unsampled data, is used to build a classifier. The
three different scenarios examined are described as follows:

• Scenario 0: Data sampling is performed before feature selection
and the selected features are applied to the unsampled (original)
data to form the training data set.

• Scenario 1: Data sampling is performed before feature selection
and the selected features are applied to the sampled data to form
the training data set.

• Scenario 2: Data sampling is performed after feature selection
and the selected features are applied to the sampled data to form
the training data set.

C. Results & Analysis

The experiments were performed on the three groups of Eclipse
data sets. Nine feature ranking techniques from three different fam-
ilies were used to rank the attributes according to their respective
scores. Then, we selected �log2 n� attributes that had the highest

scores, where n is the number of the independent attributes in the
original data set. In this study, n = 208, so �log2 n� = 8. We choose
�log2 n� attributes because 1) related literature does not provide
guidance on the appropriate number of features to select; and 2) one
of our recent empirical studies [23] showed that it was appropriate
to use �log2 n� features when using WEKA to build random forests
learners for binary classification in general and imbalanced data sets
in particular. Although we used a different learner here, a preliminary
study showed that �log2 n� is still appropriate for various learners.

After feature selection and data sampling were implemented in
the different scenarios, we built SVM models using the training data
sets with the selected attributes, and we used AUC to evaluate the
performance of the classifications. All results are reported in Table
II. In the experiments, ten runs of five-fold cross-validation were
performed. The values in the table represent the average AUC for the
classification models constructed over the ten runs of five-fold cross-
validation. For each data set, the average performance (Avg. column)
for each feature selection method across three different scenarios,
and the average performance (Avg. row) of each scenario over nine
feature selection techniques are also presented. The best feature
selection technique (based on their average performance) for each
data set is highlighted with underline, and the best scenario (based
on their average performance) is highlighted with bold. The results
demonstrate that the classification models have better performance
when using AUC, PRC, IG and MI feature selection techniques and
also that scenario 0 shows better performance than the other two
scenarios.

We also conducted a two-way ANalysis Of VAriance (ANOVA)
F test on the classification performance over the nine data sets
to examine whether the performance difference (better/worse) is
statistically significant or not. The two factors considered in the test
are: Factor A, representing three scenarios, and Factor B, representing
nine feature ranking techniques. The null hypothesis for the ANOVA
test is that all the group population means are the same and the
alternate hypothesis is that at least one pair of means is different.
In addition, the interaction between Factor A and Factor B is also
taken into account in the test. Table III shows the ANOVA results.
The p-value is zero or close to zero for each main factor (Factor
A and Factor B). This means that at least two scenarios performed
significantly differently from each other and at least two feature
selection techniques present significantly different performances. The
p-value of the interaction term is greater than the typical cutoff 0.05,
meaning that the interaction does not significantly affect classification
performance. In other words, changing the value of Factor A will not
significantly influence the value of Factor B, and vice versa.

We further carried out a multiple comparison test [24] on each
main factor and their interaction with Tukey’s honestly significant
difference criterion. Figure 1, including three subfigures, shows the
multiple comparisons for Factor A, Factor B, and interaction A×B,
respectively. The figures display graphs with each group mean repre-
sented by a symbol (◦) and 95% confidence interval as a line around
the symbol. Two means are significantly different if their intervals are
disjoint, and are not significantly different if their intervals overlap.
Matlab was used to construct the ANOVA models and perform the
multiple comparisons presented in this work, and the assumptions for
constructing ANOVA models were validated. From these figures, we
can see the following points:

• Of the three scenarios, Scenario 0 performs significantly better
than the other two scenarios, followed by Scenario 2, then
Scenario 1.

• Among the nine feature selection methods, AUC performs

92 93

TABLE II
CLASSIFICATION PERFORMANCE OF SVM IN TERMS OF AUC

Data# Filter S0 S1 S2 Avg. Data# Filter S0 S1 S2 Avg. Data# Filter S0 S1 S2 Avg.
CS 0.8662 0.8567 0.8409 0.8546 CS 0.9174 0.9111 0.9034 0.9106 CS 0.9292 0.9248 0.9253 0.9264
IG 0.8665 0.8555 0.8587 0.8602 IG 0.9199 0.9135 0.9137 0.9157 IG 0.9325 0.9290 0.9320 0.9312
RF 0.8753 0.8602 0.8619 0.8658 RF 0.8484 0.8462 0.8463 0.8470 RF 0.8925 0.8914 0.8766 0.8868
MI 0.8564 0.8436 0.8675 0.8558 MI 0.9160 0.9151 0.9228 0.9179 MI 0.9277 0.9218 0.9204 0.9233

1 KS 0.8471 0.8347 0.8268 0.8362 4 KS 0.9178 0.9128 0.9223 0.9176 7 KS 0.9249 0.9204 0.9186 0.9213
DV 0.8656 0.8565 0.8613 0.8611 DV 0.9179 0.9106 0.9174 0.9153 DV 0.9232 0.9201 0.9307 0.9247

AUC 0.8817 0.8641 0.8813 0.8757 AUC 0.9197 0.9144 0.9236 0.9193 AUC 0.9338 0.9286 0.9322 0.9315
PRC 0.8712 0.8638 0.8624 0.8658 PRC 0.9132 0.9134 0.9134 0.9133 PRC 0.9300 0.9245 0.9315 0.9287
S2N 0.8757 0.8652 0.8673 0.8694 S2N 0.9037 0.8962 0.8979 0.8993 S2N 0.9161 0.9179 0.9214 0.9185
Avg 0.8673 0.8556 0.8587 Avg 0.9082 0.9037 0.9067 Avg 0.9233 0.9198 0.9209
CS 0.9092 0.9022 0.9080 0.9064 CS 0.9028 0.9054 0.9028 0.9037 CS 0.9409 0.9334 0.9352 0.9365
IG 0.9132 0.9036 0.9144 0.9104 IG 0.9034 0.9066 0.9056 0.9052 IG 0.9408 0.9340 0.9338 0.9362
RF 0.9078 0.8973 0.8862 0.8971 RF 0.8436 0.8518 0.8268 0.8407 RF 0.9156 0.9008 0.8893 0.9019
MI 0.9124 0.9088 0.9128 0.9113 MI 0.9003 0.9027 0.9030 0.9020 MI 0.9405 0.9321 0.9338 0.9355

2 KS 0.9012 0.8964 0.9098 0.9025 5 KS 0.8998 0.9027 0.9001 0.9009 8 KS 0.9402 0.9312 0.9327 0.9347
DV 0.9007 0.8926 0.9051 0.8995 DV 0.9015 0.9022 0.9012 0.9016 DV 0.9396 0.9304 0.9360 0.9353

AUC 0.9134 0.9039 0.9137 0.9103 AUC 0.9007 0.9033 0.9048 0.9029 AUC 0.9402 0.9329 0.9335 0.9355
PRC 0.9160 0.9048 0.9052 0.9087 PRC 0.9026 0.9042 0.9057 0.9042 PRC 0.9412 0.9341 0.9356 0.9370
S2N 0.9088 0.8979 0.8949 0.9005 S2N 0.8908 0.8914 0.8906 0.8909 S2N 0.9379 0.9255 0.9272 0.9302
Avg 0.9092 0.9008 0.9056 Avg 0.8939 0.8967 0.8934 Avg 0.9374 0.9283 0.9286
CS 0.8636 0.8611 0.8604 0.8617 CS 0.8885 0.8862 0.8862 0.8870 CS 0.9061 0.8999 0.9003 0.9021
IG 0.8666 0.8645 0.8643 0.8651 IG 0.8881 0.8862 0.8867 0.8870 IG 0.9063 0.9004 0.9002 0.9023
RF 0.8351 0.8293 0.8303 0.8315 RF 0.8728 0.8740 0.8608 0.8692 RF 0.8717 0.8625 0.8217 0.8519
MI 0.8521 0.8499 0.8594 0.8538 MI 0.8894 0.8872 0.8862 0.8876 MI 0.9060 0.9014 0.9016 0.9030

3 KS 0.8550 0.8530 0.8593 0.8557 6 KS 0.8891 0.8866 0.8861 0.8873 9 KS 0.9058 0.9013 0.9013 0.9028
DV 0.8513 0.8487 0.8568 0.8522 DV 0.8878 0.8850 0.8837 0.8855 DV 0.9066 0.9014 0.9016 0.9032

AUC 0.8653 0.8647 0.8663 0.8654 AUC 0.8883 0.8865 0.8876 0.8875 AUC 0.9058 0.8999 0.8997 0.9018
PRC 0.8603 0.8593 0.8594 0.8597 PRC 0.8887 0.8853 0.8864 0.8868 PRC 0.9064 0.9006 0.9001 0.9024
S2N 0.8543 0.8531 0.8540 0.8538 S2N 0.8838 0.8813 0.8857 0.8836 S2N 0.9123 0.9054 0.9055 0.9077
Avg 0.8559 0.8537 0.8567 Avg 0.8863 0.8843 0.8833 Avg 0.9030 0.8970 0.8924

TABLE III
TWO-WAY ANOVA TABLE

Source Sum Sq. d.f. Mean Sq. F p-value
A 0.0117 2 0.0059 7.23 0.0007
B 0.2794 8 0.0349 43.05 0.0000
A×B 0.0152 16 0.0009 1.17 0.2864
Error 1.9491 2403 0.0008
Total 2.2553 2429

best, followed by IG, PRC, MI, CS, and DV, then KS and
S2N. RF performs significantly worse than others. The nine
techniques ordered in terms of their performance from best to
worst are: AUCA, IGAB , PRCAB , MIAB , CSAB , DVAB , KSB ,
S2NB , RFC . The methods labeled with the same superscript
are from the same performance group, in which no statistically
significant difference is found between the methods, while the
methods labeled with different superscripts come from different
performance groups, in which statistically significant differences
are found between the methods.

• There are 27 groups for interaction A×B; these are formed
by each of nine feature selection techniques being combined
with three scenarios. The group means demonstrate that the
classification performance is not heavily influenced by these
interactions. Among 27 groups, S0-AUC (classification models
built in Scenario 0 and using the AUC feature selection tech-
nique) demonstrates better average performance than the other
groups over the nine data sets. RF-based groups perform worst.

In addition to the primary experiment discussed above, we also
compared defect prediction models built on smaller subsets of at-
tributes to those built with a complete set of attributes (no feature
selection or sampling used at all). Table IV shows the classification

0.89 0.892 0.894 0.896 0.898 0.9 0.902

S2

S1

S0

AUC

(a) Factor A

0.86 0.87 0.88 0.89 0.9 0.91 0.92

S2N

PRC

AUC

DV

KS

MI

RF

IG

CS

AUC

(b) Factor B

0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92

S2−S2N
S1−S2N
S0−S2N
S2−PRC
S1−PRC
S0−PRC
S2−AUC
S1−AUC
S0−AUC
S2−DV
S1−DV
S0−DV
S2−KS
S1−KS
S0−KS
S2−MI
S1−MI
S0−MI
S2−RF
S1−RF
S0−RF
S2−IG
S1−IG
S0−IG
S2−CS
S1−CS
S0−CS

AUC

(c) Factor A×B

Fig. 1. Multiple Comparisons

94 95

TABLE IV
CLASSIFICATION PERFORMANCE OF SVM ON FULL DATA SETS

Data# AUC Data# AUC Data# AUC
1 0.8064 4 0.7988 7 0.8030
2 0.8904 5 0.8039 8 0.8897
3 0.8235 6 0.8154 9 0.8673

performances of the SVM learner using the original data with 208
software metrics. Each value presented in the table is the average
AUC over the ten runs of five-fold cross-validation outcomes. The
results demonstrate that all three strategies (scenarios) perform better
or significantly better than the case where no feature selection or
sampling is used at all, except for the 9th data set when RF is used.

V. CONCLUSION

In the context of software defect prediction, two key problems often
faced by software practitioners are the presence of excessive metrics
in training data sets and a relatively small proportion of fault-prone
modules to learn from.

In order to overcome the problems, we studied a process using
feature selection and data sampling together to modify the training
data to improve software defect prediction models. Three scenarios
are investigated: (1) feature selection based on sampled data, and
training data based on original data; (2) feature selection based on
sampled data, and training data based on sampled data; and (3) feature
selection based on original data, and training data based on sampled
data. The main objective of this paper is to examine and compare
all three scenarios and assess their effectiveness in the context
of software quality prediction. We used nine different filter-based
feature ranking techniques to select the software metrics and random
undersampling to deal with class imbalance. The SVM classifier
was employed to build classification models. The experiments were
performed on nine software measurement data sets obtained from the
PROMISE repository. The results show that sampling performed prior
to feature selection and training data based on original data resulted
in significantly better performance than the other two approaches
(scenarios). In addition, among the nine filter-based feature ranking
techniques, AUC performed better than other methods. Moreover, all
three strategies performed significantly better than the case where no
feature selection or sampling is used. The above result is of particular
importance to a software quality analyst, since a useful model can
be built using only selected software metrics. This provides a less
cumbersome and more insightful model for analyzing the software
quality trends of the target project, as compared to analyzing the
model with respect to a large set of metrics.

Future work will include experiments using data sets from dif-
ferent software projects. Various sampling techniques, learners, and
performance metrics will also be examined in future work.

REFERENCES

[1] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Detecting fault modules applying feature selection to classifiers,” in
Proceedings of 8th IEEE International Conference on Information Reuse
and Integration, Las Vegas, Nevada, August 13-15 2007, pp. 667–672.

[2] H. Wang, T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Mining data
from multiple software development projects,” in Proceedings of the
3rd IEEE International Workshop Mining Multiple Information Sources,
Miami, FL, Dec. 6 2009, pp. 551–557.

[3] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: an investigation on feature selection
techniques,” Software: Practice and Experience. Special Issue: Practical
Aspects of Search-Based Software Engineering, vol. 41, no. 5, pp. 579–
606, April 2011.

[4] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Experimental
perspectives on learning from imbalanced data,” in Proceedings of the
24th International Conference on Machine Learning, Corvallis, OR,
USA, June 2007, pp. 935–942.

[5] T. M. Khoshgoftaar and K. Gao, “A novel software metric selection
technique using the area under roc curves,” in Proceedings of the
22nd International Conference on Software Engineering and Knowledge
Engineering, San Francisco, CA, July 1-3 2010, pp. 203–208.

[6] G. Boetticher, T. Menzies, and T. Ostrand. (2007) Promise
repository of empirical software engineering data. [Online]. Available:
http://promisedata.org/

[7] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset
selection problem,” in Proceedings of the 11th International Conference
on Machine Learning, 1994, pp. 121–129.

[8] K. Jong, E. Marchiori, M. Sebag, and A. van der Vaart, “Feature
selection in proteomic pattern data with support vector machines,” in
Proceedings of the 2004 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology, Oct 7-8 2004.

[9] G. Ilczuk, R. Mlynarski, W. Kargul, and A. Wakulicz-Deja, “New feature
selection methods for qualification of the patients for cardiac pacemaker
implantation,” Computers in Cardiology, vol. 34, no. 2-3, pp. 423–426,
2007.

[10] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of Machine Learning Research, vol. 3,
pp. 1289–1305, March 2003.

[11] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, vol. 22, no. 6, pp. 38–46,
November 2005.

[12] V. Engen, J. Vincent, and K. Phalp, “Enhancing network based intrusion
detection for imbalanced data,” International Journal of Knowledge-
Based and Intelligent Engineering Systems, vol. 12, no. 5-6, pp. 357–
367, 2008.

[13] A. H. Kamal, X. Zhu, A. S. Pandya, S. Hsu, and M. Shoaib, “The
impact of gene selection on imbalanced microarray expression data,” in
Proceedings of the 1st International Conference on Bioinformatics and
Computational Biology; Lecture Notes in Bioinformatics; Vol. 5462, New
Orleans, LA, 2009, pp. 259–269.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[15] C. Seiffert, T. Khoshgoftaar, and J. Van Hulse, “Improving software-
quality predictions with data sampling and boosting,” IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39,
no. 6, pp. 1283–1294, Nov. 2009.

[16] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: Problems in software defect prediction,” in Proceed-
ings of 22nd IEEE International Conference on Tools with Artificial
Intelligence, Arras, France, October 27-29 2010, pp. 137–144.

[17] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[18] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in
Proceedings of 9th International Workshop on Machine Learning, 1992,
pp. 249–256.

[19] F. Provost and T. Fawcett, “Robust classification for imprecise environ-
ments,” Machine Learning, vol. 42, pp. 203–231, 2001.

[20] L. Goh, Q. Song, and N. Kasabov, “A novel feature selection method
to improve classification of gene expression data,” in Proceedings of
the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New
Zealand, 2004, pp. 161–166.

[21] J. Shawe-Taylor and N. Cristianini, Support Vector Machines, 2nd ed.
Cambridge University Press, 2000.

[22] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2007, p. 76.

[23] T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An empirical study
of learning from imbalanced data using random forest,” in Proceedings
of the 19th IEEE International Conference on Tools with Artificial
Intelligence, vol. 2, Washington, DC, USA, 2007, pp. 310–317.

[24] M. L. Berenson, M. Goldstein, and D. Levine, Intermediate Statistical
Methods and Applications: A Computer Package Approach, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

94 95

BUGMINER: Software Reliability Analysis Via Data Mining of Bug Reports

Leon Wu Boyi Xie Gail Kaiser Rebecca Passonneau
Department of Computer Science

Columbia University
New York, NY 10027 USA

{leon,xie,kaiser,becky}@cs.columbia.edu

Abstract

Software bugs reported by human users and automatic
error reporting software are often stored in some bug track-
ing tools (e.g., Bugzilla and Debbugs). These accumulated
bug reports may contain valuable information that could
be used to improve the quality of the bug reporting, reduce
the quality assurance effort and cost, analyze software re-
liability, and predict future bug report trend. In this paper,
we present BUGMINER, a tool that is able to derive useful
information from historic bug report database using data
mining, use these information to do completion check and
redundancy check on a new or given bug report, and to es-
timate the bug report trend using statistical analysis. Our
empirical studies of the tool using several real-world bug
report repositories show that it is effective, easy to imple-
ment, and has relatively high accuracy despite low quality
data.

1 Introduction

Finding and fixing the faults in a software is an indis-
pensable while time-consuming quality assurance task in
software development. Our definition of fault is a program-
ming error that leads to an erroneous result in some pro-
grams during execution. A software bug is the common
term used to describe a fault, error, flaw, mistake, or fail-
ure in a program that produces an incorrect or unexpected
result, or causes it to behave in unintended ways. When a
software bug is identified, it is often reported and recorded
into a bug report database using some bug tracking tools so
that further analysis or fix can be performed, possibly by
a developer or tester. For some real-world software, their
bug report databases have accumulated a large amount of
historic bug reports. For example, as of February 2011,
Debbugs, i.e., Debian bug tracking system, has accumulated
615,000 bug reports [4, 3].

These accumulated bug reports may contain valuable in-

formation that could be used to improve the quality of the
bug reporting, reduce the cost of quality assurance, analyze
software reliability, and predict future bug report trend. One
of the challenges in bug reporting is that the bug reports are
often incomplete (e.g., missing data fields such as product
version or operating system details). Another challenge is
that there are often many duplicate bug reports for the same
bug. Software developers or testers normally have to re-
view these redundant bug reports manually, which is time-
consuming and cost inefficient.

We developed a tool named BUGMINER that is able to
derive useful information from historic bug reports using
data mining techniques, including machine learning (e.g.,
SVM [15, 5]) and natural language processing, and use
these information to do completion check through classi-
fication and redundancy check through similarity ranking
on a new or given bug report. BUGMINER can also per-
form bug report trend analysis using Weibull distribution
[13]. We implemented the tool and experimented it using
three real-world bug report repositories including Apache
Tomcat [1], Eclipse [7], and Linux Kernel [11]. Our exper-
iments demonstrate that it is effective, easy to implement,
and has relatively high accuracy despite low quality data.

The rest of the paper is organized as follows. In the fol-
lowing section, we give background information on bug re-
porting. In Section 3, we present the details of our approach,
followed by our empirical studies in Section 4. Lastly, we
compare related work in Section 5, before we conclude in
Section 6.

2 Background on Bug Reporting

Bug tracking tools are often developed as a database-
driven web application. The web interface allows multiple
geographically distributed users to enter the bug reports si-
multaneously. The backend database stores the records for
the reported bugs. Table 1 lists some main attributes (i.e.,
data fields or columns) of a typical bug report for Apache
Tomcat using Bugzilla [1, 2]. These attributes are meta in-

96 97

formation of the bug report. The field bug id is an unique
identifier for a distinct bug instance. A bug report is often
modified by subsequent reviewers or developers who are
trying to verify or fix the bug. Table 2 lists the additional
commentary entries related to the same bug listed in Table
1. Each new entry (i.e., new long desc record) records the
author name, entry date and time, and the free text descrip-
tion. The entry date and time for the first and last long desc
record, along with the first author’s name, are also stored
in the main attributes list of the same bug (i.e., creation ts,
delta ts, and reporter). There is no predefined limit on how
many additional commentary entries a bug report can hold.
Bug report datasets will be further explained in Section 4.2.

Table 1. Main attributes of a bug report
Attribute Name Sample Value Attribute Name Sample Value
bug id 48892 component Connectors
creation ts 2010-03-11

12:10:09 -0500
delta ts 2010-12-14

14:30:22 -0500
short desc Use URIEncoding... rep platform All
cclist accessible 1 op sys All
classification id 1 bug status NEW
classification Unclassified bug severity enhancement
product Tomcat 7 priority P2
reporter reporter 1 assigned to dev

Table 2. Additional attributes
Attribute Name long desc 1 long desc 2 long desc 3
isprivate 0 0 0
who reporter 1 reporter 2 reporter 3
bug when 2010-03-11

12:10:09 -0500
2010-04-04
10:18:48 -0400

2010-12-14
14:30:22 -0500

thetext Here is a ... There are ... For encoding ...

3 Approach

3.1 Architecture

Figure 1 illustrates the architecture of BUGMINER.
There are two types of bug reporters: human users such as
software developers, testers, and end users; automatic error
reporting processes that run as a service on users’ comput-
ers. The bug reporters generate new bug reports and enter
the related information via the bug tracking tool’s interface.
The bug tracking tool then store the new bug report into the
bug report database.

BUGMINER consists of three data mining and statistical
processing engines: automatic completion check engine;
automatic redundancy check engine; and bug report trend
analysis engine. These three engines process the historic
data stored in the bug report database and the new bug re-
port coming in. The results from these engines are then
directed to the bug tracking tool so that these results can be
reviewed and stored. In the following subsections, we will
describe each engine in detail.

3.2 Attributes and Feature Selection

BUGMINER analyzes bug report data based on two sets
of attributes: 1) static meta information, and 2) bag-of-

Bug Tracking Tool

Auto-reporting
Process

Bug Report Databse

Completion Check Engine

Redundancy Check Engine

Trend Analysis Engine

BUGMINER

New
Bug

Report

Figure 1. BUGMINER architecture

words (i.e., a collection of distinct free text words) at-
tributes. For each bug report in Bugzilla, users need to fill
in a predefined set of bug information, as shown in Table
1. This set of attributes has two characteristics: 1) static:
the list of fields is fixed for all types of software products,
and those fields are available for all bug reports; 2) meta in-
formation: they describe the general information about the
bug report but doesn’t go to the details of the problem. Bug
report analysis based solely on the static and meta informa-
tion is very limited. In BUGMINER, we further include the
free text data of a bug report in our analysis.

The free text data usually describes a bug scenario in nat-
ural language followed by some sample code. We represent
the textual data as a bag-of-words. Each data instance is a
high dimensional vector with words being attributes. The
values of the attributes are Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) weight [12], which gives a higher
weight on words that are frequent in certain data records but
not too common across all records. Stemming, a process
of reducing inflected (or sometimes derived) words to their
stem or root form, is not necessary because the vocabulary
usually doesn’t have a variety of morphed forms, and im-
perfect stemming may bring in additional noisy content un-
necessarily. Our feature selection also bases on inverse doc-
ument frequency (IDF) and global term frequency. Words
with a low IDF (e.g., stopwords such as ‘the’ and ‘a’) are
removed because they are too common and lack discrimi-
native power. Words with a very low global term frequency
are also removed because they are rare and their inclusion
leads to a high dimensionality, which may cause “curse of
dimensionality” problem in machine learning.

96 97

3.3 Automatic Completion Check Engine

When a bug report is filed, the bug information submitted
are sometimes incomplete (e.g., missing data fields). BUG-
MINER’s automatic completion check engine derives these
missing data fields through mining historic data and classifi-
cation using the partially filled information. It reduces man-
ual effort, keeps the bug report complete, and helps devel-
opers and testers to analyze the bug report more precisely.

3.3.1 Classification Using Support Vector Machine

Missing field autocompletion can be solved as a supervised
learning problem. By training a classification model on ex-
isting data, we can predict the missing values. In BUG-
MINER, we use Support Vector Machines (SVM) as the
classifier. SVM is a popular machine learning method be-
cause of its high performance. It formulates the classifica-
tion modeling process as a quadratic minimization problem,
and finds hyperplanes in a high dimensional space that sepa-
rate data instances of different categories, while maximizing
the margins between categories.

We first use a set of historic bug reports (e.g., each one
with n attributes) as training data to build a linear SVM
model. For a new or given bug report with one missing data
field a (i.e., n − 1 attributes filled and 1 attribute missing),
we use the trained SVM model as a classifier and the filled
n − 1 attributes to predict the value of the missing a field
for this bug report. In the case of multiple data fields are
missing for a report (e.g., n − m attributes filled and m
attributes missing), we use the SVM model and the n −m
filled attributes to predict the missing fields one by one.

3.4 Automatic Redundancy Check Engine

A common way of searching a bug report database to
find out whether a new or given bug report already exists
or not is to use keyword search, which normally uses key-
word in combination with some wildcat characters such as
‘%’ and ‘?’ to construct database query string that can be
executed on the database table. This kind of search based
on keyword matching is often imprecise and may generate
a large amount of useless or irrelevant results. The simi-
larity ranking used by BUGMINER’s automatic redundancy
check engine is able to tell whether the new bug report is a
duplicate or not more precisely. Furthermore, the similarity
ranking can find out the most similar prior bug reports and
sort them for the user.

3.4.1 Similarity Ranking Using Cosine Similarity

We represent bug report dataset in a vector space model
(i.e., term vector model), an algebraic model for represent-
ing text documents as vectors of identifiers, such as index

terms [14]. Each bug report is a vector that consists of a list
of feature values. As described in Section 3.2, BUGMINER
uses two sets of features: 1) static meta information; 2) bag-
of-words attributes with TF-IDF values.

We measure the similarity between two bug reports
based on Cosine similarity, i.e., the Cosine of the angle be-
tween the two vectors that represent these two bug reports,
as shown in the following formula:

DistanceCOS(a, b) =

∑
i ai × bi√∑

i a
2
i ×

√∑
i b

2
i

,

where a and b represent two vectors. Its result equals 1
when the angle between two vectors is 0 (i.e., two vectors
are pointing in the same direction), and its result is less than
1 otherwise.

For a new or given bug report, we compute the Cosine
similarity value (i.e., csv) between this new bug report’s
vector and all the prior bug reports’ vectors, and then rank
the csv values in an descending order. The historic bug re-
port with the highest csv value (i.e., the closest one to 1) is
the most similar prior record.

3.4.2 Similarity Ranking Using KL Divergence

In addition to Cosine similarity, we rank all prior bug re-
ports based on their relevance to the new bug report using
probability distribution. Kullback-Leibler (i.e., KL) diver-
gence [6, 12] is an effective relevance metric that assumes
each data instance in a high dimensional feature space is
characterized by a probability distribution. KL divergence
measures the dissimilarity between two probability distri-
butions, as shown in the following formular:

DKL(a||b) =
∑
t∈V

P (t|Ma)log
P (t|Ma)

P (t|Mb)
,

where Ma and Mb represent the probability distributions
for vector a and b respectively. V is the vocabulary of all
terms and t is a term in V . KL divergence measures how
bad the probability distribution Ma is at modeling Mb. Pre-
vious work [19] presents results suggesting that model com-
parison approach outperforms both query-likelihood and
document-likelihood approaches. However, this metric is
asymmetric, i.e., DKL(a||b) �= DKL(b||a). In order to use
it as a distance metric, we adopt a symmetrized KL diver-
gence method for similarity ranking, which is defined as:

DistanceKL(a, b) =
1

2
DKL(a||b) + 1

2
DKL(b||a).

The result is symmetric and nonnegative. It equals 0 when
two distributions are identical. It is bigger than 0 otherwise,
and the larger the value the greater their dissimilarity.

For a new or given bug report, we compute the sym-
metrized KL divergence value (i.e., kld) between this new
bug report’s vector and all the prior bug reports’ vectors,

98 99

and then rank the kld values in an ascending order. The his-
toric bug report with the lowest kld value (i.e., the closest
one to 0) is the most similar prior record.

3.4.3 Is the New Bug Report a Duplicate? What are
the Similar Bugs Reported before?

We categorize a new or given bug report into one of the
three categories according to the ranked csv and kdl values,
along with the value ranges they fall into:
• If a prior report exists with csv ≥ c r2 and kld ≤ k r1,

it is highly likely to be a duplicate (or repeat) of a prior
report.

• If a prior report exists with c r1 < csv < c r2 or
k r1 < kld < k r2, it has similar prior report.

• If all prior reports have csv ≤ c r1 and kld ≥ k r2, it
does not have any similar prior report.

The value range parameters (i.e., c r1, c r2, k r1, and k r2)
can be determined based on heuristics obtained from exper-
iments.

3.5 Bug Report Trend Analysis Engine

After major software releases, the number of software
bugs tend to increase initially. As these bugs are fixed, the
number of bugs gradually decreases, which resembles the
“bathtub curve” in reliability engineering. The increase and
descrease of the number of bugs normally lead to the similar
trend of the number of bug reports. Weibull distribution can
be used to model this kind of pattern and provide the basis
for trend analysis.

3.5.1 Report Incidence Distribution

For the Weibull distribution, the incidence (e.g., failure or
bug report) density function f(t) and cumulative incidence
distribution function F (t) are

f(t;λ, k) =
k

λ
(
t

λ
)k−1e−(t/λ)k , t ≥ 0,

F (t;λ, k) = 1− e−(t/λ)k , t ≥ 0,

where k > 0 is the shape parameter and λ > 0 is the scale
parameter of the distribution. The instantaneous incidence
rate (or hazard function) when t ≥ 0 can be derived as

h(t;λ, k) =
f(t;λ, k)

1− F (t;λ, k)
=

k

λ

(
t

λ

)k−1

.

A value of k < 1 indicates that the incidence rate decreases
over time. A value of k = 1 indicates that the incidence rate
is constant (i.e., k/λ) over time. In this case, the Weibull
distribution becomes an exponential distribution. A value
of k > 1 indicates that the incidence rate increases with
time.

3.5.2 Estimation of Coming Bug Report

We first use historic data to fit the Weibull function and de-
rive the λ and k parameters. Then for any given time t,
which is the number of weeks (or other chosen time units
such as days or hours) after the starting date, the number of
bug reports that may happen during that week can be esti-
mated using the Weibull’s density function f(t). The result
is an estimate of how many bug reports may happen during
the t-th week after the starting event, e.g., a new software
release. Similarily, the instantaneous incidence rate can be
estimated using the hazard function h(t). These estimates
give software developers or testers a baseline for designing
the software testing and maintenance plan.

4 Empirical Studies

4.1 Implementation

We implemented BUGMINER in Java using some exist-
ing machine learning and statistical analysis tools, including
Weka [17] and MATLAB [9].

4.2 Bug Report Datasets and Data Processing

We experiment BUGMINER on the bug report repos-
itories of three real-world software (Apache Tomcat [1],
Eclipse [7], and Linux Kernel [11]). Table 3 lists some
statistics of these bug report repositories. For example,
the Apache Tomcat dataset contains two product versions—
Tomcat 3 and Tomcat 7. The OS is the operating system the
software runs on. The components are the functional com-
ponents of the software.

Table 3. Software and bug report datasets
Software Name # bug reports # product # OS # components
Apache Tomcat 1525 2 16 16
Eclipse 1674 2 17 13
Linux Kernel 1692 16 1 106

We first apply pattern matching to extract static meta in-
formation, as listed in Table 1. Then we process free text
descriptions using tokenization and bag-of-words feature
selection as described in section 3.2. The dimensionalities
of the term feature space range from 4000 to 13,000 de-
pending on the dataset. After the attribute data sources are
combined, the final vector space to represent bug report in-
stances includes static meta information and bag-of-words
features.

4.3 Results and Analysis

Our experimental results show that BUGMINER is effec-
tive in automatic completion check, automatic redundancy
check, and bug report trend analysis. The following subsec-
tions present the detailed results and analysis.

98 99

4.3.1 Classification for Missing Field Autocompletion
For missing field autocompletion, we train classification
model on 80% of the data and do blind-test on the remaining
20% of the data. For example, for Apache Tomcat, we use
1220 (or 80%) bug reports as training data and use 305 (or
20%) bug reports as the testing data. Table 4 lists the clas-
sification results for the Tomcat version. The accuracy of
the classfication on testing instances is 99.02%. This means
the product version in this case can be determined by the
automatic completion check engine highly accurately.

Table 4. Classification results of products
TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.991 0.014 0.996 0.991 0.993 0.989 tomcat 3
0.986 0.009 0.973 0.986 0.98 0.989 tomcat 7
0.99 0.012 0.99 0.99 0.99 0.989 Weighted Avg.

Table 5 lists the classification results for the operating
system version for Tomcat. The accuracy of the classifica-
tion on testing instances is 68.52%.

Table 5. Classification results of OS versions
TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.888 0.449 0.758 0.888 0.818 0.719 all
0.356 0.081 0.432 0.356 0.39 0.637 linux
0.087 0.018 0.286 0.087 0.133 0.535 other
0.176 0.014 0.429 0.176 0.25 0.581 solaris
0.786 0.047 0.629 0.786 0.698 0.869 windows xp
0.685 0.294 0.632 0.685 0.647 0.696 Weighted Avg.

Table 6 lists the classification results for the software
component related to the bug report. The accuracy of the
classfication on testing instances is 53.11%. The results
show that it is relatively difficult to accurately determine
the problematic component based on the bug reports in this
case.

Table 6. Classification results of components
TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.5 0.007 0.714 0.5 0.588 0.747 auth
0.868 0.067 0.73 0.868 0.793 0.9 catalina
0.2 0.039 0.313 0.2 0.244 0.58 config
0.368 0.037 0.583 0.368 0.452 0.665 connectors
0.5 0.003 0.5 0.5 0.5 0.748 encoding
0.622 0.041 0.676 0.622 0.648 0.79 jasper
0.667 0.003 0.667 0.667 0.667 0.832 manager
0.6 0.154 0.513 0.6 0.553 0.723 servlet
0.1 0.007 0.333 0.1 0.154 0.547 webapps
0.531 0.091 0.535 0.531 0.518 0.72 Weighted Avg.

We also did some experiments on the bug report datasets
of Eclipse and Linux Kernel. Table 7 shows the summary
of classification accuracy rates for the datasets tested. As
the number of classes increases, the accuracy rate tends to
decrease; nevertheless, the accuracy rates (e.g., 53.11% for
Tomcat’s components) are relatively high if they are com-
pared to the chance baseline (i.e., probability is 1/n if there
are n possible components).

4.3.2 Similarity Ranking
We first transform the historic training bug reports and the
testing bug report to vectors using the vector space model.

Table 7. Summary of classification accuracy
Software Name product OS components
Apache Tomcat 99.02% 68.52% 53.11%
Eclipse 97.90% 66.47% 67.37%
Linux Kernel 76.33% N/A 58.88%

After the csv and kld value for each training bug report are
calculated, all the training bug reports are then sorted in an
descending order based on the csv value and in an ascend-
ing order based on the kld value. The bug reports at the top
of the ranked lists are the most similar ones to the testing
bug report.

Based on the heuristics from the experiments, we de-
termine the value range parameters as c r1 = 0.2, c r2 =
0.9, k r1 = 2.0, and k r2 = 10.0 for Tomcat. Table 8 lists
some sample results for a given bug report #393. From the
results, the bug report #393 is highly likely to be a dupli-
cate of some prior reports because there exists historic bug
reports with csv ≥ 0.9 and kld ≤ 2.0 (i.e., bug report #330
and #296). Furthermore, bug report #228 is likely to be a
similar bug report of #393 because it has 0.7 < csv < 0.9
or 2.0 < kld < 10.0. To determine whether a new or given
bug report is in fact a duplicate usually requires human
judgement. Our manual verification shows that the simi-
larity ranking results produced by BUGMINER are highly
accurate despite the low quality data.

Table 8. Similarity ranking results
bug id csv kld
330 0.928 1.940
296 0.917 0.816
228 0.717 9.868

4.3.3 Trend Analysis

We implement the bug report trend analysis based on the
Weibull distribution. We first aggregate the historic data to
compute a vector of the time (i-th week) and the number of
bug reports whose first reporting date falls in the i-th week.
Then a result vector returns the 95% confidence intervals
for the estimates of the parameters of the Weibull distribu-
tion given the historic vector data. The two-element row
vector estimates the Weibull parameter λ and k. The first
row of the 2-by-2 matrix contains the lower bounds of the
confidence intervals for the parameters, and the second row
contains the upper bounds of the confidence intervals.

Table 9 shows the estimates of the Weibull parameters
for Apache Tomcat 3. The value of k is less than 1, which
indicates that the incidence rate decreases over time. The
related curve fit is illustrated in Figure 2. The starting time,
(i.e., the 0 on the x-axis) is the week of August 25, 2000.
The curve fit shows that the Weibull distribution closely re-
sembles the actual bug report incidence distribution.

Table 9. Weibull parameter estimates
Software λ λlow λhigh k klow khigh

Tomcat 3 0.3885 0.2280 0.6621 0.2241 0.2041 0.2461

100 PB

Figure 2. Weibull fit for Tomcat 3

5 Related Work
Some prior studies have been done on applying data min-

ing on software engineering. [10] described the concept of
software intelligence and the future of mining software en-
gineering data. [18] presented a general overview of data
mining for software engineering and described an example
of duplicate bug detection using vector space-based similar-
ity. [16] also described an approach to detect duplicate bug
reports using both natural language and execution informa-
tion. Our redundancy check engine uses both probability
distribution-based KL divergence and vector space-based
Cosine similarity ranking, instead of only vector space-
based similarity. Furthermore, our approach provides a sim-
ilarity ranking list that can be used for search, instead of
only Yes and No on duplication check. [8] presented text
mining of bug reports to identify security issues. Their work
aims to identify security problems such as buffer overlow
through mining the bug reports. Their purpose and tech-
niques are different from our approach.

6 Conclusion
In this paper, we presented BUGMINER, a tool that is

able to derive useful information from historic bug report
database via data mining, use these information to do com-
pletion check and redundancy check on a new or given bug
report, and to estimate the bug report trend using statistical
analysis. We did empirical studies of the tool using sev-
eral real-world bug report repositories. The experimental
results show that BUGMINER is effective, easy to imple-
ment, and has relatively high accuracy despite low quality
data. BUGMINER can be integrated into some existing bug
tracking tools or software testing suites for more intelligent
and cost-efficient software reliability analysis.

7 Acknowledgments
Wu and Kaiser are members of the Programming

Systems Laboratory, funded in part by NSF CNS-

0717544, CNS-0627473 and CNS-0426623, and NIH 2
U54 CA121852-06.

References

[1] Apache Project. http://issues.apache.org/bugzilla/, 2011.
[2] Bugzilla. http://www.bugzilla.org, 2011.
[3] Debian Bug Tracking System. http://www.debian.org/Bugs,

2011.
[4] Debian Project. Debian Bug report logs – #615000.

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=615000,
retrieved 2011-03-03.

[5] C. Cortes and V. Vapnik. Support-Vector Networks. Ma-
chine Learning, 20, Springer, 1995.

[6] T. M. Cover and J. A. Thomas. Elements of Information
Theory, Wiley, 1991.

[7] Eclipse. http://bugs.eclipse.org/bugs/, 2011.
[8] M. Gegick, P. Rotella, and T. Xie. Identifying security bug

reports via text mining: An industrial case study. In Proc.
of the 7th IEEE Working Conference on Mining Software
Repositories (MSR), Cape Town, pp. 11–20, May 2010.

[9] A. Gilat. MATLAB: An Introduction with Applications 2nd
Edition, John Wiley & Sons., July 2004.

[10] A. E. Hassan and T. Xie. Software Intelligence: Future
of Mining Software Engineering Data. In Proc. of the
FSE/SDP Workshop on the Future of Software Engineer-
ing Research (FoSER 2010), Santa Fe, NM, pp. 161–166,
November 2010.

[11] Linux Kernel. http://bugzilla.kernel.org/, 2011.
[12] C. D. Manning, P. Raghavan, and H. Schütze. Introduction

to Information Retrieval, Cambridge University Press, 2008.
[13] S. E. Rigdon and A. P. Basu. Estimating the intensity func-

tion of a Weibull process at the current time: Failure trun-
cated case. Journal of Statistical Computation and Simula-
tion (JSCS), vol. 30, pp. 17–38, 1988.

[14] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Communications of the ACM, v. 18
n. 11, pp. 613–620, November 1975.

[15] V. N. Vapnik. The nature of statistical learning theory,
Springer-Verlag, New York, 1995.

[16] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An Ap-
proach to Detecting Duplicate Bug Reports Using Natural
Language and Execution Information. In Proc. of the 30th
International Conference on Software Engineering (ICSE),
pp. 461–470, ACM Press, 2008.

[17] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and
S. J. Cunningham. Weka: Practical Machine Learning
Tools and Techniques with Java Implementations. In Proc.
of the ICONIP/ANZIIS/ANNES’99 Workshop on Emerging
Knowledge Engineering and Connectionist-Based Informa-
tion Systems, pp. 192–196, 1999.

[18] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data Mining
for Software Engineering. Computer, vol. 42, no. 8, pp. 55–
62, IEEE Computer Society, Los Alamitos, CA, USA, 2009.

[19] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
Proc. of the 24th Annual International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, pp. 111–119, 2001.

PB 101

102 103

102 103

104 105

104 105

106 107

106 107

108 109

108 109

110 111

110 111

Formalizing Reusable Aspect-Oriented Concurrency Control

Neelam Soundarajan, Derek Bronish, Raffi Khatchadourian
Computer Science and Engineering

Ohio State University
{neelam,bronish,khatchad}@cse.ohio-state.edu

Abstract

Java and its library provide powerful concurrency
control mechanisms. However, their use can lead to sim-
ilar synchronization code being scattered across multi-
ple classes, synchronization and functional code being
tangled together, and similar code being duplicated in
many applications. Aspect-oriented (AO) programming
makes it possible to address these problems. The pre-
cise behavior of systems built using AO techniques can,
however, be difficult to understand. We propose a spec-
ification approach to precisely express key concurrency
and synchronization properties of such systems. We il-
lustrate the approach with a simple example.

1 Introduction
Java provides a number of concurrency control

mechanisms that allow a designer to specify that partic-
ular methods of a class are synchronized. When a thread
invokes such a method on an object, it is suspended un-
til it acquires the lock associated with the object, then
proceeds to execute the method, releasing the lock when
the method finishes. A finer-grained version allows an
individual statement (or block) of a method to synchro-
nize on the this object or, possibly, a different object.
However, use of these mechanisms can reduce the de-
gree of concurrency considerably. To alleviate this, the
Java library provides the Lock interface implemented
by classes such as ReentrantLock. By using lock
objects appropriately, one can regain concurrency. But,
at the same time, their use introduces some problems.
First, if concurrency was not foreseen or its degree not
anticipated when a class was designed, the approach re-
quires invasive changes to the class. Second, synchro-
nization and functional code of a class are often tangled
together. Third, similar synchronization code may be
scattered across multiple classes since similar synchro-
nization concerns may arise in each one.

Aspect-oriented (AO) techniques help address such
problems. The synchronization code can be contained in
an aspect, separating it from the functional code. More-
over, by defining the pointcuts in the aspect suitably, the

aspect’s advice can apply to methods of multiple classes,
thereby meeting the synchronization needs of each class.
Synchronization code that is common to different ap-
plications can be defined in abstract aspects with sub-
aspects for each application specializing it for that ap-
plication, thereby eliminating code duplication.

The precise behavior of systems built in this man-
ner can, however, be difficult to understand and formal
specifications can help. We develop an approach that
allows us specify, in the form of contracts, important
behaviors, especially concurrency behaviors, of abstract
aspects; and, in the form of subcontracts, specify how
subaspects specialize the contracts to achieve behavior
specific to the given system. We illustrate the approach
by applying it to a simple example based on one in [7].

In Section 2, we consider related work. In Section 3,
we sketch the model underlying our specifications. In
Section 4, we present our specification approach via a
simple case-study. Section 5 concludes the paper.

2 Background
Several approaches have been developed for reason-

ing about sequential AO systems. Dantas and Walker
[3] consider harmless advice that does not modify the
behavior of base-code, i.e., the underlying program. In
[6], we consider how to provide information to arrive
at the “richer” behavior caused by the advice without
reanalyzing base-code. Katz and Katz [5] consider sim-
ilar rely-guarantee specs. Aldrich [1], and Griswold et
al. [4] propose ways to minimize the effects of aspects
on base-code. Zhao and Rinard [12] consider abstract
aspects but the the types of abstractness they allow are
limited. Xu et al. [10] review approaches to reasoning
about concurrency. Long & Long [8] present a formal
specification of Java concurrency. Yang & Poppleton
[11] present a model checker for concurrent Java.

3 Model Of Multi-threaded Computation
Fig. 1 outlines, in RESOLVE [9] style, the main com-

ponents of a model of multi-threaded computation in a
language with reference semantics as in Java. A shared
heap state, lines 1–3, represents the objects in the sys-

112 113

tem. A thread, lines 7–8, consists of its id, a boolean
indicating if it is active, and its control-flow-state which,
lines 4–6, represents the sequence of method calls made
in the thread that have not yet completed. A synchro-
nized lock, lines 9–11, consists of the id of the associated
object, whether it is currenly locked and, if so, the id of
the holding object, and two sets of threads waiting to
execute, respectively, synchronized and unsynchronized
methods on the object. The other type of lock (not for
a specific object), lines 12–13, consists of a boolean in-
dicating whether it is locked, if so the id of the object
holding it, and the set of ids of the objects waiting for
it. A lock, lines 14–15, is one of these two types; note
that this model is inadequate for dealing with read-write
locks which we do not consider. A system, lines 16–17,
consists of a heap, its current threads, and its locks.

1 math type Heap_State is
2 partial function from ObjectId
3 to ObjectValue
4 math type Control_Flow_State is
5 sequence of tuple of
6 (m: method sig, obj: ObjectId)
7 math type Thread is tuple of
8 (id, active, cfs)
9 math type Synch_Lock is tuple of

10 (object, locked, holder,
11 waitersForSynch, waitersForUnsynch)
12 math type Other_Lock is tuple of
13 (locked, holder, waiters)
14 math type Lock is
15 Synch_Lock or Other_Lock
16 math type Threaded_System is tuple of
17 (heap, threads, locks)
18 constraint: l: Synch_Lock
19 l.locked ⇒ [l.holder.active
20 ∧ head(l.holder.cfs).obj=lId
21 ∧ head(l.holder.cfs).m is synchronized
22 ∧ ∀ t ∈ waitersForSynch:
23 not t.active ∧ head(t.cfs).obj=lId
24 ∧ head(t.cfs).m is synchronized]

Figure 1. Model of threaded system
The model must satisfy certain constraints, one of

which, lines 18–27, is that if a synch Lock is locked,
the thread holding it must be active, must, as indi-
cated by its cfs, be currently executing a synchronized
method on the corresponding object, and threads whose
id’s are in waitersForSynch must be inactive and
waiting to execute a method on the object.

4 Case Study
Due to lack of space, we present our specification

approach via a simple case-study, in Fig. 2, based on
the Shape example of [7]. Instances of the class rep-

resent shapes with x-, y-coordinates, and height
and width which may be accessed using get meth-
ods; move methods allow us to move the shape;
magnify() and shrink() to expand and contract it.

1 class Shape
2 {protected int x = 0, y = 0,
3 height = 5, width = 10;
4 public int getX() { return x; }
5 //getY(), getHeight() etc. similar
6 public void moveNorth() { y++; }
7 //moveSouth(), moveEast(), etc. similar
8 public void magnify() {
9 height=height+5; width=width+10;}

10 public void shrink() {
11 height=height-5; if(height<=0)height=5;
12 width=width-10;if(width<=0)width=10;}}
13

14 protected final Lock locLock =
15 new ReentrantLock();// lock for location
16 protected final Lock dimLock =
17 new ReentrantLock();// and dimension
18 public int getX() { int tx;
19 locLock.lock(); tx = x;
20 locLock.unlock(); return tx; }
21 //getY() similar; getHeight(),getWidth()
22 // similar but using dimLock
23 public void magnify() {
24 dimLock.lock();...;dimLock.unlock();}
25 //move methods similar but using locLock

Figure 2. Shape class and Split locks

Suppose the application has many threads accessing a
shape. Making each method synchronized would pre-
vent interference between the threads but minimize con-
currency. Instead, we use two locks, lines 14–17, one for
location, the other for dimension. The methods, lines
18–25, which access/modify the location, respectively
dimension, acquire the former, respectively the latter,
perform their work, and release the lock.

4.1 Split Lock Aspect
In the AO approach in Fig. 3, lock1, lock2

serve the same purpose as locLock, dimLock;
fstSetOps()/secondSetOps() pointcuts corre-
spond to calls that should use lock1/ lock2. The ad-
vice, lines 7-10, is the synchronization code. Fig. 4 de-
fines the subaspect for Shape, achieving the same level
of concurrency as before but without scattering/tangling.

Suppose now shrink() was changed as follows: if
the object was shrunk below a certain size, move it to
a more visible place by changing x and y; and suppose
we left the subaspect as in Fig. 4. This system may be-
have acceptably in all test cases. Indeed, the only time it

112 113

1 public abstract aspect SplitLockAspect
2 perthis(fstSetOps() || scndSetOps()){
3 protected abstract pointcut fstSetOps();
4 protected abstract pointcut scndSetOps();
5 private Lock _lock1 = new ReentractLock();
6 private Lock _lock2 = new ReentractLock();
7 before():fstSetOps(){ _lock1.lock();}
8 after() :fstSetOps(){ _lock1.unlock();}
9 before():scndSetOps(){ _lock2.lock();}

10 after() :scndSetOps(){ _lock2.unlock();}

Figure 3. SplitLock Aspect

;
would misbehave is if one thread invoked, say, getX()
on a shape at the same time another was executing
shrink() on it, and the size of the shape was be-
low our minimum, and the timing of the two executions
resulted in a strange value being returned for x.
1 aspect ShapeSplitLockAspect
2 extends SplitLockAspect {
3 pointcut fstSetOps() :
4 execution(Shape.getX())
5 ||execution(Shape.getY())
6 ||execution(Shape.moveNorth())||...
7 protected pointcut scndSetOps() :
8 execution(Shape.getHeight())||...
9 ||execution(Shape.shrink())||...

Figure 4. Subaspect for Shape System

4.2 Contracts and Subcontracts
Consider an abstract aspect AB. We specify AB in an

aspect contract. For abstract portions of AB, we will use
abstraction concepts in the contract. These will not be
defined in the contract but will be used in it. The con-
tract will also impose certain constraints that definitions,
provided in subaspects, for the concepts must satisfy.

Part of the SplitLockAspect contract appears in
Fig. 5. Line 5 requires that the definition, in a subaspect,
of firstSetOps() must be such that all methods
whose execution join points match it must be from a sin-
gle class. This represents that the lock is not intended to
prevent simultaneous execution of methods from differ-
ent classes. The next clause, for scndSetOps(), is
similar. The next clause, line 6, requires that these two
classes be the same. The next clause requires a given
method to be mapped to (at most) one of these point-
cuts. The subaspect in Fig. 4 can be easily seen to meet
these requirements.

The constraint in lines 10–11 requires that the (union
of the) set of objects accessed by the methods mapped
to firstSetOps be disjoint from the set accessed
by methods mapped to secondSetOps. But the in-
formation needed to check this constraint is not part
of the subaspect in Fig. 4. The abstraction concept,

1 abstraction concepts:
2 set AccessedObjects(set mthds)
3 //objects accessed by methods in mthds
4 constraints:
5 [(|fstSetOps.Class|=|scndSetOps.Class|=1)
6 ∧(fstSetOps.Class=scndSetOps.Class)
7 ∧(firstSetOps.Mthds∩scndSetOps.Mthds=∅)]
8 AccessedObjects(S1 ∪ S2) =
9 AccessedObjects(S1)∪AccessedObjects(S2)

10 [(AccessedObjects(fstSetOps.Mthds)∩
11 AccessedObjects(scndSetOps.Mthds) = ∅)]
12 results:
13 [(m1∈fstSetOps.Mthds)∧(m2∈scndSetOps.Mthds)]
14 ⇒ [nosuspension(m1,m2)
15 ∧ nosuspension(m2,m1)]
16 [(m1∈fstSetOps.Mthds)∧(m4∈ fstSetOps.Mthds)]
17 ⇒ noconcurrency(m1,m4)
18 [(m3∈scndSetOps.Mthds)∧(m2∈scndSetOps.Mthds)]
19 ⇒ noconcurrency(m3,m2)

Figure 5. Contract for SplitLock Aspect

AccessedObjects (line 2) (and its definition in the
subcontract), help address this. The contract does not
define it but the name (and associated comment) is sug-
gestive: the set of objects accessed by the methods in
mthds. The constraint in lines 10–11 uses it to cap-
ture the key requirement that the intersection between
the sets of objects accessed respectively by the meth-
ods mapped to the two pointcuts be empty. Lines 8–9
impose a simple constraint on the definition, in the sub-
contract, of AccessedObjects: that it be distributive.

Lines (11-16) specify the results of using the aspect:
if two methods are mapped to the two pointcuts, their
respective executions will not suspend each other; but if
they are mapped to the same pointcut, there will be no
concurrency between their executions.

The subcontract ShapeSplitLockAspect needs to
only define AccessedObjects. Since it is required, by
the aspect contract, to be distributive, we can define it by
specifying its value for each method mapped to the two
pointcuts. This is easily done for our example; thus, for
getX(), the value will be the set {x}; for magnify(),
it will be {width, height}; etc.

Next we have to check that the contract’s constraints
are satisfied. It is at this point that we can locate the
bug considered earlier where shrink() may modify x
and y. Given this code, AccessedObjects(shrink)
should be {x, y, height, width}; hence, the con-
straint in lines (8-9) is violated; thus, for exam-
ple, x is in both AccessedObjects(shrink) and
AccessedObjects(getX) and these two methods are
mapped to the two pointcuts and the contract is violated.

Next, the definitions in the subaspect and subcon-

114 PB

tract can be plugged into the aspect contract, in par-
ticular, into the results clauses of the contract to arrive
at the specialized versions of these clauses that apply
to this particular system. In the current case this will
allow us to conclude, for example, from lines (15–16)
of the contract, that if a thread was currently executing
getHeight() on a shape object and another invoked
magnify() on the same object, the latter would be sus-
pended until the former finishes. To build another appli-
cation in which SplitLockAspect could be used, we
would only have to define the corresponding subaspect
and subcontract, defining respectively the pointcuts and
AccessedObjects; next, verify that, with these defini-
tions, the constraints in Fig. 5 are satisfied; and, finally,
arrive at the behavior of the application by plugging in
the definitions into the results in Fig. 5.

How do we define nosuspension() and noconcur-
rency()? These are primitives provided by the formal-
ism and are defined in terms of the model of Section 3.
Thus noconcurrency(M), where M is a set of methods,
means if t1 and t2 are two threads in the threads
component of a system and m1, m2 are elements of
M, m1 is in cfs, the control-flow-state of t1, m2 is
in cfs of t2, and the corresponding obj components
are equal to each other, then the active component
of t2 must be false if that of t1 is true. The precise
set of primitives and their definitions is part of our cur-
rent work. One other point is worth noting. Standard
approaches to formalizing aspects typically make use of
pre- and post-conditions. Why doesn’t our contract for
SplitLockAspect involve these? The answer is that
our focus is on concurrency issues. Thus, for example,
the constraint expressed in lines (8–9) of Fig. 5 can be
compared with the notion of interference freedom [10].
Our clause, by requiring that the intersection of the sets
of objects accessed by the two groups of methods to be
empty, ensures that no method in the first group will in-
terfere with any method in the second group.

5 Discussion

Our goal was to show how common synchronization
patterns may be implemented using abstract aspects that
are then specialized, using subaspects, for individual
systems; and develop an approach to specify essential
properties of the aspects and subaspects. Although the
question of and reasoning about AO programs has re-
ceived much attention, the problem of abstract aspects,
especially for concurrency behaviors, and their special-
izations has not, to our knowledge, been addressed.

Our contracts and subcontracts had to refer to more
than just the class variables. Hence we defined a model

that provided a view of the threads that exist at runtime.
And in our specs, we referred to components of this
model, allowing us to specify the concurrency behaviors
of interest. Importantly, the use of abstraction concepts,
in conjunction with the constraints imposed on them, al-
lowed us to represent the intent of the abstract aspect.

In Section 4, we relied on intuitive reasoning to show
that the subaspect and its subcontract satisfy the aspect
contract’s requirements. For more complex systems,
tool support would be needed. Bodden and Havelund
[2] describe an AO algorithm, Racer, that uses new
concurrency-related pointcuts that may be used to iden-
tify concurrency bugs. It should be possible to use a
Racer-like approach to build a tool that will spot vi-
olations of our contracts/subcontracts and we plan to
pursue this in future work. Along a different line, our
model may help identify additional AO primitives that
will be of use in writing concurrent programs; for exam-
ple, primitives that allow the programmer access to in-
formation about the threads in the system may be useful.
These would be analogous to such primitives as cflow
but tuned to the needs of concurrency behaviors.

References

[1] J. Aldrich. Open modules: Modular reasoning about ad-
vice. In Proc. of ECOOP, pages 144–168. Springer, 2005.

[2] E. Bodden and K. Havelund. Racer: Race detection using
”AspectJ”. In ISSTA, pages 155–166. ACM, 2008.

[3] D. Dantas and D. Walker. Harmless advice. In POPL ’06,
pages 383–396. ACM, 2006.

[4] W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan. Mod. softw. des. with crosscutting
interfaces. IEEE Softw., 23(1):51–60, 2006.

[5] E. Katz and S. Katz. Incremental analysis of interference
among aspects. In Wkshp. on fnds. of AO langs., 2008.

[6] R. Khatchadourian, J. Dovland, and N. Soundarajan. En-
forcing behavioral constraints in evolving AO programs.
In Wkshp. on fnds. of AO langs., 2008.

[7] D. Lea. Concurrent Programming in Java, Second Edi-
tion. Addison-Wesley, 2000.

[8] B. Long and B. Long. Formal specification of java con-
currency to assist software verification. In Int. Symp. on
Par. and Dist. Processing. IEEE-CS, 2003.

[9] M. Sitaraman and B. Weide. Component-based software
using ”RESOLVE”. Software Eng. Notes, 19(4):21–63,
1994.

[10] Q. Xu, W. de Roever, and J. He. Rely-guarantee method
for verifying shared variable concurrent programs. For-
mal Aspects of Computing, 9(2):149–174, 1997.

[11] L. Yang and M. Poppleton. Jcsprob: Implementing inte-
grated formal specifications in concurrent java. In CPA,
pages 67–88, 2007.

[12] J. Zhao and M. Rinard. Pipa: Behavioral interface for
”AspectJ”. In FASE, pages 150–165. Springer, 2003.

PB 115

* PIPE+ can be downloaded at http://www.cis.fiu.edu/pub/PIPEplus/

PIPE+ - A Modeling Tool for High Level Petri Nets

Su Liu, Reng Zeng, Xudong He
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA

{sliu002, rzeng001, hex}@cs.fiu.edu

Abstract— Petri nets are a formal, graphical and executable
modeling technique for the specification and analysis of
concurrent systems and have been widely applied in computer
science and many other engineering disciplines. Low level
Petri nets are simple and useful for modeling control flows;
however, they are not powerful to define data and system
functionality. High level Petri nets were developed to support
data and functionality definitions [1]. To support the practical
applications of Petri nets formalism, tools for designing and
executing Petri nets are necessary. Although there are many
existing tools for supporting low level Petri nets [5], few tools
are available for high level Petri nets. There is especially a
lack of tools to support high level Petri net notation proposed
in the international standard [1]. In this paper, we present a
tool, called PIPE+*, to support a subset of high level Petri nets
proposed in [1]. PIPE+ is built upon an existing low level Petri
net tool PIPE (Platform Independent Petri Net Editor) [2].
This paper describes the functionality of PIPE+ as well as
illustrates the process of extending PIPE, which provides
helpful insights for others to create Petri net tools suit their
own needs. Furthermore, PIPE+ is an open source tool and
thus is available for various enhancements from worldwide
research community.

Keywords: Petri Net; Modeling Tools

I. INTRODUCTION

Petri nets have been used to describe a wide range of
systems since their invention in 1962 [3]. They are a
graphical and formal method for describing and studying
concurrent and distributed systems [4]. Low level Petri nets
are suitable to model control flows and are applicable to
work flow systems; however are not adequate to describe
complex systems. High level Petri nets (HLPNs) were
developed to support the definition of data and functional
processing [1]. To support the practical applications of Petri
net formalism, tools for creating and executing Petri nets are
needed. In [5], a Petri net tool database listed the tools
developed in the past several decades. Unfortunately, many
of the tools described in the database as well as in literature
are no longer maintained or available and few of them
support HLPNs, especially the HLPN definitions and
notations proposed in the 2001 international standard [1].
Table 1 lists representative tools supporting some forms of
HLPNs.

The HLPNs proposed in the international standards draws
concepts from predicate transition nets, colored Petri nets,
and algebraic Petri nets; and provides abstract and general

definitions and notions. It is desirable to create a tool for
editing and simulating the HLPNs; unfortunately no such
tool exists yet. A realistic attempt is to develop a tool to
support a restricted and concrete realization of HLPNs. The
most critical components of the HLPN definitions are the
net annotations with regard to transitions, which are
algebraic terms of Boolean type. In [15], we viewed first
order logic formulas as the algebraic terms associated with
transitions and thus adopted the predicate transition net view
as a concrete realization of HLPNs.

Table I A List of High Level Petri net Tools
Name High level Net

Type
Graphical

Editor
Simulator

AlPiNA Algebraic Petri
Nets

Yes No

CoopnBuilder CO-OPN
language

Yes No

CPN Tools Colored Petri
Nets

Yes Yes

HISIm Hybrid Petri
Nets

Yes Yes

Renew Object Oriented
Petri nets

Yes Yes

PIPE+ High level Petri
nets

Yes Yes

It requires tremendous effort to build a HLPN tool from
scratch and is especially difficult to assure the quality of the
initial design. It is desirable to leverage successful results
and extend mature and existing tools. It is of tremendous
value to build upon open source tools so that the resulting
new tool can be shared and improved by the worldwide
research community. PIPE+* is a tool to support HLPN
where transition conditions are defined in terms of first
order logic formulas [14]. PIPE+ extends a well developed
open source low level Petri net tool called PIPE (Platform
Independent Petri net Editor) [6]. Furthermore PIPE+ retains
the original low level Petri net editing and executing
features, which allows user to choose appropriate net levels
to model target systems.

In this paper, we first briefly review the background of
basic and HLPN concepts. We introduce the chosen low
level Petri net tool PIPE that PIPE+ built on, and then
present implementation details of the extension according to

116 117

the HLPN concepts. We discuss limitations and applications
of the tool, and our contributions and perspectives.

II. PETRI NETS AND HIGH LEVEL PETRI NETS
The Petri net structure consists of a finite set of places

(drawn as circles), a finite set of transitions (drawn as bars),
a finite set of directed arcs (drawn as arrows), and a set of
tokens (drawn as dots) to define an initial marking. The arcs
connect from a place to a transition or vice versa, never
between places or between transitions. The places from
which an arc runs to a transition are called the input places
of the transition; the places to which arcs run from a
transition are called the output places of the transition. The
places can contain multiple tokens and thus are of multi set
type (or bag). A distribution of tokens over the places of a
net is called a marking. A transition may fire whenever there
are enough tokens in all input places.

According to the international standard [1], a HLPN
graph comprises: a net graph, place types, place marking,
arc annotations, transition condition and declarations. The
net graph is the net structure; place types are non-empty sets,
restrict the data structure of tokens in the place; place
markings are collection of elements (data items) associated
with places, called tokens; arc annotations are inscribed with
expressions which may comprise constants variables (e.g., x,
y) and function images (e.g., f(x)); transition conditions are
Boolean expressions inscribed in; declarations comprising
definitions of place types, typing of variables and function
definitions. For net execution, the most important is
transition enabling. Enabling a transition involves the
marking of its input places. When an enabled transition
occurs, the enabling tokens from input place's are subtracted
and the resulting tokens of the transition Boolean expression
are added to the output places.

III. AN OVERVIEW OF PIPE
PIPE [2] is a Platform Independent Petri net Editor to

edit, animate and analyze low level Petri nets, which has
clear design and incorporates the latest XML Petri net
standards of storing format, the Petri Net Markup Language
(PNML). It is implemented in Java and can be logically
divided into three major components [6], shown in Figure 1:
the graphical user interface (GUI), a layer managing the
interactions between the GUI and the modules (DataLayer),
and analysis modules.

Figure 1 Package Diagram for PIPE

A. Graphical User Interface
PIPE’s graphical user interface is developed using Java

Swing API as it provides full GUI functionalities and
mimics the platform it runs on. Besides, as PIPE is a cross
platform application this was deemed useful for providing a
native look and feel. The GUI component includes
GUIFrame, GUIView and classes such as action, handler
and widgets supporting Swing APIs. From a user
perspective, there are two major parts: Editor and Simulator.

Editor: Users are able to edit a low level Petri net by
clicking and drawing Petri net graphical elements
through the menu bar, toolbar. On the toolbar, it lists
all the Petri net element thumbnails, such as place,
transition and arc, which can be selected and added
to the white canvas (tabbed pane) of the editor.
Besides, these added elements’ annotations and
attributes can be defined by selecting one of the
elements and pop up an editing dialog box.

Simulator: There is a switcher button between
editor mode and simulation mode. Using the
simulator, a user is able to fire a random transition
or fire a number of transitions randomly selected
among enabled ones. The simulation process
includes subtracting tokens from input places and
adding them to output places while firing a
transition. Besides, the animation history is
displayed on the left bottom of the interface frame
by listing transition’s label orderly.

B. Internal Architecture of PIPE—The DataLayer

Figure 2 The Hierarchy of PetriNetOjbect Classes

The core component of PIPE is the data layer, which
maintains states and contains all the classes used to
represent a Petri net. Figure 2 shows the hierarchy of
important Petri net object classes [6], including Arc, Place
and Transition classes inherited from PetriNetObject
because they have common variables and methods, such as
id, name, location, etc.

In the data layer component, each Petri net is
encapsulated by an instance of the DataLayer class, which
contains all the Petri net objects stored in a list enabling the

116 117

easy addition of new objects. It contains not only methods to
access all its internal objects and to return its internal lists,
but also methods to calculate the current markup, initial
markup, forwards incidence matrix, backwards incidence
matrix, combined incidence matrix and enabled transitions.

Besides data layer, PIPE has analysis module to do
analysis and conclusions on the properties of Petri net model,
such as boundedness, liveness, reachable markings and so
on.

C. Saving and Loading
PIPE is capable of saving and loading nets and writing

the Petri net data layer into a Petri net Markup Language
(PNML). An Extensible Stylesheet Language
Transformation (XSLT) is used to transform it between
PNML and XML files.

IV. PIPE+

A. Overview of the Extension
Similar to PIPE, PIPE+ is also an editor and a simulator.

The editor is to model a system visually through a graphical
interface. The goal is to utilize all the benefits that a HLPN
provided with convenience. The details are presented below
according to the HLPN concept’s six elements in reference
[1]. The simulator is no longer a simple black dot token
animation game but to manage the movement of meaningful
data. We developed a mandatory compiler with an
interpreter to process token data inside transition conditions,
which are defined using restricted first-order logic. Besides,
a simulation algorithm is applied to ensure its fairness and
improve its performance.

B. A Net Graph
Since the graphical elements of a HLPN are the same as

low level ones, PIPE’s graphical editor is retained.

C. Place Type and Place Marking
The main difference between high level and low level

Petri nets is that tokens are no longer black dots, but
complex structured data. Place types are non-empty sets that
restrict the data structure of tokens in the places. The data
structure is an array of basic types, such as integer and string,
and defined by user. For example, assuming a log in user
account as a token has two elements, username and
password, which are represented by two basic data types,
string and integer. In a HLPN's place, a place data type is
inscribed to restrict the data structure of tokens. In another
way, the data type of tokens can be added into the place has
been already defined beforehand.

To implement the concept that tokens with data structure,
a data storage system is needed. Based on PIPE, the data
layer package is modified by adding three classes: DataType,
Token, abToken (Figure 3).

DataType: The main data structure in class
DataType is a list storing basic types' name, which
is used to show what data structure the token or
place holds. The data structure consists of an array
of basic types, such as string, integer, etc. For our

tool, basic types are limited to strings and integers
for the simplicity but are adequate for most of
applications. For the convenience of extension on
basic types, we introduce a new structure BasicType
to data layer. The structure BasicType (see Figure 4)
includes a flag data field "Kind" to indicate which
type it is (in PIPE+, 0 represents integer, 1
represents string). Space is allocated to both integer
and string since it is undecided before the “Kind” is
defined. Further extension on basic types needs to
enhance the class BasicType by allocating extra
space and redefine “Kind”.

Figure 3 Extensions on DataLayer for PIPE+

Token: Class Token is added to the data layer to
maintain data value. The important field is a list
storing instances of value with type of the
BasicType, see Figure 4. Token is a basic data
storage element in the places and its value is
calculated by the transitions. The simulation process
is fetching data value from the token’s BasicType
and fill the calculated result value to another token’s
BasicType.

Abstract Token: Since first-order logic covers
quantification, the whole collection of tokens in a
place need to be checked by transition condition
expressions. For example, if an expression includes
“ ”, all the tokens in “X” needs to be checked
to see whether a “x” exists, so the whole collection
of tokens is fetched while checking enabledness of a
transition. The tokens in this type of place are
defined as a power set. A new class abToken
(abstract token) is added into the data layer to store
the power set. It has a field storing a list of regular
tokens with the same data type, so it also has a data
type to restrict the tokens data structure. We flatten
the nested power sets by duplicating some fields.

118 119

For example, in a library system, one user may
borrow a list of books, so that the database (power
set) in library system is {username, password,
books_borrowed{book1, book2,...} } is converted
into {username, password, book1}, {username,
password, book2}. This design sacrifices the space
for the convenience of implementation, which can
be further improved.

Figure 4 Structure of Class Token

As a result, the places in PIPE+ stores a list of regular
tokens or an abstract token that contains a collection of
regular tokens. Whether the connected transition can fetch a
regular token or an abstract token depends on the place is a
power set or not. The user can add, edit and delete tokens
from places to create a net marking.

In PIPE+, a place stores tokens by List container, the
place's capacity is built as unbounded (remember it has
nothing to do with the number of different tokens that may
appear in a particular place). However, in the discussion of
[7], bounded and unbounded places have the same
expressive power. A bounded place is preferable for the
reason of visualization and redundancy.

In PIPE+, copies of token are allowed to store in the
same place. Since whether the place needs to remove its
copies of token depends on what the model it is, this can be
further improved by supporting an option of copy remove.

D. Transition Conditions and Arc Annotations
Transition conditions are guards controlling the flowing

of the tokens. PIPE+ use first-order logic to define transition
condition formulas, which, syntactically, consists of
variables and logic operators. Variables in the formula are
predicates that can be instantiated by value from input
tokens. Combined with logic operators the formula can be
calculated. Semantically, as transition is a guard to control
token flows, it has to check the value of tokens from input
places and formulate new tokens conform to the output
place type, the formula consists of two parts: pre-condition
and post-condition. However, in PIPE+, the user is not
supposed to separate the two conditions explicitly, because
the interpreter can differentiate them by the type of variables.

In PIPE+, arc annotations are variables to assist
transition expression calculation by mapping token values to
expression’s predicate variables. Arc variables are restricted
to be appeared in the connected transition expression’s

variables for the mapping. Since a transition is connected by
input and output arcs and arcs are connected to places, the
predicate variables in the transition expressions are classed
into input variables and output variables. For example, in
Figure 5, a and b are input variables while c is output
variable.

In a transition calculation process shown in Figure 5: In
step (1), each token in the connected place is firstly bounded
to the connected arc variable; as a pair, {variable, token},
they are fetched into a symbol table of the transition (note
the pair with output variable’s token value is temporarily
empty and to be filled by the result of the expression
calculation). In step (2), the input variables in the transition
expression can locate token value through the pair’s arc
variables by looking up symbol table. In step (3), after
transition expression calculation, the output variables are
assigned with result value and the symbol table’s output
variable pairs are filled by the value. In step (4), the output
pairs’ token are added to the connected output places
according to the arc’s variables. For example, as c is on the
output arc, c’s token in symbol table [bob] is added to the
output place.

Unless the transition formula cannot be satisfied by the
value of the tokens fetched into symbol table, the tokens
from input places (both regular token and abstract token) are
consumed. However, a power set place with an abstract
token usually has a backward arrow that makes it an output
place as well, so the abstract token is returned to the place
according to the post condition of the transition formula. In
the case when the formula is unsatisfied, the currently
fetched tokens in the symbol table are not consumed, so they
are returned to the input places.

Figure 5 An Enabled Transition Formula Calculation
Process

Restricted First Order Logic Transition Formula
Expression: In PIPE+, it is called restricted because
the grammar we built for the tool has limitations.
Since each predicate variable has to be instantiated,
the user cannot use free variable that does not
appear in the arc annotation, otherwise the
calculation result is undetermined. Also, it does not
support predefined function, like f(n), since the
meaning of the function has to be declared
beforehand, which is equivalent to define its

118 119

operations in a single logical sentence by using the
connecting operator “ ”, which simplifies the
implementation of expression interpreter. However,
the restricted version of first order logic is still very
powerful, because it does support complex
expressions, such as:

 (1)

In (1), lower case letters represent regular tokens,
upper case represent power set; C’ by convention
represents output variables and also is a power set
(upper letters); it further indicates the clause is a
post-condition because output variables at the left
side of the equation means assignment; c[n] means
the nth element value in c’s data structure.

Parser and Interpreter: Because logical formulas
need to be parsed and interpreted, we build a
compiler with a parser and an interpreter for the
restricted first order logic formula. The parser
includes a scanner, which is built by a lex file and
generated by jflex 1.4.3 [16]. A BNF grammar is
built in cup file and generated by leveraging the tool
jcup v11 [17]. Since the transition formula does not
explicitly separate pre and post conditions, but only
pre-conditions need to be calculated when checking
whether the transition is enabled to fire or not, the
interpreter has to differentiate pre and post
conditions. A trick is found that in the post-
condition, it usually starts with an output variable
equals a subformula, for example, in (1),

 is a post-condition because is
output variable. Therefore in the interpreter, when
checking a clause with an "=" operator, the left hand
side of the "=" variable is checked. If it is input
variable, this clause is a pre-condition and the "=" is
interpreted as a logic operator equal, which results
in a Boolean true or false; on the other hand, if it is
an output variable, the clause becomes a post-
condition and the operator now is an assignment
clause that assign the result value of right hand side
formula to the left hand side output variable.

Symbol Table: In PIPE+ each transition maintains a
temporary symbol table to facilitate the interpreter.
It does not use one big table for all the transitions,
because it may cause name conflict and is hard to
manage. The symbol table contains a list of
elements that are structured by a pair of key and
object. The pair of key and object is obtained from
the transition's connected arc annotation and place.
The reason we maintain the pair of key and object
instead of key and token is because besides regular
token type, the key may pair with a power set
(abstract token type). Moreover, the symbol table is
initiated each time before a logical formula is
checked and cleared after the firing process.

Declarations: In the standard[1], it comprising
definitions of place types, typing of variables and

function definitions. In PIPE+, the declarations are
already in the modeling process by defining place
data types, transition condition formulas and arc
annotations.

E. Extensions On GUI
The GUI package in PIPE mainly consists of a

GUIFrame, a GUIView, and some supporting classes. The
GUIFrame is PIPE's graphical frame includes a menu, a
toolbar and a statusbar. The GUIView is the panel to draw
Petri net graphical elements. Since requirements and
concepts for HLPNs are token storage and flow, our
modification to PIPE's GUI is focused on Petri net elements
places, transitions and arcs. The common procedure to
extend PIPE’s GUI is adding new selections on graphical
elements’ property setting menu for new features. In PIPE+,
after modifying the gui.handler package for each Petri net
element class, the new selections are shown in a popup
menu by right clicking a Petri net element. The places now
have the choices of defining data type and editing tokens;
the transitions can contain logical formulas; the arcs can be
labeled by variable key. These new features are triggered by
additional selections on GUI and used through customized
panels or dialogs.

F. Simulator
The simulator not only needs to execute the net model

visually, but also has to ensure correctness, fairness and
good performance. In PIPE+, the HLPN simulator designs
as follows:

1) Graphical Simulation: Since in a low level Petri net,
tokens are just black dots flowing from one place to another
and the animation is visible to the user. In contrast, tokens
in HLPNs are complex structured data, and especially
when the number of tokens is large, which are inappropriate
to be displayed upon graphical net; otherwise the graphical
annotations are unreadable. Since the execution procedure
is invisible to a user, the result can only be checked by
looking into the contents of Places. In PIPE+, to view the
tokens in the Places, user can open the Place edit panel and
the value of tokens are displayed under the text area of
Token List. Besides, the firing history is retained from PIPE
by listing the fired transition name orderly and updated
instantly after a transition fires, thus the user clearly knows
a transition is fired.

2) Transition Occurrence Scheduling Algorithm: A
scheduler is needed to coordinate the simulator’s token
flow strategy efficiently. Since the performance of the
simulator mostly affected by the times of transition
condition calculation, PIPE+ chooses the scheduling
algorithm from [9] to minimize the recalculation of
transition condition checking. The idea is to keep track of
disabled transitions discovered during the search of enabled
transitions, and use the locality principle, that is an
occurring transition only affects the marking on immediate
neighboring places, and hence the enabling of a limited set
of neighbor transitions. For the implementation, we

120 121

maintain an unknown list and a disabled list. All transitions
initialized as unknowns will be randomly picked and
checked for enabling status. If the status is disabled, the
transition will be moved to disabled list. Upon occurrence
of a transition, we update the status of neighboring
transitions to the unknown list if they are in the disabled
list. The neighboring transitions can be found through
occurred transitions' output places. Therefore, the disabled
transition avoid recalculation if the tokens of its input
places are not changed.

3) Enabling a Single Transition: In the HLPN concpets,
tokens are meaningful data, when a selected transition start
to check its expression, the expression’s variables are to be
instantiated. Since a transition may connect to a number of
input places, where each place contains a list of tokens, to
see whether the transition is enabled or disabled, it has to
check all the possible combinations of instantiation tokens
from its input places. For example, if there are three input
places and each place has 3 tokens, the number of their
combinations is . If one of the three input
places is a power set, no matter how many regular tokens
inside the abstract token, it only counts as one abstract
token. So the combinations reduces to
combinations.

4) An Summarization of the Complete Internal
Simulation Process:

a) All transitions in the net graph are initially stored in
an unknown list; a disabled list is initialized to be empty;

b) A transition is randomly selected from the unknown
list, and is checked for enabledness;

c) During the checking process of the selected
transition, all the connected arcs and places of the transition
are found;

d) Combinations of tokens from the transition’s input
places are orderly choosen to fill in its symbol table. Since
symbols in symbol table are pairs of [key, object]. The keys
are from arcs label; the objects are regular tokens. If the
input place is a power set, the whole abstract token is sent
as an object, otherwise only its first token is sent and the
remaining tokens are still in place. For the symbol's key
from output arcs, the object is empty because it is to be
filled during transition firing action (after interpreting the
post condition of transition formula);

e) The formula expression in the transition is checked
utilizing a parser. A Boolean value is returned: if it is true,
the transition is enabled and is fired immediately; if it is
false, the transition is not enabled with the current input
tokens, the tokens in symbol table will go back to the input
places; if all the combination of input tokens cannot enable
the transition, the transition is moved into a disabled list
Both checking and firing a transition formula needs to parse
and interpret the formula; however, the checking process
only affects a formula's pre-condition while the firing
process only affects a formula's post-condition.

f) After firing the transition, the tokens in the symbol
table are sent to the output places according to the variables
of arcs annotation and added to the tail of output places'
token list. Since it changes the place marking of the output
places, according to the scheduler algorithm’s locality
principle, if the dependent transitions are in the disabled
list, it can now be moved back to the unknown list. Then go
back to step b).

g) In step b, when unknown list is empty, the
simulation process ended.

V. SOME ISSUES OF PIPE+

A. Limitations of PIPE+
1) Limited Basic Types: As we mentioned above,

currently, the place data type of PIPE+ only supports two
basic types, string and integer. Since PIPE+ using a
structure to define basic types, the structure can be
extended to accommodate more types.

2) Flat Tokens: For the convinience of implementation,
the place data type of PIPE+ does not support nested
powerset, such as {Bob, {book1, book2}}, but instead, it
stores two flat tokens {Bob, book1}, {Bob, book2}.

3) Restricted First-order Logic for Transition Formula:
A new grammar is built for the convenience of
interpretation and to avoid ambiguity.

4) No True Concurrency: PIPE+ only supports
interleaving semantics. Besides, it does not support timed
Petri nets.

5) Randomly Fire Transition: The selection of the next
transition to fire is performed randomly rather than choosen
by the user.

6) Analysis Module: Lack of an integrated tool to
analyze the properties of a net model;

7) Bugs and Errors: Since this is the first version of
PIPE+ and our main purpose is to introduce the new tool,
bugs are unavoidable.

B. Testing PIPE+
The most important part of testing is the transition

condition formula. As the new parser and the interpreter
were built for the restricted first-order logic formula, its
correctness has to be assured. Our test cases are designed
mainly on complex formulas including quantifier, relation
expressions, arithmetic expressions and set expressions.

C. Compared to CPN Tools
CPN Tools [18] is a widely used industrial strength tool

for constructing and analyzing colored Petri nets [19]. The
main difference between CPN Tools and PIPE+ is the
underlying specifying languages. Colored Petri nets utilize a
functional programming language standard ML [12] while
PIPE+ utilizes first-order logic formula. Since first order
logic is well known, it is easier to use PIPE+. However CPN
Tools provide more functionality, especially with regard to
analysis.

120 121

D. Using PIPE+
PIPE+ has been applied to a Mondex[8] smart card

system, which is an electronic purse payment system based
on smart card technology. The model for a concrete
transaction between two purses has eight operations
(including abort) and four statuses, and we translated into
PIPE+ model with ten transitions and four places. Figure 6
is a screenshot of Mondex in PIPE+, in which the simulation
of a transition firing sequence is shown at the left bottom of
the interface’s frame. After no more transition is available to
fire, the result of the simulation is a final marking that can
be read by opening the places, msg_out and ConPurse, to
view contents which are tokens’ data.

VI. CONCLUSIONS

In this paper, we present a tool PIPE+ supporting high level
Petri nets editing and simulation. We believe PIPE+ can be
a valuable tool for concurrent and distributed system
modeling and simulation. PIPE+ is built upon an open
source tool PIPE for low level Petri nets. We illustrated the
process of extending PIPE, and discussed our design
strategies, which provide helpful insights for others to
create Petri net tools suit their own needs. Furthermore,
PIPE+ is an open source tool and thus is available for
sharing and continuous enhancements from worldwide
research community.

Acknowledgements This work was partially supported by
NSF grants HRD-0833093.

REFERENCES

[1] High-level Petri Nets-Concepts, Definitions and Graphical Notation,
Version 4.7.1, 2000

[2] Pere Bonet, Catalina M. Llado, Ramon Puigjaner, “PIPE v2.5: a Petri
Net tool for performance modeling,” Proc. 23rd Latin American
Conference on Informatics (CLEI 2007), San Jose, Costa Rica,
October 2007

[3] Reisig, Wolfgang, “Petri nets: an introduction,” Springer-Verlag
New York, Inc.NY, 1985

[4] Tadao Murata, “Petri Nets: Properties, Analysis and Applications,”
Proceedings of IEEE, vol. 77 No.4, Chicago, IL, April 1988

[5] Petri Net Tool Database. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/db.html

[6] James Bloom, Clare Clark, Camilla Clifford, Alex Duncan, Haroun
Khan, Manos Papantoniou, “Platform Independent Petri-net Editor:
Final Report,” London, March 2003

[7] Carlos A. Heuser, Gernot Richter, “Constructs for Modeling
Information Systems with Petri Nets,” 13th International Conference
on Application and Theory of Petri Nets, 1992, Sheffield, UK

[8] Reng Zeng, Xudong He, “A Formal Specification of Mondex Using
SAM,” The Fourth IEEE International Symposium on Service-
Oriented System Engineering, 2008

[9] Kjeld H. Mortensen, “Efficient Data-Structures and Algorithms for a
Coloured Petri Nets Simulator,” 3rd Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus
University, August 2001

[10] Didier Buchs, Steve Hostettler, Alexis Marechal, and Matteo Risoldi,
“AlPiNA: An Algebraic Petri Net Analyzer,” J. Esparza and R.
Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 349–352, 2010

[11] A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S.
Stissing, M. Westergaard, S. Christensen, and K. Jensen, “CPN
Tools for Editing, Simulating, and Analysing Coloured Petri Nets,”
Proc. of 24th International Conference on Applications and Theory
of Petri Nets , 2003

[12] R. Milner, M. Tofte, R. Harper, and D. MacQueen, “The definition
of Standard ML,” MIT Press, Cambridge, MA, 1997

[13] CPN ML Reference,
http://www.daimi.au.dk/designCPN/man/Reference/Reference.Main
3.CPN.ML.pdf

[14] Andrews, Peter, “An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof,” 2nd ed. Kluwer Academic
Publishers, 2002.

[15] X. He and T. Murata: “High-Level Petri Nets – Extensions, Analysis,
and Applications”, Electrical Engineering Handbook (ed. Wai-Kai
Chen), Elsevier Academic Press, 2005, 459-476.

[16] JFlex Lexical Analyzer Generator. http://jflex.de/index.html
[17] JCUP Parser Generator. http://www2.cs.tum.edu/projects/cup/
[18] CPN Tools. http://cpntools.org/
[19] K. Jensen, L.M. Kristensen, and L. Wells, “Coloured Petri nets and

CPN tools for modelling and validation of concurrent systems.
International Journal on Software Tools for Technology Transfer,”
2007.

Figure 6 Screenshot of Mondex in PIPE+

122 123

A Novel Method for Formally Detecting RFID Event
Using Petri Nets

Jinan Sun1, Yu Huang2,3, Xin Gao1, Shikun Zhang2,3, Lifu Wang2,3, Chongyi Yuan1,3

1School of Electronics Engineering & Computer Science, Peking University, 100871, Beijing, China
2National Engineering Research Center for Software Engineering, 100871, Peking University, Beijing, China

3Key Laboratory of High Confidence Software Technologies of Ministry of Education, Peking University, Beijing, China
{sjn, hy}@pku.edu.cn

Abstract—Radio Frequency Identification (RFID) provides fast
collection of large volume of data and can be used to identify
physical objects with unique IDs. In order to provide
semantically meaningful data to different applications, RFID
data need to be processed to discover user-defined complex
events. We propose a Petri net-based method for the detection of
complex events in RFID. A model named ED-net is introduced to
specify semantics of complex events, which is also taken as the
basis for the implementation of an event detector. Formal model
ED-net is an extension of ordinary Petri net, providing user-
defined types, functions and expressions, which are suitable for
the precise description of attributes and constraints of RFID
complex events, with non-temporal, temporal and parameterized
constraints. Through modeling all the events to be detected in one
ED-net model, we avoid multiple detections of common sub-
events of different complex events. Through the experimental
evaluation, we verify the efficiency of our detection method. This
paper is sponsored by the National Natural Science Foundation
of China under Grant No. 60803014 & the National Research
Foundation for Doctoral Program of Higher Education of China
under Grant No.200800011017. Yu Huang is corresponding
author.

Keywords- RFID; Petri Net; Event Detecting

I. INTRODUCTION

Radio Frequency Identification (RFID) technology uses
radio-frequency waves to automatically identify objects, which
makes it possible to create a physically linked world where
every object is automatically numbered, identified, cataloged,
and tracked in real time. An RFID system generally consists of
four parts: RFID tags, readers, middleware and application
software. An RFID tag is uniquely identified by a worldwide
unique ID, stored in its memory and defined by the electronic
product code (EPC) standard [1]. Readers are capable of
reading the information stored in RFID tags. RFID middleware
systems are typically deployed between the readers and the
applications in order to correct captured readings and provide
clean and meaningful data to applications.

The RFID middleware plays the primary role in RFID data
management. However, the characteristics of RFID data pose
many challenges in the research of RFID middleware and
complex event processing [2]. Firstly, the data generated from
an RFID application are simple, and each RFID observation is
of some form (epc, reader, timestamp); secondly, RFID data
are temporal, dynamic and in large volume. They are generated
dynamically and automatically, and must be processed in real

time; thirdly, RFID data are inaccurate and have implicit
semantics. Erroneous readings, such as missed or duplicate
readings, have to be semantically processed. The information
carried by RFID data also need to be analyzed to support
advanced applications. Such information is often related to
business knowledge and specific applications. Traditional event
systems do not well support temporal characteristics of RFID
events. Therefore, some novel and effective methods are
needed for complex event processing in RFID technology.

The concept of complex event originated from active
database. Lots of work has been done on complex event
detection, both in active database and RFID applications. The
work of [6] introduced a general purpose event monitoring
system Cayuga, in which queries over event systems are
expressed by Cayuga Event Language and implemented by
Cayuga automaton. Petri nets are used for the modeling and
detection of composite events for active object-oriented
database system SAMOS [10]. The Snoop system [7] and EVE
system [8] use graph-based approaches, and the work of [9]
proposed EPS, in which a subscription tree used to process
events.

Researchers also investigated specification languages and
detecting methods for RFID complex events. The work of [11]
proposed an event-oriented approach to process RIFD data by
defining various constructors, including non-temporal and
temporal constructors, to express the relationship among
complex events. A tree-based algorithm [13] was advanced to
improve existing algorithm RCEDA in [11], decreasing the
time complexity of RFID complex event detection. SASE[12]
executes complex event queries over real-time streams of RFID
data, and a complex event language was proposed, supporting
negation operating in sequences, parameterized predicates and
sliding windows. But some operator-nested complex events
were not referred in this language. Zhu [14] aimed at proposing
a formal descriptive language QDDCatt for complex events,
supporting quantitative complex events.

Most of existing researches lack formal semantics to
descript complex events, which may bring ambiguity and
confusion in expressing and understanding complex events in
RFID. Attributes (start time and end time) of a complex event
are not defined strictly. Another problem is that existing
detection methods are mainly developed for a single complex
event, instead of a set of complex events. While in an RFID
application, we often have more than one complex event to be
detected, and these events share common sub-events. For

122 123

complex events E1= (Ea;Eb) Ec and E2=Ea (Ed;Ee), they both
contain a sub-event Ea. The detection of event Ea will be
processed twice when the detections for E1 and E2 are carried
on separately. This is time-wasting and should be avoided in
real-time detection for complex events in RFID.

In this paper, we propose a Petri net-based method named
ED-net for the description of complex events in RFID, which is
convenient for describing temporal and parameterized
constraints with locality property, token-flow mechanism and
combinability. Moreover, ED-net has formal semantics which
can guide us to design better software.

II. THE MODEL OF RFID EVENTS

An RFID event can be either a primitive event or a complex
event. A primitive event is an RFID observation, which occurs
at a point of time when an RFID tag is read by an RFID reader.
A complex event is an RFID observation sequence, consisting
of a set of primitive events and having special semantics. The
time of a complex event could be considered as the point of
time it is detected, or the entire time interval. The first case is
often used in active database, while it will cause logical
problems [3]. Therefore, we define the time of a complex event
to be a time interval. In RFID event detection, both the
temporal distance between two events and the interval of a
single event are critical [5].

We introduce several signs and functions which will be
used later. An event type is represented by E, and an event
instance is represented by e; t_begin(e) returns the start time of
an event instance e; t_end(e) returns the end time of an event
instance e; interval(e) calculates the interval of an event
instance e, and interval(e) = t_end(e) t_begin(e); dist(e1,e2)
calculates the distance between two event instances e1 and e2,
and dist(e1,e2) = t_end(e2) t_ end (e1).The above functions are
available for all the RFID events. Besides of these functions,
users could de ne specific functions to distinguish primitive
events. For example, group(reader) is used to represent to
which group the reader of a primitive event belongs. Readers in
the same group often have the same function; type(epc) is used
to get the type of an object with tag epc.

Temporal constraints need to be taken into account when
describing RFID events. The work of [11] discussed series
temporal complex event constructors. Constructors for complex
events in [11] are classifies into two categories: non-temporal
complex event constructors and temporal complex event
constructors. Non-temporal complex event constructors include
OR(), AND(), and NOT (¬).E1 E2 occurs when either E1

or E2 occurs. E1 E2 occurs when both E1 and E2 occur. ¬E is
usually combined with a temporal constraint, and it occurs
when no instance of E occurs during a specific time interval.

Temporal complex event constructors specify temporal
constraints of complex events, including the occurrence order
of sub-events, distance constraint and interval constraint. These
constructors can be nested in arbitrary order to describe various
complex events. However, parameters are not included to
express constraints on complex events. For example, operator
SEQ+ only requires one or more occurrences of an event, but
the exact number of the occurrences is not specified. This

might cause inaccurate description of complex events. Suppose
we have a sequence of event instances: (e1,e3,e5,e6), where the
superscript represents occurrence time of event e. According to
the semantics of SEQ+ operator, we can tell that complex event
SEQ+(E) occurs more than once, (e1,e3), (e3,e5), (e1,e3,e5),
(e1,e3,e5,e6) could all be seen as the corresponding sets of
events for complex event SEQ+(E). Therefore, it is
inconvenient to describe complex events with exact
aggregation number, such as complex event E occurs when
event E1 has occurred ten times. In the following section, we
will show how to model parameterized constraints with ED-net.

III. THE MODEL OF ED-NET

A. The static structure of ED-Net
Definition (ED-net) An ED-net (Event Detection Net) is a

tuple N = (, P, T, A, C, G, B, E) , and is a finite set of non-
empty types, called color sets; P is a finite set of non-empty
places; T is a finite set of non-empty transitions; A is an arc set,
A P × T T × P; C is a color function, C : P ; G is a
guard function, G : T {Expr}, where Expr is a boolean
expression; B is a body function, B : T {Stat}, where Stat is a
group of assignment operations; E is an arc function, E : A
{AExp}, where AExp is an expression whose value is a multi-
set. The form of AExp could be: AExp m c|n v|m c +
AExp|n v + AExp, where m and n are positive integers, c is a
constant value of a specific color, and v is a variable. When m
or n equals one, we just omit it in the expression. The sign ‘+’
means addition of two multi-sets, as introduced in [15].

Fig. 1 shows an ED-net model and its instance. The model
describes a complex event of the conjunction of two primitive
events, with the constraint that readers of the two primitive
events are in the same group.

Figure 1. An example of ED-net model.

B. Dynamic behavior of ED-net
The state of an ED-net is represented by a marking that

records the number and color of tokens in each place. A

124 125

marking is defined as a function M : P {C(p)MS|p P},
where C(p)MS is the multi-set over the color set of place p.
Take the instance of ED-net in Fig. 1 for example, its current
state can be represented as a marking M: M = (1`(epc_a, r1,
2350, 2350), 1`(epc_b, r1, 2200, 2200),). M(p1)= {(epc_a, r1,
2350, 2350)}, M(p2)= {(epc_b, r1, 2200, 2200)} and M (p3)=
as place p3 has no token.

The procedure of taking a step in an ED-net is as follows:
First, check if a transition could be fired under current
marking according to the firing rules introduced later. More
than one transition may be enabled in one step, we randomly
choose one to occur. Second, do the assignment operations
according to the body of the transition, calculating the start
and end time of the complex event. For example, for transition
t in Fig. 1, value (2200, 2350) will be assigned to variable ce.
Third, remove tokens from the input places of transition t and
add tokens to the output places of transition t. The number and
color of tokens to be consumed and produced are determined
by corresponding arc expressions. According to the arc
expression in Fig.1, tokens (epc_a, r1, 2350, 2350) and (epc_b,
r1, 2200, 2200) are removed from p1 and p2 respectively and
token (2200, 2350) is added to p3. Thus, the new marking of
the ED-net is (, , 1`(2200, 2350)).

Firing conditions for a transition in P/T net [16] are also
available in ED-net, which means that for a transition to be
fired, there must be enough tokens in all of its input places.
Besides of this, guard expression of the transition in an ED-net
must be satisfied. We summarize the process of deciding
whether a transition t could occur under marking M as follows:
Firstly, check if all the input places of transition t are marked
under marking M. We can see that p1 and p2 are both marked
in Fig. 1; Secondly, If step 1 is satisfied, find a binding for
variables appearing on all the input arcs of transition t. In Fig.
1, transition t has two input arcs p1t and p2t, and two variables
ae1 and ae2 appear in the arc expressions. Under current
marking, they could only be bound with (epc_a, r1, 2350, 2350)
and (epc_b, r1, 2200, 2200) respectively. Multiple binding
results could be found when tokens in input places are more
than needed; Thirdly, Evaluate guard expression of transition t
under a binding established in step 2. Only when the result is
true, can transition t be fired. Otherwise, go to step 2 and
choose another binding for corresponding variables. In case
the guard expression cannot be satisfied under all the possible
bindings, transition t cannot be fired.

C. ED-net models for complex events
Non-temporal complex events include conjunction

complex event, disjunction complex event and negative
complex event. The ED-net model for a conjunction complex
event of two primitive events has been shown in Fig. 1. A
negative event should be associated with a time-constrained
event; otherwise it is meaningless to discuss the occurrence of
an event during an endless interval. We will introduce the
modeling of negative event in the model for an interval-
constrained complex event (WITHIN).

A model for the disjunction of two primitive events is
shown in Fig. 2. For convenience, we mark the name of the
event under its corresponding place in the graphical

representation of the model. Once one of places p1 and p2 is
marked, which means that one sub-event is detected, transition
t1 or t2 will be fired, and place p3 will be marked with a token
of color CE whose value is obtained from the corresponding
primitive event. The model is also available for the disjunction
of complex events; we only need to change colors of places p1,
p2 and variables ae1, ae2 to be CE.

Temporal complex events refer to events with time-
constraint, including the occurrence order of sub-events,
distance of two events and the interval of an event. The work
in [11] has listed a group of temporal complex event
constructors covering most of the detecting situations.
However, parameterized constraints are not included in the
description of complex events. For example, constructors
SEQ+ and TSEQ+ both express the periodic occurrence of one
or more occurrences of an event, but neither specifies the
exact number of occurrences. The imprecise description may
cause unexpected results. Also, parameters are necessary and
important in the specification of a complex event.

Figure 2. ED-net model for disjunction

Sequential constructor specifies that the occurrence of one
event is after another. The semantics of "after" varies
according to different understandings. When a user say event
E2 occurs after event E1, all of these situations could be
distinguished by the guard expression defined in the ED-net
model. An ED-net Model for a sequence complex event E1;E2,
and the semantics of "after" corresponds to the third situation,
as the guard expression of transition t is ce1.end < ce2.begin.

Figure 3. ED-net model for aggregation

The modeling of distance-constrained sequential complex
event TSEQ(E1; E2,t1,t2) is similar to the model of sequential
complex event, by changing the guard expression of transition
t to be (ce1.end < ce2.begin) (ce2.end - ce1.end > t1)
(ce2.end - ce1.end < t2), which indicates that the distance of E1
and E2 is bounded by t1 and t2.

124 125

Fig. 3 shows an ED-net model for an aggregation complex
event E, which occurs when its sub-event E1 has occurred ten
times. Places p1 and p3 corresponds to events E and E1
respectively. As soon as E1 occurs, place p1 is marked. Then
transition t1 can be fired and a token e is produced in place p4.
The number of tokens in p4 indicates the occurrence frequency
of event E1. When the number reaches 10, transition t2 can be
fired and ten tokens in p4 are consumed according to the arc
expression 10`e on arc p4t2.

We define the interval of an aggregation complex event to
be from the earliest start time to the latest end time of all the
sub-events. Instead of collecting all the sub-events and finding
out the smallest and greatest values, we update the interval of
complex event E each time a sub-event arrives, and when all
the sub-events are detected, the latest value is the interval for
E. In Fig. 3, transition t1 updates the interval of complex event
E according to the time of past occurrences of E1 (from place
p2) and the time of E1’s new arrival(from place p1). On the first
arrival of E1, transition t1 will consume a token of (, 0) from
place p2, which is assigned on creation of the model. After the
firing of t1, token in p2 will be updated to be (ce1.begin,
ce1.end), which is exactly the time of the first occurrence of E1:

ce3.begin = min{ce1.begin, ce2.begin} = min{ce1.begin, }
= ce1.begin

ce3.end = max {ce1.end, ce2.end} = max{ce1.end, 0} =
ce1.end

After ten arrivals of E1, transition t2 occurs and place p3
has a token whose color indicates the time of complex event E.

IV. DETECTING COMPLEX EVENTS WITH ED-NET MODELS

In this section, we will introduce how to detect complex
events based on ED-net. It is assumed that the RFID data have
been filtered before the detection process and the inputs of the
event detector is clean. The filtering step could eliminate
redundant data [17] [18]. The detection process takes filtered
RFID data as input, and sends signals to applications when an
event is detected. As introduced in previous section, each
event corresponds to a place in an ED-net, which is marked
with a token when the event occurs. The ED-net model
behaves dynamically by taking steps, and once an event place
is marked after one step, associated actions defined in an
application will be taken, such as sending an alarm or updating
database.

Figure 4. ED-net model for E and E

The detection process could be divided into two parts:
constructing an ED-net model for all the events to be detected

and detecting complex events based on the ED-net model
which takes RFID data as inputs. To improve the efficiency of
the detection method, we combine ED-net models for different
complex events and a step-by-step detection mode is applied.
Details of the two parts are given below.

A. Constructing ED-net models
In the work of [11] detection is carried on separately. The

graph-based computation model merges common sub-graphs,
thereby avoiding multiple detections for sub-events. However,
common sub-events in different complex events are not
combined together. Therefore, they will be detected multi-
times in separate detection processes. Instead of modeling all
complex events separately, we combine the ED-net models for
all the events to be detected in one ED-net model. Note that
the final ED-net model may be composed of several
independent parts which share no common sub-events.

Algorithm 1: Constructing ED-Net model

Input: complex events set SE
Output: ED-Net model N
 foreach complex event e in SE do
 if e has not been modeled in N then
 Get e’s sub-events set CE;
 foreach sub-event ce in CE do
 if ce has been modeled in N then
 Add a place p’ as a copy of place p;
 else
 Build ce’s ED-net model;
 Extend N with ce’s model;
 end
 end
 Build the ED-net model for event e
(taking its sub-events as inputs);
 Extend N;
 end
 end
return SN

Main steps of constructing an ED-net model for a set of
complex events are given in Algorithm 1. A complex event is
often composed of several sub-events, which may also contain
sub-events. The constructing of the complex event takes the
places of its sub-events as inputs. Suppose we have complex
events E=(E1 E2) and E =(E E3), assuming E1, E2 and E3
are all primitive events. Fig. 4 shows the sketch of ED-net
model for E and E . The caption under place is the name of its
corresponding event. The shadowed place p3 corresponds to
event E, and it is also a part of ED-net model for E .

Different events often share common sub-events.
Therefore, an event may be used in more than one detection
model. In this case, we duplicate the place for the common
sub-event. Event E participates in both complex events E1 and
E2. Once an event E is detected in place p1, the information
will be duplicated to places p2 and p3, which will be used in
the modeling of E1 and E2 respectively. In this way, event E
only needs to be detected once, instead of twice in the separate
detection for E1 and E2.

126 127

B. Detecting complex events with ED-net model
Detection for complex events behaves as Algorithm 2 lists.

The detector works as long as RFID data are received. The
marking of the ED-net model is a global variable, and
whenever a primitive event is detected, the marking is updated.
To state clearly, we use notations •t and t• to represent sets of
input and output places of transition t respectively.

Algorithm 2: Detect complex events based on ED-net

Input: ED-net model N = (,P,T,A,C,G,B,E)
M:Current marking of N;Enabled transition
set Te = ;
Repeat
 foreach t in T are marked do
 repeat
 Find b for variables related to t
 until G(t) is true under binding b;
 Add transition t to Te;
 foreach t in Te do
 Fire t;
 Evaluate output arc expressions of t
 foreach place p in •t do
 M (p)= M(p) − E(pt);
 end
 foreach place p in t• do
 M (p)= M(p) + E(tp);
 if p is a complex event
 Send M to applications;
 end
 foreach place p in P − (•t t•) do
 M (p)= M(p);
 end
 Change current marking M to M ;
 Remove transition t from Te;
 end
until no RFID data are received;

V. CONCLUSION

We have proposed a method for the detection of complex
events in RFID, based on a formal model named ED-net. ED-
net offers unified ways for describing both temporal and
parameterized constraints of events and defining rules for
calculating attributes of complex events. Color sets and
functions are used to specify attributes and constraints of
events. Constraints of a complex event are expressed by the
structure of corresponding ED-net model and guard
expressions associated with transitions. Attributes of a
complex event can be obtained from those of its sub-events,
and the calculation rule is specified in the bodies of transitions.
Our detection method describes all complex events to be
detected in one model; common sub-events are detected only
once, instead of multiple times in independent detecting
processes for these complex events, thereby improving
efficiency of our methods.

We implement the prototype of ED-net with Java language
in RFID test environment and compare it with traditional non
ED-net algorithm such as RCEDA[11]. We produce the RFID
complex events with 3 sub-events combined about 1000 per

seconds, and the average latency of detecting complex events
has been efficiently reduced in our experiments In our
experiment, the average CPU occupation time maintained an
acceptable level with the average latency down in detecting.

Our future work is to promote our detection method in an
RFID event detector and apply it in specific applications.

REFERENCES

[1] Epc tag data standards version 1.1. Technical report, EPC-Global Inc,
2004

[2] D. C. Luckham and B. Frasca, “Complex event processing in distributed
systems,” Technical Report CSL-TR-98-754, Stanford University ,1998

[3] A. Galton and J. C. Augusto, “Two Approaches to Event Definition,”
Proceedings of the 13th international Conference on Database and
Expert Systems Applications, Lecture Notes In Computer Science,
vol.2453, Springer-Verlag, London, 2002, pp. 547-556

[4] R. Derakhshan, M. E. Orlowska, Xue Li, “RFID Data Management:
Challenges and Opportunities,” IEEE International Conference on RFID,
2007, pp. 175-182

[5] RFID data management, aggregation and filtering. http://epic.hpi.uni-
potsdam.de/pub/Home/Publications/RFID-PaperSS2007OleksandrMyly
y .pdf , 2007

[6] A. Demers, J. Gehrke, B. Panda, et al, “Cayuga: A general purpose event
monitoring system,” proceedings of the third biennial conference on
innovative data systems research (CIDR), 2007, pp 412-422

[7] S. Chakravathy, D. Mishra, “Snoop: an expressive event spec¬ification
language for active databases,” Journal of Data & Knowledge
Engineering, vol. 14(1), 1994, pp. 1-26

[8] A. Geppert and D. Tombros, “Event-based distributed work ow
execution with EVE,” Technical Report No.96.5, University of Zurich,
1996

[9] D. Moreto and M. Endler, “Evaluating composite events using shared
trees,” IEEE Proceedings of Software, 148(1), 2001, pp. 1-10

[10] S. Gatziu and K. R. Dittrich, “Detecting compostie events in active
database systems using Petri nets,” Proceedings Fourth International
Workshop on Active Database Systems, Houston, TX, USA, 1994, pp.
2-9

[11] F. Wang, S. Liu, P. Liu, and Y. Bai. “Bridging physical and virtual
worlds: Complex event processing for r d data streams,” In EDBT, vol.
3896 of Lecture Notes in Computer Science, Springer, 2006, pp. 588-
607

[12] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” In SIGMOD Conference, ACM, 2006, pp.
407-418

[13] H. Liu, S. GOTO and J. Li, “The study and application of tree-based
RFID complex event detection algorithm,” Proceedings of the 2009
International symposium on web information systems and applications,
2009, pp. 520-524

[14] J. Zhu, Y. Huang and H. Wang, “A formal descriptive language and an
automated detection method for complex events in RFID,” Proceedings
of the 33rd Annual IEEE International Computer Software and
Applications Conference (COMSAC), vol. 1, 2009, pp.543-552

[15] K. Jensen, “Coloured Petri nets: basic concepts, analysis methods and
practical use,” vol. 1, Springer-Verlag ,1997

[16] T. Murata, “Petri nets: properties, analysis and applications,”
Proceedings of the IEEE, vol. 77(4), 1989, pp.541-580

[17] Y. Bai, F. Wang and P. Liu, “Efficiently filtering RFID data streams,” In
CleanDB Workshop, 2006, pp. 50-57

[18] B. Carbunar, M. K. Ramanathant, M. Koyutrk, C. Hoffmannt, A. Grama,
“Redundant reader elimination in RFID systems,” Proceedings of the
Second Annual IEEE Communications Society Conference on Sensor
and AdHoc Communications and Networks, (SECON 2005), 2005, pp.
176-184

126 127

Multithreaded Pointer Analysis Based on Petri Net

Fei Liu, Bixin Li

School of Computer Science and Engineering, Southeast University, Nanjing, China
Key Lab of Computer Network and Information Integration (Southeast University), Ministry of Education

Email: {fei liu, bx.li}@seu.edu.cn

Abstract

This paper gives a novel method of investigating flow-
sensitive pointer analysis for multithreaded program based
on petri net. The method mainly borrows causal dataflow
analysis idea from Azadeh Farzan. Petri net is used to
describe control flow structure of multithreaded program.
And pointer points-to information is propagated along
causal dependencies of events in the partial order execu-
tion of petri net. The problem of pointer analysis is reduced
to the coverability problem on the petri net.

Keywords—pointer analysis; multithreaded program; flow-
sensitive; petri net

I. Introduction

With development of multi-core technique and exten-
sive use of program language supporting threads, multi-
threaded programs are becoming more and more common.
However, many mature and traditional program analysis
techniques mainly aim at sequential programs. Because
of non-determination of multithreaded program semantics,
analysis process of multithreaded program is more diffi-
cult, compared to that of sequential program. Interactions
among multiple threads make it difficult to extend tra-
ditional program analysis techniques that are developed
for sequential programs to multithreaded programs[5].
Research on analysis of multithreaded program is still
immature.

Pointer analysis[4] is a fundamental static program
analysis technique. With many years’ research, there exist

Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and no. 60973149, and partially
Supported by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, and partially by National High Technology
Research and Development Program under Grant No.2008AA01Z113.

Correspondence to: Bixin Li, School of Computer Science and Engi-
neering, Southeast University, Nanjing, China. E-mail: bx.li@seu.edu.cn

many publications about pointer analysis of sequential
programs[1, 3]. Pointer analysis of multithreaded programs
makes slow progress, compared to that of sequential pro-
grams. But there were still some work on multithreaded
pointer analysis[5]. As far as flow-sensitive pointer anal-
ysis for multithreaded program is concerned, the main
difficulty is the potential interferences among concurrent
threads. Two threads interfere when a thread assigns to the
shared pointer variable that another thread accesses(i.e.,
dereference, read or assign). Therefore, the key problem
for designing flow-sensitive multithreaded pointer analysis
algorithms is how to characterize inter-thread interference.
This paper presents a novel method of investigating flow-
sensitive pointer analysis for multithreaded program based
on petri net. The method borrows causal dataflow analysis
idea from[2]. It captures control flow structure using 1-safe
petri net and explores partially ordered execution of petri
net. The points-to information of pointer is propagated
along causal dependency of events. Pointer analysis prob-
lem of multithreaded program is converted to the marking
coverability problem of petri net.

The rest of paper is organized as follows. Section II
introduces some preliminaries containing 1-safe Petri net
and Mazurkiewicz trace. Section III presents multithreaded
pointer analysis based on petri net. Section IV shows a
case study and Section V gives some related work analysis.
Section VI concludes.

II. Preliminaries

A petri net is a triple N=(P,T,F), where every element
in set P is called a place, tokens in every place represents
resources that each place owns, each element in set T is
called a transition, set P and T satisfying 𝑃𝑃 ∩ 𝑇𝑇 = ∅ ,
and the binary relation F is called flow relation of net N,
satisfying 𝐹𝐹 ⊆ (𝑃𝑃 × 𝑇𝑇)∪ (𝑇𝑇 ×𝑃𝑃). Net N is called 1-safe
petri net if each place contains at most one token at any
time. A trace alphabet is a pair (Σ,I) where Σ is a finite set

128 129

of events, every element representing action and relation
𝐼𝐼 ⊆ Σ × Σ is called the independence relation, it being
irreflexive and symmetric. 𝐷𝐷 = (Σ× Σ)− 𝐼𝐼 is called the
dependence relation. A Mazurkiewicz trace is a behavior
that describes a partially-ordered execution of events in Σ.

III. Multithreaded Pointer Analysis Based on
Petri Net

This section mainly contains three parts. In the
first place, the definition of multithreaded language
PML(Pointer-included simple Multithreaded Language) is
introduced. In the second place, the construction of petri
net model of PML program is illustrated. In the last
place, multithreaded pointer analysis based on petri net
is proposed. For an arbitrary given PML multithreaded
program P, the aim of pointer analysis is to determine
the points-to set of pointer variable at some program
point. The outline of the method of investigating flow-
sensitive pointer analysis for multithreaded program based
on petri net is as follows. Firstly, program P is transformed
to P transformed, which is semantically equivalent to
program P. Secondly, petri net representation N of program
P transformed is constructed according to petri net repre-
sentation of basic statement. Thirdly, CCD framework in-
stance for multithreaded pointer analysis based on petri net
is given. Fourthly, MOT(Meet Over All Traces solution)
solution to reaching definition analysis of pointer variable
is reduced to a coverability problem on the petri net
which is solved by PEP(Programming Environment based
on Petri Nets) tool based on partially ordered unfolding
techniques.

A. Multithreaded language definition

The analyzed multithreaded program in this paper is
based on simple multithreaded language PML(Pointer-
included simple Multithreaded Language). The syntax of
PML is shown in figure 1. Pointer first level in figure 1
is a set of pointer variable whoes type is declared as int *.
And Pointer two level is a set of pointer variable whoes
type is declared as int **.

B. Petri net model of PML program

For a given PML program P, this paper utilizes petri
net to represent program control flow structure. In order to
construct petri net model for PML program, there are two
steps: (a)source code transformation of multithreaded pro-
gram P keeping semantically equivalent, let transformed
program be P transformed; (b)model control flow structure
of P transformed using petri net.

Fig. 1. Syntax of PML

1) Semantically equivalent source code transformation:
For multithreaded program P, firstly, find all assignments
statements in relation to dereference to two-level pointer
variable, such as p=*t or *t=q statements. Secondly, do
with the foregoing statements as follows: (using p=*t as
an example to illustrate)

∙ scan source code of program P, for two-level pointer
variable t, find all assignment statements where t is
assigned. In the simple multithreaded language PML,
pointer variable is one-level or two-level variable and
PML currently doesn’t consider type cast. So the
value of two-level pointer variable is only changed by
assignment statements such as 𝑠𝑠 = &𝑡𝑡 , or s=t. When
the found assignments in the thread containing state-
ment p=*t, the last assignment statement to t is se-
lected. Otherwise, all assignment statements in other
threads or some relevant assignment statements ac-
cording to synchronization structure of multithreaded
program are selected.

∙ convert statement p=*t to statement section(*) ac-
cording to all selected assignment statements (t=&w,
t=&v,⋅ ⋅ ⋅,t=&q; let the number be N), as illustrated in
figure 2. For statement *t=q, there exists correspond-
ing statement section(**) similar to(*).

∙ replace all assignment statements in relation to deref-
erence to two-level pointer variable t with statement
section(*) or (**) firstly, then delete all assignment
statements referring to variable t. The remainder is
program P transformed, which is semantically equiv-
alent to program P. The pointer variables in program
P transformed are all single-level pointers. The as-
signment statements of pointer variable only contain
following type: p=&X and p=q.

2) Petri net representation of program control struc-
ture: This paper models control flow structure of
P transformed using petri net. The transition corresponds
to program statement, and the place is used to represent
intra-thread control flow relation, inter-thread dependency
relation and synchronization relation. Petri net representa-
tions of basic statements are illustrated in Figure 3.

128 129

Fig. 2. Converting statement to statement
section

Fig. 3. Petri net representations of basic state-
ments

C. Multithreaded pointer analysis based on petri
net

The method of investigating flow-sensitive pointer
analysis for multithreaded program based on petri net in
this paper mainly borrows causal dataflow analysis idea
from [2]. PML Program P is transformed to P transformed,
which is semantically equivalent to program P. Thus
pointer analysis of program P is equivalent to that of
program P transformed. P transformed doesn’t contain
procedure call. The statements that could change pointer
variable points-to information can only be basic statements
such as p=q and p=&X. Under this circumstance, pointer
analysis for program P transformed, that is, determining
points-to set of pointer variable p at program point n, is
equivalent to determining which assignment statements
referring to variable p in program P transformed could
reach program point n, namely reaching definition analysis
of variable p. Then reaching definition analysis of pointer
variable p is solved using a concrete framework instance
based on CCD(Concurrent Causal Dataflow analysis)
framework proposed in [2].

1) CCD framework instance for multithreaded pointer
analysis based on petri net: The CCD framework in-
stance used for multithreaded pointer analysis is a
quintuple(𝑁𝑁𝑁𝒮𝒮𝑁ℱ 𝑁𝒟𝒟𝑁𝒟𝒟∗), including petri net model of
P transformed N=(P,T,F), property space 𝒮𝒮 = (𝒫𝒫(𝒟𝒟)𝑁⊆
𝑁∪𝑁 ∅), finite pointer points-to set 𝒟𝒟, powerset𝒫𝒫(𝒟𝒟), ∅
representing initial pointer points-to set, ∪ determining

how we will combine points-to information along pro-
gram control structure reaching the same control point in
a program. For program P transformed, let pointers={p
∣ there exists assignment statement to pointer variable
p in P transformed}. Scanning program P transformed
and finding all pointer assignment statements similar to
𝑝𝑝 = &𝑋𝑋 , for example 𝑝𝑝 = &𝑋𝑋𝑁 𝑋𝑋 = &𝑌𝑌𝑁 𝑝𝑝 = &𝐴𝐴𝑁 𝐴𝐴 =
&𝐶𝐶, and denoting p-to={𝑋𝑋𝑁𝐴𝐴𝑁 ⋅ ⋅ ⋅}, q-to={𝑌𝑌𝑁 ⋅ ⋅ ⋅}, s-
to={𝐶𝐶𝑁 ⋅ ⋅ ⋅}𝑁 ⋅ ⋅ ⋅. Finally merging foregoing (*)-to set as
set pointers-to. Thus, 𝒟𝒟=pointers × pointers-to = {(p,X)
∣ 𝑝𝑝 ∈ pointers ∧ 𝑋𝑋 ∈ pointers-to}. For any transition
t, set 𝒟𝒟𝑡𝑡 and 𝒟𝒟∗

𝑡𝑡 are defined. 𝒟𝒟∗
𝑡𝑡 represents points-

to information relative to transition t, and 𝒟𝒟𝑡𝑡 expresses
points-to information that may modify when it executes.
𝒟𝒟𝑡𝑡 and 𝒟𝒟∗

𝑡𝑡 satisfy condition 𝒟𝒟𝑡𝑡 ⊆ 𝒟𝒟∗
𝑡𝑡 ⊆ 𝒟𝒟. And 𝒟𝒟 = {𝒟𝒟𝑡𝑡

∣ 𝑡𝑡 ∈ 𝑇𝑇} and 𝒟𝒟∗ = {𝒟𝒟∗
𝑡𝑡 ∣ 𝑡𝑡 ∈ 𝑇𝑇}. For each transition t of

petri net, function 𝑓𝑓𝑡𝑡 is defined in order to represent how
points-to information of pointer variable changes when t
is executed.

2) MOT solution to multithreaded pointer analysis
based on petri net: It can be verified that CCD framework
instance for multithreaded pointer analysis based on petri
net proposed in this paper is a distributive instance. The
multithreaded pointer analysis problem can be solved by
utilizing algorithm proposed in [2].

IV. Case Study

This section gives a simple PML program to illustrate
the method of multithreaded program pointer analysis
proposed in this paper.

∙ There are three threads in the example program, as
given in figure 4. Some statements in three threads
are synchronized by lock variable. The dealt problem
is to determining the points-to information of pointer
variable p in statement t14 and statement t32.

Fig. 4. A simple PML multithreaded program

∙ Petri net structure of program(Figure 5)
∙ Solution to MOT

Points-to information of pointer variable at program
point n is points-to information that holds before the
execution of corresponding transition t of program’s

130 PB

Fig. 5. Petri net structure of program

petri net. And the problem of computing MOT(t) solu-
tion is reduced to the problem of marking reachability
on petri net.
From the experiment, we can acquire the conclu-
sion that points-to information of pointer p holding
before the execution of t14(*p=1) is 𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3(let
𝑑𝑑1 = (𝑝𝑝, 𝑝𝑝), 𝑑𝑑2 = (𝑝𝑝, 𝑝𝑝), 𝑑𝑑3 = (𝑝𝑝, 𝑝𝑝).), and that of
pointer p holding before the execution of t32(a=*p)
is 𝑑𝑑1, 𝑑𝑑3. Some related result are shown as figures 6,7.

Fig. 6. Some related result

Fig. 7. Some related result

V. Related Work Analysis

Pointer analysis of multithreaded programs makes slow
progress, compared to that of sequential programs. There
were relatively little work on multithreaded pointer analy-
sis. The first flow-sensitive pointer analysis algorithm for

multithreaded program is proposed in[5]. It uses a parallel
flow graph to represent multithreaded program. And no
edges between concurrent threads are supposed. Similar
to traditional sequential program flow-sensitive pointer
analysis, dataflow equation systems for four basic pointer
assignments and concurrent structure are established and
are solved by fixed-point iteration algorithm. It handles
many constructors and has many advantages, but it only
analyzes programs with structured concurrent constructs
such as fork-join, and it ignores synchronization con-
structs such as lock. Flow-sensitive pointer analysis for
multithreaded program introduced in this paper is based on
petri net.Petri net commendably represents synchroniza-
tion constructs and unstructured multithreaded program.
And petri net based pointer analysis provides a novel
perspective to consider pointer analysis for multithreaded
program. Multithreaded pointer analysis can be reduced to
coverability problem on the petri net which is solved by
PEP tool based on partially ordered unfolding techniques.

VI. Conclusion

This paper proposes a novel method of investigating
flow-sensitive pointer analysis for multithreaded program
based on petri net. The method has been applied to several
simple designed programs and the experiment results show
its effectiveness. It is motivated by causal dataflow analysis
idea from[2]. It models multithreaded pointer program
using 1-safe petri net, introduces CCD instance for mul-
tithreaded pointer analysis based on petri net, and solves
the instance using petri net reachability analysis.

References

[1] L.O. Andersen. Program analysis and specialization
for the C programming language. PhD thesis, 1994.

[2] A. Farzan and P. Madhusudan. Causal dataflow anal-
ysis for concurrent programs. Tools and Algorithms
for the Construction and Analysis of Systems, pages
102–116, 2007.

[3] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive
pointer analysis. In Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 226–238. ACM, 2009.

[4] M. Hind. Pointer analysis: haven’t we solved this
problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, page 61. ACM,
2001.

[5] R. Rugina and M.C. Rinard. Pointer analysis for
multithreaded programs. In Proceedings of the ACM
SIGPLAN 1999 conference on Programming language
design and implementation, page 90. ACM, 1999.

PB 131

Facilitate IT-Providing SMEs in Software Development:
a Semantic Helper for Filtering and Searching Knowledge

Riccardo Martoglia
DII – Department of Information Engineering

University of Modena and Reggio Emilia
Modena, Italy

riccardo.martoglia@unimo.it

Abstract— Software development is still considered a bottleneck
in the advance of the Information Society. The recently started
FACIT-SME European FP-7 project targets to facilitate the use
and sharing of Software Engineering methods and best practices
among software developing SMEs. On top of an Open Reference
Model (ORM) serving as an underlying knowledge backbone,
specific filtering/search mechanisms will support the
identification of adequate processes and practices for specific
enterprise needs. In this paper, we focus on the proposal of
knowledge-based text analysis and retrieval techniques which will
form a key component of the advanced filtering mechanisms of
the project. The proposed solution is designed to be more
powerful and flexible than standard syntactic search techniques,
but also to be easily applicable for any SME. The experimental
evaluation on the preliminary implementation shows promising
results.

Keywords-software engineering; information retrieval; text
analysis; semantic knowledge; semantic similarity.

I. INTRODUCTION AND MOTIVATION

Over the last years, Software Engineering (SE) research has
provided more and more advanced and promising techniques
for facilitating software development. In particular, the
integration between Software and Knowledge Engineering has
recently become very important, and several techniques
possibly enabling better domain knowledge sharing and
assisting developers in specific tasks such as component reuse
[1] or software process assessment [2, 3], have been proposed
to the research community [4].

Nonetheless, back to the “real” software development
world, recent studies have shown that a large number of
fundamental challenges still need to be faced. In Europe,
software development is becoming a bottleneck in the
development of the Information Society [5], while, on a global
scale, the quality and productivity of work has not been able to
keep up with the society software needs [6]. These issues are
especially critical in the case of SMEs in the software
development market: indeed, even if innovative SE
methodologies are constantly devised and presented, many
enterprises are usually not able to take full advantage from
them since they generally lack the resources and knowledge
needed for the internal deployment of the required methods
and tools. Indeed, being software an often underpaid product,
SMEs need to allocate mostly all of their available resources
on its production rather than, for instance, on new technology
training.

This is the challenging scenario of the recently started
European FP7 3 years project “Facilitate IT-providing SMEs
by Operation-related Models and Methods (FACIT-SME)”.
The main project goal is to facilitate IT SMEs in using SE
methods for design and development, systematizing their
application integrated with the business processes. Another
fundamental goal is to provide efficient and affordable
certification of these processes according to internationally
accepted standards, and to securely share best practices, tools
and experiences with development partners and customers. In
order to achieve these goals, the project will develop a novel
Open Reference Model (ORM) [7] for ICT SMEs serving as
an underlying knowledge backbone and, on top of that, a
customizable Open Source Enactment System (OSES) [8] will
provide IT support for the project-specific application of the
ORM. More specifically, the ORM will store existing
reference knowledge for software-developing SMEs, including
different engineering methods, tools, quality model
requirements and enterprise model fragments of IT SMEs, in a
computer-processable form. On top of the ORM repository,
specific search mechanisms, which will be a key part of the
OSES, will support the identification of adequate processes
and data structures for a specific enterprise. Different
application scenarios, identified with the support of the
participating SMEs and enumerating the possible use cases of
the FACIT-SME solution, will be dealt with. The most notable
ones include supporting the organizations in their need to find
a new methodology (“From Scratch” scenario) or to modify an
existing one in order to better manage its software
development projects (“From Methodology” scenario). In all
cases, through a filtering phase, which takes as input company
and project information and, for the second scenario, existing
methodology descriptions, the organization will receive a set
of suggestions in the form of the most relevant / useful
elements and models in the ORM. Subsequent phases will also
include helping the organization to easily check quality
constraints and refining the models and results in order to
adapt it to its needs. Besides five R&D partners providing the
required competences, the project consortium also includes
five SMEs operating in the ICT domain which will evaluate
the results in daily-life application.

In this paper, we focus on the foundations we are laying for
the filtering/searching mechanisms, carefully considering the
actual user-targets these techniques will be aimed at. More
specifically, we will primarily take advantage of textual

132 133

information, a vital knowledge source not only in the ORM
defined in the project but also in the documentation already
available in each enterprise. In this respect, we propose an
innovative approach based on text analysis and semantic
retrieval techniques leading to the following achievements:

• it is powerful enough to provide enhanced searching
effectiveness over standard syntactic techniques;

• it is general and flexible as a basis of many
functionalities offered by the OSES (i.e. for filtering
software methodologies for software process
assessment and improvement, quality requirements
for helping in certification process, best practices for
faciliting knowledge sharing, and so on);

• it is devised for IT SMEs, providing them with easy-
to-apply methods that do not require big investments
or knowledge prerequisites, allowing them to query
for the information they need in the way they are
used to;

• it exploits the large amounts of textual knowledge
(i.e. methodology descriptions, and so on) already
available in each enterprise, without requiring
complex conversions toward complex structured
formats which would be time and cost consuming.

Such approach forms the foundations of a Semantic
Helper component which will be overviewed in Section II,
while the analysis and semantic search techniques themselves
will be deepened in Sections III and IV, respectively. Section
V shows the promising results of a preliminary experimental
evaluation, while Section VI concludes the also by briefly
analyzing related works.

II. SEMANTIC HELPER OVERVIEW

The Semantic Helper will support other components of the
FACIT-SME solution in filtering/searching/analyzing relevant
information available in the ORM, including:

a) assisted filtering / selection of ORM elements given
specific enterprise objectives (e.g. in “From Scratch”
scenario to give pointers to useful information for
certification status);

b) assisted suggestion proposal for a given enterprise
methodology (e.g. in Scenario “From methodology”
to help identifying relevant information or gaps
between the given methodology and the ORM
methodologies);

c) automatic matching between ORM documents (such
as quality requirements and SE methodologies).

In order to facilitate such processes, a representation of the
key parts of the ORM in a semantic and machine-processable
way is needed. Given the predominant importance of textual
information in the ORM, first of all we provide the Semantic
Helper with appropriate text analysis techniques (see Section
III), which are designed to automatically extract a shared
“terminology” from the given set of documents. The extracted
terminology is enriched with statistical and semantic
information (i.e. links to thesauri and domain vocabularies,
definitions, synonyms), in order to obtain a computer-

processable semantic glossary Note that the analysis can be
applied not only to documents coming from the ORM (e.g.
about different quality requirements or software
methodologies), but also to any “external” document or query
submitted by an enterprise. In any case, once documents are
reduced to a set of terms with associated information,
appropriate semantic similarity techniques (detailed in
Section IV) are exploited to easily identify relevant documents
w.r.t. to a given query document, and to produce a list of
suggestions ranked on the similarity (relevance) score.

III. TEXT ANALYSIS TECHNIQUES

A. Text Analysis and Keyword Extraction
The goal for text analysis and keyword extraction in the

FACIT project is to design and develop an effective and easy-
to-apply technique for automatically extracting terms (and
their associated semantic information and statistics) from the
submitted text documents. In particular, we wanted to devise a
flexible technique to be exploited both for "off-line" analysis,
thus working on the textual descriptions already available in
the ORM, and for "on-line" querying operations, i.e. applied
on the fly to the submitted query documents. Even if many
packages are available for keyword extraction purposes, most
of them do not allow sufficient configuration and extension
options, making their integration with the future FACIT
solution very complex. Therefore, we preferred to design a
custom-made technique tailored to the FACIT environment.
Here is a short summary of the steps performed, for each text
document, in the text analysis phase:
1. Tokenization: the text is "tokenized" (words are

identified, punctuation is removed);
2. Stemming: the tokens are "normalized" and "stemmed",

i.e. terms are reduced to their base form (managing
plurals, inflections, ...) (as we will see this will be very
useful to enhance the effectiveness of the similarity
computation phase);

3. POS (Part of Speech) Tagging: the tokens are "tagged"
with Part of Speech tags (i.e. nouns, verbs, ...);

4. Composite terms identification: possible composite
terms (such as “product action plan” or “product
requirement”) are identified by means of a simple state
machine and of POS tags information;

5. Filtering and enrichment: by exploiting external
knowledge sources, the most relevant terms are selected
and they are associated to additional information (such as
definitions, synonyms, …). More specifically we make
use of the IEEE Software and Systems Engineering
Vocabulary 1 , a knowledge source covering specialist
terms in the project area, and the WordNet2 English
thesaurus, possibly complementing the specialist source
with general knowledge about English concepts;

6. Term statistics and weights computation: weights are
computed for each of the terms, reflecting their

1 http://www.computer.org/sevocab
2 http://wordnet.princeton.edu/

132 133

importance and meaningfulness in the text. As we will
see, this information is fundamental in computing
accurate text similarities (more on this in the following
sections).

By applying batch text analysis to the documents
currently available in the ORM, we achieved a first significant
result in the FACIT-SME project, i.e. the automatic generation
of a semantic glossary, representing a first step toward the
sharing of the most important concepts available in the model
and the automatic computation of text similarities. Thanks to
the automatic text analysis procedure, this first draft can be
easily updated/enriched in case of new content added to the
ORM, while more fine-grained user interventions for
adding/modifying/eliminating information are also possible.
The following section describes the semantic glossary
structure more in detail.

B. FACIT-SME Semantic Glossary
The Semantic Glossary consists of a global view (all terms

in all documents, together with their statistics) and a per-
document view (terms occurrences in each of the documents
with their statistics). The glossary global view is an
alphabetical sort of all the extracted terms, in a tabular form.
Figure 1 shows an excerpt of the glossary global view. The
format is:

TERM - the extracted term;
WN – whether the term is present in WordNet thesaurus;
IEEE – whether the term is present in the IEEE
vocabulary;
SYNS – possible synonyms for the term (as extracted from
the IEEE vocabulary and/or WordNet);
DEFS – possible definitions for the term (as extracted
from the IEEE vocabulary and/or WordNet);
IDF – the inverse document frequency of the term in the
collection;
DOC_LIST – a list of the documents IDs in which the
term occurs.

The glossary per-document view is a list of all the term
occurrences in the documents, sorted on the document ID,
together with their statistics. Figure 2 shows an exercpt of the
glossary per-document view. For each term (in each
document) the report contains:

DOC – the document ID in which the term occurs;
TERM - the extracted term;
TF - the frequency of this term in the document,
normalized by total number of terms in document;
WEIGHT - the TF*IDF weight of the term.

Figure 2. An excerpt of the FACIT-SME semantic glossary (per-doc view)

The glossary includes both synonyms/definitions and
weight information, allowing, as we will see, the similarity
functions of the Semantic Helper to draw useful knowledge
from both the semantic and the classic text retrieval worlds.
As to the semantic information, note that even if all the
similarity techniques described in the next section are
designed to work (and, as proved in Section V, provide
encouraging results) without further intervention, the list of
synonyms and definitions retrieved from the external
knowledge sources could easily be refined manually by
experts or automatically by means of techniques such as sense
disambiguation [9, 10]. In addition, as in classic Information
Retrieval, the importance (weight) of each keyword in each
document is estimated. Beside term frequency (TF), we
compute the inverse document frequency (IDF)3 [11], which
provides an estimate of the meaningfulness of each term. The
weight is then computed as TF*IDF. In this way, very
common terms which are present in a large number of
documents have a lower weight and will give a lower
contribution to the final similarity, since they are probably less
meaningful.

IV. SEMANTIC SIMILARITY TECHNIQUES

As anticipated in the past sections, the need of effectively
and efficiently computing similarities between documents is
crucial to the project. To this end, we want to define a
document similarity formula DSim(Dx,Dy) which, given a
source document Dx and a target document Dy, quantifies the
similarity of the source document with respect to the target
document. Being documents represented by sets of terms,
semantic similarity computation becomes a matter of
computing similarities between sets of terms. Therefore,
document similarity will, in turn, use a combination of the
scores provided by a term similarity formula TSim between the
document terms. The computation of DSim between a given
Dx and all the possible submitted Dy induces a ranking of the
available documents with respect to the source one, thus
predicting which documents are relevant and which are not
with respect to Dx. For instance, by computing the document

3 IDF is obtained by dividing the total number of documents by the number of
documents containing the term and then by computing the logarithm of that
ratio

TERM WN IEEE SYNS DEFS IDF DOC_LIST
acquirer Y Y buyer, customer,

owner, purchaser
(1) stakeholder that acquires or procures a product
or service from a …

7,4961 ['QM1372']

acquisition Y Y outsourcing (1) process of obtaining a system, software
product or software service …

5,5491 ['QM0392',
'QM0755', …]

Figure 1. An excerpt of the FACIT-SME semantic glossary (global view)

DOC TERM TF WEIGHT(TF*IDF)
QM0001 iso 1 6,8024
QM0002 management 0,3333 0,6931
QM0002 quality 0,3333 1,0303

134 135

similarities between a given quality requirement description
and all the available software methodology descriptions of the
ORM, the induced ranking will suggest all the software
methodologies that could be relevant/related to the given
quality requirement.

We provide different options with respect to the similarity
formulas, so to be able to experimentally assess the ones most
suited to the project. Equation (1) shows the standard
document similarity formula between a given source
document Dx and a target document Dy: the similarity is given
by the sum of all term similarities between each term in Dx and
the term (defined in (2)) in Dy maximizing the term similarity
with the term in Dx:

 (1)

 (2)

Note that (1) is not meant to be symmetric, instead it is
conceived so to facilitate the ranking of the documents Dy with
respect to document Dx. In case symmetry is needed, the
summation in (1) can by extended to the terms of both
documents. As to term similarity, the most basic option, only
considering equal terms, is shown in (3), where the similarity
TSim between two terms ti and tj is basically a Boolean
formula valued 1 if the two terms are equal, 0 otherwise.

(3)

Equation (4) proposes an extended (and possibly more
effective) document similarity option, taking into account the
weights as extracted by the text analysis process:

 (4)

where . In this case,
each term contributes to the final similarity with a different
weight w, i.e. more frequent and more significant terms
contribute more to the similarity between the two documents.

Let us now consider more advanced options for term
similarity. Equation (5), besides equal terms, also takes
synonyms and semantically related terms into account:

 (5)

 More specifically, the case of maximum similarity (value
1) is extended to the case where the two terms are synonyms
(SYN relation). Moreover, the formula provides a further case
where the two terms are not equal or synonyms, nonetheless
they are in some way strongly related from a semantic point of
view: such terms will contribute with a similarity of r, where
0<r<1.

While the synonym information straightly comes from the
text analysis phase, we consider two different ways of
exploiting the extracted information and the external
knowledge sources to determine wheter two given terms are

semantically related. Equation (7) shows a possible way of
computing the similarity by exploiting the glosses (definitions)
of the terms:

 (7)

 (8)

In this case, two terms are semantically related (REL
relation) if the gloss similarity GSim between their glosses
exceeds a given threshold Th. The Literature presents many
possible ways of computing similarities between glosses. We
found the extended gloss overlap measure [12] shown in (8) to
be particularly effective in our context, especially with the
IEEE vocabulary glosses. It quantifies the similarity between
the two glosses by finding overlaps in them (the similarity is
the sum of the squares of the overlap lengths). Other gloss
similarity measures could also be exploited and investigated in
the future, such as the gloss vector one described in [13].

Another possible way of computing semantic relatedness is
to exploit the relations between terms coming from the
WordNet thesaurus. Indeed, we adopt one of the most widely
used methods in knowledge management, relying on the
hypernymy relations of the thesaurus:

 (9)

 (10)

In this case, two terms are semantically related if their
hypernym similarity HSim exceeds a given threshold Th. In
particular, the HSim shown in (10) derives from the works [9,
14] and computes a score which is inverserly proportional to
the length of the shortest path connecting the (senses of the)
two terms. H is a constant, which for WordNet is defined as
16. On the other hand, the similarity is 0 if the two terms are
not connected in the WordNet hypernymy structures.

Note that the different document similarity and term
similarity formulas presented in this section can be selected in
a fully orthogonal way, so to be able to adapt in a flexible way
to the specific settings and needs of the project.

V. EXPERIMENTAL EVALUATION

In this section we present the results of the preliminary
effectiveness evaluation we performed on the proposed
techniques in the context of the project. We formed a
collection of 1500 documents (i.e. textual descriptions) about
quality requirements which will be part of the final ORM and
derive from existing quality models such as CMMI [15] and
ISO 9000 [16]. Then, we created different queries with
reference to this collection; each query is either composed by a
short text containing candidate keywords, so to simulate
possible querying situations following the “From Scratch”
scenario of the project (queries Q1-Q6, selected as the most
representative ones), or by a whole new document ideally
representing the description of an existing enterprise
requirement or methodology, similarly to the “From

134 135

Methodology” scenario (queries QT1-QT4). Each query will
be submitted to the current implementation of the semantic
helper (text analysis and similarity computation), so to
generate a set of possible “suggestions”, i.e. pointers to the
relevant documents in the collection. In order to evaluate the
effectiveness of our approach, for each query the output of the
helper will be compared to a “gold standard”, i.e. the relevant
answers which were manually selected from the collection by
experts in the field.

The first analysis we conducted was to assess the quality of
the retrieved results in terms of precision and recall, which are
typical evaluation metrics in the information retrieval field4.
Figure 3 shows the results for Q1-Q6 (left part of figure). The
shown results are those obtained with the gloss similarity as
the similarity relatedness function (later we will discuss the
WordNet hypernym-based one). Besides precision and recall,
we also report, as a summarizing figure, their weighted
harmonic mean (F-measure). Further, in order to emphasize
the contribution of the different applied techniques to the
achieved results, in the right part of figure we also present the
results concerning two baselines, i.e. a standard retrieval
method ignoring semantic synonyms and related terms
information and another method not exploiting the text
analysis phase (including stemming and composite terms
identification). Let us now analyze the results in detail.

As we can see from Figure 3, the precision and recall
levels achieved by the described techniques are very satisfying
for all queries (equal or higher to 0.84 and 0.94, respectively).
The processing of all queries greatly benefits from the text
analysis phase: as the results of the second baseline show,
without it recall levels significantly drop to 0.2-0.4 (for
instance, different inflections of the same word are not
correctly identified). Text analysis can also greatly benefit
precision as, for instance, in Q1 and Q2: since they contain,
among others, such composite expressions as “interface
requirement” (Q1) or “configuration management system”
(Q2), not correctly identifying them leads to a very large
number of irrelevant retrieved documents (in the second
baseline precision drops to less than 0.01, compared to 1 for
the standard results). Differently from Q1 and Q2, queries Q3-
Q6 also require synonyms and related terms management in
order to provide satisfying answers: for instance, one of the
key terms in Q3 is “supplier”, a concept which is expressed as
“vendor” in some of the documents (recall goes from 1 to 0.96
of the first baseline), while Q4 contains “purpose” which is

4 Precision is defined as the fraction of retrieved documents which are known
to be relevant, recall is the fraction of known relevant objects which were
actually retrieved.

mostly expressed as “objective” in the collection (recall drops
from 1 to less than 0.08). The same holds for the “related
terms”: by applying the gloss similarity semantic relatedness
formulas exploiting the IEEE definitions, we achieve near-
perfect recall levels (as opposed to the less than optimal ones
of the first baseline) while also maintaining high precision
levels. For example, most documents containing “review” are
also relevant to Q5, which contains “audit”, the ones
containing “document” are also relevant to Q6 asking for
“documentation”, and so on. The WordNet based similarity
proved equally useful as the gloss based one (for instance it
correctly identifies the relatedness between “attribute” and
“property”, “procedure” and “process”, and others), however
we found that in some cases it may lead to several false
positives, mainly due to the non-specialized nature of the
employed thesaurus. For this reason, we decided to focus on
the IEEE gloss similarity in these preliminary tests and to
analyze the impact of the WordNet similarity more in detail in
future tests.

We will now deepen the effectiveness analysis by
considering queries QT1-QT4, in the form of actual text
documents for which to find related documents in the
collection. In this case, the queries are substantially more
complex than Q1-Q6 and can possibly produce a very large
number of results: for this reason, it is essential to evaluate not
only which answers are returned but also their score and the
induced ranking, so to assess whether the best suggestions are
returned in the top positions and, thus, whether the proposed
weighting scheme is effective. Figure 4 (top) shows, for QT1,
the precision values obtained at different recall levels, i.e.
when a given percentage of relevant documents have been
found. The “standard” technique, which uses all the weights
and semantic synonymy/relatedness information, is compared
to non-weighted and non-semantic baselines. Notice that the
standard technique achieves very high precision levels even at
high recall levels: for instance, at recall level 0.6, the precision
is still 1, while the baselines’ precision levels have already
dropped lower than 0.03. This confirms that our techniques are
able to identify the most significant terms in the queries,
without being misled by non-relevant ones. Figure 4 (bottom)

Prec Rec F Prec Rec F Prec Rec F
Q1 1,000 1,000 1,000 1,000 1,000 1,000 0,011 0,420 0,022
Q2 1,000 1,000 1,000 1,000 1,000 1,000 0,005 0,330 0,010
Q3 1,000 1,000 1,000 1,000 0,969 0,984 0,946 0,240 0,383
Q4 0,947 1,000 0,973 1,000 0,079 0,146 0,921 0,321 0,476
Q5 0,878 1,000 0,935 1,000 0,077 0,143 0,986 0,235 0,380
Q6 0,923 0,949 0,936 1,000 0,333 0,500 0,967 0,369 0,534

Results No sem syn/rel No kw sel
(baselines)Query

Figure 3. Effectiveness analysis in terms of precision, recall and F-measure
(standard results on the left, two baselines on the right)

Figure 4. In-depth effectiveness analysis for query QT1: precision at standard
recall levels (top) and distance from optimal ranking (bottom)

136 137

confirms the goodness of the retrieved results: for each
alternative, the curve represents the normalized Spearman
footrule distance [17] between the retrieved and the ideal
ranking, i.e. the normalized sum of the absolute values of the
difference between the ranks. Due to lack of space we do not
show this detailed analysis for QT2-QT4, however we found
that the good performance of QT1 is fully representative of all
the queries. In particular, for QT1-QT4 the most relevant
results are always among the first to be retrieved, and the
precision at recall level 1 is always higher than 0.5 (orders of
magnitude better than our baselines).

VI. CONCLUDING REMARKS

Several literature papers have highlighted possible benefits
of combined knowledge engineering and software engineering
approaches for specific SE tasks [2, 3, 4]. For instance, while
standard reuse repositories are limited to plain syntactical
search and generally suffer from low precision and recall [4],
knowledge-based approaches such as [1] enhance the
effectiveness of the component reuse task by proposing the
usage of formal descriptions of components (in OWL) to be
queried by specific graph query languages such as SPARQL.
Other notable proposals have been presented, for instance, for
facilitating software process assessment through formal
descriptions of specific process improvement approaches such
as CMMI [2, 3]. As already noted in [4], however, the
discussion on integrating SE and KE approaches has been, in
many cases, very academic, focusing on aspects like meta-
modeling and neglecting applicability and usability.

The filtering/search approach we presented in this paper is
designed to be effective and very easily applicable. In the
FACIT-SME scenario, software-developing SMEs will be able
to exploit all the advanced functionalities offered by these
semantic foundations for a large number of tasks, such as
software process and improvement and certification.
Moreover, the approach does not have any prerequisite, such
as the knowledge of complex formal representation/querying
standards or the need of converting/updating the
documentation already available in the enterprise. To this end,
our proposal leverages on the strengths of both classic
information retrieval (incorporating weight information [11])
and of knowledge-based techniques. In particular, semantic
similarity techniques which already proved their effectiveness
in a number of non-SE scenarios, from information
disambiguation [9] to the querying of heterogeneous
information in digital libraries and PDMSs [18], are adapted
and extended in this new framework.

FACIT-SME has just started and the presented approach is
the first step toward the project goals. Future work will
include further analysis and refinements of the similarity
techniques (especially for the WordNet-based ones), user
feedback on the retrieved suggestions, Multilanguage
information management and querying support, and the
exploitation of other non-textual knowledge which will
eventually be available in the ORM repository. Finally, the
project evaluation phase, which will start soon, will involve

user IT companies in actual scenarios in order to obtain useful
opinions and suggestions about the quality of the proposed
techniques and their improvement.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community's Seventh Framework
Programme managed by REA Research Executive Agency
(http://ec.europa.eu/research/rea) ([FP7/2007-2013] [FP7/2007
- 2011]) under grant agreement n° 243695.

Our sincere thanks to Sonia Bergamaschi, Domenico
Beneventano (UniMoRe), Gorka Benguria (ESI), Frank-
Walter Jaekel (Fraunhofer IPK) and to the other project
partners for their support to this research.

REFERENCES

[1] C. Kiefer, A. Bernstein, J. Tappolet. Mining software repositories with
ISPARQL and a software evolution ontology. In Int’l Workshop on
Mining Software Repositories (MSR), 2007.

[2] K. Soydan, “An OWL Ontology for Representing the CMMI-SW
Model”. Proc. of 2nd Int’l Workshop on Semantic Web Enabled
Software Engineering (SWESE), 2006.

[3] L. Liao, Y. Qu, H. K. N. Leung, “A software process ontology and its
application”. Proc. of the 4th Int’l Semantic Web Conference, 2005.

[4] H.-J. Happel and S. Seedorf, “Applications of Ontologies in Software
Engineering”. Proc. of 2nd Int’l Workshop on Semantic Web Enabled
Software Engineering (SWESE), 2006.

[5] Aetic (Spain), Agoria (Belgium), AssInform (Italy) et al., “Position paper
towards a European software strategy”, presented to commissioner
Viviane Reding on 24 October 2008.

[6] DG INFSO Internal Reflection Group on Software Technologies,
“ITEA”, April 2002.

[7] F.-W. Jaekel (Editor), "ORM Architecture and Engineering Models",
FP7-SME FACIT-SME (FP7-243695), Deliverable, http://www.facit-
sme.eu/FACIT-2-2010-10-18-IPK-deliverable_2_1-37b.pdf, Oct 2010.

[8] G. Benguria (Editor), “OSES Architecture and Component
Specification”, FP7-SME FACIT-SME (FP7-243695), Delivarable, Dec
2010.

[9] F. Mandreoli, R. Martoglia, “Knowledge-Based Sense Disambiguation
(Almost) For All Structures”. In Information Systems 36(2), 2011.

[10] L. Po, S. Sorrentino, “Automatic generation of probabilistic relationships
for improving schema matching”. In Information Systems, 36(2), 2011.

[11] G. Salton, C. Buckley, “Term-weighting approaches in automatic text
retrieval”. In Information Processing & Management 24(5), 1988.

[12] S. Banerjee and T. Pedersen, “Extended Gloss Overlaps as a Measure of
Semantic”. Proc. of the Eighteenth Int’l Joint Conference on Artificial
Intelligence, pp. 805-810, 2003.

[13] S. Patwardhan, T. Pedersen, “Using WordNet Based Context Vectors to
Estimate the Semantic Relatedness of Concepts”. Proc. of the EACL
2006 Workshop Making Sense of Sense, pp. 1-8, 2006.

[14] C. Leacock and M. Chodorow, “Combining local context and WordNet
similarity for word sense identification”. In C. Fellbaum, editor,
WordNet: An electronic lexical database. MIT Press, 1998.

[15] Carnegie Mellon University Software Engineering Institute, “CMMI for
Development, Version 1.2" (pdf), 2006.

[16] ISO TC176, "DIS 9001:2000 Quality Management Systems -
Requirement." (pdf), 1999.

[17] P. Diaconis, R. L. Graham, “Spearman's Footrule as a Measure of
Disarray”, Journal of the Royal Statistical Society 39(2), 262-268, 1977.

[18] F. Mandreoli, W. Penzo, S. Sassatelli, S. Lodi, R. Martoglia, “Semantic
Peer, Here are the Neighbors You Want!”. Proc. of the 11th Int’l Conf.
on Extending Database Technology (EDBT), pp.26-37, 2008.

136 137

Inconsistency-Induced Heuristics for Problem Solving

Du Zhang
Department of Computer Science

California State University
Sacramento, CA 95819-6021

zhangd@ecs.csus.edu

Abstract

Inconsistency is ubiquitous in the real world, in human
behaviors, and in the computing systems we build.
Inconsistency manifests itself in data, information,
knowledge, meta-knowledge, and expertise. The focus of
this paper is on how inconsistency at the level of
information or knowledge can be utilized as important
heuristics in problem solving process. Using as an
example a recent high profile question-answering system,
the IBM’s Watson computer system, we see the importance
of reasoning about inconsistency in both Watson’s
tremendous success and its embarrassing moment in the
first ever human-versus-machine Jeopardy! TV quiz show.
We then describe a general framework for capturing
inconsistency-induced problem solving heuristics. The
take-home message is that inconsistency is a terrible thing
to waste, and we should capitalize on what inconsistency
reveals and utilize it to help improve our problem solving
process.

Keywords: inconsistency, heuristics in problem solving,
inconsistency based heuristics.

1. Introduction
Inconsistency is ubiquitous in the real world, in

human behaviors, and in the computing systems we build.
Inconsistency manifests itself in a plethora of phenomena
at different levels in the depth of knowledge, ranging from
data, information, knowledge, meta-knowledge, to
expertise. Data inconsistency arises when patterns in data
do not conform to an established range, distribution or
interpretation. The exponentially growing volumes of data
stemming from almost all types of data being created in
digital form, a proliferation of sensors and sensor
networks, and other sources such as social networks,
complex computer simulations, space explorations, and
high-resolution imagery and video, have made data
inconsistency an inevitability. Information inconsistency
occurs when meanings of the same data values become
conflicting or when the same attribute for an entity has
different data values. Knowledge inconsistency happens

when propositions of either declarative or procedural
beliefs, in explicit or tacit form, yield antagonistic
outcomes for the same circumstance. Inconsistency can
also emerge from meta-knowledge or from expertise. How
to manage and reason in the presence of inconsistency in
computing systems is a very important issue in semantic
computing, social computing, and many other data-rich or
knowledge-rich computing paradigms.

The focus of this paper is on how inconsistency at the
level of information or knowledge can be utilized as
important heuristics in problem solving process. Heuristics
are strategies that rely on readily accessible but loosely
applicable information to control problem solving
processes [11]. Heuristic methods, such as a rule of thumb,
an educated guess, an intuitive judgment, domain
knowledge guided search, or common sense, are often
deployed for problem solving processes where there does
not exist an algorithmic approach or the search is
exhaustive.

When confronted with inconsistency, human beings
attempt to reason from inconsistency to consistency [7, 9].
Parallel to the cognitive consistency theory of human
problem solving, generating and utilizing inconsistency
induced heuristics is also conducive in computing system
based problem solving process.

The rest of the paper is organized as follows. Section
2 offers a brief review on some related work. Section 3
describes the importance of reasoning about inconsistency
through a recent high profile question-answering system,
the IBM’s Watson computer system, that demonstrates
both its tremendous success and some embarrassing
moment in the first ever human-versus-machine Jeopardy!
TV quiz show. This case epitomizes the usefulness of
inconsistency induced heuristics. In Section 4, we propose
a framework where inconsistency in information or
knowledge can be translated into useful problem-solving
heuristics. Section 5 concludes the paper with remarks on
future work.

2. Related Work
In cognitive science, the theory of cognitive

dissonance underpins human behaviors toward

138 139

inconsistency [3, 5]. Human cognitions fall into irrelevant,
consonant or dissonant categories. When confronted with
dissonant cognitions or inconsistent knowledge, human
beings will be in a cognitive, emotional, psychological, or
behavioral dissonant state. As a result, individuals will
experience some unpleasant psychological tension which
has motivational properties not unlike those of hunger or
thirst, and they will be motivated to reduce dissonance
through behavioral changes.

There are cognitive dissonance related heuristics that
are used to condition human behavior in the face of
inconsistency, for instance, changing attitudes, beliefs or
actions, justifying, blaming, or denying [3].

A number of reasoning paradigms in AI, such as
resolution refutation or default reasoning, are based on
recognizing and utilizing inconsistency as important
heuristics [2].

As the basis for effective and powerful heuristics,
inconsistency has also been incorporated into computing
system based problem solving processes [19, 20]. Here we
use digital forensics as an example to see how ample the
opportunities are in taking advantage of inconsistency for
problem solving objective. In the field of digital image
forensics, there are a number of effective inconsistency
based heuristics in detecting forgeries. The first type of
heuristics is based on lighting inconsistency [4, 8]. In
digital images, lighting inconsistency refers to a
circumstance where shapes, colors, locations or directions,
or number of sources of reflected light on objects are
inconsistency. For instance, when specular highlights
(small white specks of reflected light in people’s eyes) in
an image result in inconsistent lighting directions, number
of sources, or shapes, it is evidence of image altering [4,
8]. So any presence of lighting inconsistency can be used
as an effective heuristic to identify image tampering. The
second type of heuristics is based on the local noise level
inconsistency [10]. Normally in an authentic digital image,
the noise is uniformly distributed across the entire image.
Tools used to alter images often inject locally randomized
noise to the forged regions so as to conceal the evidence of
tampering, thus creating inconsistencies in the levels of
noise in the image. The work in [10] described an
approach that detects tampering through recognizing noise
level inconsistencies in an image. The approach is based
on decomposing an image into segments of various noise
levels. The third type of heuristics is based on the blocking
artifact inconsistencies [15]. In JPEG images, due to the
fact that digital camera manufacturer and image processing
software often utilize different JPEG quantization tables to
balance between compression ratio and image quality,
different blocking artifacts will be injected into the images
as a result. When a digitally forged image is created from
several sources, the resulting image invariably contains
different sorts of compression artifacts. In addition, many
image manipulation operations such as image splicing, re-
sampling, or skin optimization, will generate differential

blocking artifacts. These blocking artifact inconsistencies
can serve as very effective heuristics in detecting tampered
images.

Many other areas of endeavors can also benefit from
recognizing the clues inconsistency helps reveal, and
devising and utilizing inconsistency induced heuristics in
the problem solving processes [19, 20].

3. What Watson Has Demonstrated?
A recent success story on utilizing inconsistency as an

effective tool in problem solving is the IBM’s Watson
computer system. Watson was developed with the goal to
compete at the human champion level in real time on
Jeopardy!, an American TV quiz show that had its original
series premiere in March 30, 1964, and that started its
current series premiere in September 10, 1984. Early in
2011, Watson competed in the show’s first ever human-
versus-machine, two-game combined-point matchup.
Broadcasted in three Jeopardy! episodes during February
14-16, 2011, Watson was pitted against two top human
players, Ken Jennings, the record holder for the longest
championship streak at 74 games, and Brad Rutter, the
biggest all-time money winner on Jeopardy!. Watson was
triumphant over the human players and walked away with
the first prize of $1 million.

IBM’s Watson computer system is an open domain
question-answering system that was developed with
advanced natural language processing, information
retrieval, knowledge representation and reasoning, and
machine learning technologies [6, 13]. Watson has a
massive parallel computing infrastructure: 90 IBM Power
750 servers with each server having four POWER 7
processors, each POWER 7 processor having 8-core with
each core capable of running 4 threads, and 16 terabytes of
RAM. Underpinning Watson’s open-domain question-
answering capability is IBM’s DeepQA technology that
allows for question analysis and decomposition, hypothesis
generation and filtering, evidence retrieval and scoring,
merging and ranking answers, and confidence estimation
(see Figure 1) [6]. Watson has access to its local resources
of 200 million pages of structured and unstructured content
including dictionaries, encyclopedias, news articles, and
other reference materials [13].

A number of components in Watson use inconsistency
as heuristics for hypothesis and evidence scoring. For
instance, temporal reasoning is deployed in Watson to
“detect inconsistencies between dates in the clue and those
associated with a candidate answer” [6]. Another scoring
component, geospatial reasoning, is capable of detecting
spatial inconsistencies stemming from conflicting spatial
relations such as “directionality, borders, and containment
between geoentities” [6]. When scores for individual
pieces of evidence are combined to produce overall
evidence profiles for candidate answers, inconsistencies
will be examined from dimensions such as name
consistency or theory consistency [6].

138 139

Figure 1. IBM DeepQA High-Level Architecture [6].

Despite the aforementioned inconsistency-based
heuristics in place in its DeepQA engine, Watson flubbed
during the Final Jeopardy! question at the end of the first
match. The category for the Final Jeopardy! question was
US Cities, and the answer was: “Its largest airport is
named for a World War II hero; its second largest, for a
World War II battle.” Whereas both human players
responded correctly with “What is Chicago?”, Watson’s
response was a confused one: “What is Toronto?????”.

The case of Watson’s response of “Toronto” to the
question category of “US Cities” constitutes what is
referred to as anti-subsumption inconsistency in [16, 18].
Given a taxonomy of concepts, when there is no longer a
subsumed relationship between a sub-concept (Toronto)
and its super-concept (US Cities), this antagonistic
circumstance is called anti-subsumption inconsistency.
The manager of the Watson project at IBM Research,
David Ferrucci, offered the following explanation on
Watson’s flub [14]:

First, the category names on Jeopardy! are tricky.
The answers often do not exactly fit the category.
Watson, in his training phase, learned that
categories only weakly suggest the kind of answer
that is expected, and, therefore, the machine
downgrades their significance. The way the
language was parsed provided an advantage for
the humans and a disadvantage for Watson, as
well. “What US city” wasn’t in the question. If it
had been, Watson would have given US cities
much more weight as it searched for the answer.
Adding to the confusion for Watson, there are
cities named Toronto in the United States and the
Toronto in Canada has an American League

baseball team. It probably picked up those facts
from the written material it has digested. Also, the
machine didn’t find much evidence to connect
either city’s airport to World War II. (Chicago
was a very close second on Watson’s list of
possible answers.) So this is just one of those
situations that’s a snap for a reasonably
knowledgeable human but a true brain teaser for
the machine.

What Watson has taught us is that there are still gaps
in Watson’s repertoire of hypothesis and evidence scoring
components. The steps in soft filtering, deep evidence
scoring, and final merging and ranking can be further
strengthened by incorporating additional inconsistency
based heuristics so as to avoid producing glaring
conflicting answers.

4. Inconsistency-Induced Heuristics
Heuristics are criteria or approaches to be used to

determine which course of action among several
alternatives is the most promising one toward
accomplishing some objective, and they are meant to strike
a balance between keeping the criteria simple and keeping
them discriminate fittingly between more promising and
less promising choices [11]. Toward the aforementioned
goals, inconsistency induced heuristics can be defined
based on inconsistency categories, causes, morphology,
and desired actions.

In this paper, we focus our attention on inconsistency
at levels of information and knowledge in the depth of
knowledge hierarchy of data, information, knowledge,
meta-knowledge, and expertise. Table 1 summarizes the

140 141

causes of inconsistency and possible models of heuristics.
Table 2 captures some of the most general categories and
morphologies of inconsistency.

Table 1. Inconsistency Causes and Models.

Cause

Ontology related reasons
Epistemic conflicts
Conflicting defaults
Lack of complete information
Uncertainty
Defeasible inheritance induced
Assertion lifting
Reliability of information sources
Belief revision due to cognitive
penetrability
Deliberate act
Concept forming process in
description logic

Possible
models of
heuristics

Closed-world reasoning
Mutually exclusive principle
Locality of inconsistency principle
Context principle
Shortest path

Inconsistency can be caused by a whole host of
circumstances. Ontologically, conflicting concept
subsumptions, contradicting membership relations, or lack
of constraints on ontology specifications can be causes for
inconsistency. Epistemologically, different agents may
hold beliefs that are inconsistent with each other.
Conflicting defaults, lack of information, information
source reliability can all contribute to inconsistency. In
property inheritance, the case in which an inherited
property can be overridden may result in inconsistency.
When an agent’s knowledge is compartmentalized, lifting
assertions from one compartment to another can introduce
inconsistency. Finally, inconsistency can also be the result
of some deliberate act.

Heuristics in general can be derived or discovered
under some simplified models [11]. The types of models
that can be utilized in defining inconsistent phenomena
induced heuristics include: closed world assumption to be
used in calculating number of positive and negative pieces
of evidence; mutually exclusive principle applied when
sets of entities are mutually exclusive and jointly
exhaustive; locality of inconsistency to be used to identify
scopes or clusters of inconsistent phenomena [21]; context
principle relying on analyzing the context for clues; and
shortest path giving preference to shorter paths in
inheritance networks [2].

When cast in the light of logical formalism,
inconsistency can take on the following morphologies [16,
18]: (1) complementary: an atom and its negation; (2)
mutually exclusive: mutually exclusive predicates that are
syntactically different and semantically opposite of each
other; (3) incompatible: an atom and the negation of its

syntactically different but logically equivalent relation; (4)
anti-subsumption: the antagonistic situation where a
subtype is no longer subsumed by its supertype; (5) anti-
supertype: the converse of the anti-subsumption where the
negation of the supertype and one of its subtypes hold at
the same time; (6) asymmetric: a symmetric relation and
its negation both hold; (7) anti-inverse: a relation and the
negation of its inverse relation exist; (8) mismatching: a
concept and the negation of one of its conjunctive and
substantiating sub-concepts hold; (9) disagreeing:
propositions having reified but disagreeing quantities for
the same attribute; (10) contradictory: relations containing
attribute values that violate type restrictions or integrity
constraints; (11) precedence: opposite precedence
relationships being asserted for the same set of entities;
and (12) inconsistent probability value type (iProbVal): if

L, the probability value for L is outside the region
specified by the extreme values of probabilities for .

Table 2. Categories and Morphologies of Inconsistency.

Category Morphology

Logical

Complementary
Mutually exclusive
Incompatible
Anti-subsumption
Anti-supertype
Asymmetric
Anti-inverse
Mismatching
Disagreeing
Contradictory
Precedence
iProbVal

Temporal Partial temporal inconsistency
Complete temporal inconsistency

Spatial
Topological inconsistency
Location/attribute inconsistency
Structural/semantic constraint
violations

Ontological Conflicting concept subsumptions
Contradicting membership
relations

Argumentation Rebutting argument
Undercutting argument
Counterargument

Contextual Inconsistent with context
Inconsistent to expectation

When the concept of time is incorporated, we have
partial temporal inconsistency, and complete temporal
inconsistency [17]. In the geospatial context, there are
violations of geometrical properties and spatial relations
(Topological inconsistency), spatial objects having
conflicting geometric locations (location/attribute
inconsistency), and structural/semantic constraint

140 141

violations [12]. In the ontological category, there are
conflicting concept subsumptions and contradicting
membership relations [20]. From the perspective of
argumentation, inconsistency manifests itself in terms of
rebutting argument which has a claim that is the negation
of another argument’s claim, undercutting argument which
has a claim that contradicts some of the assumptions of
another argument, and counterargument which is either
rebutting or undercutting argument with regard to another
argument [1]. Finally inconsistency can also arise from
contextual related circumstances where responses to events
are either inconsistent with the context or inconsistent with
regard to expectation.

Before describing a general framework for
inconsistency induced heuristics, we need to have some
concepts in place. Let be a set containing (possible)
conflicting circumstances or contradicting pieces of
evidence and () be a set of alternative outcomes or next
steps in the presence of . Let denote elements in ():

 = { i | i ()}.
We use to represent a set of k attributes for the

context of i :
() = { k(i) | i k [1,.., m]}

Finally, is a set of weights for :
() = { k(k(i)) | i k(k(i)) [0, 1]

(()) = 1}
Now we are in a position to define a general

framework for inconsistency induced heuristics.

Framework for Inconsistency Induced Heuristics

Input: , , ,
Output: most desirable outcome:
o Identify category, morphology and cause of inconsistency1

o Select appropriate model of heuristics
o Calculate prognosis for each outcome

Let be the kth weight for the ith outcome;
Let be the kth attribute for the ith outcome;
for each i do {

prognosis(i) =
}

o Determine the most desirable outcome
= argmax{prognosis(i)}

 i
return(); �

Example. Let us use Watson’s response to the airport
clue as an example, and see how Watson could have
avoided responding with an obvious wrong answer, had
Watson been equipped with some scoring components
based on inconsistency induced heuristics in its soft

1 Detecting and discerning category, morphology and cause of
inconsistency are prerequisites to determining the type of
heuristics to deploy. Space limit does not allow for elaboration in
this paper.

filtering, deep evidence scoring and/or final merging and
ranking (Figure 1). To facilitate the discussion, assume the
clue in the Final Jeopardy! question can be represented as
follows where is the domain of all north America cities
and is the domain of all airports in north America:

x . y . z . [city(x) us_city(x)
has_largest_airport(x, y) has_2ndlargest_airport(x, z)

namedfor_WWII_hero(y) namedfor_WWII_battle(z)
(y, z)].

Though no official analysis is available for Watson’s
performance in the televised Jeopardy! Show during
February 14-16, 2011, from the initial explanation in [14],
we can speculate that2

Watson’s hypothesis generation module produced
several candidate answers including Toronto, Canada
(“the Toronto in Canada has an American League
baseball team”); Chicago (“Chicago was a very close
second on Watson’s list of possible answers”); and
several US cities by the name Toronto (“there are
cities named Toronto in the United States”). Let’s
assume that “Toronto, Iowa”, “Toronto, Kansas”,
“Toronto, Ohio”, and “Toronto, South Dakota” are the
US cities Watson considered.
At least three of the aforementioned cities survived the
soft filtering, deep evidence scoring, and final
merging and ranking stages to become candidates for
the answer. These cities were in the following order of
Watson’s confidence: Toronto, Canada, Chicago, and
a third city named Toronto in US.
The other reasons given to explain Watson’s behavior
(weak connection between category and type of
response desired, parsing of the language, and US
Cities not appearing in the question) should not be as
critical to the mistake as the lack of some
inconsistency based sanity checking component to
guarantee the consistency between the category and
the candidate answers. When the system does not have
adequate information or knowledge to respond to the
question at hand, high precision becomes a more
important issue.
It seems that the “spatial containment” scoring
component [6] failed in this case.
Watson seemed to rely on other indirect evidence such
as sport teams as part of evidence scoring (Toronto in
Canada has an American League baseball team).

Using ap1, ap2, n1, n2, and bt to denote the following
properties (attributes) for a city: has_largest_airport,
has_2ndlargest_airport, namefor_WWII_hero, and
namedfor_WWII_battle, and a major league baseball team,
respectively, we have the following context for an

2 The quotes in italic were taken from David Ferrucci’s
explanations in [14] on why Watson responded with Toronto,
Canada.

142 143

inconsistency induced heuristic (information in Table 3
was obtained via Google search: {Pearson, Downsview}
for Toronto_Canada, {O’Hare, Midway} for Chicago,
{Maquoketa, Clinton} for Toronto_IA, {Yates, Heir} for
Toronto_KS, {Eddie Dew, Granatir} for Toronto_OH, and
{Brookings, Clear Lake} for Toronto_SD).

Table 3. Possible Context for Sanity Checking.

city (candidate answer) us_city ap1 ap2 n1 n2 bt
Toronto_Canada + + +
Chicago_IL + + + + + +
Toronto_IA + + +
Toronto_KS + + +
Toronto_OH + + +
Toronto_SD + + +

Since the set of incompatible evidence
{city(Toronto_Canada), us_city(Toronto_Canada)} would
constitute an instance of anti-subsumption inconsistency
[16, 18], hence we have = {city(Toronto_Canada),

us_city(Toronto_Canada)}. Given a possible set of
weights for attributes in the context, ={0.5, 0.1, 0.1, 0.1,
0.1, 0.1} and let attribute values “+” and “ ” be 1 and 0,
respectively, then the contextual heuristic would return
argmax{prognosis(i)} = Chicago.

5. Conclusion
In this paper, we examined the general issue of

inconsistency induced heuristics, and used the Watson
question-answering system as a salient example to drive
home the importance of taking full advantage of what
inconsistency has to offer and capitalizing it to help
improve problem solving processes. When utilizing
inconsistency as effective heuristics, we need to
understand various issues and dimensions antagonistic
circumstances entail. As quoted in [7], Henri Poincare
once said that contradiction is the prime stimulus for
scientific research. Indeed, inconsistency is a terrible thing
to waste.

Future work can be pursued in the following
directions. Details of the proposed framework still need to
be worked out. The specific patterns of heuristics under
various models need to be fleshed out. How domain-
specific information can be factored into the framework is
another issue worth exploring.

Acknowledgement. We would like to express our sincere
appreciations to the anonymous reviewers for their
comments that help improve the content and the
presentation of this paper.

References
[1] Besnard, Ph. & Hunter, A. Elements of Argumentation. MIT

Press, 2008.

[2] Brachman, R.J. & Levesque, H.J. Knowledge
Representation and Reasoning. Morgan Kaufmann
Publishers, 2004.

[3] Cognitive Dissonance, Wikipedia,
http://en.wikipedia.org/wiki/Cognitive_dissonance.

[4] Farid, H. Seeing Is Not Believing. IEEE Spectrum, Vol. 46,
No.8, 2009, pp. 44-51.

[5] Festinger, L., A Theory of Cognitive Dissonance. Stanford
University Press, Stanford, CA, 1957.

[6] Ferrucci, D., et al. Building Watson: An Overview of the
DeepQA Project. AI Magazine, Fall 2010, pp.59-79.

[7] Gotesky, R. The Uses of Inconsistency. Philosophy and
Phenomenological Research. Vol. 28, No. 4, 1968, pp.471-
500.

[8] Johnson, M.K. & Farid, H. Exposing Digital Forgeries by
Detecting Inconsistencies in Lighting. Proc. of ACM
Multimedia and Security Workshop, 2005.

[9] Johnson-Laird, P.N., Legrenzi, P. & Girotto, V. Reasoning
from Inconsistency to Consistency. Psychological Review,
Vol. 111, No. 3, 2004, pp.640-661.

[10] Mahdian, B & Saic, S. Using Noise Inconsistencies for
Blind Image Forensics. Image and Vision Computing,
Vol.27, 2009, pp.1497-1503.

[11] Pearl, J. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley Publishing,
1984.

[12] Rodriguez, A. Inconsistency Issues in Spatial Databases. In
L. Bertossi et al (eds.) Inconsistency Tolerance, LNCS 3300,
Springer-Verlag, 2004, pp.237-269.

[13] Watson (artificial intelligence software), Wikipedia,
http://en.wikipedia.org/wiki/Watson_(artificial_intelligence_
software).

[14] Watson on Jeopardy,
http://asmarterplanet.com/blog/2011/02/watson-on-
jeopardy-day-two-the-confusion-over-an-airport-clue.html.

[15] Ye, S., Sun, Q. & Chang, E.C. Detecting Digital Image
Forgeries by Measuring Inconsistencies of Blocking
Artifacts. Proc. of the IEEE International Conference on
Multimedia and Expo, 2007, pp.12-15.

[16] Zhang, D. Taming Inconsistency in Value-Based Software
Development. Proceedings of the Twenty First International
Conference on Software Engineering and Knowledge
Engineering, Boston, July 2009, pp.450-455.

[17] Zhang, D. On Temporal Properties of Knowledge Base
Inconsistency. Springer Transactions on Computational
Science V, LNCS 5540, 2009, pp.20-37.

[18] Zhang, D. Toward A Classification of Antagonistic
Manifestations of Knowledge. Proceedings of Twenty
Second International Conference on Tools with Artificial
Intelligence, Arras, France, 2010, pp.375-382.

[19] Zhang, D. Inconsistencies in Information Security and
Digital Forensics. Proceedings of the Eleventh IEEE
International Conference on Information Reuse and
Integration, Las Vegas, NV, August 2010, pp.141-146.

[20] Zhang, D. Inconsistency: The Good, The Bad, and The
Ugly. International Transactions on Systems Science and
Applications, Vol.6, No.2/3, August 2010, pp.131-145.

[21] Zhang, D. On Localities of Knowledge Inconsistency.
International Journal of Software Science and
Computational Intelligence, Vol.3, No.1, 2011, pp.61-77.

142 143

Mapping CommonKADS Knowledge Models into
PRR

Nicolas Prat
ESSEC Business School

Paris, France
prat@essec.edu

Jacky Akoka
CEDRIC-CNAM & Institut Telecom

/ TEM Research
Paris, France

akoka@cnam.fr

Isabelle Comyn-Wattiau
CEDRIC-CNAM & ESSEC

Business School
Paris, France

wattiau@cnam.fr

Abstract—This paper aims at supporting the knowledge
engineering process by proposing an approach to map
CommonKADS knowledge models into specifications based on
the Production Rule Representation (PRR) language. This
approach starts by proposing a metamodel of CommonKADS
knowledge models. We define the concept of inference group,
required to perform the mapping transformations, and an
algorithm that identifies inference groups automatically. We
then proceed to the definition of transformation rules. The
latter are applied to map CommonKADS knowledge models
into a set of PRR production rulesets, combined with UML
activity diagrams.

Keywords – CommonKADS, Model Driven Approach,
Production Rule Representation, metamodel, mapping

I. INTRODUCTION

It is well accepted that the cross-fertilization between
software engineering and knowledge engineering can
significantly improve the design of knowledge-based and
expert systems. The aim of this paper is to present an
approach enabling the mapping of CommonKADS
knowledge models into specifications based on the
Production Rule Representation language (PRR). The
following aspects mainly motivate our work:

The CommonKADS methodology is a widely used
knowledge engineering method. Even if
CommonKADS is more generally suited to systems
where knowledge plays an important role, it does not
necessarily lead to the development of expert
systems. It focuses more on knowledge engineering
issues. CommonKADS knowledge models are
therefore specified at the analysis level. It can be
considered as the Computational Independent Model
(CIM) level of the Model Driven Approach (MDA
[8]).

On the other hand, PRR represents a relatively recent
standardization effort conducted by OMG [10]. PRR
is situated at the Platform Independent Model (PIM)
level of MDA. We assume that the knowledge
system will be implemented as production rules.
PRR represents this knowledge in the design phase.

There exists a possible convergence between
CommonKADS knowledge models and PRR, since

both are based on UML. However, the two are not
completely related. Therefore, a mapping of
CommonKADS knowledge models into PRR is an
open research problem. We argue that such a
mapping can be very useful.

To perform such a mapping, we propose an algorithm
aiming at the definition of “inferences groups” as well as
several transformation rules.

The rest of the paper is organized as follows. Section II is
devoted to a presentation of related work. We describe in
Section III the main concepts of the PRR metamodel. Our
CommonKADS metamodel is presented in Section IV. The
algorithm and the transformations used to map
CommonKADS knowledge models into PRR are described
in Section V. Finally, Section VI is devoted to the
conclusion and future research.

II. RELATED WORK

 CommonKADS [13] is a widely referenced methodology
for designing knowledge-based systems [2,5,7,14,15]. As
mentioned in the previous section, there exists a possible
convergence between CommonKADS knowledge models
and PRR, since both are based on UML. However, the two
are not completely related. [1] offers an approach enabling a
mapping between the knowledge model and JESS, based on
a UML profile. However, the knowledge model presented in
their approach is less detailed than the one presented in this
paper. Moreover, this mapping is situated at the Platform
Specific Model (PSM) level of MDA. Finally, let us
mention that the description of the design level in
CommonKADS [13] is relatively limited, especially
compared to the richness of its analysis level as well as its
knowledge model. The design level consists mainly in the
“direct” mapping of concepts of the analysis level (including
knowledge model concepts) as design classes. This
approach does not help much the designer, hence the interest
of a bridge with PRR in order to switch to the design level.
[16] proposes to combine OWL, SWRL and JESS to build a
knowledge level modeling. [17] describes and compares
several rule languages with the objective of modeling

144 145

business processes. [4] is a recent and detailed state-of-the-
art on rule-based systems.

III. MAIN CONCEPTS OF THE PRR METAMODEL

The Production Rule Representation language (PRR) [10]
has been proposed by OMG for high-level (tool-independent)
representation of rules. Fig. 1 is an excerpt of the metamodel
of PRR, with the main concepts relevant in this research.

Production rules are the central concept of PRR.
Production rules may reference and modify classes (possibly
defined in a UML [11] class diagram). Rules are grouped
into rulesets. A ruleset is a collection of rules with a
particular mode of execution (operational mode). The mode
of execution is either sequential or inferencing. In the
sequential mode, rule execution order is determined by the
sequence of rules in the ruleset. In the inferencing mode, the
inference engine controls rule execution order. PRR currently
supports forward chaining only, and suggests RETE [3] as a
possible algorithm. A PRR rule may have a priority.
Priorities are used for conflict resolution, i.e. to choose the
rule to execute when there are several candidate rules.

A production rule is typically represented as if
[condition] then [action-list]. An action may be the
invocation of an operation associated with a class, the
assignment of a value to an expression, or an action that
updates the state of the rule engine (e.g. an action that asserts
– creates – a new object).

Variables may be defined at the ruleset level or at the rule
level. Rule variables are used for binding.

PRR rules can be represented formally, based on an
extension of the Object Constraint Language (OCL) [9].
Imperative expressions are used to represent rules actions.
Navigation call expressions are used to navigate within or
between objects.

PRR is a powerful language for expressing rules, as
illustrated in [12] in the domain of data warehousing and
OLAP.

IV. MAIN CONCEPTS OF COMMONKADS KNOWLEDGE
MODEL

CommonKADS knowledge models can be specified
diagrammatically, and textually using the CommonKADS
Modeling Language (CML). CML is a structured, semi-
formal language. In [13], the syntax of CML is described, but
the authors do not provide a metamodel of the
CommonKADS knowledge model. Metamodels of the
CommonKADS knowledge model have been proposed in the
literature, but they are too succinct to be useful in our
approach [1,6]. Our metamodel, defined as a UML class
diagram, is presented in Fig. 2. It describes the main
concepts of the CommonKADS knowledge model.

A knowledge model has three components: domain
knowledge, inference knowledge and task knowledge.
Domain knowledge represents the structure of the knowledge
system, while inference knowledge and task knowledge
represent its behavior. Another key difference is that

inference and task knowledge are domain-independent, thus
facilitating their reuse across several domains. For example,
the assessment task may be used in several domains. The
mapping of inference and task knowledge with domain
knowledge is performed through the concept of knowledge
role.

The structure of domain knowledge is described in a
domain schema. This schema is represented as a UML class
diagram. The main elements of a domain schema are
concepts, relations and rule types. Concepts and relations
correspond to the UML concepts of class (without
operations) and association respectively. Rule types are
specific to knowledge systems. They are prominently
implication rule types, relating an antecedent concept to a
consequent concept. The connection symbol specifies the
semantics of the implication. The cardinalities of the
antecedent (respectively the consequent) indicate the
minimum and maximum number of expressions of the
antecedent class (respectively the consequent class) in an
instance of the rule type. Besides implication rule types,
constraint rule types may be defined. Constraint rule types
are internal to a concept. They can be considered as integrity
constraints defined on this concept.

Figure 1. Main concepts of the PRR metamodel [10]

Knowledge bases are instances of domain schemas. They
are primarily made of rule type instances.

144 145

The behavior of the knowledge system is represented
with task knowledge and inference knowledge. Tasks, task
methods, inferences and transfer functions are related
through functional decomposition. A task may be performed
through one (or possibly several alternative) task method(s)
(OR-decomposition). A task method is then specified by its
functions (inferences, transfer functions or tasks), related
together by a control structure (AND-decomposition). The
tasks of task methods are in turn OR-decomposed into task
methods, etc… Inferences and transfer functions appear at
the lowest decomposition level. An inference carries out a
primitive reasoning step. Its internal structure may itself be
complex but, in the knowledge model, it is represented as a
black box. Transfer functions are used to communicate with
the external world (information flows between the system
and the user, at the initiative of the system or of the user).
The transfer function “obtain”, whereby the system asks the

user to enter an information item, is frequently used. In this
paper, we will focus on this transfer function.

Knowledge roles will be used to connect task and
inference knowledge to domain knowledge. Dynamic
knowledge roles are the inputs or outputs of functions. These
roles will generally map to concepts in the domain schema.
In the control structure of a task method, intermediate
knowledge roles may be used (i.e. roles that are not input or
output roles of the task specified by the task method). Static
knowledge roles specify the collection of domain knowledge
used inside an inference. A static knowledge role will
generally map to an implication rule type in the domain
schema.

Domain mappings perform the mapping of knowledge
roles to the domain schema. In some cases, a role may map
to a collection (a set or a list) of a concept.

Figure 2. Metamodel of the CommonKADS knowledge model

146 147

V. MAPPING COMMONKADS KNOWLEDGE MODELS INTO
PRR

A. Overview of our Approach
A specificity of our approach is to use PRR to represent

knowledge in the design phase. Thus, our approach consists
in mapping CommonKADS knowledge models into PRR.
We assume that the knowledge system will be implemented
as production rules in an expert system. In this context, the
choice of PRR is appropriate.

Our approach is divided into two steps:

1. Before applying the mapping transformations,
groups of inferences and transfer functions
(more particularly, “obtain” transfer functions),
are defined in the knowledge model. To this
end, we propose an algorithm for defining such
groups, called “inference groups”. This
algorithm operates on the control structure of
task methods, represented as UML activity
diagrams.

2. The transformations are then applied to map the
knowledge model to the design level. The result
is a set of PRR production rulesets, combined
with UML activity diagrams.

B. Inference Groups
Before applying the mapping transformations, we need to

group inferences and transfer functions (more specifically
“obtain” transfer functions, on which we focus in this paper)
into what we will call “inference groups”. The rationale for
this is to prepare for the mapping of inferences into PRR
production rulesets. Inferences in CommonKADS are often
more fine-grained than PRR can represent with a single
production ruleset. It is therefore advisable, when possible, to
group inferences and then map them into a single PRR
production ruleset. This way, the sequencing of the
inferences inside the group will be represented inside the
PRR production ruleset, instead of having to represent this
sequencing with a complementary formalism (in our case,
UML activity diagrams). Furthermore, “obtain” transfer
functions can in certain cases be mapped using variables in
PRR production rulesets. However, to this end, they need to
be grouped with an inference (or inferences) following them.
The resulting inference group will be mapped into a single
production ruleset in PRR. We present below the properties
that must be satisfied by inference groups.

Property 1: An inference group is a group of two or more
consecutive actions within the same control structure (i.e.
inside the same “linear group of actions”).

In our approach, we define a “linear group of actions” as
one (or possibly more) action(s) not separated by a control
structure. For example, actions separated by a decision node
are in different control structures; actions in the “setup” part,
the “test” part and the “body” part of an "until" loop each
belong to different linear groups of actions. Our concept of
“linear group of actions” is a specialization of the concept of

ActivityGroup defined in UML [11]. Within a “linear group
of actions”, actions are linearly ordered. This follows from
the fact that (1) these groups do not span across multiple
control structures, and (2) we do not manage parallelism
between actions (this could be the object of a future
research).

We require actions of an inference group to be within the
same control structure since the idea of defining an inference
group is to map this group into a single PRR production
ruleset, and control structures may not be used to combine
the production rules within a production ruleset (as described
in Section III, production rules in a production ruleset may
only be executed sequentially or in forward-chaining mode).

Property 2: The actions of an inference group may only
be inferences or “obtains”. An inference group consists of
one (or a series of) inference(s), possibly preceded by one (or
several) obtains.

Inference groups may not contain tasks, because tasks are
too high level to be mapped directly into PRR. In
CommonKADS, a task needs to be further decomposed, as
explained previously. In addition, inference groups do not
integrate actions on roles (stereotyped actions
<<WriteVariable>>, <<AddVariableValue>> and
<<RemoveVariableValue>>), since these operations on
variables (roles) are an important part of the global control
structure of a task method, and therefore we avoid merging
them with other actions into an inference group.

An inference group needs to contain at least one
inference since a PRR production ruleset, into which the
inference group will be mapped, is a collection of rules; and
in CommonKADS, it is through inferences that rules are
executed. The inference group may start with one (or several)
obtain(s), which will be mapped using the concept of
variable at the beginning of the PRR production ruleset.

Property 3: In an inference group, the outputs of
“obtains” and of intermediary inferences are not used as
inputs to actions or structured activity nodes outside the
inference group.

When “obtains” and inferences will be merged into a
single inference group, the output of the resulting inference
group will be the output of the last inference of the inference
group; the other outputs will no longer be represented
explicitly, they will be internal to the inference group.
Consequently, the outputs of an “obtain” or of an
intermediary inference should not be needed outside the
inference group.

C. The Inference-Group Building Algorithm
To identify inference groups within the activity diagram

representing the control structure of a task method, the
algorithm proceeds in two steps:

1. Grouping of actions into linear groups of
actions.

2. Identification of inference groups within each of
the linear groups of actions.

146 147

In step 1, the identification of linear groups of actions
proceeds by identifying the first action of each group, and
then recursively following the links (activity edges) to find
the next action, until the last action of the group is met.
Initially, all actions of the activity diagram are unmarked;
actions are marked as they are incorporated into linear
groups of actions.

An action is the first action of a linear group of actions if
it is the target of an activity edge from a control node (e.g. a
decision node), or if it is not the target (directly or through
pins) of another action. Similarly, an action is the last action
of a linear group of actions if it is the source of an activity
edge to a control node (e.g. a merge node), or if it is not the
source (directly or through pins) of another action. To find
the following action of a given action, activity edges are
followed. Since an action may have several indirect
successors, we need to find the immediate successor. To this
end, we use the constraint that the following action of an
action may not be the target of another action that is not
already present in the linear group of actions. Finally, in line
with the definition of linear group of actions, we constrain an
action and its immediate successor not to be separated by a
control node (there should not exist a path of edges between
an action and its next action such that this path contains a
control node).

In step 2, inference groups are identified within each
linear group of actions. This is done by traversing the actions
of linear groups of actions in reverse order. Each time an
inference is met, a candidate inference group is identified.
The preceding inferences are recursively incorporated into
the candidate inference group (as long as property 3 is
satisfied); the preceding obtains are then recursively
incorporated into the candidate inference group (as long as
property 3 is satisfied). A candidate inference group is
defined as an inference group if it contains at least two
actions.

D. The transformations
Once the inference groups have been identified, the

knowledge model is mapped to the design level, using the
transformations described below. The result is a set of PRR
production rulesets, combined with one UML activity
diagram for each task method.

At the design level, we replace dynamic and intermediate
roles by their domain mapping. This is at the expense of
reusability, but reusability in CommonKADS is performed
primarily at the analysis level through the reuse of template
knowledge models. Furthermore, domain mapping makes
activity diagrams more readable. We also simplify activity
diagrams at the design level by keeping only the variables on
which actions are performed (<<WriteVariable>>,
<<AddVariableValue>> or <<RemoveVariableValue>>).

The transformations described below focus on the non-
immediate mappings between the analysis level and the
design level. (For example, implicitly, a concept, defined as a
UML class in the domain schema, is mapped into a class at

the design level; an action <<AddVariableValue>> in an
analysis activity diagram is mapped into the same action in
the design activity diagram, etc…)

Transformation T1: An inference or an inference group is
mapped into an action, represented internally as a production
ruleset.

Transformation T2: The input and output dynamic roles
of an inference or an inference group are mapped into input
and output parameters (pins) of the action resulting from
transformation T1.

Transformation T3: The input dynamic roles of an
inference or an inference group are mapped into parameters
of the production ruleset resulting from transformation T1.

Transformation T4: For each static knowledge role of an
inference or an inference group, the rule type instances of the
implication rule type referenced by the static knowledge role
are mapped into production rules in the production ruleset
resulting from transformation T1.

Transformation T4.1: Each antecedent or consequent of
the rule type (i.e. of the rule type of transformation T4), is
mapped into at least one rule variable in each of the
production rules.

Transformation T4.2: For each antecedent of the rule
type, there are at least as many navigation call expressions in
each of the production rules as indicated by the cardinality
between the antecedent and the rule type. These navigation
call expressions may be in the filter of the rule variable (or
variables) representing the antecedent, or in the rule
condition of the production rule.

Transformation T4.3: For each consequent of the rule
type, there are at least as many rule actions in each of the
production rules as indicated by the cardinality between the
consequent and the rule type. These rule actions are of the
assign type; they modify the class referenced by the
consequent, or one of its subclasses.

Transformation T4.4: For each consequent of the rule
type, an action of the assert type is created in each of the
production rules to record the fact that the production rule
has modified the consequent.

148 149

Transformation T5: For each input dynamic role of an
inference, the class referenced by the role is used at least
once in a rule variable filter expression in the production
ruleset resulting from transformation T1.

Transformation T6: For each input dynamic role of an
inference group, the class referenced by the role is used at
least once (1) in a rule variable filter expression in the
production ruleset resulting from transformation T1 or (2) in
the initialization of a variable in the production ruleset
resulting from transformation T1.

Transformation T7: Each “obtain” transfer function of an
inference group is mapped into a variable in the production
ruleset resulting from transformation T1.

Transformation T8: Each “obtain” transfer function
outside an inference group is mapped into an action.

VI. CONCLUSION

In this paper, we have presented an approach for mapping
CommonKADS knowledge models into specifications based
on the PRR language. We have introduced the concept of
“inference group”, and defined an algorithm for
automatically identifying inference groups, before
proceeding to mapping transformations. In order to map
knowledge models at the PIM level, we had to complete the
concepts of PRR with UML activity diagrams.

Due to space limitations, it was not possible to illustrate
our approach with an application. However, we have
successfully applied the approach (including the mapping
transformations) to a company buyout example, which is an
example of assessment task.

Further research will concentrate on the following issues:

Application of the mapping transformations to other
scenarios (besides the company buyout example).

Refinement of the transformations. In particular, in
the current transformations, we do not take into
account the distinction between sequential or
inferencing operational modes, neither the concept of
rule priority in the inferencing mode.

Formal representation of the transformations with the
QVT (Query/View/Transformation) language
associated with MDA.

Mapping of CommonKADS knowledge models into
other languages than PRR at the PIM level (All
CommonKADS knowledge is not necessarily meant
to be represented as production rules).

VII. REFERENCES

[1] M. Abdullah, I. Benest, R. Paige, and C. Kimble, “Using Unified
Modeling Language for conceptual modeling of knowledge-based
systems”, 26th International Conference on Conceptual Modeling (ER
2007), Auckland, New Zealand, November 2007, pp. 438-453.

[2] J. Andrade, J. Ares, R. García, S. Rodríguez, and S. Suárez, “A
knowledge-based system for knowledge management capability
assessment model evaluation”, WSEAS Transactions on Computers,
vol. 9, issue 5, May 2010, pp. 506-515.

[3] C. Forgy, “Rete: a fast algorithm for the many pattern/many object
pattern match problem”, Artificial Intelligence, vol. 19, issue 1, 1982,
pp. 17-37.

[4] A. Giurca, D. Gasevic, and K. Taveter, Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open Solutions
and Approaches, IGI Global, 2009.

[5] S.S. Hasan and R.K. Isaac, “An integrated approach of MAS-
CommonKADS, Model–View–Controller and web application
optimization strategies for web-based expert system development”,
Expert Systems with Applications, vol. 38, issue 1, January 2011, pp.
417-428.

[6] M. Moradi, M. Badja, and B. Vallespir, “Knowledge Based Enterprise
Engineering (KBEE): a modeling framework for enterprise
knowledge capitalization”, in B. Vallespir and T.Alix (eds),
Advances in Production Management Systems: New Challenges, New
Approaches, International IFIP WG 5.7 Conference, APMS 2009,
Bordeaux, France, September 21-23, 2009, Revised Selected Papers,
IFIP Advances in Information and Communication Technology, vol.
338, 2010, pp.433-440.

[7] D. Nabil, A. El-Korany, and A. Sharaf Eldin, “Towards a suite of
quality metrics for KADS-domain knowledge”, Expert Systems with
Applications, vol. 35, issue 3, October 2008, pp. 654-660.

[8] Object Management Group, MDA Guide version 1.0.1., document
number omg/03-06-01, http://www.omg.org/cgi-bin/doc?omg/03-06-
01.pdf.

[9] Object Management Group, Object Constraint Language (OCL)
specification, document number formal/2010-02-01,
http://www.omg.org/spec/OCL/2.2/PDF.

[10] Object Management Group, Production Rule Representation (PRR)
version 1.0 specification, document number formal/2009-12-01,
http://www.omg.org/spec/PRR/1.0/PDF.

[11] Object Management Group, Unified Modeling Language (UML)
version 2.2. Superstructure specification, document number
formal/2009-02-02,
http://www.omg.org/spec/UML/2.2/Superstructure/PDF.

[12] N. Prat, I. Comyn-Wattiau, and J. Akoka, “Combining objects with
rules to represent aggregation knowledge in data warehouse and
OLAP systems”, Data and Knowledge Engineering, in press.

[13] G. Schreiber et al., Knowledge Engineering and Management: the
CommonKADS Methodology, MIT Press, 2000.

[14] J. Sigut, J. Piñeiro, E. González, and J. Torres, “An expert system for
supervised classifier design: Application to Alzheimer diagnosis”,
Expert Systems with Applications, vol. 32, issue 3, April 2007, pp.
927-938.

[15] D. Sutton and V. Patkar, “CommonKADS analysis and description of
a knowledge based system for the assessment of breast cancer”,
Expert Systems with Applications, vol. 36, issue 2, March 2009, pp.
2411-2423.

[16] K. Ye, J. Yan, S. Wang, H. Wang and B. Miao, “Knowledge level
modeling for systemic risk management in financial institutions”,
Expert Systems with Applications, vol. 38, issue 4, April 2011, pp.
3528-3538.

[17] M. zur Muehlen and M. Indulska, “Modeling languages for business
processes and business rules: a representational analysis”, Information
Systems, vol. 35, issue 4, June 2010, pp. 379-390.

148 149

A Virtual Catalyst in the Knowledge Acquisition
Process

Geraldo Boz Jr,
Milton P. Ramos

TECPAR - Paraná Institute of
Technology

Artificial Intelligence Division
Curitiba, Brazil

{gbozjr, milton.ramos}@tecpar.br

Gilson Yukio Sato,
Cesar A. Tacla

UTFPR - Federal University of
Technology - Paraná

Curitiba, Brazil
{sato,tacla}@utfpr.edu.br

Julio C. Nievola,
Emerson Cabrera Paraiso

PUCPR - Pontifical Catholic
University of Paraná

PPGIa
Curitiba, Brazil

{nievola, paraiso}@ppgia.pucpr.br

Abstract—Noctua is a tool to assist the Knowledge Acquisition
and Collaborative Knowledge Construction processes. Noctua
contains a virtual catalyst designed to facilitate the task of
eliciting and validating knowledge. The virtual catalyst queries
collaborators, proposing new knowledge, seeking confirmation to
the knowledge already elicited, and showing conflicting opinions.
Noctua takes into account collaborators’ profiles in order to ask
them questions related to each one's field of knowledge or
interest. In this paper we present Noctua and the first
experimentation we did using the tool.

Keywords - knowledge aquisition; virtual catalist; collaborative
knowledge construction

I. INTRODUCTION

In this paper, we present a web tool called Noctua
(http://projetos.dia.tecpar.br/noctua/), which can be used for
Knowledge Acquisition (KA) and Collaborative Knowledge
Construction (CKC). Noctua has a virtual catalyst that aim at
overcoming some obstacles inherent to the KA process such as
lack of expert’s time availability and the difficulty in eliciting
and representing knowledge. The catalyst also helps surpassing
barriers innate to the CKC such as authorship registration and
knowledge validation. The idea is to insert into the process a
virtual member who plays the role of the catalyst, i.e. someone
"whose talk, enthusiasm, or energy causes others to be more
friendly, enthusiastic, or energetic" [3].

Noctua operates with conceptual knowledge, represented by
Knowledge Pages [1] and procedural knowledge, represented
by Production Rules [4].

The tool tracks users' actions and log their collaborations.
Additionally, the tool registers users' opinions confirming or
refuting something. This information is used by the virtual
catalyst to choose which questions to ask and which ones not to
ask to each user.

II. COLLABORATIVE KNOWLEDGE
CONSTRUCTION

This section presents the fundamental concepts for the
construction of the tool presented in section III.

A. The Knowledge and Knowledge Acquisition
For the purpose of this paper, knowledge may be

considered as information combined with experience, context,
interpretation and reflection, as defined in [5]. Milton presents
in [1] a technical definition according to which “knowledge is
the ability/skill/expertise to manipulate/transform/create
data/information/ideas to perform skillfully/make
decisions/solve problems”.

Knowledge Acquisition (KA) may be defined as “the
transfer and transformation of problem-solving expertise from
some knowledge source to a computer program” [6]. It is both
an art and a bottleneck in the construction of knowledge-based
systems [4].

The construction of a glossary of terms used by experts
should be one of the first steps in the design of knowledge-
based systems. According to Rolston [4], knowing experts’
vocabulary is a fundamental task in KA. Silva Junior et al. [7]
state that “an adequate design of a cognitive system depends on
the existence of a common vocabulary”.

One of the most popular KA techniques is the interview,
despite criticisms on its efficiency [8]. It may be structured or
unstructured, depending on its level of formalism and
specificity.

Creating scenarios is another KA technique, in which
experts are stimulated to explain their knowledge. Milton [1]
suggests the creation of scenarios that depict or envisage real
situations. Scenarios with potentially inconsistent or missing
information may stimulate experts to question them or to
identify inconsistencies that were not recognized until then.
This can be used by the knowledge engineer to make expert’s
knowledge explicit.

B. Collaborative Knowledge Construction
Ramalho and Tsunoda [9] state that the Information and

Communication Technologies created new spaces and forms
for the construction of knowledge. Systems for collaboration
(or collaborative software) make use of the Internet to foster
communication and information organization, providing tools
that facilitate the coordination inside groups of collaborators.

150 151

However, according to some researchers, the collaboration
via web has some disadvantages. Pettenati and Ranieri [10]
suggest that distance collaboration has deep social problems
related to trust and reputation of the participants. It requires the
development of a group culture and faces difficulties related to
knowledge representation and management. The difficulty of
representing the group and the competence of each member as
well as the lack of face-to-face contact may weaken the sense
of belonging and quickly lower the motivation to cooperate.

According to Nabeth et al. [11], the participation in
communities of CKC is not, in fact, spontaneous, but driven by
factors such as direct awards, gains from enhanced reputation
or personal influence power, personal satisfaction with
perception of their effectiveness and reciprocity. Participation
requires a climate of trust, a sense of community, and a
perception of recognition. These authors suggest a maximum
effort to make visible the actions of each collaborator and their
perceived value in the development of the collaborative
process. This is what they call Social Translucence.

C. Collaborative Tool for CKC
According to Ackerman et al. [12], a system for CKC must

have 3 basic characteristics: a tool for recording interviews, a
discussion forum and a local memory. Noy et al. [13] presented
a users’ reviews that compare the characteristics of several
collaborative tools. They highlighted as desirable:

An easy to use web interface;
The capacity to show the reliability of each knowledge
piece and each collaborator; and
The capacity to allow disagreements and discussions
about the knowledge under construction.

Lomas et al. [14] considered as important characteristics the
possibility of synchronous and asynchronous collaboration as
well as information about the authorship. Other important
features cited by them are: adequate communication tools,
easy-to-understand interface, image sharing, collaborative
construction of documents and social interaction.

Noy and colleagues presented in [15], desirable
characteristics of tools for collaborative development of
ontologies. We think that these features would be also welcome
at any CKC tool:

The capacity of tracking the changes undergone by the
knowledge during its construction and keeping all the
related comments and discussions;
The capacity to save old versions of knowledge, with
the possibility of further changing it and to discard
newer versions, as well as to compare two versions;
Automatic identification of conflicting knowledge and
mechanisms to resolve conflicts;
Users with the power of mentoring, who have the final
word on possible conflicts of knowledge.

D. Negotiation and Construction of Consensus
Collaborative construction of knowledge requires that all

collaborators understand the shared knowledge representation

and be able to express themselves by using it, to show their
agreement or disagreement with other participants and to
evolve, somehow, to a consensus or a final decision [2].

A collaborative tool must have rules about how knowledge
might be proposed, changed or deleted. Dieng et al. [16]
describe the CO4 protocol in which, when someone proposes a
change in the knowledge, if there is no disagreement, the
modification is performed. On the other hand, if there is any
disagreement, the modification is not made. All participants are
invited to comment and submit alternative proposals. The
discussion ends when the rejected proposal is removed or when
the disagreement is withdrawn.

According to Herrera and Fuller [17], negotiation is a key
aspect in CKC because building consensus among the
participants is a condition for the evolution of the knowledge
within its life cycle. Those authors constructed a negotiation
model that encompasses some predetermined actions such as:
request for explanation, suggestions for modification, and
adoption of a position by vote.

III. THE TOOL: NOCTUA

This section presents the general characteristics of our tool
called Noctua, highlighting the main characteristics of the
virtual catalyst.

A. The Noctua's Projects
Noctua allows every user to create KA/CKC projects.

Every project starts out empty. This allows collaborators inside
each project to work in their own area of knowledge and to
express themselves in their own specific way, focus and desired
depth.

B. Classification and Representation of Knowledge
Noctua allows the construction of two kinds of knowledge,

according to a classification presented by Milton [1]:

Conceptual Knowledge: tells what something is;
Procedural Knowledge: tells how to do something.

Noctua represents Conceptual Knowledge using
Knowledge Pages (KP), which describe the knowledge by
means of natural language texts and pictures.

Procedural Knowledge is represented by Production Rules
(PR) in the following format:

 if <list of conditions> then <list of conclusions>

Both representations were chosen because of their
similarity to natural language which allows people unfamiliar
to computers easily express their knowledge, as well as
understand the information expressed in those formats.

C. Features of the Collaboration Tool
To overcome the difficulties presented in section II

(subsection C), the Noctua allows the owner of each project to
classify users as owners, tutors, and collaborators, each one
with different permissions within a project.

150 151

Every collaborator may question the validity of a rule or
entry. Questioned knowledge becomes invalid and must be
discussed by the collaborators. If consensus is not reached, the
matter may be finally resolved by a tutor.

Noctua allows all knowledge to be tagged. Collaborative
tagging forms a folksonomy that reflects the collaborators'
knowledge about the domain and can be helpful in building
richer domain models in a consensual way [18].

Social Translucence is guaranteed by several aspects in the
tool, such as: the registration and the disclosure of the
authorship, chat between collaborators, and the disclosure of
events such as creation and deletion of knowledge pieces.

Silva Junior et al. [7] establish a set of basic functions
desirable in a groupware to support collaborative ethnography.
If those functions are adapted to KA or to CKC, it is possible to
see that Noctua embodies all of them:

Creating, updating and closing KA/CKC projects;
Recording users' profiles (and actively using them);
Assigning users to activities (projects and roles);
Recording notes and historical data (forums and instant
messages);
Creating documents (KPs and PRs);
Supporting discussion and negotiation (by questioning
knowledge and also in forums and instant messages);
Supporting the awareness of the level of participation
and contribution (by showing authorship statistics of
each one's participation);

D. The Virtual Catalyst
The catalyst stimulates knowledge creation by asking

collaborators questions and requiring their opinions (as shown
further in this paper). Acting as a newcomer among experts,
sometimes the catalyst asks impertinent questions, but
sometimes its questions requires experts to rethink their
concepts, so they may not only make their knowledge explicit
but also wider.

The catalyst presents a screen containing a presumed
knowledge (rule or some information within an entry). This
knowledge, however, can be an exact copy of what is in the
database or be a knowledge piece amended by the removal or
the insertion of information related to other knowledge piece.
In fact, when applied to rules, this technique creates scenarios
and it can be used as described on section II-A.

Some of the possible forms of stimulation based on
information in KPs are:

Could you write something about <concept X>?
What the text below is related to?
In the entry on <concept X> it is written: <phrase A>.
Do you agree with that?
Which of the following statements applies to
<concept X>?
Is there a feature common to <concept X> and
<concept Y>?

Concerning the rules, the virtual catalyst may act in several
ways:

Take a rule as it is (but not mentioning this to the user);
Take two rules, mix some of their conditions and
conclusions into a new tentative rule;
Take a rule and delete some of its conditions;
Take a rule and insert a condition or a conclusion from
other rule.

The basic instigating question in these cases is: "See the
rule below. Do you confirm it?"

Alternatively, a tentative set of conditions may also be used
to ask the collaborator to think forward, not only confirming or
refuting what is written, but trying to find a new valid
conclusion. The question, in this case, is:

Is there a possible conclusion if these conditions are
fulfilled? (Then what?)

Asking for a new conclusion can also be done by using an
established conclusion as a condition in a possible new rule.
This leads to the creation of new layers of rules, i.e., rules
whose conditions are conclusions from other rules.

IV. EXPERIMENTING WITH THE TOOL
Noctua was experimented by a group of ten people (faculty

members from the Pontifical Catholic University of Paraná
(PUCPR) and the Federal University of Technology - Paraná
(UTFPR), and engineers from the Paraná Institute of
Technology (TECPAR), all of them experts in computer
programming. The experiment started with a face-to-face
meeting in which the tool was presented to the participants.
They defined the subject of the experiment: food and wine
pairing. The idea was to describe wines and dishes in the Hyper
Glossary and create rules for combining them properly.

The results are shown in Table I. The quantity of
spontaneous knowledge eliciting (Spo) is compared to the
quantity of those elicited by means of questions made by the
virtual catalyst (Noc):

TABLE I. NOCTUA EXPERIMENT RESULTS

Quantity Noctua
%

Spontaneous
%

Entries 12 17 83
Questions on entries 15 --- ---
Opinions on entries 12 17 83

Rules 38 16 84
Questions on rules 96 --- ---
Opinions on rules 48 29 71

It is possible to observe that the participants used the
catalyst only a few times. They allowed Noctua to ask them
111 questions (an average of 11.1 questions per person) and yet
about 1 in every 6 rules and entries was obtained after the

152 153

questions asked by the catalyst. This indicates that the catalyst
is a potentially useful tool.

By analyzing the rules produced by the group, we observed
that the process had a critical flaw: it was not carried out a
preliminary step in which the input variables could be defined.
Each participant created his own set of input variables instead
of collaborating to create one only set. Some of them
considered dishes as input variables and wines as conclusions,
others made the opposite.

We also observed that 90% of the rules and 67% of the
entries have one only author. This shows that each participant
did not collaborate much to add information to what was
started by another. They agreed, after the experiment, that this
may have happened due to none of them being an expert in
wines, so they did not feel comfortable to change each other's
contributions.

A new experiment in which people will build knowledge
about their own expertise is underway with a group of nursing
students and teachers.

V. CONCLUSION
This paper presented a tool for knowledge acquisition and

collaborative knowledge construction that uses KPs and PRs to
represent knowledge. The tool uses the construction of
glossaries, virtual interviews (by means of instant messages)
and creation of scenarios as knowledge acquisition techniques.
The proposed interface does not require users to have any
computer programming skills. Terms inside an entry are
automatically hyperlinked to other entries so the set of KPs
constitutes a hyper-glossary. Logical interconnections between
PRs are recognized and displayed as hyperlinks. The rule base
and the hyper-glossary form an integrated knowledge base.
Noctua also offers forums and instant messaging tools in order
to help solving conflicts of opinion and to make collaboration
more effective.

The very innovation, however, is the insertion of a virtual
catalyst element in the KA/CKC process. Regarding the PRs,
the catalyst proposes new rules and changes in the existing
rules by means of exploring new combinations of already
elicited rule parts. As for the KPs, the catalyst acts in many
ways such as the request for images or definitions and the
attempt to associate concepts using mutual references or
common characteristics. In both cases (rules and entries), the
catalyst also helps the knowledge validation by asking each
collaborator his opinion about what was posted by other
collaborators.

 New experiments will be conducted only with groups of
specialists focused on a specific aspect of their own area of
expertise. Knowledge Acquisition process will include an
initial step for the definition of input variables. Noctua will be
helpful in this phase too, allowing collaborative construction
and validation of these variables.

Future work will allow users to set entry classes, each one
containing certain mandatory items. By doing so, the entries in
the Hyper Glossary will be better characterized as Knowledge

Pages. We also intend to make available other forms of
knowledge representation such as graphs showing the
interconnections between entries and rules as well as timelines
to show how the knowledge evolved along the collaboration
process. Additionally, Noctua will be integrated with an
inference engine so the rules can be tested on-line.

REFERENCES

[1] Milton, N.R. “Knowledge Acquisition in Practice”, Springer-Verlag
London Limited, 2007.J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] Suthers, D.D. "Collaborative Knowledge Construction through Shared
Representations", in Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (IEEE), pp. 5a-5a, 2005.

[3] Dictionary.com, LLC. Copyright © 2010, "Dictionary.com", [Online].
Available: http://www.dictionary.com [Accessed Sep.18, 2010]

[4] Rolston, D.W. “Principles of Artificial Intelligence and Expert Systems
Development”, McGraw-Hill Book Co, 1988.

[5] Davenport , T. H.; DeLong , D. W. and Beers, M. C. “Successful
Knowledge Management Projects”, Sloan Management Review, 1998.

[6] Byrd , T. A.; Cossick , K. L. and Zmud, R. W. “A Synthesis of Research
on Requirements Analysis and Knowledge Acquisition Techniques”,
MIS Quarterly, 1992.

[7] Silva Junior, L.C.L.; Borges, M.R.S.; Carvalho, P.V.R. “Collaborative
Ethnography: An Approach to the Elicitation of Cognitive Requirements
of Teams”, Proceedings of The 9th International Conference on
Computer Supported Work in Design (CSCW-D), 2009.

[8] McGraw, K. and Harbison-Briggs K. "Knowledge Acquisition:
Principles and Guidelines". Prentice-Hall, Inc. Upper Saddle River, NJ,
USA, 1989.

[9] Ramalho, L. and Tsunoda D.F. "A Construção Colaborativa do
Conhecimento a partir de Ferramentas Wiki", nos Anais do VIII
ENANCIB – Encontro Nacional de Pesquisa em Ciência da Informação,
2007.

[10] Pettenati, M.C. and Ranieri, M. "Informal learning theories and tools to
support knowledge management in distributed CoPs", in Proceedings of
the 1st International Workshop on Building Technology Enhanced
Learning solutions for Communities of Practice, Greece, pp. 345-355,
2006.

[11] Nabeth, T.; Roda, C.; Angehrn, A. and Mittal, P. "Using artificial agents
to stimulate participation in virtual communities", ADIS International
Conference CELDA (Cognition and Exploratory Learning in Digital
Age), pp. 2 5, 2005.

[12] Ackerman, M; Pipek, V. and Wulf, V. “Sharing Expertise - Beyond
Knowledge Management”, MIT Press, 2003.

[13] Noy, N.F.; Chugh, A. and Alani, H. “The CKC Challenge: Exploring
Tools for Collaborative Knowledge Construction”, IEEE Intelligent
Systems, vol. 23, pp. 64-68, 2008.

[14] Lomas, B.C.; Burke, M. and Page, C.L. “Collaboration Tools”,
Educause Learning Initiatives, 2008.

[15] Noy, N. F.; Chugh, A.; Liu, W. and Musen, M.A. “A framework for
ontology evolution in collaborative environments”, Proceeding of The
5th International Semantic Web Conference (ISWC), 2006.

[16] Dieng, R.; Corby, O.; Giboin, A.; Golebiowska, J.; Matta, N. and
Ribière, M. “Méthodes et outils pour la Gestion des Connaissances”,
Dunod, 2000.

[17] Herrera, O. and Fuller, D.A. “Shared Knowledge: the Result of
Negotiation in Non- Hierarchical Environments”, Proceedings of the
CRIWG, pp 255-262, 2005.

[18] Tacla, C. A.; Freddo, A. R.; Paraiso, E. C.; Ramos,M. P. and Sato, G. Y.
“Supporting Small Teams in Cooperatively Building Application
Domain Models”, Expert Systems with Applications on ScienceDirect,
Volume 38, Issue 2, pp. 1160-1170, February 2011.

152 153

A Real-Time Reliability Model for Ontology-Based
Dynamic Web Service Composition

Harmeet Chawla and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA

{hchawla, hxu}@umassd.edu

MengChu Zhou
Department of Electrical and Computer Engineering

New Jersey Institute of Technology
Newark, NJ 07102, USA

zhou@njit.edu

Abstract—Ontology-based web service composition allows for
integration of available web services in real-time to meet desired
objectives. In order to evaluate the quality of composite web
services at runtime, there is a pressing need to define a feasible
real-time web service reliability model. In this paper, we present
such a model. We first introduce a dynamic process model that
supports the evaluation of web service reliability. Then we
provide a hybrid reliability model for atomic web services by
considering both software and hardware aspects of the services.
In order to calculate efficiently the reliability of ontology-based
dynamic composite web services, we present a recursive
algorithm that evaluates the reliability of various service
composition constructs in real-time. Finally, we use a case study
to show how to compute and monitor the reliability of composite
web services in real-time, and how our approach supports
reliable ontology-based dynamic web service composition.

Keywords-web service composition; ontology; reliability model;
quality of service (QoS); dynamic process model; real-time.

I. INTRODUCTION

Web services are self-contained software components that
can be published, discovered and invoked over the Internet.
However, in many cases, a standalone web service is not
sufficient to provide the needed functionality for certain user
requirements [1]. This leads to the idea of composing different
web services in order to meet such requirements. The process
of web service composition can be either static or dynamic. In
the former, the services are pre-determined during the design
phase; while in the latter, only the service template can be
initially defined, but the available web services associated with
each constitutive component defined in the template must be
determined at runtime. In order to discover, invoke, compose
and monitor web services with a high degree of automation, we
can use the semantic and ontological techniques [2]. In this
paper, we adopt the semantic markup language for web
services (OWL-S), which is an ontology language, to formally
specify the semantics of web services. Such specification
makes the definitions of web services machine-understandable.
Decisions on adoption of a web service for service composition
require matching not only the functional properties of the
service, but also the nonfunctional properties such as service
reliability. The functional and non-functional properties of a
web service can be formally specified using an OWL-S profile.
An OWL-S profile can be published and stored in an ontology-

based UDDI (Universal Description, Discovery and
Integration) such as an OWL-S/UDDI service registry so that
when a service client searches it, services with matching
profiles can be discovered and the corresponding grounding
information can be retrieved. Since there may be more than one
matched profiles published in an OWL-S/UDDI, a service
client has to select one of them according to certain criteria
such as the service reliability. This requires the calculation of
service reliability in real-time. To achieve this, we first provide
a hybrid reliability model for atomic web services, which
considers both software and hardware aspects of the services.
Then, to calculate the reliability of composite web services, we
design an efficient recursive algorithm that evaluates various
service composition constructs in real-time. By employing a
real-time reliability model for service composition, our
approach not only supports the selection of desirable web
services for dynamic web service composition, but also
provides an effective way to monitor the reliability of both
atomic and composite web services in real-time.

Service reliability has been an important measure of the
quality of web services for service composition. There are
many different kinds of existing software reliability models for
web services. Li et al. developed a user-oriented software
reliability model for evaluating the reliability of web services
[3]. Their approach can be used to evaluate the reliability of
atomic web services based on an extended UDDI model, and to
predict the overall reliability of a composite web service using
a Business Process Execution Language (BPEL)-specified
structure. Tsai et al. proposed a software reliability model that
could dynamically evaluate the reliability of atomic and
composite web services [4]. The model first calculates the
reliability of atomic services by using group testing and
majority voting, and then the overall reliability of a composite
service by using an architecture-based model. The above
approaches consider only the software aspect of web services
and assume the reliabilities of the machines that host the web
services are near perfection. Furthermore, they are typically
based on BPEL-like architectures that require static binding of
available web services with the service components defined in
a process model at design time. Thus, they do not support
dynamic web service composition. In contrast, our approach
considers both software and hardware aspects of service
reliability. Furthermore, since our approach supports ontology-
based web service composition, it provides a feasible way for
maintaining reliable composite web services at runtime.

154 155

There are also many previous efforts on ontology-based
web service composition and formal modeling of dynamic
service composition. Ma et al. introduced an ontology-based
model for web service composition, called OMWSC [5]. They
presented a goal-driven and ontology-based architecture that
could support automatic composition of web services. Xiong et
al. presented a service functional configuration net based on
Petri nets for automatic service composition [6]. They
described the configuration specification for component
services through the structure of disassembly Petri nets, and
obtained the optimal one using linear programming. Tan et al.
introduced a formal method to derive possible web service
composition candidates based on a service portfolio [7]. They
first generated a service net (SN) containing all needed
operations, and then used Petri net decomposition techniques to
derive a subnet of SN that meets the business requirements.
Although the above approaches support dynamic web service
composition, most of them consider only the functional
requirements for service composition, and none of them
attempted to use service reliability as a major criterion for
service selection. Different from the above approaches, we
developed a real-time service reliability model for ontology-
based web service composition. Thus, our approach supports
dynamic composition of reliable web services at runtime.

II. ONTOLOGY-BASED WEB SERVICE COMPOSITION

A. Ontology-Based Web Service Composition
Specifying service related information semantically is the

key to effective dynamic service discovery and service
composition. Web service description language (WSDL) can
be used to describe the syntax of a web service such as its input
and output parameters, as well as related information such as
the service provider and the service endpoint address; however,
it does not support specifying the semantics of a web service.
Therefore, WSDL has its limitations in supporting the dynamic
service discovery, execution, composition and interoperation of
web services. On the other hand, ontology-based techniques
can not only be used to describe the syntax but also the
semantics of web services. In ontology-based semantic
modeling, the terms used in the concerned domain can be
precisely defined, thus services can be matched based on their
semantics rather than their syntax or keywords. In our
approach, the process model is defined as a template, called a
Process Model Template (PMT). In order to instantiate a PMT
into an Instantiated Process Model (IPM), we need to search
for available web services for its constitutive service
components. For this purpose, each service component, which
is also called a simple component, is associated with an OWL-S
profile template. An OWL-S profile template is essentially an
incomplete OWL-S profile with semantically defined input,
output, preconditions and effects so that it can be matched with
existing OWL-S profiles published in an OWL-S/UDDI. Based
on the matched OWL-S profiles, a simple component can be
bound to either an atomic or a composite web service. When a
matched web service is a composite one, its process model
must also be defined using a PMT, which can be instantiated
further in the same manner. This procedure repeats until all
matched web services become atomic. In this case, the process
of instantiating the PMT is completed.

Since a profile template can be matched with more than one
published OWL-S profiles, the most desirable one must be
selected for execution. The criteria for service selection can be
based on multiple features, such as provider, reliability, and
price; however, for simplicity, in this paper, we only consider
the reliability as the sole criterion for service selection. Since
service reliability is a dynamic property, it requires the system
be able to calculate it in real-time. This serves two purposes,
namely the selection of web services for dynamic service
composition and the real-time monitoring of web service
reliabilities. With the monitoring function, a reliable service-
oriented system can be maintained continuously – when the
reliability of some web services drop to an unacceptable level,
they can be replaced by other reliable ones at runtime.

B. Dynamic Process Model
A PMT is defined as a dynamic process model that consists

of structural components, such as a sequence component and a
parallel one. Each structural component contains simple
components and possibly other structural ones. At runtime, a
simple one can be bound to either an atomic web service or a
composite one. The PMT is formally defined using Backus-
Naur form (BNF) as in Fig. 1. As shown in the definition of
PMT, the reliability requirements for a process model are
described by using two parameters, namely <desired
reliability> and <marginal reliability>. The former
defines the desired reliability of an instantiated process model
(i.e., a composite web service). A composite web service with
at least the desired reliability is considered to be reliable. On
the other hand, a composite web service with at least the
<marginal reliability> but less than the <desired
reliability> is considered as not reliable but is acceptable
for a temporary usage. In this case, the application must try to
search for more reliable ones in order to meet the reliability
requirements of the composite web service. If it fails, a warning
message must be sent to the user of the application.
Furthermore, when the reliability of a composite web service
becomes less than the marginal reliability, the composite web
service becomes unacceptable and must stop its execution.

<PMT> ::= <pmt><desired reliability>
<marginal reliability><process model></pmt>

<desired reliability> ::= <float>
<marginal reliability>::= <float>
<process model> ::= <process><start>
 <structural component><finish></process>
<structural component> ::= <sequence component>|

<parallel component>|<loop component>|
<choice component>

<sequence component> ::= <sequence><component>
 <component>{<component>}</sequence>
<parallel component> ::= <parallel>component>
 <component>{<component>}</parallel>
<loop component> ::= <loop><condition><component>

</loop>
<condition> ::= <Boolean expression>
<choice component> ::= <choice><component>
 <component>{<component>}</choice>
<component> ::= <simple component>|
 <structural component>
<simple component> ::= <simple><component id>
 <owl-s profile template></simple>
<component id> ::= <string>

Figure 1. Definiton of PMT in BNF

154 155

A structural component can be one of the four major
composition constructs, namely sequence, parallel, loop, and
choice [4]. We now give a description of the major constructs
defined in a PMT as follows.

Sequence In a sequence structural component, the
constitutive components are executed in series. Fig. 2(a) shows
an example with two simple components A and B, defined in a
PMT. The directed arrow between A and B indicates the order
of execution. When one of the constitutive components in a
sequence construct is not functioning, the entire sequence
structural component is not.

Start

Finish

A

B

Start

Finish

A

B

Start

BA

Finish

Start

BA

Finish

Start

Finish

cond

A Skip

true false

Start

Finish

cond

A Skip

true false

Start

BA

Finish

Start

BA

Finish

 (a) (b) (c) (d)
Figure 2. Examples: (a) sequence (b) parallel (c) loop (d) choice constructs

Parallel In a parallel structural component, two or more
constitutive components can execute concurrently. The
structural component terminates when all of its components
have finished their execution. Fig. 2(b) shows a parallel
structural component with two simple components A and B.

Loop A loop structural component refers to the repetitive
execution of a simple or structural component. As shown in
Fig. 2(c), when the condition cond is evaluated to be true,
simple component A is executed repetitively. Only when it
becomes false, the loop construct terminates. Note that the
“skip” component is an empty component that is used to
separate the loop construct from other components.

Choice In a choice structural component, only one of the
constitutive components can be selected for execution. Fig.
2(d) shows an example of a simplified choice structural
component with no guards (conditions). When guards are not
defined, the component (A or B) to be selected for execution is
determined manually by user inputs.

Fig. 3 shows an example of PMT with multiple structural
components. The process model is defined as a parallel
component with two sequence components defined as its
constitutive ones, which can execute concurrently. The first
sequence component consists of two components, namely
simple component A and a choice structural component with
two simple ones B and C. The second sequence component
consists of two simple ones D and E.

Start Finish

B

C

A

D E

choice

sequence

sequence

parallel

Start Finish

B

C

A

D E

choice

sequence

sequence

parallel

Figure 3. An example of PMT with mutiple structural components

C. Instantiation of PMT into IPM
When a PMT is instantiated into an IPM, each simple

component defined in the PMT needs to be bound to either an
atomic web service described by a WSDL file or a composite
one specified by another PMT. Since such information must be
recorded in the IPM when a matched web service is selected,
we define an IPM as an extended version of a PMT with a set
of placeholders for the mapping information that details how a
simple component can be bound to a selected web service. At
runtime, the placeholders are filled up with such detailed
service information. The IPM can be formally defined using
BNF as in Fig. 4.

<IPM> ::= <ipm><PMT><simple component mapping>
{<simple component mapping>}</ipm>

<simple component mapping> ::= <simple mapping>
<component id><placeholders for matched
service></simple mapping>

<component id> ::= <string>
<placeholders for matched service> ::= <ph>

<real-time reliability><service id>
<service type>(<atomic service grounding
info>|<composite service grounding info>)</ph>

<real-time reliability> ::= <float>
<service id> ::= <string>
<service type> ::= ”atomic” | ”composite”
<atomic service grounding info> ::= <wsdl file>
<composite service grounding info> ::= <ipm file>

Figure 4. Definition of IPM in BNF

As shown in the definition, the placeholders for a matched
and selected web service are enclosed by the <ph>…</ph>
tags. The item <real-time reliability> is the reliability
of the web service that is bound to a simple component, which
is calculated at runtime. The two parameters <service id>
and <service type> are the identification and the type of the
selected web service, respectively, where the service type can
be either “atomic” or “composite.” If the selected web service
is an atomic one, the placeholder <atomic service
grounding info> must be filled with the address of its
WSDL file. On the other hand, if the selected one is a
composite one, the placeholder <composite service
grounding info> needs to be filled with the location of the
IPM file that specifies the composite web service. The
procedure for instantiating a PMT into a set of IPMs is defined
in Algorithm 1. Note that it is defined recursively because a
simple component can be mapped to a composite web service
specified by another PMT file. In this case, that IPM file must
also be instantiated by invoking the method Instantiate-
PMTintoIPM recursively. As a result, the output of the
algorithm is a set of IPM files organized in a tree-like structure.
Furthermore, the instantiation process requires calculating web
service reliabilities in real-time. This is because when more
than one matched web services are discovered, their
reliabilities need to be calculated in real-time, such that the
most reliable one can be selected for execution. In order to
calculate the reliability of a composite web service, an external
method CalculateReliability (to be discussed in Section III-B)
must be invoked. Note that calculating the reliability of a
composite web service requires its IPM file as an input (line 17
of the algorithm), which has been generated after the recursive
method call InstantiatePMTintoIPM (ws.pmt) in line 16.

156 157

Algorithm 1: Instantiate PMT into IPMs
Input: a pmt file to be converted
Output: a set of ipm files arranged in a tree structure.

1. InstantiatePMTintoIPM (File fname.pmt)
2. copy fname.pmt to fname.ipm & create placeholders in fname.ipm
3. create a PMT object pmt_obj from file fname.pmt
4. foreach simple component sc in pmt_obj.process_model
5. initialize sc.realtime_reliability to 0
6. query OWL-S/UDDI using sc.profile_template
7. foreach matched web service ws
8. if (ws is atomic)
9. extract reliability parameters from OWL-S profile
10. calculate ws.reliability for atomic web service ws
11. if (ws.reliability > sc.realtime_reliability)
12 sc.realtime_reliability = ws.reliability
13. sc.service_id = ws.id
14. sc.service_type = “atomic”
15. else if (ws is composite)
16. InstantiatePMTintoIPM (ws.pmt) // create ws.ipm file
17. ws.reliability = CalculateReliability (ws.ipm, true, null)
18. if (ws.reliability > sc.realtime_reliability)
19. sc.realtime_reliability = ws.reliability
20. sc.service_id = ws.id
21. sc.service_type = “composite”
22. if (sc.service_type == “atomic”)
23. extract wsdl address from owl-s profile of sc.id
24. set sc.service_type = “atomic”
25. set sc.wsdl_file to the wsdl file of sc.service_id
26. else
27. set sc.service_type = “composite”
28. set sc.ipm to the ipm file of sc.service_id
29. save the service info of sc into its placeholders in file fname.ipm

III. REAL-TIME SERVICE RELIABILITY EVALUATION

Service reliability represents an important attribute for the
QoS of a web service deployed on a certain machine. In this
paper, we take into account both hardware and software aspects
of service reliability as both are needed to determine the
reliability of a deployed atomic web service. Then based on the
reliability of the participating atomic web services, we can
calculate the reliability of a composite web service according to
its dynamic process model.

A. A Hybrid Reliability Model for Atomic Web Services
Software reliability growth models (SRGM) are based on

the assumption that the number of faults of a software system
can be continuously reduced, which results in growth of its
software reliability [8]. Although SRGM has been considered
as one of the most successful techniques in software reliability
engineering, it is most suitable for measuring and predicting the
improvement of software reliability through the testing process
[9]. In this paper, we assume that there are no features added
and no faults removed once an atomic web service is deployed.
In this case, the failure intensity of the software component
(i.e., the atomic web service) will be constant. According to
[10], the number of failures of the service in a given time
follows a Poisson distribution. The corresponding formula to
calculate software reliability can be defined as in (1).
)exp()(softwareR (1)

where is the constant failure intensity and is the execution
time of the web service. When a web service is computation-
intensive and executed continuously, can be further replaced
by the elapsed time since the service is deployed.

On the other hand, hardware reliability can be represented
by the two-parameter Weibull distribution [11]. The
corresponding formula to calculate the reliability of a hardware
component can be defined as in (2).
 (2)])(exp[)(ttRhardware

where is the shape parameter (> 0), and is the scale
parameter (> 0). Note that the hardware reliability decreases
with time. This is because after a certain age, the product enters
its wear-out phase and the failure rate starts to increase.

Bowles tried to derive a combined hardware and software
reliability model for networks [12]. According to [12], “The
probability of successful operation of a device is the probability
that the hardware does not fail and the probability that the
software does not fail.” Inspired by this idea, in this paper, we
calculate web service reliability by considering both the
reliability of the web service and the reliability of the machine
where the web service is deployed. For simplicity, we assume
that a web service is initially deployed on a new machine with
the perfect reliability of 1. Thus, time t can be defined as t =
tcurrent – t0, where tcurrent is the time when the reliability is
calculated and t0 is the time when the web service is deployed.
Based on (1) and (2), the hybrid reliability model for atomic
web service can be defined as in (3).

])(exp[)exp(

)()()(

tt

tRtRtR hardwaresoftwareservice (3)

where Rsoftware(t) is the reliability function of the atomic web
service and Rhardware(t) is the reliability function of the machine
that hosts the atomic web service.

The needed parameters for calculating the reliability of a
deployed atomic web service can be stored in an OWL-S
profile as follows.
<profile: Reliability>
 <FailureIntensity datatype=”float”> 0.0001
 </FailureIntensity>
 <Shape datatype=”float”>2</Shape>
 <Scale datatype=”float”>0.00002</Scale>
 <Date datatype=”date”>07/16/2010</Date>
 <Time datatype=”time”>14:30</Time>
</profile: Reliability>

Note that in the reliability portion of an OWL-S profile, we
also include the parameters of the deployment date and time of
the atomic web service because they are needed for calculating
the web service reliability. Since the reliability of an atomic
web service is time-dependent, the above parameters must be
retrieved at runtime such that the reliability of the atomic web
service can be calculated in real-time.

B. Reliability Model for Composite Web Services
The overall reliability of a composite web service depends

on its structure, the degree of independence between service
components and the availability of its constitutive web
services. In order to calculate the reliability of a composite web
service, we first need to consider the reliability of the major
structural components defined in Section II-B. Based on

156 157

previous work [3, 4], we now define the reliability model for
each structural component as follows.

Sequence The reliability of a composite web service
composed of services in sequence can be calculated as in (4).

 (4)
n

i
iservicesequence tRtR

1
_)()(

where the constitutive web services service_i (1 i n) are all
independent of each other (i.e., the failure of one service does
not lead to the failure of the others), and Rservice_i(t) is the
reliability function of each constitutive atomic or composite
web service.

Parallel The reliability of a composite web service
composed of services in parallel can be calculated as in (5).

 (5)
n

i
iserviceparallel tRtR

1
_)()(

where the constitutive web services service_i (1 i n) are all
independent of each other. Note that the failure of any
constitutive service results in the failure of the composite one
because the successful termination of the latter requires the
successful termination of all of its constitutive web services.

Loop The reliability of a composite web service composed
of web services in a loop can be calculated as in (6).
 (6)))((min)(_0

titRtR loopbodyserviceniloop

where Rservice_loopbody(t) is the reliability function of the loop
body that can be an atomic web service or composite one; n is
the number of iterations; and t is the execution time of each
iteration. When n* t is not a large value, the reliability of the
loop structural component would be approximately the same as
when it was executed the first time.

Algorithm 2: Calculate composite web service reliability
Input: an ipm file for a composite web service
Output: the real-time reliability of the composite web service

1. CalculateReliability (File fname.ipm, Boolean initialization,
2. StructuralComponent structcom)
3. initialize reliability to 1
4. if (initialization == true) // step 1
5. create an IPM object ipm_obj from file fname.ipm
6. foreach simple component sc in ipm_obj
7. if (sc.service_type == “atomic”)
8. calculate sc.realtime_reliability
9. else sc.realtime_reliability = // sc is “composite”
10. CalculateReliability(sc.ipm, true, null)
11. strc = ipm_obj.process_model // step 2
12. if (strc is squenceComponent)
13. foreach component com in strc
14. if (com is simpleComponent)
15. reliability *= com.realtime_reliability
16. else reliability *= CalculateReliability(null, false, com)
17. else if (strc is parallelComponent)
18. foreach component com in strc
19. if (com is simpleComponent)
20. reliability *= com.realtime_reliability
21. else reliability *= CalculateReliability(null, false, com)
22. else if (…) // other cases: redundant component,
23. … // loop component, and choice component
24. return reliability

Choice The reliability of a composite web service
composed of web services in choice can be calculated as in (7).

 (7)))((min)(_1
tRtR iservicenichoice

Since we consider the worst-case scenario, the reliability of
a choice structural component equals the minimal reliability of
the constitutive web services.

The algorithm for calculating the reliability of a composite
web service is defined recursively as in Algorithm 2. Algorithm
2 involves two steps when calculating the reliability of a
composite web service. In its first step, the reliabilities of all
simple components are calculated. In a case when a simple
component is bound to a composite web service, the method
CalculateReliability must be invoked recursively with the
parameter initialization being true. In the second step, the
reliabilities of the structural components are calculated.
Similarly, when a structural component contains another
structural component as its constitutive component, the method
CalculateReliability is also invoked recursively, but this time,
the parameter initialization is set to false indicating that the
algorithm is now processing its second step.

IV. CASE STUDY

To demonstrate the effectiveness of our approach, we
utilize a case study of financial services, which involves
investment in mutual funds and stocks. We define a process
model for financial investment as a composite web service with
a choice structure. As shown in Fig. 5, the choice is between
buying mutual funds or stocks. The upper structural component
represents mutual fund investment wherein the investor has a
choice of investing in three types of mutual funds. They are
equity that involves high risk, high gain funds, debt that
represents low risk low gain funds, and balanced fund that
gives almost steady gain with medium risk. In order to use the
financial services, the investor needs to provide information
about the type of fund, investment amount and personal
information. For example, if the user wants to invest in equity
funds, the Equity web service is selected and invoked, which
provides a list of equity mutual funds along with their returns.
Then the SelectMutualFund service is invoked to automatically
choose the service with best returns for the user. Finally, the
BuyMutualFund service will be invoked to buy the selected
mutual funds. Similarly, the web services Debt and Balanced
can be invoked to provide a list of debt funds and a list of
balanced funds with returns, respectively. On the other hand, if
buying stock is chosen, the process model has the BuyStocks
service, where the input to this service is the stock to be
bought, the number of stocks, and the rate at which the user
wants to buy. When the specified stock is available at the
preferred rate, the BuyStocks service is automatically invoked
to buy the specified number of stocks.

Start

Finish

Equity

Debt

Balanced

Select Mutual
Fund

Buy
Mutual Fund

Buy Stocks

Start

Finish

Equity

Debt

Balanced

Select Mutual
Fund

Buy
Mutual Fund

Buy Stocks

Figure 5. A process model for financial investment

158 159

In order to ensure the desired reliability of the financial
services for investment, we develop a prototype service
reliability monitoring tool. Fig. 6 shows the interface for
monitoring the reliability of the financial investment service in
real-time. Under the ProcessModel tab, it presents the
predefined process model (as shown in Fig. 5) at the left hand
side, and displays the real-time reliability of the composite web
service at the right hand side. The interface also shows the
status of the composite web service, which could be normal,
warning or unacceptable. A normal status indicates that the
reliability of the composite web service equals to or more than
the desired reliability; a warning status indicates that the
reliability is below the desired reliability but no lower than the
marginal reliability. When the reliability falls below the
marginal reliability, the status becomes unacceptable. Note that
in this example, the desired and marginal reliabilities are set to
0.85 and 0.75, respectively. They can be easily re-configured
by clicking on the Configuration tab. In addition, the interface
also displays the current date and time as well as execution
information of the composite web service. At the bottom part
of the interface, all services bound to the simple components
are listed. If the service is atomic (e.g., EquityService), the
address of its WSDL and its real-time reliability are displayed
(e.g., http://192.168.1.112:8080/equity/EquityService?wsdl and
0.92751); otherwise, if the service is composite (e.g.,
BuyStocks1), the address of the corresponding IPM file and its
real-time reliability are displayed (e.g., C://Files/Buy-
Stocks1.owl and 0.84917). The detailed information about a
composite web service (e.g., BuyStocks1) can be retrieved by
clicking on the CompositeComponents menu at the top of the
interface. Note that when the real-time reliability of a
composite service falls below the desired reliability, some of its
constitutive web services with low reliabilities must be
replaced by others in order to improve its QoS.

Figure 6. Interface for monitoring real-time web service reliability

V. CONCLUSIONS AND FUTURE WORK

In this paper, we define a dynamic process model that
consists of various constructs for web service composition. The
dynamic process model is initially defined as a process model
template, called PMT, where the constitutive components are
not bound to any specific web services. At runtime, the PMT is

instantiated into a set of instantiated process models or IPMs.
During the instantiation process, web services that are matched
with the simple components in a PMT are discovered and
selected based on their real-time reliability values. In order to
calculate the reliabilities of composite web services, we first
present a hybrid reliability model for atomic web services.
Then we define a real-time reliability model for a composite
web service that aggregates the reliabilities of its constitutive
components according to the definition of its dynamic process
model. Our approach not only supports service selection for
dynamic web service composition, but also supports
maintaining a reliable composite web service at runtime by
monitoring the service reliabilities in real-time. For future
work, we will study existing software reliability models and
propose the most suitable ones for atomic web services by
considering additional factors such as software aging due to
performance degradation or a sudden software crash. We will
demonstrate how to automatically switch a web service to a
reliable one when its reliability becomes unacceptable. By
utilizing artificial intelligence techniques, we may further
improve the service reliability model for automatic adjustment
of its parameters at runtime. In addition, integrating the
proposed reliability index into some existing approaches [5, 6]
can also be considered as a worthy future direction.

REFERENCES

[1] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Proc. of the First Int. Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), San Diego, CA, USA,
pp. 43-54, Jul. 2004.

[2] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D.
McGuinness, et al., “Bringing semantics to web services: the OWL-S
approach,” in Proc. of the First Int. Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), San Diego,
CA, USA, pp. 26-42, Jul. 2004.

[3] B. Li, Z. Su, Y. Zhou, and X. Gong, “A user-oriented web service
reliability model,” in Proc. of the IEEE Int. Conf. on Systems, Man and
Cybernetics, Singapore, pp. 3612-3617, Oct. 2008.

[4] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao, “A
software reliability model for web services,” in Proc. of the 8th IASTED
Int. Conf. on Software Engineering and Applications (SEA 2004),
Cambridge, MA, pp. 144-149, Nov. 2004,

[5] J. Ma, Y. Zhang, and M. Li, “OMWSC - an ontology-based model for
web services composition,” in Proc. of the 5th Int. Conf. on Quality
Software (QSIC 2005), Melbourne, Australia, pp. 464-469, Sept. 2005.

[6] P. C. Xiong, Y. Fan, and M. C. Zhou, “Web service configuration under
multiple quality-of-service attributes,” IEEE Trans. on Automation
Science and Engineering, vol. 6, no. 2, pp. 311-321, Apr. 2009.

[7] W. Tan, Y. Fan, M. C. Zhou, and Z. Tian, “Data-driven service
composition in building SOA solutions: a Petri net approach,” IEEE
Trans. on Automation Science and Engineering, vol. 7, no. 3, pp. 686-
694, Jul. 2010.

[8] M. R. Lyu, “Software reliability engineering: a roadmap,” in Proc. of the
Workshop on Future of Software Engineering (FOSE’07), Int. Conf. on
Software Engineering, Washington, DC, pp.153-170, 2007.

[9] H. Pham, System Software Reliability, Springer-Verlag, London, pp.
152-177, 2006.

[10] J. Musa, Software Reliability Engineering, McGraw-Hill, New York, pp.
310-311, 1999.

[11] A. Hoyland and M. Rausand, System Reliability Theory: Models and
Statistical Models, John Wiley & Sons, New York, pp. 37-40, 1994.

[12] J. B. Bowles, “A model for assessing computer network reliability,” in
Proc. of the IEEE Conf. on Energy and Information Technologies in the
Southeast (SoutheastCon), Columbia, SC, USA, pp. 603-608, Apr. 1989.

158 159

160 161

160 161

162 163

162 163

Fraud Detection in Selection Exams Using
Knowledge Engineering Tools

Marcus de Melo Braga
Post-Graduate Program in Knowledge Engineering

Universidade Federal de Santa Catarina (UFSC)
Florianópolis, Brazil
marcus@egc.ufsc.br

Mario Antonio Ribeiro Dantas
Department of Informatics and Statistics

Universidade Federal de Santa Catarina (UFSC)
Florianópolis, Brazil
mario@inf.ufsc.br

Abstract—This paper proposes a method for fraud detection in
automated selection exams, using knowledge engineering tools for
identifying groups of answers with a strong indication of fraud,
based on probabilistic evidence. Founded on an analysis of the
wrong answers of the various candidates, the proposed method
enables identification of suspicions, and evidence of fraud
attempts through finding candidates with a significant number of
identical wrong answers. This method of using knowledge
engineering tools can be employed in various types of selection
examinations, adapting to the characteristics and features of each
one and contributing to the achievement of fair exams and free of
fraud attempts.

Keywords: knowledge engineering tools; fraud detection;
selection exams; multiple-choice questions.

INTRODUCTION

The need for detection of various types of fraud in several
fields of application has grown in recent years, possibly due to
the great developments in information and communication
technologies (ICT) that provide citizens with diverse resources
and technological facilities for access to databases of public
and private organizations.

The growing complexity of equipment and services
provided by new technologies hinders the identification of
possible failure points or some susceptible to fraud attempts. In
several areas of activities, there is a lack of study and research
that enables the creation of methods and techniques to prevent
fraud and to reduce financial losses caused by this type of
crime. Knowledge Engineering (KE) provides us with tools
that can assist in detecting and preventing fraud, helping us to
fight this type of crime.

The application of knowledge engineering tools in fraud
detection is already common in many fields of study. It occurs
mainly in the following areas: mobile communications
(cellular), finance, electronic commerce, healthcare, credit
cards and government organizations [1], [2]. A systematic
review on the subject of this research has not identified a study
published in the databases Scopus (www.scopus.com) or ISI
Web of Knowledge (apps.isiknowledge.com) associating the
keywords "detection," "fraud," "exam," and "examination."
Based on the review conducted in the two largest databases, we

can state that we did not find any study of application of KE
tools to detect fraud in selection examinations. Therefore, we
propose a new possibility for application of these tools.

Some related studies apply others’ software techniques for
fraud detection. In [3], artificial immune systems are used to
identify fraud attempts in online credit cards operations. Data-
mining techniques can also be applied for fraud detection in
e-Commerce [4], mobile communication networks [5], and in
conventional telephony [6]. Other studies specifically propose
statistical methods for fraud detection in several areas [7], [8].

The model presented in this paper for the application of KE
tools in fraud detection in admission exams is structured into
eight sections: Section II makes a brief introduction to selection
examinations processes, presenting their main characteristics.
Section III presents the main types of fraud that can occur in a
contest aimed at giving an overview of the method to be
proposed in this paper. Section IV examines the various types
of questions that can be adopted in an examination. Section V
presents a statistical study of the probability analysis of
identical wrong answers (IWA) to a specific type of question:
multiple-choice. In Section VI, we present a proposed method
for fraud detection in automated selection processes.
Section VII presents and discusses the results, and finally in
Section VIII, we give conclusions and suggestions for future
work.

II - SELECTION EXAMS

A. Definition
A selection examination process can be defined as an

activity consisting of several sub-processes or steps, with the
aim of selecting candidates through the application of
questionnaires, tests, and other selection tools to fill a limited
number of vacancies.

B. Phases of a selection exam
The phases, steps or sub-processes of a selection

examination are necessary to meet statutory deadlines for
publication, call for entries, preparation of tests, allocation of
material and human resources, realization of exams, test

This study was supported by CAPES, the Brazilian Government entity for the training of human resources.

164 165

reading, test processing, and disclosure of results for the
subsequent filling of vacancies by admission or hiring. Figure 1
shows the complete cycle of the phases of a selection process.

Figure 1. Phases of a selection exam.

The limitation of the vacancies is precisely the main
motivation of the contest; if there were no limits to the
vacancies or the number of qualified candidates for completion
was not significant, selection would have been unnecessary.

The process initiates with the disclosure activities. The
purpose of the announcement phase is to enroll the largest
number of candidates, giving chances to all interested in
attending the event. After complying with legal requirements
for the announcement, the next phase opens up the inscription
or registration for all applicants who may be qualified for the
selection exam. Once the inscriptions are finished, in the next
phase, we make the arrangements for the preparation of the
tests that will be applied to candidates; this is done through
enjoining experts or specialized companies for the authoring of
tests and examinations. At the phase of resource allocation, the
candidates are distributed by each exam place; all the materials
and human resources are allocated for the next phase, such as
rooms, equipment, proctors, and coordinators. In the test
application stage, there are major activities related to the
security aspects of a selection process, including review of all
the candidates with metal detectors during their access to the
exams places, planning and proctoring the application of the
tests, and the electronic monitoring of all the examination
locations.

Once the tests are completed, all material is collected in a
safe place − usually the institution's information technology
department − where the test reading phase is done with
automatic readers, scanning responses of all candidates’ tests
for later assessment. In the test processing phase, all test
answers are processed using the templates and automated
processing systems for getting the results of the tests, creating
the scores for the candidates, and generating their respective
places (classifications). Finally, after verifying and auditing the
whole process of assessment, final reports are issued for

disclosure of the results toward the registry or hiring of selected
candidates.

III. FRAUD IN SELECTION EXAMS

Currently, security is one of the most relevant points in
managing selection processes, given the considerable number
of technological tools that tempt people to perform activities of
fraud, especially in contests where there is a great competition
of candidates per position.

Security issues in exams can now be handled from the time
of enrollment by consulting special database lists maintained
by various Brazilian governmental institutions that contain the
names of all candidates already identified in prosecution of
fraud attempts, throughout the national territory. Despite
having their entries approved, such candidates can be identified
from the time of enrollment and allocated in special rooms to
be monitored in their activities during application of the tests.

At the stage of resource allocation, some security measures
can also be taken, trying to find candidates with relatives in the
same contest and separating them in different rooms or places
for application of the tests, avoiding their proximity.

However, it is at the phase of test application in which
security issues should have greater weight because it is
precisely at that point that the largest number of fraud attempts
occurs. All measures already mentioned − such as the use of
metal detectors and electronic monitoring of electronic
transmissions − are key in this phase.

At the stage of test reading, it is also necessary to adopt
preventive measures, with rigid control of access to the
processing data center and precautions against possible reading
processing errors.

Finally, in the phase of disclosure of results, safety
measures must be adopted with respect to the risks of
information leakage or premature disclosure of the results,
avoiding harming the reliability of the whole process.

Our practical experience in conducting selection exams
over two decades shows that occurrences of fraud attempts are
fairly common on any type of competition or selection process.

The attempts of fraud range from traditional and frequent
acts of trying to cheat or plagiarize during the test, copying the
responses of a competitor in the same room, and even the most
daring attempts, carried out by means of electronic
transmission. All these attempts must be considered and
scrutinized by the authorities responsible for conducting the
selection process, and all the omissions in these security cases
are inadmissible. Absolutely nothing can justify the absence of
mechanisms for its prevention or precaution.

IV. TYPES OF QUESTIONS

For a better understanding of the proposal for fraud
detection presented in this article, it is necessary to describe the
types of questions usually adopted in examination tests.

At first, the main types of questions used in tests can be
grouped into three categories:

164 165

Multiple-choice questions.

True/false questions.

Open questions.

Open questions significantly hinder the attempts of fraud
since they require a response not coded and difficult to be
transmitted − although not impossible. Open questions are the
most difficult to process when adopted in contests with a large
number of participants. Another disadvantage that this type of
question presents is how to standardize criteria for evaluation,
aiming to avoid disparities in the assessment by reducing the
subjectivity and inconsistency among the different evaluators.

True/false questions inhibit the adoption of the fraud
detection strategy proposed in this paper. With this type of test
question, it becomes difficult to identify the "signature" or the
statistical evidence of fraud, as will be shown below. For this
type of question in particular, other strategies should be
established for the automatic detection of fraud, taking
advantage of their peculiarities.

Multiple-choice questions are still frequently adopted in
selection processes for their tradition and simplicity [9]. One of
their main advantages is the ease of representation on printed
answer sheets that can be read by automatic readers. This
procedure enables the processing of the large volumes of data
collected in medium and large examinations.

The method for fraud detection proposed in this study
assumes that the type of questions adopted in the contest is
multiple-choice. This type of question presents an interesting
feature that can be exploited for the automatic detection of
fraud: We observe that when two or more candidates try to
cheat on a test, the probability that their errors are equal is high;
that is, the wrong answers are the same and the alternative
letters answered incorrectly are also equal. Taking this
observation as a basis, the method proposed in this paper
makes a study of the statistical probability of simultaneous
occurrence of errors on the same questions and the same
alternatives to substantiate the mathematical evidence of a
fraud attempt, further proposing KE tools to identify the
occurrence of this problem, detecting and fighting some fraud
activities in selection exams.

In the following section, we create a probability analysis of
the simultaneity of the same wrong answers with the same
wrong alternative letters in a test of multiple-choice questions
using a total of 40 questions for a case study.

V. PROBABILITY ANALYSIS

To illustrate the method proposed in this paper, we assume
that the test being examined has 40 multiple-choice questions
with 5 alternatives (ABCDE). A sample of the possible
answers can be seen in Figure 2.

Figure 2. An example of answers of multiple-choice questions.

The first line of the figure shows the position of each of the
40 questions in the test paper. The bottom line, displayed with
highlighted background, corresponds to the template of these
multiple-choice questions. The 10 lines between are examples
of candidates' responses.

To further facilitate visualization, we can eliminate all the
correct answers of the candidates, since they are of no interest
to our study. Figure 3 shows only the wrong answers, already
highlighted.

Figure 3. Only the wrong answers are displayed.

The research question for the analysis of probabilities is:
What is the probability that two or more candidates err in a
multiple-choice test with 40 questions (such as ABCDE) in the
same question numbers and answering the same wrong
alternative letters? Our hypothesis is that after a certain number
of wrong answers exactly alike, the probability of occurrence is
close to zero, providing formal evidence that there is a strong
suspicion of a fraud attempt.

This probabilistic evidence substantiates the fraud detection
method proposed in this study, applying KE tools for
identifying high similarities in the wrong answers of the
candidates in a selection exam that meets these characteristics
and type of question.

C. Calculating the probability
For didactic purposes, it is necessary to define the concept

of IWA. In this study, IWA are those special occurrences when
two or more candidates miss the same questions, answering the
same wrong alternative letters, resulting in a remarkable
coincidence. One can intuitively predict that this coincidence
has a significantly low probability of occurrence (i.e., it is
almost impossible), and this fact sets up a strong indication of
anomaly. We can interpret this occurrence as a "signature" of

166 167

the fraud attempt, a feature that makes it unique, singular, and
− rightfully so − it should be investigated.

The probability of the simultaneous occurrence of IWA in
an examination test can be expressed as follows:

Let:

a - the number of alternatives in each question and

k - the number of IWA,

then the probability (P) can be expressed as:

k

a
=P 2

1

This equation represents a simplification of the problem
and is based on the following assumptions:

The questions are independent; that is, their responses
do not interfere with the responses to other questions.

The probability of each alternative (ABCDE) is equal.

Without this simplification, the solution would be far more
complex, requiring a more detailed study of all proposed
questions of a specific test to determine the probability of each
question and each alternative individually. The proposed
equation also implies that the probability of IWA does not
depend on the size of the universe (i.e., number of candidates
who have taken the test).

This equation demonstrates clearly that as the number of
IWA increases, the value of its probability decreases
significantly. We can perform the calculation in a small interval
to analyze the behavior of the calculated probability. Table 1
shows the calculation of probabilities for the range of 1 to 10
IWA, considering a test with multiple-choice questions with
five alternatives ("ABCDE," with a = 5).

TABLE I. PROBABILITIES OF IWA IN A MULTIPLE-
CHOICE TEST WITH 5 ALTERNATIVES

IWA P (%)
1 4.000000000000
2 0.160000000000
3 0.006400000000
4 0.000256000000
5 0.000010240000
6 0.000000409600
7 0.000000016384
8 0.000000000655
9 0.000000000026

10 0.000000000001

From Table 1, we conclude that, if the number of IWA is
equal to or greater than 3, the probability is already minimal
(0.0064%).

VI. PROPOSED METHOD

We have applied a SQL (Structured Query Language) script
and relational databases as a traditional Software Engineering
tool for helping to detect some IWA. Nevertheless, the results
using this technique were not always accurate due to different
combinations of IWA and the absence of some IWA in some
candidate’ responses.

There are many Knowledge Engineering tools that can be
applied to detect this kind of fraud attempt with better
accuracy. Among others, the main KE tools that can be used in
this case are:

Artificial neural networks (ANN).

Artificial immune systems (AIS).

Data mining.

Case-based reasoning (CBR).

 The proposed method is founded on applying case-based
reasoning (CBR) as a data-mining tool. CBR is an artificial
intelligence technique applied in solving problems and
achieving learning, based on past experience such as the use of
known cases to solve new cases [10].

CBR methodology fits the purpose of fraud detection
proposed in this paper by presenting some features relevant to
the problem presented. Among these characteristics, we can
highlight the following [11]:

A CBR system should be able to handle incomplete
and highly specific queries.

It can suggest appropriate cases, even when not all
attributes are provided.

It presents retrieved cases in a rational way; that is,
avoiding excessive responses and respecting a limit of
retrieved cases specified by the user.

These characteristics favor the application of CBR
methodology in this type of fraud detection, since it allows
retrieval of similar cases differently from traditional
information retrieval, done through use of queries in relational
databases.

The proposed method consists in designing a system of
CBR for the identification of candidates with IWA above the
minimum value of statistical probability (IWA = 3) for the
retrieval of similar cases in an IWA file. The system starts out
with a file containing all the wrong answers of several
candidates, making an automatic sequential search of all
similar cases until there is a recovery of more than one case
where this similarity occurs. All cases recovered with high
similarity will be listed for further investigation of attempted
fraud.

As the volume of responses in a test can be quite high, it is
necessary to adopt some criteria to restrict the sample studied
in order to optimize queries. The first criterion to be adopted is
to restrict the sample studied by eliminating the responses of
candidates whose number of hits in the test is less than a
minimum passing grade. Thus, all responses that have a

166 167

number of errors exceeding a certain percentage will be
automatically discarded since these candidates failed to pass
the competition. This measure considerably reduces the
number of cases to be searched.

Another measure of restraint refers to the retrieval of cases
in the database. It makes no sense to retrieve cases in which the
number of IWA is less than a certain percentage; for example,
60%. The idea is to eliminate instances in which the number of
IWA does not reach a certain percentage, which undermines
the suspicion of fraud. Thus, we consider only the responses of
the candidates whose percentage of IWA is equal to or exceeds
60%.

Looking closely at Figure 4, we note that there are some
instances of IWA between the lines, as can be seen in Table 2.

Figure 4. Relevant similar cases in the case base.

TABLE II. OCCURRENCES OF IWA IN THE FIGURE 4

Lines with IWA Nº of IWA % of IWA
2 and 8 5 100%

6 and 10 4 29%
7 and 9 1 10%

Although we have identified three instances (2-8, 6-10, 7-9)
in which there is similarity among the cases of wrong answers,
not all are relevant. If we consider the percentage of IWA in
each of the events, we see that only one of them is of interest:
line 2 with line 8 (Fig. 4).

The other events are not depicted with evidence of fraud
since the percentage of IWA is less than a significant
percentage. We can establish a minimum threshold value for
this percentage (e.g., 60%), whereas in some cases the
candidate who received a given template (crib note) can
recognize that one of the answers is wrong and increased his or
her number of correct answers or may even have tried to
answer some questions on his or her own (chance), and it still
is wrong, leading to wrong answers on the same issues but with
different alternatives from the original source of cheat or crib.

The proposed method provides an algorithm to scan the
responses meeting the restriction criteria predetermined. The
process is sequential and begins with the first line, retrieving all
its similar cases, then moving on to the next line (2) and doing
new queries only from this starting point, reducing in every
turn the universe to be searched and optimizing the process of

the sequential search. Some CBR tools allow a case to be used
as a query, facilitating the research process.

In a real application, we need the candidate identification
number in addition to the answers of the multiple choice
questions. This will enable us to identify those candidates who
have a certain number of IWA.

To automate the fraud detection in an IWA file of multiple-
choice questions, it is necessary to make a data-mining tool
using an automatic scanning procedure on the IWA case base.
As some CBR systems do not allow the creation of scripts to
program this automatic scanning, one way to implement such a
data-mining procedure would be through the creation of a
similarity function, "Sim ()" in a relational database software,
enabling the creation of an SQL script to perform the automatic
scanning of all the IWA stored in the database, calculating their
similarities, identifying which answers show a high similarity
and, finally, retrieving them for inspection.

The similarity metric that best fits the proposed model is
the average of similarities implemented in the CBR tool.
Several simulations were conducted to find the best option for
the case studied, including the codification of the alternatives
as numeric values (ABCDE as 12345). None of them has better
results than the model adopted.

VII. RESULTS AND DISCUSSION

The model simulated in the CBR tool has produced some
excellent results in recovering similar cases of IWA. For testing
the model, a query was created that had one more wrong
answer than the similar cases in the case base, just in the initial
position of the string (Fig. 5).

Figure 5. Graphical representation of the query.

This insertion of one more wrong answer in the initial
position would make impossible the retrieval of similar cases
by means of a SQL query in a relational database, since the
blank character (or space) has a smaller value for its internal
representation than the letter "A"; this fact increases the
distance between the cases registered in the database and the
query made. However, the model created with the CBR system
proved excellent performance by retrieving all similar cases.
Table 3 shows the similarity values calculated by the CBR tool
in all the retrieved cases of the case base.

TABLE III. VALUES OF THE SIMILARITIES OF THE
RETRIEVED CASES

Case 2 8 4 6 10 5 1 3 7 9
Sim() 1,00 1,00 0,50 0,25 0,25 0,20 0,00 0,00 0,00 0,00

The query on the case base done with the data shown in
Figure 5 gives us the results returned by the CBR system used
in this study, as presented in Figure 6.

168 169

Figure 6. Cases retrieved bythe CBR tool.

Even when the query was submitted with one more wrong
answer purposely introduced in the first column, it is clear that
case numbers 2 and 8 were recovered with maximum
similarity. The remaining cases that did not show a significant
number of IWA had low similarity, proving the efficiency and
effectiveness of the proposed model.

VIII. CONCLUSIONS AND FUTURE WORK

The methodology of CBR showed excellent performance in
the detection of IWA, identifying all the cases in the case base
used as a test. While there are some differences between the
values of the query with the values found in the case base, the
CBR software used in this study correctly retrieved all cases
that showed the highest similarity.

We conclude that the method proposed in this study can be
applied in detecting and preventing fraud in selection
examinations that use multiple-choice questions, allowing the
adoption of countermeasures in a timely manner, thanks to its
ease of modeling and application.

One limitation of this study is the lack of a more detailed
analysis of the behavior of the CBR software with respect to its
performance with a case base with thousands of answers from a
large group of applicants. However, based on other authors’
similar experiences with using bases of more than 200,000
cases [12], the CBR systems have a satisfactory performance.
Thus, it is expected that the CBR solution here proposed
presents a good performance even in the case of larger bases.

Future research could explore the application of the model
proposed in this study for other kinds of questions and tests,
adapting the methodology of CBR to the specificity of these
applications. Others investigators can also expand this study,

making the analysis of the behavior of other CBR software or
others KE tools for a greater volume of data.

ACKNOWLEDGMENT

We want to thank Dr. Marcelo Sobottka of the Department
of Mathematics at the Federal University of Santa Catarina
(Brazil) for his valuable help in determining the probability of
IWA in a test of multiple-choice questions.

REFERENCES

[1] N. Laleh and M. A. Azgomi, "A taxonomy of frauds and fraud detection
techniques," in Communications in Computer and Information Science,
vol. 31, pt. 9, S. K. Prasad, S. Routray, R. Khurana, S. Sahni, Eds.
ICISTM 2009, Berlin: Springer-Verlag, 2009, pp. 256–267.

[2] R. J. Bolton and D. J. Hand, "Statistical fraud detection: A review,"
Statistical Science, vol. 17, no. 3, pp. 235–255.

[3] A. Brabazon, J. Cahill, P. Keenan and D. Walsh, “Identifying online
credit card fraud using artificial immune systems,” Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2010).

[4] M. Lek , B. Anandarajah, N. Cerpa and R. Jamieson, “Data mining
prototype for detecting e-commerce fraud,” 9th European Conference on
Information Systems, Bled, Slovenia 2001, pp. 160–165.

[5] B. Kusaksizoglu, “Fraud detection in mobile communications networks
using data mining,” Ph.D. thesis, Department of Computer Engineering,
Bahcesehir University Istanbul, 2006.

[6] C. Schommer. (2009). Discovering fraud behavior in call detailed
records [Online]. Available: http://wiki.uni.lu/mine/docs/
Schommer.DataMiningAndFraud.pdf.

[7] J. Li, K. Y. Huang, J. Jin and J. Shi, “A survey on statistical methods for
health care fraud detection,” Health Care Management Science, vol. 11,
No. 3, 2008, pp. 275–287.

[8] C. C. Albrecht. (2008). Fraud and forensic accounting in a digital
environment [Online]. Available: http://www.theifp.org/research-grants/
IFP-Whitepaper-4.pdf.

[9] D. McSherry, "A case-based reasoning approach to automating the
construction of multiple choice questions," Lecture Notes on Computer
Science, vol. 6176, I. Bichindaritz and S. Montana, Eds. ICCBR 2010,
Springer-Verlag, 2010, pp. 406–420.

[10] M. M. Richter, “Case-Based Reasoning Technology, From Foundations
to Applications”, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1998, vol. 1400, pp. 1-15.

[11] W. Wilke, M. Lenz, and S. Wess, "Intelligent sales support with CBR,"
in Case-Based Reasoning Technology from Foundations to Applications,
M. Lenz, B. Bartsch-Spörl, H. D. Burkhard, S. Wess, Eds. Berlin:
Springer-Verlag, 1998, pp. 91-113.

[12] M. Lenz and H. D. Burkhard, "Case retrieval nets: Basic ideas and
extensions," in Proceedings of the 20th Annual German Conference on
Artificial Intelligence: Advances in Artificial Intelligence, London,
Springer-Verlag press, 1996, pp. 227-239.

168 169

An approach for retrieval and knowledge
communication using medical documents

Rafael Andrade, M. A. R. Dantas
Post-Graduate Program in Knowledge Engineering and

Management (EGC)
Federal University of Santa Catarina, UFSC

Florianopolis, Brazil
andrade@telemedicna.ufsc.br, mario@inf.ufsc.br

Fernando Costa Bertoldi, Aldo von Wangenheim
Department of Informatics and Statistics (INE)

Federal University of Santa Catarina, UFSC
Florianopolis, Brazil

{bertoldi, awangenh}@inf.ufsc.br

Abstract — The great number of information available in
different data sources requires increasingly of search engine
system to retrieve as many relevant documents as possible.
Clinical medical records contain a great number of information,
normally written in free-text form and without a linguistic
standard. The physicians do not write the patient’s reports using
style elements. Consequently, to retrieve the knowledge from
these data is not an easy task for the search engine. In this paper
we present the development of a model that allows recovering
knowledge from textual information in medical documents.
Query expansion techniques, which apply knowledge detection
assets from the DeCS ontology and language dictionaries, will be
used. The goal is to expand the user search and to create a
knowledge base to allow its reuse. In order to improve the search
results, semantic annotations and negation detection will be used
to process medical texts. The case study presented at the end
shows that the proposed model was able to achieve a mean
accuracy of 90% in its first ten results, while the Boolean model
was limited to only 60%. The conclusion is that the user will not
need to search in different databases to find the necessary
information.

Keywords-Informartion Retrieval; Query expansion; Negation
detection; Medical ontologies

I. INTRODUCTION

The electronic medical information is increasingly present
in all hospital and medical clinic. The large number of data that
contain medical information is available for researchers,
medical institutions, patients and all types of people interested
in this kind of information. More and more people can receive
and share their information without any restrictions. However,
the great number of information available in different data
sources requires the use of more intelligent retrieval
techniques, focusing on information content and semantic [1].

To demonstrate this requirement, we present a scenario
from a typical medical expert task: some common tasks of
medical research and clinical care involve, for instance, the
checking of exam results, comparison with other reports or
statistical analysis of disease patterns in medical records. When
a large volume of information is captured and analyzed, the
automation of this task is crucial for efficient processing.
Medical concepts have to become easily extractable from
medical records and they can be compared with other

information in order to allow more effective searches[2].
Although the information is available from different forms, the
medical texts need to be interpreted by computers in order that
information can be processed and effectively shared. To enable
this process, the users need to make use of tools in order to
increase the accessibility and the data management [3]. On the
other hand, to interpret medical text is a difficult task, but it can
be easier in comparison as narrative speech, because the
medical vocabulary is more restricted. Clinical medical records
contain a great number of information, normally written in
free-text form and without a linguistic standard. The physicians
do not use elements of style for write the patient’s reports. A
physician can write a report using many ways, and each of
them has its own writing style [4]. However, to manipulate
these amounts of information is certainly one of the greatest
challenges for modern health care search engine systems.

In this paper we describe the use of the knowledge
extraction technique from medical ontology and negation
detection procedures to define semantic annotation by expand
the user’s query and to improve the search engine process on
medical reports. We describe how to connect the named
entities from semantic descriptions on medical ontology DeCS
[5] and expand the user’s query from DeCS terms.
Furthermore, we describe a method that automatic negation
detection in medical reports using Natural Language
Processing (NLP) techniques [6]. We understand that the use of
these three techniques (semantic annotation, query expansion
using medical ontology and detecting negated findings and
diseases in medical reports), allow for semantically enriched
Information Retrieval (IR), expands the user’s queries with
medical terms and improve the quality of a search in the search
engine. In this paper, the search quality is typically described
by the use of precision at ten (P@10) metrics.

This paper presents the problem of retrieval information
from medical documents on Section 2. A background and
related works for semantic search, medical ontologies,
Semantic Annotation, Semantic repository and detecting
negated phrases techniques are presents on section 3. In Section
4 we present a schema to define automatic annotation from
medical ontology DeCS, expand the user query and detect

170 171

negative expressions on medical text reports. And finally, the
conclusions and future works are discussed in Section 5.

II. PROBLEM

Just because the information does not have a specific
standard, the information retrieval (IR) process from patient’s
medical records is in the most of cases, inefficient. The
traditional search engine by using Boolean techniques, do not
exploit all the potential existence in this domain-specific
knowledge. Although the medical domain provides controlled
vocabularies and tools that can be used to search and index
documents according to a conceptual hierarchy (e.g. MeSH,
DeCS, UMLS, etc.), these engines do not recovery the
hierarchical relations among the concepts and semantic such
the parents and children links. Sometimes, the medical expert
needs to retrieval more relevant information about a specific
term or expression. Therefore, this method does not necessarily
improve the traditional methods of text search [3]. In order to
all related information will be retrievable, it is necessary that
the search engines are able to understand the user request and
expand the search range, but without losing the quality of
search described by precision and recall metrics.

III. BACKGROUND

Before we present our approach, we need to introduce some
techniques most used for effective search and retrieval medical
information in semantic context. We explain in more detail the
methods used for semantic search using query expansion and
medical ontologies on Subsection A. In particular, the
Subsection B introduces the use of semantic annotation
techniques in order to improve on free text search retrieval
performance. The detection-negated phrases on medical reports
are introduced in Subsection C.
A. Query expansion and ontologies

To solve the problem of semantic search, effective
techniques are being widely developed to search and retrieve
semantically the medical knowledge [1], [2], [3], [7], [6]. The
resource most used is ontology. Ontology is a formal
specification of shared conceptualization in order to represent
concepts, relationships and rules that manage the relationships.
It consists in a way to represent semantic relationships, such
objects and relationships in a particular domain [8] and [9].
Ontologies and semantic approaches are used for the
integration and IR from different databases [10]. The ontology
structure is an important criterion to organize the knowledge
and determine the semantic reusability and data interoperability
[1].

An important use of the ontology is the query expansion
from free textual documents in order to improve IR systems
[10]. To expand a query, the user is guided to reformulate the
search by add new meaningful terms to the initial query. The
system extracts the similar terms from ontology and generates a
new query to increase IR systems. The objective here is
combining two independent subsystems to retrieval textual and
visual information, using the integration of medical knowledge
with term expansion they improve the results compared with
the two techniques in separated way.

Other works address the problem of query expansion in
order to enrich the information retrieval system [1], [7], [11]. A

way to expand a query is the use of Term Frequency – Inverse
Document Frequency (tf-idf) technique. In order to expand the
search, this method includes new terms to the request using
words or phrases having meanings similar or related to the
original request [11]. In order to evaluate the importance of
query expansion and manual indexing, Abdou and Savoy [11]
develop a new query expansion model and evaluate the
performance of ten different IR models, including probabilistic,
language and vector-space models. The authors perform two IR
tests (With and Without MeSH ontology) from Medline
collection in order to measure retrieval performance. The
method presented by authors is 170% more precise when
compared to the classical tf-idf vector-space model. Including
the MeHS when indexing scientific articles this work improve
more 8.4% performance on the best IR scheme. Other way to
expand a query is the use of ontologies. Bhogal et al.[7],
presented a range of definitions of information retrieval
focused on the use of context for query expansion. They have
discussed the problem of the use of ontologies for a range of
information retrieval tasks and their use in the area of query
expansion. For more information see [7].
B. Semantic annotation

Important studies show that extract semantically the
information providing semantic annotation using references
from ontologies and knowledge databases, can improve more
precision on IR systems [2], [12], [13]. In this research area,
semantic text annotation is effective texts processing that map
corresponding concepts from ontologies and annotate these
concepts in the document [2]. Annotations generate and use a
set of metadata that provide reference to named entities from
ontology mentioned in the medical documents [12]. This
metadata generate a knowledge database in order to support
semantic search in document repositories. The unstructured
medical text gain an important metadata supplied by the
ontology. The Semantic annotation enable computer to
understand the semantic meaning of a data set and increase the
quality of retrieved information and system interoperability
[14]. Gschwandtner et al. [2], presents a specific automatic
semantic annotation system that maps the concepts from
medical ontology to free medical text. They customize other
annotation systems (annotating web-pages) to understand a
specific medical domain. They develop an application that
generates a map of concepts from medical terminologies and
the medical concepts included in documents are annotated
semantically by a metadata. The medical experts can visualize,
control and correct all kinds of annotated information for
processing a medical document. Her works show that mapping
medical concepts from ontology can provide semantically
accurate information for text processing and helps to removing
ambiguity from different meanings.

Lourenco et al. [13], identifies relevant terms in documents
based on a lexicon Named Entity Recognition (NER) process.
The goal is annotate the occurrences of biological classes from
abstracts or full-texts within PubMed library and implement the
semantic indexing of documents and terms. The technique is
used to extract the information from medical libraries, tokenize
(pre-processing documents) and apply a lexical dictionary in
order to perform the recognition of named entities. In their
results obtained, the system is able to reduce significantly the

170 171

number of irrelevant documents without significant loss of
irrelevant documents. Although the technique used was
different, the two works aim to improve the indexing and
semantic information retrieval from medical documents.
C. Negative expressions

Retrieval negative expressions is as important as retrieval
any other information from the database. A negative expression
can invalidate a search. Therefore, the system engine has to
decide whether this expression contained in the database will
be excluded or not from the search [15]. Negative
phrases/expressions are used by doctors to write patient’s
diagnosis, medical procedures as well it helps the medical
expert to identify the occurring symptoms and diseases from
medical documents [6]. For instance, in medical document is
common diagnosis that contains text like “the patient does not
have hypertension”, or “the patient has hypertension”. These
expressions create a problem to the search engine. If the engine
detects the first expression as true, all documents that contain
this kind of expression will be retrieved and the result will
contain false information. Because of this, the process of
negation detection requires a lot of knowledge about the
language to correctly identify negated words or terms from an
expression. The detection of negative statements in medical
databases can reduce the search space thereby rendering the
search process more agile.

Gingl et al. [6] developed a method to classify and detect
negated information occurring in Clinical Practice Guidelines
(CPG) on syntactical level using grammatical information of
the English language. Her studies show that grammatical
elements are used to decide whether a phrase is negated or not.
The negation classification allows medical expert to decide
which therapies or treatment options are best or not applied to
the patients. Their syntactical methods detection improves the
values in precision and recall. One previous study identifies
concepts from a medical ontology UMLS and using a lexical
scanner in order to recognize and classify a large set of negated
patterns occurring in the text [15]. The authors developed a
program based on existing technology for implementing
parsers based on context-free grammar. The results of your
study show that the system presented has a recall and precision
between 91.8 and 95.7 percent in detecting negations on
medical documents.

IV. METRHODS AND MODEL DESCRITION

Although, most of this works apply different techniques in
order to retrieval the information from medical documents, all
of these works have a very particular function: improve the
search engine process on medical data. We understand that is
not easy to improve the current process, but based on the union
from these three previews presented techniques, we refine the
actual approach.

Our work differs from the previous works, because we aim
to provide to the medical user a document range much more
extensive and effective. We want to present most relevant
documents so that the user does not need to dispend too much
time to find information or the user does not need to look in
different databases in order to find the information. We aim
also to provide a semantic list created from a knowledge
database that is frequently updated in order to permit the user

find the information in an intuitive way. The approach
presented here is based on the query expansion technique using
ontologies that defines the use of terms in hierarchical tree and
by the use of synonyms. In order to improve the search,
semantic annotations will be used in medical texts. This
technique includes the use of named entities and the detection
of negative phrases to increase the research universe and
reduce the number of less relevant responses. We will create a
metadata repository which be used to generate concepts from
the ontology, extract the information from medical documents
and make the text pre-processing.

In figure 1, we describe how the term is indexed and how
the users receive de results. The most important component is
the Query Engine module. It is responsible to access the
semantic knowledge database and the text extraction modules
(Semantic Annotation, Negation Detection and Query
Expansion). The core of the query search engine is composed
for two main elements: Indexing and Search. The Analyzer
process is the conversion of texts in terms. The terms are used
to determine which documents match a query during the
search. The Analyzer is the component of the analysis process
that performs a series of operations to facilitate the indexing. It
converts the tokens to lowercase letter, removes stressed
characters, and removes common words, like articles and
pronouns (stop words) and extracts words root (stemming).

Figure 1. Semantic Information Retrieval from medical databases.

The Analyzer also uses NLP to extract terms from DeCS
ontology, in order to classify and define the relationship
between two terms, and extract the negative sentences. In our
system, we assume that the knowledge database should be built
and associated from information sources, which utilize medical
ontologies, lexical dictionaries, and the analyzer component in
order to describe concepts that appear in documents stored on
medical database.

The Reformulate component is responsible to connect
others text extraction modules, reformulate the query and store
the results on the Semantic Knowledge database. The semantic
annotation, query expansion and Negation Detection modules
are used by the Top-k Results Processor in order to retrieval
and ranking the information. The ranking method is an
adaptation of the vector space model (Van Rijsbergen, 1975),

172 173

which defines keywords weights that appear in the document.
The weights are computed automatically based on the
frequency of instances in each document. The number of
occurrences for a document instance is defined by the number
of the times that an instance appears on text

The Negation Detection module is a NLP technique, which
finds negations sentences into the medical text report in our
database. As described in [6], we need to detect five negation
classes (adverbial negation, intra-phrase triggered negation,
prepositional negation, adjective negation and verb negation) in
order to improve parameters of recall and precision by the user
query. The first step in the detection process is to create a list of
negative terms (not, ever, nerver, none, neither…). As a single
word does not define a negative term, we need to analyze an
expression. Furthermore, most of medical findings do not have
100% sure if a expression is affirmativ or negative, we created
a list "hypothetical" terms, like, cannot assert, cannot exclude,
cannot completely rule out…

Then we map biomedical text founded in DeCS ontology in
order to create a negative expression dictionary with this five
classes of negation expressions. We discovery this negated
expressions on the medical report in order to refine the user
query by sending to the query engine module. As a result, we
generated a list that has been indexed with the terms found in
order to facilitate further search. Figure 2 shows a list of
excerpt from negative expressions indexed by the algorithm in
the Portuguese language.

Figure 2. Stretch of annotated medical findings using our system.

The query expansion process uses the DeCS ontology by
adding more medical information in the user research. The
DeCS ontology is used for indexing the medical report text in
database, because this ontology contains concepts, relations of
synonymy and related concepts. This facilitates the expansion
and extraction of terms from the DeCS Descriptors. If the set of
terms have relation with the user query and DeCS descriptors,
we generate a new query, which contain all terms presents on
DeCS synonymous. Moreover, we use the lexical dictionary in
order to find new synonymous expressions on medical reports.
For instance, when a medical search for the disease “asthma”,
the DeCS ontology find four answer terms: “Asthma”,
“Asthma, Exercise-Induced”, “Dyspnea, Paroxysmal” and
“Asthma, Aspirin-Induced”. If we use the lexical dictionary,
we expand the results including three new terms: “Bronchitis”,
“Infectious bronchitis virus” and “Bronchitis, Chronic”. It is
happened because in our dictionary the term “Asthma” has
relationship with the term “Bronchitis”, but in DeCS ontology
this connections does not exist in the same hierarchical tree.

To define semantic annotation, we use a lexicon dictionary,
a list of stop words, and a dictionary of negative sentences for
Portuguese language. Moreover, we use the DeCS ontology to
create an automatic semantic annotation on text and to store on
semantic repository. The purpose of the semantic repository is
not only exact terms retrieval contained in the queries, but also
retrieval related entities, as synonyms and related terms stored
hierarchically on medical ontology. Using structural document
similarities, we identified named entities, associate these
entities with concepts, and define the semantic annotation.
These annotations are stored on semantic repository for further
future research.

V. RESULTS

In order to validate a knowledge base we needed a people
who have a high knowledge degree in a specific area and
ability to transfer this knowledge. These people are called
domain specialist. The specialist help to structure the
knowledge and allows to minimize the indexing errors of
computer systems.

In this work we use an specialist in medical domain in order
to validate the creation and the annotation of the knowledge
base. This validation enable to the user to represent and
communicate the knowledge in future search.

In order to validate our database, the specialist have select
randomly 172 reports from computer tomography. Figure 3
shows the result of evaluating from the medical especialist in
CTs findings. The specialist found 142 reports categorized as
affirmative; 19 reports categorized as negative; four as
ambiguous reports and seven reports are not found. In this case,
we can see that only for these 172 reports, a traditional system
would index those 19 reports (11%) as true and the traditional
search engines would be unable to define if a report should be
part of the response or not.

Figure 3. Validation reports for CT examination by medical specialist.

Once developed the prototype, several experiments were
conducted to verify the conduct of the search system in real
situations and in this case we verify the compliance with the
model described here. The work tests were developed to
validate the recovery process and communication of knowledge
in health domain.

206876|Bloqueio divisional ântero-superior de ramo
esquerdo, <hypothetical> nao se pode excluir
</hypothetical> <finding> fibrose inferior
</finding>

200330|Alterações da repolarização ventricular em parede
inferior com onda T <negation> negativa
</negation> em D3 e a Vf compatível com
<finding> isquemia subepicárdica </finding>

295168|<hypothetical> Não se pode descartar
<hypothetical> <finding> fibrose inferior
</finding>

84079|<finding> taquicardia supraventricular <negation>
não</negation> -sustentada </finding>

172 173

In this scenario, the user has done a search for reports that
contain terms used in the ontology. We also investigated
reports that contain negative expressions and reports that
contain expressions, which are not known by the ontology. The
aim of this study is show to the user the queries that he has
required and similar terms. If the system does not find a result,
the word or expression will be recorded in our daily database
and indexed in the next interaction. This information is
extremely valid, because the system can "learn" new terms,
according users will use the system. And for users, they can
learn more about the terms used by other professionals.

To illustrate the operation of our system, we developed a
study case that considered four sentence searches:

Q1: "Presence of thyroid nodules"

Q2: "Absence of Lithiasis"

Q3: "popcorn calcification in the brain"

Q4: "Right MCA Aneurysm"

The query Q1 was done with terms that are present in
domain ontology. In this case, the documents that are expected
to answer to Q1 are all documents that contain "thyroid nodules
presence" + "Presence Thyroid Gland Nodule" + "presence
Thyroid Neoplasms" + "presence Thyroid Disease" + Gland
Thyroid presence" (result of the research expansion). As the
term "thyroid nodules” is known in ontology, the system
returned all the documents that had some relation with the set
of term listed in the expanded query. Still, the results may not
contain negative expressions, because the user did not select
the specific field to search for phrases with a negative sense.
The queries results are described in Table 1.

TABLE I. CONSULTATION USING THE DEVELOPED METHODOLOGY

Query Results Time in
ms

P@10

Q1 “Presence of thyroid
nodules”

221 557 0,7*

Q2: “Absence of Lithiasis” 432 612 1,0

Q3: “popcorn calcification in
the brain”

109 736 0,9*

Q4: “Right MCA Aneurysm” 79 589 1,0

* In this query we found hypothetical terms that can not be considered
valid

In order to validate this case study and define the system's
accuracy, we used the metric of P@10. For each query defined
in the beginning of this section, the result is shown in Table 1.
For a better search, the queries was conduct after the validation
by the specialist and the connection of the daily use terms with
the ontology terms. The average precision of all queries was
0.9000.

The proposed methodology evaluated the accuracy of the
first ten results (P@10) for the two research models: the
traditional method (described here as IR) and the new model
(IR+QE+Neg). We can notice that in all the submitted queries,
the new research model had much better results than the
traditional method. For the user to get a satisfactory result in
the traditional method, we needed to perform various different

queries, already in IR+QE+Neg method was carried out only
one query for retrieve the results. Figure 4 show only the best
results with the traditional IR compared with IR+QE+Neg
model.

Figure 4. Comparison of traditional method with the proposed model.

With the exception of Q1, all other queries obtained
accuracy equal to or above 90%. The accuracy rate is a little
lower in Q1 due to the fact that the responses contain many
hypothetical expressions. In this way, we cannot confirm the
accuracy of the reports. But even so, the accuracy in Q1 was
still much higher than the traditional IR method (50%).

As the average precision of the two models can be
computed, we can also compare our model with the most
important articles showed in section II. Figure 5 shows a
comparison between our proposed systems with four others IR
models. However, the average precision can only be considered
in the expansion methods and in our method. Likewise, the
overall precision was only available in works of detecting
negative expressions. Because this work involves the use of
two different models, it was difficult to define an efficient
compared against the models available in literature. Still, the
proposed model showed accuracy well above what is available
in the literature.

Figure 5. Results of average precision and overal precision compared with
others important works.

174 PB

The model presented by Díaz-Galiano et al. [1], uses the
database of the Cross Language Evaluation Forum (CLEF) in
2005 and 2006. The base has 50,000 annotated images, which
are available for testing accuracy. The other works have used a
proper database for measuring the performance of its
experiments. The traditional method was used to compute the
352 sentences accuracy rating, which reached 0.30. Dias-
Galiano et al. [1] using 50,000 reports came annotated media
accuracy of 0.23. Abdou and Savoy [11] were able to reach
0.38 of precision in their responses using a set of 1,000 reports.
Chapman [16] and Gindl et al. [6] show only the total precision
in their experiments. Chapman used a database of 1058 reports
and came to a precision of 0.78. Gindl et al. [6] developed their
research in a base of 558 awards and reached the total of 0.68
accuracy. Since our model, which uses three RI presented
techniques, came to an accuracy rating of 0.88 and overall
accuracy 0.96.

VI. CONCLUSIONS

In this paper we described a method that enables semantic
search on medical text reports using ontologies in specific
domains. We implemented a parser that extracts information
from a database, normalize and store into an index database. In
some searches conducted, it is possible to measure the
functionality and applicability of the proposed architecture.
Also we had used DeCS ontology for clinical toxicology area
in order to classify the available information and establish well-
defined relations between this information. The use of this
ontology will optimize the process of care, increasing
reliability and efficiency of medical professional.

In our approach the queries will be generated from
keywords by a natural language query, or by form-based
interface where the user can explicitly select ontological items.
When a user performs a search, the queries are executed
against the semantic repository, which returns a list containing
instances that satisfy the search. If the required information is
not indexed on semantic repository, the engine performs the
search again directly to the medical database. The result is an
index that is stored on semantic repository and is available for
further queries. Before sending an answer to the user, the
system retrieves the information, ranking and creates the top-k
result list.

We also discussed three general data integrations
approaches that use the DeCS ontology to provide access to
medical database. According to an evaluation on the use of
these three techniques, we believe that the use of this semantic
information retrieval could assist the user to improve the results
in your research, by expanding the query and enrich the values
from precision and recall.

In future we aim to develop a semantic index that interprets
the information received from a medical database. We will
develop basic NLP techniques, in order to construct the
semantic queries. An ontological process will be provided to
map the word on the text with the ontology DeCS concepts.

For the handle of negative statements, we will develop a
text-mining algorithm to extract medical terms from our

medical diagnosis database. Then we need to classify the text,
e.g., “the patient does not have hypertension”, “the patient has
hypertension”, or “the patient has high blood pressure”.
Furthermore, we need to make a relation between the terms on
medical ontologies, with the terms founded in the medial report
(e.g., symptoms and human body parts). The goal in the future
is to define high weights for negative expressions, generate a
dictionary that will be use for faster search and improve more
precision and recall to the user queries.

REFERENCES

[1] Díaz-Galiano, M.C., M.T. Martín-Valdivia, and L.A. Ureña-López,
Query expansion with a medical ontology to improve a multimodal
information retrieval system. Computers in Biology and Medicine, 2009.
39(4): p. 396-403.

[2] Gschwandtner, T., et al., Easing semantically enriched information
retrieval--An interactive semi-automatic annotation system for medical
documents. International Journal of Human-Computer Studies, 2010.
68(6): p. 370-385.

[3] Moskovitch, R. and Y. Shahar, Vaidurya: A multiple-ontology, concept-
based, context-sensitive clinical-guideline search engine. Journal of
Biomedical Informatics, 2009. 42(1): p. 11-21.

[4] Sager, N., C. Friedman, and M.S. Lyman, Medical Language
Processing: Computer Management of Narrative Data. 1987: Addison-
Wesley Longman Publishing Co., Inc. 320.

[5] BIREME. DeCS/VMX. 2010 15 fev 2009]; Available from:
http://decs.bvs.br/vmx.htm.

[6] Gindl, S., K. Kaiser, and S. Miksch, Syntactical negation detection in
clinical practice guidelines. Studies in health technology and
informatics, 2008. 136: p. 187.

[7] Bhogal, J., A. Macfarlane, and P. Smith, A review of ontology based
query expansion. Inf. Process. Manage., 2007. 43(4): p. 866-886.

[8] BERNERS-LEE, T., J. Hendler, and O. Lassila, The semantic web.
Scientific American, 2001. 284(5): p. 34-43.

[9] Studer, R., V.R. Benjamins, and D. Fensel (1998) Knowledge
engineering: Principles and methods. Data & Knowledge Engineering
25, 161-197 DOI: 10.1016/S0169-023X(97)00056-6

[10] Munir, K., et al., Semantic Information Retrieval from Distributed
Heterogeneous Data Sources. FIT Islamabad, special track on
bioinformatics for academia and industry, 2006.

[11] Abdou, S. and J. Savoy, Searching in Medline: Query expansion and
manual indexing evaluation. Inf. Process. Manage., 2008. 44(2): p. 781-
789.

[12] Kiryakov, A., et al., Semantic Annotation, Indexing, and Retrieval., in
The SemanticWeb - ISWC 2003. 2003. p. 484-499.

[13] Lourenço, A., et al., BioDR: Semantic indexing networks for biomedical
document retrieval. Expert Systems with Applications, 2010. 37(4): p.
3444-3453.

[14] Agosti, M., G. Bonfiglio-Dosio, and N. Ferro, A historical and
contemporary study on annotations to derive key features for systems
design. International Journal on Digital Libraries, 2007. 8(1): p. 1-19.

[15] Mutalik, P.G., A. Deshpande, and P.M. Nadkarni, Use of general-
purpose negation detection to augment concept indexing of medical
documents: a quantitative study using the UMLS. Journal of the
American Medical Informatics Association : JAMIA, 2001. 8(6): p. 598-
609.

[16] Chapman, W., A Simple Algorithm for Identifying Negated Findings and
Diseases in Discharge Summaries. Journal of Biomedical Informatics,
2001. 34(5): p. 301-310.

PB 175

A WordNet-based Semantic Similarity Measure

Enhanced by Internet-based Knowledge

Gang Liu1, 2, Ruili Wang1, 2*
1
School of Engineering and Advanced Technology,

Massey University, Palmerston North, New Zealand
2
State Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing, P.R. China

*
R.Wang@Massey.ac.nz

Jeremy Buckley

Simplar Limited

 Wellington

 New Zealand

Helen M. Zhou

School of Electrical Engineering

Manukau Institute of Technology

Auckland, New Zealand

Abstract—Approaches for measuring semantic similarity between

words have been widely employed in various areas such as

Artificial Intelligence, Linguistics, Cognitive Science and

Knowledge Engineering. A new semantic similarity measure is

proposed in this paper, which exploits the knowledge retrieved

from a semantic network (i.e., WordNet) and the Internet. In

particular, the structure information from WordNet and the

statistic information obtained from the Internet are combined to

quantify the semantic similarity between words. The new

similarity measure is evaluated by comparing the rating results

with two sets of human benchmark data. Experimental results

indicate that, the proposed similarity measure outperforms

previous WordNet-based semantic similarity measures.

Keywords-semantic similarity; WordNet; Normalised Google

Distance

I. INTRODUCTION

Measuring semantic similarity between words has been
playing an important role in many research areas such as
Artificial Intelligence, Linguistics, Cognitive Science and
Knowledge Engineering [25]. The semantic similarity between
words can be utilised to disambiguate word senses [15], detect
malapropism [12] and improve the accuracy of ontology
mapping [8]. Accurate estimation of semantic similarity can
benefit all these applications in the aforementioned research
areas and enhance their performances.

Measuring the semantic similarity or distance between
words is a process of quantifying the relatedness between the
words utilising the knowledge obtained from certain
information sources. These information sources can be: (i)
lexical recourses such as dictionaries, thesauri and semantic
networks [16]; (ii) collections of documents such as corpus
[25], and (iii) the Internet [3,5].

Semantic networks are considered as better choices for
estimating semantic similarity than other lexical resources [2].
WordNet [4] is one of the most popularly used semantic
networks for estimating semantic similarities [1,2,6,7,10,12,16,
19,20,24,26].

Based on the way of utilising WordNet, the WordNet-based
semantic similarity measures can be classified into three
categories: (i) node-based methods, which estimate the
semantic similarity by computing the amount of information
contained by related words in WordNet (e.g., [19]). (ii) edge-

based methods, which assess the semantic similarity by
calculating the length of edges on the shortest path between the
words in WordNet (e.g., [26]). (iii) hybrid methods, which
combine the information content theory and the structure
information from WordNet to estimate the semantic similarity
between words (e.g., [7]).

This paper proposes a hybrid method utilising the Internet
as a corpus to overcome shortcomings of previous hybrid
methods. In particular, our method utilises Normalised Google
Distances (NGD) [3] to derive the semantic similarity between
words combining with the structure information from
WordNet. According to our experimental results, introducing
the Internet knowledge to WordNet-based semantic similarity
measures can increase the accuracy of estimating semantic
relatedness between words.

The remainder of this paper is organised as follows. Section
II provides a brief introduction on WordNet and reviews
previous WordNet-based semantic similarity measures. Section
III introduces our new WordNet-based semantic similarity
measure, and the motivations of using the Internet as a corpus
and NGD as a tool for estimating semantic relatedness between
concepts. Section IV presents evaluation experiments and their
results. Section V concludes the paper.

II. WORDNET AND WORDNET-BASED SEMANTIC

SIMILARITY MEASURES

WordNet is a semantic network, which is organised in such
a way that synsets and wordsenses are the nodes of the
network, and relations among the synsets and wordsenses are
the edges of the network. In WordNet, each meaning of a word
is represented by a unique wordsense of the word, and a synset
(stands for “synonym set”) is consisting of a group of
wordsenses sharing the same meaning. More than two thirds of
the nodes in WordNet are synsets. hyponymOf is the key
relationship for noun synsets in WordNet, which has been
widely used to estimate the semantic relatedness among nouns.

WordNet has been commonly used to measure semantic
similarity among words since it has the inherent advantages of
being structured in the way of simulating human recognition
behaviours [4]. The reminder of this section will give a brief
review on previous WordNet-based semantic similarity
measures organised in the aforementioned three categories.

176 177

A. Node-based methods

Node-based methods use the amount of information
contained by related nodes (i.e., related concepts) in WordNet
to estimate semantic similarity between the concepts of
interest, i.e., c1 and c2. Thus, this kind of methods is also called
as information-based methods.

Most of node-based methods employ the information
content to quantify the amount of information that a concept
contained. According the definition in the information theory
[23], the Information Content (IC) of a concept c can be

quantified by () log(())IC c P c= − , where P(c) is the

probability of c appearing in a corpus.

Resnik [19] believed that the similarity of c1 and c2 is
determined by the closest common superordinate concepts (i.e.,
hypernyms) of c1 and c2 in WordNet. Thus, Resnik proposed to
use the IC of the lowest hypernyms of c1 and c2 to calculate the
semantic relatedness between c1 and c2.

Richardson and Smeaton [20] amended Resnik’s method
[19] by using a different equation to calculate the IC of the
lowest hypernyms of c1 and c2.

Banerjee and Pedersen [1] developed a score schema to
estimate the relatedness through cross comparing the words
being used in the definition of c1 and c2 and their hypernyms.

The drawbacks of node-based methods include: (i) it is a
time-consuming work to analysis the corpora for estimating the
IC values; (ii) unbalanced contents of the employed corpora
may significantly decrease the accuracy of the IC values.

B. Edge-based methods

Edge-based methods utilise the shortest path between
concepts (i.e., c1 and c2) in WordNet to estimate the semantic
relatedness between c1 and c2. Lengths of all edges on the
shortest path are accumulated to quantify the semantic
similarity. It is the way of calculating the length of edges that
differentiates methods in this category.

Sussna [24] proposed to use the depths of the taxonomy
tree of WordNet that c1 and c2 are in, and the type-specific
fanout factors to compute the semantic relatedness between c1

and c2. The type-specific fanout factor is defined by the type of
the edges connecting c1 and c2, and the numbers of edges
setting off from c1 and c2, respectively.

Leacock and Chodorow [10] suggested that the semantic
relatedness between c1 and c2 can be estimated using the edge
number of the shortest path between c1 and c2, and the depth of
the involved taxonomy tree in WordNet.

Yang and Powers [26] proposed to utilise the properties of
edges and the edge number of the shortest path to calculate the
semantic similarity between c1 and c2. The properties of edges
considered are: (i) the relation type of the edge, and (ii) the
depth of the edge.

Hirst and St-Onge [6] utilised edge directions to estimate
edge lengths of the shortest path. An edge direction is
determined by the relation type of the edge. The directions of
edges in a path between concepts are used to determine if the

path is allowable, and to define the strength of turns in the
allowable path. Hirst and St-Onge used the length of the
shortest allowable path between c1 and c2, and the number of
the direction turns in the path to estimate the semantic
relatedness between c1 and c2.

The accuracy of the edge-based methods is significantly
affected by the lack of considering the varieties of semantic
distances between adjacent words, which is caused by the
uneven word densities in WordNet. For instance, Sussna [24],
and Leacock and Chodorow [10] did not consider the variety of
all edge lengths; Hirst and St-Onge [6], and Yang and Powers
[26] ignored the diversity of semantic distance among edges
that are in a same type.

C. Hybrid methods

Hybird methods combine the information from different
resources to estimate the semantic similarity between concepts,
e.g., combining the IC of concepts with the structure
information retrieved from WordNet to conduct the estimation.

Jiang and Conrath [7] accumulated the scaled length of all
the edges in the shortest path between concepts to estimate the
semantic similarity of the concepts. The edge length between
concept c (a node in the shortest path) and concept p (the parent
node of c in the shortest path) is calculated by

(,) log(()) log(())length c p P p P c= − . Structure information

from WordNet such as (i) local density of the nodes in the
shortest path, (ii) depth of the nodes, and (iii) the relation type
of edges are utilised to scale the edge length.

According to previous research [2,16], hybrid methods
outperform the other two kinds of methods. However, hybrid
methods share a common weakness with all node-based
methods: the data sparseness of the employed corpus. This
weakness can be caused by two reasons: (i) the size of the
corpus is relatively undersized, and (ii) the coverage of the
corpus is not well balanced. One possible way to complement
the deficiency is to use a better corpus.

III. THE PROPOSED SEMANTIC SIMILARITY MEASURE

Our semantic similarity measure is a hybrid method
combining the knowledge acquired from the Internet and the
structure information from WordNet to quantify the semantic
relatedness between concepts. In our method, the Internet is
used as a corpus for estimating the semantic distance between
adjacent concepts along the shortest path between the concepts
of interest, i.e., c1 and c2, in WordNet.

A. The Internet as a corpus

We believe that the Internet is an ideal corpus for
calculating IC of concepts. The reasons include: (i) the Internet
is the current largest electronic text source; (ii) the Internet is a
relatively balanced knowledge source; (iii) the knowledge in
the Internet can be updated regularly and up-to-date.

Well-performed Internet search engines such as Google
enable us to use the Internet as a huge corpus. With help from
these search engines, the frequency of a word appearing in the

176 177

Internet can be easily estimated using the number of web pages
that contain the word.

We use hypernyms as context words to tag word senses. A
corpus with tagged word senses is one of the key requirements
for semantic similarity measures to give accurate estimations
on the similarities between concepts when corpora are
involved. In word sense disambiguation area, context words are
believed to share linguistic information with the word of
interest and can be used as a word senses indicator [15].
Experimental results of Clever Search developed by Kruse et
al. [9] show that hypernyms are effective to be used as context
words to indicate word senses for querying the Internet.

B. Normalised Google Distance

We use Normalised Google Distance (NGD) [3] between
the end nodes of each edge to estimate the edge lengths of the
shortest path. The NGD utilises the numbers of Google search
results to approximate the Kolmogorov Complexity [11] of
words for calculating the semantic relatedness between the
words. Given two words x and y, the NGD between x and y can
be calculated by the following equation:

max{log (), log ()} log (,)
(,)

log min{log (), log ()}

f x f y f x y
NGD x y

N f x f y

−
=

−

where f(x), f(y), and f(x, y) are the numbers of web pages found
by Google that contain x, y, and both x and y, respectively. N is
a normalising factor, whose value is a reasonable large value
that is larger than both f(x) and f(y).

C. Calculation of Semantic similarity

We employ the following structure information from
WordNet to scale the edge lengths of the shortest path: (i) the
relation type of the edges; (ii) the number of adjacent words
that the end nodes have; (iii) the depth of the end nodes in their
own taxonomy tree, and (iv) the maximum depth of the
involved hierarchy structures.

Since Jiang and Conrath’s method [7] outperforms other
existed semantic similarity measures [2,16], we proposed an
equation based on their equation to calculate the edge lengths
of the shortest path:

(,) (1) (,) (,)
() ()

E D
wt c p NGD c p T c p

E p d p

α

β β= + −

where c is a node on the shortest path; p is the parent node of c;

E is the average local density of all nodes; ()E p is the local

density of p (i.e., the number of its children nodes); D is the
maximum depth of the hierarchy structure that c and p are in;

()d p is the depth of p; α , β and T(c, p) are the depth factor,

density factor, and edge type factor, respectively; NGD(c, p) is
the Normalised Google Distance between c and p.

The semantic relatedness between c1 and c2 can then be
calculated by the following equation:

1 2

1 2 1 2

(,) (, ())

{ (,) (,)}

rel c c wt n parentOf n

n S c c Sol c c

=

∈ −

where S(c1, c2) is the set of nodes in the shortest path between
c1 and c2 ; Sol(c1, c2) is the set of nodes in the shortest path
which have no parent nodes in the path; n is a node included by
S(c1, c2) but excluded by Sol(c1, c2).

IV. EVALUATION

This section introduces the evaluation of the proposed
semantic similarity measure. Similarity ratings computed by
our method are compared with human judgement data in this
evaluation. Two sets of prevalent human benchmark data are
employed: (i) Rubenstein and Goodenough data set (RG-Set)
[22] and (ii) Miller and Charles data set (MC-Set) [13]. The
Pearson Product-moment Correlation Coefficient [21] is
employed to calculate the consistency between similarity
ratings.

Our method is compared with Jiang and Conrath’s method
[7] as well. Jiang and Conrath’s method has been considered as
one of the best semantic similarity measures [2,16]. In other
words, we can believe our method is better than other methods
if our method can outperform Jiang and Conrath’s method.

Table I reports the similarity ratings on MC-Set computed
by Jiang and Conrath’s method and our method, respectively.

TABLE I. HUMAN AND COMPUTED RATING ON MC-SET

MC-Set Human

Ratings

Jiang and

Conrath’s

Method

Our Method

car - automobile

gem - jewel

journey - voyage

boy - lad

coast - shore

asylum - madhouse

magician - wizard

midday - noon

furnace - stove

food - fruit

bird - cock

bird - crane

tool - implement

brother - monk

crane - implement

lad - brother

journey - car

monk - oracle

food - rooster

coast - hill

forest - graveyard

monk - slave

coast - forest

lad - wizard

chord - smile

glass - magician

noon - string

rooster - voyage

cemetery - woodland

shore - woodland

3.92

3.84

3.84

3.76

3.7

3.61

3.5

3.42

3.11

3.08

3.05

2.97

2.95

2.82

1.68

1.66

1.16

1.1

0.89

0.87

0.84

0.55

0.42

0.42

0.13

0.11

0.08

0.08

0.95

0.63

3.409

3.403

3.062

2.899

3.402

3.234

3.433

3.402

2.055

2.851

3.365

3.365

3.153

0.943

2.921

1.409

0

0.207

0.185

2.937

0.195

0.968

2.311

1.363

2.193

0.032

0

0

0.178

2.262

3.473

3.496

3.303

3.256

3.172

3.18

3.445

3.472

1.337

1.542

3.187

3.028

3.05

2.17

2.643

1.927

0

1.459

0.6

2.686

0.197

2.089

1.166

1.466

1.117

1.019

0

0

0.185

1.472

Table II shows that when MC-Set is used, the correlation

coefficients between human rating and the ratings computed by
Jiang and Conrath’s method and our method, respectively. The
correlation of human judgement replication listed in the table
was reported by Miller and Charles [13].

178 179

TABLE II. THE CORRELATION COEFFICIENTS ON MC-SET

Methods Correlation

Jiang and Conrath’s and human rating 0.7509

Our method and human rating 0.8087

Human judgement (replication) [13] 0.8848

Because of the limitation of space, we will not report our

similarity ratings on RG-Set in this paper. Table III reports
when RG-Set is used, the correlation coefficients between the
human ratings and the ratings computed by each of Jiang and
Conrath’s method and our method.

TABLE III. THE CORRELATION COEFFICIENTS ON RG-SET

Methods Correlation

Jiang and Conrath’s and human rating 0.7129

Our method and human rating 0.7634

The above experimental results indicate that our method
outperforms Jiang and Conrath’s method. Since Jiang and
Conrath’s method is one of the best existed semantic similarity
measures [2,16], we believe that our method can provide better
estimations on semantic similarities than previous methods.

V. CONCLUSIONS

In this paper, we proposed a new hybrid method for
semantic similarity measure by combining the structure
information from WordNet and the statistic information
obtained from the Internet.

In our method, the length of the shortest path between two
concepts in WordNet is used to measure the semantic similarity
of the two concepts. The Internet is used as a corpus for
estimating the length of each edge on the shortest path.
Previous methods usually employ stand alone corpora to
estimate the edge lengths, and their performances are limited
by the data sparseness or unbalanced knowledge of the
employed corpus. Our experimental results show that the
Internet can overcome the drawbacks that stand alone corpora
brought to semantic similarity measures. We use context words
to tag word senses and Normalised Google Distance (NGD) to
calculate the length of edges on the shortest path.

The proposed semantic similarity measure has been
evaluated by comparing the rating results with human
benchmark data. We also compare our results with the results
returned by Jiang and Conrath’s method, which, according to
[2,16], provides one of the best results on measuring semantic
relatedness. The experimental results indicate that employing
the Internet as a corpus and using NGD to compute the edge
lengths enable our method to outperform previous semantic
similarity measures.

REFRENCES

[1] S. Banerjee and T. Pedersen, “Extended gloss overlaps as a measure of
semantic relatedness,” In Proc. of the 18th Intl Joint Conf. on Artif.
Intell., pp. 805-810, 2003.

[2] A. Budanitsky and G. Hirst, “Evaluating WordNet-based measures of
semantic distance,” Comput. Linguist., 32(1), pp.13-47, 2006.

[3] R. Cilibrasi and P. Vitányi “The Google Similarity Distance,” IEEE
Trans. Knowl. Data Eng., 19(3), pp.370-383, 2007.

[4] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press,
1998.

[5] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using Wikipedia-based explicit semantic analysis,” In Proc. of the 20th
Intl Joint Conf. on Artif. Intell., pp. 1606-1611, 2007.

[6] G. Hirst and D. St-Onge, “Lexical chains as representations of context
for the detection and correction of malapropisms,” In WordNet: An
Electronic Lexical Database, The MIT Press, 1998, pp. 305–332.

[7] J.J. Jiang and D.W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” In Proc. of the Intl Conf. on Research
in Comput. Linguist., pp. 19–33, 1997.

[8] S. Kaza and H. Chen, “Evaluating ontology mapping techniques: An
experiment in public safety information sharing,” Decis. Support Syst.,
doi:10.1016/j.dss.2007.12.007, 2008.

[9] P.M., Kruse, A. Naujoks, D. Roesner, and M. Kunze, “Clever Search: A
WordNet Based Wrapper for Internet Search Engines,” In Proc. of 2nd
GermaNet Workshop 2005, arXiv:cs/0501086v1, 2005.

[10] C. Leacock and M. Chodorow, “Combining local context and WordNet
similarity for word sense identification,” In WordNet: An Electronic
Lexical Database, The MIT Press, 1998, pp. 265–283.

[11] M. Li and and P. Vitanyi, An Introduction to Kolmogorov Complexity
and Its Applications, Springer-Verlag, New York, 1993.

[12] D. Lin, “An information-theoretic definition of similarity,” In Proc. of
the Intl Conf. on Mach. Learn., pp. 296–304, 1998.

[13] G.A. Miller and W.G. Charles, “Contextual correlates of semantic
similiarity,” Lang. Cognitive Proc., 6(1), pp. 1–28, 1991.

[14] J. Morris and G. Hirst, “Lexical cohesion computed by thesaural
relations as an indicator of the structure of text,” Comput. Linguist.,
17(1):21–48, 1991.

[15] R. Navigli, “Word Sense Disambiguation: A Survey,” ACM Comput.
Surv., 41(2), pp. 1-69, 2009.

[16] G. Pirrò, “A semantic similarity metric combining features and intrinsic
information content.” Data Knowl. Eng., pp. 1289-1308, 2009.

[17] W.V. Quine, Ontological Relativity and Other Essays, New York,
Columbia University Press, 1969.

[18] R. Rada, H. Mili, E. Bicknell, and M. Bletner, “Development and
Application of a Metric on Semantic Nets,” IEEE Trans. Syst. Sci.
Cybern., 19(1), pp. 17-30, 1989.

[19] P. Resnik, “Using information content to evaluate semantic similarity,”
In Proc. of the 14th Intl Joint Conf. on Artif. Intell., pp. 448–453, 1995.

[20] R. Richardson and A.F. Smeaton, “Using WordNet in a Knowledge-
Based Approach to Information Retrieval,” Working Paper CA-0395,
School of Computer Applications, Dublin City University, Ireland, 1995.

[21] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” The American Statistician, 42(1), pp.59–66,
1988.

[22] H. Rubenstein and J. B. Goodenough, “Contextual correlates of
synonymy,” Comm. of the ACM, 8(10), pp. 627–633, 1965.

[23] C.E. Shannon, “A mathematical theory of communication,” Bell Syst.
Techn. J., 27(1), pp. 379-423, 1948.

[24] M. Sussna, “Word sense disambiguation for free-text indexing using a
massive semantic network,” In Proc. of the 2nd Intl Conf. on on Inform.
and Knowl. Manage., pp. 67–74, 1993.

[25] P.D. Turney, “Similarity of semantic relations,” Comput. Linguist.,
32(3), pp.379-416, 2006.

[26] D. Yang and D.M.W. Powers, “Measuring semantic similarity in the
taxonomy of WordNet,” In Proc. of the 28th Australasian Comp. Sci.
Conf., pp.315–322, 2005.

178 179

Semantic Enabled Sensor Network Design

Jing Sun1, Hai H. Wang2 and Hui Gu1

1Department of Computer Science, The University of Auckland, New Zealand
j.sun@cs.auckland.ac.nz, hgu005@aucklanduni.ac.nz

2School of Engineering and Science, Aston University, United Kingdom
h.wang10@aston.ac.uk

Abstract

Wireless Sensor Network (WSN) systems have become
more and more popular in our modern life. They have been
widely used in many areas, such as smart homes/buildings,
context-aware devices, military applications, etc. Despite
the increasing usage, there is a lack of formal description
and automated verification for WSN system design. In this
paper, we present an approach to support the rigorous ver-
ification of WSN modeling using the Semantic Web technol-
ogy. We use Web Ontology Language (OWL) and Semantic
Web Rule Language (SWRL) to define a meta-ontology for
the modeling of WSN systems. Furthermore, we apply on-
tology reasoners to perform automated verification on cus-
tomized WSN models and their instances. We demonstrate
and evaluate our approach through a Light Control System
(LCS) as the case study.

1. Introduction

Wireless Sensor Network (WSN) systems have become
more and more popular in our daily life [6]. It can be found
in many areas, such as industrial plants, residential build-
ings, smart portable devices, as well as military fields, etc.
For example, in a chemical plant, sensors are used to mon-
itor the leaking of toxic materials. In a smart building, sen-
sors are used to detect the motions inside secured facilities.
However, the cost of developing a WSN is relatively expen-
sive. Once the sensors have been deployed, it is very hard
to change and reconfigure them. Therefore, a good initial
design prior to the implementation is essential, which can
make the system more reliable and fault tolerant.

With regard to initial designs, there are many approaches
that can be used to model WSN systems. For instance, the
Unified Modeling Language (UML) was used to specify the
WSN design [9]. Despite the semi-formality of UML, the
weak ability in modeling WSN instances and the lack of
support for automated verification hinder the approach. Re-

cently, Dong et. al. [1] proposed a process algebra based no-
tation, i.e., Active Sensor Process (ASP) for the modeling of
WSN systems. However, there has been no automated ver-
ification support to facilitate the promised reasoning. On
the other hand, there are mature formal techniques from the
Semantic Web community that can be effectively applied
to this domain. Recently, Web Ontology Language (OWL)
has been used to model the knowledge base of WSN and
semantic technologies has been widely accepted as impor-
tant components of complex, cross-jurisdictional, heteroge-
neous, dynamic sensor network systems [3, 8, 4]. For ex-
ample, OntoSensor [8] is one of such approaches, where a
knowledge base for WSN was developed using OWL. As
a forerunner, OntoSensor provides a comprehensive model
for WSN system specifications. It covers most of the con-
cepts and properties that can be used in a WSN design.
However, one weakness of the approach lies in that it has
not fully utilized the reasoning functionalities of the ontol-
ogy models. Hence, OntoSensor lacks of the capability of
analyzing and verifying the correctness of its WSN spec-
ifications. As a matter of fact, ontology reasoning could
greatly assist the users in creating high quality WSN models
as well as further exploring the hidden knowledge, checking
the correctness and minimizing redundancies.

Figure 1. Overall approach to WSN design.

In this research, we aim at fully utilizing the reason-

180 181

ing functionalities of the ontology approach in verifying
the correctness of WSN design and managing WSN mod-
els. We use rule-based notations, i.e., Semantic Web Rule
Language (SWRL) [5] to capture complicated constraints
among different concepts of a WSN system. Moreover, au-
tomated verification can be carried out to check whether
these constraints are correctly enforced by the design, in
terms of the WSN model and its specific configurations (in-
stances). The users can apply generalized rules of WSN
systems that are encoded in the meta-ontology, as well as
they can define new rules for a customized WSN system by
extending the meta-model. Figure 1 presents an overview of
our ontology-based approach. Firstly, a WSN meta-model
is defined using the OWL/SWRL languages. The meta-
model is designed specially for the WSN context, which
includes most of the conceptual terminologies that can be
used in a WSN system design. In the meta-model, we also
defined additional constraints among different concepts us-
ing SWRL rules, which capture complicated relationships
among the entities. The meta-model plus the rules form
the WSN meta-ontology that can be used to create cus-
tomized WSN system specifications. When users declare
their own customized WSN specifications by extending the
meta-model, all the meta-level rules are automatically en-
forced upon the customized model. The customized WSN
ontology also consists of model specific terminologies and
the rules. For example, we can customize the meta-ontology
into defining a specific light control sensor network system
of a smart building. The terms used in the light control sys-
tem extend the meta-ontology, e.g., specific motion sensors
and light devices. The rules used in the customized model
further constrain the requirements of the specific system,
such as the conditions for a light to be turned on, the light
illumination in a room in relation to the sunlight intensity
readings of the out-door sensor and so on. After defining
the customized WSN ontology, we can create instance con-
figurations from the ontology, e.g., specific numbers of of-
fices and lights in a light control system configuration. At
this stage, we can perform reasoning tasks on the ontology
and its instances to check the correctness of design. The
Jess [2] is a rule engine that can be used for such a purpose.

The rest of the paper is organized as follows. Sec-
tion 2 presents the modeling and reasoning of the WSN
meta-ontology. Section 3 presents a Light Control System
(LCS) as a case study to demonstrate the usage of the WSN
meta-ontology and the reasoning on customized WSN de-
signs. Section 4 concludes the paper and discusses the fu-
ture work.

2. Ontological Meta-model for WSN Systems

A WSN structure can be divided into three levels, i.e.,
node level, group level and network level. Our model con-

centrates on the group level, which means the ontology
is built based on how sensors are managed into different
groups to provide specific functions and how they interact
with each other. We can view a WSN system as a service
orientated network, where each group provides services to
other groups as well as works collaboratively together. A
group consists of two different types of sensors, i.e., leader
sensors and normal sensors. A leader sensor acts as the
leader of the group that controls other sensors.

Group � � Sensor � �
Service � �
LeaderSensor � Sensor NormalSensor � Sensor
Group � ∀ hasId.int Group �= 1 hasId
Group � ∀ hasLeaderSensor.LeaderSensor
Group � ∃ hasLeaderSensor.LeaderSensor
Group � ∀ hasNormalSensor.NormalSensor
Group � ∃ hasNormalSensor.NormalSensor
Group � ∀ hasService.Service
Group � ∃ hasService.Service

As defined above, a group has an id that is used to uniquely
identify itself. Each group consists of Leader Sensors,
Normal Sensors and Services. We do not restrict
the number of services that a group can provide, as a group
may provide more than one services to others. For example,
a sensor can be used to detect both temperate and altitude at
the same time, thus the group that the sensor belongs to can
provide two kinds of services simultaneously. Note that the
‘∀’ and ‘∃’ combinations in the above definition represent
closure axioms on the entities through their corresponding
properties. They are useful in performing automatic clas-
sification on the ontology with the Open World Assump-
tion (OWA) of DL. For example, the above states that a
group must have a non-empty set of lead sensors through
the hasLeadSensor property, and the only things that a
group can related to through the hasLeadSensor prop-
erty are lead sensors. Similar closure axioms can be defined
on the normal sensor and service.

Sensors are used to receive and send data, which are
formed in groups to accomplish specific tasks in a WSN
system. Our WSN ontology model focuses on the group
level of WSN design. For example, the distance of a signal
can travel is directly proportional to the power consumption
of a sensor node. Therefore, a signal that travels 10 me-
ters in distance consumes more energy than that of the same
signal propagates through a neighboring sensor with two 5
meters distance. Thus the cooperation among the sensors
in a group is a typical behavior in WSN systems. Sensor
grouping can be divided into two main categories, i.e., lo-
cation groups and logical groups. A location group simply
indicates that all the sensors in the group are organized by
their physical positions, which can be further divided it into
three different types, i.e., a planar mesh group, a geographic
group and a spanning tree group. We use the planar mesh
groups as examples to demonstrate the modeling. The geo-

180 181

graphic and spanning tree groups can be modeled in a sim-
ilar way.

The planar mesh group is a commonly used structure in
WSN systems, where there is no centralized communica-
tion and the sensors in the group only sends signals to its
nearest neighboring sensors. The structure forms a planar
mesh network. This is known as an ad-hoc network where
each sensor is willing to propagate the information. One
advantage of such a network is its fault tolerance, where
broken nodes should not effect the functionalities of the sys-
tem as a whole, since the data information can always find
an alternative path to eventually reach its destination. A
planar mesh network is typically deployed into harsh en-
vironments. For example, a planar mesh WSN group can
be applied in a forest surrounding to collect the soil and
weather information. As the sensors need to withstand all
sorts of weather conditions, such as rain, wind, frost, snow,
etc., fault tolerance is essential. The planar mesh location
group can be defined in OWL as follows.

PlanarMeshGroup � LocationGroup
PlanarMeshGroup = 1 hasStartingSensor
PlanarMeshGroup � ∀ hasStartingSensor.

PlanarMeshLeaderSensor
PlanarMeshLeaderSensor � LeadSensor
PlanarMeshLeaderSensor � ∀ hasNeighbour.

PlanarMeshNormalSensor
PlanarMeshLeaderSensor � ∃ hasNeighbour.

PlanarMeshNormalSensor
PlanarMeshLeaderSensor �≥ 1 hasNeighbour.

PlanarMeshNormalSensor
PlanarMeshNormalSensor � NormalSensor

The leader sensor still acts as the coordinator of the group.
It has at least one normal sensor as its neighbor and man-
ages other normal sensors in the group. A normal sensor
in a planar mesh group can have more than one neighbor-
ing sensors (leader or normal). The size of the network can
be quite large depending on the number of sensors in the
group. The group only needs to know the location of the
leader sensor, as all other sensors belongs to the group can
eventually be reached from it.

A logical group represents a group of sensors that are
organized by certain business logic, e.g., temperature, pres-
sure, humidity, altitude, etc. Therefore, strictly speaking,
a location group can be considered as one type of logical
group, where the physical position is its logic. Logical
groups can be defined similarly as the location group. In
addition, a logical group can be used in conjunction with
other logical groups or location groups. For example, a
group can extend both a geographic group and a humid-
ity group in its hierarchy, which means that the group is
used for humidity measuring purpose and its sensors are
managed through the geographic structure. For interested
readers, the complete WSN meta-ontology definition can
be found online at: http://www.cs.auckland.ac.
nz/˜jingsun/WSN/SensorNetwork_3_4.owl

One of the distinguishing features of logic based ontol-
ogy languages is that it has good reasoning support to per-
form desired verification. Designed as a web ontology lan-
guage, the full-automatic, high efficiency and large scala-
bility are the most important requirements for OWL and
SWRL reasoning services. Ontology reasoning can be used
to verify the WSN design at both the conceptual level and
the instance level. It can assist users to reduce the amount
of work needed in building a good WSN specification. For
example, we can define a WSN model partially and use on-
tology reasoners to infer the rest of the knowledge about the
model. Moreover, ontology reasoning can be used to check
constraints (relationships) among different instances. Such
additional constraints can be captured by the SWRL rules
in the ontology and enforced upon the instances by reason-
ing. In general, the use of OWL reasoners for WSN systems
includes but is not limited to the following.

Composition – is a fundamental advantage of using on-
tology reasoners. OWL provides the ability to specify sets
of sufficient and necessary conditions to recognize mem-
bers of a class and infer that one class must be a subclass of
another. Classes for which there is at least one set of suffi-
cient conditions are known as “defined” classes. (The sym-
bol ≡ is used in the DL syntax to denote defined classes.)
By using the necessary and sufficient conditions defined in
OWL, new concepts can be defined systematically from ex-
isting concepts. This can result in a dramatic reduction
in the number of facts that have to be maintained explic-
itly. In OWL, complex expressions can be built up using
restrictions and logical operators without having to name
each intermediate concept before use. This embedding of
‘anonymous concepts’ allows more expressive representa-
tions to be built easily and naturally. For example, we might
define SensoriaPressureGeographicGroup as pressure sen-
sor groups which are organized geographically and led by a
sensor produced by Sensoria.

SensoriaPressureGeographicGroup ≡
PressureGroup � GeographicGroup�

∀ hasCenterSensor.(Sensor�
∃ hasManufacturer.Sensoria)

Poly-hierarchy – represents the structure of a knowl-
edge base. As we mentioned before, a sensor or sensor
group can be organized into different classes based on its
properties and usages. Managing and maintaining such
complex poly-hierarchy of concepts is hard. Changes of-
ten need to be made in several different places, and keeping
everything in step is error prone and laborious. For exam-
ple, the property values of a sensor in WSN might change
over time and its network system has to be reconfigured
dynamically. Using a classifier, we can develop normal-
ized knowledge models. In a normalized ontology, even
the most complex poly-hierarchies are built out of simple
non-overlapping trees. The OWL class definitions are used
to define concepts bringing the trees. The reasoners can
maintain the relationships amongst defined concepts auto-

182 183

matically. Changes are always made in exactly one place.
The new poly-hierarchy relationship can be computed on
the fly. For example, if we set up a new type of pressure
geographical sensor group using WINSNG2, which is one
kind of sensor produced by Sensoria. This can be modeled
as the following.

WINSNG2 � Sensor � ∃ hasManufacturer.Sensoria
TestSensorGroup ≡ PressureGroup�

GeographicGroup � ∀ hasCenterSensor.WINSNG2

Note that there is no need to assert TestSensorGroup is a
subclass of SensoriaPressureGeographicGroup. OWL rea-
soners will automatically infer this relationship, as the suf-
ficient and necessary condition of SensoriaPressureGeo-
graphicGroup has been satisfied. If later we update the
leading sensors of TestSensorGroup to MPS-D3, which is
a product of SEBA, we only need to modify the class Test-
SensorGroup. The reasoners will update the class hierarchy
automatically, i.e., removing the subclass relationship be-
tween TestSensorGroup and SensoriaPressureGeographic-
Group.

Instantiation – is the process of matching instances
against classes. By using instantiation, we can define a gen-
eral individual, and the reasoning can classify which spe-
cific concept it belongs to. The following example illus-
trates how it works. For example, if we would like to further
restrain that a lead sensor can only control normal sensors,
not other lead sensors. We specify the following SWRL
rule.

Sensor(?y) ∧ controlSensor(?x, ?y) ∧
LeaderSensor(?x) → NormalSensor(?y)

Sensor(?y) and LeaderSensor(?x) define the
types of individuals x and y. Note that we define y as
a generalized sensor instead of a specific type of sensor.
The controlSensor(?x, ?y) indicates the relation-
ship between x and y. NormalSensor(?y) is the result
of this rule. The whole rule can be understood as ‘if y is a
sensor and it is controlled by a leader sensor x, then y must
be a normal sensor’.

Property inference – is used to derive the existence of
a certain property in the ontology. With inference, we can
build a partial WSN model, and use reasoning to derive the
rest of the knowledge. For example, the following SWRL
rule captures that ‘if a group x has a leader sensor y, y con-
trols z, then z must belongs to group x’.

Group(?x) ∧ LeaderSensor(?y) ∧ NormalSensor(?z) ∧
hasLeaderSensor(?x, ?y) ∧ controlSensor(?y, ?z)

→ hasNormalSensor(?x, ?z)

From the above, we specified three entities, i.e., a Group
x, a LeaderSensor y and a NormalSensor z. If
there is a relationship hasleaderSensor between x
and y and another relationship controlSensor between
y and z, we can infer that there must be a relationship

hasNormalSensor exists between x and z. Similarly,
instances can be checked in Protégé through the Jess engine.
The above rule illustrates the inference property of ontology
reasoning. The user only needs to define the relationships
from a group to a leader sensor and from a leader sensor to
a normal sensor. The rule can infer the relationship between
the group and the normal sensor automatically.

Consistency Checking – is the process of detecting vi-
olation of constraints (inconsistency) in a model. After we
define the WSN ontology, we can create specific WSN in-
stances (configurations) and use reasoning to check whether
the instances are consistent with respect to the model. For
example, the following rule captures that a normal sensor
can only be controlled by at most one lead sensor.

LeaderSensor(?x) ∧ NormalSensor(?y)
∧ controlSensor(?x, ?y)

→ controlledBySensor(?y, ?x)

The rule states if a LeaderSensor x control a
NormalSensor y, then y must be only controlled by x,
not any other lead sensors. If we have an instance that states
y also controlled by another leader sensor z, then there is an
inconsistency (conflict) in the model. Similarly, this can be
checked in Protégé through Jess.

The above examples illustrate different types of rea-
soning that can be performed by the WSN meta-ontology
model. The most important strength and purpose of logic-
based ontology approach is that they allow classes to be de-
fined by complex class expressions built recursively from
previously defined classes and properties using constructors
provided by the ontology language. In the next section, we
demonstrate the modeling and verification of a customized
WSN that extends the meta-ontology.

3. Case Study - A Light Control System (LCS)

In this section, we extend the above defined WSN meta-
ontology to design a Light Control System (LCS) [7] as a
case study of WSN modeling and apply reasoning to en-
hance the design. LCS is a context-aware system that uses
sensors to detect the motions of people and decide whether
it should turn on/off the lights inside the facilities. It also
has a set of outdoor sensors to detect the intensity of the day
light in order to automatically adjust the illuminations of the
lights inside the facilities. Detailed LCS requirements can
be found in [7]. Due to the space limit, we can not list all of
them, as our goal is to use it as an examples to demonstrate
the verification.

In the LCS, room, hallway and wall can be defined as
subclasses of the Geographic Group, where the diameters
of those groups represent the physical space. Our design is
based on a building structure of a university facility, where
the types of rooms included are computer labs, hardware
labs, meeting rooms, offices and peripheral rooms. For each

182 183

group, we defined a controller that acts as the leader sen-
sor. There are three types of controllers specified, i.e., room
controller, hallway controller and wall controller. Let’s con-
sider the room controller as an example.

RoomController � LeaderSensor
RoomController �

∀ controlElectricalDeviceGroup.LightGroup
RoomController �≥ 1 controlElectricalDeviceGroup
RoomController � ∀ controlSensor.MotionSensor
RoomController �≥ 1 controlSensor
LightSensor � NormalSensor
LightSensor � ∀ hasMeasurand.LightDetector
LightSensor �= 1 hasMeasurand

The above syntax states that a room controller is one type
of leader sensor that can control at least one light group
and at least one motion detector. After we created the
controllers, we need to deploy some sensors into the sys-
tem. In the LCS, we mainly have two types of sensors,
i.e., motion sensor and light sensor. The motion sensor
is used to detect if there is any movement in a certain
area. The light sensor is installed on the facility wall to
detect the intensity of the outdoor day light. Light sen-
sor and motion sensor both extend from a normal sensor.
For example, the eighth line constrains that a light sen-
sor can only be used for detecting light intensity; while
the ninth line constrains that light sensor can only have
one measurand. Other entities of the LCS, such as offices,
meeting rooms, hallways, etc., can be defined in a similar
way. For interested readers, the complete LCS model can
be found online at: http://www.cs.auckland.ac.
nz/˜jingsun/WSN/LightSystem_3_4.owl

In this section, we used SWRL rules to specify some
of the LCS functional requirements that were listed in [7]
and demonstrate how the ontology reasoning can help us
to build a high quality specification. Note that because the
LCS model extends the WSN meta-ontology defined in Sec-
tion 3, the meta-level reasoning we demonstrated in Section
3.3 can be automatically applied on the LCS model. How-
ever, here we would like to focus more on examples of the
LCS specific reasoning as follows.

“The illumination value of the lights in a room plus the
day light intensity detected by the light sensors outside the
room should be equal to a certain value, for instance 100.”

Office(?x) ∧ Wall(?y) ∧ besideWall(?x, ?y) ∧
RoomController(?w) ∧ WallController(?z) ∧
hasLeaderSensor(?x, ?w) ∧ hasLeaderSensor(?y, ?z) ∧
LightGroup(?c) ∧ LightSensor(?a) ∧ Light(?d) ∧
controlElectricalDeviceGroup(?w, ?c) ∧
controlSensor(?z, ?a) ∧ LightDetector(?b) ∧
hasMeasurand(?a, ?b) ∧ detectLightIntensity(?b, ?e) ∧
deviceGroupHasSomeDevice(?c, ?d) ∧
swrlb : subtract(?f , 100, ?e)

→ lightHasIntensity(?d, ?f)

In the above, we demonstrate a SWRL representation of the
illumination requirement in LCS. It simply specifies that if
an outdoor sensor detects the daylight intensity value, say
20, then the lights in the office should have an illumination
value of 100-20 = 80 (if we assume that the safe illumina-
tion value is 100). Note that the swrlb:subtract(?f,
100, ?e) is a built-in mathematic rule in SWRL that ex-
presses ‘f = 100 - e’ [5]. With this constraint enforced, it can
provide two kinds of reasoning, i.e., inferring new knowl-
edge and checking inconsistency. Firstly, if we knew the
outdoor daylight intensity reading, we can automatically de-
rive the light illumination value in the room. Secondly, if a
user wrongly specified a value of the light illumination in-
side a room with respect to its outdoor daylight intensity
reading, the reasoning can easily detect such inconsistent
instances.

“When a room/hallway is occupied by a person, the
lights inside the facility must be kept on.”

MotionDetector(?x) ∧ MotionSensor(?y) ∧
hasMeasurand(?y, ?x) ∧ controlSensor(?z, ?y)
∧ controlElectricalDeviceGroup(?z, ?u) ∧
deviceGroupHasSomeDevice(?u, ?v)
∧ detectMotion(?x, true)

→ isDeviceTurnedOn(?v, true)

The above rule states that a room controller z controls both
the motion sensor y and light group u. If the motion sen-
sor detects some movement from the motion detector x,
then the lights v that belong to the light group u should be
turned on. Again, this rule enforces the availability of lights
according to the motion detectors in the facility and also
checks (maintains) the correct status of the lights in the sys-
tem. Other LCS requirements in [7], e.g., ‘if a room/hallway
is unoccupied for a certain time the lights in the facility
need be switched off automatically’, etc., can be modeled
and verified using the Jess rule engine in a similar manner.
In the following section, we demonstrate another type of
reasoning that can be used to monitor the behavior patterns
of a WSN system.

Besides the reasoning examples demonstrated above,
SWRL rules can also be used to determine dynamic actions
in a WSN system. For example, we define the following
two SWRL rules in the LCS.

Rule-1 :
MotionDetector(?x) ∧ MotionSensor(?y) ∧
hasMeasurand(?y, ?x) ∧ controlSensor(?z, ?y) ∧
controlElectricalDeviceGroup(?z, ?u) ∧
deviceGroupHasSomeDevice(?u, ?v) ∧
detectMotion(?x, true)

→ isDeviceTurnedOn(?v, true)

Rule-2 :
MotionDetector(?x) ∧ MotionSensor(?y) ∧
hasMeasurand(?y, ?x) ∧ controlSensor(?z, ?y) ∧

184 185

controlElectricalDeviceGroup(?z, ?u) ∧
deviceGroupHasSomeDevice(?u, ?v) ∧
detectMotion(?x, false) ∧ detectNothing(?x, 10)

→ isDeviceTurnedOn(?v, false)

Rule-1 states if a room or hallway is occupied by some-
one, the lights in that room or hallway should be turned
on. And rule-2 is the reverse case of rule-1, which states
if a hallway/room is not occupied for more than 10 seconds,
the lights belong to that hallway/room should be turned off.
Now, if we have two hallways connecting to each other,
namely hallway a and b, as show in Figure 2.

Figure 2. Movement from hallways a into b.

If a person goes into hallway a, it will trigger Rule-1 to
be fired. We can record as �Rule-1, a�. Suppose this person
moves from hallway a into hallway b, the sensor installed in
hallway b detect this person and Rule-1 is fired again. We
record as �Rule-1, b�. If there is no one else in hallway a
at that moment, after 10 seconds, Rule-2 will be fired. We
can record �Rule-2, a�. Finally, we can write the rule invo-
cation sequence for this person (instance) as: �Rule-1, a� →
�Rule-1, b� → �Rule-2, a�. Now, suppose if this sequence
has occurred for the same instance and no other direct con-
nected sections are involved during the same period, we can
conclude that there must have been a person moved from
hallway a to hallway b in that duration period. Hence, we
can define a set of control sequences in the WSN system (in
the forms of rule actions), where each sequence represents
a behavior pattern that could be engaged by the individuals
(instances) in the system. By monitoring these sequences
(patterns) occurred in the system, we can come to aware of
the basic activities happened during a certain period of time.
Moreover, these behavior pattern recognition results can be
used to make further context-aware decisions in the WSN
system, e.g., for security or patient monitoring purposes.

4. Conclusion

In this paper, we proposed a formal ontological approach
for WSN modeling and verification. We defined an WSN
meta-ontology in the OWL/SWRL language, which speci-
fies the basic terminologies and relationships that captures
the fundamental requirements of a WSN design. These

rules can provide subsumption, inference and consistency
reasoning on the WSN instances. When users design
a WSN model using our approach, they can create cus-
tomized WSN specifications by extending the top level
meta-ontology. In addition, they could initialize parts of the
specification and use the ontology reasoner to automatically
infer the rest of the knowledge in the design. Furthermore,
the rules and their invocation sequences in our approach can
be effectively used as action patterns in monitoring the dy-
namic behaviors of a WSN system implementation. Finally,
we demonstrated the design and verification of the Light
Control System (LCS) as a case study.

In the future, we plan to develop a Graphical User In-
terface (GUI) that aims at assisting a user-friendly creation
and verification of WSN designs. The purpose of the GUI is
to allow the designers to build their WSN models in trans-
parent of the underlying OWL/SWRL syntaxes.

References

[1] J. S. Dong, J. Sun, J. Sun, K. Taguchi, and X. Zhang. Spec-
ifying and Verifying Sensor Networks: an Experiment of
Formal Methods. In Proceedings of the 10th International
Conference on Formal Engineering Methods, pages 318–337.
Springer-Verlag, October 2008.

[2] E. Friedman-Hill. Jess in Action: Java Rule-Based Systems.
Manning Publications Co., Greenwich, CT, USA, 2003.

[3] M. Gomez, A. Preece, and G. de Mel. Towards Semantic
Match Making in Sensor-Mission Assignment: Analysis of
the Missions and Means Framework. Technical report, ITA
Technical Paper, 2007.

[4] J. Goodwin and D. Russomanno. An Ontology-Based Sen-
sor Network Prototype Environment. In Proceedings of the
Fifth International Conference on Information Processing in
Sensor Networks, pages 1–2, April 2006.

[5] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML. http://www.w3.
org/Submission/2004/SUBM-SWRL-20040521/,
May 2004.

[6] F. L. Lewis. Chapter 2 in D. J. Cook and S. K. Das, editors,
Smart Environments: Technologies, Protocols, and Applica-
tions, pages 11–46. John Wiley and Sons, New York, 2005.

[7] S. Queins, G. Zimmermann, M. Becker, M. Kronen-
burg, C. Peper, R. Merz, and J. Schaefer. The Light
Control Case Study: Problem Description. Journal
of Universal Computer Science, 6(7):586–596, 2000.
http://www.jucs.org/jucs_6_7/light_
control_problem_description.

[8] D. Russomanno, C. Kothari, and O. Thomas. Sensor Ontolo-
gies: from Shallow to Deep Models. Southeastern Symposium
on System Theory, 0:107–112, 2005.

[9] G. Sunyé, A. L. Guennec, and J.-M. Jézéquel. Design Pat-
terns Application in UML. In ECOOP ’00: Proceedings of
the 14th European Conference on Object-Oriented Program-
ming, pages 44–62, London, UK, 2000. Springer-Verlag.

184 185

186 187

186 187

188 189

188 189

190 191

190 191

Design Software Architecture Models using Ontology

Jing Sun1, Hai H. Wang2 and Tianming Hu3

1Department of Computer Science, The University of Auckland, New Zealand
j.sun@cs.auckland.ac.nz

2School of Engineering and Science, Aston University, United Kingdom
h.wang10@aston.ac.uk

3Department of Computer Science, Dongguan University of Technology, China
tmhu@ieee.org

Abstract

Software architecture plays an essential role in the high
level description of a system design, where the structure and
communication are emphasized. Despite its importance in
the software engineering process, the lack of formal de-
scription and automated verification hinders the develop-
ment of good software architecture models. In this paper,
we present an approach to support the rigorous design and
verification of software architecture models using the se-
mantic web technology. We view software architecture mod-
els as ontology representations, where their structures and
communication constraints are captured by the Web Ontol-
ogy Language (OWL) and the Semantic Web Rule Language
(SWRL). Specific configurations on the design are repre-
sented as concrete instances of the ontology, to which their
structures and dynamic behaviors must conform. Further-
more, ontology reasoning tools can be applied to perform
various automated verification on the design to ensure cor-
rectness, such as consistency checking, style recognition,
and behavioral inference.

1. Introduction

Software architecture plays an essential role in the high
level design of a software system. Analogy to civil engi-
neering, it represents the fundamental structural and behav-
ioral descriptions of the system under design. Despite its
importance in the software engineering process, the lack of
formal description and automated verification hinders the
development of good architecture models. Traditionally,
software architectures are specified using diagrammatic and
textual notations [8, 9]. However, architecture models de-
fined in this manner are likely to be inconsistent and error
prone due to the informality of the description and the lack

of means of rigorous verification to ensure the correctness.
As a result, formal modeling techniques have been applied
to software architecture descriptions [1, 4], which is aimed
at achieving precise specification and rigorous verification
of the intended structures and behaviors in the design. The
main advantage of such verifications is the ability to deter-
mine whether a modeled structure can correctly satisfy a
set of given properties in the requirements of a system in
order to assure quality of design. However, one drawback
of many existing approaches in the automated verification
of software architecture models is their limited scalability,
as large architecture models are computationally expensive
to process. For example, a recent work by Kim and Gar-
lan [7] proposed the modeling and verification of architec-
ture styles using the Alloy language and its analyzer. In
their approach, a few architecture styles based on ACME
descriptions were translated and verified using the Alloy an-
alyzer. Although it offers a useful insight to the ability of
applying formal modeling in automating the verification of
architecture descriptions, the performance issue is a prac-
tical limitation of the research. The problem arose from
that large-sized architecture models dramatically expand the
search spaces of the verification in the Alloy SAT solver. To
overcome this problem, Wong et al. [11] recently proposed
a model splitting approach for the parallel verification of Al-
loy based architecture models using their underlying styles.
The approach improved the performance of the verification.
However, the overheads of the model decomposition as well
as the dependency issues among the sub-models during the
parallel verification phase still remain as challenges.

On the other hand, there are mature large-scale reason-
ing means from the Semantic Web [2] technology that can
be adopted to provide more promising solutions towards the
problem, both in terms of knowledge representation and
automated verification. The semantic web vision recom-
mended by the World Wide Web Consortium (W3C) has
emerged as the next generation of the web from the late

192 193

nineties. It extends the current web by assigning web con-
tent with a well-defined meaning, aimed at enabling intel-
ligent machine processing of web resources. Description
Logic (DL) based ontology languages, such as the Web
Ontology Language (OWL) [6] and Semantic Web Rule
Language (SWRL) [5], have been proposed to meet the
needs of representing the complicated relationships among
different entities. One of the advantages of the ontology
languages, such as OWL and SWRL, is that DL reasoning
engines, such as Pellet [10] and Jess [3], can be effectively
used to perform large-scale automated reasoning on ontolo-
gies and their instances, e.g., subsumption reasoning, con-
sistency checking, classification and knowledge inference.
The scale of such verifications is usually in terms of thou-
sands of ontological individuals (instances). To a certain
extent, the semantic web approach is essentially an applica-
tion of formal methods into the web community, where web
resources are formally specified using description logic no-
tations and rigorously verified using ontological reasoning
engines.

In this paper, we explore the synergy between software
architecture modeling and the semantic web ontological
reasoning. We view software architecture models as on-
tology representations, where their structures and commu-
nications must hold. The overall approach of our ontolog-
ical based software architecture modeling and verification
is presented in Figure 1. As shown from the diagram, we

Figure 1. Overall Approach of Ontology-
based Architecture Modeling and Verification.

first define ontology models that are specific to software ar-
chitecture design using the OWL/SWRL languages based
on different architecture styles. OWL is used to specify the
structure and relationship constraints among the architec-
ture terminologies, e.g., the participating components, con-
nectors and their connections. SWRL is used to capture
the dynamic interactions within the architecture models as
additional constraints, e.g., the requester and provider com-
munication protocol of a Client and Server style. The OWL
ontology plus the SWRL rules form the meta-ontology that
can be used to create customized architecture specifications.
When users define their own customized architecture mod-

els by extending the meta-ontology (styles), all the meta-
level rules are automatically enforced upon the customized
models, i.e., the particular structures and communications
are carried over onto the new design. A customized ontol-
ogy can also consist of system specific terminologies and
rules. For example, we can customize the meta-ontology
into defining the architecture model of a specific internet ap-
plication that extends the Client and Server style and yet has
its own additional communication behaviors. After creating
the customized ontology, architecture configurations can be
defined as instances of the underlying ontology design, e.g.,
specific numbers of web servers and named clients involved
in the system layout, etc.

Furthermore, there are two levels of verification that can
be performed in our approach to ensure the correctness of an
architectural design, namely, the ontology and the instance
levels. The former ensures the correctness of the architec-
ture model itself, e.g., no conflicting connection and com-
munication constraints among the components. The latter
ensures the conformance of a particular configuration with
respect to its design, e.g., a certain configuration should al-
ways have its pre-defined structures and perform its own
communication protocols. Moreover, ontology reasoners
can be used to fully automate the verification process. For
example, the Pellet reasoner can be used to check the con-
sistencies of the ontology and instance models, and the Jess
rule engine can be used to automatically derive the com-
munication sequences on configurations, etc. In addition,
ontology classifiers can be used to automatically recognize
the style patterns that are used in a design at the ontology
level.

The remainder of the paper is organized as follows. Sec-
tion 2 presents ontology definitions for software architec-
ture modeling which includes commonly used architecture
styles. Section 3 illustrates the use of the architecture on-
tology in modeling and verifying a customized Three-Tier
network architecture as a case study. Finally, section 4 con-
cludes the paper and discusses the future work.

2. Ontology for Software Architecture Design

Software architecture modeling focuses on the high level
description of a system in term of the elements in the sys-
tem and the interactions among the elements. Components
and connectors are two fundamental units in an architec-
ture description [1]. Components describe the identifiable
computation entities of a system, where connectors specify
the patterns of communication among these entities. Each
component consists of a set of ports as its external visible in-
terfaces. A connector consists of a set of roles that are used
to describe the patterns of a particular kind of communica-
tion. In order to establish a connection between different
components of the system, the roles of a connector must
be attached to the ports of the participating components.

192 193

The use of connectors separates the concern of computa-
tion from communication in a system description.It further
promotes encapsulation and reusability in architecture mod-
eling. In OWL, we define the following classes and proper-
ties to represent the different entities and their relationships
in an architectural design.

Component � � Connector � �
Port � � Role � �
Process � � Id � �
Component � Connector � Port � Role � Process � Id = ⊥

The above defines Component, Connector, Port,
Role and Process as mutually disjoint classes. They
are top level entities in the architecture description, where
the Process represents an atomic behavior that a port or a
role can perform. The Id defines the message identification
number that is shared by different processes involved in a
communication. For example, the processes in a client and
server communication, e.g., sending a request, invoking the
server, server returning the result, receiving the result back
by the client, may share the same message id for referring
to the same client request interacting through the client and
the server.

≥ 1 hasPort � Component � � ∀ hasPort.Port
≥ 1 hasRole � Connector � � ∀ hasRole.Role
≥ 1 hasAttachment � Role
� � ∀ hasAttachment.Port � �≤ 1 hasAttachment
isAttachedTo = (−hasAttachment)
≥ 1 hasAction � (Port ∪ Role)
� � ∀ hasAction.Process
≥ 1 hasCommunication � Process
� � ∀ hasCommunication.Process

After defining the basic entities, we use OWL property defi-
nitions to further capture the relationships among them. For
example, the hasPort is a relation from a Component
as its domain to a Port as its range, which simply denotes
that a component has a set of ports as its interfaces. Sim-
ilarly, the hasRole represents that a connector has a set
of roles as its participating parties in the connection. The
attachment of a role to a specific port is defined as the prop-
erty hasAttachment. Note that hasAttachment is
defined as a functional property from a role to a port, which
means that a port can be attached to different roles, but not
vise versa. The relation isAttachedTo is an inverse re-
lation to the hasAttachment function, which maps a
port back to its attached role. We also define two more
relationships to capture the dynamic interactions within a
component or a connector and their communications. The
property hasAction describes the set of atomic processes
that a port or a role is able to perform. The property
hasCommunication captures the interaction sequences
of a particular communication (protocol). In addition, the
connectivity constraint need to be enforced upon the model,
i.e., in order to establish a valid attachment between a role
and a port, the port must be able to perform the behaviors
(actions) that the role has. Otherwise, the port can not ‘play’

the role in the connection due to behavior mismatch. This
can be easily specified using a SWRL rule as follows.

hasAttachment(?r, ?p) ∧ hasAction(?r, ?x)
→ hasAction(?p, ?x)

The above states that if a role ?r is attached with a port
?p and the role has a process ?x in its action, then the port
must also have the same process ?x in its action set. Note
that a port may have more behaviors than that of its attached
role, which is allowed during an attachment. This also gives
the flexibility for a port to be able to participate in different
roles of connections. The ontology reasoning engine asserts
the above rule when checking the correctness of the attach-
ments in the architecture design.

After defining an ontology for the component and con-
nector model, we will further demonstrate the construction
of commonly used software architecture styles by extend-
ing this base ontology. In the following subsection, we use
the Client and Server style as an example to illustrate the
modeling. Other styles can be defined in a similar manner.

2.1. Ontology for the Client and Server style

The Client and Server structure is one of the most widely
adopted styles in software architecture description, espe-
cially in distributed and network based computer systems.
It offers a loosely coupled multi-connection mechanism in
a consumer and provider fashion. A server is a component
that provides a set of services that are exposed to various
clients for consumption. A client is a component that acts
as a consumer to those services. We define the following
OWL classes for the Client and Server style by extending
the component and connector ontology.

Client � Component Server � Component
Request � Port Provide � Port
CnS � Connector
Provider � Role Consumer � Role
SendRequest � Process ReceiveResult � Process
InvokeServer � Process ServerReturn � Process

The above extends the component and connector model and
defines the basic entities involved in a Client and Server
structure, i.e., client, server, connector, ports, roles and
participating processes. Note that the Request port be-
longs to the Client component and the Provide port
belongs to the Server component. CnS is a connector
that has a Provider role and a Consumer role. We re-
fined the basic behaviors of the style into four communica-
tion processes, i.e., SendRequest, ReceiveResult,
InvokeServer and ServerReturn, where the first
two belongs to the consumer and the last two belongs to the
provider. These relations are specified using OWL proper-
ties as follows.

194 195

Client � ∃ hasPort.Request Server � ∃ hasPort.Provide
CnS � ∃ hasRole.Provider CnS � ∃ hasRole.Consumer
CnS � ∀ hasRole.(Provider � Consumer)
Request � ∃ isAttachedTo.Consumer
Request � ∀ isAttachedTo.Consumer

In addition, we defined a necessary and sufficient condition
for the CnS connector, where there is a closure axiom on
the hasRole property. This enforces the classification on
any connector that only has a provider and a consumer as
its roles to be a connector of the Client and Server style.
Note that the necessary and sufficient conditions contribute
to the automatic recognition of architecture styles through
ontology classification, which will be demonstrated later.

With the structure information of the Client and Server
style defined, we then use SWRL rules to capture its dy-
namic communication behaviors (protocol) as follows. We
divided the entire communication of the Client and Server
style into two parts, i.e., the communication of the con-
nector and the internal behaviors within the server. The
former consists of two action sequences - (1) receive a re-
quest from the consumer role and invoke the server through
the provider role, (2) receive a server return value from the
provider role and send the result back through the consumer
role. This is captured by the first SWRL rule below using
the hasCommunication property. The latter represents
the internal actions of a server that contributes to the over-
all communication of the service consumption, i.e., when-
ever there is an invocation of request on the server, there
should always be a corresponding response returned from
the server. This is captured using the second SWRL rule
shown below.

CnS(?cn) ∧ Consumer(?cr) ∧ Provider(?pr) ∧
p1 : Id(?id) ∧ SendRequest(?r) ∧ InvokeServer(?i) ∧
ServerReturn(?ret) ∧ ReceiveResult(?res) ∧
p1 : hasRole(?cn, ?cr) ∧ p1 : hasRole(?cn, ?pr) ∧
p1 : hasAction(?cr, ?r) ∧ p1 : hasAction(?cr, ?res) ∧
p1 : hasAction(?pr, ?i) ∧ p1 : hasAction(?pr, ?ret) ∧
p1 : hasId(?r, ?id) ∧ p1 : hasId(?i, ?id) ∧
p1 : hasId(?ret, ?id) ∧ p1 : hasId(?res, ?id)

→ p1 : hasCommunication(?r, ?i) ∧
p1 : hasCommunication(?ret, ?res)

Server(?s) ∧ Provide(?p) ∧ InvokeServer(?i) ∧
ServerReturn(?r) ∧ p1 : hasPort(?s, ?p) ∧
p1 : hasAction(?p, ?i) ∧ p1 : hasAction(?p, ?r) ∧
p1 : Id(?id) ∧ p1 : hasId(?i, ?id) ∧ p1 : hasId(?r, ?id)

→ p1 : hasCommunication(?i, ?r)

After completing the ontology definition for the Client and
Server style, we can invoke the Pellet reasoner to check the
consistency on the ontology. In addition, we can create par-
ticular configurations of the style and infer new knowledge
on the models. We will demonstrate these verification as-
pects with an example in the next section.

3. A Three-Tier Network Architecture

In this section, we demonstrate the modeling and veri-
fication of a Three-Tier network example by using the ar-
chitecture style ontology that we defined earlier. In mod-
ern web applications, the systems are constructed using a
multi-layered structure, where a middle-ware layer is intro-
duced to encapsulate the business logics. The middle layer
is named as the ‘Application Server’, which can be consid-
ered as a mediator between the clients and the data storage
facilities. The application server acts as both a server to the
user requests and a client to the database server for data ma-
nipulations. We model the Three-Tier architecture using the
following OWL classes by extending the style ontology that
we defined in the previous sections.

ThinClient � Component
ApplicationServer � Component
DatabaseServer � Component
CnA � Connector AnD � Connector
AppRequest � Port AppProvide � Port
AppConsumer � Role DBProvider � Role
SendApp � SendRequest AppResult � ReceiveResult

We define the ThinClient, ApplicationServer,
DatabaseServer as basic components involved in the
structure. In addition, CnA is a connector that connects
the thin client with the application server, while AnD is the
connector that relates the application server to its database
server. The above also gives the definitions of the ports
used in the model, i.e., AppRequest, AppProvide,
DBRequest, and DBProvide. The roles used in
the structure include AppConsumer, AppProvider,
DBConsumer and DBProvider. Finally, we define
the processes that involved in the communication of the
structure, e.g., SendApp extends the SendRequest
process of the Client and Server style ontology, which
denotes the client sending a request to the application
server. Other processes, such as AppResult extends
the ReceiveResult process, AppReturn extends the
ServerReturn process, and so on, can be defined in a
similar manner. With the entities of the Three-Tier ontol-
ogy specified, we can add property definitions to relate the
classes, e.g., the client only has application request ports,
the application server has both a provide port to its client
and a request port to the database server, and so on. Due the
space limit, we can not list all of them here. Furthermore,
the communication behaviors of the Three-Tier architecture
need to be redefined in terms of the specific processes used
in the new structure. For example, the interactions of the
application server are defined using the following SWRL
rule.

ApplicationServer(?as) ∧ AppProvide(?ap) ∧
DBRequest(?dr) ∧ AppAccess(?aa) ∧ AppReturn(?ar) ∧
SendDB(?sd) ∧ DBResult(?dres) ∧ p1 : Id(?id) ∧

194 195

p1 : hasId(?aa, ?id) ∧ p1 : hasId(?sd, ?id) ∧
p1 : hasId(?dres, ?id) ∧ p1 : hasId(?ar, ?id) ∧
p1 : hasPort(?as, ?ap) ∧ p1 : hasPort(?as, ?dr) ∧
p1 : hasAction(?ap, ?aa) ∧ p1 : hasAction(?ap, ?ar) ∧
p1 : hasAction(?dr, ?sd) ∧ p1 : hasAction(?dr, ?dres)

→ p1 : hasCommunication(?aa, ?sd) ∧
p1 : hasCommunication(?dres, ?ar)

The above states that ApplicationServer has
two ports i.e., AppProvide and DBRequest. The
AppProvide port acts as the interface for providing ser-
vices to the client and has AppAccess and AppReturn
as its actions, while the DBRequest port acts as the
interface for requesting data access service from the
database server and has SendDB and DBResult as its ac-
tions. The behavior of the application server mainly con-
sists of two types of communication sequences, i.e., (1)
〈AppAccess, SendDB〉 - invokes service from a client re-
quest via AppAccess and sends the converted data re-
quest to database server via DBRequest; (2) 〈DBResult,
AppReturn〉 - receives data result from the database server
via DBResult and returns the converted result to the
client via AppReturn. This concludes the dynamic be-
haviors of the application server. Similarly, the commu-
nication behaviors of other entities in the model, such as,
the ThinClient and DatabaseServer components,
the CnA and AnD connectors can be redefined by simply
cloning the server and connector communication rules from
the Client and Server style ontology.

3.1. Styles recognition via classification

Up to now, we have completed the ontology definition of
the Three-Tier network architecture model. Careful readers
might have already noticed that the entities of the Three-
Tier ontology mainly extend the component and connector
model, apart from its specific process definitions. This was
‘deliberately’ chosen to demonstrate the automatic style
recognition via ontology classification. In Section 3.2, we
mentioned that the necessary and sufficient conditions with
closure axioms can contribute to the automatic recognition
of different architecture styles through ontology classifi-
cation. Figure 2 represents the inferred hierarchy of the
classes in the Three-Tier example after running the ‘clas-
sify taxonomy’ function of the Pellet ontology reasoner.
As shown in the diagram, the left-hand side panel contains
the asserted (original) class hierarchy of the Three-Tier on-
tology by directly extending the component and connector
model, the right-hand side panel contains the inferred class
hierarchy after the classification. We can see that except for
the ApplicationServer, all other classes that we de-
fined in the Three-Tier ontology have been re-classified into
the corresponding categories under the Client and Server
ontology. For example, the ThinClient is moved to a

subclass of the Client, and the DatabaseServer is
now under the Server class. The CnA and AnD connec-
tors have both been moved to subclasses of the CnS con-
nector. Similarly, the ports and roles that we defined ear-
lier have also been re-classified under the specific ports and
roles of the Client and Server style ontology. Note that in
this example, because we defined a server to be only having
the ‘Provide’ ports and a client to be only having the ‘Re-
quest’ ports, the ApplicationServer in Figure 2 was
not classified as either a client or a server, since it has both
an AppProvide port to the thin client and a DBRequest
port to the database server.

Figure 2. Automated style recognition of the
Three-Tier architecture via classification.

Effectively speaking, the above indicates that the ontol-
ogy classifier have automatically recognized the Three-Tier
ontology to be composed of two basic Client and Server
structures. We believe that this kind of automated style
recognition can be very useful during software architecture
modeling. The users only need to create their customized
architecture models by extending the top level component
and connector ontology, and let the ontology classifier to
automatically recognize the styles that involved in the de-
sign. It not only helps the users to realize the architectural
design patterns, but also assists the designers in decompos-
ing a complex system into clear structured and verifiable
sub-models.

3.2. Communication generation via inference

With the Three-Tier ontology defined, we can create
specific configurations of this structure through the in-
stance declarations. For example, we defined a network
configuration with twenty thin clients, two application
servers and one database server. Each application server

196 PB

handles about ten clients and they both connected to the
same database server. Note that such a configuration
involves 294 instances in total, which consists of the
instances for all the components, connectors, ports, roles,
processes, and client identifiers. Once the instances are
created, we attach the desired roles to their corresponding
ports to form the communication topology. When ports
and roles are connected, we can then invoke the Jess rule
engine to automatically infer the communication sequences
on the instance configuration. For example, a typical
inferred communication sequence for Client1 could be
– ‘〈SendApp1, AppAccess1〉, 〈AppAccess1, SendDB1〉,
〈SendDB1, DBAccess1〉, 〈DBAccess1, DBReturn1〉,
〈DBReturn1, DBResult1〉, 〈DBResult1, AppReturn1〉,
〈AppReturn1, AppResult1〉’. This effectively illustrates
exactly what happened in the model in terms of commu-
nication interactions among the entities, i.e., starting from
the client submits a request to the server until the client
receives the corresponding result. The Jess rule engine
generates 300 inferred axioms on the configuration model,
which includes twenty separately identified communication
sequences with respect to the number of clients involved
in the configuration (each contains the above seven com-
munication pairs with different client identifier labeled) to
simulate the interactions among the instances of the clients
and servers.

4. Conclusion

In this paper, we proposed a formal approach to soft-
ware architecture modeling and verification using the se-
mantic web technology. We represented architecture mod-
els as ontology descriptions and applied DL reasoners to
perform automated verification on the design. The OWL
definitions specify the structure information of the model,
where the SWRL rules capture the dynamic communica-
tion in the styles. Users can easily extend the style ontol-
ogy in defining their customized architecture models. In
the aspect of automated verification, we demonstrated two
levels of reasoning, i.e., style recognition via ontology clas-
sification and communication sequences generation using
rule inference. The former works on the ontology level and
can automatically recognize the style patterns used in the
design, where the latter applies to the instance level and
enables the users to automatically derive the interactions
within the configuration of a design. As a complex archi-
tecture model usually consists of a combination of different
architecture styles, these two levels of verification can be
effectively used together to enhance the quality of a design.
For example, when creating a customized architecture on-
tology model, the user only needs to define the model by
extending the top level component and connector ontology
and then invoke the classifier to automatically recognize the

architecture styles used in the design. Once the customized
architecture model is classified into recognizable styles, the
users can then create specific configurations (e.g., partially)
of the design (ontology) and invoke the rule engine to auto-
matically infer new knowledge and derive the communica-
tion sequences on the model. To demonstrate the effective-
ness of our approach, we illustrated the design and verifica-
tion of a Three-Tier network architecture model as the case
study.

In the future, we plan to develop a visual tool support
that aims at assisting the design and verification of architec-
ture models based on the proposed ontology approach. The
tool should allow the designers to build their architecture
models graphically without knowing the underlying syntax
and knowledge of OWL/SWRL. It should integrate all the
ontology definitions and verification steps described in the
paper and automated them in one coherent visual interface.

References

[1] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–
249, 1997.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, 2001.

[3] E. Friedman-Hill. Jess in Action: Java Rule-Based Systems.
Manning Publications Co., Greenwich, CT, USA, 2003.

[4] D. Garlan and B. Schmerl. Architecture-driven Modelling
and Analysis. In 11th Australian Workshop on Safety Criti-
cal Systems and Software, pages 3–17. Australian Computer
Society, 2006.

[5] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML. http://www.w3.
org/Submission/2004/SUBM-SWRL-20040521/,
2004.

[6] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.
From SHIQ and RDF to OWL: The Making of a Web On-
tology Language. J. of Web Semantics, 1(1):7–26, 2003.

[7] J. S. Kim and D. Garlan. Analyzing Architectural Styles
with Alloy. In ISSTA 2006 Workshop on Role of Software Ar-
chitecture for Testing and Analysis, pages 70–80, NY, USA,
2006. ACM.

[8] D. Luckham and J. Vera. An Event-Based Architecture Def-
inition Language. IEEE Trans. Softw. Eng., 21:717–734,
September 1995.

[9] N. Medvidovic and R. N. Taylor. A Framework for Classi-
fying and Comparing Architecture Description Languages.
In 6th European Software Engineering Conference, pages
60–76, NY, USA, 1997. Springer-Verlag.

[10] E. Sirin and B. Parsia. Pellet: An OWL DL Reasoner. In
International Workshop on Description Logics, 2004.

[11] S. Wong, J. Sun, I. Warren, and J. Sun. A Scalable Ap-
proach to Multi-Style Architectural Modeling and Verifica-
tion. In 13th IEEE International Conference on Engineering
of Complex Computer Systems, pages 25–34. IEEE Press,
2008.

PB 197

Debug Concern Navigator

Masaru Shiozuka
Kyushu Institute of Technology

Fukuoka, Japan
siozuka@gmail.com

Naoyasu Ubayashi
Kyushu University
Fukuoka, Japan

ubayashi@acm.org

Yasutaka Kamei
Kyushu University
Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

Abstract—Programmers tend to spend a lot of time debug-
ging code. They check the erroneous phenomena, navigate
the code, search the past bug fixes, and modify the code.
If a sequence of these debug activities can be automated,
programmers can use their time for more creative tasks.
To address this problem, this paper proposes dcNavi (Debug
Concern Navigator), a concern-oriented recommendation sys-
tem for debugging. The dcNavi provides appropriate hints to
programmers according to their debug concerns such as “how
to handle this exception” and “how to use this API”. We propose
the notion of DCG (Debug Concern Graph), an extension
of the Concern Graphs. A DCG appends a set of debugging
information such as past bug fixes and test results to a concern
graph. Debug hints are provided in the form of code snippets
showing the sample code modification before and after a bug
fix.

Keywords-debug, concern graph, recommendation

I. INTRODUCTION

In many software development projects, programmers
tend to spend a lot of time debugging code [5]. They
check the erroneous phenomena, navigate the code that
may include bugs, and search external useful resources
such as API specifications and documents. It is effective
if IDEs (Integrated Development Environments) provide
programmers with advices summarized by these external
resources. However, it is not clear which kind of information
navigation should be provided to the programmers because
these external resources provide only indirect hints for
debugging and do not always resolve the bugs.

It is favorable if IDEs can provide the code snippets before
and after similar bug fixes by searching past repositories
because programmers can understand how to fix a bug
by referring concrete examples. Especially, it is useful for
novice programmers. To achieve this goal, we have to
develop the following mechanisms because the code in the
repositories should be associated to the debugging activities
in order to provide effective hints: 1) a mechanism for
collecting and archiving the debugging activities from IDEs;
2) a mechanism for associating the debugging activities to
the program structures; and 3) a mechanism for retrieving
the code snippets advising bug fixes from the repositories.

To deal with this challenge, this paper proposes dc-
Navi (Debug Concern Navigator), a concern-oriented rec-
ommendation system for debugging. The dcNavi provides

appropriate hints to programmers according to their debug
concerns by using a repository containing not only program
information but also past test results and their bug fixing
history. We propose the notion of DCG (Debug Concern
Graph), an extension of the Concern Graphs [10], [11]
that helps programmers identify and reason about concerns
in programming and maintenance tasks by abstracting the
implementation details of a concern and makes explicit the
relationships among concerns. A DCG appends a set of
debugging information such as bug fixes and test results to
a concern graph.

The remainder of this paper is structured as follows.
In Section 2, we point out the issues on debugging. In
Section 3, the concept of DCGs is illustrated. In Section
4, an overview of dcNavi is shown. In Section 5, the
effectiveness of dcNavi is evaluated. In Section 6, related
work is introduced. Concluding remarks are provided in
Section 7.

II. MOTIVATION

In this section, we discuss the problems on debugging by
showing a typical debugging scenario.

A. A typical debugging scenario
We consider a situation in which a student is debugging

a Java program handling file operations such as read and
write. The student with insufficient programming skills tends
to make a mistake because these file operations interact
with external resources. The code below shows the student’s
program that reads a text file. In this program, the readFile
method reads a text line from a file specified by the
parameter. In the case of read failure, null is returned.
[List 1]
01: public class Property {
02: public String readFile (String pathname)
03: throws IOException {
04: String val = null;
05: File file = new File(pathname);
06: FileReader fr = new FileReader(file);
07: BufferedReader br = new BufferedReader(fr);
08: val = br.readLine();
09: return val;
10: }}

The code below shows a unit test program for the readFile
method. While the testReadFile method is successfully ter-

198 199

Figure 1. DCG: Debug Concern Graph

minated, FileNotFoundException is thrown in the case of the
testReadFileFileNotExist method execution (line 13).
[List 2]
01: public class PropertyTest extends TestCase {
02: public void testReadFile()
03: throws IOException {
04: Property property = new Property();
05: assertEquals("true",
06: property.readFile("property.txt"));
07: }
08: public void testReadFileFileNotExist()
09: throws IOException {
10: Property property = new Property();
11: // property2.txt does not exist !!
12: assertEquals(null,
13: property.readFile("property2.txt"));
14: }}

The student begins to debug the program and is faced with
the following three problems: 1) although the programmer
guesses that he or she has to append the code for dealing
with the case in which a file does not exist, the programmer
does not know how to write the code avoiding FileNot-
FoundException because it is an unfamiliar exception for
the programmer; 2) the programmer cannot be convinced of
the correctness of the API usage (BufferedReader) because
it is an unfamiliar library; and 3) the programmer does not
know whether other test cases are needed.

Although it might not be difficult for professional pro-
grammers to predict the cause of a bug by referring to
their experience, many beginners are faced with the various
difficulties when they debug a program. For example, it
is not easy for a beginner to use program exceptions or
test failures as a hint for fixing a bug because they do not
have enough experience and knowledge for programming

languages, library usages, and source code reviews. Even if
a programmer has a long career, he or she will be faced
with the similar difficulties when the programmer works for
unfamiliar new projects, languages, and frameworks.

B. Our approach
Many programmers tend to make the same kind of bugs

concerning API usages, exception handling, and domain
knowledge [4], [8], [9], [12]. It is effective to provide hints
from past bug fix data.

This paper proposes dcNavi, a recommendation system
for giving an answer to the programmer’s questions such
as “how to handle this exception” and “how to use this
API”. We call these questions debug concerns. The dcNavi
provides hints for bug fixes by reusing debug experience
and knowledge archived in the graph structures, DCGs,
containing not only source code but also static analysis
information, test results, and revision numbers before/after
bug fixes. By using graph structures as knowledge bases, it
becomes easy to navigate and search related information that
may be hints for debugging. In dcNavi, a hint is provided
in the form of code snippets showing the code modification
before and after a bug fix because the correct code samples
are effective for program understanding.

III. DEBUG CONCERN GRAPH

In this section, we explain the notion of DCG in detail.

A. Graph structure
Figure 1 illustrates two DCGs showing before and after

debugging the readFile method from Section 2. The root

198 199

node readFile debug indicates the name of a debug activity
consisting of sub-activities related to a test failure (diff-1)
and a test success (diff-2). We consider test failure time and
test success time as debug start point and debug end point,
respectively.

The DCG consists of element nodes and edges. The nodes
include not only program elements such as classes and meth-
ods, but also a variety of debugging activities annotated with
applied bug fixes and test results. Each node is connected
to other nodes by edges annotated with stereotypes such as
calls (method call), creates (object instantiation [some edges
are omitted in Figure 1 for simplicity]), declares (method
declaration), and three kinds of relations: 1) concerns (re-
lation between a debug activity and a class concerned by a
programmer); 2) test-result (relation between a test class and
its execution result); and 3) bug-fix-pattern (relation between
a modified class and an applied bug fix pattern).

The bug fix patterns are the code modification catalogues
for fixing a variety of bugs and can be considered hints for
debugging. We adopted the bug fix patterns proposed in [9].
The patterns are well documented and consist of twenty-
seven catalogues such as MC-DAP (Method Call with
Different Actual Parameter Values), SQ-AROB(Addition or
Removal of Method Calls in a Short Construct Body), and
IF-CC (Change of If Condition Expression). The dcNavi
detects the applied bug fix pattern by comparing the code
before debugging with the code after the bug fix. In Figure
1, the SQ-AROB pattern is applied.

B. Graph evolution
A DCG is created and expanded automatically as a

programmer debugs a program. First, a sub-activity-node
is created when a test is executed. The structure of the
diff-1 node is fixed and the diff-2 node is created at the
time of test failure. If the test fails, a programmer begins to
browse classes, methods, and fields that might include a bug.
These browsed program elements are automatically added to
a DCG. The result of the test execution is also added to the
DCG. After the code modification is completed, the test is
executed again. If the test succeeds, the bug fix pattern node
is added to the DCG.

Our approach is integrated with TDD (Test-Driven Devel-
opment) [2]. The TDD events such as test execution, fail,
success can be good triggers for enriching concern graphs
with debugging activities that are automatically associated
to program elements such as classes and methods.

C. Concern query
It is a difficult problem to translate a programmer’s

debug concern to a query for obtaining the code snippets
showing the program modification before and after the bug
fix because searching only keywords (e.g., FileNotFoundEx-
ception) included in the debug concern matches with many
code fragments that are not relevant to the bug fix. To deal

Figure 2. dcNavi

with this problem, dcNavi searches a sub graph that matches
the bug fix patterns and includes the specified keywords.
The bug fix patterns show not only how to fix bugs but
also the reasons of the bugs. The bug fix patterns play
an important role in our recommendation system because
many bug fixes can be categorized into the patterns, the
advice can be generated from actual code snippets annotated
with the bug reasons, and the recommendation mechanism
is implemented by simple pattern matching.

IV. DCNAVI

The dcNavi consists of three facilities including DCG
manager for supporting graph construction and evolution,
DCG generator for importing existing repositories, and
debug recommender. Figure 2 illustrates the outline.

The dcNavi supports debugging in Java and is imple-
mented as an Eclipse plug-in by using Mylyn and JUnit.
Mylyn [7], [3] monitors programmer’s activities, creates a
task context that focuses his or her workspace, and automat-
ically links all relevant artifacts to the task context. JUnit is
a unit testing framework for Java.

A. DCG manager
DCG manager creates and expands DCGs as follows: 1)

program elements related to debug concerns are automati-
cally captured and added to DCGs by using Mylyn’s task-
focused interface (concern edges in DCGs are also appended
automatically); 2) structural associations among program
elements such as declares, creates, and calls are added to
DCGs by analysing source code; 3) test results are added
to DCGs by monitoring JUnit test executions; and 4) the
applied bug fix patterns are added to DCGs by checking the
diff before and after bug fixes determined by test failure and
success events.

Programmers do not have to be aware of creating DCGs
because the dcNavi automatically constructs DCGs based
on Mylyn. Using Mylyn, the information only related to the
debug activities is added to the DCGs. The static program
analysis information, test results, and applied bug fix patterns
are merged with Mylyn and Eclipse. Programmers can
browse the debug information from the IDE because the
dcNavi is tightly integrated to Eclipse.

200 201

Figure 3. Recommendation result

B. DCG generator
Although our approach is effective for debugging, it

needs a repository in which past debugging information is
archived. This is not realistic because there are many repos-
itories that do not take into account debugging activities.

To deal with this problem, we developed the DCG genera-
tor to convert a set of existing Subversion (SVN) repositories
such as open source projects into DCGs. The DCG generator
uses commit-log keywords such as bug, fix, and patch to
define test success or failure, because a sub-activity node
(e.g., diff-1) in a DCG has to be created per each debugging
process staring from a test failure and terminating by a test
success. Although a DCG construction is based on TDD in
dcNavi, there are no data concerning TDD activities in most
existing repositories. We have to predict and compensate
this data. Moreover, we have to add program elements only
concerning to the debug activities because a concern graph is
automatically expanded by using the facility of Mylyn. The
DCG generator links only program elements related to the
bug fixes appearing in the commit-logs to the corresponding
sub-activity node by analysing the program structures. That
is, concerns edges are automatically added to DCGs.

C. Debug recommender
Figure 3 illustrates an example of a concern query “Search

Related Modification” of FileNotFoundException and its
recommendation result. The dcNavi explores a DCG from
the testReadFileFileNotExist node (see Figure 1) and tra-
verse connected nodes such as Property and readFile with
comparing past bug-fixed graphs. The recommendation in
Figure 3 shows that a file existence check should be inserted.
In this case, the SQ-AROB pattern indicates that “Addition
of Method Calls [file.exists()]” is needed for this bug fix.

This recommendation shows that programmers tend to forget
to write this checking code.

The recommendation algorithm is as follows.

Step1) Search a method to be modified: The dcNavi
searches the test target method because our approach is
based on TDD. This method needs to be modified. In this
case, we have to find readFile, a method that throws the
FileNotFoundException exception by tracing the call edges
in the DCG from the testReadFileFileNotExist node.

Step2) Obtain recommendation candidates: The dc-
Navi obtains all the tests failing to handle the FileNot-
FoundException exception from the DCG. Next, the dcNavi
finds the test target methods whose after-modification in-
clude the bug fix patterns that can be reached from the
starting node such as FileNotFoundException. These test
target methods are recommendation candidates. In the case
of Figure 3, JUnitTestRunMonitor, a candidate of debug
recommendation, includes the SQ-AROB pattern. Currently,
the dcNavi does not search the IF-CC pattern because it
matches with many bug fixes and is not appropriate for
obtaining essential bug causes.

Step3) Recommend code snippets: The dcNavi rec-
ommends the code snippets ranked by the graph similarity
metric:
Similarity(G1, G2) =
#common_node / (#G1_node + #G2_node) / 2).

This metric indicates the degree of the similarity between
two graphs G1 and G2. #common node is the number of
nodes commonly appearing in G1 and G2. This metric
becomes high if the number of the nodes commonly shared
between a current graph and a past bug-fixed graph is large.

200 201

Project Period (MM/DD/YYYY) NOR (NOB) LOC NOM ANR P (%) R (%) F(%)
projecthosting-connector 12/16/2009 - 05/14/2010 18(2) 2743 0 N/A N/A N/A N/A
industrial-mylyn 05/20/2010 - 07/09/2010 50(2) 10953 0 N/A N/A N/A N/A
Mylyn-Mntis Connector 02/22/2007 - 07/14/2010 537(107) 18536 20 3.20 23.44 32.61 27.27
Origo 12/22/2006 - 10/08/2010 3761(867) 5769 7 0.00 N/A 0.00 N/A
qcMylyn 08/06/2009 - 09/26/2010 223(80) 13117 54 5.70 34.42 50.24 40.85
Redmine-Mylyn Connector 05/26/2008 - 05/19/2010 423(134) 14729 53 3.13 22.29 33.94 26.91
Remember The Milk 01/26/2008 - 11/24/2009 70(13) 7259 9 2.89 3.85 20.00 6.45
Scrum Vision 05/24/2008 - 07/12/2010 431(14) 43263 10 3.50 0.00 0.00 N/A
subclipse 06/20/2003 - 10/14/2010 4745(923) 167100 84 3.94 14.20 40.52 21.03
NOR (Number of revisions) NOB (Number of bug fix revisions) LOC (Line of code)
NOM (Number of methods including bugs) ANR (Average number of recommendations per method)
P (Precision) R (Recall) F (F-measure)

Table I
EVALUATION OF NINE ECLIPSE PLUG-IN PROJECTS

In the case of Figure 3, readFile (before modification)
and JUnitTestRunMonitor (before modification) correspond
to G1 and G2, respectively. The code snippet of the JU-
nitTestRunMonitor (after modification) is useful for fixing
the bug of the readFile method. As shown in Figure 3, it is
easy for programmers to fix bugs by referring to concrete
code snippets. Currently, the dcNavi supports several con-
cern queries such as “Search Related API Usages”, “Search
Test Cases”, and “Search Review Points”.

V. EVALUATION

In this section, we evaluate the effectiveness of our
approach in terms of the recommendation quality.

A. Test data and Criteria
We generated DCGs by using nine open source reposito-

ries created in the Eclipse plug-in projects. We selected a set
of repositories related to Mylyn because we predicted that
there were similar bug trends in the same domain. First, we
collected 4/5 revisions from each project and all revisions of
other eight projects as the training data. Next, using this data,
we checked how many recommendations were provided to
the bugs contained in the remaining 1/5 revisions of each
project. After that, we compared correct bug fix set with
recommendations provided by dcNavi.

We consider that a recommendation is correct when the
dcNavi recommends a bug fix pattern that is used in the real
bug fix. More concretely, we define the criteria of correct
recommendation as follows: 1) the bug fix pattern applied to
the real debugging is the same as that of recommendation;
and 2) all the method calls related to the bug fix pattern
must be included in the method to be modified. We think
that a past bug fix dealing with the same method calls can
be a hint for debugging and the applied pattern indicates the
reason of the bug. In this evaluation, we used the value 0.20
as the minimum graph similarity metric. Precision becomes
high if we use a large value as the similarity metric. On the
other hand, recall becomes low in this case. The average F-
measure in all nine projects becomes most favorable when
the value of the similarity metric is 0.20.

B. Evaluation results

Table I shows the results of the recommendations. The
rough precision (the fraction of the correct recommendations
among all recommendations) ranges from 15% to 35%. The
rough recall (the fraction of the correct recommendations
among all correct bug fixes) ranges from 20% to 50%. In
case of qcMylyn (HP Quality Center Mylyn Connector), 174
(= 223 * 4/5) revisions and 10,035 revisions (other eight
projects) are used as the training data. There are 54 methods
including bugs and the average number of the provided
recommendations per method (ANR) is 5.70. Precision and
recall are 34.42% and 50.24%, respectively.

C. Discussion

Our criteria of the correctness is slightly rigorous because
all the method calls related to the bug fix pattern must be
included in the method to be modified (see condition 2).
However, it is effective to reuse the code with the same
structure in which only the called methods are different (e.g.,
code templates). Although dcNavi recommends this kind of
code, the code is not treated as a correct answer in our
evaluation because the condition 2 is not satisfied. On the
other hand, there may be too many recommendations if the
condition 2 is deleted. We have to relax the condition 2 in
order to regard this type of code as a correct answer.

Someone might think that the percentage of correct rec-
ommendations provided by dcNavi is not high. One reason
is the rigorous criteria used in this evaluation as mentioned
above. However, it is not easy to define the correctness in
essence because the usefulness of recommendations varies
according to the programmer’s debug situation and skills.

To deal with this problem, we plan to introduce the rec-
ommendation options such as name matching and the value
of minimum graph similarity metric. It would be better if
programmers can specify the category of recommendations:
API, exception handling, project-specific library, and so on.
We think that the debug advice will be right to the point if
the scope of the recommendation is explicitly specified. By
introducing the recommendation options, we expect that we

202 203

can define the correctness suitable to each option. This is
our future work.

VI. RELATED WORK

Debugging is one of the crucial issues in software en-
gineering and many researchers have proposed a variety
of support tools such as debuggers and static analysis
tools. Although the information provided by these tools is
effective, they cannot directly advise programmers on the
bug fixes. Recently, several recommendation systems for
debugging have been proposed to deal with this problem.

The Whyline [6] is a debugging tool that allows program-
mers to ask “Why did” and “Why didn’t” questions about
the bugs. Programmers choose from a set of questions gen-
erated by static and dynamic analyses, and the tool provides
answers of the bug causes. While Whyline uses static and
dynamic analysis information of the target program, dcNavi
uses not only program analysis information but also past bug
fix information. We admit that fine-gained dynamic analysis
information is effective for detecting the fault location and
we plan to add the information to DCGs. If Whyline and
dcNavi are integrated, we can provide more appropriate
debug hints to the programmers.

The DebugAdvisor [1] is a search tool that allows pro-
grammers to express the context of the bugs and search
through diverse data such as natural language text and core
dumps. The DebugAdvisor allows programmers to search
using a fat query, which could be kilobytes of structured and
unstructured data. The dcNavi, which can be considered one
of the search tools, explores structured DCGs focusing de-
bugging. Although the goal of our approach is different from
that of DebugAdvisor, we admit that large-scale searching
is essential for the practical debug support.

The FixWizard [8] supports the tasks that identify the code
peers existing in the program and recommend the similar
fixes to its peers. Although FixWizard is similar to our
approach, dcNavi focuses on the notion of Concern that can
be related to a variety of debugging knowledge.

In dcNavi, the algorithm for searching the recommended
methods is simple and general. It is effective that we can use
the algorithm specific to the debug concern. The CAR-Miner
[12] provides an approach for mining exception-handling
rules as sequence association rules. These rules are specific
to exception-handling.

The BugMem [4] provides a bug finding algorithm using
bug fix memories consisting of project-specific bugs and fix
knowledge. These bug fix memories use a learning process
to extract project-specific bugs.

VII. CONCLUSIONS

This paper proposed a new concept, debug recommen-
dation based on Concern Graphs, for providing the ap-
propriate hints to programmers according to their debug
concerns. Adopting our approach, programming, testing, and

debugging can be systematically integrated based on the
Concern Graphs. Although our approach is effective as
demonstrated in Section 5, we have to improve the quality of
the recommendation. As the first step, we plan to integrate
dcNavi with runtime verification and dynamic analysis.

REFERENCES

[1] Ashok, B., Joy, J., Liang, H., Rajamani, S. K., Srinivasa, G.,
and Vangala, V.: DebugAdvisor: A Recommender System
for Debugging, In Proceedings of the 7th joint meeting of the
European Software Engineering Conference (ESEC) and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), pp.373-382, 2009.

[2] Beck, K.: Test-Driven Development: By Example, Addison
Wesley, 2002.

[3] Kersten, M. and Murphy, G. C.: Mylar: a degree-of-interest
model for IDEs, In Proceedings of the 4th International
Conference on Aspect-oriented Software Development (AOSD
2005), pp.159-168, 2005.

[4] Kim, S., Pan, K., and Whitehead, E. E. J.: Memories of Bug
Fixes, In Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering
(FSE 2006), pp.35-45, 2006.

[5] Ko, A. J., Aung. H., and Myers, B. A.: Eliciting Design
Requirements for Maintenance-Oriented IDEs: A Detailed
Study of Corrective and Perfective Maintenance Tasks, In
Proceedings of the 27th International Conference on Software
Engineering (ICSE 2005), pp.126-135, 2005.

[6] Ko, A. J. and Myers, B. A.: Debugging Reinvented: Ask-
ing and Answering Why and Why Not Questions about
Program Behavior, In Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), pp.301-
310, 2008.

[7] Mylyn, http://www.eclipse.org/mylyn/.

[8] Nquyen, T. T., Nquyen, H. A., Pham, N. H., Al-kofahi, J., and
Nquyen, T. N.: Recurring Bug Fixes in Object-Oriented Pro-
grams, In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE 2010), pp.315-
324, 2010.

[9] Pan, K., Kim, S. and Whitehead, Jr. E. J.: Toward an under-
standing of bug fix patterns, Empirical Software Engineering,
vol. 14, no. 3, pp.286-315, 2009.

[10] Robillard, M. P. and Murphy, G. C.: Concern Graphs: Finding
and Describing Concerns Using Structural Program Depen-
dencies, In Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pp.406-416, 2002.

[11] Robillard, M. P.: Automatic Generation of Suggestions for
Program Investigation, In Proceedings of the 5th Joint Meet-
ing of the European Software Engineering Conference (ESEC)
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), pp.11-20, 2005.

[12] Thummalapenta, S. and Xie, T.: Mining Exception-handling
Rules as Sequence Association Rules, In Proceedings of the
31st International Conference on Software Engineering (ICSE
2009), pp.496-506, 2009.

202 203

PAFL: Fault Localization via Noise Reduction on Coverage Vector

Lei Zhao Zhenyu Zhang
Computer School of
Wuhan University

Wuhan, China, 430072

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

Beijing, China, 100190
zhaolei.whu@gmail.com zhangzy@ios.ac.cn

Lina Wang Xiaodan Yin
Computer School of Wuhan University, Key Laboratory of

Aerospace Information Security and Trust Computing
Wuhan, China, 430072

Computer School of
Wuhan University

Wuhan, China, 430072
lnwang@whu.edu.cn yinxiaodan.whu@gmail.com

Abstract—Coverage-based fault localization techniques assess
the extent of how much a program entity relates to faults by
contrasting the execution spectra of passed executions and
failed executions. However, previous studies show that
different test cases may generate similar or identical coverage
information in program execution, which makes the execution
spectra of program entities indistinguishable to one another,
thus involves noise and decreases the effectiveness of existing
techniques. In this paper, we use the concept of coverage vector
to model program coverage in execution, compare coverage
vectors to capture the similarity among test cases, reduce noise
by removing similar coverage vector to refine the execution
spectra, and based on them assess the suspicious basic blocks
being related to fault. We thus narrow down the search region
and facilitate fault localization. The empirical evaluation using
Siemens programs and realistic UNIX utilities shows that our
technique effectively addresses the problem caused by similar
test cases and outperforms existing representative techniques.

Keywords-fault localization; execution path; noise reduction

I. INTRODUCTION

Coverage-based fault localization (CBFL) techniques
have been proposed to support software debugging [8][11]
[13]. By contrasting the coverage statistics of program
entities (such as statements, blocks and predicates) between
passed executions and failed executions, CBFL techniques
can locate the program entities which exercising are strongly
correlated to the program execution failures observed.
Previous studies showed that CBFL techniques are effective
in locating faults [8][13].

Since test cases may not always be generated to satisfy
some coverage criteria, and there is no guarantee that the test
suite reduction task is always conducted, it is common that
different executions may cover similar and even identical
execution paths [4]. Similar coverage information makes the
execution spectra of program entities indistinguishable in
passed and failed executions and thus decreases the
effectiveness of previous fault localization techniques or
even makes them lose effect, especially when coincidental
correctness occurs [5]. For example, suppose a faulty
statement is exercised in the program execution of all passed
and all failed executions, it is hard to pinpoint it by
contrasting its execution spectra in passed and failed
executions. Such a case may have a high chance to happen in
real life programs (e.g., a faulty statement may exist in the

main method of a program and must be exercised by all the
executions). Previous study also shows that execution
similarity and coincidental correctness occurs frequently in
realistic programs [12].

In this paper, we propose to use the concept of coverage
vector to count the distinct execution paths, to capture the
happening of execution similarity. We first calculate the
failing rate of each coverage vector as the ratio of the
number of failed executions covering it to the number of all
executions covering it. For each basic block, we then
calculate two numbers, the number of coverage vectors
exercising that basic block and covered by failed executions,
and the number of coverage vectors either exercising that
basic block or covered by failed executions. We then use the
ratio of the former to the latter as the suspiciousness score of
that basic block. We next sort all the basic blocks in the
descending order of thus calculated suspiciousness scores. In
case of a tie, which means two or more blocks sharing
identical suspiciousness scores, we try to use the average
failing rate of coverage vectors exercising a block to further
determine the order of the blocks.

We use seven Siemens programs and three UNIX utilities
to evaluate our technique, and compare it with five
representative techniques, namely, Tarantula [7], Jaccard [1],
SBI [13], SAFL [4], and ICST10 [10]. The empirical results
show that our technique is promising on the studies subject
programs. Further analysis show that our technique is
promising to alleviate the impact of execution similarity.

The contributions of this paper are twofold. (i) We
propose to use the concept of coverage vector to count the
distinct execution paths, and make use of it to estimate the
occurring of similarities from the coverage information. (ii)
We propose a new fault localization technique, PAFL, which
is empirically evaluated to be promising in locating fault,
especially in case of high execution similarity.

II. MOTIVATING EXAMPLE
In this section, we use an example to demonstrate

previous techniques and motivate our approach.
The code excerpt in Figure 1 finds the middle value in

three given numbers. A fault exists in statement s2, which
accesses the variable x instead of z. We choose six test cases
to demonstrate in this example. The mark “•” in each cell
indicates that a statement is exercised in the program

204 205

execution with respect to a test case. The execution results (P
for pass and F for fail) are shown in table header.

We apply previous techniques Tarantula [7], Jaccard [1],
SBI [13], SAFL [4], and ICST10 [10] to locate fault
(statement s2) in this example. For example, Tarantula
assigns suspiciousness score 0.50 to statement s2, and finally
needs to examine 66% of all code to locate the fault. The
results of Jaccard, SBI, SAFL, and ICST10 can be similarly
explained. Unfortunately, none of them can locate the fault
with somehow affordable code examining efforts (e.g., less
than 50%). This is because that the faulty statement (s2)
happen to be exercised in all passed and failed executions, so
that they are indistinguishable in execution spectra. On the
other hand, Statements s4 and s6 are given higher
suspiciousness scores than statements s8 and s10 because the
former happen to be exercised in relatively more failed
executions than the latter. Note that statements s4 and s6 are
exercised in one failed execution (t5) and one passed
execution (t6), while statements s8 and s10 are exercised in
one failed execution (t1) and three passed executions (t2, t3,
and t4). Among the two passed test cases (t5 and t6), which
exercise the former (statements s4 and s6), 50% of them are
failed ones. While only 25% of the test cases that exercise
the latter (statements s8 and s10) are failed ones. As a result,
statements s4 and s6 are given higher suspiciousness scores
because of such imbalance.

Execution similarity may frequently occur in realistic
programs [12]. We could not expect to always benefit from
the imbalance observed in previous paragraph. To measure
the execution similarity, we design to use the coverage
information. In addition, we also measure the execution
similarity to estimate the occurring of coincidental
correctness in passed executions and manage to alleviate the
impact of coincidental correctness to execution spectra of
statements.

From Figure 1, we observe that there are in total two
distinct paths covered by the six test cases [2], which are
denoted as p1 = b1, b2, b4, b10 and p2 = b1, b3, b7, b10 . After
that, we adopt SBI’s formula to estimate

the failing rate of a path, which means the probability of an
execution (covering that path) revealing a failure. Note that,
here we use a path, rather than a statement, as the program
entity in the formula. Since p1 is covered by one failed test
case and three passed test cases, the failing rate of p1 is 0.25.
Similarly, the failing rate of p2 is 0.5. A path with a positive
failing rate means that the corresponding execution can
reveal failures. A path with failing rate zero means that the
corresponding execution reveals no failure. We then adopt
Jaccard’s formula to calculate the
suspiciousness score for each block. Here, failed(b) means
the number of distinct paths, which have positive failing
rates and exercise block b; passed(b) means the number of
distinct paths, which have failing rates of zero and exercise
block b; totalfailed means the number of distinct paths,
which have positive failing rates. Thus, the suspiciousness
score of block b1 is calculated as . As a result, we
finally take 33% code examining effort to locate the fault.

The above example has interestingly demonstrated that
previous techniques may not be effective in a common case,
while our approach has the potential to address it. In the next
section, we will elaborate on our model.

III. OUR APPROACH
In this section, we introduce the problem settings, give

definitions, and elaborate on our model PAFL.

A. Definitions
We use the definition of “coverage vector” to formally

describe the concept of “distinct path” used in Section II.
[Definition I] An original coverage vector ocvi = b1,

b2, ..., bn (bj {0, 1} for j = 1, 2, ..., n) of program execution
P(ti) is a tuple. We use ocvi(bj) to retrieve the j-th element in
the tuple, where ocvi(bj) = 1 means the basic block bj is
exercised in the execution, ocvi(bj) = 0 means bi is not
exercised in the execution. For the coverage vector ocvi with
respect to execution P(ti), we also say P(ti) covers ocvi.

In Figure 1, there are six original coverage vectors. The
coverage vector with respect to test case t1 is ocv1 = 1, 0, 0,

B
lo

ck
s

Statements
Test cases Previous techniques Distinct paths Our approacht1 t2 t3 t4 t5 t6 Tarantula Jaccard SBI SAFL ICST10 p1 p2

F P P P F P score rank score rankscorerank scorerankscorerank t1 t2,t3,t4 t5 t6 score rank

b1

s1

Mid() {
 int x, y, z, m;
 read ("Enter 3 num:", x, y, z);

• • • • • • 0.50 4 0.33 4 0.50 4 0.81 6 0.50 4 • • • • 0.50 2s2 m=x; /* a mutant of m=z */

s3 if (y<z)

b2 s4 if (x<y) • • 0.67 2 0.33 4 0.67 2 1 5 0.67 2 • • 0.33 6
b3 s5 m=y;
b4 s6 else if (x<z) • • 0.67 2 0.33 4 0.67 2 1 5 0.67 2 • • 0.33 6
b5 s7 m=x;
b6 s8 else if (x>y) • • • • 0.40 6 0.20 6 0.40 6 1 5 0.40 6 • • 0.33 6
b7 s9 m=y;
b8 s10 else if (x>z) • • • • 0.40 6 0.20 6 0.40 6 1 5 0.40 6 • • 0.33 6
b9 s11 m=x;
b10 s12 printf ("The middle is:", m);

}
• • • • • • 0.50 4 0.33 4 0.50 4 1 5 0.50 4 • • • • 0.50 2

Code examining effort to locate fault: 66% 66% 66% 100% 66% 33%
Figure 1. Motivating example – the program Mid

204 205

0, 0, 1, 0, 1, 0, 1 . Apparently, an original coverage vector
can be covered by many different executions (even by both
some passed executions and some failed executions). So let
us move to Definition II.

[Definition II] The distinct coverage vector set CV =
{cv1, cv2, ..., cvp} is the distinct set (with no repeating
elements) of all original coverage vectors ocvi with respect
to the program execution P(ti) of each test case ti. Each
element cvi CV is called a coverage vector. Similarly, we
use cvi(bj) to retrieve the j-th element in the tuple of cvi.

By such definition, we know that we have cvi cvj for
any two coverage vectors cvi and cvj (1 i < j p). In Figure
1, there are two coverage vectors, namely, cv1 = 1, 0, 0, 0, 0,
1, 0, 1, 0, 1 and cv2 = 1, 1, 0, 1, 0, 0, 0, 0, 0, 1 .

B. Failing Rate of Coverage Vector
Since a coverage vector may be covered by both passed

executions and failed executions, we are also interested in
the ratio of failed executions that covers the coverage vector
(to all executions that covers the coverage vector). We use
the term failing rate of a coverage vector to denote such a
ratio, which is calculated using equation (1).

(1)

In equation (1), failed (cvi) and passed (cvi) respectively
refer to the number of failed and passed executions that
cover cvi. They are calculated using equation (2) and (3).

 (2)
(3)

Here, we adopt the formula of SBI in equation (1)
because it gives a best estimation to the probability of an
exercised program entity causing a failure [14].

For a coverage vector cvi with (cvi) greater than zero, it
indicates that cvi is covered by at least one failed execution,
and it is also denoted as a failed coverage vector. For a
coverage vector cvi with (cvi) equals to zero, it indicates that
cvi is covered by no failed execution, and it is also denoted as
a passed coverage vector.

According to equation (1), the failing rates of cv1 and cv2
are (cv1) = 0.25 and (cv2) = 0.50, respectively. Both of
them are failed coverage vectors.

C. Suspiciousness Scores of Blocks
After we have identified all the coverage vectors, we also

need to calculate suspiciousness scores for basic blocks.
Inspired by previous study [6], we employ the Jaccard
similarity coefficient to evaluate the suspiciousness scores
for basic blocks, by contrasting the execution spectra of basic
blocks on the coverage vector level. In this paper, we use the
term susp(bi) to denote such suspiciousness score of basic
block bi, which is calculated using equation (4).

(4)

The numerator represents the number of failed coverage
vectors that cover bi, the denominator represents the number
of coverage vectors that are either failed coverage vectors or
cover bi. Here, we adopt the similarity coefficient Jaccard
because it has mature mathematical basis. Further, it has

been used in previous techniques and empirically shown
effective in locating faults in programs [1].

Equation (4) estimates the extent of how much a basic
block is related to faults. The greater the value, the more the
basic block will be related to fault. According to equation (4),
we can recall the motivating example in Section II and revisit
the suspiciousness scores calculated in Section II. The
suspiciousness scores for b1 is calculated as .

D. Tie breaking
After all the blocks are sorted according to their

suspiciousness of relating to fault and form a list,
programming may search along the generated list for the
fault. Particularly, when some basic blocks have identical
suspiciousness scores, we use equation (5) to break tie.

(5)

Equation (5) calculates the average failing rate of the
coverage vectors that exercising basic block bi. The rational
is that for two basic blocks having identical probability of
causing failure, we deem the one whose appearance in a path
has higher chance to reveal a failure as more related to faults.

For example, in Figure 1, basic blocks b1 and b10 form a
tie. We calculate that

 so that the tie still cannot be break and thus b1 and b10
are evaluated as a whole. Finally, we need to examine 33%
of all code to locate the fault.

IV. EVALUATION

A. Experiments Setup
In this paper, we use the 7 Siemens programs and 3

UNIX utilities to evaluate our technique. Each of them has
several faulty versions (downloaded from the SIR repository
[3]). They have been used in previous studies [9][13][14].
Table 1 shows the statistics of the subject programs used in
the experiments.

In our experiment, we select techniques Tarantula [7],
Jaccard [1], SBI [13], SAFL [4], and ICST10 [10] to
compare with. Tarantula is an old technique and has a lot of
variants [7][13]. Jaccard is evaluated very effective in

Table 1. Statistics of subjects

Subjects # of faulty
versions

of
test cases Description

print_tokens 7 4130 lexical analyzer
print_tokens2 10 4115 lexical analyzer
replace 32 5542 pattern replacement
schedule 9 2650 priority scheduler
schedule2 10 2650 priority scheduler
tcas 40 1578 altitude separation
tot_info 23 1054 information measure
flex 56 567 lexical parser
grep 21 809 text processor
gzip 18 213 compressor

in total 226

206 207

previous studies [10][14]. SBI is the statement-level version
of CBI [9], while the latter is a classic predicate-level
technique. SAFL and ICST10 investigate execution
similarity to reduce the noise from coincidental correctness
and relates to them.

B. Effectiveness on Subject Programs
To know the overall effectiveness of the studied

techniques, we take the average of the 10 programs to show
in Figure 2. In Figure 2, the x-coordinates mean the
percentage of code examined in each faulty version; the y-
coordinates show the percentage of faulty versions, in which,
faults can be located within the code examining effort
specified by the x-coordinates.

From Figure 2, we observe that at most checkpoints
(except the 50% checkpoint), PAFL is more effective than,
or at least comparable to, the other techniques. For example,
on average, by examining up to 5% of all the code in faulty
versions, PAFL can locate faults in 34% of all faulty
versions, Jaccard can locate 33%, Tarantula can locate 23%,
SBI can locate 22%, SAFL can locate 6%, and ICST10 can
locate 26%. It shows that PAFL has an overall better
effectiveness than the other techniques studied.

Table 2 shows the mean effectiveness of these
techniques on each program. Limited by the space, we
cannot show results of the minimum, maximum, and
standard deviation measurements. This table shows that for
these programs, PAFL is often, but not always, the best
among the four techniques.

V. CONCLUSION
In this paper, we demonstrate that frequently occurred

execution similarity may affect the effectiveness of existing
fault localization techniques and propose PAFL to alleviate
the impact of coincidental correctness. We use the concept of
coverage vector to count distinct execution paths, and
calculate failing rate for each coverage vector, thus refine the
executions spectra to reduce noise. The empirical study
shows that our technique outperforms five previous
techniques on Siemens and UNIX programs. The experiment
also shows that our technique is particularly effectiveness to
alleviate the impact of execution similarity and coincidental

correctness. The future work is to investigate the impact of
test case selection to PAFL and adapt PAFL to locate faults
in multi-fault programs.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China (nos. 60970114, 61003027, 61073006)
and the Scholarship Award for Excellent Doctoral Student
granted by Chinese Ministry of Education.

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A.J.C.van Gemund. On the accuracy of

spectrum-based fault localization. In Proc. of Testing: Academic and
Industrial Conference, Practice and Research Techniques.

[2] B Baudry, F Fleurey, and Y. Traon. Improving Test Suites for
Efficient Fault Localization. In Proc. of ICSE’06.

[3] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: an infrastructure and its
potential impact. Empirical Software Engineering, 2005.

[4] D. Hao, L. Zhang, Y. Pan, H. Mei, and J. Sun. On similarity-
awareness in testing-basedfault localization. JASE, 2008.

[5] R. M. Hierons. Avoiding coincidental correctness in boundary value
analysis. TOSEM., 2006.

[6] P. Jaccard. Étude comparative de la distribution florale dans une
portion des Alpes et des Jura. Bulletin del la Socit Vaudoise des
Sciences Naturelles 37.

[7] J. A. Jones and M. J. Harrold. Visualization of test informationto
assistfault localization. In Proc. of ICSE’02.

[8] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automaticfault-localization technique. In Proc. of ASE’05.

[9] B. Liblit, A. Aiken, A. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In Proc. of PLDI’03.

[10] W. Masri, and R. Assi. Cleansing Test Suites from Coincidental
Correctness to Enhance Fault-Localization. In Proc. of ICST’10.

[11] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweightfault
localization using multiple coverage types. In Proc. of ICSE’09.

[12] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming
coincidental correctness: re ne code coverage with context pattern to
improve fault localization. In Proc. of ICSE’09.

[13] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the
effects of test-suite reduction on fault localization. In Proc. of
ICSE’08.

[14] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. Capturing
propagation of infected program states. In Proc. of FSE/ESEC’09.

Table 2. Mean effectiveness on individual programs

Subjects PAFL Jaccard Tarantula SBI SAFL ICST10

print_tokens 72% 74% 77% 77% 84% 74%
print_tokens2 22% 24% 25% 25% 55% 24%
replace 24% 21% 24% 24% 37% 21%
schedule 23% 24% 25% 25% 53% 24%
schedule2 85% 85% 85% 85% 82% 84%
tcas 54% 56% 58% 58% 66% 51%
tot_info 37% 43% 47% 47% 64% 43%
flex 27% 27% 30% 32% 45% 30%
grep 21% 21% 23% 26% 34% 23%
gzip 12% 12% 14% 15% 18% 14%

Figure 2. Overall effectiveness

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20%

40%

60%

80%

100%

% of code examined

%
 o

f f
au

lts
 lo

ca
te

d

PAFL
Jaccard
Tarantula
SBI
SAFL
ICST10

206 207

Using Coverage and Reachability Testing to Improve
Concurrent Program Testing Quality

Simone R. S. Souza1, Paulo S. L. Souza1, Mario C. C. Machado1,
Mário S. Camillo1, Adenilso Simão1 and Ed Zaluska2

1 Instituto de Ciências Matemáticas e de Computação – Universidade de São Paulo
P.O. 668 – São Carlos – Brasil – 13560-970

{srocio, pssouza,mmachado, adenilso}@icmc.usp.br, mariocamillo@gmail.com
2 Eletronics and Computer Science – University of Southampton

ejz@ecs.soton.ac.uk

Abstract

The testing of concurrent software is a challenging task.
A number of different research approaches have investi-
gated adaptation of the techniques and the criteria defined
for sequential programs. A major problem with the testing
of concurrent software that persists is the high application
cost due to the large number of the synchronizations that
are required and that must be executed during testing. In
this paper we propose a complementary approach, using
reachability testing, to guide the selection of the tests of all
synchronization events according to a specific coverage cri-
terion. The key concept is to take advantage of both cov-
erage criteria, which are used to select test cases and also
to guide the execution of new synchronizations, and reach-
ability testing, which is used to select suitable synchroniza-
tion events to be executed. An experimental study has been
conducted and the results indicate that it is always advan-
tageous to use this combined approach for the testing of
concurrent software.

1. Introduction

Concurrent applications are inevitably more complex
than sequential ones and, in addition, all concurrent soft-
ware contains features such as nondeterminism, synchro-
nization and inter-process communication which signifi-
cantly increase the difficulty of validation and testing.

For sequential programs, many testing problems were
simplified with the introduction of testing criteria and the
implementation of supporting tools. A testing criterion is a
predicate to be satisfied by a set of test cases which can be
used as a template for the generation of test data [10].

Extending previous work on sequential program struc-

tural testing criteria, we have proposed structural testing
criteria for the validation of concurrent programs, appli-
cable to both message-passing software [14] and shared-
memory software [12]. These testing criteria are designed
to exploit information about the control, data and commu-
nication flows of concurrent programs, considering both se-
quential and parallel aspects.

The use of these criteria significantly improves the qual-
ity of the test cases, providing a coverage measure that can
be used in two important testing procedures. In the first one,
the criteria can be used to guide the generation of test cases,
where the criteria are used as guideline for test data selec-
tion. The second testing procedure is related to the evalu-
ation of a test set; in this case, the criteria can be used to
determine when the testing activity can be terminated based
on sufficient coverage of the required elements. The main
contribution of the proposed testing criteria is to provide an
efficient coverage measure for evaluating the progress of the
testing activity and the quality of test cases.

This approach uses static analysis of the program un-
der test to extract relevant information for testing, which
is straightforward to apply and generate relevant informa-
tion for coverage testing. The problem is the large number
of infeasible elements generated that must be analyzed. An
element is infeasible if there is no set of values for the pa-
rameters (the input and global variables) that cover that ele-
ment. Complete determination of infeasible elements is an
extremely difficult problem and it is not possible to deter-
mine them automatically.

Lei and Carver [7] proposed a method (based on reach-
ability testing) to obtain all of the executable synchroniza-
tions of a concurrent program (from a given execution of
the program) in a way that reduces the number of redundant
synchronizations. As this method uses dynamic informa-
tion, only feasible synchronizations are generated, which

208 209

is a considerable advantage. However, a difficulty with this
method is the high number of possible combinations of syn-
chronization that are generated. For complex programs,
this number is very high, which limits the practical appli-
cation of this approach. In [1], Carver and Lei proposed
a distributed reachability testing algorithm, allowing differ-
ent test sequences be executed concurrently. This algorithm
reduces the time to execute the synchronizations, but the au-
thors do not comment about the effort necessary to analyze
the results from these executions.

Lei and Carver’s [7] method is essentially complemen-
tary to our approach. They do not address how to select the
test case which will be used for the initial run, while we use
the static analysis of the program to select the optimum test
cases in advance.

In this paper we propose a complementary approach, us-
ing reachability testing to target coverage testing for syn-
chronization events. The idea is to take appropriate advan-
tage of both approaches: information about synchroniza-
tions provided by the coverage criterion are used to decide
which race variants will be executed, selecting only syn-
chronizations that have not already been covered by existing
test cases. It is therefore possible to execute each synchro-
nization at least once and to use reachability testing to select
only those synchronizations that are feasible.

This paper is structured as follows. In Section 2 we de-
scribe related work on the testing of concurrent software,
presenting more details on the coverage testing and reach-
ability testing approaches. In Section 3 we present the test
strategy proposed in this paper. In Section 4, an experi-
mental study to evaluate our test strategy is presented and
the results obtained are discussed. Finally, in Section 5 we
present our conclusions together with future work.

2. Concurrent Program Testing

Traditional testing techniques are often not well-suited
to the testing of concurrent or parallel software, in partic-
ular when nondeterminism and concurrency features are
significant. Many researchers have developed specific
testing techniques addressing such issues and in addition
there have been initiatives to define suitable testing crite-
ria [16, 18, 17, 8, 11, 15]. The detection of race conditions
and mechanisms for replay testing have also been investi-
gated [4, 7, 2, 3].

Yang [18] describes a number of challenges for the test-
ing of parallel software: 1) developing static analysis; 2)
detecting unintentional races and deadlock in nondetermin-
istic programs; 3) forcing a path to be executed when non-
determinism might exist; 4) reproducing a test execution
using the same input data; 5) generating the control flow
graph for nondeterministic programs; 6) providing a test-
ing framework as a theoretical base for applying sequential

testing criteria to parallel programs; 7) investigating the ap-
plicability of sequential testing criteria to parallel program
testing; and 8) defining test coverage criteria based on con-
trol and data flow.

Lei and Carver [7] proposed the reachability testing for
generating all feasible synchronization sequences (and only
them). This method guarantees that every partially-ordered
synchronization will be exercised exactly once without re-
peating any sequences that have already been exercised.
The method involves the execution of the program in a
semi-deterministic way; the execution is deterministic up to
a given point, from which it runs nondeterministically. The
resulting synchronization sequence (sync-sequence), which
is feasible, is analyzed and a new feasible sequence (if
possible) is computed. The authors employ a reachability
schema to calculate the synchronization sequence automat-
ically. The reachability testing uses dynamic information to
execute all feasible synchronization sequences, generating
all race variants from one particular execution.

The reachability testing process is illustrated in Figure 1
(extracted from [7]). The figure shows a space-time diagram
in which vertical lines represent four threads of a concurrent
program. The interaction between processes is represented
by arrows from a send event to a receive event. Diagram
Q0 shows the one execution of the program, generating
the synchronizations: (sT1

1 , rT2
1), (sT4

2 , rT2
2), (sT2

3 , rT3
3),

(sT4
4 , rT3

4). V1, V2 and V3 are race variants of Q0 and fea-
sible executions generated during reachability testing ex-
ecution. A problem here is the high number of possible
combination of synchronization that are generated and (for
complex software) this number can be very high, restricting
any practical application of the strategy. This approach has
the important advantage that it will generate only feasible
synchronization sequences, which is an important consider-
ation when reducing the cost of the testing activity.

2.1. Structural Testing for Concurrent Programs

In this section we describe our test model and criteria
for validation of message-passing software [14]. The test
model captures control, data and communication informa-
tion. The model considers that a fixed and known number
of processes n is created at the initialization of the concur-
rent application. These processes may each execute differ-
ent programs. However, each one executes its own code in
its own memory space. The concurrent program is defined
by a set of n parallel processes Prog = {p0, p1, . . . pn−1}.
Each process p has its own Control Flow Graph CFGp, that
is built using the same concepts as traditional software [10].
In other words, a CFG of a process p is composed of a set
of nodes Np and a set of edges Ep. Each node n in the pro-
cess p is represented by the notation np and corresponds to
a set of commands that are sequentially executed or can be

208 209

Figure 1. Example of reachability testing [7]

associated to a communication primitive (send or receive).
The model considers both blocking and non-blocking re-
ceives, such that all possible interleaving between send-
receive pairs can be represented. Prog is associated with a
Parallel Control Flow Graph (PCFG), which is composed
of the CFGp (for p = 0 . . . n−1) and by the representation
of the communication between the processes. A synchro-
nization edge (sync-edge) (na

i , nb
j) links a send node in a

process a to a send node in a process b. These edges repre-
sent the possibility of communication and synchronization
between processes.

A set of coverage testing criteria is defined, based on
(PCFG): All-Nodes; All-Edges; All-Nodes-R; All-Nodes-
S and All-Edges-S (related to control and synchronization
information) and All-C-Uses; All-P-Uses; All-SUses; All-
S-C-Uses and All-S-P-Uses (related to data and commu-
nication information) [14]. The All-Edges-S criterion re-
quires that the test set executes paths that cover all the sync-
edge associations of the concurrent program under testing;
the All-S-uses criterion requires that the test set executes
paths that cover all the s-use associations. An s-use is an
association between a node np, that contains a definition of
a variable x, and a sync-edge that contains a communica-
tions use of x.

An example of a PCFG is shown in Figure 2. There
are four processes, consisting of two different codes. Syn-
chronization pairs are represented by dotted lines — for ex-
ample, the pair (20, 2m) is one sync-edge between process
p0 and pm. Each sync-edge is associated with one or more
s-use associations, and related to a variable represented in
PCFG.

Nondeterminism is the key issue addressed in this
test model. As it is impossible to determine statically
when a synchronization is feasible, a conservative ap-
proach is assumed, where every pair of send and receive
events which have the appropriate types are considered

Figure 2. Example of a Parallel Control Flow
Graph

as a possible matching. Considering the example of Fig-
ure 1, the required sync-edges are: (sT1

1 , rT2
1), (sT4

2 , rT2
1),

(sT4
4 , rT2

1), (sT1
1 , rT2

2), (sT4
2 , rT2

2), (sT4
4 , rT2

2), (sT1
1 , rT3

3),
(sT4

2 , rT3
3), (sT2

3 , rT3
3), (sT4

4 , rT3
3), (sT1

1 , rT3
4), (sT4

2 , rT3
4),

(sT2
3 , rT3

4), (sT4
4 , rT3

4). Some sync-edges are infeasible
(e.g., (sT1

1 , rT3
3)) but are required. Using controlled exe-

cution [2], it is possible to force the execution of feasible
sync-edges.

It is not necessary to execute all combinations of possi-
ble synchronization as long as at least one execution of each
sync-edge pair is included. A problem in this approach is
the high number of infeasible sync-edges that are generated
and need to be analysed. Nevertheless, it is interesting be-
cause it uses information generated statically to direct the
selection of test cases and to assess the coverage of the
program under test. We believe that the choice of the test
case can influence the results obtained, improving the over-
all testing activity quality. This has led directly to the test
strategy presented in the next section.

3. Proposed test strategy

In this paper we propose a test strategy that combines
both reachability testing and coverage testing to execute
synchronization events. The main motivation of this strat-
egy is to improve coverage testing; however, the approach
can also be applied to improve reachability testing perfor-

210 211

mance. In this case, reachability testing can be applied
using an approach that selectively exercises a set of sync-
sequences according to a specified coverage testing crite-
rion. Exhaustive testing is not always practical and they
pointed out the need to use mechanisms to guide the selec-
tion of the sync-sequences during reachability testing [7].

In Figure 3 the proposed test strategy is illustrated. This
figure does not show all the steps necessary to apply the
coverage testing criterion, only those important to our strat-
egy.

Figure 3. Test Strategy using Reachability
Testing and Coverage Testing Criterion

First, a required elements list Req is generated from a
given concurrent program, based on the all-s-uses and all-
edges-s criteria. An initial test dataset is produced and the
program is executed to generate an execution trace, contain-
ing a record of all the nodes and the sync-edges executed by
the test dataset. The elements covered by the test dataset ex-
ecution are marked in Req and any required element not yet
covered identified. Usually, a procedure is used to select a
new test dataset to improve the coverage of Req.

Considering reachability testing in this context, the next
step is the generation of a list V of the variants, based on
the sync-edges executed. For each sync-edge all possible
variants are then generated. The difference here from reach-
ability testing, is that only the variants required to cover a
required element that is not yet covered are included. There-
fore, when a new variant v is selected from V , it is verified
only if it executes a new requirement of Req. Otherwise,

another variant is selected or a new test dataset is generated
(when V is empty). The procedure to execute a variant v
is the same as that defined by Lei and Carver [7]: the con-
trolled execution ensures that the synchronization of the v
always occurs during the execution. After execution of the
variant v, the execution trace is obtained and the required
elements covered for this execution are marked in list Req.
Considering now the variant v, new variants are generated
and added to the list of the variants V. The procedure to
execute variants or new test datasets is repeated while any
required elements remain to be covered.

4. Experimental Study

In this section, we present an experimental study that in-
dicates that the approach combining reachability and cov-
erage criteria testing improve overall testing quality. The
ValiMPI tool was used to conduct this study. ValiMPI is
a tool developed to test concurrent programs implemented
in MPI (Message Passing Interface), proposed originally to
support the coverage testing mentioned in Section 2 [13, 6].
ValiMPI functionality has been extended to implement the
reachability testing strategy proposed by Lei and Carver [7]
and hence test the strategy proposed in this paper.

Eight different MPI programs were used in this study,
implementing classical concurrency algorithms. The com-
plexity is given by the number of sends s and receives r of
each program: sieve of Eratosthenes - (7s and 9r) an algo-
rithm for finding all prime numbers up to a specified inte-
ger [9]; gcd - (7s and 7r) to calculate the greatest common
divisor of three numbers, using successive subtractions be-
tween two numbers until one of them is zero; mmult - (15s
and 27r) to implement matrix multiplication using domain
decomposition; philosophers - (11s and 10r) to implement
the dining philosophers problem; pairwise - (16s and 16r)
where each process ni receives a data Xi and is responsible
for computing the interactions I(Xi, Xj) ,for i �= j. For
this, a structure with N channels is used, where each com-
munication channel represents a pair source-destination —
these channels are used to connect the N tasks into a unidi-
rectional ring; reduction - (4s and 4r) to implement the re-
duction operation of distributed data, considering add, mul-
tiplication, greater than and less than operations; qsort -
(28s and 52r) to implement quicksort, based on the paral-
lel algorithm presented in Grama [5]; and jacobi - (23s and
37r) to implement Jacobi-Richardson iteration for solving a
linear system of equations.

Three different test scenarios were executed:

1. Selection of adequate test case using coverage crite-
ria (CovT): using the criteria all-s-uses and all-edges-
s, test cases were manually generated to exercise the
required elements of these criteria, s-use associations

210 211

and sync-edges, respectively. Infeasible elements were
identified to evaluate the coverage of an initial test set.

2. Application of reachability testing (RT): using the
initial test set generated during Scenario CovT, reach-
ability testing was undertaken, according to the algo-
rithm proposed by Lei and Carver [7].

3. Application of our test strategy (RTCovT): using the
criteria all-s-uses and all-edges-s, (related to synchro-
nization), reachability testing was executed guided by
the required elements of these criteria, following the
steps discussed in Section 3.

Table 1 presents the sync-sequences generated by Reach-
ability Testing (column RT) and by our test strategy (col-
umn RTCovT), using two different test sets: T1, generated
by CovT and containing test cases adequate to execute both
sync-edges and s-uses; and T2, which is a subset of T1 con-
taining only effective test cases (i.e. T2 contains only test
case contributing to the execution of the sync-edges). RT
executes, for each test case, all variants of the each sync-
edge, even those variants already executed previously. For
this reason, the number of the sync-sequences generated by
RT is higher than the sync-sequences generated by our test
strategy. These results indicate that is possible to reduce
the cost of the reachability testing using coverage testing.
A fundamental problem with reachability testing is to de-
cide when the testing activity can be considered complete;
our test strategy contributes to the work on this problem.
We compared the advantages of using our test strategy com-
pared to the alternatives discussed previously.

Table 1. Number of the sync-sequences exe-
cuted

Programs T1 T1 T2 T2
RT RTCovT RT RTCovT

sieve 10 60 13 4 20 7
gcd 13 24 14 7 14 9
mmult 8 48 11 4 24 5
philosophers 1 1680 2 1 1680 2
pairwise 4 4 4 1 1 1
reduction 4 4 4 1 1 1
qsort 3 794 18 3 266 16
jacobi 9 1710 13 6 377 11

Table 2 shows the results of the coverage obtained using
the coverage testing (CovT) and our test strategy (RTCovT)
for all-edges-s and all-s-uses criteria. For this analysis, for
each program, the same test set T (generated on an ad-hoc
basis) was used to execute the two test scenarios and the
two coverage criteria. Our test strategy (RTCovT) indicates
the potential to improve the criteria coverage because our
strategy executes a greater number of sync-edges and s-uses

than the traditional coverage testing, establishing that it is a
good strategy to reduce the overall application cost of the
test. Some of the programs in the test had no improvement
in coverage because in these cases the T set already covered
all feasible elements for the criteria.

Table 2. Coverage using coverage criteria and
the test strategy

All-Edges-S All-S-Uses
Programs CovT RTCovT CovT RTCovT
sieve 80.95% 90.48% 56.67% 76.67%
gcd 100.00% 100.00% 80.00% 85.00%
mmult 93.33% 93.33% 94.74% 94.74%
philosophers 100.00% 100.00% 75.00% 75.00%
pairwise 100.00% 100.00% 83.33% 83.33%
reduction 100.00% 100.00% 100.00% 100.00%
qsort 51.61% 89.25% 43.54% 67.35%
jacobi 100.00% 100.00% 84.06% 85.51%

Table 3 shows the results for the Jacobi algorithm exam-
ple as different test cases (tc1 to tc9) are processed. Our
testing strategy always provides better test coverage and
maximal coverage is achieved after only five test cases have
been considered. Table 4 provides similar results for the
mmult algorithm example with test cases tc1 to tc8. For
this example maximum coverage is achieved after only two
of the test cases have been considered.

Table 3. Evolution of the jacobi program cov-
erage

All-Edges-S All-S-Uses
testcases CovT RTCovT CovT RTCovT
tc1 19.30% 19.30% 8.70% 8.70%
tc2 38.60% 49.12% 26.09% 34.78%
tc3 82.46% 94.74% 60.87% 71.01%
tc4 84.21% 96.49% 68.12% 78.26%
tc5 94.74% 100.00% 78.26% 82.61%
tc6 94.74% 100.00% 78.26% 82.61%
tc7 94.74% 100.00% 78.26% 82.61%
tc8 100.00% 100.00% 82.61% 84.06%
tc9 100.00% 100.00% 84.06% 85.51%

5. Conclusions

In this paper we have presented a new test strategy to
validate concurrent programs, using a combination of cov-
erage criteria and reachability testing. The coverage crite-
ria are used both to select test cases and to determine the
execution of new synchronizations, while the reachability
testing is used to select appropriate synchronizations to be
executed.

212 213

Table 4. Evolution of the mmult program cov-
erage

All-Edges-S All-S-Uses
testcases CovT RTCovT CovT RTCovT
tc1 60.00% 93.33% 63.16% 89.47%
tc2 60.00% 93.33% 68.42% 94.74%
tc3 73.33% 93.33% 78.95% 94.74%
tc4 86.67% 93.33% 89.47% 94.74%
tc5 86.67% 93.33% 89.47% 94.74%
tc6 86.67% 93.33% 89.47% 94.74%
tc7 86.67% 93.33% 89.47% 94.74%
tc8 86.67% 93.33% 94.74% 94.74%

The combination of the two approaches has the potential
to deliver significant reduction in the overall testing cost.
Due to the high number of synchronizations in a typical
concurrent program, the execution of these synchroniza-
tions using reachability testing alone can be impractical;
while in the case of the coverage criteria used by itself, these
synchronizations generate a high cost because of the num-
ber of infeasible synchronizations that must be analyzed.

The test strategy described in this paper contributes in
two ways: 1) by using structural criteria to minimize the
number of sequences in reachability testing; and 2) by guid-
ing the generation of test cases based on the structural crite-
ria, using reachability testing to increase the test coverage.
An experimental study has been undertaken to evaluate this
approach. The results indicate that is promising to adopt
this test strategy, with an improvement in test coverage in
every case considered.

Finally, we plan to evaluate the proposed test strategy in
terms of revealing faults. Preliminary results have demon-
strated that our strategy is effective in detecting faults. The
test sets discussed above were evaluated using the fault tax-
onomy presented in [4] and 84.8% of the seeded defects
were revealed on average. Further studies are being devel-
oped using different fault taxonomies and comparing the ef-
fectiveness of our strategy with the effectiveness of reacha-
bility testing.

6 Acknowledgments

The authors would like to thank CAPES and FAPESP,
Brazilian funding agencies, for the financial support, un-
der Capes process 1191/10-1 and FAPESP processes:
2008/04614-5, 2010/02839-0.

References

[1] R. Carver and Y. Lei. Distributed reachability testing of con-
current programs. Concurrency and Computation: Practice
and Experience, 22(18):2445–2466, 2010.

[2] R. Carver and K.-C. Tai. Replay and testing for concurrent
programs. IEEE Software, pages 74–86, Mar. 1991.

[3] S. K. Damodaran-Kamal and J. M. Francioni. Nondeter-
minacy: Testing and debugging in message passing parallel
programs. In 3rd ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 118–128, New York, May 1993.

[4] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Framework for testing multi-threaded java programs.
Concurrency and Computation: Practice and Experience,
15(3-5):485–499, 2003.

[5] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduc-
tion to Parallel Computing. Addison Wesley, 2003.

[6] A. C. Hausen, S. R. Vergílio, S. Souza, P. Souza, and
A. Simão. A tool for structural testing of MPI programs.
In 8th IEEE Latin-American Test Workshop, march 2007.

[7] Y. Lei and R. H. Carver. Reachability testing of concurrent
programs. IEEE TSE, 32(6):382–403, June 2006.

[8] S. Lu, W. Jiang, and Y. Zhou. A study of interleaving cov-
erage criteria. In Proceedings of the ACM SIGSOFT sym-
posium on the foundations of software engineering, pages
533–536, New York, NY, USA, 2007. ACM.

[9] M. J. Quinn. Parallel Computing : Theory and Practice.
McGraw-Hill, New York, 2nd. edition, 1994.

[10] S. Rapps and E. J. Weyuker. Selecting software test data us-
ing data flow information. IEEE Transaction Software En-
gineering, 11(4):367–375, Apr. 1985.

[11] C. Robinson-Mallett, R. M. Hierons, J. Poore, and P. Ligges-
meyer. Using communication coverage criteria and partial
model generation to assist software integration testing. Soft-
ware Quality Control, 16(2):185–211, 2008.

[12] F. S. Sarmanho, P. S. L. Souza, S. R. S. Souza, and A. S.
Simão. Structural testing for semaphore-based multithread
programs. In International Conference on Computational
Science, LNCS, volume 5101, pages 337–346, 2008.

[13] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simão,
T. G. Bliscosque, A. M. Lima, and A. C. Hausen. Vali-
par: A testing tool for message-passing parallel programs.
In International Conference on Software knowledge and
Software Engineering (SEKE05), pages 386–391, Taipei-
Taiwan, 2005.

[14] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simão,
and A. C. Hausen. Structural testing criteria for message-
passing parallel programs. Concurrency and Computation:
Practice and Experience, 20:1893–1916, mar 2008.

[15] J. Takahashi, H. Kojima, and Z. Furukawa. Coverage
based testing for concurrent software. In 28th International
Conference on Distributed Computing Systems Workshops,
2008., pages 533–538, June 2008.

[16] R. N. Taylor, D. L. Levine, and C. Kelly. Structural testing
of concurrent programs. IEEE Transaction Software Engi-
neering, 18(3):206–215, Mar. 1992.

[17] W. E. Wong, Y. Lei, and X. Ma. Effective generation of
test sequences for structural testing of concurrent programs.
In 10th IEEE International Conference on Engineering of
Complex Systems (ICECCSt’05), pages 539– 548, 2005.

[18] C.-S. D. Yang. Program-Based, Structural Testing of Shared
Memory Parallel Programs. PhD thesis, University of
Delaware, 1999.

212 213

Program slicing spectrum-based software fault localization*

Wanzhi Wen, Bixin Li, Xiaobing Sun, Jiakai Li

School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
Key Lab of Computer Network & Information Integration (Southeast University), Ministry of Education

{wen, bx.li,sundomore,jiakai li}@seu.edu.cn

Abstract

Spectrum-based fault localization technique mainly uti-
lizes testing coverage information to calculate the sus-
piciousness of each program element to find the faulty
element. However, this technique does not fully take con-
sideration of dependences between program elements ,
thus its capacity for efficient fault localization is limited.
This paper combines program slicing with program spec-
trum technique, and proposes a program slicing spectrum-
based software fault localization (PSS-SFL) technique.
Firstly, PSS-SFL analyzes dependences between program
elements, and deletes some elements unrelated to the failed
test outputs; then it builds the program slicing spectrum
model and defines a novel suspiciousness metric for each
slice element; finally, the faulty element is located ac-
cording to the suspiciousness metric results. Experimental
results show that PSS-SFL can be effective and more
precise to locate the fault than program spectrum-based
Tarantula technique.

Keywords-Fault localization, program slicing spectrum,
program slicing, program spectrum

I. Introduction

A software fault is an incorrect step, process, or data
definition in a computer program [1]. Software fault lo-
calization is to locate the fault that cause software failure.
According to Collofello’s research, in an attempt to reduce
the number of delivered errors, it is estimated that most
companies spend between 50% and 80% of their software
development effort on testing [2], while software fault

*Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and no. 60973149, and partially
Supported by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, and partially by National High Technology
Research and Development Program under Grant No.2008AA01Z113.

Correspondence to: bx.li@seu.edu.cn

localization is one of the most complex and difficult tasks
during the process of reducing the number of errors. There
are two traditional ways to locate software faults: the first
way is to insert print statements into the program, and
then analyze the suspicious statements according to the
print result; the second way is to set a breakpoint at some
statement, and then single step to the next statement and
determine whether the statement is faulty or not. Both ways
above have to be performed manually. When the program
is complex and large-scale, it is difficult to fully analyze
the fault and the work will be very huge. So these two
traditional ways above are not very efficient.

Program slicing technique was firstly proposed by
Weiser [3]. It can abstract program’s statements according
to a specific criterion, so the fault in the program can be
limited to a small region, that is, a relevant slice. Program
slicing technique includes static program slicing technique
and dynamic program slicing technique. Software fault
localization based on static program slicing [4][5] analyzes
the data flow and control flow of the program statically to
reduce the search domain of faults. However, because the
static program slicing is overly conservative, the precision
of locating fault is very low. Based on static program
slicing technique, dynamic technique [6][7] introduces more
precise slicing criterion and the search domain of faults can
be further reduced.This paper firstly abstracts the dynamic
slicing criterion according to the failed test information,
then constructs a fault-related slice to locate the fault.

In recent years, program spectrum-based software fault
localization [8][9] was proposed, which can be applicable
to the large-scale program and easy to implement. A
program spectrum characterizes, or provides a signature
of a program behavior [10]. Generally speaking, the col-
lection of program spectrum is very simple, moreover,
its storage is easy, so it can be suitable for situations
with limited resources. Program spectrum-based software
fault localization technique first statistically analyzes pro-
gram spectrum and computes the probability that each

214 215

program element may include faults, commonly known
as suspiciousness; then program elements are checked
according to the descending order of the suspiciousness
until the fault is found. Researches show that even for
the lowest quality of programs, only 20% of the program
code remains to be investigated to locate the fault with the
program spectrum-based technique [9][11]. However, this
technique does not fully take consideration of dependences
between program elements, thus its capacity for efficient
fault localization is limited. This paper combines program
slicing with program spectrum technique, and proposes a
program slicing spectrum-based software fault localization
(PSS-SFL) technique. The main contributions of this paper
are as follows:

(1) We delete program elements that have no depen-
dence with the fault program elements by program slicing
technique and construct a fault-related slice according to
the test information,and then propose a program slicing
spectrum-based software fault localization model.

(2) Based on the popular suspiciousness metric tech-
nique, we propose a new suspiciousness metric technique
by introducing the frequency and contribution of each
program element.

(3) We verify the effectiveness of PSS-SFL technique
with our experiment and compare PSS-SFL technique
with the popular Tarantula technique based on program
spectrum.

II. Preliminaries

A. Dynamic program slicing

A dynamic program slice [6][7] consists only of state-
ments that influence the value of a variable for a specific
program input. The location, variable and input are referred
as the dynamic slicing criterion as Definition 1, then a
dynamic program slice is abstracted from the program
dependence graph as Definition 2 [6][12].

Definition 1 (Dynamic slicing criterion): Given a pro-
gram P , P ’s variable set V and input set I , a dynamic
slicing criterion C of the program P is a triple < s, v, i >,
where s ∈ P is a specific statement in P , v ∈ V denotes a
subset of the program variables and i ∈ I means a specific
input to the program P .

Definition 2 (Program dependence graph): Given a
program P ,P ’s program dependence graph is a two-tuple
< N,E >, where N is a set of nodes which denote the
statements in P , E is a set of edges which consist of
control dependence edges and data dependence edges.
A control dependence edge < vi, vj >∈ E shows node
vi is executed depending on the output of the predicate
expression at node vj and a data dependence edge
< vi, vj >∈ E indicates that the computation performed
at vertex vi directly depends on the value computed at
vertex vj .

Table I. PSS-SFL model
Test cases

Program Failed Passed Suspiciousness
T1 ... Ts Ts+1 ... Tm

e1 b1,1 ... b1,s b1,s+1 ... b1,m p1

e2 b2,1 ... b2,s b2,s+1 ... b2,m p2

...
en bn,1 ... bn,s bn,s+1 ... bn,m pn

B. Program spectrum-based software fault local-
ization

Recently, many researchers have proposed vari-
ous fault localization techniques based on program
spectrum[8][9][10][11][13][14][15][16]. Generally speaking, these
techniques mainly include three steps: (1) collect coverage
information of program elements based on test executions;
(2) compute the element suspiciousness based on cov-
erage information; (3) locate the fault according to the
suspiciousness in a descending order. Program spectrum
is usually defined as follows:

Definition 3 (Program spectrum): Given a program P ,
n is the number of elements in P and T = TF ∪ TP is
a set of test executions where TF = {T1, ..., Ts} is the
set of failed test executions and TP = {Ts+1, ..., Tm} is
the set of passed ones, then program spectrum is a two
dimensional matrix Mn,m: ∀bi,j ∈ Mn,m,

bi,j=
{

1 Tj covered ei

0 otherwise , (1 ≤i≤n, 1 ≤j≤m)

A visual model of program spectrum-based software
fault localization is shown in the following table. Rows
of the table denote corresponding elements in the program
and columns T1, . . . , Tm indicate the number of test exe-
cutions is m including s failed ones and m−s passed ones.
bi,j is the element of program spectrum matrix with value
1 or 0 which indicates whether Tj executed the element ei

or not. The last column is the suspiciousness of its corre-
sponding element. The metric of suspiciousness is usually
based on the following assumptions: the more failed tests
and the less passed ones that executed the element ei, the
greater likelihood that ei is faulty, that is, in the table,
the larger value of

∑s
i=1 bi,j and the smaller value of∑m

i=s+1 bi,j , the greater value of suspiciousness(ei). So
suspiciousness(ei) is generally defined as follows [8]:

Definition 4 (Suspiciousness):

suspiciousness(ei) =
failed(ei)%

failed(ei)% + passed(ei)%

In the definition above, failed(ei)% is the percent-
age of failed tests that executed ei in total failed tests,
and passed(ei)% is the percentage of passed tests that
executed ei in total passed tests. In general, differ-
ent researchers have different definitions to failed(ei)%
and passed(ei)%, but their targets are all to locate

214 215

the faulty element more precisely by the computation
of suspiciousness(ei). This paper defines a new sus-
piciousness metric based on popular Tarantula’s suspi-
ciousness metric by defining a different failed(ei)% and
passed(ei)%.

III. program slicing spectrum-based software
fault localization

A. Program slicing spectrum model

Traditional program spectrum-based fault localization
technique considers all elements of a test execution, but
the elements are not all related to the test output,so we
introduces the program slicing technique to delete the
unrelated elements to the fault and improve the precision
of fault localization.

To more effectively locate faults, we firstly collect fault
related slice according to the failed test executions:

Definition 5 (Fault-related slice): Given a set of test
executions T=TF∪TP , where TF =T1, . . . , Ts is the set
of failed test executions and TP =Ts+1, , Tm is the set of
passed ones, Let Slice(Ti) (i = 1, . . . , m) be the dynamic
slice corresponding to the test execution Ti, then fault-
related slice is an elements set Slice = Slice(T1) ∪
Slice(T2) ∪ . . . ∪ Slice(Ts).

Based on the above definition, program slicing spectrum
is defined as follow:

Definition 6 (Program slicing spectrum): Given
a set of test executions T = TF ∪ TP , where
TF = {T1, . . . , Ts} is a set of failed test execution
and TP = {Ts+1, . . . , Tm} is the set of passed ones,
let the number of elements in Slice be n, that is
n=|Slice|, then program slicing spectrum is a two-
dimensional Mn,m: ∀fi,j ∈ Mn,m(1≤i≤n, 1 ≤j≤m),

fi,j=
�

k the frequency that Tj exceuted ei in Slice
0 otherwise

B. suspiciousness model

Program spectrum-based software fault location tech-
nique is performed based on the suspiciousness metric.
Definition 4 gives a popular suspiciousness model. This
paper improves the traditional computing algorithm of
failed(ei)% and passed(ei)% by introducing the execu-
tion frequency and contribution of each program element.
The popular definition of failed(ei)% and passed(ei)%
is proposed in Tarantula technique as follows:

failed(ei)%=
a11(ei)

a11(ei)+a01(ei)
,passed(ei)%=

a10(ei)
a10(ei)+a00(ei)

In the formula above,a11(ei) represents the number of
failed tests that executed the element ei,a01(ei) represents
the number of failed tests that didn’t execute the element
ei,a10(ei) represents the number of passed tests that ex-
ecuted the element ei, a00(ei) represents the number of

passed tests that didn’t execute the element ei. Obviously,
Tarantula technique computes the suspiciousness of each
program element by counting the number of failed tests
and passed tests that executed the element. When different
tests executed the same element, the contribution of the
element to each test result is considered to be equal. That
is, in Table I, Tarantula technique just considers if ei was
executed by each test and just counts the number of 1 of
the line ei. In reality, the number of program elements
that each test executed is different and the frequency that
each program element is executed is also different, so
the contribution of a program element to different test
result is unequal. For example, if a test just executed a
program element, then the contribution of this program
element to the test result is 100%; while this test executed
two program elements and each element was executed one
time, the contribution of each program element to the test
result is 50%. The contribution can be computed from
the column of program spectrum matrix. Below is our
definition of failed(ei)% and passed(ei)%:

failed(ei)%=

m�
j=1

PTj
×Ci,j

m�
j=1

PTj

,passed(ei)%=

m�
j=1

(1−PTj
)×Ci,j

m�
j=1

(1−PTj
)

,

where Ci,j=
fi,j

n�
k=1

fk,j

,PTj
=

⎧⎪⎨
⎪⎩

1 Tj is failed
0 Tj is passed

In the formula above, Ci,j represents the contribution of
the program element ei to the test execution Tj where fi,j

is the frequency of ei that is executed by Tj and details
are shown in Definition 6. PTj

with value 1 represents that
Tj is a failed test execution, otherwise PTj

is assigned a
value 0. Denominators of failed(ei)% and passed(ei)%
represent the number of failed test executions and the
number of passed ones; their numerators represent the sum
of the contributions of program elements to each failed
test execution and passed one. These are different from
the suspiciousness metric in Tarantula technique.

When the suspiciousness of each program element is
obtained, the fault can be located according to the suspi-
ciousness in a descending way.

C. Program slicing spectrum-based software fault
localization model

According to the definition of program slicing spectrum
and suspiciousness model, a visual model of program
slicing spectrum-based software fault localization is shown
in Table II. Rows of the table denote corresponding
elements in the fault-related slice Slice and columns
T1, . . . , Tmindicate m test executions where the number
of failed ones is s and passed ones is m − s. fi,j

(1 ≤i≤n, 1 ≤j≤m) is the element of program slicing
spectrum matrix with value k or 0 which means the

216 217

Table II. PSS-SFL model
Test cases

Slice Failed Passed Suspiciousness
T1 . . . Ts Ts+1 . . . Tm

e1 f1,1 . . . f1,s f1,s+1 . . . f1,m p1

e2 f2,1 . . . f2,s f2,s+1 . . . f2,m p2

. .
en fn,1 . . . fn,s fn,s+1 . . . fn,m pn

frequency that Tj executed the element ei . The last column
is the suspiciousness of each corresponding element by
the computation in the above section. Obviously, PSS-SFL
technique greatly improves traditional program spectrum-
based technique. It reduces the scale of the traditional
spectrum, introduces the frequencies of program elements
and defines contributions for suspiciousness metric.

Program slicing technique firstly abstracts correspond-
ing slicing criterion, and then generates the slice by
traversing program dependence graph. PSS-SFL technique
generates the fault-related slice according to the failed
test executions information, and then constructs program
spectrum according to history test executions and finally
computing the suspiciousness of each element in the fault-
related slice.

IV. Experiment

In this section, we will verify the effectiveness of PSS-
SFL and compare its precision of locating faults with
popular Tarantula techniques.

A. Object of analysis

Many current researches on software fault localization
use siemens suite as their object. Siemens suite consists of
seven C programs and each program has several hundred
lines of code. Because each program in siemens suite is
mainly composed of branch structures, program spectrum-
based software fault localization techniques generally have
a high precision on these programs and PSS-SFL has not
obvious advantages. This section uses a practical JAVA
tool program JAVA Hierarchical Slicing and Applications
(JHSA) as our object of analysis.JHSA program includes
three packages, twenty-six classes and 11201 lines of code
in all, which is used to construct a hierarchical system
dependence graph for JAVA program, and to compute its
hierarchical slice. We totally select 178 faulty versions for
this experiment.

B. Experiment design and analysis

In this study, experiment data collection and analysis
are conducted in four steps: first, collect program elements

Figure 1. The effectiveness of PSS-SFL

coverage information by the tool eclemma and count the
frequencies of the program elements; second, abstract the
fault-related slice by a slicing tool JHSA according to the
failed tests; third, construct the program slicing spectrum
matrix based on the steps above; finally, compute the
suspiciousness as depicted in the above section and locate
faults according to the suspiciousness of each program
element in a descending order.

To evaluate the effectiveness of PSS-SFL, an efficiency
score is used in this experiment. Given v is the number
of versions in which faults have been successfully located
and s is the number of program elements that have been
searched for locating faults in each version.we evaluate the
effectiveness with following formula:

Efficiency = v
s

In the formula above, efficiency means that the number
of versions in which faults have been successfully located
when searching s elements in each version. Here, s can be
also referred as search times. In the ideal case, if the value
of s is 1 and the value of v is the number of total versions,
efficiency denotes that this technique can once find faults
in all versions and its efficiency is the highest.

C. Result and analysis

In this section, we verify the effectiveness of PSS-SFL
and compare its precision of locating faults with popular
Tarantula techniques with the above efficiency score.

Figure 1 shows the relation between the efficiency of
PSS-SFL and search times. In the figure, with the increase
of search times, the efficiency reduced. This implies PSS-
SFL technique can quickly locate most faults at the begin-
ning, and only a small number of faults need to be searched
many times further, so the technique is very effective.

Figure 2 shows the relation between search times and
the number of versions and compares PSS-SFL with Taran-
tula technique. In the figure, when the value of search times

216 217

Figure 2. The comparation between PSS-SFL
and Tarantula technique

is about 250, the number of versions in which faults have
been found with PSS-SFL is nearly 80, while the value
with Tarantula is about 60. In this experiment, the number
of all versions is 178, so when searching 250 times, PSS-
SFL can find faults in nearly half versions and Tarantula
about one third. Moreover, Figure 2 shows PSS-SFL can
be more effectively and precisely locate faults most of the
time than Tarantula technique.

D. Threads to validity

According to the experiment above, PSS-SFL technique
can effectively and precisely locate faults. However, there
are some threads to the experiment.

First, the scale of the object of analysis is still rela-
tively small. It is a real application program, so, to some
extent, it can verify the effectiveness and precision of PSS-
SFL. However, it still needs to be verified for the larger
scale program. In addition, with the increase of sequential
structures in programs, the precision of Tarantula technique
will reduce. Although PSS-SFL introduce program slicing
technique to reduce this degradation to some extent, but
this degradation also exists in the PSS-SFL technique.

Second, if program fault is caused by the omission of
some element, we can locate the fault to its prior element
close to the position of omission element. Then, we can
find the corresponding fault from this prior element, but
this needs some manual analysis.

Third, because suspiciousness metric is based on the
statistical number of failed test executions and passed test
executions, the precision of suspiciousness will be reduced
with the increase of the number of faults in a version.
This problem exists in traditional program spectrum-based
software fault location technique and also exists in PSS-
SFL technique.

V. Related work

Because of the importance and difficulty of software
fault localization, more and more software engineering re-
searchers pay attention to this field. They proposed various
techniques for locating faults such as techniques based
on program slicing [3][4][5][17][18][19][20][21] and program
spectrum [8][9][10][11][13][14][15][16]. This paper combines the
program slicing and program spectrum, and proposes PSS-
SFL technique, which can more effectively locate faults.

Most of program slicing based-software fault localiza-
tion techniques locate faults using set operation between
slices. Dicing technique [17] computes the difference be-
tween a failed slice and a passed slice to confine the
fault to a small region; execution slice [18][19] is some
program execution blocks according to some specific in-
puts, it can be abstracted more effectively than traditional
slice, and this slicing technique generally computes the
intersection and union between slices to locate faults.
The idea of the union is first to compute the union of
all passed slices, then to get the difference between a
failed slice and the union; the way of the intersection is
first to compute the intersection of all passed slices, then
to obtain the difference between the intersection and a
failed slice. Renieris proposed another difference between
a failed execution slice and a passed slice that has a closest
distance to the failed slice [20]. In addition to set operations,
DeMillo proposed a critical slicing for locating faults based
on ”statement deletion” mutant operation [21]. PSS-SFL
technique is different from these techniques: Although this
technique abstracts dynamic program slice for fault-related
slice, it constructs a program slicing spectrum model and
finally computes the suspiciousness to locate faults. PSS-
SFL technique is more suitable for general cases.

Program spectrum includes program frequency spec-
trum and program hit spectrum. Their difference is that a
frequency spectrum introduces the execution frequency of
each program element and a hit spectrum only considers if
program elements are covered or not. Traditional program
spectrum-based software fault localization is mainly based
on program hit spectrum. There are usually two methods
to improve the effectiveness of program hit spectrum-
based software fault localization. One is to improve the
suspiciousness model. The common suspiciousness mod-
els mainly have Tarantula [8],Jaccard [9],Ochiai [9],etc. In
addition, Wong [13] introduced the weight of test cases into
the suspiciousness metric to improve the effectiveness. The
other is to optimize the test cases by deleting unrelated
or redundant test cases [22][23][24]. PSS-SFL technique
is different from these techniques: PSS-SFL introduces
program slicing technique to delete elements that have
no dependence with faults; moreover, PSS-SFL is based
on program frequency spectrum and has a different sus-

218 219

piciousness model by introducing the contribution of each
program element.

VI. Conclusion and future work

This paper proposed an effective fault location tech-
nique, PSS-SFL technique. First, this technique abstracts
fault-related slice and deletes elements that have no de-
pendences with faulty elements to improve the precision
of locating faults; second, it introduces the execution
frequency and the contribution of each program element
to improve the traditional suspiciousness metric; finally, an
experiment is conducted to verify the effectiveness of this
technique.

Although our experiment has verified the effectiveness
of PSS-SFL on a practical program, the efficiency will be
reduced with the increase of faults in a single program as
other software fault localization technique, so our future
work will focus on improving the efficiency of locating
faults in multi-faults program.

References

[1] IEEE. IEEE standard glossary of software engineering
terminology, 1990.

[2] J.S.Collofello and S.N.Woodfield. Evaluating the effective-
ness of reliability-assurance techniques. Journal of Systems
and Software, 9(3):191–195, 1989.

[3] M.Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[4] M.Weiser. Programmers use slices when debugging. Com-
munications of the ACM, 25(7):446–452, 1982.

[5] J.R.Lyle and M.Weiser. Automatic program bug location
by program slicing. In Proceedings of International Confer-
ence on Computers and Applications, pages 877–883, 1987.

[6] H.Agrawal and J.R.Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 246–
256, 1990.

[7] H.Agrawal, R.A.DeMillo, and E.H.Spafford. Debugging
with dynamic slicing and backtracking. Software - Practice
Experience, 23(6):589–616, 1993.

[8] J.A.Jones, M.J.Harrold, and J.Stasko. Visualization of test
information to assist fault localization. In Proceedings of
the 24th International Conference on Software Engineering,
pages 467–477, 2002.

[9] R.Abreu, P.Zoeteweij, and A.J.C.van Gemund. On the accu-
racy of spectrum-based fault localization. In Proceedings of
Testing:Academic and Industrial Conference-Practice and
Research Techniques, pages 89–98, 2007.

[10] M.J.Harrold, G.Rothermel, and R.Wu. An empirical inves-
tigation of program spectra. In Proceedings of the 1998
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 83–90, 1998.

[11] J.A.Jones and M.J.Harrold. Empirical evaluation of the
tarantula automatic fault localization technique. In Pro-
ceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, pages 273–282, 2005.

[12] J.Ferrante, J.Ottenstein, and J.D.Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–
349, 1987.

[13] E.Wong, Y.Qi, L.Zhao, and et al. Effective fault localization
using code coverage. In Proceedings of International
Computer Software and Applications Conference, pages
449–456, 2007.

[14] R.Abreu, P.Zoeteweij, and A.J.C.van Gemund. An evalua-
tion of similarity coefficients for software fault localization.
In Proceeding of the 12th IEEE Pacific Rim International
Symposium on Dependable Computing, pages 39–46, 2006.

[15] R.Abreu, A.Gonzlez, P.Zoeteweij, and et al. Automatic soft-
ware fault localization using generic program invariants. In
Proceedings of the ACM symposium on Applied computing,
pages 712–717, 2008.

[16] R.Abreu and A.Gonzlez. Exploiting count spectra for
bayesian fault localization. In Proceedings of the 6th
International Conference on Predictive Models in Software
Engineering, 2010.

[17] T.Y.Chen and Y.Y.Cheung. Dynamic program dicing. In
Proceedings of the Conference on Software Maintenance,
pages 378–385, 1993.

[18] H.Agrawal, J.R.Horgan, S.London, and et al. Fault lo-
calization using execution slices and dataflow tests. In
Proceedings of the 6th IEEE International Symposium on
Software Reliability Engineering, pages 143–151, 1995.

[19] W.Wong and Y.Qi. Effective program debugging based on
execution slices and inter-block data dependency. Journal
of Systems and Software, 79(7):891–903, 2006.

[20] M.Renieris and S.P.Reiss. Fault localization with nearest
neighbor queries. In Proceedings of the 18th IEEE Inter-
national Conference on Automated Software Engineering,
pages 30–39, 2003.

[21] R.A.DeMillo and E.H.Spafford H.Pan. Critical slicing for
software fault localization. In Proceedings of the 1996 ACM
SIGSOFT international symposium on Software testing and
analysis, pages 121–134, 1996.

[22] Y.B.Yu, J.A.Jones, and M.J.Harrold. An empirical study of
the effects of test suite reduction on fault localization. In
Proceedings of the International Conference on Software
Engineering, pages 201–210, 2008.

[23] D.Hao, L.Zhang, Y.Pan, and et al. On similarity awareness
in testing based fault localization. Automated Software
Engineering, 15(2):207–249, 2008.

[24] D.Hao, T.Xie, L.Zhang, and et al. Test input reduction
for result inspection to facilitate effective fault localization.
Automated Software Engineering, 17(1):5–31, 2010.

218 219

Interface Testing Using a Subgraph Splitting Algorithm: A Case Study

Sergiy Vilkomir, Ali Asghary Karahroudy, Nasseh Tabrizi
Department of Computer Science

East Carolina University
Greenville, USA

{vilkomirs, asgharykarahroudy10, tabrizim}@ecu.edu

Abstract— One of several obstacles in automated test generation
is the presence of dependencies among test data where not all
combinations of test parameter values are feasible. In previous
attempts, a subgraph splitting algorithm has been suggested
where a graph model is created for test generation in order to
reflect dependencies among test data. This paper extends these
results and considers a new improvement of the algorithm that
can significantly simplify the final model. We investigate this
approach in a case study of an interface test case generation for
the VirtualECU software system. Detailed graph models are
developed to reflect all dependencies and generate all feasible test
cases during VirtualECU interface testing.

Keywords-testing; dependencies; subgraph splitting

I. INTRODUCTION

Testing of modern software systems is a complex process
that requires a high level of automation, which is why the
development of methods and tools for automated testing has
become an important research area. One major obstacle to
automated test generation is the presence of dependencies in
test data, where not all combinations of test parameter values
are feasible.

Different approaches to test generation with dependencies
exist in the literature [1-4]. In previous works [6, 7], the first
author of this paper has suggested a subgraph splitting
algorithm, which reflects dependencies among test data in
terms of a graph model. A tool for automatic model
construction [8] was also developed. The graph model is used
as a basis for test case generation then. Generation of test
cases from the graph can be done manually or automatically
using existing out-of-the-shelf tools, such as JUMBL [5]. This
paper extends the previous results taking into consideration the
following new materials:

Improvement of the subgraph splitting algorithm by
adding a new step (merging nodes), which can
significantly simplify the final model.

Application of the algorithm during interface testing.

Reflection of more complex "one-on-two"
dependencies.

Practical application of the algorithm and interface test
case generation for a real case study: VirtualECU [9]
software system.

The rest of this paper is organized as follows: In Section
2.A, the specifics of dependencies during interface testing is
analyzed. Section 2.B reviews the subgraph splitting algorithm
and suggests a new step for merging nodes. VirtualECU, the

software system that is used as a case study for the application
of our approach, is described in Section 3. Section 4 contains
detailed diagrams of graph models, created by the subgraph
splitting algorithm for dependencies between interface options
of the VirtualECU. Generation of test cases from these models
is also considered in this section. Conclusions are presented in
Section 5.

II. PROPOSED APPROACH

A. Dependencies During Interface Testing
In [6, 7], a graph input space model for test case generation

and a subgraph splitting algorithm for creation of this model
are suggested. Different types of input variables (discrete and
continuous numerical data, symbols, strings, etc.) are
considered and used as test parameters. The model reflects
dependencies between values of input variables and is used for
generation of feasible test cases.

For many types of software, a direct use of input variables is
unnatural. Rather, a user chooses some interface options from
menu bars, tool bars, buttons, etc., to actuate software
functionalities. However, from the point of view of testing,
these situations are very close. Similar to input variables,
interface options can also be considered as values of test
parameters. The choice of one interface option can affect
possibilities for another. In other words, it is possible to have
dependencies between interface options. Based on this, we can
conclude that the subgraph splitting algorithm can be applied
for interface testing.

Input information for the algorithm includes a list of test
parameters and their values, and dependencies between these
values. For interface testing, the test parameters are not
directly defined and will be determined at the first stage of
modeling. Some values of the test parameters may not be
defined explicitly by the user. For example, some software
functionalities can be different across user categories, but the
category itself is not chosen explicitly. Users do not need to
have any knowledge about the used gradation, and the users’
category can be determined automatically based on user IDs
during the log-in process.

Each dependency for the subgraph splitting algorithm
should be described using "if-then" implications for test
parameters values. Because of the presence of dependencies,
some user actions that correspond with test parameters can be
restricted or not even be applicable. A general description of
the subgraph splitting algorithm is given in Section 2.A and a
detailed example of the use of this algorithm for interface
testing is discussed in Section 4.

220 221

B. Subgraph Splitting Algorithm
The initial start point of the algorithm is a linear direct

labeled graph, which describes values of test parameters but
does not include any dependencies between them. Any node in
the graph corresponds with one test parameter. An ingoing
edge of this node is labeled with values of this parameter. The
subgraph splitting algorithm then uses a four-step approach to
reflect each dependency at a time. The main step is subgraph
splitting after which one test parameter corresponds with
several nodes. The labels of edges are then changed according
to dependency restrictions.

It is necessary to mention that the constructed graph does
not coincide with other type of graphs widely used in software
engineering and testing. It is not a control-flow or data-flow
graph, neither is it a dependency graph used in constraint
programming. Connected nodes do not represent any
relationships between test parameters; rather they just reflect
some arbitrary predefined order of the parameters. The graph
represents dependencies between test parameters in such a way
that

Each path through the graph correlates with a set of
independent feasible test cases.

Fixing one value from the label of each edge of some
path gives a feasible test case, i.e., a test case that
satisfies all dependencies.

The set of test cases, generated from all paths of the
graph is a complete set of all feasible and only feasible
test cases.

The algorithm contains the following four steps for each
dependency. A more detailed description of the first three steps
can be found in [7]. The fourth step is the new improvement of
the algorithm, which allows simplifying a graph model in some
situations. The steps of the algorithm are explained below for
the dependency between test parameters a A and d D: If
a A1 then d D1, if a A2 then d D2, where A and D are
sets of interface options, A= A1 A2, D= D1 D2, and
A1 A2 =

- Step 1: Splitting a subgraph. The subgraph includes all
nodes for test parameters between a and d, including a but not
including d. The subgraph is splitting (duplicating) and the new
subgraph is connected with other nodes in the same way as the
original subgraph. Adding the split subgraph creates new paths
in the graph mode, which reflects the dependency between
parameters.

- Step 2: Labeling ingoing and outgoing edges of split
subgraphs. If some ingoing edge is labeled with a set I, then the
label for this edge for the original subgraph changes to I A1
and the label for the corresponding edge for the duplicated
subgraph changes to I A2. In much the same way, if some
outgoing edge is labeled with a set O, then the label for this
edge for the original subgraph changes to O D1 and the label
for the corresponding edge for the duplicated subgraph changes
to O D2.

- Step 3: Eliminating dead nodes and edges. After step 2,
some edges can be labeled with the empty set. Such edges are
considered as dead and should be eliminated from the graph
model. After eliminating edges, some nodes can be without
ingoing or outgoing edges. Such nodes are considered dead and
also should be eliminated together with corresponding edges.
This cycle should be repeated until all dead edges and nodes
are eliminated.

- Step 4: Merging nodes. We suggest here this new step
because it is possible that after Step 2, outgoing edges from two
nodes may go to the same node and have the same labels. In
such situations, these two nodes should be merged. This action
simplifies the graph model and reduces the number of paths
through the graph, eliminating paths that generate the same sets
of test cases.

III. A CASE STUDY: VIRTUALECU SOFTWARE

VirtualECU is a software system for educational support
processes developed in the Computer Science (CS) Department
at East Carolina University (ECU), North Carolina. The system
is composed of two different parts. The first part can be
accessed by all visitors and serves as an informational site for
the graduate programs offered by the CS department. The other
part is designed to establish connections between the students
and faculty of the department. It facilitates delivering course
materials, lecture sharing, quiz and test taking, grade recording,
etc. Accessing the latter part is restricted by user accounts and
their special privileges. This second part of VirtualECU is our
focus point in the case study.

There are three different user groups in VirtualECU:
administrators, instructors, and students. Each group is
assigned specific access levels and permissions. Users need to
log into the system before being able to access the services.
VirtualECU functions with a bidirectional interactive
mechanism. Instructors design, create, and upload course
materials such as lectures, quizzes, and tests. They may also
put a time limit on those materials. Students have access to
these materials; they take quizzes, submit assignments, etc.
Instructors review and grade student submissions and update
records, which can also be checked by students. There are two
presentation modes in VirtualECU: List view (Figure 1) and
Calendar view (Figure 2). In the List view, a list of existing
materials is shown to the user as hyperlinks to allow access to
details about course components. The Calendar view helps
users access course materials using date tags (upload date, due
date, etc.).

The system interface allows users doing typical actions,
such as "open," "download," "upload," "delete," etc. Some
scenarios may include a sequence of actions. Availability of
actions depends on the group of users and course objects. For
example, a student can download a lecture, but not a quiz, an
administrator or instructor can change the date and time of
some course objects, but a student cannot perform this action,
etc. A more detailed discussion of the actions and their inter-
dependencies are considered in the next section.

220 221

Figure 1. Fragment of VirtualECU List view

Figure 2. Fragment of VirtualECU Calendar view

TABLE I. TEST PARAMETERS AND THEIR VALUES

N Test parameter Values
1 User (user) U={Student (std), Instructor (instr), Administrator (adm)}
2 Course object (object) O={Quiz (q), Lecture (lec), Project (pr), Assignment (as), Announcement (an), Test (test),

Note (note), Grade (grade), Attendance (at), Course Listing (col), Groups (gr)}
3 Time (time) T={Passed (p), Ready(r), Waiting (w), not exist (ne), time independent (ind)}
4 Presentation (pres) P={List (list), Calendar (cal)}
5 Action 1 (act1) A1={Download (dw), Upload (up), Delete (del), Rename (ren) , Edit (ed), Open (op), N/A

(na)}
6 Action 2 (act2) A2={Select answer and save (ss), Select answer and continue (sc), Jump (jum), N/A (na)}
7 Action 3 (act3) A3={Close (cl), Submit (sub)}

IV. VIRTUALECU TEST SPACE MODELING

A. Test parameters and dependencies
As a first stage of modeling, we grouped all interface

options into eight test parameters. The parameters and their
values are presented in Table 1. Provided in brackets are short
identifiers that are used later in graph diagrams (Section 4.B).

There are two types of dependencies between VirtualECU
test parameters: "one-on-one" and "one-on-two" dependencies.
For the "one-on-one" dependency, values of one specific test
parameter depend only on values of another one parameter. For
example, parameter time depends on parameter object. For the
"one-on-two" dependency, values of one specific test parameter
depend on values of two other parameters at the same time, and
this dependency cannot be presented as a composition of two
"one-on-one" dependencies. For example, parameter action1
depends on parameters user and object, but dependencies user-
action1 and object-action1 do not exist separately.

There are two ways to deal with "one-on-two"
dependencies. As a first approach, instead of two separate
dependees, we can create one derived parameter-vector. For
example, we can consider one parameter user&object with
Cartesian product as a set of values and then directly
apply the subgraph splitting algorithm. The second approach is
possible when a number of possible values of one of dependee
is small. In this case, instead of one model with "one-on-two"
dependency, it is possible to create several models (separately
for each value of this parameter) with "one-on-one"
dependency. In our case study, parameter user has only three
values, so the second approach is applicable. Because of the
limited space of the paper, we consider here graph models only
for user=instructor. However, model for other users are
similar; therefore, the models provided here fully illustrate the
method of model creation by the subgraph splitting algorithm.

There are six dependencies among VirtualECU test
parameters (Table 2). Dependencies 1, 2, 4, and 5 are for all
users and dependencies 3 and 6 are formulated only for
instructors.

222 223

TABLE II. DEPENDENCIES AMONG TEST PARAMETERS

N Dependency Values of dependee Values of dependant
1 object - time O1={q, pr, as} {p, r, w, ne}

O2={ lec, an, note, grade, at, gr, test} {r, ne}
{col} {ne, ind}

2 pres - act1 {list} A1\{up}
{cal} A1

3 time - act1 {p, w, r} A1\{up}
{ne} {up}
{ind} {del, ed}

4 user – act1 {instr, adm } A1\{na}
{std } A1

5 user – act2 {instr, adm } {na}
{std } A2

6 act1 – act3 {dw, del, ren, up, na} {cl}
{op, ed} A3

{U}
Enter user Exitact1time presobject act3act2

O T {list,cal} A1 A2 {cl,sub}

Figure3. Model for test parameters and their values (without dependencies)

{U}
Enter user Exitact1time presobject act3act2

O1 {list} A1\{up} A2 {cl,sub}

object

object

O2

{col}

{r, ne}

{p, r, w, ne}

{ne, ind} pres
{cal} A1

Figure 4. Model for dependencies 1 (between object and time) and 2 (between pres and act1)

{U}
Enter user Exitact1time presobject act3act2

O1 {list} A1\{up} A2 {cl,sub}

object

object

O2

{col}

{p, r, w}

pres
{cal}

time pres

{ind}

pres
{cal}

time pres
{list}

{ne}

pres
{cal}

××
×

{ne}

××

×

××

A1\{up}

{up}

{del, ed}

{del, ed}

Figure 5. Model for dependency 3 (eliminating dead nodes and edges and merging nodes)

222 223

B. Graph models for dependencies
A graph model for dependencies is based on a simple linear

graph where nodes represent test parameters, and ingoing arcs
are labeled with all possible values of these parameters (Fig.3).

To reflect dependency 1 between and time parameters,
object node should be split. For dependency 2 between pres
and act1 parameters, pres node should be split. Dependency 1
is described by three "if-then" implications (Table 2); therefore,
there are three nodes for object. Dependency 2 is described by
two "if-then" implications, and so pres node should be
duplicated (Figure 4). There are no dead arcs, dead nodes, and
nodes that should be merged.

For dependency 3 between time and act1 parameters, the
subgraph with nodes time and pres should be split into three
identical subgraphs. After labeling ingoing arcs, some of the
arcs are dead and should be eliminated (marked with crosses in
Fig. 5). Also, there are two pairs of pre nodes, which outgoing
arcs have the same labels (oval forms in Fig. 5). According to
step 4 of the subgraph splitting algorithm, these nodes should
be merged. The model for dependencies 1, 2, and 3, after
eliminating dead nodes and edges and merging nodes, is given
in Fig. 6.

Dependency 4 restricts the value of act3 for instructors to
be "na." Dependency 5 shows that the value of act1 for
instructors cannot be "na." Both these dependencies require
only relabeling of the ingoing arc of act1 and act3 without
splitting subgraphs. For dependency 6 between act1 and act3
parameters, one cycle of step 3 of the subgraph splitting
algorithm is necessary for eliminating dead edges (we skip this
diagram because of the limited space of the paper). The final
model for dependencies 1 - 6 is presented in Fig. 7.

C. Test case generation
The final model in Fig. 7 contains six different paths

through the graph. Each path represents a group of test cases,
where the values of test parameters are labels of arcs of this
path (Table 3).

The values of different parameters are independent and can
be combined in any combinations. Together, these test cases
form a set of all feasible and only feasible tests that satisfy all
dependencies. For instructor mode, the total number of feasible
test cases is 140.

{instr}
Enter user Exitact1time presobject act3act2

O1 {list, cal} A1\{up,na} {na} {cl,sub}

object

object

O2

{col}

{p, r, w}

time

{ind}

pres{cal}

time pres
{list, cal}

{ne}

{ne} {up}

{del, ed}

Figure 6. Model for dependency 3 between time and act1 parameters

{instr}
Enter user Exitact1time presobject act3act2

O1 {list, cal} {dw,del,ren} {na} {cl}

object

object

O2

{col}

{p, r, w}

time

{ind}

pres{cal}

time pres
{list, cal}

{ne}

{ne}
{del}

act1 act2
{na}

{cl,sub}{op, ed}

{up}

{ed}

Figure 7. Final model for dependencies 1 - 6

224 225

TABLE III. FEASIBLE TEST CASES

Path user object time pres act1 Act2 Act3 Number of
tests

1 instr O1 {p, r, w} {list, cal} {dw,del, ren} {na} {cl} 54
2 instr O1 {p, r, w} {list, cal} {op, ed} {na} {cl, sub} 72
3 instr O2 {ne} {cal} {up} {na} {cl} 7
4 instr {col} {ne} {cal} {up} {na} {cl} 1
5 instr {col} {ind} {list, cal} {del} {na} {cl} 2
6 instr {col} {ind} {list, cal} {ed} {na} {cl, sub} 4

Total 140

The benefit of using the created model is that this model
allows generation of the test cases according to different
strategies. Applying existing tools (i.e. JUMBL) to our model,
it is possible to randomly generate any fixed number of feasible
tests, or provide path/node/arc coverage, or generate test cases
with highest probabilities according to a user profile, etc. The
model can also be successfully used for statistical testing.

V. CONCLUSIONS

A subgraph splitting algorithm is a method for software
input space modeling and test case generation. In this paper, a
new area of this algorithm application, specifically interface
testing, is considered. The main challenge for such application
is representing all interface options as a set of test parameters
and their values. The subgraph splitting algorithm then allows
us to create a graph model, which reflects all dependencies
between interface options and generates only feasible test
cases.

The improved algorithm makes the model more compact
and convenient for practical applications, as illustrated for a
case study of the VirtualECU software. The model developed
here presents all 140 feasible test cases for VirtualECU and
allows further test selection according to various test criteria.

ACKNOWLEDGMENT

This research is supported by the "Google Faculty Research
Award" from Google, Inc.

REFERENCES

[1] A. Beer, S. Mohacsi, “Efficient Test Data Generation for Variables with
Complex Dependencies,” Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, 9-11
April 2008, pp. 3–11.

[2] A. Calvagna and A. Gargantini, “A Logic-Based Approach to
Combinatorial Testing with Constraints,” Tests and Proofs, Springer
Berlin / Heidelberg, LNCS 4966, 2008, pp. 66–83.

[3] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-
configurable systems in the presence of constraints,” Proceedings of the
2007 international symposium on Software testing and analysis (ISSTA
'07), 2007, ACM, pp. 129–139.

[4] M. Grindal, J. Offutt, J. Mellin, “Managing Conflicts When Using
Combination Strategies to Test Software,” Proceedings of the 18th
Australian Software Engineering Conference (ASWEC’07), Melbourne,
Australia, April 2007, pp. 255–264.

[5] S. Prowell, “JUMBL: A Tool for Model-Based Statistical Testing,”
Proceedings of the 36th Annual Hawaii International Conference on
System Sciences (HICSS’03), Big Island, HI, USA, January 2003.

[6] S. Vilkomir, “Statistical testing for NPP I&C system reliability
evaluation,” Proceedings of the 6th American Nuclear Society
International Topical Meeting on Nuclear Plant Instrumentation,

Controls, and Human Machine Interface Technology (ICHMI 2009),
Knoxville, TN, USA, April 5–9, 2009.

[7] S. Vilkomir, T. Swain, and J. Poore, “Software Input Space Modeling
with Constraints among Parameters,” Proceedings of the 33rd Annual
IEEE International Computer Software and Applications Conference
(COMPSAC 2009), Seattle, Washington, July 20–24, 2009, pp. 136–
141.

[8] S. Vilkomir, K. Abdelfattah, S. Gummadi, “MIST: Modeling Input
Space for Testing Tool,”. Proceedings of the 13th IASTED International
Conference on Software Engineering and Applications (SEA 2009),
Cambridge, MA, USA, November 2–4, 2009, pp. 210–217.

[9] Virtual ECU, http://virtual.ecu.edu

224 225

Machine Learning-based Software Testing: Towards
a Classification Framework
Mahdi Noorian1, Ebrahim Bagheri1,2, and Wheichang Du1

University of New Brunswick, Fredericton, Canada1

Athabasca University, Edmonton, Canada2

m.noorian@unb.ca, ebagheri@athabascau.ca, wdu@unb.ca

Abstract—Software Testing (ST) processes attempt to verify
and validate the capability of a software system to meet its
required attributes and functionality. As software systems become
more complex, the need for automated software testing methods
emerges. Machine Learning (ML) techniques have shown to be
quite useful for this automation process. Various works have
been presented in the junction of ML and ST areas. The lack of
general guidelines for applying appropriate learning methods for
software testing purposes is our major motivation in this current
paper. In this paper, we introduce a classification framework
which can help to systematically review research work in the
ML and ST domains. The proposed framework dimensions are
defined using major characteristics of existing software testing
and machine learning methods. Our framework can be used to
effectively construct a concrete set of guidelines for choosing the
most appropriate learning method and applying it to a distinct
stage of the software testing life-cycle for automation purposes.

I. INTRODUCTION

Software Testing (ST) is an investigation process which
attempts to validate and verify the alignment of a software
system’s attributes and functionality with its intended goals.
Software testing is a labour intensive and costly process and
as mentioned in [2], [3], a testing process may require up to
50% of the development resources. Due to this fact, automated
testing approaches are desired to reduce this cost and time. Be-
sides, automation can significantly enhance the testing process
performance. Hence, for future software systems development,
steps need to be taken towards the development of automated
testing strategies [4].

Several interesting attempts have already been made for
automating the software testing process. Machine Learning
(ML) as a sub domain of AI [12] is widely used in various
stages of the software development life-cycle [19], especially
for automating software testing processes [5]. In [1], [17],
evolutionary algorithms have been employed for automat-
ing test case generation. In [16], Artificial Neural Networks
(ANN) have been used to build a model for estimating the
effectiveness of the generated test cases. Briand et al. in
[8] has proposed a method based on the C4.5 decision tree
algorithm for predicting potential bugs in a software system
and localizing the bugs in order to reduce the debugging
process time. All research works show that the employment
of machine learning techniques is a promising approach for
automating testing processes. But, still some major questions
remain that need to be addressed and further investigated such

as:
• What types of machine learning methods can be effective

in different aspects of software testing?
• What are the strengths and weaknesses of each learning

method in the context of testing?
• How can we determine the proper type of learning method

for the stages of a testing process?
• Where are the critical points in a software testing process

in which ML can positively contribute?
The general purpose of our ongoing research is to provide

a specific set of guidelines for automating software testing
processes with the aid of machine leaning techniques. To come
up with such set of guidelines, it is required to systematically
analyse the current research work and find answers to some of
the abovementioned questions.

In the first step, we propose a framework which can be used
to classify the current research work in the conjunction of ML
and ST. In addition, to support our framework, some works are
reviewed. This classification framework can assist ST practi-
tioners to analyse and understand the emerging applications of
the ML-ST domain. Such structured classification framework
can be useful for defining and constructing a set of guidelines
for automating software testing processes.

The reminder of this paper is as follows. In Section II , the
proposed classification framework is presented. In addition, the
dimensions of the framework are discussed in detail. Section
III is devoted to presenting some work in the area of ML and
ST. In Section IV we discuss how this set of representative
work can be classified according to our proposed framework.
We conclude the paper with conclusions and direction for
future work in Section V.

II. THE PROPOSED FRAMEWORK FOR CLASSIFICATION

During the past decade, several works have been introduced
based on machine learning techniques where learning algo-
rithms have been applied to the various stages of software
testing. In order to clarify the stand point of ML in the area
of ST, we propose a classification framework. In this section,
we take a look at the proposed framework and its dimensions.

A. The Framework’s Dimensions

The most important factors that can be used to distinguish
the current research work are represented in Fig. 1. In its
highest layer, the framework consists of two main categories

226 227

TABLE I
TESTING GENERAL ACTIVITY DIMENTION

Sub-dimension Possible value
A: Test Planning Testing cost estimation [9]

Test case prioritization [1]
B: Test Case Management Test case design [1]

Test case refinement [6]
Test case evaluation [16]
Fault localization [18]

C: Debugging Bug prioritization [18]
Fault prediction [15]

(Testing and ML). According to the defined categories, six
main dimensions and some sub-dimensions are obtainable in
the classification framework. The framework’s dimensions are
as follows:
Dimension 1-Testing approach: According to the older test-
ing terminology [2], we define the testing approach dimension
with three possible values: black-box, white-box, and gray-
box [2]. Based on the black-box approach, testing can be
performed using the external description of a software system
such as the software specification. In a white-box approach,
the internal properties of a software system like source code
can be used for testing purposes. The grey-box approach is
a combination of the two, which considers both internal and
external properties at the same time.
Dimension 2-Testing general activity: In the second dimen-
sion, the standard testing process life-cycle [13] inspired us to
define the a) test planning, b) test case management, and c)
debugging sub-dimensions. With respect to the testing process
life-cycle, we found out that these three phases are critical and
that automation can effectively assist them in order to reduce
the cost and time of the whole testing process. The possible
activities that can be automated based on ML in a, b, and c
are presented in Table I.

In the test planning sub-dimension, testing cost estimation
can help test managers to predict testing process cost and time
and provide good testing plan to manage the testing process
efficiently. Test case management includes several tasks such
as test case prioritization, which intends to prioritize the test
input space in terms of test case effectiveness; test case design,
which intends to generate high quality test cases; test case
refinement, which intends to map the current specification of a
software system to the existing test cases in order to reuse the
available test cases; and test case evaluation which intends
to measure the quality of the generated test cases. In the
Debugging sub-dimension, fault localization can help to find
the exact location of the program that is defected. In addition,
bug prioritization intends to prioritize the revealed faults based
on their severities; later test engineer can focus on more critical
faults accordingly. Fault prediction can assist test engineers in
the debugging stage, in the sense that potential faults for a
given program are predicted.
Dimension 3-Testing level: Software development process
includes a range of stages form ”requirement analysis” to ”im-
plementation” [13]. The development process goes further even
after the implementation stage and concentrates on software
maintenance. In Dimension 3, we have employed the following
widely accepted testing levels in order to classify existing

work: acceptance testing, system testing, integration testing,
module testing, unit testing, and regression testing, which
refer to requirement analysis, architectural design, subsystem
design, detailed design, implementation, and maintenance in
the software development stages, respectively.
Dimension 4-Learning technique: In the machine learning
area, various types of learning methods have been introduced
and each of them has its own specific characteristics. We adopt
Mitchel [12] learning method classification and define learn-
ing technique dimension values as follows: Decision Trees
(DT), Artificial Neural Networks (ANN), Genetic Algorithms
(GA), Bayesian Learning (BL), Instance Base Learning (IBL),
Clustering, and Hybrid methods, which can be combination of
several other learning methods.
Dimension 5-Learning property: Each learning method has
its own specific characteristics. This dimension is devoted
to evaluating learning methods properties in various aspects.
To do so, three sub-dimensions; Training data properties,
Supervision, Time generalization are defined. The Training
data properties evaluate the properties of a data set. The
gathered data for learning process can be small or large in
terms of its quantity. Data can be noisy or accurate in terms
of errors that might exist in a data set. In addition, learning
can be supervised or unsupervised; therefore, the Supervision
sub-dimension is defined. For a given target function the time
generalization sub-dimension exposes how its generalization
is; which can be either eager (at learning phase) or lazy (at
classification phase). In terms of online and offline learning,
also time generalization shows how a learning system updates
its approximation of the target function after the initial training
data are used. The last sub-dimension, automation degree, is
responsible for addressing the learning system in terms of the
degree of automation. The designed system can be fully or
partially automatic.
Dimension 6-Elements learned: In each learning system for
software testing automation, various types of data can be
used to build the target function. The training data can be
collected in different stages of the software testing process or
software development life-cycle. The learning elements could
be software metrics, software specification, CFG (control flow
graph), call graph, test case, execution data, failure reports,
and/or coverage data. The elements learned dimension is
defined to distinguish the type of learning element that being
used for an individual learning model in the testing process.

Fig. 1 shows the framework dimensions, their sub-
dimensions and some possible values for them. The main
dimensions are shown with ellipse and numbered from 1 to
6. The sub-dimensions are represented with ellipse as well. In
addition, the possible values of each dimension are shown with
rectangles.

III. THE EXAMPLES OF ML IN SOFTWARE TESTING

In this section, some research work in the area of ML and
ST has been selected for supporting the proposed classification
framework. In Section IV, we discuss how this work can
be classified with proposed framework. Note that, Dimension

226 227

Fig. 1. Classification framework dimensions.

2 has been chosen as the main dimension for classification
purposes. We have tried to select and present at least one
work according to sub-dimensions a, b, and c. In the following
three subsections, we have chosen and briefly introduced three
interesting works (due to space limitation) that have employed
machine learning techniques for test planning, test case man-
agement, and debugging, respectively. Later, we will show how
these three works that fall under different aspects of software
testing can be effectively described using our proposed classi-
fication framework. In our future longer publication, we will
comprehensively classify the relevant related literature within
our proposed framework. The following three works are only
introduced to show the potential of our framework.

A. Test planning

In [9], machine learning techniques have been used to
identify the main factors of software testing where they have
been employed to predict the testing process time. Under-
standing the important factors of software under the test can
help test managers to prepare a good test plan. The developed
methodology consists of four phases; 1) Database formation; 2)
Data collection; 3) Classification of software and 4) Analysing
the results. In the first phase, databases of 25 software systems
were constructed. The sample software were collected from
various sources with different attributes. The second phase
is devoted to real data extraction form software systems.
According to the predefined factors and for a given software

system, values were extracted for each individual factor. The
list of determined factors included code complexity measures,
measures of programmer and tester experience, testing time
and a number of other attributes. The complete attributes list
includes twenty-seven attributes. In the third phase, COB-
WEB/3 [11] was used to classify the software systems and
build a model to predict the cost of testing for the new software
system. COBWEB/3 builds a decision tree. In the last phase,
the classification results need to be analyzed to get specific
time prediction.

B. Test Case Management

In the context of software evolution, sometimes the avail-
able test cases need to be refined to address the current test
requirements of the software system. The process of test case
refinement is called test case re-engineering [6]. In [6], [7],
a semi-automatic methodology based on a machine learning
approach is provided to explore the limitations and find the
possible redundancies of the available test cases and then
refine them for future usage. As illustrated in Fig. 2, the
MELBA (MachinE Learning based refinement of BlAck-box
test specification) methodology is an iterative process and it
consists of five main activities.

In the Activity 1, test cases are transformed into the abstract
level using the Category-Partition (CP) strategy [14], so they
would be ready to be used by the machine learning method in
Activity 2. The CP method helps to model the input domain

228 229

Fig. 2. Overview of the MELBA process [6].

and as discussed in [14], CP requires defining the sets of
categories and choices. The categories are the properties of
the input and environment parameters of the software system
and the choices are the possible values for each category. The
abstraction process is conducted using the defined categories
and choices. An abstract test case shows an output equivalence
class and the pairs of (category, choice). In Activity 2, the
machine learning algorithm (C4.5 decision tree) is used to learn
the rules for classifying the abstracted test cases. Activity 3 is
the important part of MELBA, which is devoted to analysing
the learnt rules. The results of the analyzed tree could lead to
determine the problems that cause the redundant test cases or
the needs for adding new test cases (Activity 4). In addition, the
learnt rules may indicate that CP needs to be updated (Activity
5). This iterative process will continue until no more problems
could be identified in the trees.

C. Debugging

In software debugging, fault localization refers to process
of finding the exact locations of the program that are defected
and contain faults. In [18], the Back-Propagation (BP) neu-
ral network method [10] is used to effectively pinpoint the
program faults. According to proposed approach, first the BP
neural network is trained with both the coverage data and the
execution result, then the trained network is used to predict
and rank the suspicious statements of the code, in terms of
its potential to have faults. The proposed method for fault
localization consists of the following steps:

1) Building up the dataset: In order to create dataset, it
is required to run the program with several test cases and
collect the coverage data for each execution. Beside this, the
execution results are also need to be collected. This coverage
data (coverage vectors) and its execution results can be used
for training phase.

2) Training of the BP neural network: In this stage BP
neural network is built with k input-layer neurons, three
hidden-layer neurons, and one output-layer neuron. The sig-
moid function is used as the transfer function. In order to
perform training process, coverage vector of each test cases
t1...tn is used as input data and their corresponding r1...rn
testing result is used as expected output.

3) Prioritizing the defected statements in program: the
trained network can be used for prioritization purpose. As-
sume, we have a set of virtual test cases v1...vn which they
cover statements s1...sn respectively. It means that, the execu-
tion of virtual test case vi (i=1...m) covers only si statement.

With respect to this assumption, we can say that if the
execution of test case vi fails, then the probability that si is
defected is high. Here, the trained network can be used to
predict the expected output for each virtual test case (rvi). The
value of rvi is between 0 and 1. The larger the value of rvi,
the more probable si is defected. Hence, the statements s1...sm
can be ranked based on rv1...rvm values in descending order.
At the end, the bugs can be identified by examining statements
one by one form top of the list.

IV. CLASSIFICATION BASED ON PROPOSED FRAMEWORK

In Section II, we introduced a classification frame-
work. There, we discussed the framework’s dimensions, sub-
dimensions, and some possible values of them. This framework
can be used to classify and highlight the main features that
need to be considered in the junction of ML and ST area. Fol-
lowing that, in Section III, we presented some representative
work in the ML and ST domains.

In this section, we show how the proposed framework can
be applied on the three sample presented works. Table II
summarizes the results of this classification for each individ-
ual work that we have reviewed. In this table, the columns
show the dimensions and the related sub-dimensions of the
framework and the rows represent the research work that we
reviewed. In addition, each cell in the junction of a column
and a row indicates the value(s) of that dimension for the
corresponding research work.

To clarify, from Table II it can be understood that the
automation in [18] has been done in the debugging stage of
testing process and the task type was fault localization, which
automatically finds the suspicious statements in the source
codes. In addition, in terms of testing level, this work has been
conducted at the unit testing level. With respect to the testing
approach dimension, this work was carried out based on the
white-box approach, because the statements of the source code
are considered for testing purposes. From the ML perspective
it can be derived that this work has benefited from the ANN
learning algorithm which is a supervised learning method.
Furthermore, the elements which were used as input in the
learning process were coverage data.

For the work presented in [9], automation has been per-
formed in the test planning stage whose task type is testing cost
estimation. The DT (Decision Tree) type learning algorithm
was used to build a model for estimating testing process cost.
From the automation degree point of view, this work pro-
posed a semi-automatic approach, since in some parts of this
method we can see the need for test engineer’s intervention.
Furthermore, software metrics have been employed as input for
the learning process. In this work, the learning task has been
conducted using a small size of dataset, which can considerably
decrease the learning process time.

Finally, in [6], [7], testing general activity is addressed
by test case management value, which means, for automation
purposes the learning method was applied in the test manage-
ment stage in the software testing life-cycle. The task type in
this work was test case refinement. The proposed method in

228 229

this work, in terms of testing level, can be categorised in the
regression testing level, because this work focused on reusing
the existing test cases for new updated version of the current
software system. With regards to the testing approach, this
work used the black-box method, since it considers only the
software specification for testing purposes. From the machine
leaning point of view, this work employed a semi-automatic
approach using DT- based learning technique. The dataset size
was quite small and the elements which have been used to build
dataset were test cases and software specification documents.

Table II and the above classification show how our proposed
framework is useful in categorizing and explaining work in the
intersection of ML and ST.

V. CONCLUSION AND FUTURE WORK

Testing is critical task in the software development process
and considerably imposes cost and time restrictions on the
development process. Therefore, automating the testing pro-
cess can significantly increase testing process performance. In
the context of software testing, different types of data can
be collected in various stages of testing. Machine learning
techniques can be used to find patterns in this data and use
them for automation purposes.

In this paper, we have introduced a framework for classi-
fying the current research works in ML and ST. Some sample
works of ML in ST have been reviewed and appropriately
classified according to the proposed framework. The proposed
framework provides us with the opportunity to systematically
investigate and extract the prominent information from existing
research works in ML and ST.

Considering the introduced framework, our main attempt
for future research is reviewing and classifying all current
work in the area of ML and ST. The collected information
from classification process will assist us to construct the sets
of concrete guidelines for applying ML methods in the ST
process. These guidelines will help test engineers to choose the
most efficient and appropriate learning method for automation
of a target testing stage. Our initial probe has shown that our
classification framework is quite strong in providing the means
to capture various aspects of work in ML and ST.

REFERENCES

[1] Moataz A. Ahmed and Irman Hermadi. Ga-based multiple paths test
data generator. Comput. Oper. Res., 35:3107–3124, October 2008.

[2] Paul Ammann and Jeff Offutt. Introduction to software testing. Cam-
bridge University Press, 2008.

[3] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand
Reinhold Co., New York, NY, USA, 1990.

[4] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering, FOSE ’07, pages 85–
103, Washington, DC, USA, 2007. IEEE Computer Society.

[5] Lionel C. Briand. Novel applications of machine learning in software
testing. Quality Software, International Conference on, 0:3–10, 2008.

[6] Lionel C. Briand, Yvan Labiche, and Zaheer Bawar. Using machine
learning to refine black-box test specifications and test suites. In
Proceedings of the 2008 The Eighth International Conference on Quality
Software, Washington, DC, USA, 2008. IEEE Computer Society.

[7] Lionel C. Briand, Yvan Labiche, Zaheer Bawar, and Nadia Traldi Spido.
Using machine learning to refine category-partition test specifications
and test suites. Inf. Softw. Technol., 51, November 2009.

[8] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. Using machine
learning to support debugging with tarantula. In Proceedings of the The
18th IEEE International Symposium on Software Reliability, ISSRE ’07,
pages 137–146, Washington, DC, USA, 2007. IEEE Computer Society.

[9] Thomas J. Cheatham, Jungsoon P. Yoo, and Nancy J. Wahl. Software
testing: a machine learning experiment. In Proceedings of the 1995 ACM
23rd annual conference on Computer science, CSC ’95, pages 135–141,
New York, NY, USA, 1995. ACM.

[10] Laurene Fausett, editor. Fundamentals of neural networks: architectures,
algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1994.

[11] Kathi Een Mckumcr, Kevin Thompson, Uncl As, Kathleen Mckusick,
and Kevin Thompson. Cobweb/3: A portable implementation, 1990.

[12] Tom M. Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997.

[13] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John
Wiley & Sons, 2004.

[14] T. J. Ostrand and M. J. Balcer. The category-partition method for
specifying and generating fuctional tests. Commun. ACM, 31:676–686,
June 1988.

[15] Susan A. Sherer. Software fault prediction. Journal of Systems and
Software, 29(2):97 – 105, 1995.

[16] A. von Mayrhauser, C. Anderson, and R. Mraz. Using a neural network
to predict test case effectiveness. In Aerospace Applications Conference,
1995. Proceedings., 1995 IEEE, number 0, pages 77 –91 vol.2, February
1995.

[17] Joachim Wegener, Andre Baresel, and Harmen Sthamer. Evolutionary
test environment for automatic structural testing. Information and
Software Technology, 43(14):841 – 854, 2001.

[18] W. Eric Wong and Yu Qi. Bp neural network-based effective fault local-
ization. International Journal of Software Engineering and Knowledge
Engineering, 19(4):573–597, 2009.

[19] Du Zhang and Jeffrey Tsai. Machine learning and software engineering.
Software Quality Journal, 11:87–119, 2003. 10.1023/A:1023760326768.

230 231

A Model-based Approach to Regression Testing of Component-based Software *

Chuanqi Tao, Bixin Li
School of Computer Science and Engineering

Southeast University, Nanjing, China
chuanqi.tao@sjsu.edu, bx.li@seu.edu.cn

Jerry Gao
School of Computer Engineering

San Jose State University, San Jose, USA
gaojerry@email.sjsu.edu

Abstract—Component-based software systems consist of various
components, such as third-party components and in-house built
components. Due to the component changes, a software system is
usually affected at both component level and system level. Related
existing research does not address the issue of systematic regres-
sion testing of component-based software, especially at system level.
This paper proposes a systematic regression testing method from
components to system. The paper discusses component API changes,
interaction changes, and architecture changes. In addition, it presents
a component-based change impact analysis method based on the
proposed component firewalls and uses a decision table as its test
model. The provided approach is applied throughout the regression
testing process. Finally, the paper reports our case studies based on
a realistic component-based software system. The study results show
that the approach is feasible and effective.

Keywords-component-based software regression testing; software
maintenance; retest model; change and impact analysis; test cases
update

I. Introduction

Component-based software is widely used nowadays. The mod-
ern software system is primarily constructed based on reusable
components, such as third-party components and in-house built
components. During software maintenance, when a component is
updated or upgraded, it must be retested. This refers to regression
testing, which is an important task of software maintenance. Its
major objective is to gain the quality confidence for the updated
software whenever it is changed. According to [1], regression
testing is a major task of software maintenance and it accounts for
more than one-third of its total costs. For any component-based
software, its regression testing can be conducted in a hierarchical
manner that is from the component-level unit retest, component
reintegration, to the system level regression testing.

In regression testing of component-based software, the research
topics still focus on re-test model, change impact analysis and
test case update. However, changes made to a component could
bring impact on the other parts of the component, which means the
change impact could affect other components of the system or the
whole system behaviors. In addition, component-based regression
testing should take practical test models into account. For instance,
if a decision table-based method has been selected as a test model
to generate test cases, regression testing should consider how to
identify test cases change and impact based on the decision table.

*Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and no. 60973149, and partially Sup-
ported by Doctoral Fund of Ministry of Education of China under Grant
No. 20100092110022, and partially by National High Technology Research
and Development Program under Grant No. 2007AA01Z141 and No.
2008AA01Z113.

Research in the past seldom discussed how to identify component
changes and impacts in component-based software. Although some
papers discussed regression testing of component [2–5], these
papers didn’t address regression testing at different levels from
component to system. Nowadays, practitioners in the real world are
looking for systematic solutions to support component and system
regression testing and component evolution.

This paper addresses those needs above by providing a system-
atic approach to regression testing of component-based software
based on re-test models. Re-test models are usually used to present
the dependency relationships amongst components, assist engineers
to define re-test criteria and re-integration strategies, and facilitate
automatic test generation. To support regression testing, related
modes need to be chosen. This paper proposes several models
according to diverse views of component testing. In those models,
the relationships between functions or data at component level,
between components at system level are all taken into account.

Change identification is the first step of regression testing. A
clear classification of change types can support effective impact
analysis. The various change types are summarized at different lev-
els in this paper. Impact analysis is an important task in regression
testing. The component firewall concept is utilized as a primary
method for our change impact analysis. This paper presents diverse
firewalls based on the re-test models at both component level and
system level. Test case update is one of the goals of regression
testing. As a complete regression testing solution, the original test
cases should be updated for reusable test cases, obsolete test cases
and new test cases. To identify the affected test cases, the affected
components or parts should be mapped into the corresponding test
cases. Thus, the test models which are used for generating test
cases need to be analyzed. Since the decision table-based testing
is an important component testing method and the project of our
case study also utilizes decision table as the major testing method,
therefore, we regard decision table as a basic test model for our
regression testing in this paper. The related test case update is based
on the decision table. Therefore, the process to perform regression
testing of component-based software from component to system is
as following steps:

Step 1 Change identification at component level, which refers to
API function changes, API data changes, structural changes, etc.

Step 2 Impact analysis at component level, which refers to
component function firewall, component data function firewall and
component API function firewall.

Step 3 Test cases update at component level, which refers
to component decision table-based test cases reused, deleted and
added.

230 231

Step 4 Change identification at system level, which refers to
component interaction changes and architecture changes.

Step 5 Impact analysis at system level, which refers to extended
composition tree firewall and component interaction firewall.

Step 6 Test cases update at system level, which refers to system
decision table-based test cases reused, deleted and added.

The major contributions of this paper are summarized below:
(1) A systematic solution to regression testing of component-

based software from component level to system level is presented,
including the process of regression testing : change identification,
change impact analysis and test cases update.

(2) Several new component firewalls are introduced for com-
ponent change impact and test case reuse in component-based
software regression testing.

(3) Practical application experiments are performed in our case
studies. Nearly a hundred students joined related empirical studies.

This paper is organized as follows. Section 2 introduces a brief
review of the related work in regression testing of component-based
software. In section 3, the re-test models are presented. Section 4
analyzes the change types and provides a systematic approach to
component-based software change impact analysis using firewall.
Section 5 discusses test cases update. Section 6 reports the case
study. Conclusion and future work are summarized in the end.

II. RelatedWork

In the past decades, a number of papers have been published
for regression testing issues for conventional programs and object-
oriented software. Those papers primarily focus on three issues:
regression test selection techniques [6, 7, 9, 10], regression
testing cost-effectiveness analysis [11, 12], and object-oriented
re-integration [13–15].

A lot of papers focus on the component-based software testing
issues. Currently, component-based software testing mainly focuses
on component testability, component test adequacy and cover-
age, component-based software integration, performance testing,
and configuration testing. Recently, a few papers addressed the
regression testing problems existed in component-based software
[2, 3, 16–18]. They can be generally classified into the following
three groups.

The first group is regression test selection of component-based
software. For example, Harrold et al. proposed an approach to
regression testing of COTS components using component meta-
data [16]. They utilized three types of meta-data to perform the
regression test selection. However, the method needs additional in-
formation from component which may be not available in practice.
Similarly, Orso et al. also discussed two techniques for regression
testing of component-based software [2]. The first is code-based
and the second is specification-based. Both techniques are based on
the provided component meta-data. To support the approach, the
additional information is needed, including the version information,
change data and coverage measurement facilities. Zheng et al. pro-
posed an Integrated-Black-box Approach for Component Change
Identification for COTS(Commercial-off-the-shelf) software [17].
For the third-party component, the internal software information
could be available from component specification, user interface
and reference manual. To support the approach, binary code and
document should be visible. They assumed that when components

change and only binary code and documentation are available,
regression test selection can safely be based upon the glue code that
interfaces with sections of the component that changed. Robinson
et al. proposed a firewall method for regression testing of user-
configurable software. They constructed a firewall to identify the
impacted area in system based on setting changes and configurable
element changes respectively, then created or selected test cases to
cover the impacts [19].

The second group is UML-based. For instance, Wu et al.
presented a UML technique for regression testing of component-
based software [4]. They adopted UML diagrams, which represent
changes to a component, to support regression testing. Class
diagrams, Collaboration diagrams, and Statechart diagrams are
considered to be as the re-test models.

The third group is the systematic method based on API models.
Gao et al. focused on component API-based changes and impacts,
and proposed a systematic re-test method for software components
based on a component API-based test model [3]. In addition, Mao
et al. proposed an improved regression testing method based on
built-in test design for component-based system [5].

The open questions and challenges of regression testing of
component-based software are primarily as follows.

-How to identify the diverse component changes in a systematic
way?

-How to do impact analysis from component to system?
-How to update both component and system test cases?
This paper addresses those problems above. Unlike previous

work that only focused on component change analysis and impact
at the component level, this paper proposes a model-based approach
for regression testing. A firewall approach is utilized for impact
analysis from component to system to find out ripple effects on
other components and system behaviors. Moreover, this paper
also introduces a systematic methodology for regression testing
of component-based software from component to system.

III. Component-based Software Re-testModels
Component and system can be viewed from different perspec-

tives for testing. For instance, a component can have white-box
view, black-box view, API view or performance view. A system
can have integration view, configuration view, function view or
performance view. Component testing researchers can choose dif-
ferent views according to their test plan and test goal. Various views
of components correspond to different re-test models.

At component level, the changes could be structure changes or
internal logic changes. If each updated component is assumed to
provide the component internal information as its meta-data, from
the white-box view, the white-box re-test models like data function
dependency or function dependency could be adopted for com-
ponent re-test. Since component function is usually used through
API function or data call, the API models can be borrowed for
component re-test. From the black-box view, the component could
be tested using decision table-based testing or state-based testing.
Hence, the related test models could be adopted for component
testing. In addition, from the performance view, the scenario-based
testing models can also be applied. However, performance is out
of the scope of this paper.

At system level, the relationship between components could be
interaction, composition, message communication, etc. Thus, re-

232 233

lated system-level models are proposed for system regression test-
ing. For example, from the integration view, component interaction
graph can be used as interaction models for system. As component
system is usually configurable, the composition and configuration
models are needed to support the system testing. From the function
view, decision table-based or state-based methods could also be
adopted for system function testing.

The reason why we adopt those models to support the regression
testing of component-based software from component to system is
explained above. In the next few subsections, we will define and
introduce those models in detail.

A. System-level Re-test Models
At the system level, from the integration view and configuration

view, we propose two re-test models. Now we introduce those two
models in detail.

1) Extended Composition Tree: Extended Composition Tree
(ECT) describes the composition and configuration relationship
amongst components or inside sophisticated components. ECT ex-
tends traditional composition tree through adding the configuration
relationship [20]. For instance, an elevator system is composed
of the car, the floor panel, the controller, and etc. Sophisticated
component car contains user panel, door, car controller, etc.
Regarding configuration, a door component can be configured with
Single door or Double door.

ECT consists of tree nodes and links. Tree nodes present single
or sophisticated components including configurable components.
Tree links in ECT present the composition relation or configuration
relation between tree nodes.

Definition 1 An Extended Composition Tree(ECT) can
be defined a directed graph ECT = (N, E,R), where
N = {N1,N2, ...,Nn} is a finite set of nodes, R =

{POW, EXT, EOR, AND, S witch,Multiplex} is the set of rela-
tions,and E = EPOW ∪EEXT ∪EEOR∪EMultiplex∪EAND∪ES witch is the
set of edges.EPOW ⊆ N × N × R is the set of directed edges repre-
senting the part-of-whole relation between the components. For any
two components C1,C2 ∈ N, �C1,C2, POW� ∈ EPOW indicates that
component C2 is a part of C1. EEXT ⊆ N×N×R is the set of directed
edges representing the extend relation between the components. For
any two components C1,C2 ∈ N, �C1,C2, EXT � ∈ EEXT indicates
that component C2 extends C1 through composition.

Regarding configuration relation, we already defined the related
models in our previous work [20].

2) Component Interaction Graph: Wu et al. introduced the
component interaction graph to depict interactions and dependance
relationships among components , which is mainly call relationship
[21]. Here, Component Interaction Graph (CIG) addresses the rela-
tionships include message-communication, usage, etc. Component
interaction graph is defined as Definition 2 below.

Definition 2 Component interaction graph(CIG) for software
components is a directed graph CIG = (N, E,R), where N is
the set of nodes representing the components, R = {MS G,US A}
is the set of interaction relations, and E = EMS G

⋃
EUS A is the

set of edges defined below. EUS A ⊆ N × N × R is the set of
directed edges representing the usage interaction relation between
the components. EMS G ⊆ N × N × R is the set of directed edges
representing the message-based interaction relation between the
components.

Figure 1. A Sample of Component Semantic Decision Table

For instance, For any two components C1,C2 ∈ N,
�C1,C2,MS G� ∈ EMS G indicates that component C1 sends message
to C2.

B. Re-test Models for Test Cases Reuse

1) Component Semantic Decision Table Test Model: Decision
Table is a black-box testing method focusing on validating business
rules, conditions, constraints and corresponding responses and
actions of a software component [22, 23]. The basic approach
is to identify and list all possible conditions and their combination
cases as well as responding actions and outputs for each case, then
define test cases to cover each case. In this paper, we propose
a new Component Decision Table for component. We call this
Component Semantic Decision Table (CSDT). For each case, there
exists precondition, action and postcondition.

According to component black-box view, the data value of
preconditions could be Incoming data, Incoming message(such as
GUI input data or component internal data) or API call parameter,
and the data value of postcondition could be Outgoing data(such
as database table, GUI output, output data file, etc.), Outgo-
ing message or Outgoing call data. All these preconditions and
postconditions could be obtained from component specification.
Action in CSDT stands for component function. Figure 1 shows
a sample component semantic decision table. The precondition,
postcondition and action are explained in Definition 3.

Definition 3 The CSDT includes three sets, which is
presented below. prec = {prec1, prec2, ..., precm}, postc =

{postc1, postc2, ..., postcn}, where prec denotes a precondition
set, which includes precondition prec1, prec2, ..., precn, and
postc denotes a postcondition set, which includes postcondition
postc1, postc2, ..., postcn. action = {A1, A2, ..., Al}, where action
denotes a action set, which includes action A1, A2, ..., Al.

2) System Semantic Decision Table Test Model: In our com-
ponent system specification, there is a feature-component table.
The table describes the relation between system features and
corresponding components. These features can be observed at the
system level. For each feature, there is a corresponding decision
table.

The system features can be defined as a set Ft, Ft =
{ f t1, f t2, ..., f tn}, where Ft denotes the function feature set of
component-based system, which includes feature f t1, f t1, ..., f tn.
Each feature is supported by a set of components. The relation
between feature and components can be expressed below.

f ti −→ C(f ti) = {C1,C2, ...,Cm}, where C(f ti) denotes the set
of components which support feature f ti.

Each system decision table can be used for each feature, which
is presented below.

f ti −→ S DTi, where S DTi stands for system decision table.
S DTi −→ S Tdi, where S Tdi stands for test case set for decision

table S DTi.

232 233

Figure 2. Component Function and Interaction Change Types

Figure 3. Architecture Change Types

IV. Change Impact Analysis

We have summarized the common changes existed in
component-based software in Figure 2 and 3. Component changes
could be classified at two levels: a) the component level, and b)
the system level. Change impact analysis is based on the models
proposed in section 3. We introduce several component change
firewalls, which include change, add and delete firewalls. The basic
procedure to perform a component change impact consists of the
following steps:

1) Identify the impacts of a changed component function or data
on other component functions at component level; 2) Identify the
component change impacts on its API; 3) Identify the component
change impact on its precondition, action, and postcondition; 4)
Identify the component change impact on other components based
on architecture at system level; 5) Identify the component change
impact on other components based on interaction at system level.

For any component, we assume ECT = (N, E,R) be the old
version of its Extended Composition Tree, ECT � = (N�, E�,R�)
be its new version, CIG = (N, E,R) be the old version of its
Component Interaction Graph, and CIG� = (N�, E�,R�) be its new
version.

A. Component function, precondition and post-condition Fire-
wall

Through the computation of CFFW and CDFW, we can get the
affected component functions based on invocation dependencies
and data define-use dependencies [3]. Various change types corre-
spond to different impact. Now we try to present the change impact

analysis corresponding to the summarized component level change
types in Figure 2 using firewall.

• For ADP or ARD (the changed data is assumed as Di):
CDFWadd[Di] = {F j|(∃F j)(∃Fk)((�Fk, Fi, du� ∈ R�d−Rd)∧(Fk ∈
F) ∧ (�F j, Fk, du� ∈ R�d∗))}
Where R�d is the data define-use relation derived from DFDG’.

• For AF (the changed function is assumed as Fi):
CFFWadd[Fi] = {F j|(∃F j)(∃Fk)((�Fk, Fi� ∈ E� − E) ∧ (Fk ∈
F) ∧ (�F j, Fk� ∈ R�f ∗))}
Where R�f is the dependence relation for FDG’.

• For DDP and DRD (the changed data is assumed as Di):
CDFWdelete[Di] = {F j|(∃F j)(∃Fk)((�Fk, Fi, du� ∈ Rd − R�d) ∧
(Fk ∈ F) ∧ (�F j, Fk, du� ∈ R�∗d))}

• For CDT (the changed data is assumed as Di):

CDFWchange(Di) = {Fi|(�Fi,Dj� ∈ Rde f) ∧ (�F j,Dj� ∈ Ruse) ∧
(�F j, Fi, du� ∈ R∗dr)}
Where R∗dr is the transition closure of Rdr, which is the binary
relation that define the data define-use relation between the
residual component functions. Rdr can be defined as:

Rdr = Rd ∩ (F × F × {du}) ∩ (F� × F� × {du})
• For CFL and CFS (the changed function is assumed as Fi):

CFFWchange(Fi) = {F j|(F j, Fi ∈ F) ∧ (�F j, Fi� ∈ R∗ f r)}
Where R∗ f r is the transition closure of Rf r, which is the binary
relation that define the dependencies between the residual
component functions. Rf r can be defined as:

Rf r = Rf ∩ (F × F × {du}) ∩ (F� × F� × {du}), where x is the
Cartesian product operation.

Regarding API function firewall, our previous work already
discussed it [3]. The definition is as follows.

CAWAPI(C) = {Fi|∀Fi((Fi ∈ F�API − FAPI) ∧ ((Fi ∈ CFFW(C)) ∨
(Fi ∈ CDFW(C))))}

Where CAWAPI(C) includes all API functions which may be
affected by component function changes, deletions and additions,
as well as alters in the data-define-use relations between them.

Now we extend CAWAPI(C) by adding the precondition, post-
condition, and action. Here, action corresponds to API function.
precondition and postcondition change information can be obtained
from the component requirement. The new firewall is called
ECAW(extended component API function firewall). Thus, the new
firewall set can be represented as below.

ECAW(C) = {�preci, postc j, actionk�|(preci is changed, added
or deleted) ∨(postc j is changed, added or deleted) ∨(actionk ∈
CAWAPI(C))}

Where preci, postc j, actionk denote precondition, postcondition
and action respectively. �preci, postc j, actionk� stands for a vector
set, which include the affected preconditions, postconditions and
actions.

B. Extended Composition Tree Firewall

Extended Composition Tree Firewall (ECTF) in Extended Com-
position Tree after changing components or configurations, refers to
a set of components which might be affected by changing, adding
and deleting components or configurations based on composition

234 235

Figure 4. A Sample Extended Composition Tree Firewall in the Elevator
System

and configuration dependencies. ECTF is performed on architec-
ture. Thus, it is used for identifying the affected architecture at
the system level. For instance, in the elevator system, if the door
component is changed, then the car component, which has the
composition relation with door, will be affected. The affected test
cases corresponding to this change mainly refers to unit test cases.

The Extended Composition Tree Firewall can be computed based
on Extended Composition Tree. Now we introduce changed, added
and deleted extended composition tree firewalls respectively.

The firewall for a changed, added, and deleted component
Ci can be computed below.

ECT Fchange[Ci] = {(C j|C j ∈ C) ∧ (�C j,Ci�) ∈ RECTr∗}
Where RECTr∗ is the transitive closure of RECTr, which is the

binary relation that defines the composition dependencies between
the components. RECTr can be defined as follows:

RECTr = RECT ∩ (N × N) ∩ (N� × N�)
Where × is the Cartesian product operation.

ECT Fadd[Ci] = {C j|(∃C j)(∃Ck)((�Ck,Ci� ∈ E� − E) ∧ (Ck ∈ N) ∧
(�C j,Ck� ∈ R�ECT))}

Where R�ECT is the composition dependence relation for ECT’.

ECT Fdelete[Ci] = {C j|(∃C j)(∃Ck)((�Ck,Ci� ∈ E − E�) ∧ (Ck ∈
N) ∧ (�C j,Ck� ∈ R�ECT))}

Now we present the change impact analysis corresponding to the
summarized architecture change types in Figure 3 using firewall.
The left side of arrow represents change type set and the right side
of arrow denotes the corresponding firewall.

(APW, AE, ACDV, ACDT, ACF)→ ECT Fadd[Ci]
(DPW,DE,DCDV,DCDT,DCF)→ ECT Fdelete[Ci]
(CCDV,CCDT,CCF)→ ECT Fchange[Ci]
For instance, in the elevator system, after adding an indicator

in the car component and the floor panel component and a new
protocol , the extended composition tree firewall (ECTF) is shown
in highlighted in Figure 4.

C. Component Interaction Graph Firewall
Component Interaction Graph Firewall (CIGF) in Component

Interaction Graph after changing components, refers to a set

Figure 5. A Sample Component Interaction Graph Firewall in the Elevator
System

of components which maybe affected by changing, adding and
deleting components based on interaction dependence. The Com-
ponent Interaction Graph Firewall can be computed based on given
Component Interaction Graph. For instance, in the elevator system,
after adding an indicator in the car component and the floor panel
component, the component interaction graph firewall (CIGF) is
shown in highlighted in Figure 5. However, if we only consider
component changes, the size of the Component Interaction Graph
Firewall could be very large. Some components might be redundant
for regression testing. API is the function interaction for other
components to call. The Algorithm is shown in Algorithm 1. In
the case of the interaction change types in Figure 2, the firewall
could be computed by algorithm of Component Interaction Graph
firewall.

Algorithm 1 Component Interaction Graph Firewall
Declare: C0: changed component;
CIG: component interaction graph;
CIG�: modified component interaction graph;
CIGFAPI (Ci.Fi,CIG,CIG�): Component interaction graph firewall
CIGFAPI (Ci.Fi,CIG,CIG�)
{
switch (change type)

case ’Add functions’:
CFFWadd[Ci.Fi];
CDFWadd[Ci.Fi];
S F = CFFWadd[Ci.Fi] ∪CDFWadd[Ci.Fi]; //function firewall inside Ci
C.F = ECAW[Ci.Fi]; //API function firewall
break;

case ’delete functions’:
CFFWdelete[Ci.Fi];
CDFWdelete[Ci.Fi];
S F = CFFWdelete[Ci.Fi] ∪CDFWdelete[Ci.Fi];
C.F = ECAW[Ci.Fi];
break;

case ’change functions’:
CFFWchange[Ci.Fi];
CDFWchange[Ci.Fi];
S F = CFFWchange[Ci.Fi] ∪CDFWchange[Ci.Fi];
C.F = ECAW[Ci.Fi];
break;

Mark each function in C.F visited;
put C.F in CIGF;
C j = CIG[Ci].rlink; // �C j,Ci� ∈ RCIG
While (Ci. fi in C.F) do
{
if (C j.F j,Ci. fi) ∈ P(C j) ∧C j.F jnot visited
then
CIGFAPI (C j.F j,CIG,CIG�)
}
}

234 235

V. Test Cases Update

The final goal of regression testing is to refresh the existing test
cases for the previous version, which means selecting reusable test
cases and scripts, deleting out-of-date test cases and scripts, and
adding new test cases and scripts.

As we mentioned above, decision table based testing is the
primary method to generate test cases in this paper. Now we need
to analyze how to map the change impact firewall into affected
test cases in the given test suite. We introduce the concept of
test firewall to emphasis the test cases updating. The procedure
to perform test firewall analysis can be divided in two steps: 1)
Identify the change impacts on component decision table-based
test cases at component level; 2) Identify the change impacts on
system decision table-based test cases at system level.

A. Decision table-based test firewall at component level

In any of the given component semantic decision table (CSDT),
if any of the preconditions, postconditions and actions are added,
deleted or changed, then the corresponding test cases could be
affected.

According to the requirement changes, we can identify the
component semantic decision table (CSDT) changes easily. As the
test model defined in section 3, the CSDT changes could come from
three sets: precondition, action and postcondition. The problem
here is how to identify the reused, changed and new test cases
according to the changes.

Each entry value in a row of a given decision table CSDT
could be ”True”, ”False”, or ”-”. ”True” means the corresponding
precondition or postcondition has to be true; ”False” means the
corresponding precondition or postcondition has to be false. ”-”
means the corresponding precondition or postcondition could be
either true or false. The table includes three sets, which is presented
below. The entry value of precondition and postcondition can be
defined as a set respectively like below.

vprec = {vprec1, vprec2, ..., vprecm}, where vprec denotes the
entry value set of precondition.

vpostc = {vpostc1, vpostc2, ..., vpostcn}, where vpostc denotes
the entry value set of postcondition.

Assumptions The value of precondition associated with test
cases could be vpreci(i ≤ m) = ”T”or”F”or” − ”. The value of
postcondition associated with test cases could be vpostc j(j ≤ n) =
”T”or”F”or” − ”. Assuming Tp −→ �vprec, A, vpostc�, where Tp

stands for decision table based test case. V prec, A(A ⊆ action)
and vpostc j stand for the associated precondition prec, action A
and postcondition postc respectively.

Through the computation of ECAW, we can get the firewall at
component level. Assuming CTdv1 denotes the original component
decision table test cases set, now we need to get the updated version
CTdv2. According to the assumptions, we have the following rules
for component decision table test firewall.

Rule 1 (corresponding to change firewall):
For any i, j, k
(1)If ((preci or postc j ∈ ECAWchange(C)) ∧ (Tp → vpreci =

”T”or”F” ∨ Tp → vpostc j = ”T”or”F”))∨ (Tp → Ak ∈
ECAWchange(C))

then Tp need to be changed in CTdv2.

(2) If ((preci or postc j ∈ ECAWchange(C)) ∧ (Tp → vpreci =

” − ” ∧ Tp → vpostc j = ” − ”))∧ (Tp → Ak � (ECAWchange(C) ∪
ECAWadd(C) ∪ ECAWdelete(C)))

then Tp need to be reused in CTdv2.
Rule 2 (corresponding to add firewall):
For any i, j, k
(1)If ((preci or postc j ∈ ECAWadd(C)) ∧ (Tp → vpreci =

”T”or”F” ∨ Tp → vpostc j = ”T”or”F”))∨ (Tp → Ak ∈
ECAWadd(C))

then new test case Tp need to be added in CTdv2.
(2) If ((preci or postc j ∈ ECAWadd(C)) ∧ (Tp → vpreci =

” − ” ∧ Tp → vpostc j = ” − ”))∧ (Tp → Ak � (ECAWchange(C) ∪
ECAWadd(C) ∪ ECAWdelete(C)))

then Tp need to be reused in CTdv2.
Rule 3 (corresponding to delete firewall):
For any i, j, k
(1)If ((preci or postc j ∈ ECAWdelete(C)) ∧ (Tp → vpreci =

”T”or”F” ∨ Tp → vpostc j = ”T”or”F”))∨ (Tp → Ak ∈
ECAWdelete(C))

then Tp need to be deleted in CTdv2.
(2) If ((preci or postc j ∈ ECAWdelete(C)) ∧ (Tp → vpreci =

” − ” ∧ Tp → vpostc j = ” − ”))∧ (Tp → Ak � (ECAWchange(C) ∪
ECAWadd(C) ∪ ECAWdelete(C)))

then Tp need to be reused in CTdv2.

B. Decision table-based test cases firewall at system level

At the system level, we still adopt decision table model to
perform test case update. In component-based system, there is
a feature-component table, which describes the relation between
system feature and corresponding components. These features can
be observed at the system level. For each feature, there is a
corresponding decision table. Here, the proposed firewall like
component interaction graph firewall could be used to compute
the affected components at the system level.

First we need to analyze if the changes affect the corresponding
components. If so, then we find out the affected system features
corresponding to the affected components. According to the relation
between features and decision table, the affected decision table
at feature level can be identified. Then, we analyze the changes
to precondition, postcondition and action of decision table, and
identify the test cases firewall at system level.

According to the System Semantic Decision Table Test Model,
we propose the following formulas to compute the test cases
firewall at system level. Here, Co denotes modified component.
CIGF and ECTF represent related change impact firewalls which
are introduced above. Assuming the original system test cases set
is S Tdv1, we need to obtain the updated version S Tdv2.

S Tdreuse = {S Tdi|(∀Ck(k ≤ m) ∈ C(f ti))(Ck ∈ CIGFreuse(Co) ∨
ECT Freuse(Co))}

Where S DTreuse could be reused in S DTv2. Co denotes modified
component. C(f ti) denotes the set of components that support
feature f ti. S DTi represents the decision table corresponding to
feature f ti. The number of total components is m.

S Tddelete = {S Tdi|(∀Ck(k ≤ m) ∈ C(f ti))(Ck ∈ CIGFdelete(Co) ∨
ECT Freuse(Co))}

Where S Tddelete could be deleted in S Tdv2.

236 237

S Tdchange = {S Tdi|(∃Ck(k ≤ m) ∈ C(f ti))(Ck ∈ CIGFchange(Co) ∨
ECT Freuse(Co))}

Where S Tdchange need to be changed in S Tdv2.

S Tdnew = {S Tdi|(∀Ck(k ≤ m) ∈ C(f ti))(Ck ∈ CIGFadd(Co) ∨
ECT Freuse(Co))}

Where S Tdnew need to be added in S Tdv2.

VI. Case Study Report

To better understand our approach, we have performed a case
study by applying the systematic regression testing from component
level to system level onto a real component-based elevator system.
We have used two software testing classes and two master project
teams in San Jose State University (SJSU) to perform the related
experiments. To make the study more typical, we conducted a
complete component-based software testing process, including the
original test cases design, test strategy, test coverage, etc. The
decision table-based test cases are designed for both component
and system. All of the test cases were executed adequately.

A. Study Objectives

The case study focuses on the following items: (a) Perform
a systematic regression testing of the new component system
version using the proposed approach, to verify the feasibility of the
approach; (b) Check the effectiveness of the proposed approach; (c)
Discover bugs after regression testing.

B. Study Subject

We have performed some case studies by applying the proposed
approach in a component-based software, which is a component-
based elevator system. The elevator system consists of several
components, which are car, user panel, door, door panel, userpanel
queue, car controller, floor panel and metacontroller. We have used
two software testing classes and two master project teams in San
Jose State University (SJSU) to perform the related experiments.
The test cases are decision table-based. In the new version, we
have made some changes such as adding a component ’Indicator’
in the component ’Car’ to show the current floor where the car
locates, adding a component ’Indicator’ in the component ’Floor
Panel’ to show the current floor where the car locates, adding
another kind of elevator algorithm to current system, like FCFS,
SCAN, etc., to make elevator scheduling configurable, and so on.
The original version of the system is well designed with adequate
decision table-based component test cases and system test cases.
In the new system version, we conducted regression testing from
component level to system level, to obtain updated decision table-
based test cases, including reused test cases, deleted test cases and
new test cases.

C. Study result report and discussion

Since we have many testing groups to work on the case study,
we selected some good study results from four groups to report
the test case reuse and bug checking. Those groups performed the
experiments strictly using our approach. To perform a complete
regression testing process, we classified the regression test cases
into newly created test cases, reusable test cases and deleted test
cases. Those groups also reported the bugs found in regression
testing.

Figure 6. Regression Testing Result

Table I
Bug Report of Group 1

Level Test case Test case Test coverage Bugs
design executed

Car 79 79 100% 5
Floor Panel 59 59 100% 4
System 159 159 100% 11

Figure 6 shows the regression testing results. We have obtained
test cases update results from component level, i.e. car component
and floor panel component to system level.

In the figure, there are three subgraphs, which represents the
study results of car component, floor panel component and system
respectively. The horizontal axis represents new test cases, reused
test cases and deleted test cases respectively. The data of test cases
are represented by a vertical bar. The height of the bar depicts the
number of new, reusable, and deleted test cases.

From the figure, we can find, after regression testing, some of
the original test cases could be reusable and some could be deleted.
In addition, new test cases need to be created for the new version
system to achieve adequate testing. For instance, in Figure 6, 25 test
cases for car component, 23 test cases for floor panel component
and 29 test cases for system level are newly created. This is because
we have added a new component indicator in the elevator system.
The indicator is added to both car component and floor panel
component.

We also find most of the test cases are reusable. For instance,
48 test cases for car component, 44 test cases for floor panel
component and 60 test cases for system level are reusable. The
explanation is that most of the components in the system are reused
in the new version. Several test cases are obsolete and deleted after
regression testing due to the program changes.

Table 1 represents the bug report. The test case design includes
all the new test cases and reused test cases. All of those test
cases are executed with a 100% coverage. The bugs come from
both component level and system level. For example, 4 bugs in
floor panel component and 5 bugs in car component are found. In
addition, 11 bugs are found in system. Thus, the modification does
bring affection and impact on both the component and system.

From the result of case study, we can see the proposed approach
can obtain reusable, deleted and new test cases at both levels. In
addition, we also have bug reports. Hence, our approach is feasible
when applied to real component-based software system.

In the case study, Most of the test cases are reusable. In terms

236 237

of the statistics of studies, nearly over 70% of the test cases are
reusable. That means most of our original test cases are kept for
further testing. Thus, we still can achieve a relatively high test
coverage. Some test cases are deleted after regression testing, which
meets the demand of reducing the number of obsolete original test
cases for cost-effectiveness. Moreover, in the case study, several
program bugs are reported by many groups. We also found the
bugs do existed in the system after modifications. This indicates
that our approach is effective.

VII. Conclusions and future work

This paper has presented a systematic regression testing tech-
nique for component-based software from component level to
system level. We analyzed the whole process of regression testing,
including change identification, change impact analysis and test
case updating.

We proposed several re-models to support regression testing.
The diverse types of changes are considered in this paper, such
as component level API changes, interaction changes, and system
level architecture changes. For impact analysis, the firewall concept
is borrowed and extended to analyze affected program parts accord-
ing to the proposed re-test models. For test models, we provide
a commonly used component testing method-decision table-based
testing. The change types are mapped to impact analysis, and then
the affected parts are mapped to the affected test cases which are
decision table-based. In addition, we performed case studies on
a realistic component-based software system. The studies results
show that our approach is feasible and effective.

The future extension of this research is to apply the approach
into different component testing methods and models, such as state-
based testing, scenario-based testing, etc. In addition, we will study
how to use the approach to address automation regression test
issues and develop automatic component-based regression testing
tools.

References

[1] H. K. N. Leung and L. J. White. Insights into regression test-
ing. In Proceedings of International Conference on Software
Maintenance, pages 60–69, 1989.

[2] A. Orso et al. Using component metacontents to support
the regression testing of component-based software. In
Proceedings from the ICSE Workshop in Component-based
software engineering, 2001.

[3] J. Gao et al. A systematic regression testing method and
tool for software components. In Proceedings of the 30th
Annual International Computer Software and Applications
Conference, pages 455–456, 2006.

[4] Y. Wu et al. Techinques of maintaining evolving component-
based software. In IEEE International Conference on Soft-
ware Maintenance (ICSM 2000), 2000.

[5] C. Y. Mao. Regression testing for component-based software
via built-in test design. In ACM Symposium on Applied
Computing, 2007.

[6] A. Orso et al. Scaling regression testing to large software
systems. In Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 241–251,
2004.

[7] J. Bible et al. A comparative study of coarse- and fine- grained
safe regression test-selection techniques. ACM Transactions
on Software Engineering and Methodology, 10(2):149–183,
2001.

[9] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on Software
Engieering, 22(8):529–551, 1996.

[10] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software
Engineering and Methodology, 6(2):173–210, 1997.

[11] G. Rothermel et al. The impact of test suite granularity on
the cost-effectiveness of regression testing. In Proceedings
of International Conference on Software Engineering, pages
19–25, 2002.

[12] C. Q. Tao, B. X. Li, and X. B. Sun. A hierarchical model for
regression test selection and cost analysis of java programs.
In To appear in the proceedings of 2010 Asia Pacific Software
Engineering Conference (APSEC2010), 2010.

[13] L. White and H. K. N. Leung. A firewall concept for both
control-flow and data-flow in regression integration testing.
In Proceedings of the IEEE International Conference on
Software Maintenance, pages 262–271, 1992.

[14] D. Kung and Jerry Gao. Change impact identification in
object-oriented software maintenance. In Proceedings of
the IEEE International Conference on Software Maintenance,
pages 202–211, 1994.

[15] D. Kung and Jerry Gao. On regression testing of object-
oriented programs. Journal of Systems and Software,
32(1):21–40, 1996.

[16] M. J. Harrold et al. Using component metacontents to support
the regression testing of component-based software. In IEEE
International Conference on Software Maintenance, pages
716–725, 2001.

[17] J. Zheng et al. Applying regression test selection for cots-
based applications. In Proceedings of International Confer-
ence on Software Engineering, pages 512–522, 2006.

[18] S. Papagiannakis L. Mariani and M. Pezze. Compatibility
and regression testing of cots-component-based software. In
The 29th International Conference on Software Engineering,
2007.

[19] B. Robinson and L. White. Testing of user-configurable
software systems using firewalls. In International Symposium
on Software Reliability Engineering, pages 177–186, 2008.

[20] J. Gao et al. Model-based test complexity for software
installation testing. In International Conference on Software
Engineering and Knowledge Engineering (SEKE08), 2008.

[21] Y. Wu et al. Techniques for testing component-based soft-
ware. In The 7th International Conference on Engineering of
Complex Computer Systems, pages 222–232, 2001.

[22] Jerry Gao et al. Testing and quality assurance for component
software. Massachusetts: Artech House, Inc, 2003.

[23] Lee Copeland. A practitioner’s guide to software test design.
Massachusetts: Artech House, Inc, 2004.

238 239

Multiple Fault Localization with Data Mining
Peggy Cellier and Mireille Ducassé

IRISA/INSA of Rennes
Campus Beaulieu 35042 Rennes cedex, France

Email: firstname.lastname@irisa.fr

Sébastien Ferré and Olivier Ridoux
IRISA/University of Rennes 1

Campus Beaulieu 35042 Rennes cedex, France
Email: firstname.lastname@irisa.fr

Abstract—We propose an interactive fault localization method
based on two data mining techniques, formal concept analysis
and association rules. A lattice formalizes the partial ordering
and the dependencies between the sets of program elements (e.g.,
lines) that are most likely to lead to program execution failures.
The paper provides an algorithm to traverse that lattice starting
from the most suspect places. The main contribution is that the
algorithm is able to deal with any number of faults within a
single execution of a test suite. In addition, a stopping criterion
independent of the number of faults is provided.

I. INTRODUCTION

Executing a test suite can be very costly, especially when
the test oracle, that tells whether a run is correct, is not
fully automated. In the multiple fault localization context,
being able to explain as many as possible of the failures
detected by the test suite execution is therefore an important
property. However, it is in general impossible to tell how many
faults are present in a buggy program. In order to deal with
multiple faults, Liblit et al. [11] propose a ranking based on
a statistic treatment of inserted predicates. Zheng et al. [16]
propose a method based on bi-clustering in order to group
failed executions and to identify one feature that characterizes
each cluster. Jones et al. [9], with their parallel debugging,
propose to cluster failed executions in order to distribute each
cluster of executions to different debuggers. Ideally, one cluster
should represent one fault, and instead of searching the faults
one by one, what the authors call sequential debugging, the
faults can be searched in parallel by different persons. In all
those methods, there is, however, no guaranty that each cluster
represents only one fault. Furthermore, the dimension used to
measure suspicion tends to ignore the actual structure of the
program. On the one hand, lines with close suspicion scores
may be uncorrelated; on the other hand, correlated lines may
have very different suspicion scores (e.g, a condition and the
branches it controls).

In a previous work [4], we have proposed a new data-
structure that can organize program elements in a multi-
dimensional space: the failure lattice. The failure lattice is
a partial ordering of the elements of the traces that are most
likely to lead to failures. The traces can contain different kinds
of information called events, for instance, executed lines or
variable values. We assume that each execution trace contains,
in addition to the events, the verdict of the execution, PASS
if the execution produces the expected results, and FAIL
otherwise. In a previous work [5], we have compared the

public int Trityp(){
[57] int trityp ;
[58] if ((i==0) || (j==0) ||

(k == 0))
[59] trityp = 4 ;
[60] else
[61] {
[62] trityp = 0 ;
[63] if (i == j)
[64] trityp = trityp + 1 ;
[65] if (i == k)
[66] trityp = trityp + 2 ;
[67] if (j == k)
[68] trityp = trityp + 3 ;
[69] if (trityp == 0)
[70] {
[71] if ((i+j <= k) ||

(j+k <= i) ||
(i+k <= j))

[72] trityp = 4 ;
[73] else
[74] trityp = 1 ;
[75] }
[76] else
[77] {
[78] if (trityp > 3)
[79] trityp = 3 ;
[80] else

[81] if ((trityp == 1)
&& (i+j > k))

[82] trityp = 2 ;
[83] else
[84] if ((trityp == 2)

&& (i+k > j))
[85] trityp = 2 ;
[86] else
[87] if((trityp == 3)

&& (j+k > i))
[88] trityp = 2 ;
[89] else
[90] trityp = 4 ;
[91] }
[92] }
[93] return(trityp) ;}
static public
string conversiontrityp(int i){
[97] switch (i){
[98] case 1:
[99] return "scalen";
[100] case 2:
[101] return "isosceles";
[102] case 3:
[103] return "equilateral";
[104] default:
[105] return "not a ";}}

Fig. 1. Trityp Java program.

exploration of the failure lattice with existing approaches that
handle only a single fault. We have shown, in particular, that
the method gives a comparable number of lines to analyze
while providing a richer environment for the analysis.

In this paper, we propose an interactive fault localization
algorithm that explores the failure lattice and can deal with
multiple faults. The contribution of this paper is twofold.
Firstly, the exploration stops when all the detected failures
are explained. That stopping criterion is independent of the
number of faults. Secondly, a programmer can exploit all the
results of a single execution of a test suite, thus reducing the
number of executions of the test suite.

In the remaining of the paper, Section II presents the running
example. Section III presents the failure lattice introduced
in [4]. Section IV introduces an extended labelling of the
failure lattice for the multiple fault problem. Section V defines
the proposed algorithm to explore the data structure and locate
multiple faults in a program. Section VI and Section VII
discuss the characteristics of the algorithm with respect to fault
dependencies and statistical indicators. Finally Section VIII
presents the related work.

II. RUNNING EXAMPLE

To illustrate our method, we use a classical benchmark
for test generation methods, the Trityp Java program shown
in Figure 1. It classifies sets of three segment lengths into
four categories: not a triangle, scalene, isosceles, equilateral.
The program contains one class with 130 lines of code. The

238 239

Fault Id Faulty line
1 [84] if ((trityp == 3) && (i+k > j))
2 [79] trityp = 0 ;
3 [74] trityp = 0 ;
4 [90] trityp == 3 ;
5 [66] trityp = trityp+20 ;
6 [64] trityp = i+1 ;

TABLE I
FAULTS FOR THE TRITYP PROGRAM.

Executed lines Verdict
line 57 line 58 . . . line 105 PASS FAIL

Execution 1 × × × ×
Execution 2 × × × ×

. . .

TABLE II
CONTEXT OF FAULT LOCALIZATION.

faulty programs used in this article are a courtesy of Petit
and Gotlieb [14] and they can be found on the web1. Table I
presents six faults for the Trityp program that are used in
different blends in the following.

III. DATA MINING AND FAILURE LATTICE

In this section, we give background knowledge about two
data mining techniques in order to explain how to read a failure
lattice. The construction is explained in [4].

Data mining is a process to extract relevant information
from a huge amount of data. Two data mining techniques are
used to compute the failure lattice: Association Rules and For-
mal Concept Analysis (FCA). The input of those techniques
is a formal context, i.e. a binary relation describing elements
of a set of objects by subsets of a set of attributes. Table II
is an example of context. The objects are the executions.
The attributes are the program lines and the verdicts. Each
execution is described by its execution trace.

1) Association Rules: Searching for association rules [1]
allows interesting regularities to be found. An association rule
has the form: P → C, where P and C are sets of attributes.
P is called the premise of the rule and C the conclusion.
Any pair of premise and conclusion forms an association rule,
but some of them are more relevant than others. In order to
measure the relevance of computed rules, statistical indicators
are used. In the following, we use two indicators, support and
lift, that will be defined when they are actually needed.

2) Formal Concept Analysis (FCA): Formal Concept Anal-
ysis [7] allows relevant clusters to be computed. In FCA, the
set of all objects that share a set of attributes is called the extent
of the set of attributes. For example, in the context of Table II,
extent({line 57, line 58}) is the set of executions that execute
line 57 and line 58 and extent({FAIL}) denotes all failed
executions. The set of all attributes shared by all elements of
a set of objects is called the intent of the set of objects. For
instance, the intent of a set of executions, S, is the set of lines
that appear in the traces of all executions of S and the verdict

1http://www.irisa.fr/lande/gotlieb/resources/Java exp/trityp/

Fig. 2. Failure lattice for program Trityp with faults 1, 2 and 3.

if it is the same for all executions of S. In FCA, a formal
concept is defined as a pair (O, A), where the set of objects,
O, is the extent of the set of attributes, A, and A is the intent
of O. The set of concepts of a context can be represented by
a concept lattice where each attribute and each object labels
only one concept2. Namely, each concept is labelled by the
attributes and the objects that are characteristic to its intent
and extent.

The failure lattice is computed thanks to combining associ-
ation rules and formal concept analysis. The set of execution
traces is a context where the objects are the executions and
where each execution is described by the events occuring
during the execution. From that context, association rules are
computed: ei, ej , · · · → FAIL. Those rules can be read
as “when events ei, ej , · · · appear in a trace most of the
time the execution fails”. Those rules, extracted from the
execution trace context, form the context used to compute
the failure lattice. In that second context, the objects are the
association rules and each rule is described by the events
that appear in its premise. Some rules are more specific than
others and that partial order is highlighted in the failure lattice.
Figure 2 displays an example of failure lattice for the faulty
Trityp program which is obtained by combining faults 1, 2
and 3. Note that, in the sequel, for the examples, the events
in execution traces are the executed lines and verdicts.

The premise of a rule r, in the failure lattice, can be obtained
by collecting the attributes labelling all the concepts above the
concept that is labelled by r. In our particular case, there is
only one rule with a given premise, so a concept can only be
labelled by one rule in the failure lattice. We will therefore give
the same number to a concept and the rule that labels it. In Fig-
ure 2, r3 is line 105, line 97, line 93, line 58, ... → FAIL.
Two pieces of information are added to the rule: support and

2There are some tools that automatically compute concept lattices and their
labelling. For instance, ToscanaJ (http://toscanaj.sourceforge.net/) is used for
the lattices that appear in this paper.

240 241

lift values. The support of a rule is the number of failed
executions that have in their trace all events of the premise of
the rule. The support of r3 means that 116 failed executions
execute lines 105, 97, 93, 58, The lift of a rule indicates
if the occurrence of the premise in a trace increases the
probability to fail. A lift value greater than 1 means that the
observation of the premise in a trace increases the probability
to fail.

In Figure 2, we see that r2 is more specific than r3, indeed
its premise contains the premise of r3. It is denoted by r2 < r3.
Therefore, c3 is a superconcept of c2.

Note that in the illustrations, the red ellipses point to the
concepts labelled by faulty lines. Note also that we illustrate
the method with pictures of concept lattices, but it is only for
the sake of exposing the logic of the process. In fact, failure
lattices are in general very large and are not legible. They
however need not to be computed in totality, neither need to
be globally exposed to the user.

IV. THE FAILURE LATTICE FOR MULTIPLE FAULTS

This section presents how the labelling of the lattice is
extended by failure concepts and support clusters. Properties
for the multiple fault problem are given.

A concept c is a failure concept of the failure lattice if
there exists some failed execution that contains all events of
the intent of c in their trace but not all the events of the intent
of subconcepts of c. For instance in Figure 2, concept 5 is a
failure concept, indeed it covers 40 failed executions that are
not covered by a more specific concept. We also say that those
40 failed executions are covered by rule 5. Concept 4 is not a
failure concept because the 40 failed executions that it covers
are already covered by concept 5 which is a more specific
concept. In the same way, concept 2 is not a failure concept
because among the 116 failed executions that are covered by it,
40 are already covered by concepts 4 and 5 and the remaining
76 are covered by concept 10, which are all more specific
concepts than concept 2. In the example, there are four failure
concepts: 5, 13, 12 and 9. We note FAILURES the set of
failure concepts.

We call support cluster a maximal set of connected concepts
labelled by rules which have the same support value. We note
cluster(c) the support cluster that contains c. For instance,
in Figure 2, concepts 4 and 5 belong to the same support
cluster. It means that lines 71 and 74 are executed by exactly
the same 40 failed executions. Note that there is at most one
failure concept by support cluster.

The failure lattice has two properties which are essential
for the design of the algorithm of next section.

Property 1 (global monotony of support): Let ci and
cj be two concepts of a failure lattice. If cj < ci
then sup(rj) ≤ sup(ri). For instance, in Figure 2,
concepts 11 and 13 are ordered, c13 < c11 and
sup(r13) = 16 < sup(r11) = 76.

Proof: The fact cj < ci implies that the intent of cj
strictly contains the intent of ci. The intent of concept ci

(resp. cj) is the premise, pi (resp. pj), of rule ri (resp. rj),
thus pi ⊂ pj . Conversely extent(pj) ⊂ extent(pi). Thanks
to the definition of the support sup(rj) ≤ sup(ri) holds. �

Property 2 (local monotony of lift): Let ci and cj be two
concepts of a failure lattice. If cj < ci and sup(rj) =
sup(ri) then lift(rj) > lift(ri). For instance, concept 4
and 5 are ordered, c5 < c4, sup(r5) = sup(r4) = 40 and
lift(r5) = 2.38 > lift(r4) = 1.19. It means that r5 and r4
cover the same failed executions but r5 covers less passed
executions than r4.

Proof: In the previous proof we have seen
that cj < ci implies that extent(pj) ⊂ extent(pi).
The definition of the lift of a rule r = p → FAIL
is lift(r) = sup(r)

‖extent(p)‖‖extent(FAIL)‖ ∗ �O�. As
sup(rj) = sup(ri), and �extent(pj)� < �extent(pi)�,
lift(rj) > lift(ri) holds. �

V. EXPLORATION OF THE FAILURE LATTICE FOR
MULTIPLE FAULTS

In this section, we propose an algorithm to explore the
failure lattice in order to find clues to understand faults. The al-
gorithm presents events to a debugging oracle, currently most
likely a human person. We assume the competent debugger
hypothesis, namely when a set of events that indicates a fault
is presented to the debugging oracle he will detect the fault.
The same kind of hypothesis is assumed in [2].

When locating faults in a program, relevant parts of the
program are the ones specific to failed executions. In the
failure lattice, that information belongs to the most specific
rules which label concepts at the bottom of the failure lattice.
Furthermore, as stated by Property 1, the bottom concepts are
the ones with the lowest support and, as stated by Property
2, the bottom concepts inside a support cluster are the ones
with the highest lift. As a consequence, the rule lattice is
explored bottom-up, starting from the more specific rules with
the lowest support and highest lift.

We define the fault context of a concept c as the set of events
that label strict subconcepts of c. For example, in Figure 2
the fault context of concept 11 is lines 64, 79, 87 and 90.
For the localization task, as the lattice is traversed bottom-up,
when exploring concept c, the events of its fault context have
already been explored. Each time a concept c is explored, the
debugging oracle has to say if the lines that label c, in addition
to the fault context of c, indicates a fault. In that case we say
that the failed executions that label c (and thus subconcepts
of c) are explained by that fault. By definition, the concepts
belonging to the support cluster of c are also explained, indeed,
the concepts of a same support cluster cover exactly the same
failed executions.

The exploration of the failure lattice stops when all failure
concepts in FAILURES are explained by at least one fault.
Namely, when all failed executions that are covered by a
concept in the failure lattice are explained.

The exploration strategy is specified by Algorithm 1. The
failure lattice is traversed bottom-up, starting with the failure

240 241

Algorithm 1 Failure lattice traversal
1: Cnext := FAILURES
2: Cfailure := FAILURES
3: while Cfailure �= ∅ ∧ Cnext �= ∅ do
4: let c ∈Cnext in
5: Cnext := Cnext \ {c}
6: if the debugging oracle locates no fault in the label of c

given the fault context of c then
7: Cnext := Cnext ∪ {upper neighbours of c}
8: else
9: let Coverage = subconcepts(c) ∪ cluster(c) in

10: Cnext:= Cnext \ Coverage
11: Cfailure:= Cfailure \ Coverage
12: end if
13: end while

Iteration Cnext Cfailure

0 {c5, c13, c12, c9} {c5, c13, c12, c9}
1 {c13, c12, c9} {c13, c12, c9}
2 {c12, c9} {c12, c9}
3 {c9, c7, c11} {c12, c9}
4 {c7, c11, c8} {c12, c9}
5 {c11, c8} {}

TABLE III
EXPLORATION OF THE FAILURE LATTICE OF FIG. 2.

concepts (step 1). At the end of the failure lattice traversal,
Cfailure - the set of failure concepts not explained by a fault
(step 2) - is empty or all concepts have been already explored
(step 3). When a concept, c (step 4), is chosen among the
concepts to explore, Cnext, the events that label the concept,
are explored. Note that the selection of that concept is not
deterministic. If no fault is located, then the upper neighbours
of c are added to the set of concepts to explore (step 7). If,
thanks to those new clues, the debugging oracle understands
mistakes and locates one or several faults then all subconcepts
of c and all concepts that are in the same support cluster are
explained. Those concepts do not have to be explored again
(step 10). The failure concepts that are subconcepts of c are
explained (step 11).

At each iteration, Cfailure can only decrease or remain
untouched. The competent debugger hypothesis makes sure
that Cfailure ends at empty when min sup is equal to 1.

For the example of Figure 2, the support threshold,
min sup, is equal to 4 failed executions (out of 400 exe-
cutions, of which 168 failed executions) and the lift threshold,
min lift, is equal to 1. There are four failure concepts: 5, 13,
12 and 9. Table III presents the values of Cnext and Cfailure

at each iteration of the exploration. We choose to explore the
lattice with a queue strategy, namely first in Cnext, first out
of Cnext. Note that the stopping criterion of the algorithm
depends only of the failure concepts, it is therefore valid
whatever the chosen strategy.

At the begining, Cnext and Cfailure are initialized as the

Fig. 3. Failure lattice for program Trityp with faults 1 and 6

set of all failure concepts (Iteration 0 in Table III). At the first
iteration of the while loop, concept 5 is selected (c = c5). That
concept is labelled by line 74. Line 74 actually corresponds
to fault 3. The debugger oracle locates fault 3. Concept 5, 4
and 14 are thus tagged as explained. The new values of Cnext

and Cfailure are presented at iteration 1 in Table III. At the
second iteration, concept 13 is selected (c = c13). That concept
is labelled by lines 64 and 79. Line 79 actually corresponds
to fault 2; the debugging oracle locates fault 2. Concept 13
is tagged as explained. At the third iteration, concept 12 is
selected. That concept is labelled by lines 87 and 90. No fault
is found. The upper neighbours, concepts 7 and 11, are added
to Cnext and Cfailure is unchanged. At the next iteration,
concept 9 is selected. As in the previous iteration no fault is
found. The upper neighbour, concept 8, is added to Cnext.

Finally, concept 7 is selected. That concept is labelled by
lines 81 and 84. By exploring those lines (new clues) in
addition with the fault context, i.e. lines that have already
been explored: 87, 90, 101 and 85, the debugging oracle
locates fault 1 at line 84. The fault is the substitution of
the test of trityp equal to 2 by a test of trityp equal to 3.
Concepts 12 and 9 exhibit two concrete realisations (failures)
of the fault at line 84 (Concept 7). Concepts 7, 12, 9 are tagged
as explained. The set of failure concepts to explain is empty,
thus the exploration stops. All four failures are explained after
the debugging oracle has inspected nine lines.

VI. FAULT DEPENDENCIES

This section discusses the behavior of the algorithm with
respect to fault dependencies. In the following, a fault is
identified by its faulty line. We call fault concept of a fault F
the most specific concept, cF , such that it is labelled by the
faulty line of F .

When two faults are independent, the execution of one
fault implies that the other fault cannot be executed. The
fault concepts of both faults thus appear in different support

242 243

Fig. 4. Failure lattice for program Trityp with faults 1 and 4

Fig. 5. Failure lattice for program Trityp with faults 2 and 5

clusters. That case is illustrated in Figure 2 which shows an
example of three independent faults. The previous section has
shown how the algorithm helps a debugging oracle locate the
faults.

Two faults can be partially dependent, it means that some
failed executions execute both faults. For example, Figure 3
presents the failure lattice for the Trityp program with faults 1
and 5. Fault 1 is at line 84, fault 6 is at line 64. The failure
lattice contains four failure concepts: 2, 3, 4 and 5. There are
also 8 support clusters. Running Algorithm 1, the exploration
of concepts 2 and 3 does not allow a fault to be located, but
gives clues when exploring concept 7. Concept 7 is labelled
by line 64. Fault 6 is located. In the same way, exploring
concepts 3, 4, 5 and 6 is not sufficient to locate a fault, but
gives clues when exploring concept 8. Concept 8 is labelled
by lines 84 and 81. Fault 1 is located. The two faults are not
independent but they are represented separately, and can be
distinguished.

Another example of partially dependent faults is given in
Figure 4 that presents the failure lattice for the Trityp program

with faults 1 and 4. Fault 1 is at line 84 and fault 4 is at
line 90. Executing faulty line 90 implies to have executed
faulty line 84 before, but executing line 84 does not always
imply executing line 90. Fault 4 strongly depends on fault 1.
The failure lattice contains two failure concepts, concepts 1
and 3. There are two support clusters. One support cluster
has its support value equal to 104 failed executions. The
second support cluster has its support value equal to 119 failed
executions (all executions). Running Algorithm 1, concept 1
is explored. It is labelled by two lines: 87 and 90. Line 90
is fault 4. Concept 3 is labelled by line 84 then fault 1 is
located. All failure concepts are tagged as explained. The
search is finished, the two faults are located. The two faults are
dependent but they are represented in different support cluster,
and can be distinguished.

The last case is when the faults are always executed together
in failed executions. From the point of view of the failed
executions, they cannot be distinguished. Figure 5 presents
the failure context for the Trityp program with faults 2 and 5.
Fault 5, at line 66, sets triptyp to a value above 20, trityp
is tested at line 78, with the value set at line line 66 the
execution necessarily goes to line 79 which contains fault 2.
The failure lattice contains only one failure concept, concept 1.
All concepts belong to the same support cluster. The support
value of that cluster is equal to 81, which is the number of
failed executions. Running Algorithm 1, concept 1 is explored.
It is labelled by two lines: 79 and 66. No distinction is
done between both faults in the failure lattice. They are seen
as a unique fault. Therefore, if the debugging oracle stops
diagnosing when he finds one fault without exploring all the
lines presented at that step, only one fault is found. Note, that
the lines related to the other fault, are nevertheless present at
that step and that the oracle can still find both faults in this
example. However, in the worst case, when faults are executed
by the same failed executions but by some different passed
executions, the fault concepts are two different concepts in the
same support cluster. It implies that when one of the faults is
found, the search stops. All concepts in the support cluster are
explained. In that case the first found fault hides the second one
and the program has to be executed again after the correction
of the first fault.

VII. STATISTICAL INDICATORS

Computing association rules w.r.t. a support threshold
(min sup) filters out some rules. For example, rules that stress
very specific lines may have a support under the threshold
because they are present in a small number of failed traces.
Those rules do not appear in the failure lattice. The failed
executions that are covered by only pruned rules may not label
concept in the failure lattice. The proposed process helps draw-
ing conclusions from failures that label concepts in the failure
lattice. A run of the fault localization process draws every
conclusion from the failures that have a sufficient support. A
new run can safely considers only the low support failures.
This suggests a progressive approach for fault localization as
successive runs of rule exploration with decreasing supports.

242 243

When the program contains a single fault, a rule is rel-
evant with a lift value greater than 1. When the program
contains several faults the lift threshold can be lower. Indeed,
when a program contains several faults, verdict FAIL is
used as an abstraction of several more specific verdicts. All
failures are not caused by the same faults, nevertheless we
consider only one attribute, FAIL, to characterize failed
executions when searching for association rules (? → FAIL).
If the failures were tagged by the faults that cause them, for
example FAILFi , the searched association rules would be
? → FAILFi

. However, we cannot assume that failures are
tagged. When a rule Fi → FAILFi

would have a lift greater
or equal to 1, the rule Fi → FAIL can have a lift lower than 1.
The lift threshold can thus start equal to 1 at the beginning of
the localization process and decrease below 1 if some faults
remain hidden.

Note that, in both the above cases, the test suite does not
need to be re-executed.

VIII. RELATED WORK

In [5], we have compared our data structure, the failure
lattice, with existing fault localization methods. In this section,
we briefly recall the main results and further our navigation
into the failure lattice, with the strategies of other methods.
Renieris and Reiss [15] as well as Cleve and Zeller [6]
have proposed four methods based on the differences between
executions traces. In those cases, navigating is the action to
explore the whole set of events without guide whereas our
approach is guided by the structure of the failure lattice.
The statistical methods, Tarantula [10], parallel debugging [9],
Falcon [13], SBI [11], the bi-clustering method [16] and
SOBER [12] rank events and there is not necessarly a relation
between an event and the following one in the ranking. On the
contrary, our proposed approach gives a context to understand
the faults thanks to a partial ordering of the events, which
takes into account their dependencies. In [3], the authors
takes into account the program dependence graph in their
scoring function thanks to the causal-inference theory, but as
previously seen with the other methods, no context is provided
with each statement.

For multiple faults, Jiang et al. [8] propose a method based
on traces whose events are predicates. The predicates are
clustered, and the path in the control flow graph associated
to each cluster is computed. In the failure lattice, events are
also clustered in concepts. The relations between concepts
give information about the path in the control flow graph and
highlight some parts of that path as relevant for debugging
without computing the control flow graph. Other methods
group together failed executions to separate the effects of
different faults ([16], [9]). Those methods do not take into
account the dependencies between faults whereas our method
does. Finally, SBI [11] has a stopping criterion. SBI wants
to take advantage of one execution of the test suite. SBI
ranks predicates. When a fault is found thanks to the ranking,
all execution traces that contain the predicates used to find
the fault are deleted and a new ranking on predicates with

the reduced set of execution traces is computed. Deleting
execution traces can be seen as equivalent to tagging concepts,
and thus the events of their labelling. The difference between
SBI and our approach is that our approach does not need to
compute the failure lattice several times.

IX. CONCLUSION

In this paper, an algorithm to locate multiple faults in
programs is proposed. It is based on a data structure, the failure
lattice, that gives a partial ordering of the events of the traces.
At each step of the proposed algorithm, a debugging oracle,
for example the human debugger, has to say if a fault is found
given a set of events. The advantage of our algorithm is that
the debugging oracle knows when to stop the exploration of
the program.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. In Int. Conf. on Management
of Data. ACM Press, 1993.

[2] S. Ali, J.H. Andrews, T. Dhandapani, and W. Wang. Evaluating the
accuracy of fault localization techniques. In Proc. of the IEEE/ACM
Int. Conf. on Automated Software Engineering, pages 76–87. IEEE
Computer Society, 2009.

[3] G.K. Baah, A. Podgurski, and M.J. Harrold. Causal inference for
statistical fault localization. In Proc. of the Int. Symp. on Software
testing and analysis, pages 73–84. ACM, 2010.

[4] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux. Formal concept analysis
enhances fault localization in software. In Formal Concept Analysis,
volume 4933. Springer-Verlag, 2008.

[5] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux. Dellis: A data mining
process for fault localization. In Software Engineering & Knowledge
Engineering, 2009.

[6] H. Cleve and A. Zeller. Locating causes of program failures. In Int.
Conf. on Software Engineering. ACM Press, 2005.

[7] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, 1999.

[8] L. Jiang and Z. Su. Context-aware statistical debugging: from bug
predictors to faulty control flow paths. In Proc. of the Int. Conf. on
Automated Software Engineering, pages 184–193. ACM Press, 2007.

[9] J. A. Jones, J.F. Bowring, and M.J. Harrold. Debugging in parallel. In
Int. Symp. on Software Testing and Analysis, pages 16–26, July 2007.

[10] J. A. Jones, M.J. Harrold, and J. T. Stasko. Visualization of test
information to assist fault localization. In Int. Conf. on Software
Engineering, pages 467–477. ACM, 2002.

[11] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Conf. on Programming Language Design
and Implementation. ACM Press, 2005.

[12] C. Liu, L. Fei, X. Yan, J. Han, and S.P. Midkiff. Statistical debugging:
A hypothesis testing-based approach. IEEE Transaction Software
Engineering., 32(10):831–848, 2006.

[13] S. Park, R.W. Vuduc, and M.J. Harrold. Falcon: fault localization in
concurrent programs. In Proc. of the ACM/IEEE Int. Conf. on Software
Engineering, pages 245–254. ACM, 2010.

[14] M. Petit and A. Gotlieb. Uniform selection of feasible paths as a
stochastic constraint problem. In Int. Conf. on Quality Software, IEEE,
October 2007.

[15] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In Int. Conf. on Software Engineering. IEEE, 2003.

[16] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: simultaneous identification of multiple bugs. In Int. Conf.
on Machine Learning, 2006.

244 245

Constructing Subtle Concurrency Bugs Using Synchronization-Centric
Second-Order Mutation Operators

Leon Wu Gail Kaiser
Department of Computer Science

Columbia University
New York, NY 10027 USA

{leon,kaiser}@cs.columbia.edu

Abstract

Mutation testing applies mutation operators to modify
program source code or byte code in small ways, and then
runs these modified programs (i.e., mutants) against a test
suite in order to evaluate the quality of the test suite. In
this paper, we first describe a general fault model for con-
current programs and some limitations of previously devel-
oped sets of first-order concurrency mutation operators. We
then present our new mutation testing approach, which em-
ploys synchronization-centric second-order mutation oper-
ators that are able to generate subtle concurrency bugs not
represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order
mutation operators to form a small set of effective concur-
rency mutation operators for mutant generation. Our em-
pirical study shows that our set of operators is effective in
mutant generation with limited cost and demonstrates that
this new approach is easy to implement.

1 Introduction

Mutation testing is a white-box fault-based software test-
ing technique that uses mutants, slightly modified variants
of the program source code or byte code, to characterize
the effectiveness of a testing suite and locate weaknesses in
the test data or program that are seldom or never exposed
during normal execution [9]. Mutation testing is based on
the Competent Programmer Hypothesis and the Coupling
Effect Hypothesis. The Competent Programmer Hypothe-
sis assumes that programmers are competent and normally
write programs that are close to perfect; program faults are
syntactically small and can be corrected with a few small
code modifications [1, 9]. The Coupling Effect Hypothesis
states that complex bugs in software are closely coupled to
small, simple bugs. Thus, mutation testing can be effective
in simulating complex real-world bugs [9, 23].

Mutation testing typically involves three stages: (1) Mu-
tant generation, the goal of which is the generation of mu-
tants of the program through inserting bugs. (2) Mutant ex-
ecution, the execution of test cases against both the original
program and the mutants. (3) Result analysis, to check the
mutation score, i.e., the percentage of nonequivalent mu-
tants that are killed by the test suite [26, 23]. A mutant
is equivalent to the original program if the mutant and the
original program always produce the same output, hence no
test case can distinguish between the two [8]. A mutant is
considered killed by the test suite if the execution result of
the mutant is different from the result of the original pro-
gram [25]. A test data set is said to be adequate if its muta-
tion score is 100% [8, 24].

For the first stage, a predefined set of mutation operators
are used to generate mutants from program source code or
byte code. A mutation operator is a rule that is applied to
a program to create mutants [25]. Mutants containing one
simple fault are called first-order mutants and mutants con-
taining two simple faults are called second-order mutants
[26]. Researchers have developed many sets of mutation
operators [25, 17], targeting a variety of programming lan-
guages. For example, Delamaro et al. and Bradbury et al.
have proposed different set of mutation operators for con-
current Java programs [7, 4]. Our empirical study and anal-
ysis shows that some subtle concurrency bugs are not gener-
ated by any of these proposed first-order mutation operators.
Our study further shows that a large portion of these opera-
tors are not effective in mutant generation: the majority of
the mutants are generated by a small subset of the mutation
operators, generally those that are synchronization-centric,
i.e., directly relating to the synchronization of different pro-
cesses or threads. Based on a general fault model for con-
current programs and our analysis of the limitations in prior
work, we present our new mutation testing approach, which
employs synchronization-centric second-order mutation op-
erators that are able to generate subtle concurrency bugs not

244 245

represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order
mutation operators to form a small set of effective concur-
rency mutation operators that can be used in mutant gen-
eration. Our empirical study shows that our small set of
operators is effective in mutant generation with limited cost
and demonstrates that this new approach is easy to imple-
ment. The initial analysis of the possible implications of our
results has potential impact on the Coupling Effect Hypoth-
esis, indicating that possibly the coupling effect is weaker
in concurrent programs than in sequential programs.

The remainder of this paper is structured as follows. In
Section 2, we describe our fault model for concurrent pro-
grams. In Section 3, we present the limitations of some
previous work. In Section 4, we present our new approach.
In Section 5, we present our empirical study. Lastly, we
discuss the related work before we conclude.

2 Fault Model for Concurrent Programs

Testing concurrent programs is difficult. It is generally
impossible or impractical to exhaustively test all combina-
tions of input values or cover all possible control or data
flow paths in sequential programs but even more so in con-
current programs; nevertheless, test suites can and must be
constructed according to various criteria to attempt to find
bugs. In order to develop a set of concurrency mutation
operators that are able to model subtle concurrency bugs,
we employ a general fault model that is based on the con-
currency bug patterns and the synchronization mechanisms.
Our definition of fault is a programming error that leads to
an erroneous result in some programs during execution.

2.1 Concurrency Bug Patterns
Some prior research on concurrency bug patterns has

been done. [13] and [20] described taxonomy of common
concurrency bugs. [12] compiled a benchmark of concur-
rency bugs. [6] and [21] described some empirical studies
on concurrency bugs. We consolidate the common concur-
rency faults from these prior research that we consider for
mutation operators to model and present them below.

• Data Race: Data race condition happens when multi-
ple threads read and write the same data, and the out-
come of the execution depends on the particular or-
der in which the accesses happen [6]. It is also called
thread interference.

• Memory Inconsistency: Memory inconsistency errors
occur when different threads have inconsistent views
of the same variable.

• Atomicity Violation: Atomicity violation error is
caused by concurrent execution of multiple threads vi-
olating the atomicity of a certain code region [21].

• Deadlock: Deadlock happens when multiple threads
are blocked forever, waiting for each other.

• Livelock: Livelock happens when two threads are busy
responding to each other and make no progress.

• Starvation: Starvation happens when a thread is unable
to gain regular access to shared resources and is unable
to make progress.

• Suspension: Suspension happens when a thread sus-
pends or waits indefinitely.

2.2 Synchronization Mechanism
Concurrent programs rely on synchronization to ensure

correct program execution. There are two main synchro-
nization mechanisms: synchronization using shared mem-
ory and synchrnonization using message passing. For pro-
gramming models that use shared memory synchronization
(e.g., Java and C#), the threads communicate primarily by
sharing access to fields and the objects reference fields re-
fer to. The synchronization aims to avoid thread interfer-
ence and memory consistency errors. For programming
models that use message passing (e.g., Erlang [3] and Mi-
crosoft Asynchronous Agents Library [22]), the concurrent
agents or actors in the programs communicate with each
other through exchanging messages and use the synchro-
nization to avoid problems in the message communications.

3 Limitations of First-Order Concurrency
Mutation Operators

To measure the testability of concurrent Java programs,
Ghosh described mutation based on two mutation operators
that remove the keyword synchronized [14]. Long et
al. tested mutation-based exploration for concurrent Java
components [19]. Delamaro et al. proposed a set of 15 con-
currency mutation operators for Java [7]. Later, Bradbury
et al. proposed a new set of 24 concurrency mutation oper-
ators for Java [4]. The operators they proposed are all first-
order mutation operators. We have investigated these muta-
tion operators in our empirical study and identified some of
their limitations.

3.1 Subtle Concurrency Bugs Are Not Generated
The first important limitation we found is that some sub-

tle concurrency bugs are not generated by any of these pro-
posed first-order mutation operators. This limitation could
lead to loss of comprehensive representation of common
concurrency bugs by the mutants, thus reducing the relia-
bility of the mutation score that follows. We give two ex-
amples in the following subsections.

3.1.1 Data Race Example
The following code fragment from the LinkedList program,
a Java program from the IBM concurrency benchmark pro-
grams repository [12], inserts an element to the end of a

246 247

list. Another process, not shown here, reads the list. The
synchronized method first starts from the top of the list
(line 4), then moves to the end of the list via a loop (line
5) before inserts the object x to the end (line 6). Suppose
we only apply first-order mutation operators (e.g., removing
synchronized keyword from line 2 or deleting a state-
ment from line 4 to 6), the mutant does not represent a fea-
sible programming error that line 2 is not synchronized and
line 5’s error causes the node index itr does not move to
the end of the list properly. The combined error in line 2
and line 5 would potentially cause data race because multi-
ple threads would try to write to the header of the list with-
out synchronization and other threads might read the list at
the same time. The outcome of the execution would depend
on the thread schedule and which thread made the last call
to the method because different threads all try to update the
header of the list. By definition, this is a data race condi-
tion. To apply either operator independently is not going
to create the same fault because under single application
of either first-order mutation operator, data race would less
likely happen and their mutants would represent different
kind of faults.
1 /∗ I n s e r t s e l e m e n t t o t h e end o f l i s t ∗ /
2 p u b l i c synchronized vo id a d d L a s t (O b j e c t x)
3 {
4 MyListNode i t r = t h i s . h e a d e r ;
5 whi le (i t r . n e x t != n u l l) i t r = i t r . n e x t ;
6 i n s e r t (x , new M y L i n k e d L i s t I t r (i t r)) ;
7 }

3.1.2 Deadlock Example
Incorrect use of synchronization can result in two or more
threads waiting for each other to release the locks on the
synchronized objects, forming a deadlock circle. As shown
in the following example code for money transfer between
two accounts, the line 5 and 6 in the original code may
be incorrectly programmed in a nested synchronized block,
which makes the deadlock possible. For example, two
threads with execution of line 9 and 10 simultaneously
would lead to deadlock since each thread will be waiting
in a circle for the other thread to release required lock. This
kind of deadlocks that require changes in more than one
place are not generated by any first-order operator.
1 void Transfe rMoney (Acct a , Acct b , i n t amount) {
2 synchronized (a) {
3 a . d e b i t (amount) ;
4 }
5 synchronized (b) {
6 b . c r e d i t (amount) ;
7 }
8 }
1 void Transfe rMoney (Acct a , Acct b , i n t amount) {
2 synchronized (a) {
3 synchronized (b) { / / f i r s t change
4 a . d e b i t (amount) ;
5 b . c r e d i t (amount) ; / / s econd change
6 }
7 }
8 }
9 Thread1 . run () { Transfe rMoney (a , b , 1 0) ; }
10 Thread2 . run () { Transfe rMoney (b , a , 2 0) ; }

3.2 A Large Portion of Mutation Operators Do
Not Generate Any Mutant

Our empirical study show that a large portion of exist-
ing mutation operators are not effective in generating mu-
tants. For example, several previously proposed mutation
operators for concurrent Java, including MSF, MXC, MBR,
RCXC, ELPA, EAN, RSTK, RFU, RXO and EELO [7, 4],
did not generate any mutants in our experiments. Some oth-
ers, including MXT, RNA, RJS, InsNegArg, and ReplTar-
gObj [7, 4], generated very few mutants. In our assess-
ment, over half of the total number of operators are non-
performing mutation operators, i.e., operators that do not
generate any new mutant. Most of the performing ones are
related to mutation of a synchronized method or block.

4 Approach

4.1 Synchronization-Centric Second-Order Con-
currency Mutation Operators

Our new mutation testing approach is based on our fault
model and our analysis of the limitations of some previous
work. We use synchronization-centric second-order concur-
rency mutation operators to construct subtle concurrency
bugs that are not represented by the first-order mutation.
While, a random and brute-force approach without any re-
duction would lead to n ∗ n second-order mutation opera-
tors based on n first-order mutation operators. To reduce
the number of second-order mutation operators and mutant
execution cost, we employ two steps of reduction. We first
choose one of the two first-order mutation operators to be a
synchronized method or block related modification and the
other first-order operator to perform code changes related
to the same synchronized method or block. For example,
in concurrent Java, there are five first-order mutation op-
erators related to synchronized methods [7, 4], we choose
two out of the five in the same category. Then we evaluate
the chosen two first-order mutation operators to see if their
combination can generate mutants that resembles some pos-
sible faults due to programming mistakes and only keep
those meaningful combinations. This second reduction step
through selection based on domain knowledge further re-
duces the amount of second-order mutation operators and
leads to fewer unnecessary or redundant mutants.

After the set of synchronization-centric second-order
concurrency mutation operators are chosen, they are com-
bined with the synchronization-centric first-order mutation
operators to form a smaller set of mutation operators for
mutant generation.

4.2 Example Mutation Operators for Java
Table 1 lists the synchronization-centric second-order

concurrency mutation operators for Java, as an example of
synchronization using shared memory. We describe each
operator with example code in the following subsections.

246 247

Table 1. Second-Order Concurrency Mutation
Operators for Java

sy
nc

m
et

ho
d RKSN+RSSN Remove synchronized Keyword and a Statement

from Synchronized Method
AKST+MASN Add static Keyword and Modify Argument with

Constant to Synchronized Method
RKSN+MASN Remove synchronized Keyword and Modify Ar-

gument with Constant

sy
nc

bl
oc

k RSNB+RSSB Remove synchronized Block and a Statement
from Synchronized Block

MOSB+RSSB Modify synchronized Object and Remove a State-
ment from Synchronized Block

MOSB+MVSB Modify synchronized Object and Move State-
ment(s) Out of Synchronized Block

4.2.1 RKSN+RSSN
The RKSN+RSSN operator removes a synchronized
keyword and a statement from a synchronized method. This
operator simulates programming errors that can potentially
lead to data race, memory inconsistency, and deadlock. The
data race described in Section 3.1.1 can be constructed by
this operator.

/∗ O r i g i n a l Code ∗ /
p u b l i c synchronized vo id p ro c (O b j e c t A) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>

}
/∗ RKSN+RSSN Mutant 1 ∗ /
p u b l i c vo id p roc (O b j e c t A) { / / s yn c removed

. . . / / s t a t e m e n t removed
<s t a t e m e n t 2>

}
/∗ RKSN+RSSN Mutant 2 ∗ /
p u b l i c vo id p roc (O b j e c t A) { / / s yn c removed

<s t a t e m e n t 1>
. . . / / s t a t e m e n t removed

}

4.2.2 AKST+MASN
The AKST+MASN operator adds a static keyword and
modifies an argument with a constant to a synchronized
method. This operator simulates programming errors that
can potentially lead to data race and memory inconsistency.

/∗ O r i g i n a l Code ∗ /
p u b l i c synchronized vo id send (S t r i n g m) { . . . }
/∗ AKST+MASN Mutant ∗ /
p u b l i c s t a t i c synchronized vo id send (S t r i n g n) { . . . }

4.2.3 RKSN+MASN
The RKSN+MASN operator removes a synchronized
keyword and modifies an argument with a constant to a syn-
chronized method. This operator simulates programming
errors that can potentially lead to data race and memory in-
consistency.

/∗ O r i g i n a l Code ∗ /
p u b l i c synchronized vo id send (S t r i n g m) { . . . }
/∗ AKST+MASN Mutant ∗ /
p u b l i c vo id send (S t r i n g n) { . . . }

4.2.4 RSNB+RSSB
The RSNB+RSSB operator removes the synchronized
block and a statement from a synchronized block. This
operator simulates programming errors that can potentially
lead to data race, memory inconsistency, and deadlock.

/∗ O r i g i n a l Code ∗ /
synchronized (t h i s) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>

}
/∗ RSNB+RSSB Mutant 1 ∗ /
. . . / / removed

. . . / / removed
<s t a t e m e n t 2>

. . .
/∗ RSNB+RSSB Mutant 2 ∗ /
. . . / / removed

<s t a t e m e n t 1>
. . . / / removed

. . .

4.2.5 MOSB+RSSB
The MOSB+RSSB operator modifies a synchronized object
and removes a statement from a synchronized block. This
operator simulates programming errors that can potentially
lead to data race and memory inconsistency.

/∗ O r i g i n a l Code ∗ /
synchronized (ob j1) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>

}
/∗ MOSB+RSSB Mutant ∗ / / / o b j e c t m o d i f i e d
synchronized (newobj) {

<s t a t e m e n t 1>
. . . / / removed

}
/∗ MOSB+RSSB Mutant ∗ /
synchronized (newobj) { / / o b j e c t m o d i f i e d

. . . / / removed
<s t a t e m e n t 2>

}

4.2.6 MOSB+MVSB
The MOSB+MVSB operator modifies a synchronized ob-
ject and moves statement(s) out of a synchronized block.
This operator simulates programming errors that can poten-
tially lead to data race, deadlock, memory inconsistency,
and atomicity violation. The deadlock described in Section
3.1.2 can be constructed by this operator, i.e., moving two
lines of code including the synchronized block.

/∗ O r i g i n a l Code ∗ /
synchronized (ob j1) {

<s t a t e m e n t 1>
<s t a t e m e n t 2>
. . .

}
/∗ MOSB+MVSB Mutant 1∗ /
<s t a t e m e n t 1> / / moved
synchronized (newobj) { / / o b j e c t m o d i f i e d

<s t a t e m e n t 2>
. . .

}
/∗ MOSB+MVSB Mutant 2∗ /
<s t a t e m e n t 1> / / moved
<s t a t e m e n t 2> / / moved
synchronized (newobj) { / / o b j e c t m o d i f i e d

. . .
}

4.3 Example Mutation Operators for Erlang
Table 2 lists the synchronization-centric second-order

concurrency mutation operators for Erlang, as an example
of synchronization using message passing. The CRT (i.e.,

248 249

Change Reference Type) refers to changing a message ref-
erence from Send by Ref to Send by Val, and vice versa
[15]. The CST (i.e., Change Synchronization Type) refers
to changing a message’s synchronization method from Sync
Send to Async Send, and vice versa. Since these mutation
operators are self-explanatory, we do not give detailed ex-
ample code here.

Table 2. Second-Order Concurrency Mutation
Operators for Erlang

M
es

sa
gi

ng

CRT+MMP Change reference type and modify message parameter
CRT+RMP Change reference type and reorder message parameter
CRT+MMN Change reference type and modify message name
CRT+MMR Change reference type and modify message recipient
CST+MMP Change sync type and modify message parameter
CST+RMP Change sync type and reorder message parameter
CST+MMN Change syn type and modify message name
CST+MMR Change syn type and modify message recipient

C
on

st
ra

in
t CRT+RC Change reference type and remove constraint

CRT+MC Change reference type and modify constraint
CST+RC Change syn type and remove constraint
CST+MC Change syn type and modify constraint

5 Empirical Study

5.1 Implementation
We developed an Eclipse Plug-in [11] named BUGGEN

that is able to automate mutant generation after the specific
mutation operator is selected. Eclipse is a popular inte-
grated development environment (IDE) with an extensible
plug-in system. Building BUGGEN as an Eclipse Plug-in
leverages the functionalities of the Eclipse and simplifies
software development. During our implemention, we found
our set of mutation operators are easy to implement. In our
empirical study, we focus on concurrent Java.

5.2 Example Programs
We use the following four example programs in our ex-

periments to study mutant generation, as well as the cost
and effectiveness of each proposed operator,
• Webserver, a Java web server program that supports

concurrent client connections and synchronization [2].
• Chat, a Java chat program that supports multiple

clients exchanging messages [10].
• Miasma, a graphical Java applet program from the NIH

web-site [18]. It supports synchronization and uses
wait(t) for prior pixels to be accepted before trig-
gering another one.

• LinkedList, a modified Java program from the IBM
concurrency benchmark programs repository [12].
The original program was developed to emulate the
concurrency bug in using Java linked list, which is a
non-synchronized collection.

We select the above example programs because they all
employ different concurrency features and these programs
are diversified in terms of type, size, coding style, applied

field, and developer. These programs are representive in
demonstrating common programming practices using con-
current Java. Table 3 lists some statistical information for
each program’s source code.

Table 3. Example programs
Program Name LOC classes sync methods sync blocks
Webserver 125 6 11 2
Chat 482 4 10 2
Miasma 360 1 0 2
LinkedList 421 5 1 1
Total 1,388 16 22 7

5.3 Mutant Generation Results and Analysis
In our experiments, we apply each of the mutation opera-

tors listed in Table 1, along with the synchronization-centric
first-order mutation operators, on the example programs,
count the number of mutants generated by each operator for
each program, and then examine these mutants. From our
experiments, we found that over half of the first-order mu-
tation operators, especially those that are not related to syn-
chronization, are not effective in generating mutants. The
majority of the mutants are generated by synchronization-
centric mutation operators. Our quantitative data and sum-
mations for each category are recorded in the histogram
chart presented in Figure 1. Details for each operator and
the example programs can be found in our technical re-
port [27]. The vertical axis shows the number of mutants.
Most synchronization-centric mutation operators, in partic-
ular the second-order ones, are effective in mutant genera-
tion.

Our empirical study demonstrates that subtle concur-
rency bugs not represented by the first-order mutation are
generated by the second-order mutation operators; our mu-
tant generation effort is limited; fewer percentage of equiv-
alent mutants are generated. Second-order operators tend to
decrease the percentage of equivalent mutants [26].

6 Related Work

Some prior studies have been done on mutation testing
for concurrent programs [17]. Carver described determinis-
tic execution mutation testing and debugging of concurrent
programs using synchronization-sequence [5]. Researchers
have developed many sets of mutation operators [25, 17],
targeting a variety of programming languages. Other than
the mutation operators for concurrent Java, Jagannath et al.
have proposed a set of mutation operators for actor pro-
gramming model [15]. Our synchronization-centric second-
order mutation operators for message passing also apply to
the actor programming model.

For higher-order mutation, Polo et al. studied mutation
cost reduction using second-order mutants [26]. Jia et al.
described some general cases of higher-order mutation and
related algorithms [16]. In our approach, we used second-
order mutation to construct some subtle concurrency faults.

248 249

Figure 1. Number of mutants generated per operator

By keeping a small number of second-order mutation op-
erators based on synchronization and reduction through do-
main analysis, we avoided the drastic growth of the number
of mutants, thus avoiding higher computing cost in mutant
execution. To the best of our knowledge, our work is the
first study of the second-order mutation operators specifi-
cally for concurrent programs.

7 Conclusion

This paper first described a general fault model for con-
current programs and some limitations of previously devel-
oped sets of first-order concurrency mutation operators. We
then presented our new mutation testing approach, which
employs synchronization-centric second-order mutation op-
erators that are able to generate subtle concurrency bugs not
represented by the first-order mutation. These operators are
used in addition to the synchronization-centric first-order
mutation operators to form a small set of effective concur-
rency mutation operators that can be used in mutant gener-
ation. We developed an Eclipse Plug-in named BUGGEN to
automate the mutant generation using these operators. Our
empirical study showed that our set of mutation operators
is effective in mutant generation with limited cost and this
new approach is easy to implement. For future work, we
plan to evalute some concurrency testing suites using the
set of mutation operators.

8 Acknowledgments

Wu and Kaiser are members of the Programming
Systems Laboratory, funded in part by NSF CNS-
0717544, CNS-0627473 and CNS-0426623, and NIH 2
U54 CA121852-06.

References

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mu-
tation analysis. Technical Report GIT-ICS-79/08, Georgia Institute of Tech-
nology, Atlanta, Georgia, 1979.

[2] J. Aldrich, E. G. Sirer, C. Chambers, and S. J. Eggers. Comprehensive syn-
chronization elimination for java. Science of Computer Programming, 47(2-
3):91–120, 2003.

[3] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Pro-
gramming in ERLANG. Prentice Hall, 1993, Second Edition.

[4] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation operators for concurrent
java (j2se 5.0). In Proceedings of the Second Workshop on Mutation Analysis
(Mutation ’06), pages 11–11. IEEE Computer Society, 2006.

[5] R. Carver. Mutation-based testing of concurrent programs. In Proceedings of
the International Test Conference, pages 845–853, 1993.

[6] S.-E. Choi and E. C. Lewis. A study of common pitfalls in simple multi-
threaded programs. In Proceedings of the 31st SIGCSE Technical Symposium
on Computer Science Education. ACM, 2000.

[7] M. Delamaro, M. Pezzé, A. M. R. Vincenzi, and J. C. Maldonado. Mutant
operators for testing concurrent java programs. In XV Simpósio Brasileiro de
Engenharia de Software, pages 272 – 285, Rio de Janeiro, RJ, Brasil, 2001.

[8] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Offutt, and K. N.
King. An extended overview of the mothra software testing environment. In
Proceedings of the Second Workshop on Software Testing, Verification, and
Analysis, pages 142–151, 1988.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection:
Help for the practicing programmer. Computer, 11(4):34–41, 1978.

[10] D. J. Eck. Chat. available at http://math.
hws.edu/eck/cs124/s06/lab11/index.html, 2006.

[11] Eclipse. Eclipse.org. available at http://www.eclipse.org, 2010.
[12] Y. Eytani and S. Ur. Compiling a benchmark of documented multi-threaded

bugs. In Proceedings of the 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’04), page 266, 2004.

[13] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In
Proceedings of the 17th International Symposium on Parallel and Distributed
Processing. IEEE Computer Society, 2003.

[14] S. Ghosh. Towards measurement of testability of concurrent object-oriented
programs using fault insertion: a preliminary investigation. In Proceedings
of the Second IEEE International Workshop on Source Code Analysis and
Manipulation, pages 17–25, 2002.kim

[15] V. Jagannath, M. Gligoric, S. Lauterburg, D. Marinov, and G. Agha. Mutation
Operators for Actor Systems In 2010 Third International Conference on Soft-
ware Testing, Verification, and Validation Workshops (ICSTW), pp. 157–162,
2010.

[16] Y. Jia and M. Harman. Constructing subtle faults using higher order mutation
testing. In Proceedings of the Eighth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 249–258, 2008.

[17] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions of Software Engineering, 2010.

[18] JRP. Miasma. available at http://rsb.
info.nih.gov/miasma/Miasma.java, 2010.

[19] B. Long, R. Duke, D. Goldson, P. Strooper, and L. Wildman. Mutation-
based exploration of a method for verifying concurrent java components. In
Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS ’04), page 265, 2004.

[20] B. Long and P. Strooper. A classification of concurrency failures in java com-
ponents. In Proceedings of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’03), pp. 8, 2003.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehen-
sive study on real world concurrency bug characteristics. In Proceedings of
the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’08). ACM, 2008.

[22] Microsoft Asynchronous Agents Library http://msdn.microsoft.com/en-
us/library/dd492627(VS.100).aspx

[23] A. J. Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology, 1(1):5–20, 1992.

[24] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental
determination of sufficient mutant operators. ACM Transactions on Software
Engineering and Methodology, 5(2):99–118, 1996.

[25] A. J. Offutt and R. H. Untch. Mutation 2000: uniting the orthogonal. Mutation
Testing for the New Century, pages 34–44, 2001.

[26] M. Polo, M. Piattini, and I. Garcı́a-Rodrı́guez. Decreasing the cost of mu-
tation testing with second-order mutants. Software Testing, Verification and
Reliability, 19(2):111–131, 2009.

[27] L. Wu and G. Kaiser. Empirical study of concurrency mutation operators
for java. Technical Report CUCS-041-10, Department of Computer Science,
Columbia University, 2010.

250 251

The ucsCNL: A Controlled Natural Language for
Use Case Specifications

Flávia A. Barros, Laı́s Neves
Center of Informatics

Federal University of Pernambuco
Recife (PE), Brazil

Email: {fab, lmn3}@cin.ufpe.br

Érica Hori
MV Sistemas

Apply Solutions
Recife (PE), Brazil

Email: ericahori@gmail.com

Dante Torres
Other Ocean Ltd

Newfoundland, Canada
Email: dantegt@gmail.com

Abstract— In general, test generation tools receive as input
either requirements or use case specifications. However, in
most companies these specifications are written in free natural
language (NL), and the lack of standardization may become
a problem for the generation tools and testers. A promising
solution is to use a Controlled NL (CNL) to write software
specifications. We present here the ucsCNL for the authoring of
Use Case specifications. The ucsCNL is implemented as a plug-in
of TaRGeT, a tool for the automatic generation of feature test
cases based on use case scenarios written in English. The ucsCNL
is already in use, and has achieved satisfactory results.

I. INTRODUCTION

Software Testing has grown in importance in recent years,
as a way to increase quality and reliability of the final product.
Several tools to automate software testing tasks have been
proposed, from test generation to its execution. In particular,
automatic test generation has been the focus of several works
[1], due to the drawbacks of manual test design, which is
time-consuming, and not always systematic and precise.

Usually, test generation tools receive as input either re-
quirements or use case (UC) specifications, from which the
test cases are derived. This input should be unambiguous,
to preserve the quality of the testing process. However, in
most companies requirements and use cases are written using
free natural language, and the absence of standardization may
become a problem both for the generation tool, and for the
professionals who manually execute the test suits.

A promising solution is to use a Controlled Natural Lan-
guage (CNL) to restrict the creation of requirements and/or
use cases. A CNL is a subset of natural language that uses a
restricted set of grammar rules and a predefined vocabulary,
in order to avoid textual complexity and ambiguity [2].

We present here the ucsCNL, a subset of English language
designed for the authoring of UC specifications. The ucsCNL
counts on two knowledge Bases: a Lexicon, with the domain-
specific vocabulary; and a Grammar, used to restrict the sen-
tence constructions allowed for writing the UC specifications.

The ucsCNL is implemented as a plug-in of TaRGeT
[3], a tool for the automatic generation of feature (black
box) test cases based on use case scenarios. The ucsCNL is
already in use, and has achieved satisfactory results. Initial
experiments showed a better performance of testers when

manually executing test generated from UCs written using the
ucsCNL versus UCs written in free English. This is an original
work which combines techniques from Software Engineering,
Artificial Intelligence and Natural Language Processing.

Section II discusses research in the CNL field. Section III
presents the ucsCNL in detail, section IV shows implementa-
tion details, and section V brings conclusions and future work.

II. CONTROLLED NATURAL LANGUAGES AND SOFTWARE
SPECIFICATIONS

In order to safeguard the quality of the input specifications
in the software development process, some companies use a
Controlled Natural Language specially designed to address
their particular communicative needs. A CNL [2] is a subset
of some NL which uses:

(1) a domain-specific vocabulary (Lexicon), in order to
avoid synonymy (i.e., two different terms referring to the same
entity) and lexical ambiguity (i.e., the same term referring to
two or more entities in the application domain); and

(2) a restricted set of grammar rules, which can be general
(e.g., ‘write short and simple sentences’), or more formal,
counting on grammar rules to constrain the accepted syntactic
structures (in order to avoid structural ambiguity - a sentence
being mapped into two or more different syntactic structures).

It is possible to identify two major groups of CNLs, aimed
at different purposes. The most basic goal of a CNL is to define
a standard to be followed throughout an organization, in order
to provide for unambiguous and clear technical documentation
(e.g., ASD-STE100 Simplified Technical English [4]). These
CNLs are also known as ‘simplified’, or ‘technical languages’,
since their Grammar is basically a set of general writing rules
(e.g., ‘write short and grammatically simple sentences’, ‘use
active instead of passive voice’ [5]).

The second group of CNLs is at the more formal side.
In case a mapping from CNL specifications to a formal
representation is desired, the CNL must use a precise syntax
and semantics. Based on a formal grammar and a controlled
lexicon, it is then possible to define a mapping from CNL sen-
tences into a more formal representation (such as First-Order
Logic - FOL) - e.g., PENG [6]. These formal representations

250 251

can be used for further processing, such as model checking
[7], automatic test generation [8], and so on.

We highlight here the Attempto project1 and works derived
from the Attempto Controlled English (ACE) [9], such as the
work of [10], which focuses on Requirement specifications.

Finally, [11] presents a tool for modal-based test gener-
ation from ’natural-language-like’ functional specifications.
Requirements are represented using a Template Based Natural
Language Specification (TBNLS), where each requirement
corresponds to a TBNLS representation. These TBNLSs are
mapped into a Formal Requirement Language in which re-
quirements are represented as tuples: (start-condition (if),
consequence (then), end-condition (until)). Clearly, this is a
too restricted grammar for our purposes.

III. A CONTROLLED NATURAL LANGUAGE FOR USE CASE
AUTHORING

This section presents the ucsCNL developed for the au-
thoring of use cases specifications. Our CNL is not merely a
technical language, since we are interested in the automation
of the whole testing process. This way, we designed a more
formal CNL, counting on a Lexicon with pre-defined word
types and terms, and a Grammar, used to restrict the sentence
constructions allowed for writing the UC specifications.

The ucsCNL version presented in this paper was developed
for the mobile phone domain. However, our CNL can be
adapted to different application domains. In this work, UC
specifications consist of three basic fields:

(1) Initial Condition, stating the system’s state before the
test takes place (e.g., ‘The phone is in data connection screen’);

(2) User Action, stating the test steps to be executed by the
tester (e.g., ‘Cancel the operation pressing END key’); and

(3) System Response, stating the result of an action or the
system state after the test was completed (e.g., ‘The operation
was successfully canceled’).

The ucsCNL Grammar provides rules for the three UC fields
(section III-B). Section III-A presents the ucsCNL Lexicon.

A. The ucsCNL Lexicon

The Lexicon contains the ucsCNL vocabulary, whose terms
are classified into 7 different lexical classes (also known
as ‘parts of speech’) [12]: noun (representing the domain
entities), verb (representing an action or an event that may
occur in the domain), determiner (a noun modifier - detailed
below), adjective, adverb, preposition, and conjunction.

Determiners include articles (a, the), quantifiers (every, all,
some), and numerals (cardinals and ordinals). Pronouns such
as ‘this’, ‘that’ or ‘it’ are not allowed, in order to avoid
ambiguity caused by pronominal reference (i.e., anaphora).

Determiners, prepositions and conjunctions are closed word
classes, that is, they contain a stable (fixed) set of words which
do not depend on the application domain. Terms belonging to
these categories are already provided by the ucsCNL initial
vocabulary, and cannot be added or erased by the user. Only

1http://attempto.ifi.uzh.ch/site/

the system’s administrator is allowed to edit these classes. The
user is free only to add nouns, verbs, adjectives and adverbs.

Verb entries contain the infinitive form plus inflections:
present; past simple; past participle (also used as adjective);
and gerund form, also used as a noun. Modal verbs (e.g., may,
can, could) are not allowed, since they express the idea of
‘possibility’, and we need precise statements regarding Use
and Test Cases, in order to avoid misinterpretations.

B. The ucsCNL Grammar

The ucsCNL grammar consists of a set of rewriting rules
used to restrict the sentence constructions allowed for writing
UC specifications. We work within the Immediate Constituents
Grammar approach [12], according to which a sentence can be
analyzed as a combination of units - immediate constituents-
(e.g., sentence = noun phrase + verb phrase + prepositional
phrase). These constituents can, in turn, be analyzed as smaller
constituents (e.g., noun phrase = article + noun), until reaching
irreducible constituents (such as nouns, verbs, etc).

Sentences in the different UC fields are based on different
syntactic structures. To specify the User Action field, imper-
ative sentences are used (e.g., ‘Press the END key’). On the
other hand, Initial Condition and System Response sentences
convey, respectively, the system state before and after an action
is taken. Here, active and passive sentences are used.

In order to simplify the parsing process, two separate
grammars were defined (sections III-B.2 and III-B.3). This
way, the parsing of each UC field is guided by a different set
of rules. The ucsCNL also counts on a Base Grammar, which
defines rules for basic constituents (section III-B.1).

The ucsCNL parser receives an input sentence and returns
its grammatical structure, according to the Lexicon and Gram-
mar under use (section IV-A). The process starts by attributing
the input sentence to the token ‘Sentence’, which is the root
of the parsing tree. Thus, the UA and IC-SR grammars start
with a rewriting rule for this token (see tables III and IV).

1) Base Grammar: The Base Grammar defines rules for the
basic constituents, namely: noun phrase, determiner, qualifier,
prepositional phrase, relative clause, verb phrase and gerund
phrase. These basic constituents are used by all other ucsCNL
grammars, which actually extend the Base Grammar with
field-specific rules built upon these general constructions.

A noun phrase (NP) is “a group of words in a sentence
which together behave as a noun” [13]. Qualifiers are defined
as “a word or phrase which limits the meaning of another
word or phrase, or makes it less general, such as an adjective
or adverb” [13]. An NP may end with a Prepositional Phrase
or a Relative Clause, to add more information about the pre-
ceding noun. A Prepositional Phrase consists of a preposition
followed by an NP.

Table I presents some rules for NP, Determiner and other
constituents. The comma sign represents the ‘AND’ con-
nector, and the vertical bar represents the ‘OR’ connector.
Constructions ending with a question mark are optional, and
brackets indicate that only one of the constructions between

252 253

TABLE I
BASE GRAMMAR REWRITING RULES (NOUN PHRASE)

NounPhrase = NP, [‘and’, NP]?

NP = Determiner?, QualifierList?, Noun, (PrepositionalPhrase |
RelativeClause)?

Determiner = DT, OD?, CardinalList?
Determiner = CardinalList
CardinalList = CD, CardinalList?

Qualifier = ADV?, (ADJ | VBN)
QualifierList = Qualifier, QualifierList?, [’and’, Qualifier]?

PrepositionalPhraseList = PrepositionalPhrase,
PrepositionalPhraseList?, [‘and’, PrepositionalPhrase]?

RelativeClause = ‘that’, RCVerbPhrase

TABLE II
BASE GRAMMAR REWRITING RULES (VERB RULES)

VerbPhrase = Verb, VerbComplement?

Verb = VB | ActiveVerbPresent | ActiveVerbPast | VerbToBe

ActiveVerbPresent = VBP | VBZ

ActiveVerbPast = VBD

VerbToBe = (VTBP | VTBZ | VTBDP | VTBDZ), ‘not’?

VerbComplement = SimpleVC | ComplexVC

SimpleVC = (NounPhrase, PrepositionalPhraseList?) |
PrepositionalPhraseList

ComplexVC = SimpleVP, ‘by’, GerundPhrase

GerundPhrase = VBG, SimpleVC

the signs can be used. Finally, ‘[]’ indicates that all construc-
tions between the signs must occur together. Some sentence
formations require a particular word occurring in a given
position (rather than any word from a particular class). Words
between quotation marks must be literally interpreted by the
rules (e.g., ‘and’ in Table I).

We introduce now the acronyms (tokens) used to represent
the Lexicon entries: noun = Noun, verb = VB and other tokens
(see below), determiner = DT, adjective = ADJ, adverb = ADV,
preposition = PP, and conjunction = CJ. Numerals have their
own entries: ordinals = OD and cardinals = CD. The main
Verb entries are: VB (infinitive form) and VTB (verb to be).
The verb conjugations are represented by adding suffixes to
these acronyms: D - past tense; N - past participle; P - non-
3rd person singular present; Z - 3rd person singular present.
Finally, the gerund form is represented by G suffix.

A verb phrase (VP) is a group headed by a verb and may
consist of a single verb, or auxiliary and main verbs, with
optional complements and adjuncts (e.g., ‘The agenda has
three entries’). Table II brings some rules for verbs.

2) User Action Grammar: User Action (UA) sentences are
imperative sentences that convey an action to be executed by
the tester (for manual test execution). UA sentences may also

TABLE III
USER ACTION GRAMMAR MAIN RULES

Sentence = UASentenceList

UASentenceList = UASentence, UASentenceList?, [‘and’, UASen-
tence]?

UASentence = ImperativeSentence | NegativeImperativeSentence |
SubordinatedImperativeSentence

ImperativeSentence = VB, VerbComplement, ToComplement?,
ADV? ToComplement = ‘to’, VB, NounPhrase?

NegativeImperativeSentence = ‘Do not’, ImperativeSentence,
ADV?

SubordinatedImperativeSentence = CJ, GerundPhrase, (Impera-
tiveSentence | NegativeImperativeSentence)

TABLE IV
INITIAL CONDITION AND SYSTEM RESPONSE GRAMMAR RULES.

Sentence = SRSentence, [‘and’, SRSentence]?

SRSentence = SRNucleus, SRComplementList?

SRNucleus = ActiveVoiceSentence | PassiveVoiceSentence |
ThereBeSentence | VerbToBeSentence

ActiveVoiceSentence = NounPhrase, Neg?, ADV?, ActiveVerbPre-
sent, ADV?, SimpleVC?, ADV?

PassiveVoiceSentence = NounPhrase, VerbToBe, ADV?, VBN,
ADV?

VerbToBeSentence = NounPhrase, VerbToBePresent, (NounPhrase
| PrepositionalPhrase | QualifierList)

SRComplement = ToComplement | [PrepositionalPhraseList,
ADV?] | [CJ, SRNucleus]

state how the action should be executed (e.g., ‘Send a message
by pressing the SEND key’). This grammar allows imperative
sentences in the negative form, as well as subordinate clauses
to an imperative sentence (e.g., ‘After creating a message with
100 characters, go to the drafts folder’).

Note that imperative sentences do not have an explicit
subject, since UC actions are commands to the tester. This
way, the UA rules do not accept an NP in the beginning of
the sentence (see Table III).

3) Initial Condition and System Response Grammar: Initial
Condition (IC) sentences are statements defining the system
state before a test is started. In turn, System Response (SR)
sentences convey messages stating how the system is expected
to behave after some action has been taken by the tester.
We observed that IC and SR sentences have similar grammar
structures. This way, the ucsCNL uses the same grammar rules
for the parsing of both IC and SR fields (Table IV).

The IC and SR fields convey four different kinds of sen-
tences: active and passive voice sentences, existential sen-
tences, and the so-called ‘verb To Be’ sentences. The ‘verb
to be’ sentences are simple formations that denote the state
of a domain entity, or better describe it (e.g., ‘The imported
media file is a music file’).

252 253

IV. IMPLEMENTATION DETAILS

The ucsCNL is implemented as plug-in of a larger system
for feature (black box) test cases generation, the TaRGeT
(Test and Requirements Generation Tool) [3]. TaRGeT was
developed as a software product line, and its main purpose
is to automate a systematic approach to generate feature test
suites from use case specifications written in the ucsCNL.

TaRGeT receives as input use cases scenarios written in
CNL, thus aiding the test designers/engineers, who are more
familiar with NL sentences than with formal specification
languages. The system model and test suites are automatically
derived from these UC scenarios.

A. The ucsCNL Advisor

The ucsCNL plug-in is implemented as the TaRGeT CNL
Advisor view at the workbench. This advisor gives support to
the process of UC authoring, obeying the ucsCNL Grammar
and Lexicon (in order to minimize possible mistakes in the
testing phase). In order to conform with TaRGeT’s software
product line approach, the ucsCNL Lexicon and Grammar
bases are represented as XML files.

The CNL Advisor counts on 3 modules: a pre-processing
module, a POS-tagger and a context free parser. Initially,
the pre-processing module verifies whether all words in the
sentence are included in the Lexicon. When a new word
is detected, the user receives an error message. If the word
belongs to an open class (noun, verb), the user will able to
add it to the Lexicon via a simple user interface. When the
word belongs to a closed class, the user receives a message
advising him/her to modify the input sentence, or to contact
the system’s administrator, who has special priority to edit the
Lexicon and the Grammar.

Following, the POS-tagger tags all words in the input
sentence with their lexical class. Words that belong to more
than one class are tagged with all possibilities, and the parsing
process will disambiguate the double categorization based on
the available grammar rules. The parser receives a list of words
with their lexical class, and builds one tree for every possible
syntactic structure. Sentences that could not be correctly
parsed are returned to the user. In the case of syntactic error,
the Advisor indicates the word categories that were expected
instead, and gives examples of correct sentences. The Advisor
also allows the user to filter the errors, displaying only the
user action, initial condition or system response sentences.

B. Empirical tests

Empirical tests were performed to evaluate the impact and
the benefits of the ucsCNL for text standardization. Although
this is not the unique aim of our CNL, this preliminary test
already indicated the benefits of text standardization. This case
study was executed in the context of a mobile device testing
company. The aim was to compare the gains of manually
executing TC suites created using the ucsCNL versus suites
written in free natural language. We considered here: (1) the
execution time (the ucsCNL performed better in 35% of the
TCs); and (2) number of detected defects/bugs (the ucsCNL

detected one extra bug, and avoided a false defect accused by
the free LN TCs). The results demonstrate a slight advantage
of the use of ucsCNL in relation to free natural language. New
tests will be performed in order to confirm this advantage, as
well as to identify other gains with the use of the ucsCNL.

V. CONCLUSION AND FUTURE WORK

This paper presented the ucsCNL for the authoring of Use
Case specifications, from which test cases can be automatically
derived by TaRGeT. The main aim of this work was to aid
users (in particular, test designers) who are more familiar with
natural language descriptions than with formal specifications.

We are currently developing a mechanism for the automatic
mapping from ucsCNL sentences into a formal language
representation, to automatically generate test scripts from these
formal specifications. Another future work is the inclusion of
ontology-based semantic analysis to check the coherence of
the UC input specifications according to the specific domain
application being tackled.

Acknowledgments: This work was partially supported by the
National Institute of Science and Technology for Software
Engineering (INES www.ines.org.br), funded by CNPq and
FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] A. Belinfante, L. Frantzen and C. Schallhart, “Tools for Test Case
Generation,” Book Chapter, in [7], 2005, pp. 391–438. Available at:
http://www.cs.ru.nl/ lf/publications/BFS05.pdf, access date: 10 March
2011.

[2] R. Schwitter, “Controlled natural language,” Available at:
http://sites.google.com/site/controllednaturallanguage/, access date:
10 March 2011.

[3] P. Borba, D. Torres, R. Marques, and L. Wetzel, “TaRGeT - Test and re-
quirements generation tool,” in Motorola’s 2007 Innovation Conference
(IC’2007), 2007.

[4] “ASD simplified technical english,” in Specification ASD-STE100, Inter-
national specification for the preparation of maintenance documentation
in a controlled language. Available at: http://www.asd-ste100.org/, access
date: 10 March 2011.

[5] U. Muegge, “Controlled language - the next big thing in translation?”
ClientSide News Magazine, vol. 7, 2001, pp. 21-24.

[6] R. Schwitter, “English as a formal specification language,” in 13th
International Workshop on Database and Expert Systems Applications
(DEXA 2002). IEEE Computer Society, USA, 2002, pp. 228–232.

[7] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner (Eds.),
“Model-based testing of reactive systems: Advanced lectures,” in Lecture
Notes in Computer Science vol. 3472, 2005, 659 p.

[8] D. Leitao, D. Torres, and F. A. Barros, “NLForSpec - Translating natural
language descriptions into formal test case specifications,” in Proc. of
the Nineteenth International Conference on Software Engineering and
Knowledge Engineering (SEKE 2007), 2007, pp. 129–134.

[9] N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto Controlled English
for Knowledge Representation,” in Lecture Notes in Computer Science,
vol. 5224, pp. 104–124, 2008.

[10] N. E. Fuchs and R. Schwitter, “Attempto - controlled natural language
for requirements specifications,” in Proc. of Seventh International Logic
Programming Symp. - Workshop on Logic Programming Environments,
1995, pp. 25–32.

[11] M. W. Esser and P. Struss, “Obtaining models for test generation
from natural-language-like functional specifications,” in Proc. of 18th
International Workshop on Principles of Diagnosis, 2007, pp. 75–82.

[12] D. Crystal, A dictionary of linguistics and phonetics, 6th ed. Oxford:
Blackwell, 2008.

[13] Cambridge Dictionaries Online, Available at:
http://dictionary.cambridge.org/, access date: 10 March 2011.

254 255

A Brief Survey on Automatic Integration Test Order Generation

Zhengshan Wang1,2,3, Bixin Li1,2, Lulu Wang1,2, Qiao Li1,2
1School of Computer Science and Engineering, Southeast University, Nanjing, China

2Key Lab of Computer Network & Information Integration (Southeast University), Ministry of Education
3Department of Computer Science and Technology, Chuzhou University, Chuzhou, China

Email: {zhshwang,bx.li,wanglulu,qiao}@seu.edu.cn

Abstract

A common problem in object-oriented software integra-
tion testing is to determine the order in which classes are
integrated and tested. In this paper, we first overview some
related work based on their objectives in current literature
and then provide some analysis and evaluation.

Index Terms—object-oriented; integration test order; cou-
pling measurement; graph-based algorithm; search-based
algorithm

I. Introduction

During object-oriented software integration testing, an
important problem is to determine the order in which
classes are integrated and tested, which is called class
integration test order (CITO) problem. When integrating
and testing a class that depends on other classes that
have not been developed or tested, some stubs must be
developed to simulate these other classes. There are two
types of stubs: specific stub and realistic stub [16] (or
generic stub [9]). It is very error-prone and costly to
construct stubs. All related papers tried to find a (optimal)
test order using minimal stubbing cost which is usually
modeled as the number of stubs to be constructed or
modeled as the overall stub complexity.

Many approaches proposed to solve this problem can
be divided into two categories based on their objectives:
minimizing the number of stubs [2], [5], [7], [11], [12],
[13], [14], [15], [16] and minimizing the overall stub

Supported partially by the National Natural Science Foundation of
China under Grant No. 60773105 and no. 60973149, and partially
Supported by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, partially by National High Technology
Research and Development Program under Grant No.2008AA01Z113,
and partially by the Natural Science Foundation of Chuzhou University
under Grant No.2010KJ019B.

Correspondence to: bx.li@seu.edu.cn

complexity [1], [3], [4], [6], [17]. If the objective is to
minimize the number of stubs, there are two key steps
which are modeling and breaking cycles. A dependency
model which can be created from UML diagrams or source
code is used to represent classes and inter-class depen-
dency relationships using nodes and edges, respectively.
In current literature, there are two kinds of dependency
models which are object relationship diagram (ORD) [12]
and test dependency graph (TDG) [16]. If a dependency
model has no cycles, a test order can be generated by using
a simple reverse topological sorting algorithm based on
inter-class dependency relationships, otherwise all existing
approaches tried to design an effective and efficient algo-
rithm to break cycles. In current literature, there are two
types of typical algorithms for breaking cycles which are
graph-based algorithm (GBA) and search-based algorithm
(SBA). If the objective is to minimize the overall stub com-
plexity, one extra step must be introduced to measure each
stub complexity based on inter-class coupling information
before breaking cycles.

The rest of this paper is organized as follows: Section II
overviews some existing approaches for minimizing the
number of stubs. Section III overviews some existing
approaches for minimizing the overall stub complexity.
Section IV provides some analysis and evaluation. Sec-
tion V draws some conclusions.

II. Minimizing the Number of Stubs

A. Minimizing the Number of Specific Stubs

Kung et al. [12] used an ORD as a dependency model
which was created from source code and had three types
of dependency relationships: inheritance, aggregation and
association. They used a GBA to break cycles by selecting
and removing association edges. Their algorithm did not
use any heuristic information to select association edges

254 255

to break cycles. The time complexity of their algorithm is
O(𝑛𝑛4).

Tai et al. [15] used an ORD as a dependency model
which was created from UML class diagrams and had three
kinds of dependency relationships: inheritance, aggregation
and association. They determined major level numbers of
classes based on inheritance edges and aggregation edges
and determined minor level numbers of classes based on
association edges. If the classes with the same major
level number contained cycles, they used a GBA to break
cycles. Their algorithm preferred to select and remove an
association edge (𝑢𝑢,𝑣𝑣) with the highest weight to break
cycles. The weight was defined as the sum of in-degree
of 𝑢𝑢 and out-degree of 𝑣𝑣. The time complexity of their
algorithm is O(𝑛𝑛4).

Briand et al. [5] used an ORD as a dependency model
which was created from UML class diagrams and had five
kinds of dependency relationships: inheritance, aggrega-
tion, association, composition and usage. They used a GBA
to break cycles. Their algorithm preferred to select and
remove an association edge (𝑢𝑢,𝑣𝑣) with the highest weight
to break cycles. The weight was defined as the product of
in-degree of 𝑢𝑢 and out-degree of 𝑣𝑣. The time complexity
of their algorithm is O(𝑛𝑛4).

Malloy et al. [13] and Kraft et al. [11] used an ORD
as a dependency model which was created from source
code and had six types of dependency edges: inheritance,
composition, association, dependency, polymorphism, and
ownedElement. They used trial-and-error method to assign
different weights to different edges based on their types
and then used a GBA to break cycles. Their algorithm
preferred to select and remove an edge with the lowest
weight to break cycles. The time complexity of their
algorithm is O(𝑛𝑛4).

Mao et al. [14] used a weighted ORD (WORD) as a
dependency model which was created from UML class
diagrams and had three types of dependency relationships:
inheritance, aggregation and association. They used a triple
(cycle weight, direction factors of edges, association inten-
sity) to represent weight for each association edge. They
defined the cycle whose length is two as a cycle pair.
They first selected and removed association edges to break
all cycle pairs, then used a GBA to break other types of
cycles. Their algorithm preferred to select and remove an
association edge with the highest cycle weight to break
cycles. The time complexity of their algorithm is O(𝑛𝑛4).

Hashim et al. [8] used an ORD as a dependency model
which was created from source code and had five types of
dependency edges: inheritance, composition, aggregation,
association and dependency. They used coupling between
objects as a new cost function instead of Malloy et al’s
parameterized cost function to assign weights to all types
of edges with a deterministic way. They used a GBA

to break cycles. Their algorithm preferred to select and
remove a node with the lowest weight to break cycles.
The time complexity of their algorithm is O(𝑛𝑛3).

Bansal et al. [2] used an ORD as a dependency model
which was created from source code and had eight types of
dependency edges: inheritance, composition, association,
dependency, polymorphism, ownedElement, friend and ex-
ception. They used Malloy et al.’s idea [13] to assign
weights to all types of edges and used Abdurazik et al.’s
method [1] (discussed in Section III) to break cycles.

B. Minimizing the Number of Generic Stubs

Traon et al. [16] used a TDG as a dependency model
which was created from UML diagrams. They used a GBA
to break cycles. Their algorithm preferred to select and
remove a node with the highest weight to break cycles.
The node weight was defined as the sum of the number
of incoming back edges and the number of outgoing back
edges. The time complexity of their algorithm is O(𝑛𝑛3).
The number of generic stubs depended on the starting node
of deep first search (DFS).

Hanh et al. [7] used a TDG as a dependency model
which was created from UML diagrams. They provided
two different types of strategies to break cycles. The first
called Triskell used a GBA to break cycles. They preferred
to select and remove a node with the highest weight to
break cycles. The weight was defined as the number of
cycles the node appeared in. The second used a GA to
break cycles. The time complexity of Triskell strategy is
non-polynomial because it takes non-polynomial time to
enumerate all cycles before assigning weights to nodes.

Hewett et al. used a TDG as a dependency model
which was created from UML class diagrams. In [10], they
used a fast algorithm to find a (optimal) test order with
minimal generic stubs. In [9], they improved their previous
algorithm by adding an additional heuristic information.
Two papers all used GBAs to break cycles and their time
complexity is O(𝑛𝑛2).

III. Minimizing the Overall Stub Complexity

Briand et al. [4] used an ORD as a dependency model
which was created from UML class diagrams and had
four types of dependency relationships: inheritance, aggre-
gation, association and usage. They proposed a coupling
measurement technique to estimate stub complexity based
on inter-class coupling information and used a GA to break
cycles. They disallowed to remove inheritance edges and
composition edges to break cycles.

Abdurazik et al. [1] used a WORD as a dependency
model which was created from source code and had nine

256 257

types of dependency relationships: inheritance, implemen-
tation, composition, aggregation, association, dependency,
etc. They provided a coupling measurement technique to
estimate stub complexity using more fine-grained infor-
mation and presented three different algorithms to break
cycles. Each of them used a GBA to break cycles, and pre-
ferred to select and remove an edge (node) with the highest
cycle-weight ratio (CWR). Their coupling measurement
technique only simply assigned fixed values to inheritance
edges and composition edges. The time complexity of
their algorithms is non-polynomial because their ideas are
similar to Triskell’s proposed by Hanh et al.

Borner et al. [3] used an ORD as a dependency model
which was created from source code and had three kinds
of dependency relationships: inheritance, association and
dependency. They believed that test focus should be con-
sidered when performing integration testing. They used a
simulated annealing algorithm and a genetic algorithm to
find a (optimal) test order that considered not only the
simulation effort but also the test focus.

Our previous work [17] used an extended WORD
(EWORD) as a dependency model which was created from
source code and had six types of dependency relationships:
inheritance, implementation, composition, aggregation, as-
sociation and usage. We proposed a coupling measurement
technique to estimate stub complexity for all types of
edges and used a random iterative algorithm (RIA) to break
cycles. Our RIA algorithm used some properties of minimal
feedback arc set and the idea of simulated annealing, which
made it more effective.

Cabral et al. [6] used an ORD as a dependency model
which was created from source code and had four kinds of
dependency relationships: inheritance, composition, asso-
ciation and dependency. They used a multi-objective ant
colony algorithm (MOCA) to generate a set of Pareto
optimal solutions that achieved a balance between attribute
complexity and method complexity.

IV. Analysis And Evaluation

Table I is a summary table, where the time complexity
of all SBAs is not provided because their time complexity is
related to specific implementation information. From this
table, We can obtain some analysis results as follows.

∙ Published year: Three papers are published from 1995
to 2000, six papers are published from 2001 to 2005
and eight papers are published from 2006 to 2010, which
indicates that more and more papers give attention to CITO
problem.

∙ Objective: Though only five papers try to minimize
the overall stub complexity, four of them are published
from 2009 to 2010, which indicates that finding a (optimal)
test order with minimal overall stub complexity is current

hot topic. The reason is that minimizing the overall stub
complexity is more reasonable than minimizing the number
of stubs.

∙ Model: Seventeen papers are listed. Ten of them create
their dependency models from source code and six of
them are published from 2006 to 2010, which indicates
that CITO problem is given more attention in reverse
engineering research field. The reason is that source code
can provide more fine-grained information.

∙ Algorithm type: Though five papers use search-based
algorithms to break cycles, three of them are published
in 2009 and 2010, which indicates that based-search algo-
rithms have more utilization potentiality than based-graph
algorithms. The reason is that based-search algorithms can
escape from a local optimal solution and can be used to
perform multi-objective optimization.

∙ Time complexity: Two papers are published in 2008
and 2009 whose time complexity is O(𝑛𝑛2), which indicates
that designing a fast algorithm to break cycle is given more
attention in recent years. The reason is that some software
systems have a large number of cycles to be broken.

∙ Algorithm constraint condition: From 2006 to 2010,
seven papers allow to remove inheritance edges and com-
position edges to break cycles and only one paper does not,
which indicates that it is acceptable to remove inheritance
edges and composition edges to break cycles in recent
years.

Some challenging problems encountered are identified
and explained as follows.

∙ The models proposed for representing inter-class
dependencies lack precision. An ORD and a TDG can
represent polymorphism dependency relationships, but ap-
plying class hierarchy structure to construct these depen-
dency relationships is too simply, because some dynamic
dependency edges may be not exist.

∙ The techniques proposed for measuring inter-class
coupling information lack precision. Different stubs may
need different test effort to be constructed, so it is more
reasonable to find a (optimal) test order with minimal
overall stub complexity than minimal number of stubs. The
number of accessed attributes and the number of called
methods are usually used as inter-class coupling informa-
tion to calculate stub complexity, but it is not sufficient to
use these information to calculate stub complexity.

∙ The algorithms proposed for breaking cycles lack
effectiveness and efficiency. For a large-scale application
case, it is very difficult to design an effective and efficient
algorithm to break cycles. Graph-based algorithms are
usually very fast but they have no chance to escape from
a local optimal solution. On the contrary, search-based
algorithms are usually very slow and require to adjust a
lot of parameters to improve their performance, but they
have chances to escape from a local optimal solution.

256 257

TABLE I. Analysis Results of Related Works
No. Reference Year Objective Model Algorithm

Type Edge Types Origin Type Time Comp. Constraint
1 Kung [12] 1995 MNSS ORD In,Ag,As Code GBA O(𝑛𝑛4) Yes
2 Tai [15] 1997 MNSS ORD In,Ag,As UML GBA O(𝑛𝑛4) Yes
3 Traon [16] 2000 MNGS TDG - UML GBA O(𝑛𝑛3) No
4 Hanh [7] 2001 MNGS TDG - UML GBA,GA Ω(2𝑛𝑛) , - No
5 Briand [4] 2002 MOSC ORD In,Ag,As,De Code GA - Yes
6 Briand [5] 2003 MNSS ORD In,Co,Ag,As,De Code GBA O(𝑛𝑛4) Yes
7 Malloy [13] 2003 MNSS ORD In,Co,As,De,Po,Ow Code GBA O(𝑛𝑛4) No
8 Mao [14] 2005 MNSS WORD In,Ag,As UML GBA O(𝑛𝑛4) Yes
9 Hashim [8] 2005 MNSS ORD In,Co,Ag,As,De UML GBA O(𝑛𝑛3) No

10 Kraft [11] 2006 MNSS ORD In,Co,As,De,Po,Ow Code GBA O(𝑛𝑛4) No
11 Hewett [10] 2008 MNGS TDG - UML GBA O(𝑛𝑛2) No
12 Abdur. [1] 2009 MOSC WORD In,Im,Co,Ag,As,De,... Code GBA Ω(2𝑛𝑛) No
13 Hewett [9] 2009 MNGS TDG - UML GBA O(𝑛𝑛2) No
14 Bansal [2] 2009 MNSS ORD In,Co,As,De,Po,Ow,... Code GBA Ω(2𝑛𝑛) No
15 Borner [3] 2009 MOSC ORD In,As,De Code SA,GA - , - No
16 Wang [17] 2010 MOSC EWORD In,Im,Co,Ag,As,De Code RIA - No
17 Cabral [6] 2010 MOSC ORD In,Co,As,De Code ACO - Yes
MNS(G)S: minimizing the number of specific (generic) stubs; MOSC: minimizing the overall stub complexity.
In: inheritance; Im: implementation; Co: composition; Ag: aggregation;
As: association; De: dependency; Po: polymorphism; Ow: owenElement.
GBA: graph-based algorithm; SA: simulated annealing algorithm; GA: genetic algorithm;
RIA: random iterative algorithm; ACO: ant colony optimization algorithm.
Constraint represents whether or not inheritance and composition edges are allowed to be removed to break cycles.

V. Conclusions

In this paper, we first review some related work based
on their objectives and then provide some analysis and
evaluation. By analysis, it is found to be a good strategy
for automatic integration test order generation to construct
a more precise dependency model from source code, to
calculate stub complexity using a more precise coupling
measure technique, and to design an effective and efficient
algorithm for breaking cycles.

References

[1] A. Abdurazik and J. Offutt. Using coupling-based weights
for the class integration and test order problem. The
Computer Journal, 52(5):557–570, 2009.

[2] P. Bansal, S. Sabharwal, and P. Sidhu. An investigation of
strategies for finding test order during integration testing of
object oriented applications. In Proceeding of International
Conference on Methods and Models in Computer Science,
pages 1–8, 2009.

[3] L. Borner and B. Paech. Integration test order strategies to
consider test focus and simulation effort. In Proceeding of
International ConferencFe on Advances in System Testing
and Validation Lifecycle, pages 80–85, 2009.

[4] L. C. Briand, J. Feng, and Y. Labiche. Using genetic algo-
rithms and coupling measures to devise optimal integration
test orders. In Proceedings of 14th International Conference
in Software Engineering and Knowledge Engineering, pages
43–50, 2002.

[5] L. C. Briand, Y. Labiche, and Y. Wang. An investigation
of graph-based class integration test order strategies. IEEE
Transaction on Software Engineering, 29(7):594–607, 2003.

[6] R. da Veiga Cabral, A. Pozo, and S. R. Vergilio. A pareto
ant colony algorithm applied to the class integration and test
order problem. In Proceedings of the 22nd IFIP WG 6.1
international conference on Testing software and systems,
pages 16–29, 2010.

[7] V. L. Hanh, K. Akif, Y. L. Traon, and J.-M. Jézéquel.
Selecting an efficient OO integration testing strategy: An
experimental comparison of actual strategies. In Proceed-
ings of the 15th European Conference on Object-Oriented
Programming, pages 381–401, 2001.

[8] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan. Test
order for class-based integration testing of java applications.
In Proceedings of the Fifth International Conference on
Quality Software, pages 11–18, 2005.

[9] R. Hewett and P. Kijsanayothin. Automated test order
generation for software component integration testing. In
Proceedings of ASE 2009, pages 211–220, 2009.

[10] R. Hewett, P. Kijsanayothin, and D. Smavatkul. Test or-
der generation for efficient object-oriented class integration
testing. In Proceedings of SEKE2008, pages 703–708, 2008.

[11] N. A. Kraft, E. L. Lloyd, B. A. Malloy, and P. J. Clarke.
The implementation of an extensible system for comparison
and visualization of class ordering methodologies. Journal
of System Software, 79:1092–1109, 2006.

[12] D. C. Kung, J. Gao, and P. Hsia. Class firewall test order
and regression testing of object oriented programs. Journal
of Object-Oriented Programming, 8(2):51–65, 1995.

[13] B. A. Malloy, P. J. Clarke, and E. L. Lloyd. A parameterized
cost model to order classes for class-based testing of c++ ap-
plications. In Proceedings of 14th International Symposium
Software Reliability Engineering, pages 353–364, 2003.

[14] C. Mao and Y. Lu. Aicto: An improved algorithm for
planning inter-class test order. In Proceedings of the Fifth
International Conference on Computer and Information
Technology, pages 927–931, 2005.

[15] K.-C. Tai and F. J.Daniels. Interclass test order for object-
oriented software. In Proceedings of the 21st International
Computer Software and Applications Conference, pages
602–607, 1997.

[16] Y. L. Traon, T. Jéron, J.-M. Jézéquel, and P. Morel. Efficient
object-oriented integration and regression testing. IEEE
Transaction on Reliability, 49(1):12–25, 2000.

[17] Z. Wang, B. Li, L. Wang, M. Wang, and X. Gong. Using
coupling measure technique and random iterative algorithm
for inter-class integration test order problem. In Proceedings
of 34th International Computer Software and Applications
Conference Workshop, pages 329–334, 2010.

258 259

Generation of Scripts for Performance Testing
Based on UML Models

Maicon B. da Silveira, Elder M. Rodrigues, Avelino F. Zorzo,
Leandro T. Costa, Hugo V. Vieira and Flávio M. de Oliveira

Faculty of Informatics (FACIN) – Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre – RS, Brazil

bernardino@acm.org, elder.rodrigues@acad.pucrs.br, avelino.zorzo@pucrs.br,
leandro.teodoro@acad.pucrs.br, hugovares@gmail.com and flavio.oliveira@pucrs.br

Abstract—Software testing process has a high cost when
compared to the other stages of software development.
Automation of software testing through reuse of software
artifacts (e.g. models) is a good alternative for mitigating
these costs and making the process much more efficient and
efficacious. Model-Based Testing (MBT) is a technique to
automatic generation of testing artifacts based on software
models. For software development, the most spread modeling
language in either the industrial or academic environments is
UML. In such environments, it is desirable to reuse UML models
also for MBT, avoiding re-building a different model exclusively
for testing automation. These are the main reasons that make
these semi-formal models an alternative to implementing
MBT. Even though there are a lot of testing tools available
commercially, to the best of our knowledge, none of them fully
uses MBT. Therefore, this paper describes a case study showing
how to implement the MBT process to automate test scripts
generation and execution in a real-world, context. Furthermore,
our solution is generated automatically by a Software Product
Line (SPL). 1

Keywords - Model-Based Testing; Software Product Line;
Performance Testing.

I. INTRODUCTION

Currently, a great number of people and companies use
computer programs to automate their activities, delegating to
systems the execution of complex tasks. This widespread use
of computer systems has also increased the number of residual
software or hardware faults that generate failures to users [1]
[2]. Therefore, it is important that during the development of
a system, different techniques are applied to guarantee that
the system provides a service that can be trusted. The ability
to deliver a service that can justifiably be trusted is known
as dependability [1]. The main attributes that integrate the
dependability are reliability, availability, security, confidential-
ity, integrity and maintainability. According to the taxonomy
presented in [1], system dependability can be achieved by
four techniques: 1) Fault Prevention - prevent the occurrence
or introduction of faults; 2) Fault Tolerance - avoid service
failures in the presence of faults; 3) Fault Removal - reduce
the number and severity of faults, and; 4) Fault Forecasting
- to estimate the present number, the future incidence, and

1Study developed by the Research Group of the PDTI 001/2011, financed
by Dell Computers of Brazil Ltd. with resources of Law 8.248/91.

the likely consequences of faults. Several works that provide
system dependability through fault tolerance, fault prevention
and fault forecasting are present in the literature [3] [4] [5].

Although all techniques are used to achieve software de-
pendability, the most used technique in all areas of software
development in industry is fault removal, through software
testing. Software testing is a process that focus on finding
program failures2 during runtime [6], or that has activities
to validate the requirements of a program, determining if the
expected results are met [7]. Performance is a key component
of reliability and availability; therefore, performance testing
is a major activity in system fault removal. However, due to
the systems evolution and their amount of features, systems
are becoming so complex that testing them is a difficult task.
Therefore, it is necessary to implement a testing process to
mitigate testing execution on the final product. This process
should aim to reduce the costs impact, improving the quality
of the software product [2].

One of the techniques that improves the software testing
process is Model-Based Testing (MBT) [8]. This technique
consists in the generation of test cases and/or test scripts
based on the application model. Besides, it also includes the
specification of the features that will be tested [9].

In previous work [10] [11], we have used MBT to build
testing tools for security and functional testing. These tools
were derived products from a Software Product Line [12]
called PLeTs [11]. The work presented in this paper expands
our previous work to apply MBT in the generation of a new
product to execute performance testing. This new product
generates test scripts for a commercial tool called LoadRunner
[13]. Basically, we include stereotypes in the system UML
models to express performance information that will be used
during the execution of test scripts.

This paper is organized as follows. Section II presents a
short description of MBT, SPL and the PLeTs architecture. In
Section III we show how we have used stereotypes to include
information on the UML models and a brief description of
the LoadRunner tool. In Section IV we apply our strategy to
an actual case study that uses the LoadRunner tool to execute
performance testing. This case study is a tool used in a major

2We use fault, error, and failure definition from [1].

258 259

IT company. Finally, Section V summarizes the contributions
of our work.

II. BACKGROUND

Software modeling is an important technique that is used in
software development because it allows to capture and to share
knowledge about a system. During the development process,
information about the system is described in many different
documents. To include this information, through, for example,
UML stereotypes, enriches the specification documents. This
increases the quality of the specification and the use of models
developed as the system evolves [14]. Thus, this information is
used to model the incremental creation of new artifacts, or even
allows the automation of other processes to improve the quality
of different developed artifacts. This section describes two
approaches to automate software artifacts development based
on features that are included in the system model: Model-
Based Testing and Software Product Line.

A. Model-Based Testing

Usually, system behavior and requirements are described
using a formal or semi-formal model, allowing team members
to share and to use these models during the life-cycle of
the software development. In spite of that, test engineers are
still producing test cases or test scripts in an informal way
based on a mental representation that they create. A better
alternative would be to derive test artifacts from the system
models [15]. This strategy is commonly known as Model-
Based Testing (MBT) [8]. MBT is based on the idea of the
automation of test case/scripts generation. Albeit, the use of
existing models can increase productivity during the process
of software testing [14].

The cost of software testing is related to the number
of interactions and test cases that are executed during the
development process. As it is one of the most costly and
expensive phases of software development [6], MBT is a good
approach to mitigate this problem by automating the process
of generating test cases or scripts [16].

Several works on MBT have been produced in the past
years. A systematic review is presented in [17] to evaluate
quantitatively and qualitatively some features of MBT. In this
study, 78 articles were evaluated and the following items were
reviewed: type of model (formal or semi-formal) used for test
generation; test types in which the approach can be applied to;
level of automation; support tools; criteria for test coverage,
etc. The study presents test domains (system, integration,
unit/component, regression) in which each of the works were
applied to. The survey identifies that most of the works use
MBT in system testing domain (66%). System testing includes
Performance testing, which is the focus of our work.

Some of the works mentioned in [17] use the same MBT
process, for example [8] [18]. This process requires specific
activities in addition to the usual activities of software testing.
This will require that the test engineers adjust their testing
process, and invest in the use and training of new tools.
The main activities that define the MBT process are (see

Fig. 1. Activities for MBT [8]

Figure 1) [8]: Build Model, Generate Expected Inputs, Gen-
erate Expected Outputs, Run Tests, Compare Results, Decide
Further Actions and Stop Testing. 1) Build Model: constructs
a model based on the specification of system requirements.
This step defines the choice of the model, according to the
application being developed; 2) Generate Expected Inputs:
uses the developed model to generate test inputs (test cases,
test scripts, application input); 3) Generate Expected Outputs:
generates some mechanism that determines whether the results
of a test execution are correct or not. This mechanism is
the test oracle and it is used to determine the correctness
of the output; 4) Run Tests: executes test scripts and stores
the processing results of each test case. This execution can
be performed in the system under test (SUT) and/or system’s
environment; 5) Compare Results: compares the test results
with expected outputs (test oracle), generating reports to alert
the test team about failures; 6) Decide Further Actions: based
on the results, it is possible to estimate the software quality.
Depending on the quality achieved, it is possible to stop
testing (quality achieved), to modify the model to include
further information to generate new inputs/outputs, to modify
the system under test (to remove remaining faults), or to run
more tests; 7) Stop Testing: concludes the system testing. The
activities from MBT process can bring several new advantages
to the test team [8], for example: shorter schedules, lower cost,
and better quality.

A good possibility to reduce the problems mentioned at
the beginning of the previous paragraph would be to have
a single tool that would cover all the phases of the MBT
process, i.e. a tool in which it would be possible to describe
the system model, that would generate test cases/scripts, that
would execute the test scripts and also compare the results.
Even better if the test team could have a tool that could
generate the testing tool for each different application or
different type of test the test team wants to execute over the
same application. Furthermore, it is desirable that the test team
reuse implemented artifacts (e.g.: models, software compo-
nents, scripts). Thus, in this context, it becomes interesting

260 261

to design a set of MBT tools based on a Software Product
Line (SPL). A SPL ensures the variability, reusability of test
artifacts, thus decreasing costs and time to market. Several
evidence of the benefits of the use of SPL, in different areas,
can be found in [19] [20]. The next section introduces the
concept of SPL.

B. Software Product Line

A Software Product Line (SPL) seeks to exploit the com-
monalities among systems from a given domain, and at the
same time to manage the variability among them [12]. Accord-
ing to [21], SPL engineering has three main concepts: core as-
sets development, product development, and management. The
core assets are the main part of an SPL, and its components
aim to represent, in a clear way, the common and variable
aspects of the future products. Thus, following the SPL
concepts, new products variants can be quickly created based
on a common architecture, models, software components, etc.
Because of that, SPL allows for rapid entry of a product on the
market as well as makes it easier for mass customization of
products of a company. Companies are finding that the practice
of building sets of related systems from common assets can, in
fact, produce quantitative improvements in product quality and
consumer satisfaction, efficiently meeting the current demand
for mass customization.

However, given the large number of products that can be
present in a product line (PL), it is necessary to control the
variability and commonalities among them. The variability
management is used to control the variables aspects present in
the products of the PL.

Feature Models is an important concept to modeling vari-
ability. Originally, Feature Modeling was developed as part
of Feature-Oriented Domain Analysis (FODA) [22]. However,
nowadays it is applied in many areas such as embedded
systems [23] or networks protocols [24].

When Feature Models are applied to represent variability,
they are analyzed and categorized as common, optional or
alternative [25]. Common features represent features that must
be present in every product of the SPL. There are also called
mandatory, necessary, or kernel features. Optional features
represent features that are supported by some products in
the SPL, and; the alternative features represent features that
are mutually exclusive, i.e. only one of the features can be
provided in each product of the SPL (see Figure 2).

C. PLeTs Tool

The PLeTs tool [11] aims to automate the generation,
execution and results collection of MBT process. The tool is
able to manage the whole MBT process and is based on the
concepts of SPL. Its goal is not only the reuse of artifacts to
make it easier and faster to develop a new tool of the family,
but also to improve the creation, run and gathering of test
results. It was developed with the intent to be used by software
engineers, developers and test engineers, assisting the process
of defining and executing test cases and test scripts. Figure 2
shows the current PLeTs Feature Model that represents some

of the features that could be present in a software variant. The
first level of the model has four main features:

Fig. 2. Feature Model for PLeTs Tool [11]

1) Parser: represents the Build Model step in the MBT main
activities (see Section II-A). It is a mandatory feature and
has two child features: UML - FSM and UML - PN. Each
one of these parsers is used to extract the information from
the UML models to generate a formal model (Finite State
Machine (FSM) or Petri Nets (PN)); 2) Test Case Generation:
represents part of the Generate Expected Inputs step in the
MBT main activities. It is a mandatory feature and has three
child features: Functional Testing, Performance Testing and
Security Testing (one of them should be selected in each
software variant). Both Performance Testing and Security
Testing have a mandatory child feature: UIO Method [26];
3) Script Generation: represents another part of the Generate
Expected Inputs step in the MBT main activities. It is an
optional feature, because, for example, for security testing
there could be no tool to execute the generated test cases. This
feature has two child features: Jmeter [27] and LoadRunner
[13]; 4) Execution: represent the Run Tests and Compare
Results step in the MBT main activities. This feature also has
two child features: Jmeter and LoadRunner.

It is important to highlight that there are dependencies
between some features (see the dotted lines in Figure 2). For
example, if some software variant selects the feature Execution
and the child feature LoadRunner, it must select the feature
Script Generation and the child feature LoadRunner, because
the tool is not able to execute the tests without a test script.

Another important point is that the Feature Model can be
extended to support new testing techniques or tools, adding
new child features to the main four features. For example,
if someone wants to add new features to work with the
SilkPerformer tool [28], he should include new child features
for the Script Generation and Execution main features.

To develop the tool in a way to represent the feature model
flexibility, the PLeTs architecture is based on plug-ins that
allows extensibility and flexibility. Based on that, the tool
allows to select, in runtime, each plug-in (represented by a
feature) that is necessary to perform a MBT activity and to
automatically generate/execute the test scripts.

260 261

III. UML MODELS FOR PERFORMANCE TESTING

In previous works [10] [11], we described some components
of PLeTs developed for security and functional testing. Here
we apply our approach in a different application domain,
reusing, or expanding, previous components automatically
through SPL.

In our approach, the starting point for test script generation
is the construction of an UML model activity diagram with
performance stereotypes3, represented in an XMI file. This
XMI file is parsed and converted into a formal model, e.g. Fi-
nite State Machine (FSM). Then, performing the UIO Method
[26], the sequences of activities that have to be executed
are obtained. These sequences could be transformed in a
description that is equivalent to test cases in natural language.
This approach was used in our previous works, i.e. all these
features have already been developed. To expand our work, we
propose here a set of new features to support the generation
of a product that can perform performance testing for the
LoadRunner tool [13].

As mentioned above, we use stereotypes, which are the way
we describe performance information necessary to generate
our test cases and test scripts. We include stereotypes in two
UML diagrams: use case and activity. Our approach uses four
stereotypes from our previous works and a new one that was
missing. The five performance stereotypes are the following:
1) <<PApopulation>>: this stereotype has two tags: the
first one represents the number of users that are running the
application, while the second one represents the host where the
application is executed (defined in all actors of the use cases
diagram); 2) <<PAprob>>: defines the probability of exe-
cution for each existing activity; 3) <<PAtime>>: expected
time to perform a given use case; 4) <<PAthinkTime>>:
denotes the time between the moment the activity becomes
available to the user and the moment the user decides to
execute it, for example, the time for filling a form before
its submission; 5) <<PAparameters>>: defines the tags
for the input data that will be provided to the application
when running the test scripts (this is a new stereotype that
our previous works did not include).

A. LoadRunner

HP LoadRunner [13] is a product to analyze the behav-
ior and the performance of systems. This tool can emulate
hundreds, or thousands, of users, known as Virtual Users
(VUsers), simultaneously.

In the LoadRunner architecture the main configuration part
that has to be changed for each application that is tested is
stored in the script folder. Basically, our PLeTs plug-in gen-
erates a new script file, that are scripts written in C language.
The test description, which includes application transactions
and parameters, is included in that file. Our PLeTs plug-in also
generates the configuration scenarios, which are included in

3We use UML 2.0 SPT (Schedulability, Performance and Time) Pro-
file [29] [30].

Fig. 3. Skill Management Use Case Diagram

scenarios file. This file contains performance counters that will
be used in the reports that are generated by the LoadRunner.

Another important LoadRunner feature is a library with
predefined functions. Each set of functions that are included in
this library have a specific task in each of the testing protocols
that LoadRunner implements. For example, functions starting
with web are used to represent HTTP requests, while the
ones starting with lr are general and can be used in all
protocols. Some of the existing functions, which will be used
in the work described in this paper, are: 1) lr think time:
determines the idle time between user interactions and the
system; 2) web submit data: submits web form data without
a previous operation context; 3) web url: is responsible for
accessing a URL via a web browser; 4) web image: repre-
sents a click on an image on a page (tag HTML);
5) web link: represents a click on a text link on a page
(tag HTML e); 6) web submit form:
submits web form data but considering the context of the
previous operation.

Based on these functions, it is possible to simulate the test
scenarios in order to verify the performance behavior of a
given application. Moreover, the concepts discussed in this
section (tool architecture, script features and functionalities
interpreted by LoadRunner), were important to implement the
automatic scripts generation based on information extracted
from the UML model.

IV. CASE STUDY: SKILLS MANAGEMENT TOOL

In this section, we apply our strategy and the PLeTs tool to
an application that manage skills, certifications and experience
of employees of a given organization. This tool is called Skills
and was developed in collaboration between a research group
of our institution and an IT company. Skills was developed in
the Java programming language, using the MySQL database
for data persistence and Tomcat as web application server.

Fig. 4. Skill Management Activity Diagram

One example of our use of UML with stereotypes is the
“Search” case. Figure 3 shows part of the user interaction
behavior with the application. Furthermore, the necessary steps

262 263

to implement this case study are detailed in the activity
diagram shown in Figure 4. This diagram represents five se-
quential activities, starting with “Login” to access the system,
“Skills” to consult the user’s abilities, “Certifications” to view
the technical certification assigned to the user; “Experiences”
a list the user’s professional experience; and “Logout” to exit
the system.

Once all the UML diagrams (e.g. see Figures 3 and 4)
have been constructed, we use PLeTs to generate the test
scripts for the Skill Management Application. The scripts were
generated to run on LoadRunner, but we could have changed
the plug-in that generates scripts and apply the same set of test
using a different testing tool, for example the IBM Rational
Performance Tester [31]. Figure 5 shows an extract from the
script that was generated. This extract shows the actions of
a given user, for example the think time through function
lr_think_time(10) and the submission of data filled in
the step “Login” (from the activity diagram - see Figure 4)
through function web_submit_form.

Fig. 5. Script Generated for LoadRunner

As described in Section III, we can include five stereotypes
in our UML diagrams, with one or more tags. As can be seen
in Figure 3, the “Search” use case diagram has three of those
stereotypes, and they are generated with the following values:

• PApopulation

– TDpath = http://192.168.1.26/skillsApp/mainIE.jsp
– TDpopulation = 30

• PAprob

– TDprob = 1.0
• PAtime

– TDtime = 300
The other stereotypes, in this case study, are included in

the activity diagram as shown in Figure 4. For example, the
“Login” activity has the following values:

• PAthinkT ime

– TDthinkT ime = 00:00:10
• PAparameters

– TDaction = login.jsp
– TDparameters = username@@admin
– TDparameters = password@@123456

Notice that the TDparameters tag is the concatenation
of two pieces of information: name and value, separated
by the delimiter @@. This information could be generated
automatically for different scenarios that the test engineer
wants to test.

All tags are extracted from the UML diagram and processed
by the PLeTs plug-in that generates scripts for LoadRunner.
Although all necessary information is included in the UML
diagrams, LoadRunner also needs a description for the test
scenarios. The configuration of the test scenarios is included
in the scenarios file. The PLeTs plug-in uses a template
to automatically generate the scenarios file for LoadRunner.
This template has some markings that are replace by the tags
from the UML diagrams. For example, tag <<Vusers>>
represents the number of virtual users that will be simulated
during the test.

Besides the <<Vusers>> marking, the template file for
scenarios has other markings that are used when generat-
ing test scripts: 1) <<Path>>: contains the application
host address; 2) <<Result_file>>: specifies the results
file name; 3) <<HostGenerator>>: defines the server
that generates the load; 4) <<TestChief>>: contains
the paths for the script tests that will be run for the sce-
nario; 5) <<GroupChief>>: stores information on each
VUsers group that will be simulated by the test script;
6) <<GroupInfo>>: defines the performance counters that
will be used during the test.

Once the test script generation is completed, PLeTs calls
the LoadRunner tool passing as a parameter the test script and
scenario produced. In the test we have performed, we used the
LoadRunner standard performance counters that are already
set in the default user interface. We could have redefined the
screens and counters we wanted to verify, but for the Skill
Management application this was not necessary.

V. CONCLUSION

The use of formal models is a good way for modeling the
behavior and structure of a system. This allows for a precise
understanding of the system behaviour by software developers
or test engineers and, therefore, allows for a better reuse of
the system components as the system evolves.

Although automatization of software testing is desirable, test
engineers usually perform testing manually using, of course,
a set of tools. Capture-replay tools, for example, are widely
used, but they require a full, running build of the application
in order to create the test scripts for the first time, thus
delaying script development; moreover, they require the tester
to execute (manually!) all the script al least once. Besides, test
engineers have to build a mental model of the whole testing
process or strategy. As shown in this paper, MBT can help test
engineers to build a formal model for their testing process as
well. It is important to mention that despite all the advantages
of using MBT described in this paper, MBT requires a
professional with skills in programming languages, software
testing and modeling, and also with theoretical background

262 263

on mathematics, automata theory, graph theory and formal
languages [8].

Furthermore, the use of MBT could require a significant
investment if not supported by a set of tools to plan, monitor
and produce test artifacts. This paper has shown how we
have applied MBT to an application without having to start
the whole process from scratch, hence helping test engineers
that do not have the above mentioned skills or background.
Our approach is based on an SPL tool that generates testing
tools based on MBT. In some previous works we had already
applied our strategy to different testing domains and we were
able to reuse some already developed testing artifacts in the
work presented here. This has reduced our costs to test an
actual application that is used in an IT company.

Another important contribution of this paper is the devel-
opment of a tool to allow the use of MBT in commercial
tools, such as the LoadRunner. Currently there are none, to
the best of our knowledge, commercial tool that uses MBT.
The LoadRunner plug-in developed for the PLeTs tool shows
that the use of MBT is viable in industry. Besides, the team
of the IT company can now use the same plug-in for different
applications they want to test.

Despite the advantages of the implementation of the new
plug-in presented here, some improvements in this new plug-
in could be adopted, for example, in the current plug-in
implementation several data that are needed for the generation
of the LoadRunner scripts are inserted in the model stereotypes
(See Section IV). A simple modification could be the insertion,
in the TDparameters tag, of a name of a file, or even a
database, that would contain these data. The plug-in, then,
would generate scripts based on the data stored in that file, or
database. These improvements will allow us to use parts of the
plug-in for different commercial tools and to further explore
our strategy.

ACKNOWLEDGMENT

We also thank CNPq/Brazil, CAPES/Brazil and INCT-SEC
for the support in the development of this work. We also thank
the reviewers for their comments, which helped to improve our
paper.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transaction Dependable Secure Computing, vol. 1, no. 1, pp. 11–33,
2004.

[2] M. Young and M. Pezzè, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[3] J.-C. Laprie, “Dependability Evaluation of Software Systems in Oper-
ation,” IEEE Transactions on Software Engineering, vol. SE-10, no. 6,
pp. 701–714, 2009.

[4] D. Powell, “Failure mode assumptions and assumption coverage,” 22nd
International Symposium on Fault-Tolerant Computing. Digest of Pa-
pers., pp. 386–395, 2002.

[5] A. Romanovsky and A. F. Zorzo, “Coordinated atomic actions as a
technique for implementing distributed gamma computation,” Journal
System Architecture, vol. 45, no. 15, pp. 1357–1374, 1999.

[6] G. J. Myers and C. Sandler, The Art of Software Testing. New York:
John Wiley & Sons, 2004.

[7] B. Beizer, Software System Testing and Quality Assurance. New York:
Van Nostrand Reinhold, 1984.

[8] I. K. El-Far and J. A. Whittaker, Model-based Software Testing. New
York: Wiley, 2001.

[9] M. Popovic and I. Velikic, “A Generic Model-Based Test Case Genera-
tor,” 12th IEEE International Conference and Workshops on Engineering
of Computer-Based Systems, pp. 221–228, 2005.

[10] K. P. Peralta, A. M. Orozco, A. F. Zorzo, and F. M. Oliveira, “Specifying
Security Aspects in UML Models,” 1st International Workshop on
Modeling Security In ACM/IEEE 11th International Conference on
Model-Driven Engineering Languages and Systems, pp. 1–10, 2008.

[11] E. de M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M. Gimenes,
“PLeTs-Test Automation using Software Product Lines and Model
Based Testing,” 22th International Conference on Software Engineering
and Knowledge Engineering, pp. 483–488, jul. 2010.

[12] P. Clements, L. Northrop, and L. M. Northrop, Software product lines:
practices and patterns. Addison-Wesley Longman Publishing, 2001.

[13] Hewlett Packard - HP, “Software HP LoadRunner,” Available in:
https://h10078.www1.hp.com/cda/hpms/display/main/hpms content.jsp?
zn= bto&cp=1-11-126-178̂ 4000 100, sep. 2010.

[14] L. Apfelbaum and J. Doyle, “Model Based Testing,” Software Quality
Week Conference, 1997.

[15] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems: Advanced Lectures. Se-
caucus: Springer, 2005.

[16] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer,” Formal Methods and Testing, 2008.

[17] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
Survey on Model-Based Testing Approaches: A Systematic Review,”
1st ACM International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies, pp. 31–36, 2007.

[18] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing,” Working Paper, The University of Waikato, Hamilton, New
Zealand, Tech. Rep., apr. 2006.

[19] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing PLA at Bosch Gasoline Systems: Experiences
and Practices,” 3rd International Conference on Software Product Lines,
vol. 3154, pp. 34–50, 2004.

[20] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Addison-Wesley Longman, 2003.

[21] Software Engineering Institute (SEI), “Software Product Lines (SPL),”
Available in: http://www.sei.cmu.edu/productlines/, sep. 2010.

[22] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie-Mellon University, SEI, Tech. Rep., nov. 1990.

[23] K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker, “Gener-
ative Programming for Embedded Software: An Industrial Experience
Report,” 1st ACM SIGPLAN/SIGSOFT Conference on Generative Pro-
gramming and Component Engineering, pp. 156–172, 2002.

[24] M. Barbeau and F. Bordeleau, “A Protocol Stack Development Tool Us-
ing Generative Programming,” 1st ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering, pp. 93–109,
2002.

[25] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison Wesley
Longman Publishing, 2004.

[26] R. Anido and A. Cavalli, “Guaranteeing Full Fault Coverage for UIO-
Based Testing Methods,” 8th International Workshop for Protocol Test
Systems, pp. 221–236, 1995.

[27] Y. Jing, Z. Lan, W. Hongyuan, S. Yuqiang, and C. Guizhen, “JMeter-
based aging simulation of computing system,” International Conference
on Computer, Mechatronics, Control and Electronic Engineering, vol. 5,
pp. 282–285, aug. 2010.

[28] G. hun Kim, H. choun Moon, G.-P. Song, and S.-K. Shin, “Soft-
ware Performance Testing Scheme Using Virtualization Technology,”
4th International Conference on Ubiquitous Information Technologies
Applications, pp. 1–5, dec. 2009.

[29] OMG, “UML Profile for Schedulability, Performance, and Time Spec-
ification - OMG Adopted Specification Version 1.1,” Available in:
http://www.omg.org/spec/SPTP/1.1/, 2005.

[30] C. Woodside and D. Petriu, “Capabilities of the UML Profile for
Schedulability Performance and Time (SPT),” in Workshop SIVOES-SPT
RTAS’2004, 2004.

[31] D. C. et al., Using Rational Performance Tester Version 7. IBM
Redbooks, 2008.

264 265

How IT Professionals Face Negotiations
Sergio Assis Rodrigues

COPPE/UFRJ - Computer Science Department, Graduate
School of Engineering, Federal University of Rio de

Janeiro, Rio de Janeiro, Brazil
sergio@cos.ufrj.br

Jano Moreira de Souza
COPPE/UFRJ - Computer Science Department, Graduate

School of Engineering, Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil

jano@cos.ufrj.br

Abstract — Despite the fact that people frequently see software
development as a commodity, decision-making processes in
Information Technology (IT) projects usually require great effort
in solving several types of conflicts. The main tool to solve such
conflicts is negotiation, which requires strategies and personal
skills. Preparation step is the cornerstone to lead successful deals,
but one of the major issues faced by negotiators, especially
beginners, is to find out when they are emotionally prepared.
Regarding behavioral aspects, there are particularities in IT
people’s conduction, once they are more reasoning than other
professionals. Thus, this work aims at presenting a research
about how IT professionals face IT project’s negotiations. The
research was managed in Brazilian professionals and evaluated
IT people’s performance through psychological tests, behavioral
simulations and negotiation games to set negotiator skills profile.
In addition, some case studies and simulation results are
presented. This exploration is important as a way to show
possible characteristics of style and dominant skills used by IT
people during software development deals. This study works as a
fundamental starting point to realize the requirements to develop
specific negotiation support systems to IT context.

Keywords - Negotiation, Behavioral Simulations, Psychological
Tests, Negotiation Support Systems

I. INTRODUCTION

In order to realize which strategy you should keep during
negotiations, it might be helpful to identify some counterparty
characteristics. In theoretical and practical researches, a set of
specific types have been formed according to a number of
characteristics. This work considers four types of negotiator’s
behavior: i) Logically Reasoning people, ii) Creative people,
iii) Communicative people, and iv) Organized people.

A. Logically Reasoning people

There are some key features that a logically reasoning
negotiator should possess [1]: a) set the rules of negotiation; b)
develop an agenda; c) argue logically; d) adapt the position to
meet changing situation; e) be likely to see the process as being
more important that content or outcome.

Though the logic behavior of a negotiator may seem easy to
be deal with there is a problem which can deter the resolution
of negotiations and mislead the opponents. Logical reasoning
implies that it is peculiar for the person who is using it, i.e. for
one negotiator it may seem obvious to react in a particular way
while for his counterpart his behavior is odd or
incomprehensible [2]. In the framework of his researches, the
author highlights a problem that appears when a logically
operating negotiator confusing his opponent with “reasons”

that do not address to his logic, which is a situation referred as
“argument dilution”. Usually, while confirming a viewpoint,
people tend to use the strongest arguments in the beginning and
the weakest ones are the last to be enumerated. But the listener
deliberately marks the last arguments and bases his further
opinion upon them. In order to avoid misleading the
negotiation to an unsuccessful result, a logical reasoning
negotiator should single out only a couple of reasons that give
sense and approve his position.

B. Creative people

Another negotiation style should be applied while
negotiating with creative people. This type has been given a
close examination to by Michael Spangle and Myra Warren
Isenhart [3]. They define creative thinkers as those who percept
the given information in a unique way and look at the problems
from various angles. These people are distinguished from other
negotiators by their ability to arrange conventional solutions
into more beneficial negotiation`s outcomes. DeBono [4]
introduces a concept of “lateral thinking”. Those who keep to
this principle when managing negotiations tend to open new
facets of the situations hidden to others. According to [4]
lateral thinking can be expressed in the following actions: a)
Looking again at things that are taken for granted (re-
examining assumptions); b) Reducing division and polarization
on issues, which are natural tendencies of the mind; c)Engaging
in deliberate generation of ideas; d) repackaging information in
different ways.

Authors compare the problem solving process executed by
creative negotiators with completing the “blank spaces” with
the missing parts. He argues that being creative negotiators
cannot focus on already approved solutions, hence they start
being inventive [3].

C. Communicative people

When negotiating, we confront people who are
communicative and more reserved counterparts.
Communicative people are prone to starting conversations first,
responding with eagerness and interest. When it comes to
negotiations it is not always easy to say which behavior is more
beneficial. According to [5] every person must react in
coherence with his personal peculiarities. For instance, if a
person is reserved by nature he can turn it to an instrument of
his negotiating strategy. As he listens more than speaks he gets
more information, therefore he can make more solid decisions.
Otherwise, if you are a talkative negotiator and your opponent
turns to be the same, when you start asking him questions he
will feel more at ease, the atmosphere will become less tense

264 265

and your chances of coming to an agreement (mutually
beneficial) will increase.

The author adds up that disclosing information has also too
sides. It can hurt you or your negotiating partner. Or it can
reveal some information about you that will show your
interests from the other side and the other negotiator will be
able to count with it [5].

D. Organized people

One may assume that the most efficient (and probably easy)
negotiations are held with organized (or disciplined) people.
This estimation holds true for a variety of reasons. First of all it
is important to clarify the terms “disciplined” and “organized”.
Ambler [6] gives an insight to discipline and shows that this
type of people: i) is capable of completing the tasks they have
started; ii) possesses unique skill sets; iii) is able to bear ordeals
and face “brutal facts”; iv) is willing to adhere to the
organization`s systems for getting work done.

If we look at the definition of the word “organized” in a
business dictionary we can get the following explanation:
“State of being efficient or methodical. For example, the
employee was highly organized and knew immediately where
to find the general ledger.”

E. Other considerations

It is generally known that emotions convey information
about the individual who by any way expresses them. The
process of the transmission can be denominated as
intrapersonal and interpersonal effects on the individuals [7][8].
Intrapersonal effect is the one which is directed exactly on the
person who experiences the emotions which are later
transforming his behavior during negotiations. Interpersonal
effect incites one negotiator who interacts with the second one
to react differently due to the conduct of the first. The emotions
are given much attention to, since they are used as an indicator
of the preferences and priorities of an individual.

It is interesting to compare the theories of the behavior`s
impact on the negotiations. Let us regard the first one
conducted by Lerner [9] and the second by Pietroni [10]. The
first, as it has already been described earlier, presented the
negative outcomes for a negotiator that are induced by his (her)
bad mood. Here, a person can face a problem of being confused
by his (her) inner state and is willing to opt for the delay of the
negotiations.

On the other hand, Pietroni argues that a negotiator
undergoing emotional difficulties (such as being angry with
something) wins from this state of affairs since his opponent
tends to concede him in this case.

The two contrary viewpoints show two possible outcomes
of a negotiation and leave field for more exploration and
research. Often, dealing with the field of investigation we face
all kinds of research methods by which we can identify the
peculiarities of their originators.

For this purpose, this work will speak about the
investigating methods showed above and will try to understand
the profile of IT professionals through the prism of logical
reasoning, creative, communicative and organization aspects.

The article aims at presenting analyses about Brazilian IT
negotiator’s profile and dominant skills. The follow sections
show studies and results about how IT professionals face
negotiations. The evaluations were carried out during the last 4
years and a group of specialists were select for the experiments
depicted in this work.

II. IT PROFESSIONALS IN BRAZIL

In 2008 there were more than 80 thousand IT regular
professionals working specifically in IT companies in Brazil, as
show in Table 1. Considering other companies (not only IT
corporations), this number grows to 285 thousand people [11].

TABLE I. IT REGULAR PROFESSIONALS WORKING IN IT COMPANIES [11]

Occupancy IT
Companies

All
Companies

IT Director 160 1.138
IT Manager 1.730 10.118
Computer Engineer 622 1.103
System Analyst 37.435 81.836
Software Development Technician 11.616 26.588
Network and DB Administrators 2.073 6.017
Computer Operators and Monitors 12.285 44.621
Network Operators 357 5.417
Data Transmission Operators 10.134 72.329
Telecommunication Staff 4.051 35.777

Total 80.463 284.944

The group of IT Brazilian Industry concerns people who
work in followed activities: Hardware consulting, Software
development and maintenance, Software development
consulting, Data processing, Data base, on line distribution and
electronic contents, Maintenance of IT equipments, among
other IT activities.

On the other hand, there are people who work not only in
IT Brazilian Industry but also in others [11]. This background
reveals the relevance of IT area in Brazilian Industry.

Therefore, this work analyses how these professionals
behave as negotiators. The deal, in this case, may occur in
several circumstances in software development projects, such
as in sales prospecting, purchase of services, changing
requirements, resources allocation and other conditions.

III. EXPERIMENTS AND RESULTS

One goal of the current work is to verify if information
technology professional, especially in the software
development area, has dominant skills and specific behaviors
styles in their negotiations.

Notably, Brazil is a huge country, with the fifth largest
territory of the world and about 184 million people, according
to the final report from the IBGE population accounts, made in
2007 in 5,435 municipalities [13]. In the Information
Technology subject, Softex points out that in 2008, about
285.000 professionals worked in the Brazilian industry,
whether or not for computer companies. This reports shows
the expectative for 2009 were 340.000 IT people [11]. This
work used this value to base the experiments.

266 267

From these data, some criteria that reflect the limitations
and boundaries of this research were used. The confidence
level, the margin of error and the population frequency were
allowable for the desired ends.

• Target audience: 340.000
• Desired confidence level: 95%
• Estimated margin of error: 15%
• Estimated populational frequency: 50%
• Sample size: 43

In order to find out the sample size, Cochran studies [14]
and the table available on the work of [15], whole presented in
Figure 1. , were used.

Figure 1. Sampling calculation used in this research (based on [15])

This work uses questionnaires found in [12][16] and some
interesting results have been achieved. The questionnaire was
applied to 74 professionals aiming to verify the types of
3.prevailing skills. 53 people were from IT area and 21 were
from other areas.

Although outnumbered, the individuals classified as non-IT
were kept as a benchmark. Thus, some analysis could be
observed, as shown in Figure 2, which suggests that IT
professionals are concentrated in the Logical Reasoning profile.

Figure 2. Profile types comparative

The arrangement presented in Figure 2 and Figure 3
suggests, generally, some characteristics of IT professionals
that can be remarkable during negotiations, such as:

• Easily identify problems and rationally deal with them;
• Work with facts instead of aspirations;
• Remain prepared to justify the done deal, since they are

comfortable at explaining their position in a logical and
rational;

• Seem to be inefficient to handle multiple creative
solutions;

• They have difficulty coping with emotions;
• They can take too long to close the deal on behalf of an

attempt to find a unique and rational solution.

Figure 3 shows that the Intellectual and Technical /
Organizational profiles are dominant in the interviewed IT
professionals. This layout reflects the instinct to seek solutions
through methodical and well-defined processes. Besides, the
Figure 3 indicates that the individual IT has the greatest
difficulties in dealing with interpersonal and creative aspects
and is also slightly less inclined to routine, since it does not
involve major innovations and challenges.

Figure 3. Prevailing aptitudes

Figure 4 and 5 respectively show the profiles and dominant
aptitudes of IT professionals, referred as Technical and the
ones, known as Management. The technical individuals do not
lead any person, while the managers have leadership role.

Figure 4. Profiles: IT professional

266 267

Figure 4 shows that the professional IT technician tends to
be more logical and analytical while management has a more
balanced structure, highlighting the organization as dominant
aptitude.

Figure 5. Prevailing aptitudes: IT professional

In the skills assessment, the results did not show
discrepancies between the technical and managerial profiles, as
illustrated in Figure 5.

 From this research, some aspects (methods and tools) were
developed or customized to deal with the points of better
understanding and the possible difficulties faced by
professionals at the time of negotiation:

• The setup method should consider that the individual
will be rational in their assessment and will have
difficulties to transcribe large volumes of information.

• Models that comprise sequential steps may have
synergy with the methodical professional profile.

• Because it is a more synesthetic profile, the preparation
tool must provide mechanisms that indicate that the
provided data was really processed and instead of just
be stored, for example, if the tool request textual data,
it is important to generate graphs or tabulated mining
mechanisms text indicating the major concerns (words
or phrases, for example) in the current negotiation.

• Also from the synesthetic profile perspective, teaching
methodologies that rely on computers can benefit IT
professional negotiation skills learning. In this case, as
it is a learning environment, a negotiation games
approach can be associated with a context that involves
settlement options and multiple outcomes in order to
supply the lack of creativity intrinsic to the
professional.

• About the difficulty of handling interpersonal work, the
tool must contain mechanisms to assemble a
relationship tree, so that the IT negotiator always
remember the others involved, even when they are not
at the negotiating table.

CONCLUSIONS

We addressed that a great difficulty during negotiations is
to distinguish if the negotiator is well prepared or not. This
work provides an analysis of how to understand a negotiators’
psychological profile, their tendencies during conflict
resolution and attempts to show their experience in the
involved negotiation context.

Experiments were carried out through questionnaires and
psychological tests that respondents could not realize they were
being analyzed. This approach was important to guarantee
impartiality during the answers.

The results depict the relevance of behavioral studies,
especially considering how difficult is to analyze tendencies
during negotiations among IT professionals. The rate of use of
this mechanism is growing as well as the interest of new IT
professionals and also students.

REFERENCES

[1] Ezendu, E. (2009), “Building Negotiation Skills”,
http://www.slideshare.net/ezendu/building-negotiation-skills (last
accessed on 12 March 2011)

[2] Newall, I. (2009), Research in Organizational Behavior, 22: 1–50.
Logical Persuasion In Negotiation, (last accessed on 04 November 2009)

[3] Spangle, M. & Isenhart, M. W. (2003). Negotiation: communication for
diverse settings, Ed. SAGE, 435 pages

[4] DeBono (1967), New Think: The Use of Lateral Thinking, 1967
[5] Stitt, A. (2010). Negotiation Tip of the Month by Allan Stitt,

http://www.sfhgroup.com/ca/training/negotiation/negotiation-tip/, tips
from March 2010 and July 2010, (last accessed on 10 March 2011).

[6] Ambler, T. E. (2009). A Culture of Discipline - Building Toward Great,
Center for Simplified Strategic Planning, Inc. Ann Arbor,
http://www.strategyletter.com/CD0207a/featured_article.php, (last
accessed on 12 March 2011)

[7] Keltner, D., & Haidt, J. (1999). The social functions of emotions at
multiple levels of analysis. Cognition and Emotion, 13: 505–522.

[8] Morris, M. W., & Keltner, D. (2000). How emotions work: The social
functions of emotional expressions in negotiations.

[9] Lerner, J.S., D.A.Small and G.Loewenstein (2004) “Heart strings and
purse strings: carryover effects of emotions on economic decisions”,
Psychological Science, 15: 337-41

[10] Pietroni, D., Van Kleef, G. A., De Dreu, C. K. W., & Pagliaro, S.
(2008). Emotions as strategic information: Effects of other's emotions on
fixed-pie perception, demands and integrative behavior in negotiation.
Journal of Experimental Social Psychology, 44, 1444-1454.Spangle, M
& Isenhart, M.W. (2003). Negotiation: Communication for Diverse
Settings, p 134

[11] Softex, (2009) Software e Serviços de TI: A indústria Brasileira em
Perspectiva. Available at:
http://publicacao.observatorio.softex.br/_publicacoes/arquivos/apresenta
coes/Apresentacao_Software_e_servicos_DEZEMBRO_ITS.pdf (last
accessed on 13 February 2010).

[12] Rodrigues et al (2010). An approach to understand IT professionals'
behavior during negotiations, Negocia, negocia.fr, Paris (France)

[13] IBGE, (2007). Contagem da População 2007, Ministério do
Planejamento, Orçamento e Gestão. Available at:
http://www.ibge.gov.br/home/estatistica/populacao/contagem2007/conta
gem.pdf. (last accessed on 13 February 2010).

[14] Cochran, W., (1977). Sampling techniques 3 ed., New York: Wiley.
[15] Snedecor, G. & Cochran, W.G., (1992). Statistical methods 8 ed., Ames

Iowa: Iowa State Univ. Press.
[16] Miranda, R., (1997). Além da inteligência emocional : uso integral das

aptidões cerebrais no aprendizado, no trabalho e na vida, Rio de Janeiro:
Campus.

268 269

Designing a Distributed Systems Architecture Testbed

for Real-Time Power Grid Systems

Yan Liu, Ian Gorton

Fundamental & Computational Sciences Directorate

Pacific Northwest National Laboratory

Richland, WA

yan.liu@pnl.gov, ian.gorton@pnl.gov

Yousu Chen, Shuangshuang Jin

Advanced Power and Energy Systems

Pacific Northwest National Laboratory

Richland, WA

yousu.chen@pnl.gov, Shuangshuang.jin@pnl.gov

Abstract— Power engineers who are striving to improve real-

time attribute of power grid applications are ill equipped with

software engineering methods and tools that allow them to

rigorously evaluate their designs, taken into account data

communication, geographic locations, and high performance

computing capacity. This paper presents a technical approach to

designing a testbed for embedding real-time monitoring and

computation functionalities into the power grid. The approach

focuses on integrating the parallel computational models with the

data management infrastructure for near-real time state

estimation. We study and summarize various forces and

requirements that drive the design decisions in the distributed

systems architecture. Given the continental scale of the power

grid, it is important for the testbed to be extensible and scalable

within a complex topology of physical entities, controlled by an

overlaid network of power utilities and regulatory balancing

authorities. This paper outlines the technical steps, and software

toolkits to develop this testbed.

Keywords-distributed architecture, power grid, real-time, testbed

I. INTRODUCTION

The power grid is a continental scale distributed generation

and distribution system with a complex topology of physical

entities, controlled by an overlaid network of power utilities

and regulatory balancing authorities. For example, the eastern

interconnection has approximately a dozen reliability

coordinators and over a hundred balancing authorities. Each

reliability coordinator and balancing authority has its own

control center that uses a state estimator to maintain situation

awareness of their internal system; the state estimator at the

reliability coordinator is often a hierarchical state estimator

that covers several balancing authorities.

To improve the reliability of the power grid, near real-time

situational awareness is recognized as one key enabling

functionality for better planning and reliable grid operations.

Underpinning this vision, emerging and future deployments of

high speed sensors such as PMUs (Phasor Measurement Units)

give direct access to the current state of the grid at various

points within the power grid. Synchronized phasor

measurements are commonly referred to as synchrophasors.

PMUs produce real-time synchrophasor data that capture the

dynamic characteristics of the power system, and hence

facilitate time-critical control. PMUs typically generate

measurements 30 samples/second with precise time

synchronization. This is in comparison with traditional

Supervisory Control And Data Acquisition (SCADA)

measurements, which generate a sample every five seconds or

longer and are not time synchronized.

PMUs are becoming increasingly attractive in various

power system applications such as system monitoring,

protection, control, and stability assessment. The number of

PMUs connected to the power system is expected to increase

by 3-5 orders of magnitude by 2020. Inevitably, the substantial

growth of these high quality sensors in the near future creates

the need for new models such as dynamic state estimation to

enable real-time predictions[1]. It is envisioned the time to

solution of such models needs to be radically reduced to the 10

milliseconds to 1 second range, compared to current delay of

2-4 minutes to obtain results. In addition, the growth of model

size is expected to be 2 orders of magnitude in the next 10

years.

Consequently, the solution is envisaged that High

Performance Computing (HPC) capabilities accommodate the

computing demand of these models at the regional scale [4,5];

and state estimation results are communicated at the wider

continental scale. Connecting HPC-enabled distributed power

models across regional locations becomes a systems

architecture design challenge, involving many intricate factors

• Transmission latencies for data from sensors to

distant monitoring applications;

• Requirements from applications for hard-real delivery

of monitoring data in order to provide highly accurate

situational awareness;

• Tolerance of applications for delayed or missing data;

• The hierarchical nature of data collection functions

and associated monitoring applications such as state

estimation.

At the regional scale, evaluating the performance of running

power models on the local computing center is vital to meet

the required time constraints. At the continental scale, the

geographical location of various computing centers impacts

the communication delays of the status exchanged between

regional computing centers [9]. As a result, it is essential to

design a distributed systems architecture well equipped with a

rigorous evaluation method and software toolkit to collect

empirical evidence for a design option.

In this paper, we propose technical approaches to designing

a testbed for exploring HPC-enabled power models in

268 269

distributed systems architecture. In section II, the testbed

design is motivated by the requirements and issues arising

from the large scale and distributed nature of the power grid.

The testbed approach is presented in section III, followed by

the conclusion.

II. SYSTEM REQUIREMENTS AND ARCHITECTURE

CHALLENGES

At the infrastructure level, one mission of North American

SynchroPhasor Initiative (NASPI) is to create robust, widely

available and secured data management infrastructure, called

NASPInet [2]. NASPInet explored a tiered architecture for

distributed continental scale network. This conceptual

architecture outlines the guidance at the network level,

connecting sensors, monitoring entities, and power grid

applications through NASPInet phasor gateways and data bus

middleware. However, it still remains an open research

question - what is the optimal architecture design to leverage

the data management infrastructure at the programming level.

To address this issue, we envision the solution is threefold.

First, power models in parallel have practical needs for

connecting to the data management infrastructure
1
. These

models usually implement the algorithms using specific

parallel computing programming models such as MPI

(Message Passing Interface), hence their communication with

the infrastructure is more complicated than device-based

equipments such as sensors in the power grid, which have

limited computing tasks and mostly communicate data directly

through network protocols. For an instance of the distributed

state estimation, communication across the local MPI

boundary is necessary to exchange power grid monitoring data

or analysis results.

The interface between MPI code and the infrastructure not

only needs mechanisms wrapping the middleware APIs, but

also software utilities pre-processing and post-processing

accessed data. For example, the monitoring data from remote

regions of the power grid represent bus line status in addition

to the local regional bus line model. These data need to be

assembled into one bus line model according to an overall

network topology. Since data may arrive at different time, they

need to be buffered first and then partitioned to the processors

for parallel computing.

Second, the effectiveness of the parallel power models

includes near real-time requirements solving the models and

the accuracy of the state estimation. The evaluation of a model

must take into accounts the communication delays and

failures. In fact, power grid engineers are ill equipped with

simulation tools that allow them to construct representative

distributed architecture scenario and do what-if analysis.

Although network simulators are available, they are mostly

used to analyze the end-to-end data flow between entities [8]

rather than being integrated with the top level applications.

The simulation of the distributed architecture entails

customizing the network simulators in a way that allows

Later in this paper, we refer data management infrastructure as

infrastructure for short.

power engineers to configure the network topology by

assigning values to networking parameters for each bus line

within the communication scope. In addition, sampling data

need to be collected according to the network topology

configured. In reality, these sampling data should be obtained

using the interface through the infrastructure. For the testing

purpose, sampling data are synthetically generated and sent to

the parallel power models through the interface.

Third, applying the parallel computational model to

improve the real-time feature of the power models is an active

research topic. The power grid algorithms and tools are

typically run on personal computers and at most, moderate-

sized clusters. As we envision the size, complexity, and

interconnectedness of the power grid are dramatically

growing, forecasting the vulnerabilities of the future grid using

these outdated capabilities hinders the ability to predict, react

to and/or mitigate failures such as the 2003 blackout on the

East Coast in the US.

New development of the power models underpinned by

HPC capability or re-engineering the existing ones are

emerging. The ability to estimating the end performance at the

design level can provide early feedback to improve the model

as well as reduce the costs of faulty deployment. Predicting

performance at the design level entails a systematic

performance analysis method and tools to collect profile data.

Overall, we define the testbed in this paper that

encompasses the simulation toolkit for running experiments

and predicting performance of the power models in distributed

systems architecture. By experiments we mean exploring

scenarios of deploying the HPC centers at different geographic

locations, observing the data communication effects on power

model performance, and partitioning the network topology to

do what-if analysis.

III. THE TECHNICAL APPROACH

The testbed is designed to explore the distributed systems

architecture depicted in Figure 1. In this architecture, a site

(such as site A) accommodates the computing center deployed

at a local balancing authority that controls the system. Such a

computing center is equipped with parallel computing

software and hardware. A site also encapsulates the computing

center of a regional reliability coordinator (such as site B) that

oversees reliable operation of the systems. A reliability

coordinator connects to multiple sites of balancing authorities

or other reliability coordinators, exchanges lower level state

estimation results, and performs hierarchical state estimation.

We envision both the balancing authority and reliability

coordinator employ high performance computing centers to

run power models such as state estimation.

The sensor reading data from transition substations are sent

via SCADA systems within each site. With PMU data

available from several Phasor Data Concentrators (PDC)s

deployed within the site, PMU data can be combined with

SCADA data to improve the accuracy of state estimation.

270 271

Figure 1: A distributed systems architecture for real-time power grid system

The data communication across sites is through dedicated

middleware that can handle high throughput and large amount

of sensor reading data in the power grid. In this work, we

assume the middleware provides APIs and supports the IEEE

standard protocols of disseminating power grid data. On each

site, historical sensor reading data from the local region are

stored in its data management system. The middleware is also

responsible for retrieving the datasets of interest to the power

grid applications.

Given the middleware and data management infrastructure

in Figure 1, the testbed is devised in three steps as follows.

A. Step one

An interface layer is developed to wrap the communication

between the MPI processor and the outside as shown in Figure

1. Using MPI, the parallel power model usually has a master

processor to fetch the data for computing, partition the data

and dispatch a piece of data to a number of worker processors

running the computing tasks in parallel. Hence only the master

node needs to explicitly invoke the interface as a client to the

remote site. We refer the master node as the communicator

node.

The interface layer devises key components of data

processor and data buffer at the client side. The data processor

resolves the location of data demanded (either from the local

region or from remote sites) from a centralized data

registration service. The data processor then uses the location

information to connect to the corresponding server and fetch

the data through the middleware. Depending on the protocol

that the middleware supports, the data processor needs to

extract the required fields of data (such as bus voltage, phase

angle) and assemble them as inputs to the parallel power

models. To illustrate the assembly of the data from disparate

sites, the IEEE 118 bus system is grouped into three areas as

the experiment devised in [3]. Each area can be considered as

a separate site in the architecture of Figure 1 that delivers the

SCADA and PMU data along the bus lines involved.

Consequently data retrieved from individual areas need to be

assembled into a single bus model before they are input to the

state estimation model.

B. Step two

The interface layer is ported to a network simulation tool as

shown in Figure 2. The network simulation tool is configured

to estimate the delay incurred by data communication from

remote sites.

Figure 2 Simulating data communication delays

 Parallel
Contingency

Selection

 Parallel
Contingency

Analysis

 Parallel
State

Estimation

Time

pas t now futur e

2

3

4
Enabling
Electricity
Infrastructur
e Real-Time
Decision
Support

Interfaces to
Middleware

Network Simulator

1

270 271

Since individual site in the architecture represents the

power grid utility centers and balancing authorities, the

network simulation needs to have a precise network topology

reflecting the real topology of physical entities. The goal of

the distributed systems architecture design is to embed HPC-

enabled power grid models at the optimal site, given the

geographic locations of the physical entities. Using the

network simulator has obvious benefit in the testbed. The

network simulator allows flexible designation of the HPC

sites, and estimates the effects through simulation.

C. Step three

The ultimate goal of the testbed is to predict the

performance of new parallel models and effects of any

modifications made to existing models. Without complete

source code of the model, predicting the performance at the

design level entails a systematic approach. Our previous work

[6] develops a benchmark based performance predication

method for Java enterprise applications. The core of this

method is applied to the testbed as shown in Figure 5.

Benchmarks are deployed to observe the performance

characteristics. They are useful vehicle to obtain performance

profile by empirical measurements. The performance profile is

then used to calibrate a performance model characterizing the

parallel models. Performance modeling of parallel applications

is well established research [7]. Existing modeling techniques

can be applied to develop the model.

Figure 3 Performance prediction using the testbed

The testbed packs the interface layer, the customized

network simulation toolkit, the benchmark suite, and the

performance analysis model in a single environment. The

testbed aims to facilitate engineers who design future HPC

power grid models to evaluate their design, given the

infrastructure capacity, networking condition, and geographic

location.

I. CONCLUSION

The evolution of the power grid advocates HPC capabilities

for improving the power models and delivering near real-time

operations in power systems. Computing centers equipped

with HPC software and hardware need to be designated in the

overlaid network of physical entities. This raises architecture

challenge to integrate the HPC applications with the data

management infrastructure and the networking environment.

Power engineers are in need of software engineering tools that

facilitate them to evaluate their parallel power models in

distributed systems architecture. From our research

experience, we prioritize the requirements and discuss the

challenges to address them. We propose a testbed design to

make the integration between HPC applications and the

infrastructure more transparent to the power engineers. The

ultimate goal of the testbed is a useful tool for engineers to

estimate the performance of their models under certain

conditions of data communication. Our future work aims to

validate the testbed design with hieratical state estimation and

dynamic analysis of power systems.

REFERENCES

[1] Bakken, D.E., Bose, A., Hauser, C.H., Schweitzer. E.O., Whitehead, D.
E., Zweigle, G.C., Smart Generation and Transmission with Coherent,
Real-time Data, Technical Report TR-GS-015, August 2010.
http://gridstat.net/publications/TR-GS-015.pdf [last accessed on Mar 20,
2011]

[2] Bobba, R. , Heine, E., Khurana, H., and Yardley, T., "Exploring a
Tiered Architecture for NASPInet," Proceedings of the IEEE PES
Conference on Innovative Smart Grid Technologies (ISGT),
Gaithersburg, MD, Jan. 19-21, 2010.

[3] Bose, A., Poon, K., Emami, R., Implementation Issues for Hierarchical
State Estimators, Final Project Report, September 2010.
http://www.pserc.wisc.edu/documents/publications/reports/2010_reports
/Bose_State_Estimation_S-33_Final_Report_8-2010_ExecSum.pdf [last
accessed Mar 20, 2011]

[4] Chen Y, Z Huang, and D Chavarría-Miranda. 2009. "Performance
Evaluation of Counter-Based Dynamic Load Balancing Schemes for
Massive Contingency Analysis with Different Computing Environments
" In IEEE PES General Meeting. PNNL-SA-69878, Pacific Northwest
National Laboratory, Richland, WA.

[5] Gorton, I., Huang, Z., Chen, Y., Kalahar, B., Jin, S., Chavarría-Miranda,
D., Baxter, D., and Feo, J. 2009. A High-Performance Hybrid
Computing Approach to Massive Contingency Analysis in the Power
Grid. In Proceedings of the 2009 Fifth IEEE international Conference
on E-Science (December 09 - 11, 2009). E-SCIENCE. IEEE Computer
Society, Washington, DC, 277-283. DOI= http://dx.doi.org/10.1109/e-
Science.2009.46.

[6] Liu, Y., Gorton, I., Liu, A., Jiang, N., and Chen, S., 2002. Designing a
test suite for empirically-based middleware performance prediction. In
Proceedings of the Fortieth International Conference on Tools Pacific:

Objects for internet, mobile and embedded applications (CRPIT '02).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
123-130.

[7] Martinez, D.R.; Blanco, V.;Boullon, M.;Cabaleiro, J.C.; Rodriguez, C.;
Rivera, F.F.; Software Tools for Performance Modeling of Parallel
Programs, Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, e: 26-30 March 2007, 1 - 8

[8] Ragib Hasan, Rakesh Bobba and Himanshu Khurana, “Analyzing
NASPInet Data Flows”, IEEE Power Systems Conference and
Exposition (PSCE '09), Seattle, Washington, March 2009.

[9] Tomsovic, K.; Bakken, D.E.; Venkatasubramanian, V.; Bose, A.; ,
"Designing the Next Generation of Real-Time Control, Communication,
and Computations for Large Power Systems," Proceedings of the IEEE ,
vol.93, no.5, pp.965-979, May 2005

Network Simulator

 Parallel
Contingency

Selection

 Parallel
Contingency

Analysis

 Parallel
State

Estimation
1

Interfaces to
Middleware

Interfaces to
Middleware

MVAPICH
Benchmarks

Performance

Prediction Models

272 273

Supporting Software Engineering Education through a

Learning Objects and Experience Reports Repository

Rodrigo Santos, Cláudia Werner

COPPE/University of Rio de Janeiro
Rio de Janeiro, RJ, Brazil

{rps, werner}@cos.ufrj.br

Heitor Costa

Federal University of Lavras
Lavras, MG, Brazil

heitor@dcc.ufla.br

Simone Vasconcelos

IFF – Fluminense Federal Institute
Campos, RJ, Brazil

simonevs@iff.edu.br

Abstract – The formation of human resources in Software

Engineering (SE), as well as in other areas of Computer Science

(CS), depends on the education research. It is possible to identify

some efforts performed by SE community. However, they

represent isolated and localized initiatives, reducing their

diffusion and use in large scale in global and regional scenarios.

This work presents a strategy to support the educational research

in SE focused on empirical research. The goal is to contribute to a

body of knowledge in SE education thought a learning objects
and experience reports repository.

Keywords – Software Engineering Education;Learning Objects;

Experience Reports; Empirical Software Engineering; Reuse.

I. INTRODUCTION

The teaching and learning process in Software Engineering
(SE) has been discussed in the last years [14] to reflect the
current demand for complex and large systems of systems and
software-intensive systems. Usually, professors teach SE
concepts through theoretical courses, contemplating practical
activities in a small and short time project. Thus, the new
software engineers meet a scenario where learned techniques
and methods are not applicable, and they use ad hoc practices
based on their experiences, focusing on coding. This can
negatively impact the establishment of engineering principles
and good practices in software development processes. The
university should not take all the responsibility (since it is not a
company) but need to prepare the students for real challenges
in SE industry [15].

Motivated by this fact, some efforts consisted in developing
reference documents such as SWEBoK [7], SE2004 [1] and
CSDP [10], as well as the establishment of many
undergraduate and graduate programs around the world.
However, all these efforts tend to dissipate when treated as a
set of isolated strategies, contributing to a divergent and
localized scenario in SE education, no evidence-based and no
focused on use of the best educational resources [9]. So, it is
important to identify mechanisms that allow the organization of
this knowledge, exposing it to the SE community.

In order to contribute to SE education, the empirical
paradigm involves the collection and analysis of data and
evidences that can be used to characterize, evaluate and show
relations among technologies, practices, and experiences on SE
teaching and learning processes. Therefore, empirical results
can compose a body of knowledge over time [5], providing a
base to accepted and well-formed theories about SE education.

These theories can be materialized by a learning objects and
experience reports repository, where researchers and professors
can communicate, act as producers and consumers of
educational resources, and also drive SE education to a more
mature field of Computer Science (CS).

In this sense, this paper aims to present EduSE Research
Strategy, an approach to explore empirical studies as a mean to
support large scale SE education. From cooperatively
developing a scientific investigation protocol with SE
community in four phases, a unified body of knowledge can be
organized, taking into account SE global aspects and regional
peculiarities (i.e., problems, solutions and challenges in
education in SE areas). Also, this process allows the existence
of a dynamic and evidence-based repository of SE learning
objects and experience reports in its fifth phase. The paper
follows this structure: Section II discusses the concepts of
learning objects and experience reports, contextualizing SE
education; Section III presents EduSE Research Strategy, its
phases and infrastructure; and Section IV points out final
considerations and future work.

II. BACKGROUND

A. Learning Objects and Software Engineering Education

A learning object is the smallest independent structural

experience that contains an objective, a learning activity and

assessment. It represents a set of reusable and self-contained
digital resources with an educational objective structured by

three internal components: contents, learning activities and

contextual elements [25]. A learning object must have an

external information structure (metadata) that facilitates its
storage, search and retrieval.

For the Learning Technology Standards Committee (LTSC)
of the Institute of Electrical and Electronics Engineers (IEEE),

a learning object is any digital or non-digital entity that can be

used in the technological support to learning, education or
training, e.g., texts, images, graphs, tables, presentations,

diagrams, videos, games or any digital educational material,

used by the professors assisting students in teaching a subject

[11]. In its essence, a learning object is reusable.

Some types of information may be included in a learning
object and its metadata [11]: general course descriptive data,

life cycle, instructional content, glossary of terms, quizzes and

272 273

assessments, rights, relations to other courses, and educational

level. Some works consider a process model for learning
object development, such as ADDIE [17]. Besides, the

creation of the learning object standards makes the definition

of important characteristics possible, such as reuse, durability,

and accessibility, highlighted in standards (e.g., SCORM [2]).

In SE education, the use of learning objects aims at
minimizing the mentioned problems since it provides

mechanisms to facilitate the teaching and learning processes,

beyond promoting relations between concepts, practices and

results in SE. Some learning environments are developed to
assist the SE learning process and simulate many real

situations related to software development that stimulates and

motivates students. This kind of learning objects can be
games, scenes, graphs, and others. Some games used in SE

learning considering Project Management (e.g., The

Incredible Manager [8]) and Requirements Engineering (e.g.,

Guess what we want [3]) areas.

B. Experience Reports and Software Engineering Education

An important element in CS educational techniques is the
experience report, i.e., the exposition of a tradeoff between
educational proposition and realization made by professors,
which evidences success and failure strategies and tactics in
teaching and learning processes over time [9]. This element
represents a channel among professors and researchers to treat
educational issues and communicate new solutions among
them. In this sense, the efforts to generate an experience report
database use empirical techniques [5]. The empirical studies
allow theories to be formulated, tested, and validated, evolving
an experience report to a status of evidence (or not), i.e.,
evidences are generated from characterizing, assessing,
predicting, controlling, and improving products, processes, and
theories. Thus, experiences in education can explore these
studies towards the continuous improvement.

The execution of educational research is supported by
studies which aim to discover something unknown or test
something known. They can be classified into primary and
secondary studies. Primary studies are directed by hypotheses
to be verified or inferred. These studies are conducted when it
is necessary to characterize a particular learning object in use
within a specific context (e.g., game, educational technique or
software). The result analysis of a primary study can be
quantitative, semi-quantitative or qualitative, and it can
represent (or is associated to) an experience report. Three types
can be identified [26]: (i) case study is executed to observe a
behavior or phenomenon shown by an entity within a limited
time; (ii) quasi-experiment is executed once a greater control of
the situation is needed, aiming at manipulating one or more
variables and control the value of others; and (iii) survey is
executed to collect information from a sample of the population
through a set of questions.

Although primary studies characterize a specified learning
object, they are not sufficient [26]. Thus, secondary studies aim
to integrate results from several correlated primary studies.
Secondary studies are useful in revealing evidences and
constructing bodies of knowledge that can be mapped to real
and everyday educational experiences. These studies happen

through systematic reviews and meta-analysis [6]: the first one
is a methodology focused on a literature search protocol; and
the other one is a study applied after a systematic review to
statistically treat the quantitative data from analyzed papers.

Initiatives of empirical studies plan and execution in SE
education can be found in the literature, some of them reporting
experiences of using different and interesting strategies to have
the students’ attention. Papers of two conferences, Brazilian
Forum on SE Education (FEES) and International Conference
on Software Engineering Education & Training (CSEET) were
examined, identifying some educational discussions, such as (i)
SE as an undergraduate course and SE in CS courses, (ii)
teaching areas of knowledge from SWEBoK, (iii)
interdisciplinarity, and (iv) status of SE in university and
industry. This analysis is presented in FIGURE I.

FIGURE I. Educational aspects identified on papers

III. EDUSE RESEARCH STRATEGY

 Based on Shull et al. [22] and Spínola et al. [23] proposals,
EduSE Project was started in order to generate a collaborative
and large scale research strategy to support SE education,
called EduSE Research Strategy [19]. It proposes secondary
(i.e., systematic review) and primary (i.e., survey) studies to
establish, base and integrate SE education researches in a
collaborative (i.e., among different SE researchers), distributed
(i.e., among different institutions) and specialized (i.e., dividing
experts by SE areas work groups, such as requirements, design,
test, reuse etc.) way. Hence, two communities are highlighted
as direct EduSE Research Strategy stakeholders: researchers
(who research in SE and wish to improve the education of their
SE areas) and professors (who teach SE classes).

Using the GQM (Goal/Question/Metric) approach [5], the
project goal is to analyze SE teaching and learning processes
for the purpose of characterizing with respect to identifying
problems, solutions and challenges, beyond regional
peculiarities from the SE researchers’ point of view, in the
context of SE and CS courses. In this sense, the research
question could be established as: What are the main problems,
existent solutions and pointed challenges in SE teaching and
learning process related to dimension <SE area>?.

From the research question, four phases were developed to
compose EduSE Research Strategy’s kernel (FIGURE II.) by
deriving work focused on the technology definition research
strategy proposals mentioned above. These phases are
connected and refined by activities and tasks: (1) Ad hoc
Literature Review Phase aims at identifying basic concepts
about SE education, and allowing the definition of a systematic
review protocol for supporting each SE area work group; (2)

274 275

Systematic Review Phase aims at elaborating and executing the
systematic review protocol in each SE area work group – based
on the results extracted from papers analysis, the work group
decides if the study needs to be refined, or if the set of mapped
knowledge should be evaluated through a survey; (3) Survey
Phase aims at planning and executing studies to evaluate the
knowledge acquired in the previous phase, considering SE
professors community perspective in regional scenarios; and
(4) Body of Knowledge Phase aims at joining all knowledge
obtained from the last three phases in order to organize a SE
education body of knowledge (i.e., studies reports; tracking
among researches questions and problems, solutions,
challenges and regional peculiarities; search, retrieval and
communication mechanisms to find and improve teaching
practices and SE techniques etc.). Thus, this phase requires a
repository to share information related to SE education.

1 2 3

4
5

FIGURE II. EduSE Research Strategy Phases

When the set of research questions mentioned before are
treated through the empirical paradigm, a body of knowledge
can support well-formed theories in this field and directly
impact the process of transferring research products to software
industry, since SE researchers and professors can interfere in
SE human resources formation. It means that SE courses and
classes should be treated as laboratories that use leaning objects
and are based on experience reports to explore regional SE
industry issues, using and improving SE tools, techniques, and
processes, as well as disseminating SE good practices. All
stakeholders win: regional and global software industry hires
well-formed software engineers, and universities and research
centers have a chance to evaluate their SE scientific researches
through educational researches on their SE areas using the
empirical paradigm in different scenarios and subjects.

The results of preliminary survey with professors discussed
in [21] provided knowledge for two research activities in
EduSE Project: the first one is the definition of the EduSE
Research Strategy fifth phase, and the last one is the modeling
of a web environment architecture to support EduSE Research
Strategy. Initially, the Management of Learning Objects and
Experience Reports Phase aims to support the learning objects
and experience reports development and life cycle, as shown in
FIGURE III. So, a mechanism integrated to the repository
should allow search, retrieval, storage, documentation, and
publishing of the mentioned educational resources.

Aiming to validate their researches through in vivo primary
studies, SE researchers create and publish educational

resources as reusable components, each of them composed by a
learning object, a manual (instructions), and an XML scientific
protocol which will generate a questionnaire with data of
interest to be collected when a resource is used in vivo. On the
other hand, aiming to improve their classes and save time, SE
professors freely search and retrieve these educational
resources, and download them after agreeing with feedback
terms. That is, after using and collecting required data in
classes, SE professors should provide feedback, fulfilling a
form with the questionnaire prepared by the resource producer.
Hence, SE researchers can aggregate and summarize data,
extracting information about their educational resources and,
consequently, improving educational resources and related SE
research products. Also, they can publish papers related to their
researches based on real cases, creating a positive cycle.

FIGURE III. Management of Learning Objects and Experience Reports

In order to share teaching and learning experiences as well
as learning objects evaluations, SE professors can report
opinions and describe situations, particularities, scenarios, and
contexts faced during SE classes in any SE area or course. This
information is also a reusable component and should be stored
and classified to be searched and retrieved. SE researchers can
access them to develop or evolve learning objects as solutions.
In this sense, it is important to track learning objects and
experience reports to problems, solutions, challenges, and
regional peculiarities previously identified in EduSE Research
Strategy phases 2-3 that compose the SE body of knowledge.

Based on the five phases, a web environment architecture to
support EduSE Research Strategy was developed and a
infrastructure is under development, the EduSE Portal, as
shown in FIGURE IV. EduSE Portal is a JEE web information
system to Computer Supported Cooperative Work developed
on the JBoss Seam framework [4]. It combines communication,
collaboration, cooperation, and coordination mechanisms to
empirical studies processes, activities and tasks aiming to semi
automatize EduSE Research Strategy phases 1-4. Currently,
EduES Project is focusing in integrating EduSE Portal and the
components and services library Brechó-EcoSys [20]. This step
aims at generating a SE education ecosystem

1
 for learning

1 Software Ecosystem consists of a set of businesses functioning as a unit and

interacting with a shared market for software and services, together with the

relationships among them, frequently underpinned by a common technological

274 275

objects and experience reports development and management,
based on software reuse processes [12].

FIGURE IV. EduSE Portal’s Architecture

IV. CONCLUSION

Since SE teaching and learning processes consist in an
important concern for the next years, this paper presented
EduSE Research Strategy, an approach to explore empirical
studies as a mean to support large scale SE education. Related
work consists of (i) SAKAI [18]: a tool to create an
environment to Computer-Supported Collaborative Learning,
(ii) Moodle [16]: an open source tool to Learning Management
Systems, and (iii) SWEnet [24]: guided by SWEBoK and
IEEE, this network community presents a framework to
categorize knowledge areas in SE. In any case, the empirical
paradigm basis is missing, when compared to EduSE Strategy
Approach and EduSE Portal, as presented in Section III.
SAKAI and Moodle are used in local or situated scenarios
(course/faculty), and SWEnet presents no scientific protocol or
methodology to expose and evaluate educational resources, i.e.,
leaning objects and experience reports. In this way, EduSE
Approach aims to generate a business model to support
continuous improvement in SE education, linking and
motivating the involved stakeholders.

Future work consists of: (i) planning and executing a case
study to verify EduSE Portal mechanisms to support EduSE
Research Strategy phases 1-3; (ii) creating a framework for
developing and managing learning objects and experience
reports based on software reuse processes; (iii) finishing the
infrastructure to support EduSE Research Strategy phases 4-5
and integration to Brechó-EcoSys. Thus, the researchers hope
to contribute, improve and evolve SE education through the
empirical paradigm and generate an educational ecosystem.

ACKNOWLEDGMENT

The authors thank CNPq for their financial support in Tec3ES
Project – Technologies and Strategies in SE Education.

platform or market, and operating through the exchange of information,

resources and artifacts [13].

REFERENCES

[1] ACM & IEEE. 2004. The Joint Task Force on Computing Curricula –

Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering. The Computing Curricula Series.

[2] ADL. 2011. “Frequently Asked Questions about SCORM”. At:

<http://www.adlnet.gov/Documents/SCORM%20FAQ.aspx>.

[3] Alexander, M. & Beatty, J. 2008. “Effective Design and Use of
Requirements Engineering Training Games”. In: Requirements

Engineering Education and Training, Barcelona, Spain, 18-21.

[4] Allen, D. 200. Seam in Action, 1ª ed. Manning, 625p.

[5] Basili, V.R., Shull, F., & Lanubile, F. 1999. “Building Knowledge
through Families of Experiments”. IEEE Transactions on Software

Engineering 25, 4 (July), 456-473.

[6] Biolchini, J.C.A. et al. 2007. “Scientific Research Ontology to Support
Systematic Review in Software Engineering”. Advances Engineering

Informatics 21, 2 (April), 133-151.

[7] Bourque, P. & Dupuis, R., eds. 2004. Guide to the Software Engineering

Body of Knowledge: 2004 Version. IEEE Computer Society.

[8] Dantas, A.R., Barros, M.O. & Werner, C.M.L. 2004. “A Simulation-
Based Game for Project Management Experiential Learning”. In: 16

th

SEKE International Conference, Banff, Alberta, Canada, 19-24.

[9] Hiebert, J., Gallimore, R. & Stigler, J.W. 2002. “A Knowledge Base for
the Teaching Profession: What Would It Look Like and How Can We

Get One?”. Educational Research 31, 5 (June/July), 3-15.

[10] IEEE CS. 2008. Certified Software Development Professional.

[11] IEEE P1484.12.2/D1. 2002. Draft Standard for Learning Object

Metadata. IEEE LTSC WG-12.

[12] ISO/IEC. 2008. ISO/IEC 12207 Systems and Software Engineering –

Software Life Cycle Processes. ISO, Geneve.

[13] Jansen, S., Finkelstein, A., & Brinkkemper, S. 2009. “A Sense of
Community: A Research Agenda for Software Ecosystems”. In: 31st

ICSE – New and Emerging Research, Vancouver, Canada, 187-190.

[14] Lethbridge, T.C. et al. 2007. “Improving Software Practice through

Education: Challenges and Future Trends”. In: 29
th

 ICSE, The Future of

SE, Minneapolis, MN, USA, 12-28.

[15] Meyer, B. 2001. “Software Engineering in the Academy”. IEEE

Computer 34, 5 (May), 28-35.

[16] Moodle. 2011. “Moodle: Open Source Community Based Tools for
Learning”. At: <http://moodle.org/>.

[17] Mustaro, P.N., et al. 2007. “Structure of Storyboard for Interactive

Learning Objects Development”. In: Koohang, A. & Harman, K. (eds.)
Learning Objects and Instructional Design, Informing Science, 253-279.

[18] Sakai. 2011. “Sakai Project”. At: <http://sakaiproject.org/portal>.

[19] Santos, R., Santos, P., Werner, C. & Travassos, G. 2008. “An Strategy to
Support the Brazilian SE Educational Research”, In: 5th Experimental

SE LatinAmerican Workshop, Salvador, BA, Brazil, 1-10. In Portuguese.

[20] Santos, R.P. & Werner, C.M.L. 2011. “Brechó-EcoSys: From a
Component Library to a Software Ecosystems Platform”. In: 12th ICSR,

Demos Session, Pohang, Korea. To Appear.

[21] Schots, M., Santos, R., Mendonça, A. & Werner, C. A Survey to
Characterize Brazilian SE Education Scenario”. In: II Brazilian Forum

on SE Education, Fortaleza, CE, Brazil, 57-60. In Portuguese.

[22] Shull, F., Carver, J. & Travassos, G. 2001. “An Empirical Methodology
for Introducing Software Processes”, In: Joint 8th Experiences and Case

Studies and 9th ACM SIGSOFT FSE-9, 288-296.

[23] Spínola, R., Dias-Neto, A. & Travassos, G. “Developing Software
Technologies through Experimentation: Experiences from the

Battlefield”, In: XIII Iberoamerican Conference on Software

Engineering, Cuenca, Ecuador.

[24] SWEnet. 2011. “The Network Community for Software Engineering

Education”. At: <http://www.swenet.org/>.

[25] Todorova, M. & Petrova, V. “Learning Objects”. In: International
Conference on Computer Systems and Technologies: e-Learning, Sofia,

Bulgaria, 697-702.

[26] Wöhlin, C. et al. 2000. Experimentation on Software Engineering: An

Introduction. The Kluwer International Series in Software Engineering.

276 277

Structuring Software Engineering Case Studies to
Cover Multiple Perspectives

Emil Börjesson and Robert Feldt
Software Engineering and Technology

Chalmers University
Gothenburg, Sweden

Emil.Borjesson@Chalmers.se

Abstract—Case studies are used in software engineering (SE)
research for detailed study of phenomena in their real-world
context. There are guidelines listing important factors to consider
when designing case studies, but there is a lack of advice on how
to structure the collected information and ensure its breadth.
Without considering multiple perspectives, such as business and
organization, there is a risk that too few perspectives are covered.

The objective of this paper is to develop a framework to give
structure and ensure breadth of a SE case study.

For an analysis of the verification and validation practices
of a Swedish software company we developed an analytical
framework based on two dimensions. The matrix spanned by
the dimensions (perspective and time) helped structure data
collection and connect different findings. A six-step process was
defined to adapt and execute the framework at the company and
we exemplify its use and describe its perceived advantages and
disadvantages.

The framework simplified the analysis and gave a broader
understanding of the studied practices but there is a trade-
off with the depth of the results, making the framework more
suitable for explorative, open-ended studies.

Index Terms—Case Study, Multi-perspective, Framework, Em-
pirical

Version 1, May 5, 2011.

I. INTRODUCTION

The case study is an observational research method used in
many different fields of research due to its flexibility and its
ability to investigate a phenomenon in its context [1]. Case
studies are also applicable when there is no clear distinction
between the phenomena and its context. This is particularly
true in empirical software engineering research where there
are many factors that impact the phenomenon, such as the type
and organization of the company, the development processes
used etc. To understand a contemporary phenomenon we also
need to understand its history and how the different factors
have evolved over time.

Existing advice for empirical research in software engineer-
ing focus on experiments and systematic reviews while guide-
lines for case studies was only recently published by Runeson
and Höst [1]. There, a high quality case study is defined as a
study that produces valid information of academic or industrial
significance, either generic or practitioner oriented [1]. A key
criteria for achieving this is that the data is collected in
a planned and consistent manner and that conclusions are

based on a clear chain of evidence. This can be a challenge
in practice since case studies are typically flexible research
designs with multiple sources of evidence; it is not clear-cut
how to find the right balance between a flexible research design
that allows multiple factors and causes to be taken into account
while providing enough structure and support for planning and
analysis.

Software engineering is different from computer science in
that it takes more perspectives than only the technical into
account. For example the personality or motivation of the
engineers [2], [3] can affect the quality of their work and
organizational and career considerations can affect important
activities such as effort estimation [4], [5]. In general, the
characteristics not only of the people but of the organization,
business and processes used in software development are all
important.

In recent empirical research in industry we were faced
with designing a case study to describe and understand the
verification and validation practices at a Swedish company
developing safety-critical software systems. From initial talks
at the company we understood that the practices could not
be studied in isolation; they were heavily tied to the whole
context of the company as well as how they had evolved over
time. To structure our data collection and understanding we
based our case study on an analytical matrix combining these
two main aspects. On one dimension we wanted to cover at
least the main perspectives of the BAPO framework with its
four aspects [6]: Business, Architecture (technical aspects),
Processes and Organization. The other dimension was time
detailed in three steps as Past, Current and Future. Together
this created a matrix of 12 different sub areas to be considered
during the case study. We also defined a general six-step
process to design, collect and analyze the findings of the
study and adapted it to the company. This paper describes
this analytical framework, called the BAPO/PCF framework
for software engineering case studies, covering both the matrix
and the process to adapt and use it. We exemplify and evaluate
the framework based on our application of it at the studied
company. In particular this paper addresses the following
research questions:

1) What are the perceived advantages of a multi-perspective
approach to conducting a case study?

276 277

2) What are the perceived disadvantages of a multi-
perspective approach to conducting a case study?

3) How does the multi-perspective structure of the design
affect research validity?

The definition of a research design is in this paper a
methodology used to conduct a research project, such as a
case study, an experiment, a longitudinal research project, etc.
A research method is defined as a way of eliciting information
within a research project; hence a research design can include
the use of one or several research methods.

To help the reader differentiate between what was done in
the state of practice analysis and what are general case study
practices in the paper, we refer to the latter as the ‘case study’
and the former as either ‘company study’ or ‘study at the
company’.

The paper is divided as follows, section II will present the
research context in which the research design was developed
and executed. Section III will present how the framework was
developed and executed. In Section IV the advantages and
disadvantages of the design will be discussed, and finally some
conclusions will be presented in Section V.

II. RESEARCH CONTEXT AND THE STUDIED COMPANY

The project, for which the research design was developed,
was a state-of-practice analysis of a small company, less
than 50 employees, which develop safety critical software
applications. The state-of-practice analysis constituted the first
part of a larger project, with the goal of improving the
company’s verification and validation practices. The analysis
was conducted in order to understand the company’s needs, re-
garding the company’s processes, organization, etc, to narrow
the scope of the process improvement effort.

The company conducts software development in bespoke
projects to single customers, but the end applications are de-
veloped from a set of core products. These products are main-
tained according to market demand, making the company’s
business strategy a mix of bespoke and market driven engi-
neering. Because of the nature of the software the company is
developing, the company’s business is governed by different
quality standards and frameworks. These standards affect the
development, but primarily the company’s verification and
validation practices. Standards and frameworks are also im-
posed on the company by the company’s customers, who have
different needs in their own domains. These demands require
the company to be flexible in their development, which has
resulted in the adoption of iterative as well as an agile software
development based on Scrum [7]. The architectural granularity
of the company’s systems is on a sub-system level, hence
coarse grained, but efforts are made to increase the granularity
by refactoring the systems with reusable components based
on services, so called service oriented architectures (SOA).
The decision to change the system architectures was taken
internally at the company but driven by external business fac-
tors related to a large European project that will change much
of the company’s market domain. The migration from sub-
systems to SOA has required the company to acquire both new

knowledge as well as new practices. Organizational changes
have also been made, including changing the responsibilities
of different roles and how communication is handled internally
at the company. The company study was conducted over
approximately 6 months, during which 7 structured interviews,
2 surveys, 1 structured observation, and a considerable amount
of hours were spent on document analysis and watercooler
discussion.

III. THE BAPO/PCF FRAMEWORK

The term research process is in this paper defined as the
six-step methodology that was used to develop the case study
design used at the company as well as the execution of the
design. Figure 1 presents the process steps and how they
incrementally relate to one another.

Get Knowledge about the Domain. Very little was known
about the company when the project started and therefore the
first step of the process was to gain a deeper understanding
about the company and the company context. This information
was acquired through a combination of interviews with people
at the company and through literature review of internal
documentation as well as documentation about the company’s
domain. The context in which the company operates was
important to understand the goals and needs of the company, in
order to align the improvement effort with these goals, such as
process changes or introduction of new tools, etc. The initial
interviews also served as a way of finding new sources by
using snowballing, sources that could be used later during the
company study. Snowballing is conducted by asking questions
at the end of interviews and looking at document references
to locate further artefacts to study [8]. The majority of the
domain documentation that was studied was market quality
standards and frameworks. Development and quality standards
were important to study because the results of the company
study would be used as a base for a larger project that focused
on the company’s verification and validation (V&V) practices,
hence changes done to the V&V practices would, other than to
comply with company needs, also have to comply with such
standards. Domain specific documentation is often hard for
someone from outside the domain to understand, so therefore
all interpretations and question marks related to the analyzed
domain documentation had to be verified with people at the
company.

The collected data from step 1 showed that a broader
view would be required to capture the state-of-practice at the
company in its context. To meet this requirement and structure
the research a multi-perspective framework was developed
based around an analytical matrix with two dimensions. The
first dimension was chosen to represent the perspectives of
the company that would be analyzed, defined as company
Business, Software Architectures, Processes and Organization
(BAPO). These perspectives were chosen because they are
used within academic and industrial frameworks such as the
Family evaluation framework, which is used to evaluate Soft-
ware Product Lines [6]. The second dimension of the matrix
was chosen to represent time, defined as the Past, Current and

278 279

Fig. 1. Research process

Future (PCF), since a chronological dimension of the elicited
information was perceived to enable deeper and more precise
conclusions to be drawn from the research findings. Hence
the matrix starts with past Business, moving on to current
business and so on, until finally reaching future organization.
The BAPO/PCF framework was also chosen because it was
perceived to be a good fit in this particular study, which might
not be the case in the context of another company.

Develop focus Questions/Areas. The second step of the
process was to use the information that was gathered in
the first step, combined with the BAPO/PCF framework, to
narrow down the focus of the company study by developing
concrete research questions. The research questions were split
up among the 12 sub areas/cells of the analytical matrix,
which gave an initial understanding of where within the
company to elicit information to answer the research ques-
tions. For instance it gave a coarse-grained view of which
roles within the company that should be interviewed and
what documentation to analyze. Information about existing
company roles and documentation was provided by the first
step of the process. The research questions were split among
the 12 matrix cells based on the researchers own opinion
on where they fit best, with the company context taken into
consideration. For instance questions regarding the company’s
agile development processes were mostly constricted to the
process row of the matrix, only sorted in time, whilst ques-
tions about the organization were split up between business,
processes and organization in this case. The reason for the
spread of organizational questions came from the need to
understand how the organization had been affected by the other
company aspects, for instance how the introduction of agile
processes had affected the organization, or what affect business
changes had resulted in, how roles had changed, etc. Some
questions could not be confined to just one cell, such questions
were mostly of higher level, but they helped to find logical
connections between cells within the matrix. The options in
these cases were to add the question in several of the cells,
or to redefine them to make each of the questions unique and
only fit in a specific cell.

Choice of Detailed Research Methods. The third step of the

Fig. 2. General triangulation method

process was to choose what research methods that would be
used in the company study. Primarily qualitative methods were
chosen, such as interviews, visual inspection, structured obser-
vation and water-cooler discussions. Water-cooler discussions
are conducted during coffee and lunch-breaks and make use
of the fact that most information sharing within development
companies are conducted during breaks [9]. This allows the
researcher to get qualitative data that was current and truthful,
but since the information often included the persons own
opinions the information had to be verified to remove bias.
Surveys were also used to provide quantitative results that
would give depth to the research results. The surveys were
deductive, hence based on previously elicited information,
to verify the collected results and therefore conducted later
in the company study. Different research methods are more
appropriate to use depending on what sources are available,
and therefore it is good to have a set of methods to choose
from [1]. Creating a plan of what methods to use in what cells
is suitable, but it should be considered a guideline that can be
changed depending on the conditions of the study rather than
a strict plan.

Data collection and Data analysis and Alignment. The first
three steps of the process constitute the development of the
design, whilst the following three steps of the process discuss
how to execute the design. The fourth and fifth steps are
defined as data collection and data analysis and alignment,
and were executed incrementally, meaning that collected data
was continuously analysed and aligned with previously col-
lected information within the BAPO/PCF matrix, before new
information was elicited and analyzed. Such analysis and
alignment became essential since the data collection governed
how the research would proceed, meaning that the collected
information was used to evaluate if a certain research question
had been answered or not. If the question had been answered

278 279

the research could move on to a new cell, otherwise further
time was spent to find more information.

Case studies require flexibility to be able to respond to
different events that may occur during the course of the
study, such as for instance sudden research opportunities. For
instance during the company study an opportunity arose to
do observation of the company’s system testing practices that
would not arise again during the course of the planned study
period. Because events, such as opportunities, have to be
considered the research has to be flexible and can not follow a
strict research plan. The BAPO/PCF framework does however
support such flexibility, since the research questions connected
to the BAPO/PCF matrix cells can be answered out of order,
which allows the researcher to jump between cells and work
with the question that is the most urgent at the moment. The
progress of the research can also be measured through what
research questions within the matrix have been answered. Each
cell that gets filled with information, and its research question
answered, constitutes a measurable part of the study progress,
and once all questions in all cells have been answered the
study is complete. The time spent with a certain matrix cell
can either be planned according to a fixed time budget, or in
a more ad hoc manner where the collected results drive the
time spent working with a cell as well as the order which
the matrix cells are traversed. There are academic papers that
state that research using the BAPO perspectives should start
with the business aspect because this has the largest impact on
the company, followed by software architectures that has the
second largest impact and so on until the organizational aspect
has finally been analyzed [6]. No evidence could be found to
support this claim during the company study, which used an
approach where intermediate results decided what cell to jump
to next in the study. The study at the company did not follow
the matrix row by row, but instead company processes were
first investigated, followed by software architectures, followed
by company business and finally company organization. The
BAPO/PCF matrix traversal was not chosen at random, it was
chosen based on information that became available in the
initial part of the forth process step and proved throughout the
study to be valuable asset to keep the research focused. Even
though several deviations were made from the research plan,
because opportunities arose, it proved to be valuable to have
a plan to fall back on, which is also supported by Runeson
and Höst that state that a plan is crucial for a case study to
succeed [1].

To strengthen the analysis of the collected information, in
the company study, cause-effect chains (CEC) were combined
with the BAPO/PCF matrix. These event chains link the
research results together to provide a broader contextual view
and also help to find the causes behind a result. Two different
types of CEC’s were used during the company study, where
the first type focuses on one path through the matrix, the
simplest being from a certain perspective’s past to the same
perspective’s current or from the current to the future, hence
a chronological view of to the result. The first type of a
CEC can also span between different company perspectives

Fig. 3. Research design triangulation

to provide a cross-perspective view, but always form a single
path through the BAPO/PCF matrix that shows how an event
in one perspective in time has affected another perspective in
time and so on. The second CEC type differs from the first
type in the sense that it starts in one matrix cell and spans out
to several cells both in time and between perspectives, which
shows the broader impact an event has had within the com-
pany. In the company study the CEC’s were developed post-
elicitation of the research information by using inspection to
find the internal connections between the results, which made
it possible to draw clearer conclusions, develop predictions
about the future of each company perspective, and also raise
the result validity. Predictions for the future perspective of
the matrix were developed using induction, with qualitative
research data as input, based on the concept that if a specific
action A in context B has outcome C in the past, which is
repeated in the current in the same context B with result C,
it would be likely that the same pattern would reoccur also
in the future. A visual representation of the CEC’s was also
developed that uses the research results, described in bullet-
point lists in the matrix cells, which are connected by drawing
arrows from the origin matrix cell to the cell(s) that have been
impacted by the event in the origin cell. It should be noted that
a CEC can never find a connection between the current to the
past, or from the future to the current, but if there seems to be
a connection backwards in time it might be possible to create
another CEC that was previously overlooked. An example of
how to visualize the second type of a CEC is presented in
Figure 4, which shows how the introduction of unit-testing
impacted the studied company in a larger context, which could
have been overlooked if the scope of the research design had
been narrower. The general reasoning behind CEC’s has also
been visualized in Figure 5.

The BAPO/PCF matrix can also be used as a tool to
visualize the research result quality. Several techniques were
used to ensure data validity during the company study, but the
primary technique was triangulation [1], [10], which states

280 281

that in order for information to be valid it must be verified by
at least three sources. These sources can be either artefacts
or roles, for instance documentation, different roles at the
company, etc, or results gathered by using several research
methods, such as interviews, literature review, etc. The matrix
can be used to show how triangulation was performed during
a study by visualizing which sources were used to answer
what research question within the BAPO/PCF matrix. This
provides a graphical overview of the data validity that is easy
to understand, also by non-researchers like for instance the
managers of the company under study. The general triangula-
tion technique is presented in Figure 2, and the visualization of
what sources that were used for triangulation, in the company
study, is presented in Figure 3. Another technique that was
used to ensure data validity during this step of the process,
in the company study, was to send transcripts of interviews,
preliminary documentation analysis reports, etc, to different
roles within the studied company for validation. This technique
provides the researcher with fast feedback if the elicited
information has been correctly interpreted or not, which is
valuable in cases where the information includes contextual
jargon unknown to the researcher.

Validation Discussion. The final step of the process was to
validate the research results with the studied company. This
was partially done in step four and five since those steps deal
with information validation through the means of company
review, but those reviews were on a information level, whilst
the final validation was on a conclusion level to ensure that
the conclusions drawn from the research information were
reasonable and correct. The final validation can be done in
different ways, like for instance writing a report that the
company can review, or the results can be presented orally.
In the company study the results were presented orally during
a power-point presentation where the analytical matrix was
once more used. All significant results from the study were
broken down into bullet-points in the matrix cells and added
to a power-point slide. The graphical representation of the
results gave the audience a clear overview of the results, which
could afterwards be discussed further in more detail. Errors or
discrepancies in the results were finally analyzed further and
rewritten in a final study report.

IV. DISCUSSION

The perceived advantages of applying the BAPO/PCF
framework for case studies are related to the structure and
the broadness of the multi-perspective view of the framework.
By applying the multi-perspective approach to a case study
it becomes possible to collect results specific to the different
perspectives of the company, as well as in time. This pro-
vides a contextual structure that makes it clear where and
how to acquire information to answer the research questions,
but also how to find information that can link the results
together. For instance by pointing out a role within the studied
company that has knowledge about several perspectives, the
information gained from this knowledge can be used to draw
cross-perspective conclusions about the cause of a particular

Fig. 4. Cause-effect chain example

Fig. 5. General Cause-effect chain structure

result. By looking at the entire matrix, including these cross-
perspective results, longer chains of cause and effect can also
be drawn that provides a deeper as well as broader undestand-
ing of results and of the company. Internal validity is also
improved with this approach since as described by Wohlin et
al. 2000 [11], a factor that is investigated because of its effects
on another factor may itself be affected by a third factor,
and if the third factor is overlooked there may be a threat to
internal validity. Hence the BAPO/PCF framework improves
the internal validity by giving the researcher the means of
finding these connections between different factors that could
have otherwise been overlooked with a narrower scope. It
is however important to recognize that this framework, like
other case studies, does not solve the issue regarding to what
extent a factor within a given perspective affects another factor
in another given perspective. A change within a company
is seldom localized to a certain perspective of the company
but rather has ripple effects to several different perspectives.
An example from the company study is how changes to a
company’s business goals resulted in the introduction of new
processes, new architectural development methods as well as

280 281

organizational change.

Other advantages that are side effects of the BAPO/PCF
framework’s structure include support for project planning,
visualization of the validation through triangulation, as well
as to visualize the research results. The framework supports
research plans that are flexible and allow events, such as
research opportunities, to be taken advantage of as they arise
during the study. Visualization of the triangulation provides an
overview of the validation effort and also makes it easy for
non-researchers to see how the results have been validated,
for instance making it easier to trust results and conclusions
that are previously unknown to the studied company. Result
visualization has similar advantages in terms of providing an
overview of the collected results, and help to find connections
between the collected information.

As for general case studies this design does not limit what
research methods that are applicable for acquiring informa-
tion, but unlike many other case study designs that rely on
purely qualitative methods for data elicitation and analysis,
this design allows longitudinal design concepts to be used
as well, which are quantitative. This is made possible by the
chronological axis of the matrix that links the past to the future
and therefore allows quantitative metrics to be developed. An
example of such a metric could be organizational change over
time, i.e. the company’s growth rate. Such information can
also be used deductively to draw more plausible predictions
about the future, for instance how the growth of the company
will continue or decrease.

The design does provide context to the research results but
by broadening the research it becomes necessary to sacrifice
information depth in projects with fixed budgets. Hence one
of the BAPO/PCF framwork’s greatest strengths is also its
primary weakness. There is a trade-off that must be made
when using the framework, which states that in order to gain
information depth in one perspective, information depth will
have to be sacrificed in another perspective. The consequences
of this trade-off has not been investigated in this study, and
since the design has only been used during one empirical case
this subject is still open to speculation. The broadness of the
design does however make it more suitable for research with
open ended questions where very little or nothing is known
about the phenomenon under study, rather than research with
narrow research questions of a more deductive nature.

The results and conclusions that were developed during the
company study proved to have high validity, however since the
design has only been used in one study it is uncertain if the
same results would be achieved in another study. The design
is flexible in many ways, including the core concept of the
analytical matrix, but once again, since only the BAPO/PCF
configuration has been tested nothing can be said about another
configuration even though it can be speculated that another
configuration could be more beneficial in another company
context.

V. CONCLUSIONS

This paper introduced the BAPO/PCF framework for struc-
turing case studies in software engineering and ensuring they
cover multiple perspectives. The framework was evaluated in a
case study of verification and validation practices in a Swedish
software company.

The combination of the BAPO (Business, Architec-
ture/technical, Process and Organization) and PCF (Past, Cur-
rent and Future) dimensions resulted in 12 sub areas to
consider in designing and executing the case study. The matrix
allowed the research questions to be connected to the research
effort, as well as providing the researcher with tools for
result visualization, project planning and result validation. The
structure also allowed an analysis of cause-effect chains across
perspectives and in time providing a broader understanding
and increased validity. Most importantly the framework helped
uncover issues and connections the company themselves were
not aware off.

The largest perceived disadvantage is that the approach can
become too broad and therefore require considerable effort to
cover all 12 sub areas. This can be addressed by sacrificing
depth of analysis within less prioritized sub areas but this
needs further research.

In summary, a flexible yet powerful case study research
design can be created by adding structure through the use of
an analytical matrix and a simple process to adapt it to the
context being studied. The analytical matrix used, based on
BAPO and PCF, can be of general value for such software
engineering research.

REFERENCES

[1] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[2] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson, “Mod-
els of motivation in software engineering,” Information and Software
Technology, vol. 51, no. 1, pp. 219–233, 2009.

[3] R. Feldt, L. Angelis, R. Torkar, and M. Samuelsson, “Links between the
personalities, views and attitudes of software engineers,” Information
and Software Technology, vol. 52, pp. 611–624, June 2010. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2010.01.001

[4] A. L. Lederer and J. Prasad, “The Validation of a Political Model of
Information Systems Development Cost Estimating,” in Proceedings of
the 1991 Conference on SIGCPR, ser. SIGCPR ’91. New York, NY,
USA: ACM, 1991, pp. 164–173.

[5] A. Magazinius, S. Börjesson, and R. Feldt, “Exploring Intentional
Distortions in Software Cost Estimation,” In submission, 2011.

[6] F. Van Der Linden, J. Bosch, E. Kamsties, K. Känsälä, and H. Obbink,
“Software product family evaluation,” Software Product Lines, pp. 107–
109, 2004.

[7] K. Schwaber et al., “Scrum development process,” in OOPSLA Business
Object Design and Implementation Workshop, vol. 27. Citeseer, 1995,
pp. 10–19.

[8] R. Moriarty and J. Bateson, “Exploring complex decision making units:
A new approach,” Journal of Marketing Research, vol. 19, no. 2, pp.
182–191, 1982.

[9] E. Börjesson, “Multi-Perspective Analysis of Software Development: a
method and an Industrial Case Study.”

[10] M. Patton, “Enhancing the quality and credibility of qualitative analysis.”
Health Services Research, vol. 34, no. 5 Pt 2, p. 1189, 1999.

[11] C. Wohlin, P. Runeson, and M. Höst, Experimentation in software
engineering: an introduction. Springer Netherlands, 2000.

282 283

282 283

284 285

284 285

286 287

286 287

288 289

Maximizing the Financial Benefits Yielded by IT
Projects While Ensuring their Strategic Fit

Antonio Juarez Alencar, Gustavo Taveira, Eber
Assis Schmitz and Angelica Dias

Institute of Mathematics and Eletronic Computer Center
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil

Alexandre Correa
Center for Exact Sciences and Informatics
State of Rio de Janeiro Federal University

Rio de Janeiro, Brazil

Abstract— As competition for market space continues to increase
worldwide and the information technology (IT) budget of many
organizations these days comprises hundreds of projects running
concurrently across different business functions, decision making
units and geographical locations, selecting IT projects for
investment has become a challenge in itself, not to mention the
need to maximize the benefits yielded by these projects. This
paper presents an optimization model, based upon balanced
scorecard and minimum marketable feature modules, that makes
it easier for management to maximize the financial benefits
yielded by a portfolio of IT projects at the same time that ensures
the strategic fit and reduces both the risk and the need for capital
investment. Furthermore, the application of the model is
exemplified with the help of a real world inspired example.
Besides, the potential benefits to business are also analyzed.

Keywords- IT Portfolio Management, Economics of Software
Engineering, Balanced Scorecard, IT Investment Analysis,
Minimum Marketable Features and Strategic Fit.

I. INTRODUCTION

From a versatile programmable apparatus that makes
processes to run faster and yield more reliable results,
information technology (IT) grew into a transformation
enabling tool capable of improving business performance and,
in many cases, providing competitive advantages [1, 2]. Not
surprisingly, IT became a central piece in the business strategy
of organizations of different types, sizes and culture [3, 4].

Moreover, as competition for market space increased, IT
became one of the main sources of capital investment across
many lines of business. As a consequence, the portfolio of IT
projects of any middle or large sized organization comprises
hundreds of projects running simultaneously across a variety of
lines of business, business functions, decision making units,
geographies and having a diverse number of aspects to be
considered about their customer, such as: occupation, gender,
age and socio-economic status. Therefore, selecting the
projects that are to be part of an organization's portfolio is
frequently a challenge in itself [5].

In addition, each organization has its own strategy defined
by many differently-thinking stakeholders and, if it wants to
remain competitive in the long run, these projects are better to
be aligned with this intended business strategy, so that all the
available resources are consistently applied to achieve what is
indeed relevant to business [6].

However, managers of any IT-related project that requires
capital investment are expected to provide proper returns and
are exposed to risk, let alone a large number of projects
grouped into a portfolio. As such, IT-portfolio management
should be treated with the same due diligent rigor as any other
capital investment, in which stakeholders are often interested in
keeping risk exposure under control, at the same time that the
return on investment is maximized [7].

Despite the relatively extensive literature on IT portfolio
management, little has been said on how to maximize the
financial benefits of an IT portfolio while ensuring the strategic
fit [8, 9].

This article goes towards filling this gap by presenting an
optimization model that enable managers to maximize the
financial benefits yielded by a portfolio of IT projects, at the
same time they reduce risk, curtail the need for investment
capital, and ensure the strategic fit. The use of the model,
which is based upon balanced scorecard and minimum
marketable feature modules, is exemplified with the help of a
real world inspired example. Also, the potential benefits
yielded by the optimization model to business are analyzed.

The remainder of this paper is organized as follows. Section
2 contains the conceptual framework the paper is based upon.
Section 3 discusses how the benefits of a portfolio of IT
projects can be maximized while ensuring its strategic fit.
Section 4 exemplifies the application of the model using a real
world inspired example. Finally, Section 5 presents the
conclusions of this paper.

II. CONCEPTUAL FRAMEWORK

A. Minimum Marketable Features Modules
According to [10], the buying process of any products and

services by consumers has four main components:

• There is a perceived need that urges to be satisfied;

• There is at least one product or service in the market
that is believed to satisfy that need;

• Consumers have enough buying power to pay for the
product or service; and

• Consumers are willing to pay what they have being
asked for.

288 289

While many simple products and serv
and relatively rigid set of features for w
willing to pay, software most often has a
such features that may be easily grouped
[11].

According to [12-14], minimum m
(MMFs) are self-contained software units
that have an intrinsic market value. These
business in one or several of the following a

• Competitive differentiation - it all
service or products that are differen
being offered in the market;

• Revenue generation - it provides
offering the same quality as oth
market for a better price;

• Cost savings - it saves money b
processes cheaper to run;

• Brand projection - it promotes ce
that make the service or product
customers; and

• Enhance loyalty - it influences cus
more often, or both.

Moreover, the total value brought to a
software project consists of several inte
each one with its own development
restrictions, financial and non-financial ben

Although an MMF is a self-contained
often the case that it can only be delivere
parts have been completed. These parts m
MMFs or the architectural infrastructure,
features that offer no direct value to custom
for which they are not willing to pay, but
the MMFs [14].

The architectural elements, or AEs fo
decomposed into self-contained delivera
underlying architecture to be delivered ``o
reducing the initial investment of a project

Fig. 1 presents the precedence graph o
consisting of a set of MMFs and AEs. Note
module building activities and that an arro
B, i.e. A B, indicates that the work on m

Fig. 1. The precedence graph of a set of M

completed before the work on module B ca

No software provides revenues foreve
market forces will inevitably make any so
promote the need to replace it by a m

vices have a reduced
which consumers are
a large collection of
d into different sets

marketable features
comprising features
units create value to
areas:

lows the creation of
nt from anything else

s an extra value by
her products in the

by making business

ertain characteristics
t more attractive to

stomers to buy more,

an organization by a
erdependent MMFs,
t cost, precedence
nefits.

d software unit, it is
ed after other project
may be either other
i.e. the set of basic

mers and, as a result,
that are required by

or short, can also be
ables, enabling the
on demand'', further
[13].

of a software project
e that A, B, C, D are
ow going from A to

module A has to be

MMFs and AEs.

an start.

er. After some time,
oftware obsolete and
more up-to-date and

financially attractive alternati
beginning of a software deve
is often referred to as softwa
software window of opportun

Table 1 shows the inve
introduced in Fig. 1, togethe
returns, considering a window
this case both the investme
effort and the flow of returns
dollars.

TABLE I. REQUIRED
BY A SET OF AES A

Period
S

A B
1 -80 -50
2 0 45
3 0 45
4 0 45
5 0 45
6 0 45
7 0 45
8 0 45
9 0 45
10 0 45

For instance, while B req
50K, it generates a net reven
total of ten periods, once co
hand, requires a higher invest
net revenue of US$ 30K per p

Module A is the only o
requiring the largest initial in
therefore, is an AE. As the re
return on the investment requ
considered to be MMFs.

Because it is improper to
on monetary values without t
in order to compare the busin
AEs, one has to resort to thei
2 shows the sum of the disc

TABLE II. DISCOUNT
IN WHICH THEIR RESPECTIVE D

Period
S

A B
1 -78 311
2 -77 269
3 -75 227
4 -74 187
5 -72 147
6 -71 108
7 -70 69
8 -68 32
9 -67 -5
10 -66 -41

introduced in Fig. 1, conside
2% per period.

Such a sum is the net pre
elements of a module conside
period n [1..10]. For insta

ive. The time elapsed between the
elopment effort and its replacement
are lifetime or, alternatively, as the
nity.

estment required by each module
er with its respective flow of net
w of opportunity of ten periods. In
ent required for the development
s are accessed in thousands of US

D INVESTMENT AND NET RETURNS YIELDED
AND MMFS (US$ 1.000).

Software Modules
C D E F

-40 -20 -50 -60
60 35 50 30
60 35 50 30
60 35 50 30
60 35 50 30
60 35 50 30
60 35 50 30
60 35 50 30
60 35 50 30
60 35 50 30

quires an initial investment of US$
nue of US$ 45K per period for a

ompleted. Module F, on the other
tment of US$ 60K and generates a
period.

one that yields no return, despite
nvestment among all modules and,
maining modules do provide some

uired to their development, they are

o perform mathematical operations
taking into account an interest rate,
ness value of different MMFs and
r discounted cash-flow [15]. Table

counted cash-flow of each module

TED CASH-FLOW CONSIDERING THE PERIOD
DEVELOPMENT STARTS (US$ 1.000).

Software Modules
C D E F

441 260 351 181
384 227 304 154
328 195 258 126
274 163 213 100
220 131 168 74
167 101 125 48
116 70 82 23
65 41 40 -1
16 12 -1 -26
-33 -16 -41 -49

ering an internal rate of return of

esent value (NPV) of all cash flow
ering that its development starts at

ance, according to the information

290 291

presented in Table 2, if B is developed in the first period, it
yields an NPV of US$ 311K, i.e.

 (1)

If B is developed in the second period, it yields an NPV of
US$ 269K, in the third, US$ 227K and so on and so forth.

Obviously, not all modules can be developed in the first
period. The precedence graph presented in Fig. 1 indicates that
only A can be developed at that time. Because in this example
each module requires exactly one period to be developed, C
cannot be developed until the third period. Furthermore, each
particular implementation order yields its own return on
investment. For instance, sequence ADBCEF yields an NPV of
US$ 866K, i.e.

 (2)

while sequence ABDCEF yields US$ 875K.

Although MMF identification and ordering is an area that
would benefit from further investigation, [12] shows that
Function-Class Decomposition can be successfully applied to
identify MMFs and AEs in a software project [16]. Moreover,
both [13] and [17] provide the necessary means to find the
implementation sequence that maximizes business value.

According to [18] the advantages of dividing a software
project into MMFs are numerous:

• Large and complex systems can be developed from a
relatively smaller investment,

• Return on investment in software development is
maximized, together with return on investment in IT
related areas and projects,

• Demand for shorter investment periods and payback
time are addressed,

• Favor faster time-to-market of software and also of
products that depends upon software development,

• Bring financial discipline into the software
development, and

• Position software development process as a value
creation activity in which business analysis is an
integral part of it.

B. Balanced Scorecard
Although it is generally accepted that one cannot manage

what one cannot measure, even in this day and age decision
makers rarely consider measurement as an essential part of
their strategy [19]. As an example, it is not unusual that
managers introduce an innovative technology in their working

environment with the intention of bursting performance and,
without second thoughts, keep using the same short-term
financial measures they have been using for years [20].

In the same way that there is no single medicine that can
successfully tackle all illnesses, there is no single indicator that
can properly report all business scenarios and activities.
Therefore, when facing a new reality, one has always to
question not only what measures provide better support for
decision making, but also whether the old ones continue to be
relevant [21].

Moreover, despite the best intentions that high management
may have in making their strategy easy to understand and
divulge among employees, goals such as “becoming the
preferred supplier of our customers”, “providing the best
products to the market” and “being widely recognized as a top
quality organization”, which are so common in organizations'
missions and strategic visions, do not translate easily into
financial measures, not to mention terms that provide clear
guidance to the efforts that are required at the operational level
to have a strategy successfully implemented [22].

Therefore, if one wants that all the resources at the disposal
of an organization are properly applied to achieve its strategic
goals, one has to look beyond the classic financial measures for
a more flexible set of indicators [20, 23].

Balanced scorecard, or BSC for short, is a strategic
planning model and management methodology due to Kaplan
and Norton [24]. It provides a multidimensional framework in
which high level management can translate strategic goals into
a coherent set of performance indicators that are easily
understood by both middle management and operational
personnel [25].

Since it has been firstly introduced in the early 1990s, the
BSC has evolved from a performance measurement tool,
designed to reveal and tackle the problematic areas within an
organization [26], to a framework for implementing strategies
and determining the strategic fit of an organization's human,
information and organization capital [27].

The BSC model advocates that any business strategy should
be translated into four distinct but related sets of performance
indicators, i.e.

• Financial - reflecting how an organization is seen by
their shareholders, both as a short-term and a long-term
investment;

• Customer - describing how an organization is
perceived by their customers, regarding their products,
services, relationships and value-added;

• Internal process - revealing which aspects of business
processes must improve and excel in order to satisfy
shareholders and customers; and

• Innovation and learning perspective - showing how an
organization can continue to evolve and create value.

A practical example of how a simplified version of a
balanced scorecard might look like is presented in Fig. 2. Note
that in a BSC table each perspective usually contains several

290 291

goals, whose achievements are signaled
performance indicators (PIs) reaching pre-d
a deadline.

Fig. 2. A simplified version of an organization's

It is central to BSC's effectiveness that
is established among the four set of PIs, or
they are most often referred to. Using the
perceived among perspectives, one is able
non-financial measures (“drivers of the p
financial measures (“final outcome”), sh
which specific improvements in the drivers
to desired outcomes [28, 29].

In a well conceived BSC, the PIs in the
perspective are the drivers of the PIs of th
and possibly some of the PIs of the rem
Besides, the PIs of the internal proces
expected to be the drivers of the PI
perspective and possibly some of the P

Fig. 3. A software organization balanced

d by one or more
determined values by

balanced scorecard.

a causal relationship
four perspectives, as
e causal relationship
to connect all of the

performance”) to the
howing the links by
s are expected to lead

learning and growth
he internal processes

maining perspectives.
sses perspective are
s of the customer
PIs of the financial

d scorecard.

perspective. Finally, the PIs
intended to be the drivers
summarizes these ideas.

In the BSC model, t
perspectives is expressed i
framework for linking intan
[21, 31]. Fig. 4 shows the str
for the construction of the BS

Fig. 4. The causal relations

In a well conceived strate
is expected to describe tangib
that are of interest to inves
remaining perspectives de
propositions that intends to ge

According to [20, 23, 30]
should adhere to the followin

1. Revise the organizati

2. Translate the strate
considering the finan
and innovation and le

3. Use a strategy map
that should exist
perspectives;

4. Determine the appro
monitor each goal; an

5. Determine attainable
each performance in
targets to be reached.

Both the strategy map an
be revised on a regular basis
may very well require adjustm
and consequently in its BSC m

s of the customer perspective are
of the financial PIs [30]. Fig. 3

this causal relationship among
in a strategy map, which is a

ngible assets to shareholder value
rategy map that served as the basis
SC presented in Fig. 2.

ship among the four perspectives.

egy map, the financial perspective
ble outcomes of a strategy in terms
stors and shareholders, while the
efine intangible value creation
enerate those outcomes [20].

], when using the BSC model one
ng steps:

ion’s mission and strategic vision;

egic vision into a set of goals
ncial, customer, internal processes,
earning perspectives;

to identify the causal relationship
among the goals in the four

opriate performance indicators to
nd

e but challenging target values for
ndicator and a deadline for those
.

nd the balanced score card should
s as changes in market conditions
ments in an organization's strategy,
model [32].

292 293

III. MAXIMIZING THE APPROPRIATION OF FINANCIAL BENEFITS

It is important to keep in mind that it is very unlikely that
the target values in a BSC can be reached without further
capital investment. Most often several interdependent projects
have to be properly undertaken until those values can be
matched, each one with its own capital requirement [33].

Once completed, each project either makes a direct
contribution towards helping one or more PIs to reach their
targeted values or enables other projects to make such a
contribution. Anyway, when due, these contributions can be
achieved at once or, most often, incrementally in the course of
time. Besides, it is important to consider that all projects
connected to a BSC may provide financial returns, even when
related to non-financial perspectives.

Therefore, because for-profit organizations are business
arrangements set up to provide return on investment to
shareholders, when managing a portfolio of BSC related
projects, one is interested in maximizing their financial return,
while contributing as planned to reach stated goals by a pre-
established deadline.

Among all the different kinds of projects that can be
connected to a BSC, the IT based ones share the common
property of being potentially factored out in MMFs and AEs.
As a result, besides increasing return on investment, and
shortening both the payback time and the time to market, these
MMFs may also contribute to PIs so as their intended values
can be reached.

A. Formalizing the Ideas
Since the portfolio P of projects connected to a BSC is

usually composed of both IT and non-IT projects, it is helpful
to define a function f that takes every project pi in P to its
corresponding set of MMFs and AEs.

If pi P is a non-IT project, than f takes pi to an indivisible
one and only MMF or AE, depending on whether pi yields or
not some financial return on the investment required for its
development over the BSC window of opportunity.

In formal terms, a precedence graph like the one presented
in Fig. 1 is a mathematical structure G = (V, E) composed of
two sets, i.e.

• The set of vertices V = { v1, v2, …, vn }; and

• The set of edges E = { (vi, vj) | vi,vj∈ V}.

Note that if (vi ,vj) ∈ E than there is a dependency relation
between vi e vj, such that if s and d are functions that
respectively return the startingpoint and the duration of the
development of a module,

(vi, vj) ∈ E s(vj) ≥ s(vi) + d(vi);

A valid sequence S = vj ∩ vk ∩ … ∩ vl is an ordered set of
MMFs and AEs satisfyingthe following restrictions

• Every module in the sequence derives from the
portfolio of projects connected to the BSC, i.e.

vi S vi pk, onde {pk P | 1 k #(P)}

• Every module belonging to the sequence is listed
exactly once, i.e.

vi , vj ∈ S and vi = vj i = j ;

• The precedence relations between the modules listed in
S must uphold at all times, i.e.

{vi, vj} ∈ S and (vi, vj) ∈ E s(vj) s(vi) + d(vi);

• At any given time the total number of teams available
to work on the development of the modules, i.e.
nteams, cannot be exceeded, i.e.

ti ∈ T, #({vk ∈ S | s(vk) = ti}) nteams, where T is the
BSC window of opportunity;

• The development effort must start at period one, i.e.

∃ vk ∈ S, s(vk) = t0

Let PI be the BSC set of performance indicators. Also, let
current and target be functions that return respectively the
current and intended value for each pii∈PI. Moreover, let
makespan be a function that return the time necessary to
implement all vi∈S. In these circumstances, one is interest in
finding a valid sequence S that maximizes:

 (3)

where #S and S(k) are functions that return, respectively, the
number of elements in S and the element in the kth position,
provided that the planned contribution of all project in P to
reach the targeted values of performance indicators are fully
realized within the BSC window of opportunity, i.e.

pii PI,current(pii) target(pii) and makespan(S) T (3)

IV. AN EXAMPLE

According to Benjamin Franklin (1706--1790), the
American statesman, “a good example is the best sermon”.
Hence, the model presented in this paper is introduced with the
help of a real-world inspired example.

A. Context Information
Consider a large mobile telecommunication carrier such as

AT\&T, VERIZON, TELEFONICA and many others, which
have millions of subscribers and provide different kinds of
value-added services. For the purpose of this paper this
organization is called World Mobile Telecom Corporation1 or
WMTC for short.

Technology advances in mobile telecommunications have
brought significant changes in the services provided by mobile
carriers around the world, creating opportunities and risks to
which business must respond. As a result, WMTC and its
competitors are fiercely struggling for any strategic advantages
that would enable them to gain market-share and ultimately
surpass each other.

1The data used to obtain the results presented in this paper is closely
related to real data provided by one of the largest Latin America’s mobile
network operator. Because it reflects the current portfolio of on-going IT
projects, the authors have been kindly requested no to disclose its name.

292 293

Moreover, a growing number of customers conscious of
their bargaining power has been demanding for better products
and services for reduced prices, so the need for innovation and
differentiation is increasing rapidly.

Therefore, if WMTC wants to advance its position as a
major player in the mobile telecommunication business, it must
select the right business strategy, making the best possible use
of its human and financial resources.

WMTC's mission statement tells that the company wants to
be recognized as “a highly trustable organization that provides
valuable mobile telecommunication services to its customers”.
In its strategic vision WMTC declares that “the value that the
organization creates to its customers stems from innovative
products and services that excite the imagination of mobile
telecommunication users, fulfilling their needs and desires”.

After analyzing the forces acting upon the markets in which
it does business (consumer's behavior, competition, uprising
technology, interest rates, etc.) and considering its own
strengths and weaknesses, WMTC decided to encode its
business strategy in the strategy map introduced in Fig. 4. A
simplified version of the corresponding balanced scorecard is
presented in Fig. 2.

To reach its goals, among other actions, WMTC has
decided to invest in the development of five innovative IT-
based value-added services, i.e.

• Goods & Services Purchase (GSP) – which allows
subscribers to use their mobiles as a credit cards to pay
for goods and services in associated stores;

• Mobile Entertainment Pass (MEP) – which lets
subscribers to search for movies, plays and shows,
browse their synopsis and buy tickets directly from
their mobile phones;

• Global Navigator (GN) – which enables subscribers to
determine where they are, where others belonging to
the same group of related people are, and to draw
routes between any two points in a map;

• Universal Translator (UT) – which makes it possible
for subscribers to communicate in a number of foreign
languages using their mobile keyboard, microphone
and speakers; and

• Voice of the Customer (VoC) – which let customers to
compete for prizes by timely reporting on their buying
experience, information that is crucial to perfecting the
services of customer-oriented organizations.

B. Identifying MMFs and AEs
To take advantage of Denne and Cleland-Huang's ideas on

minimum marketable features [13], the projects within the
WMTC portfolio have being decomposed into AEs and MMFs
using Function-class Decomposition [16], so that they can be
incrementally delivered as “mini-projects”. Tables 3, 4, 5, 6 e 7
introduce the AEs and MMFs identified by the WMTC's
Project Management Office (PMO).

TABLE III. GOODS & SERVICES PURCHASE’S MMFS AND AES.

Id Type Name Description

GSP1 AE Service
Subscription

Allows customers to subscribe to and
unsubscribe

GSP2 AE Credit Analisys Figures the likelihood of a customer
paying a debt

GSP3 AE M-Payment Lets customers pay for goods and
services they want to buy

GSP4 AE Refund
Allows customers to be refunded when
returning goods and services they
bought

GSP5 MMF Shopping Entitles customers to shop for goods
and services in associates stores

TABLE IV. MOBILE ENTERTAINMENT PASS’ MMFS AND AES.

Id Type Name Description

EP1 AE Service
Subscription

Allows customers to subscribe to and
unsubscribe

EP2 AE Credit Analisys Figures the likelihood of a customer
paying a debt

EP3 MMF Search movie

Allows customers to search for
movies, plays and shows based on
multiple criteria such as: title, cast,
genre, district, etc

EP4 MMF Browse
synopsis

Make it possible for customer to
browse the synopses of movies, plays
and shows

EP5 MMF Buy ticket

Allows customers to choose which
specific seat they would like to
purchase, charges the ticket value to
the customer’s account and provides
a queue avoiding electronic ticket via
SMS

EP6 AE Capture
location

identifies the current geographical
location of a customer

EP7 MMF Browse nearby
places

Provides information on all theaters
and showrooms in the vicinity of the
current customer location

TABLE V. GLOBAL NAVIGATOR’S MMFS AND AES.

Id Type Name Description

GN1 AE Service
Subscription

Allows customers to subscribe to and
unsubscribe

GN 2 AE Credit Analisys Figures the likelihood of a customer
paying a debt

GN 3 MMF Where am I? Allows customers to know their
geographic location

GN4 MMF Navigator Lets customers select the best route
between two points

GN 5 AE Group
Membership

Allows customers to create a group,
apply for membership of existing
groups and cancel an existing
memberships

GN 6 MMF Find my friends
Reveals the whereabouts of people
belonging to the same group of
acquaints

TABLE VI. UNIVERSAL TRANSLATOR’S MMFS AND AES.

Id Type Name Description

UT1 AE Service
Subscription

Allows customers to subscribe to and
unsubscribe

UT 2 AE Credit Analisys Figures the likelihood of a customer
paying a debt

UT 3 MMF Basic language
set

Lets customers to communicate in a
reduced set of commonly used
languages: English, French, Spanish
and Portuguese

UT 4 MMF Extended set Provides an extended set of languages

294 295

TABLE VII. VOICE OF THE CUSTOME

Id Type Name D

VoC1 AE Service
Subscription

Allows custom
unsubscribe

VoC 2 AE Credit Analisys Figures the lik
paying a debt

VoC 3 MMF VoC
Allows subscr
their opinion
products they

VoC 4 AE Membership
information

Enables custo
membership p
and prizes the

VoC 5 MMF Prize
redemption

Lets customer
membership p
their choice

C. Establishing the precedence between M
One of the main benefits of organizing

portfolio is the possibility of more easily
software units [34]. By factoring out such u
the portfolio's need for capital investment
speed up time-to-market, at the same time t
[35].

Analyzing the portfolio, the PMO ide
Subscription” and the “Credit Analysis”
common to two or more projects. From now
referred to as CSU1 and CSU2, respectivel
the WMTC's portfolio precedence.

Fig. 5. WMTC's portfolio precedenc

D. Estimating the contribution of each MM
Once the AEs and MMFs have been ide

into a precedence graph, their correspondin
have to be estimated. Table 8 shows the est
sum of the discounted cash-flow of every M
WMTC portfolio, considering a discoun
period.

To produce these estimates the WMTC
values drawn from a databank of similar p
for a discussion on alternative ways of mak

ER’S MMFS AND AES.

Description
mers to subscribe to and

kelihood of a customer

ribers to freely express
about ser- vices and

y have purchased
omers to check upon the
points they have earned
ey can win
rs exchange their
points by the prizes of

MMFs and AEs
MMFs and AEs in a
identifying common

units one may reduce
, increase profit and
that increases quality

entified the “Service
” as units that are
w on, these units are
ly. Fig. 5 introduces

ce graph.

MFs and AEs
entified and arranged
ng cost and revenues
timates regarding the
MMF and AE in the
nt rate of 1\% per

C PMO used average
projects. See [36, 37]
king these estimates.

TABLE VIII. NPV
PORTFOL

Module
1 2

CSU1 -35 -34
CSU2 -80 -79
GSP3 -50 -49
GSP4 -18 -18
GSP5 1,141 1,11
EP3 713 699
… … …

VoC5 616 607

E. Selecting the best implem
Because the number of M

of possible implementation
with the help of the precede
which has the effect of re
sequences of MMFs and AEs
consuming to be tackled by
appealed to the branch a
sequencing developed by [17

Although branch and bo
poorly as their brute force
scenario, in many circumsta
solution in a polynomial time
obtained by the algorithms ac
development teams used by W

TABLE IX. PROJECT P
THE NUMBER O

of Dev.
Teams

NPV
(US$ 1K)

Makespan
(Periods)

1 7,313 19
2 8,216 11
3 8,444 8
4 8,467 7
5 8,559 7
6 8,559 7

It is important to note tha
used, not all performance in
score card will reach their
BSC window of opportunity.

On the other hand, ther
increasing the number of dev
higher NPV nor a shorter to
five or six development team
and total makespan.

Moreover, employing
necessary just adds to th
development of the portfolio
benefits. According to [39], t
more difficult it is to keep it o

As a result, the decision
teams to use resides on the a
more capital investment is m
makespan and the higher the

OF THE AE AND MMF IN THE WMTC
LIO (US$ 1,000).

Software Modules
3 4 5

4 -34 -34 -26
9 -78 -78 -59
9 -49 -48 -37
8 -17 -17 -13
15 1,089 1,064 -11
9 685 670 -25

… … …
7 593 580 -15

mentation sequence
MMFs and AEs is high, the number

sequences is considerable. Even
ence graphs introduced in Fig. 5,
educing the number of possible
s, the problem is still too computer
y brute force. Hence, the WMTC
and bound algorithm for MMF
].

ound algorithms may perform as
e counterparts in the worst case
ances it can provide the optimum
e [38]. Table 9 presents the results
ccording to the number of software
WMTC.

PERFORMANCE INDICATORS ACCORDING TO
F DEVELOPED TEAMS.

n PI Reaching
Planned Value

Capital Invest.
(US$ 1K)

70% 210
100% 258
100% 381
100% 385
100% 439
100% 439

at if just one development team is
ndicators in the WMTC balanced
intended target value, within the

re is a certain point from which
velopment teams leads to neither a
tal makespan. For example, using
m leads to exactly the same NPV

more development teams than
e complexity of managing the

o without yielding any foreseeable
the more complex a project is, the
on track.

n of the number of development
amount of capital investment. The

made available, the shorter the total
total NPV.

294 295

As competition in the telecommunication market brought
down the margins in almost all of the products and services,
WMTC was able to allocated only US$ 300K for the portfolio.
Hence, the logical choice according to the information
displayed in Table 9 is to use only 2 development teams.

V. CONCLUSION

The Kaplan and Norton's balanced scorecard provides
valuable insights regarding an organization strategy,
assembling all their strategic goals and performance indicators.
Therefore, undertaking the projects that will provide the
highest NPV while achieving one or more of the performance
indicators targeted values, within the BSC window of
opportunity, is a must to any for-profit organization.

To accomplish such a goal, this paper introduces an
optimization model based upon Kaplan and Norton's balanced
scorecard and Denne and Clelang-Huang's minimum
marketable features. The model allows organizations to
maximize the return on investments of their portfolio while
ensuring its strategic fit.

REFERENCES

[1] J. V. D. Ende and W. Dolfsma, “Technology-push, demand-pull and the
shaping of technological paradigms - patterns in the development of
computing technology”. Journal of Evolutionary Economics vol. 15
(2005) pp. 83–99.

[2] C. Chen, J. H. Lim and T. C. Stratopoulos, “Sustainable value creation:
The role of it innovation persistence”. In: Americas Conference on
Information Systems, San Francisco, CA, USA, Association for
Information Systems (2009).

[3] B. D. Reyck, Y. Grushka-Cockayne, M. Lockett, S. R. Calderini, M.
Moura, A. Sloper,: “The impact of project portfolio management on
information technology projects”. International Journal of Project
Management vol. 23 (2005) pp. 534–537.

[4] E. G. Swedin and D. L. Ferro, “Computers: The Life Story of a
Technology”. Westview Press (2004).

[5] M. Jeffery and I. Leliveld, “Best practices in it portfolio management”.
MIT Sloan Management Review vol. 45 (2004) pp. 41–49.

[6] G. S. Kearns and R. Sabherwal, “Strategic alignment between business
and information technology: A knowledge-based view of behaviors,
outcome, and consequences”. Journal of Management Information
Systems vol. 23 (2006) pp. 129 – 162.

[7] B. Maizlish and R. Handler, “Information Technology Portfolio
Management Step-by-Step: Unlocking the Business Value of
Technology”. John Willey & Sons, Inc (2005).

[8] R. Kumar, H. Ajjan and Y. Niu, “Information technology portfolio
management: Literature review, framework, and research issues”.
Information Resource Management Journal vol. 21 (2008) pp. 64–87.

[9] A. W. K. Tan and P. Theodorou, “Strategic Information Technology and
Portfolio Management”. IGI Global (2008).

[10] P. Kotler, G. Armstrong, “Principles of Marketing”. Prentice Hall (2009)
[11] T. Little, “Value creation and capture: A model of the software

development process”. IEEE Software vol. 21 (2004) pp. 48–53.
[12] M. Denne, and J. Cleland-Huang, “Software by Numbers: Low-Risk,

High-Return Development”. Prentice Hall (2003).
[13] M. Denne, and J. Cleland-Huang “The incremental funding method:

Data-driven software development”. IEEE Software vol. 21 (2004) pp.
39–47.

[14] M. Denne, and J. Cleland-Huang “Financially informed requirements
prioritization”. In: 27th international conference on Software
Engineering, St Louis, Missouri, USA, ACM New York, NY, USA
(2005) pp. 710–711.

[15] L. J. Gitman, “Principles of Managerial Finance”. Prentice Hall (2008).
[16] C. K. Chang, J. Cleland-Haung, S. Hua and A. Kuntzmann-Combelles,

“Function-class decomposition: A hybrid software engineering method”.
IEEE Computer vol. 34 (2001) pp. 87–93.

[17] A. J. Alencar, E. A. Schmitz and E. P. de Abreu “Maximizing the
business value of software projects: A branch & bound approach”.
ISAS-2 (2008) pp. 162–169.

[18] E. A. Schmitz and A. J. Alencar, “Defining the implementation order of
software projects in uncertain environments”. In: International
Conference on Enterprise Information Systems, Barcelona, Spain (2008)
pp. 23–29.

[19] I. Feller, “Performance measurement and the governance of american
academic science”. Minerva vol. 47 (2009) pp. 323–344
10.1007/s11024-009-9129-z.

[20] R. S. Kaplan and D. P. Norton, “Having trouble with your strategy? then
map it”. Harvard Business Review (2000) pp. 50–61.

[21] R. D. Behn, “Why measure performance? different purposes require
different measures”. Public Administration Review vol. 63 (2003) pp.
586–606

[22] H. Norreklit, “The balance on the balanced scorecard - a critical analysis
of some of its assumptions”. Management Accounting Research vol. 11
(2000) pp. 65–88.

[23] R. S. Kaplan and D. P. Norton, “The strategy-focused organization”.
Harvard Business School Press (2001).

[24] R. S. Kaplan and D. P. Norton, “The balanced scorecard - measures that
drive performance”. Harvard Business Review (1992) pp. 71 – 79.

[25] W. C. Rivenbark and E. J. Peterson, “A balanced approach to
implementing the balanced scorecard”. Popular Government vol. 74
(2008) pp. 31–37.

[26] H. Eilat, B. Golany, and A. Shtub, “R&D project evaluation: An
integrated DEA and balanced scorecard approach”. Omega vol. 36
(2006) pp. 895–912.

[27] R. S. Kaplan and D. P. Norton, “Organizational capital: Leadership,
alignment, and teamwork”. Balanced Scorecard Report (2004) pp. 1–7.

[28] C. Ittner, D. Larcker and T. Randall, “Performance implications of
strategic performance measurement in financial services firms”.
Accounting, Organizations and Society vol. 28 (2003) pp. 715–741.

[29] A. Asosheh, S. Nalchigar and M. Jamporazmey, “Information
technology project evaluation: An integrated data envelopment analysis
and balanced scorecard approach”. Expert Systems with Applications
vol. 37 (2010) pp. 5931–5938.

[30] R. S. Kaplan and D. P. Norton, “The balanced scorecard: Translating
strategy into action”. Harvard Business School Press (1996).

[31] R. S. Kaplan and D. P. Norton, “The strategy map: guide to aligning
intangible assets”. Strategy Leadership vol. 32 (2004) pp. 10 – 17.

[32] P. R. Niven, “Balanced Scorecard Step-by-Step: Maximizing
Performance and Maintaining Results”. John Willey & Sons, Inc (2006).

[33] R. S. Kaplan and D. P. Norton, “Alignment: Using the balanced
scorecard to create corporate synergies”. Harvard Business School Press
(2006).

[34] G. Taveira, A.J. Alencar and E. A. Schmitz, ”A method for portfolio
management and prioritization: An incremental funding method
approach”. In: International Conference on Enterprise Information
Systems. vol. 3., Funchal, Madeira (2010) pp.23–33.

[35] R. S. Pressman, “Software Engineering: A Practitioner’s Approach”. 7th
edn. MacGraw-Hill (2009).

[36] D. Vose, “Risk Analysis: A Quantitative Guide”. John Willey & Sons,
Inc (2008).

[37] D. W. Hubbard, “How to Measure Anything: Finding the Value of
Intangibles in Business”. John Willey & Sons, Inc (2010).

[38] M. J. Brusco and S. Stahl, ”Branch-and-Bound Applications in
Combinatorial Data Analysis. Springer (2005).

[39] K. B. Hass, ”Managing Complex Projects: A New Model”. Management
Concepts (2008)

296 297

Model Checking Framework-based Applications with
AspectJ Assistance

Zebin Chen
Microsoft

Redmond, WA, USA
zebinc@microsoft.com

Stephen Fickas
Department of Computer and Information Science

University of Oregon
Eugene, OR, USA

fickas@cs.uoregon.edu

Abstract— We built Smart Home applications for the Cognitively
Impaired population. We have chosen to work with an existing
framework, OSGi, which allows us to develop specific
applications more quickly. We use a combination of traditional
testing and formal verification to insure these applications will
cause no harm to the cognitively impaired users of our systems.
This paper will focus on our results to date of using model
checking to verify OSGi applications. We have created a formal
model parallel to OSGi, which can be reused as a modeling
framework to plug in and check OSGi applications. The trick has
been to vary and combine different features of OSGi (i.e.,
abstract away the details that are not relevant to the particular
property we wish to verify, but include the details when they are
relevant), since a feature tends to involve code scattering in
multiple classes. We have found that aspect-oriented
programming, using AspectJ, is a potential solution. Using
aspects, we have been able to prune large portions of OSGi in a
controllable manner. One obstacle to this approach is that
AspectJ will introduce native code so that an AspectJ program
can’t be checked by Java PathFinder (JPF). We report our
efforts to date to resolve this problem and enable model checking
AspectJ programs in general.

Keywords- Model Checking; Java PathFinder; AspectJ;
Framework; OSGi

I. INTRODUCTION

Our group has actively participated in the design and
development of Smart Home applications [1][2]. We have
chosen to work on the OSGi platform [3], which offers us
standardized ways to manage the software lifecycle and more
quickly develop applications across platforms. We are also
advocates of formal methods, and have relied on model
checking to uncover bugs in real systems [4][5]. We use a
combination of traditional testing and formal verification to
insure that the OSGi-based applications we build will cause no
harm to the cognitively impaired users of our systems. As the
OSGi framework and its applications are both developed in
Java, we chose the model checker Java Pathfinder (JPF) [6][7],
which directly checks Java bytecode.

In the process of checking OSGi applications, we soon
found ourselves in a dilemma. On the one hand, OSGi
applications are based on the OSGi framework; hence, it seems
natural to build a formal model paralleling the OSGi
framework and reuse the modeling framework to check OSGi

applications. On the other hand, this approach is complicated
by the very nature of model checking. A major obstacle to
formal modeling is state space explosion, where the
interleaving of processes leads to an exponential increase of
system states that is beyond the capacity of a typical computer.
This restriction requires a formal model being reduced to its
bare essentials before the verification step. However, since
OSGi applications may use different features of OSGi, it is
nearly impossible to come up with a modeling framework that
has just enough details for all OSGi applications. We will need
some way to vary features of a modeling framework to check
various applications.

The Object-Oriented nature of Java has offered some help
for customizing the modeling framework. For example, one
can override slots and hooks to specialize the modeling
framework. However, there are some crosscutting concerns that
may not naturally fit in this paradigm. For example, when we
are interested only in the stale references problem [3][11], we
don’t need permission check in the framework and may remove
all related fields and statements to save the state space. On the
other hand, when we want to assure that no malicious
application spoils the OSGi framework, we have to add back
the missing fields and statements to enable permission check.
Changing a feature is often a tedious task that involves
modifications in multiple files, and it will be even worse when
we have to come up with a specific combination of different
features.

In our experience, such crosscutting concerns have
prevented us from effective reuse of formal models and
incurred much overhead in model maintenance. In view of
these difficulties, we have found that aspect-oriented
programming (AOP), using AspectJ [9][10] for Java, is a
potential solution. Using AspectJ, we have been able to prune
large portions of the OSGi code-base that are not relevant and
vary features in a modular way. We report our findings in this
paper.

The rest of the paper is organized as follows. We briefly
explain the model checker Java Pathfinder in section II, and the
application domain, OSGi applications, in section III; in section
IV we use real examples of OSGi applications, to show that we
can vary features of a formal model with AspectJ in a modular
way; in section V, we show a necessary step, the construction
of a specialized JPF, to enable verifying AspectJ programs in

296 297

general. We summarize the contributions and the future work
in section VI.

II. JAVA PATHFINDER

Java PathFinder is an explicit model checker that directly
checks Java bytecode. It has a specialized virtual machine,
which takes on the role of a model checking engine like state
cache, query, comparison, and restoration. Through a well-
defined component architecture, JPF allows one to customize
the search procedure. For example, it has a Model Java
Interface (MJI) to intercept Java method calls, which may be
used to resolve native methods (by executing native methods
outside the JVM, but store interesting results in the JVM) and
reduce state space (by excluding state information in the
transition from the JVM). The extension schemes in JPF also
allow expert users to experiment with novel search heuristics
and state representations, which can be conveniently reused
through the well-defined component interface.

There are several restrictions on JPF. First, it is not able to
check platform-specific native methods like I/O methods, since
the execution information is not available to the JVM. Second,
due to state space explosion, it typically deals with Java
programs with no more than 10k lines-of-code [7]. Therefore,
before using JPF to check a real system, one would have to (a)
resolve Java native methods with pure Java implementations or
the MJI, and (b) apply various reduction techniques to
construct a model with only the bare essentials for the actual
system. In addition, one may also need to specify the
interactions with the environments (e.g., user inputs) in a
closed form. This is general to model checking since model
checkers can only handle finite systems for a complete
verification. In JPF this process can often be combined with the
step to resolve native methods.

III. THE OSGI FRAMEWORK

For the purpose of explanation, we briefly introduce the
application domain, i.e., the OSGi framework and OSGi
applications [3]. The OSGi specification articulates a generic
component structure for Java modularization. The unit for
modularization is a bundle, which is a jar file typically
composed of a manifest file, Java classes, native library and
other resources. An OSGi framework has a base framework to
fulfill the core functionality of the OSGi specification, e.g.,
manage the lifecycle of bundles. In particular, when starting a
bundle, the base framework instantiates a bundle activator
designated in the manifest file and invokes a callback function
BundleActivator.start (i.e., a bundle activator is a Java class
that implements org.osgi.framework.BundleActivator). When
stopping a bundle, the framework invokes another callback
function BundleActivator.stop. These callback functions are the
main places to extend functionalities in a module. Each bundle
runs in a separate JVM environment to avoid interferences
between bundles; bundles communicate with each other
through events delivered by the framework and services
managed by the framework. A service is the unit to
dynamically import/export functionality by a bundle. The
OSGi framework maintains a mapping to associate service
names to service references: a bundle (or more exactly, a
bundle activator) can register a service by adding a mapping in

the table, and use a service by first looking up a service in the
mapping table.

A common pitfall in OSGi applications is the stale
references problem. It happens when a service used by a
consumer bundle has actually been unregistered by the
producer bundle. This problem is acknowledged in the OSGi
specification, and an auxiliary class, ServiceTracker, has been
created to track valid services. We will uncover violations
belonging to this category in our case studies. An interested
reader can refer to [3] [11] for more information about the stale
reference problem and some of its treatment at the application
level.

There exist several reference implementations for the OSGi
specification. Knopflerfish is a leading implementation and has
been certified to be OSGi compliant [5]. It is composed of a
base framework to fulfill the OSGi specification, mandatory
bundles for basic functionality like input/output and optional
bundles for extended functionality like logging. We base our
case studies on the Knopflerfish framework. An interested
reader can refer to [3][8] for a full explanation of OSGi and the
Knopflerfish framework.

IV. ADVICE VERIFICAITON VIA ASPECTJ
We have built a formal model paralleling the OSGi

specification, to ease modeling OSGi applications [10]. In this
section, we point out some crosscutting concerns in the formal
model, and show that we are able to modularize such concerns
with AspectJ and conveniently specialize the base model with
various features.

A. Add Modeling Code to Check Correctness
For the purpose of testing and model checking, we often

add additional code to record system status and check the status
in appropriate places. Such code is not part of the base model
(not even part of the implementation code) and should be
added only when we model check relevant properties.

Consider the example in Figure 1. It is the formal model
one would reasonably derive with to check the stale references
problem: the statements in italic font are the extra code solely
added for verification purpose. It mandates that all services
extend a BasicService (line 5), which has a boolean field valid
to indicate whether a service is currently available. Upon the
invocation of a service, the service will check whether it is
currently available to other bundles (line 7). From the point of
the framework, the field valid is set to true (line 14-19, line 24-
29) when a service is registered successfully (line 13, line 23),
and set to false (line 37-40) when a service is removed from the
registration table in the framework (line 36). The code, solely
for the purpose of model checking (all lines in italic font),
spans multiple places of several Java files (e.g.,
ServiceRegistrationImpl.java, BundleContextImpl.java and all
service implementation files), which is cumbersome to vary
and interact with other model checking features.

298 299

1. public class BasicService {
2. public volatile boolean valid = false;
3. public ReentrantLock service_lock=new ReentrantLock();
4. }
5. class DictionaryImpl extends BasicService implements
DictionaryService {
6. public boolean checkWord(String word) {
7. assert(valid);
8. ...// do the actual work
9. }
10.}
11.public class BundleContextImpl {
12. public ServiceRegistration registerService(String[]
clazzes, Object service, Dictionary properties) {
13. ServiceRegistration sr=...// do the actual work
14. if (sr!=null) {
15. if (service instanceof BasicService) {
16. BasicService ds = (BasicService)service;
17. ds.valid=true;
18. }
19. }
20. return sr;
21. }
22. public ServiceRegistration registerService(String clazz,
Object service, Dictionary properties) {
23. ServiceRegistration sr=...// do the actual work
24. if (sr!=null) {
25. if (service instanceof BasicService) {
26. BasicService ds = (BasicService)service;
27. ds.valid=true;
28. }
29. }
30. return sr;
31. }
32.}
33.public class ServiceRegistrationImpl {
34. Object service;
35. private void unregister_removeService() {
36. ...//remove the service
37. if (service!=null && service instanceof BasicService) {
38. BasicService ds = (BasicService)service;
39. ds.valid=false;
40. }
41. }
42. }

Figure 1. Adding model checking code w/o AspectJ

The crosscutting concerns in Figure 1 can be conveniently
modularized in a single aspect. As shown in Figure 2, the rule
that all services shall additionally extend BasicService is
specified by the declare parents phrase (line 1). The rule that
the field BasicService.valid shall be set to true when a service
is registered is realized by the pointcut that matches the
completion of a successful registration (line 18-21) and the
advice (line 22-25). The rule that the field valid shall be set to
false when a service is unregistered is realized by the pointcut
that matches the completion of the unregistration (line 11-13)
and the advice (line 14-17). The rule that the service’s validity
shall be checked upon the invocation to its functions is realized
by a pointcut that matches the access of a service’s functions
(line 2-4), and an advice that does the assertion (line 5-9).
Whether to perform the verification of the stale references
problem can be easily specified as inclusion or exclusion of the
aspect while compilation.

1. declare parents: (DictionaryImpl) extends BasicService;
2. pointcut ServiceFunction(Object service) :
3. execution(* checkWord(..)) && this(service)
4. && this(DictionaryService);
5. before(Object service): ServiceFunction(service) {
6. if (service instanceof BasicService) {
7. BasicService bs = (BasicService) service;
8. assert (bs != null && bs.valid);
9. }
10.}
11.pointcut ServiceUnregister(ServiceRegistrationImpl sr):
12. execution(* unregister_service(..)) &&
13. this(ServiceRegistrationImpl) && this(sr);
14.after(ServiceRegistrationImpl sr) : ServiceUnregister(sr) {
15. if (sr.service != null && sr.service instanceof BasicService)
16. ((BasicService) sr.service).valid = false;
17.}
18.pointcut ServiceRegister(BundleContextImpl bc, Object
service):

19. this(bc) && this(BundleContextImpl) &&
20. args(service) && if (service!=null) &&
21. execution(ServiceRegistration registerService(.., Object,
Dictionary));

22.after(BundleContextImpl bc, Object service)
returning(ServiceRegistration sr):ServiceRegister(bc,
service){

23. if (sr != null && service instanceof BasicService)
24. ((BasicService) service).valid = true;
25.}

Figure 2. Modularizing model checking code with AspectJ

B. Vary Security Feature
In addition to specifying correctness properties, we can also

leverage AOP to conveniently choose a specific combination of
features to check. As mentioned, we shall remove all non-
mandatory fields and statements from the base model, and only
add them back when they implement a specific feature relevant
to the particular property to be verified. This methodology is
critical to crack the state explosion problem and shall be
enforced when possible.

However, we often find that adding back a feature involves
adding fields and statements in multiple places of various files,
and they are often different from their counterparts in the
application code due to the result of abstraction. Enforcing such
unfamiliar programming logic across multiple files is a
daunting task when we have to check combinations of different
features.

Consider the formal model in Figure 3. The statements in
italic font enforce permission check for OSGi operations. A
permission handler is created in Framework (line 5) and
referred in Listeners and Services. The framework checks the
permission when a bundle adds itself as a
SynchronousBundleListener, to avoid a silly bundle blocking
the whole framework (line 14-17). Similarly, the framework
also checks the permission for registering a service to avoid a
malicious bundle to preempt other valid services (line 31).
These statements (in italic font) are not in the base model and
are only needed when checking properties related to privileged
operations. They scatter in more than ten places of three files
(only a fragment of them are shown in Figure3), which is

298 299

tedious and error-prone for frequent addition and removal of
features in model checking.

1. public class Framework {
2. PermissionOps perm;
3. public Framework(Object m) throws Exception {
4. ...// Do other initialization
5. perm=new SecurePermissionOps();
6. }
7. }
8. public class Listeners implements {
9. PermissionOps secure;
10. Listeners(PermissionOps perm) {
11. secure = perm;
12. }
13. void addBundleListener(Bundle bundle, BundleListener
listener) {
14. if (listener instanceof SynchronousBundleListener) {
15. secure.checkListenerAdminPerm(bundle);
16. ...// do the actual work to add listeners
17. } else ... // do the actual work to add listeners
18. }
19.}
20.class Services {
21. private PermissionOps secure;
22. Services(PermissionOps perm) {
23. secure = perm;
24. }
25. ServiceRegistration register(BundleImpl bundle, String[]
classes, Object service, Dictionary properties) {
26. ...
27. for (int i = 0; i < classes.length; i++) {
28. String cls = classes[i];
29. if (cls == null)
30. throw new IllegalArgumentException("...");
31. secure.checkRegisterServicePerm(cls);
32. ... // do actual registering...
33. }
34. }
35.}

Figure 3. A formal model to check permission voilation in OSGi

1. static PermissionOps Framework.perm=new
SecurePermissionOps();
2. pointcut BL (Bundle bundle, BundleListener bl):
3. execution(* addBundleListener(Bundle, BundleListener))
4. && args(bundle) && args(bl);
5. before(Bundle bundle, BundleListener bl) : BL (bundle, bl)
{
6. if (bl instanceof SynchronousBundleListener) {
7. Framework.perm.checkListenerAdminPerm(bundle);
8. }
9. }
10.pointcut ServiceRegistration(String classes[]):
11. execution(ServiceRegistration
register(..))&&args(classes);
12.before(String[] classes): ServiceRegistration(classes) {
13. for (int i=0; i<classes.length; i++) {
14. Framework.perm.checkRegisterServicePerm(classes[i]);
15. }
16.}

Figure 4. The security model advised with AspectJ

We can modularize the inclusion of security in a single
aspect. As shown in Figure 4, we use an intertype declaration

to add back the permission handler (line 1). The invocation of
permission check when adding a SynchronousBundleListener
is matched by a pointcut (line 2-4), and advised before it is
actually added (line 5-9). The invocation of permission check
when registering a service is matched by a pointcut (line 10-
11), and advised before it is actually registered (line 12-16).
Compared with the needed modifications across multiple
places of three files, adding permission check with AspectJ is
modularized in a single aspect and much easier to change.

C. Change the Granularity of Atomicity
Despite the existence of partial order reduction, program

slicing and other techniques to save the state space, we often
need to manually enforce atomicity in various places of a
model. On the one hand, manually enforcing atomicity may
significantly reduce the search space, so that errors may be
uncovered much faster and with less memory - in many cases it
is also the only way to complete the verification run before
running out of resource (e.g., memory and time). On the other
hand, we may want to change the atomic code block when we
are exploring potential solutions to a concurrency error.

1.public class ConsumerActivator implements
BundleActivator{
2. public void start(BundleContext context) throws
Exception{
3. ...
4. DictionaryService service=...//look up service in
framework
5. if (service!=null && service instanceof BasicService) {
6. BasicService bs = (BasicService)service;
7. bs.service_lock.lock();
8. if (service.valid)
9. service.checkWord(...);
10. bs.service_lock.unlock();
11. }
12. }
13.}
14.public ServiceRegistrationImpl {
15. Object service;
16. public void unregister() {
17. ...
18. if (service instanceof BasicService) {
19. BasicService bs = (BasicService)service;
20. bs.service_lock.lock();
21. bundle.framework.listeners.serviceChanged(new
ServiceEvent(ServiceEvent.UNREGISTERING, reference));
22. bs.service_lock.unlock();
23. }
24. }
25.}

Figure 5. Varying atomicity to explore counter examples

For these reasons, we would like to have a mechanism to
conveniently vary the granularity of atomicity. However, the
conventional approach to do this is fairly involved. For
example, Figure 5 shows a potential solution to avoid the stale
references by enforcing atomicity when invoking a service (line
5-12) and unregistering a service (line 18-23). We have to
entangle the code (that changes atomicity) with other
statements in the two files, and similar code will have to spread
in each service declaration file if we want to enforce such
atomicity for them.

300 301

1. pointcut atom_check(DictionaryService ds):
2. target(ds) && execution(boolean checkWord(..))
3. && if (ds instanceof BasicService)
4. && !cflow(adviceexecution());
5. void around(DictionaryService ds) : atom_check(ds) {
6. if (ds instanceof BasicService) {
7. BasicService bs = (BasicService)ds;
8. bs.service_lock.lock();
9. proceed(ds);
10. bs.service_lock.unlock();
11. } else proceed(ds);
12.}
13.pointcut atom_unregister(ServiceRegistrationImpl sri):
14. execution(void unregister(..)) && target(sri)
15. && !cflow(adviceexecution());
16.void around(ServiceRegistrationImpl sri) :
atom_unregister(sri) {
17. if (sri.service instanceof BasicService) {
18. BasicService bs = (BasicService) (sri.service);
19. bs.service_lock.lock();
20. proceed(sri);
21. bs.service_lock.unlock();
22. } else proceed(sri);
23.}

Figure 6. Advising atomic blocks with AspectJ

The daunting task of enforcing atomicity across multiple
files can be modularized by aspects. For example, we can
intercept the execution of a non-atomic block with an around
clause, and enforce atomic execution of the block with a
shared, exclusive lock. As shown in Figure 6, we use an around
pointcut to intercept the intended atomic block (line 1-4), and
enforce atomicity for the action sequence (checking the service
validity and using the service) in line 5-12. Similarly, the
around pointcut in line 13-15 intercepts the intended atomic
block, and the advice in line 16-23 enforces the desired
atomicity. By this way, we can enforce arbitrary atomicity
without scattering code here and there, which will ease feature
management at the model level and improve the efficiency in
exploring candidate solutions. In our experience, we do find a
verified solution for the stale references problem in this
approach.

V. MODEL CHECKING ASPECTJ PROGRAMS

In section IV, we have shown that formal models have
crosscutting concerns that may be elegantly modularized via
AspectJ assistance. However, such superiority of aspects is not
practically useful if the Java bytecode woven by AspectJ can’t
be checked by JPF. In particular, we are concerned whether
AspectJ will introduce extra native code to a pure Java model.
This question is also significant for applications developed with
AspectJ but now to be checked by JPF.

A simple AspectJ program like Figure 7 shows our fears are
well founded. This program merely gets the signature of a joint
point and involves no I/O from the surface. After we compile
the program with the AspectJ compiler and check it with JPF,
JPF reports the error as shown in Figure 8. Since all statements
irrelevant to AspectJ are written in pure Java, the symptom
shows that AspectJ introduces native code to a pure Java
program. In this example, it occurs when the woven bytecode
calls the native code in the AspectJ runtime library. A closer

look at Figure 8 reveals that the NullPointerException is
thrown when System.getProperty(String, String) is called (line
3). This is natural since it is a system-level function, which gets
the environmental information outside the scope of the Java
virtual machine.

1. public class Framework {
2. public static void main(String[] args) {
3. Framework fw = new Framework();
4. }
5. }
6. aspect FrameworkConstructor {
7. pointcut FrameworkConstructor(Framework f) :
8. execution(Framework.new(..))
9. && !cflow(adviceexecution()) && this(f);
10. after(Framework f): FrameworkConstructor(f) {
11. Signature sig = thisJoinPoint.getSignature();
12. }
13.}

Figure 7. A simple AspectJ program that fails JPF

1. error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty
2.java.lang.NullPointerException:calling
'getProperty(Ljava/lang
/String;Ljava/lang/String;)Ljava/lang/String;' on null object
3. at java.lang.System.getProperty(System.java:663)
4. at org.aspectj.runtime.internal.CFlowCounter. getSystem-
PropertyWithoutSecurityException(CFlowCounter.java:78)
5. at org.aspectj.runtime.internal.CFlowCounter.
selectFactoryForVMVersion(CFlowCounter.java:55)
6. at org.aspectj.runtime.internal.CFlowCounter.
<clinit>(CFlowCounter.java:29)
7. at edu.uoregon.osgi.mc.FrameworkConstructor.
ajc$preClinit(Framework.aj:1)
8. at edu.uoregon.osgi.mc.FrameworkConstructor.
<clinit>(Framework.aj:native)
9. at edu.uoregon.osgi.mc.Framework.<init>(Framework.aj:3)
10.at edu.uoregon.osgi.mc.Framework.main(Framework.aj:5)

Figure 8. Error message from JPF

We can use the MJI scheme in JPF to resolve native
methods in the AspectJ runtime library, or customize the
runtime library with a pure Java implementation. It is beyond
the scope of this paper to fully describe the details to resolve
native code in the AspectJ runtime library. As an example, we
briefly explain the procedure to resolve native methods invoked
by the program in Figure 7.

Defining a peer function in MJI is similar to calling a native
method in Java Native Interface (JNI). A MJI method for
System.getProperty(String, String) is shown in Figure 9. The
function signature has name mangling so that it allows proper
association in case of function overloading. The particular
implementation in Figure 9 allows reading system properties
outside the closed JVM.

After this peer method is installed, JPF will intercept the
call to System.getProperty(String, String) by matching the
function name. Thereafter, the host JVM executes the peer
method to get the environment information (line 8), and stores

300 301

the result in a special area. JPF fetches the result from this
special area as if it is read from the environment.

1. public static int getProperty__Ljava_lang_String_2Ljava
_lang_String_2__Ljava_lang_String_2 (MJIEnv env, int
clsObjRef, int keyRef, int defRef) {
2. int r = MJIEnv.NULL;
3. if (keyRef != MJIEnv.NULL) {
4. String k = env.getStringObject(keyRef);
5. String defaultString = env.getStringObject(defRef);
6. if (k==null)
7. return MJIEnv.NULL;
8. String v = System.getProperty(k);
9. if (v != null)
10. r = env.newString(v);
11. else if (defaultString!=null) {
12. r = env.newString(defaultString);
13. }
14. return r;
15.}

Figure 9. Peer method for System.getProperty(String, String)

As a result to date, we have created a MJI abstraction
library and customized the AspectJ runtime library, to help
resolve native methods introduced by AspectJ. We also created
a test suite that includes all sample programs (excluding those
that have native code in the Java program) from [9][10]. In our
testing, all native code introduced by the AspectJ keywords has
been successfully resolved, and we are currently investigating
the whole runtime library (~180K) of AspectJ.

VI. SUMMARY

When we use model checking to verify real-world Smart
Home applications, we have found a strong need to vary
features of a formal model and customize the verification
procedure. This is required as part of the efforts to conquer the
state space explosion problem, by removing irrelevant details.
However, varying features for a formal model tends to result in
modifications scattering in multiple Java files, and it is even
worse when we vary the combination of different features to
study feature interactions. With examples, we have shown that
these crosscutting concerns can be modularized with aspects,
and can thus be easily enabled and disabled. We also point out
that AspectJ may introduce native code to a pure Java program,
and show an example that we can leverage the MJI scheme to
solve it. We are currently building a MJI abstraction library,
which will benefit not only our paradigm to advise model
construction with AspectJ, but also AspectJ applications in
general that have been developed without the awareness of

model checking. In general, if we deem a model checker as an
explorer for counter examples, the overall methodology
enables easy exploration of solution space with very different
features and goals.

We are also investigating the performance overhead
introduced by AspectJ and looking for ways to minimize such
impact. This occurs because additional state variables are
introduced, e.g., aspect initialization. In our current experience,
the state space increase of a complex model is relatively small
and doesn’t appear to be a show stopper. This problem can be
further mitigated with search heuristics, e.g., one can enforce
atomicity for aspect initialization. This brings up an interesting
distinction between model checking AspectJ programs and
using AOP techniques to ease model checking Java programs.

REFERENCES

[1] Z. Chen, and S. Fickas, “The plain old television in a smart apartment”,
in Proceeding of the First International Conference on Collaborative
Computing: Networking, Applications and Worksharing
(CollaborateComm 2005), San Jose, CA, Dec 2005.

[2] S. Fickas, C. Pataky, and Z. Chen, “DuckCall: tracking the first hundred
yards problem”, in Proceeding of the Eighth SIGACCESS, Portland,
OR, Oct 2006.

[3] The OSGi Alliance, OSGi Service Platform Core Specification (Release
4), Aug 2005.

[4] M. Feather, S. Fickas, and A. Razermera, “Model-checking for
validation of a fault protection system”, in Proceedings of IEEE
International Symposium on High Assurance Systems Engineering,
Boca Raton, 2001, 32-41.

[5] Z. Chen and S. Fickas, “Do No Harm: Model Checking eHome
Applications”, in First International Workshop on Software Engineering
for Pervasive Computing Applications, Systems, and Environments
(SEPCASE '07) at ICSE 2007.

[6] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
Checking Programs”, In Automated Software Engineering Journal, vol.
10, no. 2 (Apr.2003), 203-232.

[7] P. Mehlitz, W. Visser, and J. Penix, “The JPF Runtime Verification
System”, manual accompanied in JPF distribution,
http://sourceforge.net/projects/javapathfinder

[8] Knopflerfish, http://www.knopflerfish.org/
[9] A. Colyer, A. Clement, G. Harley, M. Webster, eclipse AspectJ: Aspect-

Oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools, Addison-Wesley, 2005.

[10] AspectJ web site, http://www.eclipse.org/aspectj
[11] K. Gama and D. Donsez, “A Practical Approach for Finding Stale

References in a Dynamic Service Platform”, in Proceedings of the 11th
International Symposium on Component Based Software Engineering
(CBSE 2008), Oct 2008, Karlsruhe, Germany.

302 303

User-defined Scenarios in Ubiquitous Environments:
Creation, Execution Control and Sharing

Matthieu Faure, Luc Fabresse
Ecole des Mines de Douai, Douai, France

{Matthieu.Faure, Luc.Fabresse}@mines-douai.fr
Marianne Huchard

LIRMM - UMR 5506, CNRS and Univ. Montpellier 2, Montpellier, France
huchard@lirmm.fr

Christelle Urtado and Sylvain Vauttier
LGI2P / Ecole des Mines d’Alès, Nı̂mes, France

{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract—Ubiquitous computing provides a dynamic access
to different functionalities of networkable electronic devices.
Whereas basic services have limited use, predefined complex
services cannot encompass every end-user’s needs nor be adapted
to a set of services that are dynamically discovered in an open
environment. Alternatively, users need to be provided with means
to express their requirements, choosing precisely which services
to compose into a scenario of their own. In service-oriented
computing, some systems propose mechanisms to develop tailored
components that provide composite services; however they are
not adapted to end-users, have limited composition capabilities
and/or do not consider several characteristics of ubiquitous
environments (such as multiple users and devices).

This paper presents a novel user-centric system called SaS
for mobile personal devices. SaS provides end-users with an easy
access to services and a simple GUI to combine them into complex
scenarios. A new architectural description language is used to
specifically support scenario creation by service composition.
Scenario may be shared among users and devices. SaS offers
scenario execution control for example to start and stop it but
also to query the current state of a scenario. In addition, SaS
proposes some mechanisms to maintain scenario availability in
case of service/device unavailability. SaS is currently implemented
in a proof-of-concept prototype on top of OSGi.

Keywords—Ubiquitous computing, service-oriented computing,
user-centric system, service composition, scenario creation.

I. INTRODUCTION

With the rise of ubiquitous computing [1], [2], we are surrounded
by electronic devices (such as smart phones or TVs) that propose
a huge amount of services through public or private networks.
According to the OASIS organization, “a service is a mechanism
to enable access to one or more capabilities” [3]. In service-oriented
computing (SOC) [4], and specially in home automation [5], [6], [7],
efforts have been made to facilitate the use of these electronic devices
through their services. As shown in Figure 1, the more complex
user requirements can only be satisfied by compositions of multiple
services provided by multiple devices. Different service composition
means have been studied and proposed [8], [9], [10], [11]. However,
they are not designed for end-users without technical knowledge.

Enabling end-users to describe their own scenarios is a first im-
provement and a step towards ambient intelligence [12]. In addition,
users should easily manage the created scenarios and have access to

them from several control devices (PDA, mobile phone or laptop).
Moreover, ubiquitous environments imply that several users might be
eager to share scenarios. Scenarios should therefore be exported in
the environment to be shared and reused.

Figure 1. User’s main issue

In this paper, we propose the SaS (Scenarios as Services) sys-
tem specifically designed for end-users to describe, use and share
scenarios in a high level manner. SaS comprises a new architecture
description language (ADL) [13], [14], [15] dedicated to user scenario
creation. SaS also integrates a graphical user interface (GUI) based
on this ADL. This GUI presents a classified and filtered view of the
services available from a set of widely spread devices and provides
tools to easily compose selected services. SaS integrates scenarios as
regular services. This enables easy scenario execution control, sce-
nario sharing among users and hierarchical composition of scenarios.
The SaS system has been prototyped. Its current implementation is
on top of OSGi [16].

The remainder of this paper is structured as follows. Section II
introduces the context of this work, presents the requirements for
open and distributed environments and discusses the state of the art.
Section III presents the first part of our proposition: scenario creation.
Section IV is dedicated to scenario execution control and sharing.
Section V presents the architecture of the prototype implementation.
Finally, section VI evaluates our proposition, concludes and draws
some perspectives to this work.

302 303

II. USER-CENTRIC SYSTEMS IN UBIQUITOUS
ENVIRONMENTS

This section first describes the terminology of ubiquitous environ-
ments and especially that of user-centric systems. It then presents the
requirements that are mandatory for that kind of systems. It finally
compares some of the main state of the art approaches regarding
these requirements.

A. Terminology
Ubiquitous systems involve multiple users and multiple devices

that each provide a set of services. A device is an electronic object
(such as a clock). Devices publish services (such as Time). Each
service provides one or more operations (such as getTime or
setTime). They are called “capabilities” in the SOA norm [3] by
the OASIS consortium. End-users use these operations as an access
to functionalities of devices.

Devices can interoperate but the overall goal that the system has
to achieve always comes from users. Users can be simple consumers
or technical experts that command devices, their needs can always
be considered as scenarios which are combinations of operations.
However, we choose to name this combination a service composition
because services are not stand-alone elements and to stick to the
terminology used in SOC.

A SaS system is deployed on a mobile personal device. The system
and the device on which it is deployed together define a SaS platform.
A SaS platform participate in one or more networks which constitute
the platform’s environment. The global environment is the union of
all the environment of its constituting SaS platforms.

B. Requirements for user-centric systems
User needs always constitute a scenario. User-centric system must

therefore enable scenario creation. As seen in Figure 1, user scenarios
are not always simple service aggregations but can imply conditions,
control statements and logical operators. Users should thus be able to
compose services according to their needs. Most of the users are not
technical experts. Scenario creation should therefore be user-friendly
and adapted to devices. Ubiquitous environments imply multiple
users and devices. So, created scenarios should be available into
the environment and shared among users. Users must be able to
easily start and stop created scenarios and check scenario status
and execution advancement. Thus, the system should control the
scenario life-cycle. Moreover, already created scenarios should be
easily modified and recomposed into other ones. In addition, devices
that provide services and/or scenarios can disappear. The system
must therefore maintain scenario execution and availability in case
of device disappearance.

C. State of the art
With the requirements established previously, we can analyze

some of the main systems that provide a solution for ubiquitous
environments and enable end-users to create scenarios.

• SLCA [17] provides developers with the capability to compose
web services. A composite service contains proxy components
attached to involved web services. SLCA enables hierarchical
service composition. In addition, it is an event-based system
which adapts to environment changes. In case of service un-
availability the composite service replaces it if an appropriate
service is found. If not, the composite service removes the proxy
component attached to this service.

• MASML [6] is a multi-agent system for home automation.
Scenarios are defined with an XML syntax and consist of
a sequence of service operation invocations. MASML XML
documents can embed ECMA scripts [18] to add logic elements.
A mobile agent is in charge of scenario execution. It is moving
to each appropriate device with the scenario description file to

execute it. This enables scenario advancement tracking but not
parallel execution.

• SODAPOP [19] proposes an innovative approach based on the
same observation than us: user needs are scenarios. What is
important is the goal to achieve. The main hypothesis is that
each service contains informations about its initial conditions
and its effects. SODAPOP automatically classifies new services
with these informations. Then, it can combine some of them to
reach the user’s goal.

• SASHAA [20], [21] is one of our previous work, focused on
ubiquitous systems for home automation. It enables end-users to
create scenarios with Event - Conditions - Action rules through
an appropriate GUI. It is an adaptive system which creates a
new component for each new device.

Table I compares these systems with respect to the requirements
that we identified in II-B. Symbol

√
means that the requirements is

fulfilled, - signifies that it is partially accomplished and X represents
an absence of solution.

Sy
st

em
s

Sc
en

ar
io

C
re

at
io

n

A
dv

an
ce

d
Se

rv
ic

e
C

om
po

si
tio

n

U
se

r
fir

en
dl

in
es

s

Sc
en

ar
io

sh
ar

in
g

Sc
en

ar
io

L
if

ec
yc

le

H
ie

ra
rc

hi
ca

l
C

om
po

si
tio

n

Sc
en

ar
io

M
ai

nt
en

an
ce

SASHAA
√

-
√

X - X
√

SLCA
√ √

X X X
√

-
MASML

√ √
X X - X

√
SODAPOP

√
X - X X X X

Table I
SYSTEM COMPARISON WITH OUR REQUIREMENTS

Except for SAASHA, we can notice in Figure I that all these
works propose programming tools for developers. They are not
directed to end-users. In addition, scenario sharing is never took into
consideration. For scenario life-cycle control, SASHAA only enables
to start and stop scenarios whereas MASML just allows users to
check scenario advancement. Because of this, we decided to propose
a new system which best meets all the expectations of user-centric
systems for ubiquitous environments.

III. THE SAS SYSTEM: SCENARIO CREATION

A. Overview of SaS
The purpose of SaS which stands for Scenarios As Services is

threefold:
1) help end-users create scenarios by service composition,
2) monitor scenario execution on a given platform,
3) export scenarios into the environment for future use or sharing.
To do so, several steps are necessary that define a user-centric

cycle, as illustrated by Figure 2:
0. The system (placed into a user device) discovers the services

available in its neighboring environment.
1. SaS classifies service operations depending on their providers

(devices) and services. It then displays them.
2. Users can compose several available services to create a sce-

nario. This is possible through a dynamically adaptive graphical
user interface based on our ADL.

3. The created scenario is translated into a descriptor file. It
therefore becomes easily transmissible and can be shared with
other platforms and users.

4. Next, SaS analyzes the scenario descriptor. It extracts infor-
mation about the different services involved and how they are
composed.

5. The system creates a composite with the involved services
and a generated manager. This manager handles the services
according to the previously made user choices.

304 305

Figure 2. Overview of the proposed SaS scenario creation and reuse cycle

6. Finally, the manager, which is in the composite, registers the
scenario as a new service into the environment. It becomes
accessible from other devices and shared among end-users.
Moreover, it can be composed into a new scenario.

B. Scenario creation
This section describes scenario creation, which is the main part of

our system. It consists in three steps: service selection, scenario con-
struction by service composition and scenario export. As described
in Section III-A, the first functionality of the SaS system is service
discovery. Some protocols already exist that do so (e.g. UPnP [22],
SLP [23], Jini [24]) along with different extra functionalities. To be
as interoperable as possible, our SaS system does not prescribe the
use of a particular discovery protocol. Once the available services are
discovered, they can be listed and ordered by SaS to enable service
selection.

1) Service Selection: Every service proposes one or more
operations (for example, the light service might offer two operations:
getValue and setValue). To define a scenario, users always
select operations, but the name of the service and the identity of
the provider device do not always matter. For example, to print a
document a person generally chooses his favorite printer, accesses the
specified service and selects the appropriate operation. Alternatively,
if he needs to know what time it is, he directly selects the getTime
operation, no matter which clock or service provides it.

Service selection in SaS sticks to this requirement. SaS proposes
three filtered views to select available operations: by device type
(e.g. the list of available printers), by service name (e.g. the printSer-
vice service) or directly by operation name (e.g. the print opera-
tion). If users select a device, services provided by this device are
then proposed to choose from. If users select a service, operations that
compose this service are then proposed to choose from. Moreover,
distinct devices can propose services with the same name, sometimes
with additional operations. SaS groups these services together and
displays all the available operations collectively.

2) Service Composition: SaS enables service composition
thanks to an ADL and its GUI. Depending on user choices, created
scenarios can be then exported into the environment.

a) Presentation of the ADL: In order to help end-users
create scenarios that correspond to their needs, we propose a new
ADL. It is simple and tailored to scenario creation. Compared to
other programming languages for service composition (like BPEL
[25]) which are imperative and designed for executable process, our
ADL is a high level language, declarative and destined to end-users.
With this ADL, one can declare both services and scenarios.

• Service declaration
We define a service by a device (its provider), a name and an op-
eration list. This list cannot be empty. Operations have a return

type (which can be void) and can have typed parameters. We
represent only the main elements of the grammar in Listing 1.

<service> ::= service <device> <service_name> <op_list>

<op_list> ::= (<operation> ;)*

<operation> ::= operation <operation_name> (
[<parameter_list>]) : <return_type>

<parameter_list> ::= <parameter_type> (,<parameter_type>)*

<return_type>::= <type>
<parameter_type> ::= <type>

Listing 1. Service declaration with the Backus–Naur Form (BNF)

• Scenario declaration
By definition, a scenario has a name and an action list. An
action can be:

– an operation invocation: a service operation is invoked,
with its parameter values. Users can directly enter param-
eter values or invoke another service operation to create
the desired value (operation composition). SaS checks if
parameter types conform to the service definition.

– an alternative (if - else): conditions compare the result of
two service operations or the result of a service operation
and a value chosen by the user.

– a repetition loop: enables while loops iterations while
a condition remains satisfied. Alternatively, it is possible
to precise how many times a series of actions should be
invoked.

Listing 2 describes the main elements of a scenario declaration
using the BNF notation.

<scenario> ::= scenario <scenario_name> <action_list>

<action_list> ::= { <action> + }
<action> ::= <op_invocation> ; | <alternative> | <repeat>

<op_invocation> ::= [<device>] <service_name>.
<operation_name>([<parameter_list>])

<parameter_list> ::= (<op_invocation>|<parameter_value>)
(, (<op_invocation>|<parameter_value>))*

<alternative> ::= if <cplx_cond><action_list> [<else_clause>]
<else_clause> ::= (else <action_list>)*
<cplx_cond> ::= (<condition> (<log_operator><condition>)*)
<condition> ::= <op_invocation> <comp_operator>

(<op_invocation> | <compare_to_value>)
<repeat> ::= (while <cplx_cond> | <repeat_value> times)

<action_list>

<log_operator> ::= and|or|not
<comp_operator> ::= < | <= | > | >= | ==

Listing 2. Grammar of the scenario declaration using the BNF notation

b) The graphical user interface: This ADL syntax is simple
and declarative as we can see in the example on the right of
Figure 3. Nevertheless, SaS proposes a more user-friendly option
to create scenarios through a graphical representation of the ADL.
Users therefore do not manipulate the ADL anymore but compose
service operations with basic instructions (based on the operators
of our ADL): if, else, while, times, and, or, not,
<, >, ≤, ≥, ==. For parameters entries, users can select an
operation result or choose fixed values and apply an arithmetic
operation (such as +, -, *, /).

Once the scenario is defined, users can choose to export it into
the environment. They also have to specify if the scenario can be
redeployed into another SaS platform. Thanks to a transformation
process, the scenario is then automatically transcribed into our ADL.
Figure 3 (right) shows the scenario transcription with a simplified
version of the GUI (left).

3) Composite service creation: After the scenario is created,
SaS analyzes its description file to create a composite that manages

304 305

Figure 3. Scenario Transcription: from our ADL

its deployment. This composite includes references to the services
chosen in the scenario and a Scenario Manager. The manager has
two roles: manage the different services and export the scenario as a
new service in the system according to users preferences.

Depending on user choices, services instantiated inside the com-
posite are specific to a device or come from any of its available
providers1. In this last case, if the service provider disappears, SaS
dynamically recomposes the composite that implements the scenario
to integrate another implementation of the same service (if available).
Figure 4 illustrates composite services with an example. The scenario
is simple and placed in a home automation environment: at 6pm, close
the main door and set the thermostat at 7. There are three services:
only one is defined from a specific device (the main door). Others
are instantiated from any devices that provide these services.

Figure 4. A Composite Service

IV. SCENARIO EXECUTION CONTROL AND SHARING

Once scenarios are created, they can be shared among users. In
addition, scenarios are easily manageable and should stay available
into the environment in case of service or device unavailability.

A. Scenario sharing
As seen in subsection III-B3 the Scenario Manager registers the

scenario as a new service. The scenario can then be used as a service
and, as such, composed into a new coarser grained scenario (scenario
hierarchical composition). This service has four operations: start,
stop, getScenarioState and getDescriptor. It does not
describe the functioning of the scenario: it hides services and their
interactions inside the composite. This guarantees encapsulation.
Reflexion is nonetheless provided (composites are not black boxes but
gray boxes) thanks to a service operation: getDescriptor. This
operation provides access to the scenario descriptor file. Users can
directly read this file or obtain a visual transcription of the scenario
on his GUI.

Figure 5 illustrates scenario sharing. The user of the SaS platform
named A creates and exports a scenario. This scenario is registered
as a new service. It is then discovered by platforms B and C. The
user of platform B recomposes this scenario into a new one, whereas
the user of platform C just gets an overview of the scenario on its
GUI.

1An optimized selection scheme is a perspective.

Figure 5. Overview of SaS scenario sharing

B. Scenario execution control
We define scenarios as service compositions. We can see a scenario

as an active entity, which evolves, changes from one state to another.
Moreover, the execution contains several steps which can fail or
succeed. For example, users that discover a scenario might want to
know if this scenario is currently in execution. If so, it is important
to check which steps have been executed, which succeeded and what
are the next steps. This is why, SaS manages scenarios’ life-cycles
and enables to check scenario execution status.

1) Scenario life-cycle: Scenarios are dynamic. They can be
executed, stopped, have a missing service... The state diagram of
Figure 6 illustrates the different states of scenario life-cycle which
are:

• Installed, the scenario has been deployed and registered (and
so discovered) as a new service. SaS automatically checks if
the different involved services are present.

• Ready to launch, all involved services are available. If a service
disappears, the scenario goes to the previous state.

• Running, the scenario has been launched and is currently
executed. The scenario could finish and come back to the
previous state or be interrupted.

• Stopped, the scenario has been stopped by a user or a service
inside the scenario disappeared. The scenario is paused waiting
to be restarted or to be executable again by the appearance of
an appropriate service.

Figure 6. State diagram of scenario life-cycle

2) Scenario running state advancement: Users must know
which scenario operations are running and which have already been
executed. This is why, SaS registers scenario execution progress. To
do so, SaS considers the Running state of the scenario life-cycle as

306 307

a succession of stages: the operation invocations. These stages are
evaluated depending on their types:

• Functions, if an operation is invoked to obtain a result, SaS
logs this operation as done when we obtain the result. If an
error occurs, SaS continues to execute the scenario if possible
(i.e. if the operation result is not needed) and displays a warning
to the user.

• Procedures, if the operation does not return a result, SaS logs
it as executed when the operation is invoked.

In addition, SaS logs the execution times of the different scenario
steps. Users can see when the scenario began and how long every
operation took. So, SaS enables users to check the current scenario
position and control its correct advancement. Users can get these
informations thanks to the getScenarioState operation.

C. Scenario availability
With scenario export as new services, users can have access to the

same scenario on several devices, however, they might want access
to it even if the original provider is off. This is why, scenario access
should be maintained if the original provider disappears.

To do so, SaS enables scenario redeployment on other platforms.
This is possible because SaS differentiates scenarios from available
services. When a scenario appears, every SaS platform downloads
the scenario description. Thus, users can directly have an overview
of the scenario definition and platforms can redeploy the scenario if
the original scenario provider disappears.

V. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design and implementation of the SaS
prototype. It is an ongoing work implemented in Java over OSGi [16],
[26] with iPOJO [27]. OSGi is a popular SOC framework that is
widely adopted by industry for developers to create bundles (Java
components). iPOJO is based on OSGi and follows the Service-
Oriented Component Model [28]. The main idea is that a component
should only contain business logic as in EJB 3.0 [29] (EJB entities);
SOC mechanisms should seamlessly be handled by the component
container as container-managed cross-cutting services.

A. Model
As shown in Figure 7, four components compose SaS. Each of

them is packaged as an OSGi bundle because it is safer and easier
to update.

Figure 7. The SaS prototype implemented over OSGi and iPOJO

• Service Listener. This bundle obtains, orders and dynamically
updates the list of available services from the OSGi context.

• Service Directory Management (SDM). It is the intermediate
between the Service Listener and the GUI responsible of man-
aging (adding, removing) services and scenarios in the Service
Directory.

• GUI. The GUI is platform and operating system specific (PDA,
mobile phone, Android, iOS,...). It provides a graphical repre-
sentation of our ADL which provides users with the capability
to see the available services and compose them.

• Scenario Creator. It creates scenario bundles which are com-
posed of the selected services and a scenario manager. This
latter manages services inside the composite and exports the
scenario as a service.

B. Insights into the SaS prototype
This subsection presents the implementation of the main function-

alities of the SaS system.
The latest version (4.2) of OSGI now supports distribution (RFC

119 [26]). So, for service discovery, SaS uses the API of distributed
OSGi which can be implemented by many discovery protocols. Then,
the Service Listener retrieves the list of available services from the
directory provided by the OSGi framework and sends it to the SDM.
This latter orders and classifies the service list. The GUI2 displays
available devices, services and operations. It filters the displayed
services (resp. operations) if a specific device (resp. service) is
selected. A user creates a scenario through the GUI which stores
it in an XML-based description file. This description becomes easily
transmissible and promptly interpretable and analyzable since XML is
a standard as an exchange format. Using this description, the Scenario
Creator of SaS automatically (i) generates a scenario manager which
(ii) exports and manages the scenario. Finally, the scenario (iii) is
redeployed on other SaS platforms according to user preferences. The
remainder of this section describes more deeply this three important
steps.

1) Scenario Manager generation: Starting from the XML-
based description of a scenario, SaS generates a Java class that
represents the manager of this scenario (Scenario Manager). To do so,
the first step consists to parse the XML description file using a SAX
parser [30]. SAX translates XML elements into a sequence of Java
instructions. Then, SaS generates a Scenario Manager class with the
Javassist [31] library that enables dynamic byte code edition such as
creating classes or modifying existing classes. The Scenario Manager
is generated as a class that implements the ScenarioManagerInterface
interface. This interface declares four public methods including a
start method which is automatically filled in the Scenario Manager
class with the Java instructions resulting from the SAX parsing.

2) Scenario export and execution control: SaS uses the
iPOJO API [32] to dynamically create an OSGi composite bundle
that packs together the generated Scenario Manager and the involved
services. This composite bundle is then installed and started into
the OSGi platform. Finally, the Scenario Manager registers a new
service inside the OSGi directory, specifying its capability to execute
four public methods (start, stop, getScenarioState and
getDescriptor).

For scenario execution control, the Scenario Manager creates a
log file every time the start service operation is invoked with the
invoker platform id and the current time. Then, the Scenario Manager
logs in this file every service invocation success (or failure) with
time. With this log file, SaS knows at every moment if the scenario
is currently in execution, when it began, who launched it and which
steps are already executed. These informations are available through
the service operation getScenarioState.

3) Scenario automatic deployment: As seen in V-B1, all
scenarios implement the same Java interface (ScenarioManagerIn-
terface). So, SaS can easily recognize them. Thus, when a scenario
is discovered as a new service, the Service Directory Manage-
ment automatically gets the scenario description file thanks to the
getDescriptor operation provided by the service. The scenario
is not deployed again but SaS keeps the XML description file. SDM
sends the scenario description to the GUI. If the original provider
disappears, another SaS platform may redeploy the scenario if its
directory contains all the involved services.

2which is still under development.

306 307

VI. EVALUATION AND CONCLUSION

With the SaS system, we propose a newly user-centric system that
meets the expectations of ubiquitous environments. First, we provide
scenario creation by service composition. Users can create complex
scenarios that correspond to their needs thanks to an appropriate
ADL. This ADL is simple, user-oriented and proposes an alternative
graphical view to be accessible for everyone. SaS exports scenarios
as new services into its environment, thus, users can easily share
their scenarios. Moreover, SaS manages scenario life-cycle: it enables
users to start and stop scenarios, check scenarios status and scenario
execution advancement. Moreover, users can get an overview of a
scenario specification (scenario introspection capability) thanks to a
descriptor file and reuse a scenario as a service being part of a new
encapsulating scenario composition (scenario hierarchical composi-
tion). SaS also tries to maintain scenario availability. Locally, if a
service involved into a scenario disappears, SaS tries to replace it into
the composite. Globally, when a SaS platform disappears, scenarios
exported by this platform are redeployed on other ones to remain
available. In conclusion, the SaS system presented in this paper
satisfies all the requirements defined is section II-B. A prototype of
SaS in Java over OSGi and iPOJO is currently under development.

We have three major perspectives. First, we want to evaluate SaS to
show its simplicity for non technical end-users by comparing it with
existing tools such as Yahoo Pipes [33], Automator [34] and Scratch
[35]. Such tools provide non-technical end-users of the capability to
graphically develop small applications by composing elements. Then,
we plan to define some recovery strategies to anticipate service loss
such as caching and hoarding. Finally, we want to improve scenario
distribution and propagate scenarios into the network.

ACKNOWLEDGEMENTS

This work is partially supported by a grant from the CARNOT
M.I.N.E.S Institute (http://www.carnot-mines.eu/).

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
pp. 78–89, 1995.

[2] H. Schulzrinne, X. Wu, S. Sidiroglou, and S, “Ubiquitous computing in
home networks,” IEEE Communications, pp. 128–135, nov 2003.

[3] OASIS, “Reference Model for Service Oriented Architecture 1.0,”
pp. 12 – 13, oct 2006. [Online]. Available: http://docs.oasis-open.org/
soa-rm/v1.0/soa-rm.html

[4] M. P. Papazoglou, “Service-Oriented Computing : Concepts , Character-
istics and Directions,” in Proc. of the 4th International Conference on
Web Information Systems Engineering. IEEE Computer Society, 2003,
pp. 3–12.

[5] A. Bottaro, A. Gérodolle, and P. Lalanda, “Pervasive service composition
in the home network,” in Proc. of the 21st International Conference on
Advanced Networking and Applications, 2007, pp. 596–603.

[6] C.-L. Wu, C.-F. Liao, and L.-C. Fu, “Service-Oriented Smart-Home
Architecture Based on OSGi and Mobile-Agent Technology,” IEEE
Transactions on Systems, Man and Cybernetics, Part C (Applications
and Reviews), vol. 37, no. 2, pp. 193–205, mar 2007.

[7] D. Valtchev and I. Frankov, “Service gateway architecture for a smart
home,” Communications Magazine, IEEE, pp. 126–132, 2002.

[8] M. Bakhouya and J. Gaber, Agent Systems in Electronic Business. IGI
Publishing, 2007, ch. Service Composition Approaches for Ubiquitous
and Pervasive Computing Environments: A Survey, pp. 323–350.

[9] J. Bronsted, K. M. Hansen, and M. Ingstrup, “Service composition issues
in pervasive computing,” IEEE Pervasive Computing, vol. 9, pp. 62–70,
2010.

[10] A. Urbieta, G. Barrutieta, J. Parra, and A. Uribarren, “A survey of
dynamic service composition approaches for ambient systems,” in Pro-
ceedings of the 2008 Ambi-Sys workshop on Software Organisation and
MonIToring of Ambient Systems, ser. SOMITAS ’08, 2008, pp. 1–8.

[11] N. Ibrahim and F. Le Mouël, “A Survey on Service Composition
Middleware in Pervasive Environments,” International Journal of
Computer Science Issues (IJCSI), vol. 1, pp. 1–12, 2009. [Online].
Available: http://hal.inria.fr/inria-00414117/en/

[12] E. Aarts and B. de Ruyter, “New research perspectives on Ambient
Intelligence,” Journal of Ambient Intelligence and Smart Environments,
vol. 1, pp. 5–14, 2009.

[13] P. Clements, “A survey of architecture description languages,” in Proc.
of the 8th international workshop on software specification and design.
IEEE Computer Society, March 1996, pp. 16–25.

[14] S. Vestal, “A Cursory Overview and Comparison of Four Architecture
Description Languages,” Honeywell, Tech. Rep., February 1993.

[15] P. Mishra and N. Dutt, “Architecture description languages,” IEEE proc.
- Computers and Digital Techniques, vol. 152, no. 3, p. 285, 2005.

[16] OSGi Alliance, “OSGi Service Platform Core Specification Release 4,”
2005. [Online]. Available: http://www.osgi.org/download/r4v40/r4.core.
pdf

[17] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill, “SLCA, com-
posite services for ubiquitous computing,” in Proc. of the International
Conference on Mobile Technology, Applications, and Systems. New
York, New York, USA: ACM Press, 2008, pp. 1–8.

[18] Ecma International, “ECMA-262: ECMAScript Language Spec-
ification,” December 2009. [Online]. Available: http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[19] J. Encarnaçao and T. Kirste, “Ambient intelligence: Towards smart
appliance ensembles,” From Integrated Publication and Information
Systems to Information and Knowledge Environments, no. December,
pp. 261–270, 2005.

[20] F. Hamoui, M. Huchard, C. Urtado, and S. Vauttier, “Specification of
a component-based domotic system to support user-defined scenarios,”
in Proc. of 21st International Conference on Software Engineering and
Knowledge Engineering (SEKE 2009), July 2009.

[21] ——, “Un système d’agents à base de composants pour les environ-
nements domotiques,” in Actes de la 16ème conférence francophone sur
les Langages et Modèles à Objets (LMO 2010), Mars 2010, pp. 35–49.

[22] UPnP Forum, “Understanding UPnP: A White Paper,” 2000. [Online].
Available: http://www.upnp.org/download/UPNP UnderstandingUPNP.
doc

[23] C. Bettstetter and C. Renner, “A comparison of service discovery
protocols and implementation of the service location protocol,” in Proc.
of the 6th EUNICE Open European Summer School: Innovative Internet
Applications. Citeseer, 2000, pp. 13–15.

[24] G. Aschemann, R. Kehr, and A. Zeidler, “A Jini-based Gateway Ar-
chitecture for Mobile Devices,” In Proc. of the Java-Informations-Tage
(JIT99), p. 203–212, September 1999.

[25] OASIS, “Web services business process execution language version
2.0,” april 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/
2.0/wsbpel-v2.0.pdf

[26] OSGi Alliance, “OSGi Service Platform Enterprise Specification,”
pp. 15 – 27, march 2010. [Online]. Available: http://www.osgi.org/
download/r4v42/r4.enterprise.pdf

[27] C. Escoffier and R. Hall, “Dynamically adaptable applications with
iPOJO service components,” Proc. of the 6th international conference
on Software composition, pp. 113–128, 2007.

[28] H. Cervantes and R. Hall, “Autonomous adaptation to dynamic avail-
ability using a service-oriented component model,” in International
Conference on Software Engineering (ICSE). IEEE, 2004, pp. 614–
623.

[29] Sun Microsystems, “Enterprise javabeans specifications,” may 2006.
[Online]. Available: http://java.sun.com/products/ejb/docs.html

[30] S. Means and M. A. Bodie, Book of SAX: The Simple API for XML.
No Starch Press, 2002.

[31] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Efficient
Java Bytecode Translators,” Proc. of the 2nd international conference
on Generative programming and component engineering, pp. 364–376,
2003.

[32] Apache Foundation, “ipojo api,” 2010. [Online]. Available: http:
//felix.apache.org/site/apache-felix-ipojo-api.html

[33] Yahoo, “Rewire the Web.” [Online]. Available: http://pipes.yahoo.com/
pipes

[34] Apple, “Automator: Your personal Automation Assistant.” [Online].
Available: http://www.macosxautomation.com/automator

[35] M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for Everyone,” Communications of the
ACM, vol. 52, no. 11, pp. 60–67, 2009.

308 309

SC-xScript: An Embedded Script Language for
Scientific Computation in Embedded Systems

Reng Zeng Yu Huang Su Liu
Peter J. Clarke Xudong He

Florida International University
Miami, Florida 33199, USA

Gwendolyn W. van der Linden
Jon L. Ebert

SC Solutions, Inc.
Sunnyvale, CA 94085, USA

Abstract—As embedded systems become more widespread in
industry it is important to investigate new ways of maintaining
these systems that are less time consuming and conform to the
industry standards for quality assurance. One of the key software
components in many embedded systems is the controller logic
whose responsibility is the coordination of sensors, actuators,
user interfaces and machine interfaces. Making changes to the
controller logic without having to recompile the entire system
can offer major benefits to the development process.

This paper introduces a lightweight scripting language for
embedded systems, SC-xScript, and the environment that sup-
ports the compilation and interpretation of Sc-xScript programs.
Using Sc-xScript, application engineers can rapidly and safely
test changes to the control logic, customize a product for
different customers or applications, and add extra functionality to
applications, all without requiring a new release of the underlying
embedded software product. The strength of SC-xScript is its
small size, simplicity and portability making it suitable for
embedded systems. SC-xScript combines procedural constructs
with matrix driven data structures.

I. INTRODUCTION

An important aspect of developing and maintaining control
systems for advanced processing equipment is making changes
to the controller logic, to allow for enhancing the controller
performance and adapting to changes in the system design
or functional specifications. The controller logic is often part
of a larger embedded software application that is responsible
for integrating sensors, actuators, user interfaces and machine
interfaces, and implementing the required functionality. Mak-
ing changes to these embedded applications is often time
consuming due to the quality assurance procedures commonly
used in industry. Those procedures frequently involve several
people at multiple departments, such as application engineer-
ing and software engineering, and require rigorous inspection
and testing. By incorporating scripting into the embedded
control logic application with a carefully restricted scope and
strong error checking, application engineers can rapidly and
safely test changes to the control logic, customize a product for
different customers or applications, and add extra functionality
to applications, all without requiring a new release of the
underlying embedded software product.

For these and other reasons, embedded scripting is gaining
popularity in the design of software systems and applications.
In the programming paradigm of embedded scripting, an

interpreter is embedded into a binary application program.
The application can execute script code through the embed-
ded interpreter. Many interpreters are available for embedded
scripting: Tcl/Tk [1], Python [2], Ch [3], and Lua [4], among
others. However, none of the available solutions satisfy the
requirements of the different embedded platforms one encoun-
ters in the field. In many cases it is not allowed to make system
calls in task code, and the code must meet real-time execution
requirements, and has limited memory available.

The above restrictions have led to the development of SC-
xScript, a lightweight embedded script language for embedded
systems that combines a simple procedural syntax with matrix
driven data structures. SC-xScript is statically typed, uses para-
metric polymorphism for functions, and the implementation
runs by interpreting bytecode generated by its compiler. It has
automatic memory management of a single contiguous heap
where bytecode, data and temporary variables are stored. SC-
xScript can process matrix expressions, and it currently only
supports two dimensional matrices. SC-xScript is small and
simple, suitable for embedded systems. For porting purposes,
it is implemented in ANSI C, and does not use system calls
such as malloc() and printf().

SC-xScript has the following properties:
1) Declares local variables explicitly with their size and

type while input and output arguments of functions are
only named to provide parametric polymorphism. Mean-
while a static type system is maintained by checking
each input argument and output argument of functions
against each function invocation for type safety.

2) Provides a scripting language supporting linear algebra
operations. Inconsistencies or constructs that are hard to
parse are avoided.

3) Uses pass-by-reference or pass-by-value only and does
not support pointer types.

4) Script compilation happens at initialization.
5) Allows compile-time verification of suitable matrix di-

mensions for each operation, including the operations re-
lated to input and output arguments of functions against
each function invocation.

6) Allows compile-time verification of the required heap
size; recursive functions are not allowed.

7) Allows the running of multiple scripts in one program.

308 309

Scripts are compiled at embedded system initialization and
then executed at each interval (the scripts typically run pe-
riodically at a fixed interval). Before each execution call the
input variables are set from the calling program and after the
call the output variables are read by the calling program. The
input and output variables are agreed upon for each embedded
application, and often include sensor readings, parameters,
flags, reference signals, and actuator commands.

The rest of the paper is organized as follows. In Section II,
we discuss the syntax of the language SC-xScript. In Section
III, we present the overall design of our implementation.
In Section IV, we present our static type system including
parametric polymorphism. In Section V, we discuss the related
works. In Section VI, we conclude the paper.

II. SYNTAX OF THE SCRIPT LANGUAGE

Script languages are distinct from the core code of the
application, which is usually written in a different language.
Script languages are interpreted from source code, while the
applications they control are traditionally compiled to native
machine code. SC-xScript, as introduced in this paper, is a
simple script language inspired by the Matlab [5] and GNU
Octave [6] languages with influences from C, which can be
easily embedded into C/C++ applications with the help of an
interpreter for the script language.

The complete grammar of SC-xScript is presented in the
Appendix. The language consists of three parts: variable
declaration, function definition and statements, in which the
function definition part is optional (Line 1 of the Appendix).
The first part of the language is used to declare variables, in
which each variable is a matrix whose elements are of type in-
teger or double (Lines 2-10 of the Appendix). The second part
of the language is optional, and is used for function definitions.
As Lines 12-15 of the Appendix show, both input arguments
and output arguments are only a variable name (identifier)
without any type information. It offers the flexibility of writing
a single function that handles different types of arguments.
The third part of the language contains the statements, in
which each statement could be an assignment statement,
if statement, iterative statement or jump statement. For
assignment statements (Lines 20-22 of the Appendix), it
could be either assigning the value of an arithmetic expres-
sion to a variable or an element of a variable, or assigning
the return value of a function call to return variables. The
if statement, jump statement and iterative statements
(including while loop and for loop) are similar to the C
language (Lines 23-29 of the Appendix).

III. OVERALL SYSTEM DESIGN

Figure III shows the subsystems and the relationships be-
tween the subsystems. The ScriptAPI contains the func-
tions that invoke the Compiler and the Interpreter
subsystems. The Compiler and Interpreter use the
HeapManager during the compilation and interpretation
of the script to manage the allocated heap. The heap is
a chunk of memory allocated to the SC-xScript Runtime

Figure 1. The Architecture of Implementation

System when it is invoked. The HeapManager maintains the
heap and provides the functions required to allocate memory
within the heap for the objects in the Compiler and the
Interpreter. The Interpreter does not contain any
subsystems and its main purpose is to execute the bytecodes
generated by the Compiler. The Utility contains several
components used by the Compiler and the Interpreter.

A. Heap Management

This section explains how we organize the heap. The
heap manager maintains the heap and provides the functions
required to allocate memory for the objects in the Compiler
and the Interpreter. The structure of the heap is shown in Table
I. The first row of the table shows the size in bytes for those
sections that are restricted in size. The second row shows the
names assigned to the different sections on the heap.

There are several registers reserved in the beginning of heap
as below.

1) PC, the program counter for the next bytecode to exe-
cute;

2) SP, the logical address of the beginning of Stack section;
3) DP, the logical address of the beginning of Data section;
4) ST, the logical address of the beginning of Symbol Table

section;
5) RS, the result code;
6) MR, the message reference.

The starting offset in the heap for Instructions is placed at the
end of registers. For the Data, Symbol Table Data, Stack and
Temp sections, the starting offset in the heap is predefined as a
ratio. All addresses used by the Instruction and Data sections
are logical addresses, not physical addresses, which makes it
easy to move sections in case one section is full while there
is still space in other sections.

B. Bytecode Design

The compiler uses no intermediate representation; it emits
bytecodes for the interpreter “on the fly” as it parses a
script. The bytecodes are not using the traditional stack based
implementation. Traditional stack based implementations for
bytecodes usually have most values stored on the stack, while
only a limited number of registers are used for instruction
execution, and the instructions usually are referring to their
operands implicitly. In SC-xScript most bytecodes use a three-
address format, as depicted in Figure 2, and refer to their

310 311

Table I
LAYOUT OF HEAP (B REPRESENTS BYTES.)

4B 4B 4B 4B 4B 4B
PC SP DP ST RS MR Instructions Data Symbol Table Stack Temp

OP A B C

Figure 2. Bytecode format

operands explicitly. In this way, excessive copying of values is
avoided during pushing and popping to/from the stack, which
is expensive for matrix manipulation, and reduces the total
number of generated bytecodes. SC-xScript also uses part of
the stack to store activation records of functions. Ierusalimschy
et al. [4] use a similar mechanism called register based virtual
machine, and state that the overhead brought by code size and
decoding for register based virtual machine is ameliorated by
several factors.

As for code size overhead, the bytecodes in a register based
virtual machine have to specify their operands, three operands
in our case, so it typically results in larger bytecodes than a
stack based virtual machine. However, register based virtual
machines usually generate less bytecodes than the stack based
virtual machine, so there is not much difference in the total
size. As for the decoding overhead, register based virtual
machines have to decode their operands from the bytecodes,
while stack based virtual machines typically use bytecodes
with implicit operands. However, stack based virtual machines
also spend some time manipulating implicit operands, and
bytecodes in stack based virtual machines frequently need
multi-byte operands, which make it impossible to fetch the
operand at once because of the alignment. Davis et al. [7]
argue in defense of register-based virtual machines and provide
hard data on the improvement of Java bytecode. Winterbottom
and Pike [8] also defend register based virtual machines based
on their suitability for on-the-fly compilation.

IV. TYPE SYSTEM

SC-xScript has only two types: INTEGER matrix and
DOUBLE matrix, and maintains a static type system. Each
variable is declared explicitly with its size and type, except
input and output parameters of functions. The input and output
parameters of functions are only named without specifying
their size and type, thus making SC-xScript more expressive.
In other words, the functions and their input and output
parameters are generic to handle values identically without
depending on their type, providing abstraction within the
script. In each statement of a function, the input and output
parameters are checked for type safety against each function
invocation, thus maintaining full static type safety. Therefore,
SC-xScript has a static type system, and uses parametric
polymorphism for functions. The script in SC-xScript is to be
used as a whole by external programs, and functions cannot
be accessed by external programs.

A. Storage of Type Information
For SC-xScript, types are attached to values rather than

to variables. Each value stored in either the Data or Temp
section has a 32-bit header to store the type information.
The dimension of each matrix is specified in the script. A
single integer is represented in an INTEGER matrix with one
row and one column, and a single double is represented in a
DOUBLE matrix with one row and one column. By using a
matrix to represent each data item, all data operations become
matrix operations. This greatly simplifies the data manipu-
lation making SC-xScript small and fast. Besides INTEGER
matrix and DOUBLE matrix as user defined types, SC-xScript
has one internal type: REF, which is not to be declared by
the script, it is for internal usage only. Each parameter of a
function in SC-xScript, including input parameters and return
values, is only represented by an ID without specifying the
type information. Therefore, the type of parameters could be
different in each function invocation, depending on the data
passed by the function invocation. REF is introduced as a
reference to a matrix to allow function supporting matrix with
different dimensions as input or output.

Representation of values in the heap is shown in Table II.
The first row shows the number of bits allocated to each
field. The second, third, and fourth rows contain the type
information for the data in the matrix. Our implementation
of SC-xScript uses 3 bits to indicate whether the matrix is a
INTEGER matrix, DOUBLE matrix or a REF/NREF matrix. In
the future, we can also use these 3 bits to indicate INTEGER
scalar and DOUBLE scalar to improve performance. One bit is
reserved for type checking purpose to indicate whether there
is data following the header, because the matrix header is
required during type checking to store the numbers of rows
and columns, but additional space is not necessary to be
allocated for the matrix values. Our implementation of SC-
xScript uses 14 bits to store the number of rows, supporting
up to 16383 rows. It also uses 14 bits to store the number
of columns, supporting up to 16383 columns. Because the
matrix values are stored right after the matrix header, it is not
necessary to use any bits to store the offset of matrix values.
For the REF matrix, we use 28 bits to store the address of the
destination matrix, which is the offset in the data section of
the heap. Hence our implementation of SC-xScript supports a
data section of up to 256MB, which should be sufficient for
the intended applications.

To define the structure shown in Table II in a compact
manner in ANSI-C, if using a tagged union as shown in
Program 1, proper memory alignment will result in each
matrix header needing 64 bits instead of 32 bits, which
consumes unnecessary space on the heap.

To store the matrix header as compactly as possible, SC-

310 311

Table II
LAYOUT OF SC_MATRIX IN THE HEAP.

3bits 1bit 14bits 14bits 0bit
INT tc Number of

Rows
Number of
Columns

Data Offset

DOUBLE tc Number of
Rows

Number of
Columns

Data Offset

REF tc Offset of target
SC_Matrix

NREF tc Offset of target
SC_Matrix

Program 1 Data Structure of Matrix using tagged union

1 t y p e d e f s t r u c t
2 {
3 u n s i g n e d rows : 1 4 ;
4 u n s i g n e d c o l s : 1 4 ;
5 } Data ;
6 t y p e d e f s t r u c t {
7 u n s i g n e d t y p e : 3 ;
8 u n s i g n e d t c : 1 ;
9 un ion {

10 Data d ;
11 u n s i g n e d r e f ;
12 } u : 2 8 ;
13 } SC_Matrix ;

xScript uses 14 bits for rows and 14 bits for cols to
represent each matrix header while introducing two functions
to read or write the offset of reference in those two 14-
bits. MatrixRefRead reads the offset of reference based on
calculation from rows and cols, and MatrixRefWrite
writes the offset of reference back to rows and cols.

B. Type checking for Functions

The statements in functions demand a special strategy for
type checking, because each function can be called multiple
times with different types of variables. Each statement in a
function should be checked against each function invocation,
because the parameters of a function are just variable IDs
without any type information specified; the type information
is specified at each function invocation. For example, suppose
there is one function defined as function a=mult(b,
c), followed by two invocations of the function, as shown
in Program 2, are legal because the statement a=b∗c is legal
for each function invocation.

The script shown in Program 3 is illegal, because in the
second function invocation A2=mult(B2,C2), the statement

Program 2 Legal script for multiple times of calling a function

1 i n t A1 [2 , 3] , B1 [2 , 4] , C1 [4 , 3] ;
2 i n t A2 [8 , 9] , B2 [8 , 1 5] , C2 [1 5 , 9] ;
3 f u n c t i o n a = mul t (b , c)
4 {
5 a=b∗c ;
6 }
7 A1= mul t (B1 , C1) ;
8 A2= mul t (B2 , C2) ;

Program 3 Illegal script with multiple function calls

1
2 i n t A1 [2 , 3] , B1 [2 , 4] , C1 [4 , 3] ;
3 i n t A2 [8 , 9] , B2 [8 , 1 5] , C2 [1 5 , 2 0] ;
4 f u n c t i o n a = mul t (b , c)
5 {
6 a=b∗c ;
7 }
8 A1= mul t (B1 , C1) ;
9 A2= mul t (B2 , C2) ;

in function a=b∗c is illegal, as a is a matrix with 8 rows and
9 columns, while b∗c returns a matrix with 8 rows and 20
columns.

SC-xScript does not check the function definition itself,
since there is no type information attached to the parameters.
Instead, it checks each function invocation. For each function
invocation, the parameters have a known and fixed type, which
is stored with the parameters. Taking Program 3 as an example,
each of a, b and c is a REF, so when the type checking
algorithm arrives at the statement A2=mult(B2,C2), it
points a to A2, b to B2 and c to C2. Section IV-A explains
how a REF variable points to another variable.

C. Code Generation for Functions

It seems straightforward to generate bytecodes for a function
call: just jump to the beginning of the desired function.
However, it is required to take the function return into con-
sideration. In SC-xScript, there is no recursion, but it allows a
function to be called multiple times, and it allows a function to
call another function. Therefore, it is required to know where
to return for each function invocation. For example, a function
f1 calls a function f2, the function f2 calls a function f3,
so when the function f3 is about to return, there should be
a place to store the return address of functions f1, f2 and
f3. SC-xScript implements this by introducing a small stack
section in the heap to store the return addresses.

When calling a function, the generated bytecodes push a
return address onto the stack, and then jump to the beginning
of the desired function. When returning from a function, the
generated bytecode pops an item from the stack as the return
address, and jumps to the return address.

In the bytecodes for function definition, both input and
output parameters are represented by a variable of type REF.
At each function invocation it must be determined where the
REF variable must point to.

To summarize, when calling a function the generated byte-
codes must take the following steps.

1) Bind the given address of parameters to each REF
variable. Taking Program 2 as an example, bind a to
A2, bind b to B2 and bind c to C2.

2) Push the return address onto the stack.
3) Jump to the beginning of the desired function.
4) Execute the statements in the function.
5) Pop one item from the stack as the return address.
6) Jump to the return address.

312 313

Table III
BYTECODES GENERATED FOR PROGRAM 2

OpCode Operand 1 Operand 2 Operand 3 Description
MUL 1464 1456 1460 d=b*c
MOV 1452 1464 0 a=d
RJMP 0 0 0 Function Return
EXE 0 0 0 Mark the beginning of script

REFWR 1452 16 0 REFWR a, A1
REFWR 1456 44 0 REFWR b, B1
REFWR 1460 80 0 REFWR c, C1

FJMP 0 8 0 Call function at 0 with return address 8
REFWR 1452 132 0 REFWR a, A2
REFWR 1456 424 0 REFWR b, B2
REFWR 1460 908 0 REFWR c, C2

FJMP 0 12 0 Call function at 0 with return address 12
END 0 0 0 Mark the end of script

There is additional REF variable required for the temporary
variable in function definition. Taking Program 2 as an exam-
ple, a=b∗c leads to two bytecodes using a temporary d as
follows.

d = b ∗ c
a = d

Each function definition has only one corresponding copy
of bytecodes, and each function invocation jumps to the same
beginning address of the function. Therefore, the bytecodes
for each function definition cannot include information on how
much memory is required for the temporary variable d, since
it is unable to determine the size of b∗c until the function
invocation. Consequently, the compiler cannot figure out the
space requirement of the temporary variables for the function,
and must manage the temporary variables dynamically. The
management of REF variables is explained in section IV-D.

D. Interpreter Design for Functions

Each function definition has only one corresponding copy
of bytecodes, and each statement calling a function jumps to
the same beginning address of the function, so the generated
function bytecodes have to take care of the different types of
parameters. For example, in Program 2, a=b∗c leads to two
bytecodes using a temporary d as follows.

d = b ∗ c
a = d

As mentioned before, each parameter does not have a fixed
type, and depends on the specific function invocation. SC-
xScript uses the REF type for the temporary variables as well
as the parameters. However, the strategy to handle with REF
type for the temporary variables is different than the one to
handle the REF type for the parameters. Regarding the REF
type for the parameters, the statement calling function can
simply bind it to a logical address, so for the statements in
the function definition the interpreter only needs to resolve
REF variables to get the real values. However, in case of the
REF type for the temporary variables, the interpreter needs
to determine the size of the temporary variable dynamically

Table IV
DATA SECTION FOR PROGRAM 2 - PHASE 0

Variable Address Type Address of Destination Matrix
a 1452 REF 0
b 1456 REF 0
c 1460 REF 0
d 1464 REF 0

and allocate the memory in the TEMP section of the heap. In
the above example, b and c are INT or DOUBLE variables or
REF variables, which could be resolved to INT or DOUBLE
variables. Therefore, the size of d can be determined during
the interpretation of the bytecodes, and the interpreter can
allocate memory in the TEMP section of the heap for d, and
bind d to the logical address of newly allocated memory.

Since there are two different strategies to deal with the
REF variables, SC-xScript has to figure out which strategy
to take for a REF variable. Table III gives the example
bytecodes for Program 2, Table IV gives the data layout of
function variables in data section when the interpreter starts
executing bytecodes, and Table V gives the data layout of
function variables when the interpreter enters the first function
call. When the interpreter executes the bytecode in function
definition MUL 1464 1456 1460, it can resolve 1456 and
1460 to a destination matrix, while it cannot resolve 1464
since 1464 is pointing to 0, which actually means it is waiting
for memory to be allocated. So for operand 1, which is 1464,
the interpreter first needs to allocate memory in the TEMP
section of the heap, according to the operation code and the
size of matrices referred by operand 2 and operand 3. For
example, the matrices referred by operand 2 and operand 3 are
of size [2,4] and [4,3] accordingly, then the interpreter needs
to allocate memory for operand 1, which is a REF type, with
a matrix of size [2,3], because it is a matrix multiplication.

Table VI gives the data layout of function variables after
the execution of the first function call, in which the temporary
variable d is referring to the destination matrix at 4 in the
TEMP section of the heap. The issue is then: when the
interpreter executes the second function call, for the bytecode
MUL 1464 1456 1460, the first operand 1464 is referring

312 313

Table V
DATA SECTION FOR PROGRAM 2 - PHASE 1

Variable Address Type Address of Destination Matrix
a 1452 REF 16
b 1456 REF 44
c 1460 REF 80
d 1464 REF 0

Table VI
DATA SECTION FOR PROGRAM 2 - PHASE 2

Variable Address Type Address of Destination Matrix
a 1452 REF 16
b 1456 REF 44
c 1460 REF 80
d 1464 REF 4

to 4, which is a matrix with size [2,3]. However, for this
function call, it requires a matrix with size [8,9]. Then how
the interpreter could be able to distinguish these specific REF
variables from other REF variables for memory allocation? To
resolve this, SC-xScript introduces an additional type, NREF,
to provide temporary variables generated by the compiler for
functions. This way, when the bytecode is going to write to
a temporary variable marked as NREF type, it can always
allocate memory for that.

V. RELATED WORK

A number of languages have been designed for replacing
application-specific scripting languages by being embeddable
in application programs. The application programmer (work-
ing in C or another system language) includes "hooks" where
the scripting language can control the application. These
languages serve the same purpose as application-specific ex-
tension languages but with the advantage of allowing some
transfer of skills from application to application. JavaScript
began as, and primarily still is, a language for scripting inside
web browsers; however, the standardization of the language
as ECMAScript has made it popular as a general purpose
embeddable language. In particular, the Mozilla implementa-
tion SpiderMonkey is embedded in several environments such
as the Yahoo! Widget Engine. Other applications embedding
ECMAScript implementations include the Adobe products
Adobe Flash (ActionScript) and Adobe Acrobat (for scripting
PDF files).

Lua [9] is a lightweight, reflective, imperative and functional
programming language, designed as an embedded scripting
language. It is not interpreted directly from the textual Lua file,
but is compiled into bytecode, which is then run on the Lua
virtual machine. The difference of our work with Lua is that, in
our work SC-xScript, everything is a matrix, that makes it easy
for matrix operations. In Lua, Tables are the most important
data structure. Our work offers a way for embedded system
to easily use scripts for scientific computation.

Regarding scientific computation, two categories of general
scientific software can be identified as 1) computer algebra
systems that perform extensively symbolic mathematical eval-
uations such as Maple [10] and Mathematica [11] and 2)

matrix computation systems that are designed for numerical
computations and are well suited for engineering applications
such as the Matlab [5] that dominates at the commercial
market and the open source “clones” Scilab [12] and Octave
[6]. Chonacky and Winch [13] offers an excellent comparative
review of three well-established commercial products. The
open source jLab [14] environment extends the potential of
Java for scientific computing. It provides a Matlab/Scilab
like scripting language that is executed by an interpreter
implemented in the Java language. The scripting language
supports the basic programming constructs with Matlab like
matrix manipulation operators.

The control engineering design and analysis problems have
grown increasingly complex with both technological break-
throughs and theoretical advances over the last few decades.
A number of software packages have been developed to bridge
the gap between modern control theory and the software/hard-
ware implementation. The existing well-known interpretive
software packages, such as MATLAB Control System Toolbox
[15], MATRIXx [16], and Mathematica’s Control System
Professional [17] are commercially available for the purpose
of computer-aided control system design, that offer scientific
computation toolboxs to solve the complex design and analysis
problems in the host, while our work is to deploy the scientific
computation capability in the target embedded devices.

VI. CONCLUSIONS

In this paper we present SC-xScript, a lightweight script
language for embedded systems, which combines simple pro-
cedure construct syntax with matrix driven data structures. It is
statically typed, and the implementation runs by interpreting
bytecodes generated by its compiler, has automatic memory
management of a single contiguous heap where bytecode, data
and temporary variables are stored. Its strength is in processing
matrix expressions, and matrix is the only data structuring
mechanism. It is small and simple, suitable for embedded
systems. It is implemented in about 40,000 lines of code.

We attach the type information into the values instead of
variables, so that when executing the generated bytecodes the
interpreter does not have to do symbol table lookups to check
the type information for operands, which saves time for each
bytecode execution. As the matrix is the only data structuring
mechanism and SC-xScript is statically typed, attaching the
type information into the values by adding a matrix header
make it simple to view the data section of the heap for
debugging purpose.

We introduce a REF type to allow function definition to
support different parameters, which is important for some
functions as they may have to handle with all kinds of matrix
size. Otherwise, the script user would need to identify the
matrix size for each parameter to make the type fixed, and
design functions with the same functionality for different size
of a matrix.

We carefully designed the heap management to support
both compiling and execution based on the same fixed heap,
managing the space for bytecodes, data, stack and temporary

314 315

data. As the heap size is fixed, it may be possible that there
is not enough space for the data section while there is still
space left in the temporary section. SC-xScript solves this
by supporting the movement of memory sections, which is
simplified by using logical addresses.

By supporting matrix data and matrix expressions, while
keeping small and simple, SC-xScript is suitable for embedded
systems that require an embedded scripting language for
scientific computation.

SC-xScript is portable to be embedded into any C/C++
programs, as it is implemented in ANSI C.

Further work may include optimizing the generated byte-
codes to save space in the heap and improve the execution
efficiency.

ACKNOWLEDGMENTS

This work was partially supported by the NSF of U.S.
under award HRD-0833093, IIP-0450482 and Presidential
Fellowship of Florida International University.

APPENDIX

Following is the completed Extended Backus-Naur Form
(EBNF) specifying the grammar of SC-xScript.

1 prog = decllist, [funclist], statementlist;
2 decllist = {type, matrixlist, ";"};
3 type = "int" | "double";
4 matrixlist = matrixdef {",", matrixdef};
5 matrixdef = identifier, ["[", (integer, [",", integer]

| identifier, [",", identifier]) "]"], ["=",
matrixexp];

6 matrixexp = integer, [":", integer] | real | matrixleft
| "(", scalarlist, ")", ["’"] | "[",
scalarlist, "]", ["’"] | identifier,"[","[",
selector,"]",",","[",selector,"]","]";

7 scalarlist = selector, {";", selector};
8 selector = matrixrange, {",", matrixrange};
9 matrixrange = matrixindex, 2 * [":", matrixindex];

10 matrixindex = identifier | integer | real;
11 funclist = funcdec, {funcdec};
12 funcid = "function", (identifier | "[", outputarglist,

"]"), "=", identifier, "(", inputarglist, ")";
13 funcdec = funcid, "{", decllist, statementlist, "}";
14 outputarglist = identifier, {",", identifier};
15 inputarglist = identifier, {",", identifier};
16 funccall = identifier, "(", actualarglist, ")";
17 actualarglist = arithmeticexp,{",",arithmeticexp};
18 statementlist = {statement};
19 statement = assignment|ifstatement|iterstatement|

jumpstatement;
20 assignment = matrixleft,"=",(arithmeticexp|funccall)

,";" | leftexp,"=",(funccall|"size","(",
arithmeticexp,")"),";";

21 matrixleft = identifier,["[",matrixrange,[",",
matrixrange],"]"];

22 leftexp = "[", identifier, ",", identifier, "]";
23 ifstatement = "if", "(", logicexp, "), "{",

statementlist, "}", ["else", ("{", statementlist,
"}" | statement)];

24 iterstatement = whileloop | forloop;
25 whileloop = "while","(",logicexp,")","{",statementlist

,"}";
26 forloop = "for", "(", init, ";", logicexp, ";",

increment, ")", "{", statementlist, "}";
27 init = identifier, "=", integer;
28 increment = ("++"|"--"), identifier | identifier,

("++"|"--") | identifier, "=", identifier,
("+"|"-"), integer;

29 jumpstatement = ("continue"|"break"), ";";
30 arithmeticexp = matrixexp | builtinfunc,"(",

arithmeticexp,")" | arithmeticexp
,("+"|"-"|"*"|"/"|".*"|".^"|"./"),arithmeticexp;

31 logicexp = arithmeticexp,("<"|">"|"<="|">="|"=="|"!="),
arithmeticexp | logicexp,("&&"|"||"),logicexp |
"!",logicexp;

32 builtinfunc = "sin" | "cos" | "exp";
33 identifier = alphabetic, { alphabetic | digit } ;
34 alphabetic = "_"|"A"| ... |"Z"|"a"| ... |"z" ;
35 digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9";
36 real = (integer | decimal), ["E", integer];
37 decimal = integer, ".", unsigned | integer, "." | ".",

unsigned;
38 integer = ["-"], unsigned;
39 unsigned = digit, {digit};

REFERENCES

[1] J. K. Ousterhout, Tcl and the Tk Toolkit. Addison Wesley,
1996.

[2] G. van Rossum, “Scripting the Web with Python,” World Wide
Web J., vol. 2, no. 2, pp. 97–120, 1997.

[3] H. H. Cheng, “Scientific Computing in the CH Programming
Language,” Sci. Program., vol. 2, no. 3, pp. 49–75, 1993.

[4] R. Ierusalimschy, L. de Figueiredo, and W. Celes, “The Imple-
mentation of Lua 5.0,” Journal of Universal Computer Science,
vol. 11, no. 7, pp. 1159–1176, 2005.

[5] D. J. Higham and N. J. Higham, MATLAB guide, 2005.
[6] J. W. Eaton., GNU octave manual, Network Theory Ltd, 2002.
[7] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron, “The

case for virtual register machines,” in IVME ’03: Proceedings
of the 2003 workshop on Interpreters, virtual machines and
emulators. New York, NY, USA: ACM, 2003, pp. 41–49.

[8] P. Winterbottom and R. Pike, “The design of the Inferno virtual
machine,” in In IEEE Compcon, 1997, pp. 241–244.

[9] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua—
an extensible extension language,” Softw. Pract. Exper., vol. 26,
no. 6, pp. 635–652, 1996.

[10] E. Kreyszig, Advanced Engineering Mathematics: Maple Com-
puter Guide. New York, NY, USA: John Wiley & Sons, Inc.,
2000.

[11] M. Trott, The mathematica guidebook: programming. Berlin:
Springer, 2004.

[12] N. R. Campbell Stephen, Chancelier Jean-Philippe, Modeling
and Simulation in Scilab/Scicos. Springer, 2006.

[13] N. Chonacky and D. Winch, “Reviews of Maple, Mathematica,
and Matlab: Coming Soon to a Publication Near You,” Comput-
ing in Science and Engineering, vol. 7, no. 2, pp. 9–10, 2005.

[14] S. Papadimitriou and K. Terzidis, “jLab: Integrating a scripting
interpreter with Java technology for flexible and efficient scien-
tific computation,” Comput. Lang. Syst. Struct., vol. 35, no. 3,
pp. 217–240, 2009.

[15] A. Grace, J. L. Alan, J. N. Little, and C. M. Thompson, Control
system toolbox for use with Matlab: User’s guide. Infoscience |
Ecole Polytechnique Federale de Lausanne (Switzerland), 1995.

[16] R. Walker, J. Gregory, C., and S. Shah, “MATRIXx: A data
analysis, system identification, control design and simulation
package,” IEEE Control Systems Magazine, vol. 2, no. 4, pp.
30 – 37, 1982.

[17] B. Palancz, Z. Benyo, and L. Kovacs, “Control System Profes-
sional Suite,” IEEE Control Systems Magazine 25, no. 4, pp.
67–75, 2005.

314 315

Context-aware Services for Multiple-Users

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract

This paper presents a framework for providing context-
aware services in public spaces, e.g., museums. The frame-
work is unique among other existing context-aware systems
in implementing services as mobile agents and supporting
groups of users in addition to single users. It maintains a lo-
cation model as containment relationships between digital
representations, called virtual counterparts, corresponding
to people, terminals, or spaces, according to their loca-
tions in the real world. When a visitor moves between ex-
hibits in a museum, it dynamically deploys his/her service
provider agents at the computers close to the exhibits via
virtual counterparts. When two visitors stand in front of
an exhibit, service-provider agents are mutually executed
or congured according to the member of the visitors. To
demonstrate the utility and effectiveness of the system, we
constructed location/user-aware visitor-guide services and
experimented with them for two weeks in a public museum.

1 Introduction

Many of the early applications of pervasive computing have
focused on interaction between individual users and their
environments [1, 2]. They have paid little attention to envi-
ronments that might effectively sense and respond to groups
of co-located people. However, much of our time is spent
in shared physical spaces, e.g., ofces, factories, schools,
and public spaces, so it is important to consider how an en-
vironment might effectively sense and respond to groups of
co-located people as well as individual people.
When there are multiple users in a space, context-aware

services should be customized to according to the combi-
nation of people in current places in addition to the people
themselves. For example, when a married couple stands
in front of digital signage, advertising content displayed on
the signage should be specic to neither mens’ nor women’
items. When a visitor stands in front of an exhibit in a mu-

seum, where another visitor is already standing, annotation
services provided from a terminal close to the exhibit may
be provided to the existing visitor, and then the new visitor
sequentially, or customized to the two visitors.
This paper presents a framework for providing context-

aware services to not only individual people but also groups
of co-located people in specied spaces. Since such ser-
vices tend to depend on the co-location of people, the frame-
work maintains a location model for the real world.

2 Background

This section describes basic ideas behind the framework
presented in this paper.

2.1 Example Scenario

Suppose a context-aware visitor-guide system is in a mu-
seum. Most visitors to museums lack sufcient knowledge
about exhibits in the museum and they need supplemen-
talary annotations on these. However, as their knowledge
and experiences are varied, they may become puzzled (or
bored) if the annotations provided to them are beyond (or
beneath) their knowledge or interest. User-aware annotation
services about exhibits are required. For example, when
a user stands in front of an exhibit, an annotation service
about the exhibit is provided in his/her personal form on
a stationary terminal close to the exhibit. However, there
are multiple users in a public space. Suppose a visitor ar-
rives in front of an exhibit, where another visitor is stand-
ing and receiving an annotation service from on a terminal
there. We have several approaches to solving this. 1) After
the annotation service for the existing visitor has nished,
an annotation service for the new visitor is provided. 2)
The annotation service for the existing visitor is shared by
and customized to the existing and new visitors. In fact,
we constructed and provided such a context-aware visitor-
guide system to several museums [3]. This problem was
serious during rush hours at the museums.

316 317

2.2 Design Principles

To provide services according to groups of co-located peo-
ple, we need to model the locations of the people and the ter-
minals that provide the services. This framework maintains
a symbolic location model about their locations to select
and customize services. It maintains the locations of people,
physical entities, and places in the real world as structural
relationship between programmable entities, called virtual
counterpart objects, corresponding to them.
It uses the spatial co-location of physical entities as a pri-

mary attribute for selecting communication partners. Com-
munication partners, including terminals, should also be
selected according to their co-locations. Co-locations be-
tween people and terminals are modeled as a spatial rela-
tionship between the virtual counterparts corresponding to
the people and the terminals. The framework allows us to
explicitly dene the condition that activate and congure
services provided to the groups of people in the same space.
The condition is dened as a combination of relationships
between slots in a counterpart. As seen in 1, each slot has
one input port and one or more output ports to receive or
issue events. The output ports can be classied into the fol-
lowing types.

• Arriving port: when a slot receives a counterpart, it
issues an event to another counterpart from the port.

• Staying port: when a slot holds a counterpart, it peri-
odically issues events to another counterpart from the
port.

• Left port: when a slot sends a counterpart, it issues an
event to another counterpart from the port.

The framework enables us to dene a one-to-one connec-
tion from each of the output ports of a slot to be explicitly
connected to the input port of another slot contained in the
same counterpart. Also, we introduce many-to-one connec-
tions, in the sense they have multiple input ports and one
output port.

• And connections: when it receives events from all its
input ports, it issues an event to its output port.

• Or connections: when it receives events from at least
one of its input ports, it issues an event to its output
port.

Context-aware communication between counterparts are
dened as a graph notation consisting of connections be-
tween ports.
We discuss differences between the framework presented

in this paper and our previous frameworks. We earlier con-
structed a location model for pervasive computing environ-
ments [3]. Like the framework presented in this paper,

Arriving output port

L
S

A
I Staying output port

Left output port

Input port Slot
L
S

A
I Slot 1

L
S

A
I Slot 2

L
S

A
I Slot 3

And/or connection

Virtual counterpart object

Figure 1. Slot and connection

the model represented spatial relationships between phys-
ical entities (and places) as containment relationships be-
tween their programmable counterpart objects and deployed
counterpart objects at computers according to the positions
of their target objects or places. We previously presented
a context-aware museum guide system [4]. Our previous
model and systems provided no support to location-aware
communications and group-aware communications, unlike
the framework presented in this paper.

3 Design and Implementation

Our framework consists of four subsystems: 1) context-
aware directory servers, called CDSs, 2) virtual counterpart
management systems, 3) agent runtime systems, and 4) ser-
vice provider agents. The rst is responsible for reecting
changes in the real world and the location of users when
services are deployed at appropriate computers. Our system
can consist of multiple CDSs, which are individually con-
nected to other servers in a peer-to-peer manner. Each CDS
only maintains up-to-date information on partial contextual
information instead of on tags in the whole space. The sec-
ond manages a structure of virtual counterparts according to
up-to-date information on the state of the real world, such
as the locations of people, places, and things.
The third is running on stationary computers, which are

located at specied spots close to exhibits in a museum
and are equipped with user-interface devices, e.g., display
screens and loudspeakers. It is responsible for executing
and migrating service-provider agents, like existing run-
time systems for mobile agents [4]. The fourth is an au-
tonomous entity that denes application-specic services
for visitors. It is implemented as one or more mobile
agents. Virtual counterparts are used as forwarders in the
sense that they migrate mobile agents from one terminal
to the next. The framework deploys and executes mobile
agents at computers near the positions of the users instead
of at remote servers. As a result, mobile agent-based con-
tent can directly interact with users, where RPC-based ap-
proaches, which other existing approaches are often based
on, must have network latency between computers and re-
mote servers. Mobile agents can help to conserve these lim-
ited resources, since each agent only needs to be present
at the computer while the computer needs the content pro-
vided by that agent.

316 317

3.1 Location-sensing systems

The framework itself is independent of any location-sensing
system. The management system has interfaces for mon-
itoring its underlying location-sensing systems. Tracking
systems can be classied into two types: proximity and lat-
eration. The rst approach detects the presence of objects
within known areas or close to known points, and the sec-
ond estimates the positions of objects from multiple mea-
surements of the distance between known points. The CDSs
support the two types, but they map geometric information
measured by the latter sensing systems to specied areas,
called spots, where the exhibits and the computers that play
the annotations are located. This is because most context-
aware services in public spaces should be provided within
specied spaces rather than at specied geometric points.
Each CDS has its own local database to maintain the loca-
tions of visitors and their agents. When a CDS detect the
presence/absence of people, physical entities, or comput-
ers, it tries to discover virtual counterparts corresponding to
them by sending other CDSs and runtime systems for vir-
tual counterparts through UDP multicast communications.

3.2 Virtual counterpart management

The framework itself is independent of programming lan-
guages, but the current implementation uses Java (J2SE ver-
sion 1.5 or later versions) as an implementation language to
dene the framework itself and virtual counterparts.
The framework manages a location model as an acyclic-

tree structure of virtual counterparts, where each virtual
counterpart can be dened as a self-contained computing
entity without any description of a counterpart hierarchy.
The management system provides a container for the coun-
terpart corresponding to a virtual counterpart. The con-
tainer technology developed by Enterprise Java Beans pro-
vides interfaces for components and enables them to trans-
parently adapt to runtime services, e.g., it manages trans-
actions. That is, this framework provides each agent cor-
responding to a counterpart with a wrapper, called a tree
container. Each container includes its target agent, its at-
tributes, and containment relationships between itself and
its parent container and between itself and its child contain-
ers. As a result, a hierarchy of containers is maintained in
the form of a tree structure, which has the component tree
nodes of containers.

3.3 Virtual counterpart

Each virtual counterpart is dened as a mobile agent and a
whole or part hierarchy of counterparts is maintained as a
acyclic-tree structure of virtual counterparts. The frame-
work provides agent runtime system(s) on computer(s).

The system is responsible for managing and exchanging
virtual counterparts and controls messages or counterparts
with runtime systems running on different computers (if the
framework is maintained in one or more computers). The
runtime systemwas designed for this framework, but is sim-
ilar to other existing Java-based mobile agent systems.
Each agent can have one or more activities implemented

using the Java thread library. The system can control all the
components in its container hierarchy, under the protection
of Java’s security manager. Furthermore, the system main-
tains the life cycle of the agents: initialization, execution,
suspension, and termination. When the life cycle state of an
agent changes, the system issues certain events to the agent
and its descendent agents.
Counterpart migration within a container hierarchy oc-

curs merely as a transformation of the tree structure of the
container hierarchy. When one counterpart is moved to an-
other in the same computer, a sub-tree, whose root cor-
responds to its container and branches, including counter-
parts, is migrated to the container that maintains the desti-
nation. When a counterpart can be deployed in another sub-
tree maintained on another computer, the system marshals
the state of the counterpart, e.g., instance variables and the
counterpart embedded within its container sub-tree, into a
bit-stream and transmits their serialized state program code
through TCP sessions by using the underlyingmobile agent
runtime system.

3.4 Context-aware communication

Each service should be activated through connections be-
tween slots for target people or physical entities and the slot
that contains it. Each of slots in a virtual counterpart has
its attribute and can hold at most one virtual counterpart
that can satisfy the attribute. Although the attributed can
be explicitly dened, the current implementation supports
built-in attributes corresponding to users, unknown visitors,
administrators, terminals, and services. Each slot also has
more output ports and one input port to receive events. The
former ports issue events at certain changes in the structure
of counterparts and the latter port forwards receiving events
to the counterpart contained in its port’s. Each connection
are maintained as event queues between its source slots and
its destination slots. Connections are dened in LISP-like
expressions and then evaluate them by using a LISP-based
interpreter.

3.5 Service-provider object

Virtual counterparts corresponding to terminals deploy
service-provider objects at the terminals. Each service-
provider object is automatically deployed at and maintains
per-user preferences on a user and record his/her behavior,

318 319

e.g., exhibits that they have looked at. The service-provider
object can also dene user-personalized services adapted to
the user and access location-dependent services provided at
its current computer. Each service-provider object is spa-
tially bound to, at most, one user. When a user gets closer
to an exhibit, our system detects his/her migration by using
location-sensing systems and then instructs the user’s coun-
terpart objects to migrate to a computer close to the exhibit.
Mobile agent help to conserve limited resources, because
each service-provider object only needs to be present at the
computer for the duration the computer needs the services
provided by that service-provider object. The framework is
open to dene connections as long as they are subclasses of
the classes for built-in connections.

4 Experience

We constructed and carried out an experiment at the Mu-
seum of Nature and Human Activities in Hyogo, Japan,
using the proposed system. We did the experiment over
two weeks. Each day, more than 60 individuals or groups
took part. The experimental environment provided several
spots in front of exhibits, which were specimens of stuffed
animals, e.g., a bear, deer, racoon dog, and wild boar in
an exhibition room of the museum. Each spot could pro-
vide animation-based annotative content about the animal,
e.g., their ethology, footprints, feeding, habitats, and fea-
tures, close to its location and had a terminal and Spider’s
active RFID reader with a coverage range that almost cor-
responded to the space.
The experimental system provides each visitor or group

of visitors with colored pendants including RFID tags. The
counterpart is spatially attached to a pendant assigned to
each visitor. These pendants are colored, e.g., green, or-
ange, or blue. Each spot has three kinds of slots. The
rst can contain counterparts for visitors, the second can
contain counterparts for terminals that can execute services,
the third can contain counterparts for museum staffs. These
slots have connections as shown in Figure 2.

L
S

A
I Slot for

visitor

L
S

A
I

L
S

A
I Slot for

serivce
1

And

Virtual counterpart object for spot

L
S

A
I

Slot for
visitor

And

And

Or

Slot for
serivce

2

Figure 2. Connections between slots for mu-
seum guide.

For example, suppose that a visitor enters a spot with the
specimen of a racoon dog and a terminal is located in the
spot. His/her virtual counterpart is migrated to the slots for
visitors’ counterpart and service-provider objects are con-
tained in the slots for terminals. A service-provider object
is activated according to the connection for slot for service 1
in Figure 2. When another visitor enters the spot, his virtual
counterpart is migrated to the slot for visitors in the coun-
terpart corresponding to the spot. The connection executes
a service for newly arriving visitors after executing services
for existing visitors. The connection for slot for services in
Figure 2 is to block executing services when specied con-
ditions are satised even when some visitors have arrived.

5 Conclusion

We designed and implemented a framework for providing
context-aware services in public spaces, e.g., museums. It
supported groups of users in addition to single users and
implemented application-specic services as mobile agents
to deploy the services at terminals. It maintained a lo-
cation model as containment relationships between digital
representations, called virtual counterparts, corresponding
to people, terminals, or spaces, according to their loca-
tions in the real world. When a visitor moved between ex-
hibits in a museum, it dynamically deployed his/her service
provider agents at computers close to the exhibits via vir-
tual counterparts. When two visitors stood in front of an
exhibit, service-provider agents were mutually executed or
congured according to the member of visitors. To demon-
strate the utility and effectiveness of the system, we con-
structed location/user-aware visitor-guide services and ex-
perimented with them for two weeks in a public museum.

Acknowledgments

This research is in part supported by grant from the Pro- motion program
for Reducing global Environmental loaD through ICT innovation (PRE-
DICT) of the Ministry of In- ternal Affairs and Communications in Japan.

References

[1] C. Rocchi , O. Stock , M. Zancanaro , M. Kruppa , A. Kruger: The
Museum Visit: Generating Seamless Personalized Presentations on
Multiple Devices, Proceedings of 9th international conference on In-
telligent User Interface, pp.316-318, ACM Press, 2004.

[2] T. Kuik, A. Albertini, P. Busetta, C. Rocchi, O.Stock, and M. Zan-
canaro: An Agent-Based Architecture for Museum Visitors’ Guide
Systems, Proceedings of Information and Communication Technolo-
gies in Tourism 2006, pp.57-60, Springer 2006.

[3] I. Satoh: A Location Model for Smart Environment, Pervasive and
Mobile Computing, vol.3, no.2, pp.158-179, Elsevier, 2007.

[4] I. Satoh: Mobile Agents for Active Media Proceedings of Interna-
tional Conference on Software Engineering and Knowledge Engi-
neering (SEKE 2010), pp.503-508, 2010.

318 319

Dynamic Service Choreography using Context
Aware Enterprise Service Bus

Abstract—Enterprise Service Bus (ESB) is responsible for
publishing and discovery of services in a global distributed
delivery system. Context-aware systems offer entirely new
opportunities for application developers and for end users by
gathering context data and adapting systems’ behavior
accordingly. In this paper, we propose a Context Aware ESB
(CA-ESB) that will publish and discover services based on
location context. The main modules of the framework consist
of Context Provider (senses location context), Context Aware
Logic Module (decides which regional service to be selected
based on location context) and Service Choreographer
(choreographs selected services). We propose a graphical
model named Context Aware Graph (CA-Graph) that will
help us to dynamically choreograph the services. These
modules along with other modules of SOA reference
architecture will help the ESB to sense the location of users,
to select the required services and dynamically choreograph
those services. We define a set of metrics based on CA-graph
and analyze the performance of CA-ESB. An algorithm is
proposed that will dynamically choreograph the selected
services based on location context. The results of the case
study of an Insurance System are used to illustrate our
approach.
Keywords— Cloud Computing, Context-aware, Enterprise
Service Bus, SOA based global delivery model, dynamic
service choreography, CA-Graph

I. INTRODUCTION

Distributed Delivery Model[11] is a bi-directional
sequence of activities consisting of requirements
specification, analysis, design, development, integration,
testing, and maintenance. These activities may not always
be performed in a linear fashion, as there may be some
overlap between and across certain processes. The
distributed delivery model has gained immense
importance as these days software is developed in a
distributed manner with a common core component and
various regional components interfacing with it.
Service-orientation requires loose coupling of services
with operating systems, and other technologies that
underlie applications. SOA separates functions into
distinct units known as services, which developers make
accessible over a network in order to allow users to
combine and reuse them in the production of applications.
These services and their corresponding consumers

communicate with each other by passing data in a well-
defined, shared format, or by coordinating an activity
between two or more services.
In the distributed delivery model the services can be
divided into core services and regional services. The core
services will remain same for all applications and regional
services will vary from one application to another
application. The regional services interface with the global
services to serve the overall business function
requirements at each location. In this paper, we propose a
Context Aware ESB (CA-ESB) that will publish and
discover services based on location context. This type of
ESB framework is very relevant for region specific global
development scenario. A new graphical model named
Context Aware Graph (Ca-Graph) is proposed that models
the services/processes and their interconnections for all the
locations. Discovery of services becomes much simpler
using CA-ESB as the CA-Graph proposed here unveils the
service choreography for each location dynamically.
Analysis of CA-Graph using a metrics proposed in this
paper clearly illustrates the performance of CA-ESB vis-à-
vis a traditional ESB.

II. RELATED WORK
Areas related to SOA have become prominent research
domains. Here we discuss about some of the relevant
research works in the field of Enterprise service bus
(ESB).
A dependable ESB framework that enables automated
recovery from component failures is proposed in [1]. The
authors in [2] propose an ESB framework to enable the
content-based intelligent routing path construction and
message routing. [3] presents computation-independent
models (CIMs) and platform independent models (PIMs)
for service oriented architectures.
Existing ESB-based system have difficulties to manage
complex
events of real-world applications very well. A complex
event-processing model based on the relational algebra is
proposed in [4], and then it proposes a complex event
processing oriented enterprise service bus. [5] presents
Omnipresent, which is a service-oriented architecture for

Swapan Bhattacharya
Jadavpur University

Kolkata ,India

Jayeeta Chanda
B.P.Poddar Institute of

Management &Technology
Kolkata, India

Sabnam Sengupta
B.P.Poddar Institute of

Management &Technology
Kolkata, India

Ananya Kanjilal
B.P.Poddar Institute of

Management &Technology
Kolkata, India

320 321

context-aware applications that may be accessed from
either mobile devices or Web browsers, and it is based on
Web services page layout.
In [8], a design of a Dynamic Composition Handler on
Enterprise Service Bus (ESB) is presented which analyze
different types of service compositions to clarify what
dynamic composition really holds in SOC.
In [9], service composition and discovery are not treated
separately. Here a matching algorithm is developed that
combines several services which are not known and need
to be discovered. In [10], the flexible architecture of the
discovery engine Glue2 is proposed which comes with a
powerful set of discovery components (for functional
matching, non-functional matching, data fetching, etc.)
that can be executed in different order as required by
specific execution workflows.
In our previous work in [7] a graph named D-SG is
proposed to model design models in distributed
environment. The sequence diagrams are interleaved such
that the business process at a location spans several
sequence diagrams modeling the common and regional
use cases. This is modeled graphically using Distributed
Scenario Graph (D-SG). Our work in this paper closely
relates to this graph model.
In the domain of context aware software architectures, the
current work proposes to encompass the design of a
context aware ESB that will enable publishing and
discovery of services based on location context of the
users. Our approach is to incorporate context awareness to
ESB unlike other existing work. Incorporating context
awareness to ESB will enable the developer to control the
algorithms related to context awareness centrally in the
ESB(which act as a middleware) where as in the existing
works in Context Aware SOA the context awareness is
achieved through end devices. This kind of ESB
framework will be of immense importance in global
software development scenario where services can be
region specific of the users.

III. SCOPE OF WORK
In this work, Context Aware Graph (Ca-Graph) is
proposed that models the services/processes and their
interconnections for all the locations. In this framework,
the traditional ESB with the help of CA-graph and
location information functions in such a manner that it
gets the essence of CA-ESB that performs dynamic
service choreography. An Algorithm is proposed which
will perform the dynamic choreography of services based
on location context. Some metrics are also proposed to
analyse the performance of this CA-ESB framework.

In this work we have used some terms to describe our
work. Before the description of our proposed work, we
will define those terminology that are frequently used
throughout this paper for better understanding of our
work.

Service Vs Process

The term Process is used when we describe a specific task
in the Analysis Phase of SOA software development.
Different processes are arranged together (choreographed)
to render a specific functionality. Services on the other
hand are loosely coupled entities spread over a distributed
system. Once the processes are choreographed for a
particular application, they will be mapped with the
loosely coupled services. So, processes are tightly coupled
logical entities and services are loosely coupled physical
entities. In this work , we will use process in parallel with
service Once the processes are choreographed , the same
process will be mapped with the services and that service
will be either constructed or discovered in ESB.

Regional Processes Vs Common Processes

In a global development scenario, the s/w development is
done for requirements that cross regional boundaries. In an
application, there will be multiple region specific
processes for the same functionality. For example, GUI
interface will be different for different location (language
specific). Also, different regions have different business
policies leading to multiple processes of the same
function.

IV. PROPOSED CA-ESB FRAMEWORK

The CA-ESB (Context Aware Enterprise Service Bus)
framework is shown in Figure 1.
The modules of CA-ESB are:
A. Service Consumer

They are the users of the application. In our context aware
scenario, they are spread over multiple regions. Their
request will be served based on the location context
provided by the Context Provider.

B. Context Provider

Context Provider will provide location context of the
users. The enterprise service bus will be provided with
location context of the users. Based on this location
context, the regional services will be chosen by the ESB.
The location context can be the URL or IP address of the
users. The output of this module (URL or IP address) will
be forwarded to Context Aware Logic Module (CAL) for
selecting region specific services.

C. Context Aware Logic Module (CAL)

Using the context data (i.e. The IP address or URL) of the
user, this module will choose region specific services that
are different for different users. Different regions have
different business policies, different GUIs etc. So, the
services will be different for different users of different
location. This module will store the information regarding
region specific services and select those services based on
the location context of particular user. These selected

320 321

services will be used for choreography by the next
module.

Internet Application
Consumers

 Enterprise Service Bus

Context
Provider

Context Aware
Logic

Service Choreography

RS
1

RS
2RS

3

RS
4

RS
5

RS ->Regional Services
CS->Core Services

CS

Figure 1: The CA-ESB Framework

D. Service Choreographer
This module choreographs the services chosen by CAL
dynamically at run time. Services are regional services as
well as core services. Dynamic choreography is required
as the regional services are different for different
applications (or users).
The fifth module is the traditional enterprise service buses
that will work along with the other four modules give the
flavor of CA-ESB

V. DYNAMIC SERVICE CHREOGRAPHY AND
EFFICIENCY OF CA-ESB

The Context aware logic (CAL) module of the CA-ESB
framework stores the region specific process/ services
information and selects services accordingly when
location information is acquired and sent by the context
provider. To model the process/service information in
CAL module, we propose a Context Aware Graph and
calculate the efficiency of CA-ESB compared to
traditional ESB using the proposed graph. CA-Graph is
used to model the processes of an application and their
interconnections for different locations of users.

A. CA-Graph: Graphical representation of processes
We propose a graph called Context Aware Graph (CA-
Graph) that will help us to categorize the processes of the
application according to the location of the users. The
processes represent the business processes of the SOA
reference Architecture [6].
The processes will be mapped with the services in the
service choreography module. The CA-Graph = (V, E) is a
graph comprising of nodes/vertices and directed edges.
The vertices represent processes and edges are drawn to
connect the vertices based on the interconnection of the
processes. Different graph construct for CA-graph is
tabulated in table I.

TABLE 1: CA-GRAPH CONSTRUCTS
Grap_
Const
r_ID.

Graph
Construct

Meaning

1 1.L1 Naming syntax for regional process
means
Process 1 for location 1

2 2.C Naming syntax for common
processes which means
process 2 for all location

3 Flow of events(or processes)
4

a
Process ‘a’

5 a

c

Exclusive-OR flow which mean
from process ‘a’ the flow will move
to either ‘b’ or ‘c’ depending on
some condition

6 Parallel flow which means from
event(process)’b’ and ‘c’ will occur
in parallel after ‘a’

The key points of the graph are:

Regional processes are labelled as <process
name>. < location name > Eg. 1. L1, 2.L2 etc
where L1, L2.etc stands for different location.

Common processes will have extension C.

Solid Arrow is used for flow of events

Circle indicates events/ process.

B. CA-ESB and CA-graph
The process information in a tabular form will be stored
in the Context Aware Logic (CAL) part of our proposed
CA-ESB framework. This process represents a
collective main process that consists of sub processes.
This tabular information is named as Process Table .The
Process Table has the following fields

Sub process name: The name of sub processes
that constitutes the main process.
Pre process: This is the set of probable processes
preceding the process.
Post process This is the set of probable processes
succeeding the process.
Type of Process: This field indicates whether the
processes are regional (R) or common (C).
Process Flow Type: This field indicates the flow
of the process with its post process (es). This can
be normal flow (N), parallel flow (P) or
exclusive-OR flow (E)
Total Processes: This field consists of list of all
possible location based processes for a particular
sub process.

Table III in appendix represents a process table for the
case study of insurance system that is explained in
Section VI.

322 323

When the context provider provides the information
regarding the location, the CAL module chooses the
processes for that particular location from the process
table along with common processes. These processes
will be mapped with the services.
The next section briefly discusses the process of
dynamic choreography.

C. DYNAMIC SERVICE CHOREOGRAPHY
The service choreographer does the dynamic
choreography of services with the selected processes at
runtime based on the process connections as modelled
in CA-Graph.
As an example, if the context provider senses the
location as location1 (L1), it will send the information
to the CAL module. CAL module has the information
regarding which sub processes are required for location
L1 and Service Choreographer will do dynamic service
choreography at runtime with the selected processes (or
services). Once the services required for a particular
location are determined, the ESB will publish only those
services in the registry. This will reduce the time
associated with the discovery of services.
The following algorithm will identify services based on
location context from the process table and identify the
scenario path composed of services in a particular order.
Algorithm:
a) Input: Location context as LocationName
b) Data Structure to be used:

Graph construct schema table (TABLE I)
 Schema: GraphID, GrConstruct)

Process table (TABLE III of appendix)
Schema: ProcessId, ProcesssName, PreProcess,
PostProcess, ProcessType, ProcessID,

 ProcessFlowType
ProcessFlow

 Schema: Source, Destination

c) Steps to be followed:
 1 .L: = GetLocationInput;
 # ProcessIDLoc is used to store instantaneous
ProcessId locally
 2. Set ProcessIDLoc: = 1;
 3. LOOP

T = GetTuple from Process Table
where (ProcessId = ProcessIDLoc);

 4. If (ProcessFlowType = ‘N’) then
 ProcessFlow = (Select GrConstruct when GraphId

= 3 from Graph construct table)
 5. Else If (ProcessFlowType = ‘E’) then

 ProcessFlow = (Select GrConstruct when GraphId
= 5 from Graph construct table)

 6. Else If (ProcessFlowType = ‘P’) then
 ProcessFlow = (Select GrConstruct when GraphId
= 6 from Graph construct table)

 7. Set ProcessFlow. Source: = T. ProcessId and

ProcessFlow. Destination = T. PostProcess
 8. If T.ProcessType == ‘C’

Then ProcessIDLoc = T. PostProcess
 9. Else If T.ProcessType == ‘R’ then
 T = GetTuple from Process table
 where (LocationName = L AND

ProcessID=ProcessIDLoc)
 Set
 ProcessIDLoc: = ProcessID. LocationName;
 Else continue;
END LOOP
d) Output:
Choreographed process based on the particular location
context (As Figure 3)

D. Performance Analysis
In this section, we calculate the complexity metrics

and search metrics for the CA-ESB The notations
used to evaluate different performance metrics of
CA-ESB is given in table II.

TABLE II: Notations
Notation Meaning

Cmx Complexity metrics of CA-Graph for traditional
ESB

Cmx((CA) Complexity metrics of CA-Graph for CA-ESB
Tmx Search metrics of CA-Graph for traditional ESB
Tmx((CA) Search metrics of CA-Graph for CA-ESB

Complexity Metrics
Here we will calculate the complexity metrics for the
CA-ESB. This metrics will give the measure of no. of
processes and interconnections giving us an idea of the
complexity of the application.
If we suppose a Global development scenario that
consists of
No. of common processes=m
No. of regional processes for a particular main
process=n
No of location = L
Total no. of regional process
= (No of location) x (No. of regional processes for a

particular main process)
= n*L
 So, total no. of processes
= (No. of common processes) x

 (No. of regional processes)
 = m + n*L
In a CA-Graph, the processes (common as well as
regional) are represented as the vertices of a graph and
the communication between processes are represented
as the edges of the graph.
Total no. of vertices of the CA-graph = m + n*L
Then, the maximum complexity of the graph (when all
the m+n*L processes communicate with all other
processes)
Cmx= (m + n*L) (m + n*L – 1) -------------------------- (1)

322 323

When CA-ESB using Context Aware Logic discovers
the services, only the services pertaining to a particular
location along with common services become visible in
the CA-ESB for discovery. As a result the graph
effectively reduces to Subgraph for a particular region
having m+n processes.
The maximum complexity of the graph (when all the
m+n processes communicate with all other processes)
Cmx (CA) = (m + n) (m + n –1) ------------------------- (2)

Figure 2: Comparison of CA-ESB vis-à-vis traditional ESB

Based on equations (1) and (2) we chose different values
of L=1, 3 and 5 and plotted the Cmx and Cmx (CA) values
corresponding to normal ESB and CA-ESB respectively.
As evident from the graph in figure 2 that the Cmx (CA)
values are lower than the Cmx values indication that the
use of CA-ESB significantly reduces complexity.

Search Metrics
We use a metrics to mathematically compare the time
complexity involved in searching and discovering services
in a CA-ESB as against a normal ESB
If CA-ESB is not used, all the processes/services will be
visible, the total vertices (processes/ services) to be
discovered is
Tmx = m + n*L--------------------------------------- (3)
When CA-ESB is used, the total vertices (processes/
services) to be discovered only pertains to a particular
location,

 Tmx (CA) = m + n--------------------------------------- (4)
So, Search complexity without using CA-ESB

 Tmx = O (n*L)
Search Complexity when CA-ESB is used

 Tmx (CA) = O (n)
From (3) and (4), the time complexity of searching of
services in the ESB is reduced by L times if the CA-
ESB is used.

VI. CASE STUDY
We consider an application for an Insurance company who
plans to start its business operations in several countries
across the globe. The application consists of different
processes, which are being used by different users located
in different places. Some processes are common which are
being used by all users who are accessing the application
irrespective of where they are located. While some
processes are specific to a country. Let us consider that the
application consist the following main processes

Policy Creation

Policy Maintenance
Policy Claim
Policy Termination

The flow of events (or sub processes) of the first processes
“Policy Creation” is given in a tabular form as Table III of
appendix. The processes are categorized as common
processes (marked as ‘C’) and regional processes (marked
as ‘R’). Here, the processes are considered for two
locations namely L1 and L2.

The main process (“Policy Creation”) consists of 10 sub
processes that are labelled according to the rule defined in
section V.A. CA-Graph is generated for process “Policy
Creation” as in Figure 3.

1 . L 1 1 . L 2

2 . C

3 . L 1

6 . L 14 . L 1

5 . L 23 . L 25 . L 1

4 . L 2 6 . L 2

7 . L 1 7 . L 2

8 . L 1 8 . L 2

9 . L 29 . L 1

1 0 . C

1 1 . L 21 1 . L 1

L o c a t i o n 1
L 1

L o c a t i o n 2
L 2

P o l i c y C r e a t i o n

Figure 3: CA –Graph for Policy Creation
Details are given below

It consists of 2 common processes i.e. m=2
It consists of 9 regional processes i.e. n = 9
The common processes are 2.C and 10.C labelled
in the graph as vertices.
The regional processes are (1.L1, 1.L2), (3.L1,
3.L2)………….(9.L1, 9.L2) and (11.L1, 11.L2)
CA-graph is generated for location L1 and L2,
where common processes are shared by both the
locations.
There is an Exclusive-OR flow from process 2 to
the process 3 or 5
The complexity metrics for the graph

 (m = 2, n=9 and L =2)
Total processes = m + nL = 2 + 9x2 = 20

Cmx = (m+nL) x (m+nL -1)
 = 20x19 = 380,

Using CA-ESB,
 Total processes = m + n = 2 + 9 = 11
 Cmx (CA) = (m+n) x (m+n -1)

= 11x10
= 110 (Using equation (1) and (2))

The search metrics for the graph
 (m=2, n =9 and L =2)
 Tmx = 20 and Tmx (CA) = 11

(Using equation (3) and (4))

324 PB

0

100

200

300

400

 Cmx Tmx

ESB

CA-ESB

Figure 4: Performance metrics comparison for Policy Creation

Figure 4 shows a performance metrics chart that depicts
the fact that the performance of CA-ESB is improved both
in terms of complexity metrics(Cmx) and search
metrics(Tmx) as compare to traditional ESB for the
process Policy Creation which is distributed in two
location(L=2). With the increase of the value of L, we will
get more increase in performance of CA-ESB as compare
to a traditional ESB.

VII. CONCLUSION
Presently, global delivery model is gaining significance
where applications are being developed in an integrated
manner for different users spread over geographically
different locations forming a cloud. The core processes
remain same, with several region specific processes
catering to different because of variations of languages,
currency, business policies, etc. In SOA architecture, ESB
is responsible for publishing and discovery of all services.
We propose a new variation of ESB named Context
Aware ESB (CA-ESB) that will be very useful for
publishing and discovery of services in a global
development scenario. CA-ESB is able to sense location
context, selectively discover relevant services for a region
and finally dynamically choreograph them with the core
services such that the whole application behaves uniquely
for each different location context. We demonstrate using
an algorithm and a set of metrics that the efficiency of a
global software development scenario improves to a
significant extent by using CA-ESB. This framework
attempts to provide solution for the problem of efficient
dynamic coordination of geographically distributed
services.

REFERENCES

[1] Jianwei Yin, Hanwei Chen,Shuiguang Deng,and Zhaohui Wu ,A
Dependable ESB Framework for Service Integration, IEEE
transaction, March/April 2009 (vol. 13 no. 2), pp. 26-34,
http://www2.computer.org/portal/web/csdl/doi/10.1109/MIC.20
09.26

[2] Gulnoza Ziyaeva, Eunmi Choi and Dugki Min , Content Based
Intelligent Routing and Message Processing in Enterprise
Service Bus , International Conference on Convergence and
Hybrid Information Technology 2008(ICCIT08) , Nov 11-13
,2008 ,Busan , Korea ,

[3] Gerald Weber, Technology-Independent Modeling of Service
Interaction, IEEE Proceedings of the 2008 12th Enterprise
Distributed Object Computing Conference Workshops
(EDOC08) , Pages 35-42 , 15-19 September 2008, Munchen,
Germany

[4] Deng Bo Ding Kun Zhang Xiaoyi , A High Performance
Enterprise Service Bus Platform for Complex Event Processing ,
IEEE 2008 Seventh International Conference on Grid and
Cooperative Computing(GCC 2008),October 24–26,2008.
Shenzhen, China

[5] de Almeida , D.R. de Souza Baptista , C. da Silva, E.R.
Campelo , C.E.C. de Figueiredo , H.F. Lacerda ,. A context-
aware system based on service-oriented architecture, 20th
International Conference on Advanced Information Networking
and Applications(AINA 2006), April 18 - 20 , 2006 ,Vienna,
Austria.

[6] Design a SOA solution using Reference Architecture
www.ibm.com/developerworks/library/ar-archtemp/ -

[7] Ananya Kanjilal, Goutam Kanjilal, Swapan Bhattacharya,
“Integration of Design in Distributed Development using D-
Scenario Graph”, Proceedings of IEEE International Conference
on Global Software Engineering, page 141-150, Bangalore,
India, Aug 17-20, 2008.

[8] S.H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, S. D. Kim, “Design
of a Dynamic Composition Handler for ESB-based Services”
Proceedings of ICEBE 2007, page 287-294 ,Hong Kong , 24-26
Oct ,2007

[9] Vaculin, R.; Neruda, R.; Sycara, K., “Towards Extending
Service Discovery with Automated Composition Capabilities”
Proceedings of ECOWS 2008 , page 3-12 ,Dublin, December 12
,2008

[10] Carenini, A.; Cerizza, D.; Comerio, M.; Della Valle, E.; De
Paoli, F.; Maurino, A.; Palmonari, M.; Turati, A.; “GLUE2:
A Web Service Discovery Engine with Non-Functional
Properties” Proceedings of ECOWS 2008 , page 21-30 ,Dublin,
December 12 ,2008

[11]http://www.bestcrossmark.com/Downloads/BESTCROSS-
DistributedDeliveryModel_DDM_-WhitePaper-1400.

Appendix
TABLE III: PROCESS TABLE FOR THE POLICY CREATION

Sub Process
No Sub Process Name for Policy

Creation Pre-Process Post Process Type of Process (R/C)
Process

Flow
Type

Total Process

1. Application Entry - 2 R N 1.L1 1.L2
2. Underwriting 1 3 or 5 C E 2.C
3. Underwriting 1 2 4 R N 3.L1, 3.L2
4. Process Error 3,6 7 R N 4.L1 , 4.L24
5. Accept More Details 2 6 R N 5.L1 5.L2
6. Underwriting 2 5 4 R N 6.L1 6.L2
7 Process Error 3,6 7 R N 7.L1 7.L2
8 Premium Calculation 4 8 R N 8.L1 8.L2
9 Premium Payment 7 9 R N 9.L1 9.L2
10 Policy Issuance 8 10 C N 10.C
11 Certificate Generation 9 - R N 11.L1 11.L2

PB 325

This research was partially supported by The State of São Paulo Research Foundation under projects number 2008/07094-2 and 2010/13478-8.

 Web System to Aid Project Management

Rogéria Cristiane
Gratão de Souza

rogeria@ibilce.unesp.br

Antonio Marcos
Neves Esteca

amesteca@hotmail.com

Adriana Barbosa
Santos

adriana@ibilce.unesp.br

Carlos Roberto
Valêncio

valencio@ibilce.unesp.br

Marcelo Takeshi
Honda

hondsm@gmail.com

Computer Science and Statistics Departament
UNESP – São Paulo State University

São José do Rio Preto, São Paulo, Brazil

Abstract - This work describes a new web system to aid project
management that was created to correct the principal deficiencies
identified in systems having a common purpose which are at
present available, as well as to follow the guidelines that are
proposed in the Project Management Body of Knowledge (PMBoK)
and the quality characteristics described in the ISO/IEC 9126
norm. As from the adopted methodology, the system was structured
to attend the real necessities of project managers and also to
contribute towards obtaining quality results from the projects. The
validation of the proposed solution was done with the collaboration
of professionals that used the functions available in it for a period
of 15 days. Results attested to the quality and adequacy of the
developed system.

Keywords - project management; web-based tool; software
quality

I. INTRODUCTION

Tough competition existing since the beginning of
commercial activities, allied to changes provoked by
technological advances, market integration and globalization
have increasingly required more efforts from enterprises to
find solutions which will guarantee their survival and growth
[1]. Due to this, project management has become more
important and an indispensible resource to increase
competitive potential since it details tools and techniques that
enables the organizations to increase their capacity to
stimulate internal communication, plan activities, estimate and
monitor time and costs, as well as to guarantee the quality of
the jobs done, all of which contribute to objectives being
successfully fulfilled [2, 3].

In conceptual terms, a project can be understood as being a
unique process consisting of a group of coordinated and
controlled activities having dates for starting and finishing, to
create a product, service or exclusive result, which will satisfy
customers [4, 5]. Managing projects involve complexity and
celerity to make decisions. Due to this, different systems to aid
project management have been developed to supply relevant
information to managers in a fast, safe, and consistent manner.

Nevertheless, such systems as are available on the market
have a restricted scope of the indispensable managing aspects
contemplated by Project Management Body of Knowledge

(PMBoK) [5], one of the most reputed guides to project
managing. In this context, the objective of this paper is to
present a web System to Aid Project Managing (SAPM), and
to show that this system is a new solution capable of
correcting deficiencies identified in systems that have the
same purpose and are available in the market, follow the
proposed guidelines in the PMBoK [5] and the software
quality characteristics described in the ISO/IEC 9126 [6],
besides complying with general requirements from project
coordinators and managers from small and medium sized
enterprises.

The rest of this paper is organized as follows: Section II
shows a general panorama about the tools to aid project
management available in the market; Section III shows the
methodology adopted to develop the work; Section IV shows
the principal results that were obtained; lastly, Section V
shows final considerations and future works.

II. SYSTEMS TO AID PROJECT MANAGEMENT

Currently, various software systems are available on the
market to supply relevant informations to project managers in
a fast, safe and consistent manner [7, 8, 9]. Nevertheless, these
systems are functionally restricted in relation to the real
project management necessities as described in the PMBoK.
For example, the system described in Ref. [7] only aids risks
management area, thus making it necessary to use other tools
to manage the rest of the areas. A similar situation occurs in
other systems described in Ref. [8] and [9] which supply
automated aid for specific contexts.

With a view to presenting an overall panorama of the
scope of the software systems that aid project managing, Ref.
[10] shows a comparative analysis between four desktop
systems and five web systems, which were assessed as to their
alignment with the PMBoK guidelines and the ISO/IEC 9126
software quality norm. The authors verified that the assessed
systems had similar functions, but did not supply aid for all of
the project management necessities since they all prioritize
some areas in detriment to others. As to the quality criteria of
the analyzed software, important limitations were noted.
Therefore, it can be concluded that, although various

326 327

computational systems have been developed, it can be seen
that there is a lack of a wider scope of resources capable of
offering an effective environment for activities related to
project management. Moreover, it is notorious that existing
systems do not have, even indirectly, a resource that
instinctively guides the user without him realizing that he is
obeying the guidelines stipulated in the PMBoK.

In this scenario, there is a need to develop a new system to
aid project management activities based on a quality criteria
that will cover real present market necessities.

III. METHODS

The methodological process was divided into three stages:

Analyses and Projects – At this stage, the identification of
requirements to be considered by the SAPM was first done.
Having the requirements, architecture in layers was structured
for the system, improving the organization of the information,
as well as supporting incremental development of the system
and to guarantee its modularity, mantainability and
extensionability [1, 11, 12, 13].

In a recent work, Ref. [10] presents detailed results of this
stage, with a specification of identified requirements and an
illustration and description of the developed software
architecture (see Appendix A).

Implementation – At this stage, an initial version of the
system was constructed which reflected the contemplated
requirements of the defined software architecture. The
construction of the system only used free resources to
guarantee an easy access to implemented resources: PHP,
JavaScript and HTML languages; MySQL database
management system; Apache web server.

Validation – At this stage, the system was assessed by
professionals involved in project management activities, which
sought to refine or confirm requirements identified initially as
well as enhance the established architectural design [14, 15].
The validation was done between August and November, 2010,
when the system was personally presented to nineteen project
managers from fourteen Brazilian enterprises from different
sectors: education, administration, consultancy, civil
engineering and information technology. At the end of each
presentation, the assessors received a form to grade the scope
and adequacy of the system using a scale of 0 to 10 points.
Moreover, there was an open space on the form so that the
assessors could indicate the strong and weak points of the
system. The filled in form was returned via email after the
assessors had remote experienced the system for 15 days.

IV. RESULTS

The results which were obtained from the implementation
and validation stages are detailed below.

A. Implementation

The objective of this stage was to obtain a usable
satisfactory web system for later validation by acting project
managing professionals.

The system considers the functions shown in Table I,
which are organized according to the nine knowledge areas as
defined in the PMBoK guide: integration, scope, time, costs,
quality, human resources, communication, risks and
procurements. Besides that, two complementary functions that
are not directly related to any of the areas, but which were
considered essential to managing activities, were incorporated
to the proposed solution.

Figure 1 (a) shows the SAPM project’s portfolio, from
which an identified user can select an existing project to edit
or register a new project. Figure 1(b) shows the screen which
is exhibited by the system after a project from the portfolio has
been selected, evidencing the alignment of the SAPM’s
principal menu to the PMBok guide, as it has the options
organized according to the guide’s knowledge areas, thus
contributing towards the agile execution of managing
activities based on solid concepts.

Besides registering and organizing information, the SAPM
is capable of generating and presenting different types of
diagrams and graphic indicators which aid decision making
processes for project coordinators and managers. Figure 2
shows one of the diagrams generated by the system, Gantt
chart, which was configured to exhibit, in different colors,
activities having different status, to facilitate the understanding
of the general panorama of the project. Figure 3 shows graphic
indicators that refer to human resources performance in
previous projects which aids coordinators and managers with
their process of selecting people to make up the project teams.

B. Validation
The SAPM validation stage allowed refining the

previously identified functional requirements, as well as the
architecture of the project, leading the system to be adequate
for the identified present necessities in the Brazilian market.
Ratifying this market demand, during the validation there was
a strong interest in acquiring the system with some assessors
showing interest in continuing to use the SAPM in their actual
projects.

The main evaluated topics in the questionaire utilized in
validation were: usability - the degree of ease to access and
use system resources; interface quality – the users’ apreciation
of the system’s interface; graph quality – the appearance and
representativity of the data; reports quality – the degree of
users satisfaction with the type of report information generated
by the system; operational efficiency – referring to degree of
operational stability.

The histograms in Figure 4 reveal that the general result of
the evaluation of the system by the participants was
satisfactory. The vast majority of the assessments were in the
range of 8 to 10 points. The left asymmetry of the data

326 327

TABLE I. FUNCTIONS CONTEMPLATED BY THE SAPM
Knowledge areas

1. Integration 6. Human resources
1.1 Manage project documents 6.1 List project team members
1.2 Register events during project execution 6.2 Control personnel availability and prevent conflicting allocations
1.3 Register learnt lessons 6.3 Register and present team member performance graphs

2. Scope 7. Communications
2.1 Define the scope of the project 7.1 Enable online meetings between those involved in the project
2.2 Create a Work Breakdown Structure (WBS) 7.2 Production and distribution of custom made reports and warnings
2.3 Create the WBS dictionary

3. Time 8. Risks
3.1 Include activities 8.1 Management risks
3.1.1 Identify activities 8.1.1 Identify risks related to the project

3.1.2 Estimate starting and ending dates of the activities 8.1.2 Estimate risk impacts
8.1.3 Estimate the probability of risks happening

3.1.3 Allow definition of parent-activities (made up of other activities) 8.1.4 Identify events related to the probability of an increase of risks
3.2 Register activity progress updates 8.1.5 Monitor the probability of an increase of risks
3.3 Register finished activities 8.1.6 Create alerts about the occurrence of risks
3.4 Warn project delays 8.1.7 Identify mitigation and contingency plans for each risk

3.5 Generate Gantt and activity network diagrams 8.1.8 Prioritize risks based on the probability of them happening and the
impact

4. Costs 9. Procurements
4.1 Produce cost estimates by activity 9.1 List suppliers
4.2 Create project budgets 9.2 Plan purchases
4.3 Generate project budget graphs 9.3 Register and present supplier delivery performances

5. Quality Remaining requirements
5.1 Register management quality plan Links with other software systems
5.2 Register audits to be done Existence of access levels
5.3 Produce audit reports

(a)

 (b)

Figure 1. Project’s portfolio (a) and main menu SAPM (b).

328 329

Figure 2. Gantt chart.

Figure 3. Human resources performance graphs.

10

8

6

4

2

0
1098765

1098765

10

8

6

4

2

0
1098765

Usability

Fr
eq

ue
nc
y

Interface quality Graph quality

Reports quality Operational efficiency

Figure 4. SAPM general assessment result.

distribution and the absence of points below 5 reinforce the
high degree of satisfaction felt by the SAPM assessors.

 The principal system differentials pointed out by the
assessors in relation to existing options were: learnt lessons
recorder; storing and organizing project documents; automatic
generation of the Work Breakdown Structure (WBS);
automatic detection of project activity delays; quality of
generated graphs; agenda and record of auditing quality results;
control of human resources and project materials availability;
availability of environments for online meetings; automatic

risks priority; creation of a historical of suppliers and human
resources performances.

Besides mentioned differentials, the participants also
contributed with some suggestions for future system
improvements, among which are: create a correspondence
between the chronogram and the WBS; consider holidays and
vacations in the estimates; include resources that will allow
estimating costs based on statistical analysis; generate graphs
and diagrams to aid quality managing, such as the Pareto and
Ishikawa diagrams; make available individual calendars for
human resources; create mechanisms to aid quantitative risk
analyses.

As a fundamental part of the methodological context, the
validation exceptionally contributed towards the refinement of
functional requirements for Brazilian enterprises, leading to
the inclusion of new functions to the system to better serve
today’s necessities of small and medium sized enterprises.

To highlight SAPM’s wider scope than those of other web
systems on the market that have the same purpose, Table II
shows an adaption of the comparative analysis presented in
Ref. [10], considering only the five web systems and the
SAPM. To attribute qualifications, disc representation
indicating the frequency of each analyzed topic in each system
was favored: greater the frequency, the larger the portion in
black. This comparative analysis sought to highlight the wider
scope of the SAPM as to its alignment to the PMBoK and the

328 329

TABLE II. COMPARATIVE ANALYSIS OF SUPPORT SYSTEMS FOR PROJECT MANAGING AND THE
SAPM (ADAPTED FROM REF. [10])

Criteria

Systems

D
ot

Pr
oj

ec
t

A
C

E
Pr

oj
ec

t

C
oo

pe
r

Pr
oj

ec
t

O
pe

n

N
et

Pr

oj
ec

t

SA
PM

A
na

ly
si

s b
as

ed
 o

n
PM

B
oK

 g
ui

de

1. Register of learnt lessons
2. Storing documents related to the project
3. Create WBS
4. Plan / control costs
5. Plan / control quality
6. Plan / control manpower
7. Control changes
8. Control / managing risks
9. Control purchases
10. Communication between those involved
11. Control project’s progress
12. Control scope
13. Control time
14. Emit reports
15. Construct graphics

A
na

ly
si

s b
as

ed
 o

n
 IS

O
/I

E
C

 9
12

6

1. Functionality
2. Reliability
3. Usability
4. Efficiency
5. Maintainability
6. Portability

Legend: - 0% ; - 12,5% ; - 25% ; - 37,5% ; - 50% ; - 62,5% ; - 75% ; - 87,5% ; - 100%

quality criteria of the ISO/IEC 9126.

V. FINAL CONSIDERATIONS AND FUTURES WORKS

This paper presented the SAPM which had its relevancy
attested by market professionals who are involved with
management projects in small and medium sized Brazilian
enterprises. According to validation results, it may be
concluded that the SAPM, due to the conceptual referential
used in its realization, can increase efficiency and efficacy in
the conduction of projects.

As it was projected to incorporate the guidelines proposed
in the PMBoK plus the software quality characteristics
described in ISO/IEC 9126, as well as to value the satisfaction
of clients who are, mostly, well versed in the present scenario
of web systems to aid project management, it was possible to
make the SAPM capable of fulfilling the necessities of project
managers and coordinators from said aforementioned
enterprises in their daily activities.

Despite the limitations identified during the validation, was
highlighted the contribution of the proposed system to
improve the quality of project results.

Future works will seek to cover such limitations and
iteratively widen this system, following the exploring
evolutionary model [1, 11], which will lead the more refined
and complete versions of the system.

REFERENCES

[1] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 6th
ed., Philadelphia: McGraw-Hill, 2005.

[2] D.I. Cleland and L.R. Ireland, Project Manager’s Portable Handbook,
New York: McGraw-Hill, 2002.

[3] A. Murphy and A. Ledwith, “Project management tools and techniques
in high-technology SMEs,” Management Research News, v. 30, n. 2, p.
153-166, 2007.

330 331

[4] International Standard Organization. ISO 10006: Quality management -
Guidelines to quality in project management, s.1.p. ISO, 1997.

[5] PMBoK, A Guide to the Project Management Body of Knowledge, 4th
ed., Project Management Institute – PMI, 2008.

[6] International Standard Organization. ISO/IEC 9126: Software
engineering – Product quality – Part 1: Quality model, 2001.

[7] L. M. Fontoura and R. T. Price, “Systematic Approach to Risk
Management in Software Projects through Process Tailoring”, in
Proceedings of the 20th International Conference on Software
Engineering and Knowledge Engineering (SEKE), United States of
America, pp.179-184, 2008.

[8] A. Tosun, A. Bener, and E. Kocaguneli “BITS: Issue Tracking and
Project Management Tool in Healthcare Software Development”, in
Proceedings of the 21th International Conference on Software
Engineering and Knowledge Engineering (SEKE), United States of
America, pp.526-529, 2009.

[9] R. Hewett and J. Coffey. “XProM: A Collaborative Knowledge-Based
Project Management Tool,” in Intelligent Problem Solving.
Methodologies and Approaches, vol. 1821. R. Logananthara, G. Palm,
M. Ali, Ed. Heidelberg: Springer Berlin, 2000, pp.3-40.

[10] A. M. N. Esteca, R. C. G. Souza, and A. B. Santos, “Software
Architecture for Web-based Project Management System”, in Proc. Of
the 16th International Conference on Distributed Multimedia Systems
(DMS), United States of America, pp. 11-16 , 2010.

[11] I. Sommerville, Software Enginnering, 9th ed., Essex: Addison-Wesley,
2007.

[12] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 2nd ed., Boston: Addison-Wesley Professional, 2003.

[13] J. Bosch, W.M. Gentleman, C. Hofmeister, and J. Kuusela, “Software
Architecture: System Design, Development and Maintenance,” in IFIP
17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture (WICSA3), Canada, 2002.

[14] V. S. Gordon and J. M. Bieman. “Rapid Prototyping: lessons learned,”
IEEE Software, v. 12, n. 1, p. 85-95, 1995.

[15] S. Raghavan, G. Zelesnik, and G. Ford. Lecture Notes on Requirements
Elicitation, Pittsburgh: Software Engineering Institute, 1994.

APPENDIX A: SAPM ARCHITECTURAL DIAGRAM (ADAPTED FROM REF. [10])

330 331

332 333

332 333

334 335

334 335

Project Risk Management Using Event Calculus
Andreas Gregoriades, Vicky Papadopoulou Lesta, Petros
Petrides
Dept. of Computer Science and Engineering,
European University Cyprus.

6, Diogenous Str., Engomi, P.O. Box: 22006, 1516
Nicosia-Cyprus
{a.gregoriades, v.papadopoulou}@euc.ac.cy,
petros1@eclatent.com

Abstract - Risks are unavoidable in systems engineering projects
due to emerging changes during the lifetime of projects. Changes
in activities and peoples’ roles are usually not free from conflicts,
which in some cases if not dealt adequately, increase the project
failure risks and could bring the whole project to a standstill.
Herein, we present a method that examines the impact of change
to project's duration which constitutes one of the most critical
risks in project management. The method proposed utilizes two
main criteria namely, the degree of dependency among activities
and actors, and the temporal costs associated with the
change. The proposed methodology is realised in Event Calculus
(EC) and elaborated with an example.

Keywords: Event Calculus, Project Risk Managment, Conflict
Impact Analysis.

I. INTRODUCTION

Despite sophisticated tool support for project management,
projects still continue to suffer by budget overruns and a failure
to meet user requirements. Various approaches have been
proposed as solutions. An example is the capability maturity
model integration (CMMI) [6] that defines layers of control to
help ensure quality and efficient procedures that yield an
improved project development process. In particular, CMMI’s
change control, limits project’s scope creep, while, the
management review, enables intermediate quality checks on
the system. These have shown to be effective in improving
project performance. One indicator of project quality is process
flexibility, that allows rapid and cost-effective modifications
of new needs [7]. However, achieving a high level of project
flexibility has often been slow, inflexible, and time-consuming,
even with the aid of sophisticated tools and methodologies,
which oppose the goal of efficient production. Therefore, it is
necessary to examine higher levels of project development
flexibility by evaluating risks while still meeting budgetary and
temporal restrictions. These include, role management and
requirements change during a typical system development life
cycle (SDLC). Requirements change analysis is translated into
change impact analysis that investigates the effect of change to
dependent requirements, activities and people involved.
However, in most of the times changes to requirements or roles
during the SDLC are not free from conflicts. If these are not
resolved they could lead to inconsistencies in the process that
could result in product failure. Conflict analysis falls under the
change management process that is composed of three
conceptual phases, namely: dependencies specification,
traceability methods, conflict analysis and resolution. The
method proposed herein, demonstrates the application of EC to
identify conflicts in project given specifications of project's
schedule, tasks and modifications. Resolving conflicts is of
critical importance since they can bring a project to a standstill.
The proposed method can monitor the task completion of each

team member, and check if the project schedule falls within
agreed time limits. Changes to requirements are also
considered to assess the extra time introduced.

A. Problem Definition

 Project risk management encompasses knowledge,
techniques, and tools necessary to manage the risks that emerge
during projects’ life cycle. It is a methodological approach to
minimizing uncertainty that could jeopardize achieving agreed
output upon specified time frame with defined resources. An
important phase during project risk management is the
definition of activities. These may be related to each other via
dependencies, i.e., action Ai must be implemented before Aj is
completed. Given these interdependencies, risks emerge with
the introduction of change to project plan that could lead to
conflicts. The potential of conflicts in systems engineering
projects is usually high due to the involvement of individuals
from different backgrounds, specializations and locations,
working together to achieve complex tasks. The objective of
risk management is to provide the system designers/managers
with early detection of risky situations as these are manifested
by conflicts. Output from this process aids system designers in
adopting appropriate countermeasures to resolve or at least
mitigate emergent risks.

B. Contribution

During the development of a project, it is critical that some
tasks are completed at specific times. However, actions or
inactions from project members could cause critical delays.
Hence, this could lead to failure to complete critical tasks that
lay on the critical path. Therefore, changes in initial team
structure or project specification could cause extensive
overheads to the project's schedule due to conflicts. These
changes could create risks of the following types: critical
requirements, people and estimation risks.

Herein, we propose a Project Risk Management tool that
evaluates the effect of project changes and in essence provides
valuable feedback regarding the project's estimation risk.
During project execution, activities of each member are
recorded in the tool that detects possible conflicts that emerge
due to changes in team structure. The tool resolves conflicts by
suggesting appropriate modifications in the project
implementation plan to improve the likelihood for guarantying
success. The tool is realized using EC. In particular, using
appropriate event specifications and axioms, the tool identifies
conflicts upon changes to project properties. Information that is
used during the analysis includes: events relating to functional
project requirements, temporal specification of project
characteristics i.e. start, end date of the project, roles,
capabilities and actions of project members and modifications
to project specifications. Inference rules are used to identify

336 337

conflicts caused by changes or actions that do not adhere to the
project plan. Conflicts resolutions are provided when feasible.

C. Related Work

Work by Giorgini et al [5] describes a conflict detection
method, composed of three phases namely: modeling,
extensional description and verification. During the modeling
phase the designer draws the extensional requirements models
where every node and edge corresponds to a fact in the formal
framework. Then, the reasoning system completes the
extensional description of the system using rules and verifies
its consistency using constraints. If any inconsistency is
detected by the reasoning system, the designer revises the
requirements model to avoid or at least mitigate detected
conflicts and repeats the formal analysis step. This method uses
the Datalog solver which is based on Boolean algebra to detect
conflicts. In contrast to this approach the methods described
herein is not indented to work solidly on requirements analysis,
but also during project implementation where changes are more
expensive to be realized and alterations to project schedule
more important. EC was also utilized in [5] for policy and
specification and analysis. The proposed method transforms
policy and system behavior into formal notation which is based
on EC. Work by [8] and [4] also use EC as a specialised first-
order logic for formalising policy specification and accordingly
identify conflicts and propose resolutions in network and
systems management. Chomicki [9], similarly use constraints
which are policies that prevent a specified action from being
performed in a given situation.

II. BACKGROUND

A. Event Calculus

EC allows specification of system behaviour using
notations, such as, state charts, which can then be
automatically translated into a logic program representation.
EC supports deductive, inductive and abductive reasoning.
Abductive reasoning proof for EC can be used to detect the
existence of potential conflicts in partial specifications and
generate explanations for the conditions under which such
conflicts may arise [4]. EC is a "logical language" from which
actions and their effects can be represented using predicates.
Therefore, in system engineering projects, actions that took
place at particular time using certain resources to produce
specific output, can be defined, explained and proved using
EC. Consider the following example: Maria was hired as an
account in a company on May 11 2001, Maria was promoted
to head accountant on May 11 2002, Maria left her position
on 23 April 2004. Based on these statements we can make the
following assumptions:

A) Maria was an accountant after May 11 2001.
B) Maria ended his accountancy post on May 11 2002,
C) Maria was a chief accountant from May 11 2002 until
23 April 2004.
If the events however were mentioned in the following

manner: "Maria is hired as an accountant in a company on May
11 2001, Maria left the company as a chief accountant on 23
April 2004" then the assumptions cannot hold; There is a
timing gap between the ranking of the person, therefore the

promotion cannot be assumed, as other events could have
happened such as maternity leave. Solution to this problem is
divided into two phases: the theorem problem solving, which
uses theorems that have been proven in order to give the
solution and the problem specification and execution part,
which uses logic to infere solutions. In logic programming the
implications are treated as a base for goal reduction procedures.

B. Logic Programming & Prolog

Logic programming uses mathematical propositions
expressed in computational terms. Prolog is a logic-based
programming language developed by Alain Colmerauer, that
use the following constructs: an atom that describes a general-
purpose meaning, a number which can be floating or integer, a
variable denoted by a string consisting of letters, finally,
compound terms composed of “factor” which is an atom and
the arguments. Prolog works by making deductions and
derivations from facts and rules stored in a database. The
essence of Prolog programming is writing crisp, compact rules.
The deductions and derivations, instigated by user-entered
queries, are products of Prolog's built-in inference mechanism
called backtracking which is part of abductive reasoning.

III. METHODOLOGY

The Project Risk management tool is built in EC terms
using events and rules. Events related to project
implementation, such as the beginning date of the project,
actions of members and changes to project specifications are
specified using EC constructs. Inference rules are used to
backtrack the queries to identify conflicts caused by changes in
project plan or actions that do not satisfy project constraints.
Conflict resolutions strategies are presented when feasible.

A. Describing Events and Relationships with EC

Consider the following scenario: Two teams are working on
systems engineering project involving the development of a car
simulation project, which includes both hardware and software
implementation. The project requires parallel development of
both software and hardware. This procedure has the advantage
of allowing various parts of the project to be progressed
simultaneously. Testing can be done after completion of each
phase. Team one consist of Martha, Tim, and Thomas. Martha
has similar expertise acquired from similar training with Tim
and can replace him if necessary. Tim is responsible for the gas
system, Martha for the pipeline system and Thomas for the
steering system. Give these descriptions, the following events
hold:

E1 is an event at which Tim is trained for the gas
system. E1 has time 10 March 2004.

E2 is an event at which Martha is trained for the
pipeline system. E2 has time 5 March 2004.

Events are recorded in a database. Note that updates of the
database are additive; events are added in the database and no
deletions are allowed. In order to delete an event that expresses
a relationship, a new statement needs to be set that ends the
relationship. Temporal events are treated without any particular
order, hence, older events can be added after adding recent
events. The chronological order of the events can be expressed

336 337

using the <, >, = symbols. For instance, if an event E1 occurred
before an event E2 then it can be described as E1<E2. Events
can also have duration, a starting point and an ending point.

1) Representation

Given the systems engineering example, an event
concerning the ranking of a person in the project, is expressed
in EC as follows:

X has rank Y for a period E, provided that X has done
something at a period that is equal to E.

This means that after an event happened, variable X has
rank Y for a period E, which is actually equal to the time
following E. In this example let's assume that Tim started
working on the project on the 21st of April 2004. Therefore E1
is an event with timing: 21 of April 2004, at which X has rank
Y (Tim is working on project) for the period after E, that is
after the 21st of April. The events E1, E2 are in the past and
their time period will finish when the person is assigned on a
different rank. Events are expressed in EC using the following
form: (i) Time (Event, Time), to express that event Event
happened at time Time. (ii) Trained(Martha, pipeline system),
to express the person Person was trained for activity A and (iii)
Rank (Person, Time, trained A), to express that the person
Person at time Time has been trained for activity A. So, for
example, events E1, E2 can be expressed as follows:
Trained(Tim, gas system). The Hold predicate is used in order
to express the time periods of the relationships. The Holds(p)
predicate states that a relationship associated with P holds for a
time period p. Likewise the statement,

Rank(Tim, working on gas before (E2))

can now be written as

Holds(before (E2 rank (Tim working on gas))

which means that “Tim holds the rank of working on gas
for a time period which is before E2, or in other words which
last before E2 starts.”

Additionally, the following predicates state:

Initiates: represent the start of an event.

Terminates: represent the termination of an event.

Broken: represent identical or incompatible
relationships.

Therefore, Holds(before(e u)) IF Terminates(e u), implies
that "An event E holds before time period u, if the event E is
terminated at time period u".

IV. Example Application of EC in a Systems Engineering
project

Application of the approach is demonstrated with an
example from the systems engineering domain. In particular,
we elaborate on the approach through an example drawn from
the development of a vehicle subsystem. The process
commences with the population of the database with the
temporal project activities relating to the functional system
requirements and their dependencies. Next, a second database
of actors specializations is created. Finally, the “event planner”

database is specified that holds the tasks of each actors as
scheduled by the project plan. New events can be added in the
database during project execution and while monitoring the
project's progress. During project execution changes can be
instantiated and subsequently evaluated using queries relating
to activities or roles in the project schedule. The tool provides
the user with the impact and feasibility of each change.

A. Project Specification

Consider the following model of a project specification
depicting activities A0, A1, A'0, B1 and their dependencies.
The diagram is read as follows: Activity A2 should be
implemented before A1 and activity A1 should be implemented
before A0, and B1 should be implemented before A’0. The
dashed line means that Activity A1 can be replaced by activity
B1.

A0

A1

A2

B1

A’0

B. Actors

Participants in the project, called actors are involved in the
development of the project by undertaking activities, provided
they are trained prior to engaging with the activity. Therefore,
the training of actors P1 and P2 could be set as follows:

Actor P1 is trained for the implementation of A0, A1,
A’0, B1 and A2.

Actor P2 is trained for the implementation of A0, A1,
A’0 and B1.

C. Events

The following events E0-E3, that took place during the
development of the project are recorded in the database:

E0 is the event that defines the project start date. Date
is 10 Feb 2010.

E1 is the event stating that actor P1 completes activity
A0. Date is 11 Feb 2010.

E2 is the event stating that actor P1 completes activity
A1. Date is 16 Feb 2010.

E3 is the event stating that actor P1 leaves from project
for 4 days. Date is Feb 21 2010.

Training of each actor is recorded in the database in the
following manner:

Rank(P1,(before E0),trained A0)) ^ Rank(P1,(before
E0),trained A1)) ^Rank(P1,(before E0),trained A’0)) ^
Rank(P1,(before E0),trained B1)) ^ Rank(P1,(before
E0),trained A2)).

which is translated to:

338 339

“P1 will be trained for activities, A0,A’0,A1,B1,A2 at time
period before E0”.

Also, we record:
Rank(P2,(before E0),trained A0)) ^ Rank(P2,(before
E0),trained A1)) ^

Rank(P2,(before E0),trained A’0)) ^ Rank(P2,(before
E0),trained B1)) .

which is translated to:
“P2 will be trained for activities, A0,A’0,A1,B1 at time

period before E0”.

D. Conflicts Identifications and Resolution

After recording all events related to the project, we can
make queries concerning the temporal feasibility of the project.
In particular, we can make queries of the following form:

Rank_of (P,Y,T): to get the rank of actor P at time T.
The system will report the actions Y performed at that
date.

Moreover, to find the rank of actor P, on the 16th of Feb
2011 we make the following query: “Rank_of((P1,Y,(16 Feb
2010))”.The system will search the database for the rank of
actor P1 and will return the actions Y based on which the rank
of P1 on the specified date is satisfied. Hence the output would
be: “implements activity A0”. When a project manager is
interested to change an activity in the project plan, the
following query could be used to get the dependencies of an
action A:

Activities_of(A, Y)
Similarly, in order to inquire about the training of actor P, on
activity Y, for time T we can use the following statement:

Rank(P,T,trained Y):.
Therefore, to check whether a change in activity A’0 and

B1 is free from conflicts, the following queries are made:
Rank(P1,(before E0),trained A’0)),

 Rank(P1,(before E0),trained B1))

In this case the system responds with a "TRUE" clause
which stipulates that we can safely assume the change of P1
without any conflict.

E. Examples of Queries

1) Example1
At time period E0, if there is a request for a change in

activities A1 to B1, then this will result in no conflict: This
however is the best case scenario since the project has just
began and none of the activities have been implemented. In this
case , the following predicate holds:

Holds (before E0 (P1 implements A0)) FALSE

Which means that the predicate “actor P1 has implemented
activity A0 before event E0” does not hold.

2) Example 2
Similarly, if there is request for a change to project

activities, on the 21st of Feb, E4, then this will result in a
conflict, since no actor would be available to take over the
change. Hence,

Initiates (after E3 and before E4(P1 implements A0))
FALSE

Initiates (after E3 and before E4(P2 implements A0))
FALSE

To resolve this conflict: Actor P2 can replace actor P1 and
implement the required parts. A conflict however, may occur,
when the activity A2 needs to be implemented at a time prior to
actor's P1 completion of training :Rank(P2,(before E0),trained
A2)) FALSE. This means that “Actor P2 is NOT trained for
activity A2”.

V. CONCLUSIONS AND FUTURE WORK
The work presented herein addresses an important problem

in project risk management, namely, the analysis of conflicts
and their resolution. The method described elaborates on the
pressing need for timely delivery of projects within agreed time
limits. The complexity and uncertainty of modern systems
however makes this a challenging task. The statistics of project
failures alone highlights the complexity of the problem. The
method described provides the mechanism for an effective
mitigation of project overrun risk that emerge with changes in
project requirements, activities and roles using EC. This
enables automated inference of project's state given
instantiations of events that define changes to schedule,
requirements or structure of the project plan Preliminary
results from this work are encouraging. However, the full
extent of the method will be realized with its thorough
validation. On the same vein, project cost is also another
burden to project managers that effectively could bring projects
to standstill if not managed adequately.

VI. REFERENCES

[1] R. Kowalski., "Legislation as Logic Programs", Springer-Verlag, 1992.
[2] D. Kowalski, Kuehner, “Linear Resolution with Selection Function,

Springer-Verlag, 1983.
[3] R. Kowalski, "Predicate Logic as Programming Language", EEE

Computer Society Press, 1986.
[4] A. Bandara,E. Lupu, E. Lupu and A. Russo, "Using Event Calculus to

Formalise Policy Specification and Analysis", Policies for Distributed
Systems and Networks, 2003.

[5] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone, "Detecting
Conflicts of Interest", Proceedings of the 14th IEEE International
Requirements Engineering Conference, 2006.

[6] D. Ahern, A. Clouse and R. Turner, CMMI distilled, Addison-Wesley,
2003.

[7] B. Hugher, Cottetell M. "Software Project Management", McGrahill,
2011.

[8] M.Charalambides, P. Flegkas, G. Pavlou, A. Bandara, E. Lupu, A.
Russo, N. Dulay, M. Sloman, J. Rubio-Loyola. “Policy Conflict
Analysis for Quality of Service Management”, 6th IEEE International
Workshop on Policies for Distributed Systems and Networks, pp. 99-
108, 2005.

[9] Jan Chomicki, Jorge Lobo, Shamim A. Naqvi, “A Logic Programming
Approach to Conflict Resolution in Policy Management”, Proceedings
of the 17th International Conference Principles of Knowledge
Representation and Reasoning, pp 121-132, 2000.

338 339

The Impact of Software Development Team
Dynamics on the Knowledge Management Process

Shuib Basri
Computer and Information Science Department

Universiti Teknologi PETRONAS
Tronoh, Perak, Malaysia

shuib_basri@petronas.com.my

Rory V. O’Connor
Lero, The Irish Software Engineering Research Centre

Dublin City University
Dublin, Ireland

roconnor@computing.dcu.ie

Abstract—The influence of software team dynamics on well-
organized software development knowledge process could
prevent software development organizations from suffering from
the knowledge atrophy problem. To explore this, we have studied
several team dynamics factors that influence the Knowledge
Management Processes (KMP) in Very Small Entities (VSEs) [1].
A survey was conducted in a variety of VSEs and through
statistical and qualitative content analysis for the research data,
results indicate that small teams, informal team process and
structure have an important influence on the level of team
dynamics in the software development process

Keywords-component; software process, knowledge

I. INTRODUCTION (HEADING 1)
Software development is a complex activity and depends

strongly on human commitment for its implementation.
Furthermore since software development projects involve
knowledge intensive exchanges and collaborations, the
influence of team dynamics on the organization of software
development knowledge could assist software companies to
become more innovative and efficient. Hence KMP is more
effective in an organization if the development teams have a
good team culture with ability to share knowledge,
collaborative relationship and personal responsible in creating
and sharing knowledge [2]. In addition KMP is also reshaped
by the attitudes and behaviour of team in order to ensure that
both personal and organizational knowledge are always
available [3]. The issues of limited resources; especially in cost
and people almost always become an issue and can have an
impact on the KMP in VSEs [4]. Therefore it is our belief that
better understanding the influence of team dynamics in
software projects could assist small companies to mitigate
VSEs KMP against the knowledge atrophy problem.

II. BACKGROUND

A. Very Small Entities (VSEs)
The definition of “Small” and “Very Small” companies is

challengingly ambiguous, as there is no commonly accepted
definition of the terms. In Europe, for instance, 85% of the
Information Technology (IT) sector's companies have 1-10
employees. In the context of indigenous Irish software firms
1.9% (10 companies), out of a total of 630 employed more than

100 people whilst 61% of the total employed 10 or fewer, with
the average size of indigenous Irish software firms being about
16 employees [5]. The term “Very Small Entity” (VSE) had
been defined by the ISO/IEC JTC1/SC7 Working Group 24
“an entity (enterprise, organization, department or project)
having up to 25 people” [6]. Furthermore the issues of limited
resources in VSEs always become a constraint in producing a
competitive product in today’s dynamic software business. [7]
states that micro enterprise including VSEs whose have limited
resources, particularly in financial and human resources, are
practicing unique processes in managing their business. These
unique characteristics have influenced VSEs in their business
style and companies’ process infrastructures compare to large
companies’ [7]. In addition due to the small number of peoples
involved company’s activities, most of the management
processes are performed through an informal way and less
documented.

B. Teams and Knowledge Management
According to [8] software development is a combination of

two basic processes; social process and technological process.
[9] argues that software production is more effected by social
process rather than technological process. People are not only
claimed as the greatest asset in a software organization [10] but
also critical to software development success [11]. Software is
always developed in a group rather on the individual basis [8]
and the basis of every software project is a team [11]. [12]
argue that the dynamic performance software project which
involved many processes is always depends on team especially
in quality of communication within team and between teams.
They added that the communication can be applied in many
ways not only in verbal but also in term of documentation form
such as version control, guidelines, reports and many more.
Moreover the communication also has a related impact with the
team proximity [7]. They add that the increase distance from
one team to another could effected the team dynamics in which
it will interrupt team communication, coordination, mutual
support, effort and cohesion [13]. Therefore in order to be
success in KMP, organization must have a solid support from
the software development and management team. The
development and management team must be able to work
together, share the knowledge and able to communication one
another effectively. This is because the essence of software
development is good relationship, effective communication and

340 341

high esteem of teamwork among software development and
management team.

C. Teams dynamics
Team dynamics effect how team reacts, behaves or

performs and the effects of team dynamics are often very
complex [15]. There are various forces could influence team
dynamics including nature of the task, the organizational
context and team composition. In her dissertation [14] on
dynamics of successful software team identified four
characteristics of team dynamics; positive, negative, internal
and external team dynamics. Positive team dynamics is the
positive forces that can lead a team be a high performing
successful team. [16] states the present of social relationship in
a team could increase team productivity and could enhance
social and interpersonal skill [17]. [18] argues that social
interaction skill dimension can divide a team member to
extrovert or introvert. Extroverts’ team member is a people
oriented, sociable person, who enjoys interaction with others.
Meanwhile introvert person is a type of person who like to
work alone and with less social interaction. Meanwhile, [19]
believes that the positive mode of leadership (such as well
focus directive, well plan and others) in software organization
could enhance the positive team dynamics. Negative team
dynamics is a negative force that could lead the decrease of
team performance and preventing people from contributes with
their full potential [14]. According to [10], from management
point of view, in software development organization people are
required three types of needs that have to be fulfilled and
satisfied; social, self-esteem and self-realization needs. Social
needs are related to social interaction and communication. The
lack or ignorance of these needs will give a negative impact on
the organization because people may feel unsecured, have low
job satisfaction and decrease their motivation [20]. These will
stop them from giving full commitment and cooperate in their
work as a team member. Internal team dynamics are referring
to the forces that exist within the team itself [14]. Team
member also will not cooperate if they do not feel that that are
a part of the team [21]. While internal social interaction
between people could build team cohesion that will enhance
team performance. [29]. External team dynamics are referring
to the present of external forces that beyond the team control
and could impact the team performance [14]. According to [23]
the intrinsic and extrinsic factors in projects may motivate
team. Intrinsic factors are the internal factors that consist in the
task and team activity itself. Extrinsic factors are external
factors that influence team from the outside such as reward and
recognition, feedback from the organization and customer,
team member pressure and the working environments.
Moreover a better working environment also could enhance job
satisfaction among team member [24].

III. STUDY METHODOLOGY

For this study we have developed and distributed a survey
questionnaire to software VSEs (involved in software product
development) in Dublin, Ireland. The survey questionnaires
(which followed a GQM approach) were consisted of
quantitative and qualitative questions. In order to get a quick
replied, we regularly contacted the respondents via email and

phone. Each received and completed questionnaire were
compiled and analysis. The close-ended questionnaire were
grouped according the issue and analyze using a statistical
analysis. Meanwhile, on the open ended data, we analyze and
categories the data according to the category that this study
intends to understand. In summary we adopted the qualitative
contents analysis approach in analyzing the open-ended answer
[23]. At the end, we have merged the both analysis result in
order to gain more understanding and validate the results. We
have received a total of 70 filled questionnaires and have
conducted 15 interviews for this study, In order to produce
details analysis results, we have divided the survey respondents
into 2 main group namely the Micro VSE (M) (1-9 employees)
and Larger VSE (L) (10-25 employees) [1].

IV. FINDINGS AND DISCUSSION

A. Teams dynamics and Structure
In this section, we explore the respondents’ opinions on the

companies’ software development team status and study people
working relationship and team environment in the companies.

TABLE I. TEAM DYNAMICS

Grp Clear
Roles

Appropriate
Size

Diverse Skill
Range

M Mean 3.60 3.20 3.60
L Mean 3.60 3.40 4.00

Avg Mean 3.60 3.30 3.80
Table 1 indicates that the respondents’ strongly agree that

the development teams in their companies have a high level of
team dynamics. The results shows that the team have a great
working and social relationships, willing to share opinion and
idea, having a good interpersonal skill and working closely
each other. Further, other results (data not shown here due to
lack of space) show that even though VSEs having a small
team and a flat structure but staff are clear about their roles,
they have enough manpower and skill to do all the
development tasks. Meanwhile from the qualitative analysis,
indicated that all respondents claimed that their development
teams are efficient and effective. They claimed that their
development team are having all important criteria such as
high skills, motivated, dynamic, socialize and good teamwork,
open communication, able to meet project deadline and budget,
active in sharing and involved in strategic planning. These
points are illustrated in the following extracts from interviews:
“They get on well as a social group and communicate regularly
and openly. Also the projects we manage are normally 1 to 2
man projects and hence easily manage in an ad-hoc manner by
two people that get on and communicate well.” 2) “We
practice clear communication and we are active in informal
knowledge sharing. Beside that our environment is a family
culture and, following specific strategic planning... We also
actively use communication tools.”

Beside that the result on employee turnover rate question
has strengthen the above finding regarding team environment
in the VSEs. The result in this question shows that the
companies do not have any serious problem with the staff
turnover. They claimed that the company environment,
management and working styles and team relationships that

340 341

satisfied the employees have motivated people to stay longer in
company. The following interview quotations which best
explain the details of this situation: “We handle many varying
projects of different sizes and complexities and have a very
loose/informal and friendly atmosphere. This means the work is
challenging and rarely gets boring while it also being
enjoyable here.” “We have 14 employees. Last one who
resigned in was 3 years ago. The reason people stay is we
operate in relaxed and informal environment.”.

In overall team environment issue give an indicator that all
the above parts or processes are much related and depended to
the organization team environment, process and culture in the
organization

B. Communication
The results from the analysis as shown in table 2 indicate

that the companies are practicing regular informal meetings
(e.g stand-up meeting, online meeting) and practicing informal
formal communication in their business operations. However
the results also show that organizations have clear
communication process and channel. Moreover the results also
indicated that that employee size has influence the formal
communication process level in their VSEs daily business
operations. This has been shown in comparison results between
the L-VSEs and M –VSEs for this issue.

TABLE II. COMMUNICATION PROCESS

Grp Staff
Knowledge

Project Exp. &
Lesson Learned

Experience
Doc

Progress &
Procedure

M 2.20 2.20 2.20 2.20
L 2.80 3.20 2.80 2.60

Avg 2.50 2.70 2.50 2.40
In relation to the communication process in VSEs, the

analysis on the open-ended question indicated that 90% of
respondents are agreed that in development projects they
regularly receive feedback from the project stakeholders.
However the result showed that this process been done either in
face to face, informal discussion, online communication,
informal internal feedback or ‘on the job training’ process. The
interview extracts following illustrates how the process has
happened: “Online communication, informal feedback, internal
discussion, and informal communication” “We sit in one office
so I talk to them all the time”

C. Learning and Sharing
All respondents’ are agreed that their development team

sharing and learning activities are active in the organization.
This was shown from the research result which obtained more
than 3.00 point in mean. This represents an indicator that in
VSEs companies, they always utilize the knowledge and
experience within the organization in performing their tasks.
This analysis also found out that there are no big differences in
term of company size in utilizing existing knowledge and
experience in company.

Related to above data the open-ended question indicated
that the learning and sharing activities in VSEs are being done
either informal self-learning or informal knowledge sharing
among the development team. This has shown how the

employees enhance their skills which resulted in 90% of the
respondents agreed that no formal training were given to the
staff in enhancing their skills. The interview extracts below
reflect the above points: “Informally through ad-hoc
conversations and some code review”, “Ensuring that no
single member of staff has any exclusive knowledge by using a
mentoring/buddy system.”

D. Documentation Process
Our data indicates that the documentation process has been

done in informal process. In details it showed that people’s
knowledge, experience and activities are not documented
properly or have been done personally. This was showed on the
total mean score which presents that all respondents do not
practice a formal documentation process in their documentation
activities. Our data also indicates that number of employees
working in the companies give an influence to the
documentation formality process in VSEs.

In relation, the qualitative answers have highlighted that
only business procedure and technical issues are being
documented properly and organized. This could be identified in
question on documentation process where 50% of the
respondents claimed they felt that they are regularly update
their document regularly especially on a specific works and
procedures. Moreover the analysis results also showed that
small team size issue is an obstacle to VSEs from performs
seriously documenting their activities as shown by below
interview extracts: “We documented it electronically, and
having an equal decision on it”. “We are too small to do
proper documentation process”

The result in this part of analysis demonstrates a pattern and
indication that in VSEs documentations process are done in
two ways; (1) the specific documentation process which is
related to business and technical process and (2) informal
documentation process which are inclined toward informal,
personal and online documentation.

E. KM Process and Commitment
The questions on this part emphasize particularly on KM

process and commitment in the software development projects.
The results from the analysis as shown indicate that the
respondents were agreed that the level of KM process and
commitment in VSEs are very significant. This could be
identified with the average mean score for each question is
relatively high. Our data indicates that in principle respondents
are agreed they are having a clear KM strategy and a good
leadership in their organization is important in organization
software development knowledge as reflected in the mean
score results for these two questions. However our results
indicate that activities related to KM within VSEs have not
been performed properly. It is indicated in average total mean
row that gained less than satisfied agreement level. Our data
showed that the management is very supportive in the KMP
and peoples in the organization are always communicate, share
and having good relationship among them. This issue could be
identified in open-ended answer related to which indicates
KMP were done informally through sharing activities and
informal documentation such as personal or impromptu process
as the interview extracts below show: “We are doing more on

342 PB

self-learning and sharing among us”, “Regular sharing
process, internal sharing and team work”.

In addition to the above analysis, the analysis of the
knowledge loss issue have indicate that the informal process
environment in VSEs helps the companies to mitigate
knowledge loss problems from happened. The analysis in this
part showed 90% of the respondents claimed that they do not
face knowledge loss problem in their company due to the
informal process. These interview extracts illustrate this
situation: “Ensuring that no single member of staff has any
exclusive knowledge by using a mentoring/buddy system.”,
“Not a problem since we are using the same technology and
process in all our project…. We occasionally sharing and
transferring knowledge among each other”.

V. CONCLUSION AND FUTURE WORK
The analysis has indicated that VSEs have a clear KMP in

their organization. The results also show the knowledge
atrophy problem is not a serious problem in VSEs. From the
analysis we found that due to small team size which creates a
flat work structure, direct and active communication, close
relationship and open environment have created positive team
dynamics environments in respondents’ organization. These
situations also have encouraged software development teams to
share and create knowledge in organization. In addition the
analysis in the first stage (qualitative) have indicated that
management style in VSEs which is more informal and macro,
and working style which more autonomous have helps to create
team dynamics environments. This situation help VSEs
enhance their KMP and mitigate several factors which lead to
knowledge atrophy problems. This is shown from the analyses
which have indicated that in VSEs knowledge sharing level is
high; staff turnover rate is low, high levels of knowledge
exploration, continuous guidance from the senior staff and
active communication in exchanging idea or knowledge among
staff. Meanwhile in second stage data analysis process
indicates that 90% from our research respondents believed that
informal process environment in their organization has helped
the development team to become more dynamic and this
situation has assisted them in KMP beside mitigated
knowledge atrophy problem from happened. In addition, the
second stage data analysis result also shows that 80% of
respondents claimed that their software development activities
are not affected by the knowledge atrophy problem. They
claimed that by, having frequent guidance and mentoring
activities, being active in knowledge sharing and proactive
coaching could mitigate this problem from occurring.

REFERENCES

[1] Laporte, C.Y., Alexandre, S., and O'Connor, R. A Software Engineering
Lifecycle Standard for Very Small Enterprises, R.V.O'Connor et al (Eds)
Proceedings of EuroSPI Springer-, CCIS Vol. 16, 2008.

[2] Plessis, M., , “Knowledge management: what makes complex
implementations successful?”, Journal of Knowledge Management, Vol.
11, No. 2, , pp. 91-101, 2007.

[3] S Basri and O’ Connor, RV. “Evaluation of Knowledge Management
Process in Very Small Software Companies : A Survey, Proceeding of

Knowledge Management” 5th International (KMICe 2010) Conference,
25-27 May, Kuala Terengganu, Terengganu, 2010

[4] Sapovadia, V. Rajlal K., “ Micro Finance: The Pillars of a Tool to Socio-
Economic Development. Development Gateway”, 2006. Available at
SSRN: http://ssrn.com/abstract=955062.

[5] Coleman, G. and O'Connor, R. V., “The influence of managerial
experience and style on software development process”. International
Journal of Technology, Policy and Management. Vol. 8, No. 1, 2008.

[6] ISO/IEC DTR 29110-1, “Software Engineering - Lifecycle Profiles for
Very Small Entities (VSE) -- Part 1: VSE profiles Overview”. Geneva:
International Organization for Standardization (ISO), 2011

[7] S Basri and O’ Connor, RV “Understanding the Perception of Very
Small Software Companies towards the Adoption of Process Standards”,
Systems, Software and Services Process Improvement, Communications
in Computer and Information Science, Volume 99, 153-164, , Springer-
Verlag, 2010

[8] Rosen, C.C.H., “The Influence of Intra Team relationships on the
systems Development Process: A theoretical Framework of Intra-Group
Dynamics.”, 17th Workshop of the Psychology off Programming
Interest Group, Sussex University, 2005

[9] Sawyer S. and Guinan P. J., , ’Software development: processes and
performance’, IBM Systems Journal, Vol. 37, Issue. 4, 1998

[10] Sommerville, I., 2011, Software Engineering, 9th Edition, Pearson, NY
[11] Cohen, S. G. and Bailey, D. E., , “What Makes Teams Work: Group

effective Research from The Shop Floor to the Executive Suite”, Journal
of Management, Vol. 23 No. 3, pp 234-256. 1997.

[12] Hall, T., Beecham, S., Verner, J. and Wilson, D.,. “The Impact of Staff
turnover on Software Project: The Importance of Understanding What
makes Software Practitioners Tick”, Proceedings of ACM SIGMIS CPR,
ACM New York, pp. 30-39, 2008.

[13] Basri, S. “Software Process Improvement in Very Small Entities”, PhD
Thesis, Dublin City University, Ireland. 2010,

[14] McCarty, B., “Dynamics of a successful Team. What are the enablers
and barriers to High Performing Successful Teams?” MSc Dissertation,
Dublin City University. 2005.

[15] Scarnati, J. T.”On becoming a team player”, Team Performance
Management, Vol. 7, Issue.1/2, pp. 5 – 10, 2001.

[16] Triplett. N., “The Dynamogenic Factors in Pace making and
Competition”. American Journal of Psychology, Vol. 9, Issue. 4, pp.
507, 1998.

[17] Katzenbach, J.R., and Smith D.K., “The Wisdom of Team. Creating the
High Performance Organization”. Harvard Business Scholl Press,
Boston, MA. 1993.

[18] Gorla, N and Lam, Y.W., “Who Should Work With Whom? Building
Effective Software Project Teams”, Communications of the ACM ,Vol.
47, Issue. 6, pp. 123. 2004.

[19] Singh, S. K., “Role of leadership in knowledge management: A study”,
Journal of Knowledge Management, Vol.12, Issue. 4, pp.3 – 15, 2008.

[20] Sarma, A. and Van der Hoek, A., 2004, “A Need Hierarchy for Teams”,
www.ics.uci.edu/asarma/maslow.pdf

[21] Furumo, K. and Pearson, J.M., “An Empirical Investigation of how
Trust, Cohesion and Performance Vary in Virtual and Face to Face
Teams”. System Sciences, Proceedings of the 39th Annual Hawaii
International Conference, Vol. 1, pp. 26c- 26c ., 2006

[22] Levi, D. 2001, Group Dynamics for Teams, Sage Publications.
[23] Kirkman, B.L., Rosen. B, Tesluk, P. E. and Gibson, C.B., “The impact

of team empowerment on virtual team performance: The moderating
role of face-to-face Interaction”, Academy of Management Journal, Vol.
47, No 2, pp. 175-192. 2004

[24] Javed, T., Maqsood, M. and Durrani Q., ‘A Survey to Examine the effect
of Team Communication on Job satisfaction in Software Industry’,
ACM SIGSOFT Software Engineering Notes, Vol. 29, No. 2, pp. 6.

PB 343

Quick Acquisition of Topic-based
Information/Knowledge from News Site Databases

Hao Han
National Institute of Informatics (NII), Japan

han@nii.ac.jp

Abstract—Web news is an important resource of informa-
tion/knowledge. We can analyze news to observe the difference in
various topics (e.g. economy, health, and culture) and trends in
the past years. However, the collection of topic-based Web news
is considered as a long-period process usually. In this paper, an
effective and efficient Web-based knowledge acquisition approach
is proposed to extract topic-based Web news full contents from
the news site databases directly. This approach is applicable to
the general news sites, and the experimental results show that
it can extract the topic-based Web information/knowledge from
news site databases automatically, quickly and accurately.

Index Terms—Web-Based Tools, Knowledge Acquisition, News,
Extraction, Database

I. INTRODUCTION

Nowadays, fresh news contents on a variety of topics are
being created and made available on the Web at breathtaking
speed. We can analyze them to acquire the desired infor-
mation/knowledge. For example, if we want to compare the
monthly topics of each country in the past years from CNN,
we need to collect the CNN news about each country and
analyze these news contents to learn the desired information
for personal use (not anti-copyright republication).

However, the process of the news pages collection consumes
much time. Usually, the Web pages crawlers are used to collect
the Web pages. They are executed at regular intervals, and
the collection process has to last for a long period of time
if we want to collect the news pages of long period. We
do not think each one of the collected Web pages is usable
because there are many non-news Web pages, such as the
blog pages, advertisement pages and even similar pages with
different URLs. Sometimes, we just want to collect the news
with specific topics such as the news on ”soccer” or ”whaling”,
and the other collected news are undesired. Furthermore, the
news sites are crawled to find as many news pages as possible,
but actually, it is difficult to acquire the old news pages because
the latest news are shown prior to the old news. Besides, in a
news page, there are advertisement, related stories and other
undesired parts usually. In order to recognize and extract the
parts of news contents from the news pages, the extraction
patterns are generated based on the layout of news pages.
Web page layout is the style of graphic design in which text or
pictures are set out on a Web page. The different news sites use
the different news pages layout, and each news site uses more
than one layout usually. It is necessary to generate many news
contents extraction patterns manually or automatically for each
news site. It is a costly work. Moreover, the news sites update

the layout of news pages irregularly. If the news sites update
the layout of news pages, the corresponding analysis has to be
done again. Therefore, it is not easy to extract news contents
on the specific topics from news sites quickly, and the current
methods of news pages collection and news contents extraction
can not work efficiently.

In this paper, we propose an approach to extract the topic-
based Web information/knowledge from news site databases
quickly. Usually, the news sites provide site-side news search
engines for the users. These engines are affiliated to the
news sites and can access the news databases of news sites
directly. We use these news search engines to search for the
news by giving the keywords of specific topics, and extract
the page URLs and titles of the matched news from the
search result pages automatically. Then we use an efficient
extraction algorithm to extract the full contents of the news
without Web page layout analysis. We can designate the
target news sites, publication dates/periods (e.g. last week,
this month, from 2008 to 2010) and topics. A topic is a
discrete piece of content that is about a subject, such as a
series of countries, sports, companies and etc. Our approach
is applicable to the general news sites and can extract a large
number of news including the old ones published some years
ago. Our main purpose is to provide a practical and easy-
to-use Web-based information/knowledge acquisition tool for
news-oriented research.

The organization of the rest of this paper is as follows.
In Section 2 we give the motivation of our research and an
overview of the related work. In Section 3, 4 and 5, we
explain our topic-based Web information/knowledge extraction
approach in detail. We test our approach and give an evaluation
in Section 6. Finally, we conclude our approach and give the
future work in Section 7.

II. MOTIVATION AND RELATED WORK

In order to realize the analysis and comparison of Web news
in many major topics, it is necessary to collect the news with
specific topics from one or many designated news sites over a
long period of time. Some related work has been done on Web
news collection or extraction. For the news pages collection,
the Web pages crawlers are often used. They are executed
to collect the news pages from news sites and the collection
process costs much time. Several collection approaches and
systems have been proposed. More and more news sites
distribute news by RSS. Generally, news sites classify the

344 345

news into different categories and publish them by RSS feeds.
However, different news site uses different categories and RSS
feeds just comprise the latest news. For example, CNN pro-
vides RSS feeds by fields such as science, sports, business and
etc, while AllAfrica (allafrica.com) offers RSS feeds grouped
by countries/regions. AllInOneNews (www.allinonenews.com)
is a news search system based on automatic extraction of
search results from search engines [9]. It passes each user
query to the existing search engines of news sites, collects
their search results for presentation to the user. However, the
users of this system can not select the target news sites, and
just collect the results from the first search result page. Google
News (news.google.com) provides the news search service and
distributes the news search results by RSS or Atom. If we use
the default or advanced search of Google News, we can select
the target news sites, but the publication date/period selection
is weak. If we use the archive search, we can not select the
target news sites. If we use the search result RSS feeds, only
the results from the first search result page can be collected.
These methods/systems can not satisfy the flexible and quick
collection of news pages very well. Moreover, these methods
can not realize the comprehensive analysis or comparison of
news because they can not extract the full contents of each
news. They can not easily answer the questions like ”which
countries had an argument over whaling during the last years
and whether the other countries were attracted to discuss it as
the arguments went on”.

For the news contents extraction, a number of approaches
have been proposed to analyze the layout of the news pages
with the purpose of manual or semi-automatic example-based
information extraction pattern learning, and to extract the news
contents from the general news pages ultimately. Reis et al.
gave a calculation of the edit distance between two given
trees for the automatic Web news contents extraction [2].
Fukumoto et al. gave the focus on subject shift and presented
a method for extracting key paragraphs from documents that
discuss the same event [3]. It uses the results of event tracking
which starts from a few sample documents and finds all
subsequent documents. However, if a news site uses too many
different layout in the news pages, the learning procedure
costs too much time and the precision becomes low. Zheng
et al. presented a news page as a visual block tree and
derived a composite visual feature set by extracting a series
of visual features, then generated the wrapper for a news
site by machine learning [10]. However, it uses manually
labeled data for training and the extraction result may be
inaccurate if the training set is not large enough. Webstemmer
[7] is a Web crawler that automatically extracts main text
of a news site without having banners, advertisements and
navigation links mixed up. It analyzes the layout of each page
in a certain web site and figures out where the main text is
located. All the analysis can be done automatically with little
human intervention. However, this approach runs slowly at
contents parsing and extraction, and sometimes news titles
are missing. TSReC [6] provides a hybrid method for news
contents extraction. It uses tag sequence and tree matching

to detect the parts of news contents from a target news site.
However, for these methods, if the news sites change the
layout of news pages, the analysis of layout or tag sequence
has to be done again. As the layout-independent extrac-
tion approaches, TidyRead (www.tidyread.com) and Readabil-
ity (lab.arc90.com/experiments/readability) render Web pages
with better readability as an-easy-to-read manner by extracting
the context text and removing the cluttered materials. They
run as plug-in or bookmarklet of Web browser. However,
the extraction result is a part of Web page containing the
HTML tags. It also contains some other non-news elements
such as the related links. Wang et al. proposed a wrapper to
realize the news extraction by using a very small number of
training pages based on machine learning processes from news
sites [8]. The algorithm is based on the calculation of the
rectangle sizes and word numbers of news title and contents.
However, these approaches still need to set the values of
some parameters manually, and could not be proved to extract
the news successfully or automatically if news sites update
the page layouts. Full-Text RSS (echodittolabs.org/fulltextrss)
only returns the news contents when the supplied RSS has a
summary or description of some kind.

These news contents extraction methods are still not widely
used, mostly because of the need for high human intervention
or maintenance, and the low quality of the extraction results.
Most of them have to analyze the news pages from a news site
before they extract the news contents from this news site. If
we select the different target news sites, topics and publication
dates, the analysis of layout needs to be done again. It is costly
and inefficient. Compared to these developed work, we use
the news search engines affiliated to the news sites instead
of the often used Web crawlers. We can get a large number
of news from the news site databases, not only the latest
news but also the old news. The target news sites, topics and
publication dates are selective. Furthermore, we do not need to
delete the non-news pages or other undesired news pages from
the search results because all the news extracted from search
result pages satisfy our designated topics. Meanwhile, we
propose an algorithm special for the news contents extraction.
It is applicable to the general news pages, and we do not
need to analyze different kinds of news pages to generate the
corresponding extraction patterns for each news site. The full
contents of news are quickly extracted from the matched news
pages for the further analysis.

III. OVERVIEW

Our approach is made up of two parts mainly as shown in
Fig. 1: news pages collection and news full contents extraction.
Firstly, we collect the topic-based news pages. We create
a submitting emulator to emulate the submitting process of
search engine of the target news site. We get the search
keywords of a specific topic and send them to the emulator one
by one, then extract news titles and URLs of news pages from
the continuous search result pages. Secondly, we extract the
news contents from the news pages. We propose an extraction

344 345

algorithm special for news pages, which can extract the news
contents from a news page only by using the news title.

Fig. 1. Overview of our system

IV. NEWS PAGES COLLECTION

We collect news pages from news site search engines.
Although many Web sites, such as Amazon and YouTube,
open their search engine services by Web service APIs, most
of the news sites, such as CNN and BBC, do not provide Web
services for their news search engines. We have to extract the
partial information, such as news titles, news page URLs and
publication dates, from the news search result pages. As shown
in Fig. 2, we generate a submitting emulator for designated
news site, and send the search keywords to the submitting
emulator to receive the search result pages. Then, we analyze
the search result page to extract the news titles and URLs.

Fig. 2. Overview of news pages collection

A. Submitting Emulator
Usually, in a news Web site, there is a site-side search engine

used to get the requests from users and return the search result
pages. The users enter the query keywords into a form-input
field by keyboard and click the submit button by mouse to send
the query. For the request submitting, there are POST method
and GET method, and some news Web sites use the encrypted
codes or randomly generated codes. In order to get the search
result pages from all kinds of news sites automatically, we use
HtmlUnit (htmlunit.sourceforge.net) to emulate the submitting
operation instead of URL templating mechanism.

We need to get the start Web page which comprises the
form-input field and submit button of search engine. Usually,

this start Web page is the top page of news site or a search
result page of news site. Then we analyze the HTML document
of this Web page to find the <form> nodes. If a form
comprises a text input field and a button next to this text input
field, and the server-side form handler of this form is within
this news site, we think it is a possible form which includes
the necessary form-input field and submit button. If we find
more than one possible form in this Web page, we choose the
first one as our final selection because the target form is at the
top side of Web page usually.

We generate a submitting emulator and send the search
keyword to it. Submitting emulator uses HtmlUnit to emulate
the submitting process (input the search keyword into text field
and click the button to complete the actual submit). Finally,
we get the response page (search result page) from submitting
emulator. All the processes of submitting emulator generation
in our approach are completed automatically after the start
Web page is given.

B. News Title and News Page URL Extraction
After we get the search result page, we need to extract

the news titles and news page URLs. There are links to the
advertisement pages, video pages, external non-news pages
and other irrelevant information besides the page links to
matched news. Fortunately, there are some similar features in
the news search result pages of most news sites, which can be
used to extract the news titles and links to the news pages.

• Each search result set contains the similar information at
the similar position such as news page link, news title,
headline and publication date.

• The news title is contained inside the news page link as
text value.

• Matched news are listed in a column and spread over
multi-pages.

• All the news search result pages from a news site search
engine have the same Web page layout.

We extract all the link nodes from the HTML document
of search result page, and find out the news page link nodes.
Through our analysis of search result pages of many news
sites, we find that the news page link node has some common
features in its text and path (XPath expression). We calculate
the possibility value of link node by the following steps.
Usually, a larger possibility value represents the corresponding
link node is more possible to be a news page link node.

1) We split the text value of link node into word list WL
using whitespace as the delimiter, and get the length of
WL as L1 (L1 ≥ 1).

2) We calculate the occurrence time of search keyword in
WL as L2 (L2 ≥ 0).

3) We get the path of link node including the ID and class
value. We calculate the occurrence time of ”news” and
”search” and ”result” in path respectively. We count
these three values up to get the sum value L3 (L3 ≥
0).

4) We calculate the possibility value of each link as P by
using the following formula.

346 347

P = L1 × (L2 + α) × (L3 + β) (1)

where, α = 0 if L2 > 0, and α = 1 if L2 = 0. Similarly,
β = 0 if L3 > 0, and β = 1 if L3 = 0. We can not
make certain that the search keyword must occur in the
news title because the search range contains not only
the news title but also the news contents, which is not
visibile in the search result page. Also, the value of L3

may be 0 in many news sites.We use α and β to avoid
the possible occurrence of P=0. They work well and do
not bring the negatives to the actual extraction in our
experiments.

In some news search result pages, the link node with the
largest possibility value is not a link node of the news page
always (e.g. a link to contextual advertising or blog). Usually,
the news page links are listed in the similar structures (XPath)
and not mixed with other non-news links. We use the following
steps to detect the news page link nodes range and find out a
news page link node.

1) We count up the possibility value PN of all the link
nodes, and get the root mean square RP as a threshold.

RP =

√∑
P 2

N

|N | (2)

where, |N | is the sum of link nodes.
2) For each Node N , we calculate PN as follows.

PN =

{
PN (N is a link node)∑

n∈ChildN
Pn (Pn > RP)

(3)

where, ChildN is a set of child nodes of the node N .
Fig. 3 shows an example of calculation of P .

Fig. 3. Calculation of P

3) We select the child node whose value is the largest
among the sibling nodes from root node to leaf nodes
as shown in Fig. 4.

We think the final selected child node is the link node of a
news page, and use the path of this node to extract the list of
nodes with the similar paths (like WIKE [5]). Each node of
list represents a news page link node, and the text value from
each node is the news title.

Fig. 4. Selection (largest P)

If the paths of these nodes show that these nodes are listed
in a column, we think they are the final extraction results and
represent the news page links because most news sites show
the search results in a column, not in a row. Otherwise, we
think the search result page does not comprise the matched
news and shows the message like ”No Results Found” because
the search engine does not find the corresponding news about
the search keyword in news database.

The news search results are spread over multi-pages and we
need to extract the page number links for our continuous query
and extraction. The extraction of these links has to satisfy the
following rules.

1) The text values of links are a series of numbers such as
1,2,3....

2) The href attribute values of links have the similar length.
3) The links are listed in a row.
We use the paths of news page link nodes to extract the

news page link nodes directly from the second result page. If
we search for the news for many search keywords continually
in a news site, we use these paths to extract the news page
links and page number links directly.

C. Publication Date Extraction
The publication date is necessary if we collect the news of

a specific period. For example, we need to extract the news of
baseball of the last 5 years if we want to find out which team
was the annual focus of attention in the last 5 years.

Different news sites choose the different formats of date
information such as ”March 7, 2011”, ”Mar. 7, 11” and ”2011-
3-7”. Table I shows the most used format patterns of date
information. We use these patterns to find the publication date
in search results. Usually, a news site displays the publication
date at the same position in a search result and uses a same
pattern for all the publication dates in all search results.
After we find a publication date in a search result, we can
use the similar paths and same pattern to extract other news
publication dates from search results easily.

V. NEWS FULL CONTENTS EXTRACTION

We extract the full contents of news from our collected
news pages. The news pages from different news sites use the
different page layout and news sites update their news page

346 347

TABLE I
PUBLICATION DATE FORMAT PATTERN

Pattern Component Format Example
YY Year 2-digit number 11
YYYY Year 4-digit number 2011
MMM Month Text Mar, March
MM Month Number 3, 03
DD Day Number 7, 07
Mark Delimiter Character ’,’ ’-’ ’/’ ’ ’

layout irregularly. We propose our news contents extraction
algorithm, which is independent of the layout of news page and
applicable to the general news pages. We detect the position
of a news title in the news page and extract the body of news
(paragraphs of news contents).

The first process detects position of a news title in the
obtained news page. The news title is a piece of important
information for the recognition of the news contents from the
full text of news page. If we correctly locate the position of
the title in a news page, the position of news contents text
would be found easily because the contents text is a list of
paragraphs closely preceded by the title usually. In addition,
for a news, the contents describe the same topic of news title
in detail, and the words constituting the title would occur in
the news contents frequently usually.

The second process detects a part of the news body and
extracts the whole body. Since body of a news is usually
preceded by its title, the process tries to find the news body
in some ”contents ranges” at first, and, if it cannot find out
the body in the range, it tries to find the body in a ”reserve
range”. ”Contents range” and ”reserve range” are parts which
might include the news body. We gave a detailed description
of extraction algorithm in [4].

VI. EVALUATION

In this section, we give the experiments to test our algo-
rithms and analyze the experimental results to evaluate our
approach. We use the news sites listed in Table II as our test
bed. These news sites are the popular on-line news publishers,
including the global and domestic news sites.

A. Experiment 1
We selected the countries/regions and their leaders as our

test topics. There are 242 countries/regions in the world and

TABLE II
LIST OF NEWS SITES AND EXECUTION TIME

Country/Region News Site Page Contents
Collection Extraction
(second) (millisecond)

United States CNN 14.3 6.02
New York Times 4.6 0.63
Washington Post × (6.62)

United Kingdom BBC 3.6 3.19
Africa All Africa 7.3 2.98
China Xinhuanet × (2.94)
France France 24 8.6 3.67
Japan Mainichi Daily News 9.3 2.40
South Korea Chosun Ilbo 6.6 0.52

most of them have the leaders [1]. We used these coun-
try/region names and leader names as our search keywords.
We collected the news page URLs and titles from the 10
(No.1-No.10, if the total number of pages is less than 10,
we got them all) result pages of each keyword. As shown
in Table II, Page Collection is the average execution time of
extracting the news page URLs and titles from one result page
(including the submitting emulation process), and Contents
Extraction is the average execution time of extracting the news
contents from one news page. The submitting emulation of
two news sites (Washington Post and Xinhuanet) failed, and
the corresponding Contents Extraction values are calculated
by extracting news contents from manually collected/saved
result pages. We selected 500 news page URLs randomly and
checked them one by one manually, and found that 17 news
pages could not be obtained (the server responded the message
like ”page not found”).

B. Experiment 2 (precision � 97.0%)
We sent the keywords used in Experiment 1 to submitting

emulator one by one, and extracted 96,095 news titles and
page URLs of matched news (published from January 1, 2003
to December 31, 2007) from news database of CNN. Our
computer (CPU: Intel Pentium M 1.30GHz, Memory: 1.0GB
RAM, Network: 54.0Mbps Wireless) uses about 20 hours to
complete this extraction process. We selected 200 news page
URLs randomly and checked them one by one manually. The
experiment results are listed in Table III. We found that 2
news pages could not be obtained as the reasons described
in Experiment 1. Among the rest 198 news pages, the news
article contents of 192 news pages are extracted correctly. In
the 6 extraction failures, some parts of news article contents
are not extracted.

TABLE III
EXTRACTION RESULT OF EXPERIMENT 2

Sum Extracted Success Failure Precision
200 198 192 6 96%

C. Experiment 3 (precision � 97.4%)
We have crawled and extracted more than 1.8 million news

contents from 38 famous news sites [4] since 2007. We select
2500 news articles randomly and check them one by one
manually. The experiment result is listed in Table IV.

TABLE IV
EXTRACTION RESULT OF EXPERIMENT 3

Sum Success Failure Precision
2500 2434 66 97.4%

D. Analysis and Evaluation
We use the first and second experiments to test our submit-

ting emulator and news page collection algorithm. It proves
that our approach can extract the news titles and URLs of news
pages of a long period from news site databases easily and

348 349

quickly. Our approach is applicable to the general news site
search engines and does not need the methods like machine
learning or extraction pattern matching, which cost much time
when news sites change the layout of search result pages.
However, some news sites use the external JavaScript files
comprising the complicated JavaScript functions to realize the
request submitting, or even the minor syntax errors occur in
Web pages where the search keywords are inputted. Although
the most of the current Web browsers, such as Firefox and
Internet Explorer, can run smoothly on these Web pages,
our submitting emulator still can not emulate this kind of
submitting processes. We think it is a bug of HtmlUnit and
wish the new version would solve this problem in the future.
Furthermore, the emulation processes of some news sites
run slowly. For example, the emulation of submitting search
keyword to CNN news search engine costs about 10 seconds.
Moreover, some old news pages are not obtained though their
URLs and news titles are shown in news search result pages.

We use the second and third experiments to test our news
full contents extraction algorithm. We use a large number of
news to test our algorithm and the experimental results prove
that our extraction algorithm is highly accurate over a long
period of time. Although the news sites change the layout of
news pages irregularly, our extraction method works well and
the precision of extraction is over 97%. However, in some
news pages, a paragraph, usually the outline of news, shows
in different style compared to other paragraphs. This kind of
paragraph looks like a non-news part such as an advertisement
in text format, and is omitted in the extraction. Moreover, some
news contents are too short to recognize from the news pages.
For example, a news flash about baseball game result, which
contains just a short paragraph of ten words, maybe can not
be extracted correctly.

Compared with other developed extraction systems, our
extraction approach has the following strong points.

1) Our extraction system is constructed easily, even for the
users who know little about the information extraction
technologies. The extraction processes run automati-
cally, such as submitting emulator generation, news
pages collection and news contents extraction. It needs
little maintenance during the long period extraction.
We do not need to analyze the layout of search result
pages and news pages of news sites since our extraction
algorithm is independent of the layout of Web pages. It
does not need to reconfigure extraction even though the
news sites change the layout of news pages.

2) Our extraction system supports the designation of news
collection/extraction range, such as the target news site,
news topic and publication date. By analysis of extracted
news contents, we can compare the viewpoint of a topic
among different news sites, see monthly/yearly variation
of a topic, observe co-occurrence of one or two country
names, and find other useful information/knowledge.

3) Our extraction system runs quickly because of simple
and efficient algorithms. For the extraction of a large
number of news, a simple algorithm of low computa-

tional complexity saves a considerable amount of time.
For example, the contents extraction from a CNN news
page costs 6.02 milliseconds averagely (excluding read-
ing news pages from news sites and saving the extraction
results into local hard disk), which is more efficient than
other developed methods.

VII. CONCLUSION

In this paper, we have presented an effective and efficient
approach to realize the quick and automatic extraction of topic-
based Web information/knowledge from news site databases
by using the site-side search engines. We proposed an algo-
rithm to extract the news titles and news page URLs from
search result pages. We also proposed an algorithm to extract
the news full contents from news pages. Our extraction meth-
ods are applicable to the general news sites. All the processes
of extraction are completed automatically. Our experimental
results on several news sites show that our extraction system
works well and the proposed approach is very promising.

As future work, we will modify our algorithm to improve
the accuracy rate even further, and observe difference in vari-
ous topics among countries/regions to discover useful informa-
tion and knowledge from news sites. Moreover, we will extend
our approach to different kinds of information/knowledge sites
and construct the corresponding analysis system.

VIII. ACKNOWLEDGEMENT

We gratefully acknowledge the advice and support from Bin
Liu (Yahoo! Japan), Takehiro Tokuda (Tokyo Tech) and Keizo
Oyama (NII). This work was partially supported by a Grant-in-
Aid for Scientific Research A (No.22240007) from the Japan
Society for the Promotion of Science (JSPS).

REFERENCES

[1] BBC Country Profiles. http://news.bbc.co.uk/1/hi/country profiles/default.stm.
[2] D. de Castro Reis, P. B. Golgher, A. S. da Silva, and A. H. F.

Laender. Automatic Web news extraction using tree edit distance. In
The Proceedings of the 13th International Conference on World Wide
Web, pages 502–511, 2004.

[3] F. Fukumoto and Y. Suzuki. Detecting shifts in news stories for
paragraph extraction. In The Proceedings of the 19th International
Conference on Computational Linguistics, pages 1–7, 2002.

[4] H. Han, T. Noro, and T. Tokuda. An automatic Web news article contents
extraction system based on RSS feeds. Journal of Web Engineering,
8(3):268–284, 2009.

[5] H. Han and T. Tokuda. WIKE: A Web information/knowledge extrac-
tion system for Web service generation. In The Proceedings of 8th
International Conference on Web Engineering, pages 354–357, 2008.

[6] Y. Li, X. Meng, Q. Li, and L. Wang. Hybrid method for automated
news content extraction from the Web. In The Proceedings of the
7th International Conference on Web Information Systems Engineering,
pages 327–338, 2006.

[7] Y. Shinyama. Webstemmer. http://www.unixuser.org/ẽuske/python/webstemmer/.
[8] J. Wang, X. He, C. Wang, J. Pei, J. Bu, C. Chen, Z. Guan, and G. Lu.

News article extraction with template-independent wrapper. In The
Proceedings of the 18th International Conference on World Wide Web,
pages 1085–1086, 2009.

[9] H. Zhao, W. Meng, and C. Yu. Automatic extraction of dynamic record
sections from search engine result pages. In The Proceedings of the 32nd
International Conference on Very Large Data Bases, pages 989–1000,
2006.

[10] S. Zheng, R. Song, and J.-R. Wen. Template-independent news extrac-
tion based on visual consistency. In The Proceedings of the 22th AAAI
Conference on Artificial Intelligence, pages 1507–1513, 2007.

348 349

Using Contextual Information to Improve Awareness in Software Development

Bruno Antunes∗, Joel Cordeiro, Pedro Costa and Paulo Gomes

Centre for Informatics and Systems of the University of Coimbra
Coimbra, Portugal

{bema,jfac,pacosta,pgomes}@dei.uc.pt

Abstract

The use of contextual information is said to improve
awareness in software development. But the context of a
software developer is something hard to define and capture,
as it represents a complex network of elements across dif-
ferent dimensions, that is not limited to the work developed
on an IDE. We propose a software developer context model
composed of four layers: personal, project, organization
and domain. We describe this context model at the personal
layer, present a prototype and discuss the results of an ex-
periment conducted with a group of developers. The results
show that developers consider the use of contextual infor-
mation relevant to improve information retrieval, ranking
and filtering, but usability plays an important role on how
these improvements are perceived.

1. Introduction

The interest in the many roles of context comes from dif-
ferent fields such as literature, philosophy, linguistics and
computer science, with each field proposing its own view
of context [5]. The term context typically refers to the set
of circumstances and facts that surround the center of inter-
est, providing additional information and increasing under-
standing. The context-aware computing concept was first
introduced by Schilit and Theimer [7], with further defini-
tions given by Brown et al. [1] and Dey et al. [3]. In soft-
ware development, the context of a developer can be viewed
as a rich and complex network of elements across different
dimensions that are not limited to the work developed on an
IDE (Integrated Development Environment). During their
work, software developers need to cope with a large amount
of contextual information that is typically not captured and
processed in order to enrich their work environment.

We propose a software developer context model that
takes into account all the dimensions that characterize the

∗Supported by FCT scholarship grant SFRH/BD/43336/2008.

work environment of the developer, which is described in
section 2. These dimensions can be represented in a model
with four layers: personal, project, organization and do-
main. In section 3, we present a prototype that deals with
the first layer of this model, creating and maintaining the de-
veloper context model at the personal layer. The contextual
information is then used to rank, filter and suggest relevant
knowledge to the developer. This prototype was submitted
to an experiment, using a group of developers, discussed in
secton 4. From the analysis of the results we conclude that
the use of contextual information is considered relevant to
improve the retrieval, ranking and filtering of relevant in-
formation to the developer. But, this study also shows that
usability issues may influence the way these improvements
are perceived and assimilated by software developers. An
overview of related work is given in section 5. Finally, sec-
tion 6 concludes the work.

2. Developer Context Model

The developer context model we envision is based on
a layered model made up of four layers: personal layer,
project layer, organization layer and domain layer. Each
one of these layers focus on different dimensions of the en-
vironment where a typical developer works. In this paper,
we are focused on the personal layer.

The personal layer represents the context of the work
a developer has at hands at any point in time, which can
be defined as one or more tasks. In order to accomplish
these tasks, the developer has to deal with various kinds of
resources at the same time, such as source code files, spec-
ification documents, bug reports, etc. At this layer, the de-
veloper context model comprises a set of artifacts that may
be relevant for the task the developer is currently executing.
Associated to each artifact is a Degree of Interest (DOI), a
concept introduced in [4], that represents the weight of that
resource in the developer context model. The context model
is captured and maintained through the analysis of the in-
teractions of the developer with the artifacts manipulated in
the IDE. An artifact affected by one of these interactions is

350 351

included in the context model, or gets its DOI updated in
case it is already present. We monitor the actions of create,
open, edit, focus, close and remove, and each one results in
a variation of the DOI value of the affected resource. The
artifacts that are related with the affected artifact through
“implements”, “extends” or “uses” relations, are also added
to the context model. As time passes, the DOI values are
decreased. The information stored in the context model at
the personal layer is used to rank, highlight and filter infor-
mation taking into account the context of the developer. The
way this is accomplished is explained in section 3, where we
describe the prototype developed. The project layer focuses
on the context of the project, or projects, in which the devel-
oper is involved. A software development project is an ag-
gregation of a team, a set of resources and a combination of
explicit and implicit knowledge that keeps the project run-
ning. The project layer represents the people, resources and
tasks, as well as their relations, of the software development
projects where the developer is included. The organization
layer takes into account the organization context to which
the developer belongs. Similarly to a project, an organiza-
tion is made up of people, resources and their relations, but
in a much more complex network. The domain layer takes
into account the knowledge domain, or domains, in which
the developer works. This layer goes beyond the project and
organization levels and includes a set of knowledge sources
that stand out of these spheres.

3. Prototype

We have developed a prototype that makes use of the
developer context model to improve developer awareness.
Here we will be focusing the personal layer of the con-
text model, thus the components that support the remain-
ing layers will not be described in detail. The prototype
works in a client/server architecture. The client application
is an Eclipse plug-in that manages the contextual informa-
tion of the personal layer and integrates contextual infor-
mation from other layers directly into the IDE. The server
is used for mining and storing contextual information of the
project layer, which is then made available for the client ap-
plications. The use of contextual information to improve
information retrieval directly in the IDE, where develop-
ers perform most of their work, increases awareness and
reduces the effort put on finding information that would be
hidden and dispersed otherwise.

The browsing functionality is provided by allowing the
developer to navigate in a graph (see section 1 of figure 1),
where nodes represent resources (source code, documents,
tasks and developers) and edges represent relations between
those resources. When the developer expands a node the
system shows all the information related with that node.
This information includes the entities that are statically re-

Figure 1. A screenshot of the Eclipse plug-in.

lated with the node, for instance all the classes that imple-
ment an interface, as well as the contextual information that
is retrieved from the server. This way, the developer can
easily gather information about what artifacts are likely to
be related with that artifact, what tasks affected that artifact
in the past, and what developers may be of help if extra in-
formation is needed. This navigation allows the developer
to explore the source code using its static structure while ob-
taining contextual information about the entities being ex-
plored. While navigating in the graph, the context model is
taken into account to give more relevance to resources that
are closer to the context of the developer. The nodes that are
more relevant to the developer stand out from the remain-
ing, because their background color is more intense. The
related entities retrieved from the server are ranked and fil-
tered using the developer context model, with only the top
five entities being shown in the graph. Also, the weight of
the relation is reflected in the width of the edge that bonds
the node and a related entity. Stronger bonds have a bigger
width, showing the developer that a specific entity may be
more relevant than others. The search functionality allows
the developer to easily search the server repository for arti-
facts, tasks, and resources, through an integrated and easily
accessible interface (see section 2 of figure 1). The search
results can be organized by type, package and package hier-
archy. Because of the different visualization options avail-
able, the search result foreground color is used to represent
its relevance, starting with black for top results and fading
to light grey as relevance drops. Any search result can be
open in the graph, allowing the developer to situate it in
the source code structure and understand how does it relate
with other entities. The context model is used to rank search
results taking into account the query score and the proxim-
ity to the developer context. The suggestion functionality
is used to proactively suggest relevant information to the

350 351

developer. When the developer opens or gives focus to an
artifact, the graph automatically opens and expands that ar-
tifact, providing suggestions and hints about which entities
may be relevant in that context (see section 1 of figure 1).
This all happens without the need of the developer to explic-
itly search for that information. Also, when the developer
creates a new entity, the system automatically searches for
entities that have a similar name to the one being created,
making them accessible through the graph.

4. Experimentation

We have created an experiment to evaluate the accep-
tance of our prototype among developers. The experiment
was executed by a team of 6 developers working in a start-
up company that operates in the area of information tech-
nology and services. The experience of the developers with
Java is very varied, ranging from 2 years up to 8, and they
have been using Eclipse for different periods of time, rang-
ing from 1 year up to 5. We wanted to create a scenario
that would encourage the developers to use the prototype,
with a complexity that allowed the experiment to take about
one hour. We have decided to use a small sized open-source
project, completely unknown to all the developers, on which
the developers would perform a set of tasks. The project se-
lected was Apache Velocity, a Java based template engine,
and we asked developers to perform 3 tasks that required
them to explore and change the project’s source code.

The experimentation environment comprised an Eclipse
instance running our plug-in and set up with a workspace
containing the source code of the selected project. The
contextual information extracted in the project layer of the
context model (see section 2) was available from a central
server. In this server we have indexed the artifacts, tasks and
resources provided by the project management tools used
in the project, such as the Version Control System (Sub-
version), the Issue Tracking System (Jira) and the Collab-
orative System (Wiki). By the end of the experimentation,
developers were asked to fill a questionnaire. The objective
of the questionnaire was to perceive the opinion of the de-
velopers on the relevance and usability of the prototype, as
well as the relevance they attach to specific features. We
also wanted to know what they liked the most, and the least,
and what suggestions they could give us to improve the pro-
totype.

Concerning relevance and usability, the overall results
show that developers have considered the application rel-
evant, but usability has been rated as almost neutral (see
section Relevance and Usability Questions of table 1).
When we analyze the different components of the proto-
type (search, browsing and suggestion) individually, results
are more or less homogeneous, with all of them considered
relevant, but having lower scores on usability. From these

Table 1. Questionnaire results, ranging from
1 (Very Irrelevant) to 5 (Very Relevant).

RELEVANCE AND USABILITY QUESTIONS AVG SD
Overall, how would you rate the relevance of the application? 3.83 0.48
Overall, how would you rate the usability of the application? 3.50 0.87
How would you rate the relevance of the search component? 4.50 0.87
How would you rate the usability of the search component? 3.67 1.02
How would you rate the relevance of the browsing component? 4.17 0.86
How would you rate the usability of the browsing component? 3.00 0.58
How would you rate the relevance of the suggestion
component?

4.17 0.48

How would you rate the usability of the suggestion component? 3.67 1.02
SEARCH FEATURES AVG SD
Sorting of search results based on their relevance to the context
of the developer.

4.50 0.87

Coloring of search results based on their relevance. 3.33 1.00
Clustering of search results based on category. 4.00 0.58
Clustering of search results based on package. 3.33 1.02
Clustering of search results based on package hierarchy. 3.67 0.77
BROWSING FEATURES AVG SD
Information about related resources. 4.33 1.02
Information about related developers. 3.00 1.15
Information about related tasks. 3.17 0.86
Color depth of nodes based on their relevance for the developer
context.

3.17 1.40

Width of relations based on the relevance of the link. 3.33 0.77
Information filtering by relation type. 3.83 0.48
SUGGESTION FEATURES AVG SD
Proactive suggestion of relevant resources when an artifact is
activated.

4.00 0.58

Proactive suggestion of relevant resources when a new artifact
is created.

4.00 1.15

results we conclude that the application is considered rel-
evant, but usability is a concern that must be addressed in
order to improve the experience of the developers.

The main features provided by the search component
were rated as shown in section Search Features of table 1.
The use of the context model of the developer to sort the
search results was considered very relevant, which shows
that developers consider the use of contextual information
as being important to improve the process of finding the in-
formation they need. The features related with search result
clustering were generally rated with close to neutral values,
excepting the one based on the package hierarchy, which
was considered more relevant.

In relation to the browsing features (see section Brows-
ing Features of table 1), the availability of information about
related resources was considered relevant, while informa-
tion about related developers and tasks was rated as neutral.
This can be explained by the fact that information about de-
velopers and tasks was not important in the context of this
experimentation. We believe that in the context of a real
software development project, this information can be valu-
able, which should be confirmed in future field tests. The
use of node colors and relation widths to highlight informa-
tion based on the developer context model was considered
almost neutral, which show that these features must be im-
proved. Although we have implemented these techniques to
reduce the information overload, the way they were experi-

352 353

enced did not achieve the result we have expected. Finally,
some relevance was given to the information filtering fea-
tures, showing again that the overload of information is a
real issue that must be carefully addressed.

The two main features of the suggestion component were
rated as relevant (see section Suggestion Features of table
1). This tendency shows that suggestion is a powerful way
of retrieving relevant information to the developer, and this
is the kind of feature where context plays a central role.
The contextual information can be used to determine when
to suggested this information and to help filter the most rel-
evant information in that specific moment.

When asked to say what they liked most about the appli-
cation, many developers referred search as a great feature,
because it is an efficient way to quickly find information
from different sources. Along with search, the suggestion
of relevant information was viewed as important to devel-
opers. Other aspects noted as positive were the novelty of
the approach and the use of a graph structure, which was
considered an interesting way of exploring the source code
and related information. On the other hand, the usability
of the browsing component was among the things the de-
velopers liked the least about the application. Finally, sev-
eral suggestions for improvements were collected, most of
them centered on the browsing and suggestion features. The
developers referred the graph layout and overload of infor-
mation as big issues that must be addressed. To overcome
this limitations they suggested that relevance of related re-
sources should be reflected using other techniques, such as
their distance to the artifact and the size of the node itself.
The overload of information should be addressed with bet-
ter context-based filtering options.

5. Related Work

Following the line of task management and recovery,
Kersten et al. [4] and Parnin et al. [6] propose approaches
for capturing the context relevant for a task from the pro-
grammer’s interactions with an IDE. The focus of these
works is the task and the resources present in the IDE that
are more relevant for the fulfillment of that task. Our ap-
proach aims to define a context model that goes beyond
the IDE and explores the knowledge provided by the dif-
ferent systems that support the software development pro-
cess. Based on the assumption that social dependencies ex-
ist between developers implementing modules that are tech-
nically dependent, Cleidson Souza et al. created Ariadne
[2], a plug-in for the Eclipse IDE that exposes those de-
pendencies through various graph-based views. While the
focus here is on finding relationships between code and de-
velopers, that are then used to improve awareness, our aim
is to use a continuously updated context model of the devel-
oper that is used to rank, elicit and filter information through

search, browsing and suggestion.

6. Conclusions

We have presented our approach to a software developer
context model. The context model is based on a layered
structure, taking into account four main dimensions of the
work environment of a developer: personal, project, organi-
zation and domain. A prototype focusing the personal layer
was presented, along with an experiment with a group of de-
velopers. The results confirmed our belief that context have
a central role when it comes to retrieve relevant information
to developers. Furthermore, we have been alerted to the fact
that usability may be a serious obstacle to the success of our
approach. As future work we plan to take into account the
results of the study to improve the prototype.

References

[1] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware
applications: From the laboratory to the marketplace.
Personal Communications, IEEE, 4:58–64, 1997.

[2] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Red-
miles. Supporting collaborative software development
through the visualization of socio-technical dependen-
cies. In Proceedings of the 2007 international ACM
conference on Supporting group work, GROUP ’07,
pages 147–156, New York, NY, USA, 2007. ACM.

[3] A. K. Dey and G. D. Abowd. Towards a better un-
derstanding of context and context-awareness. In CHI
2000 Workshop on the What, Who, Where, When, and
How of Context-Awareness, The Hague, The Nether-
lands, 2000.

[4] M. Kersten and G. C. Murphy. Using task context
to improve programmer productivity. In Proceedings
of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 1–11,
Portland, Oregon, USA, 2006. ACM.

[5] G. K. Mostefaoui, J. Pasquier-Rocha, and P. Brezil-
lon. Context-aware computing: A guide for the per-
vasive computing community. In Proceedings of the
IEEE/ACS International Conference on Pervasive Ser-
vices, ICPS 2004, pages 39–48, 2004.

[6] C. Parnin and C. Gorg. Building usage contexts during
program comprehension. In Proceedings of the 14th
IEEE International Conference on Program Compre-
hension (ICPC’06), pages 13–22, 2006.

[7] B. Schilit and M. Theimer. Disseminating active map
information to mobile hosts. IEEE Network, pages 22–
32, 1994.

352 353

Evaluation of Semi-Automatic Acquisition of
Semantic Descriptions of Web Services

Shahab Mokarizadeh1, Peep Küngas2, Mihhail Matskin1, 3

1 Royal Institute of Technology (KTH), Stockholm, Sweden
2University of Tartu (UT), Tartu, Estonia

3 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
1shahabm@kth.se, 2peep.kungas@ut.ee,3misha@kth.se

Abstract—This paper introduces and evaluates a novel Web
service interface annotation and matching scheme designed for
processing large sets of Web service interface descriptions. The
matching scheme relies on a set of rules, which exploit the
structural relationships encoded in an automatically learned
ontology to discover matching interface elements. The proposed
scheme is evaluated on a Web services interface corpus
consisting of WSDL descriptions. The experimental results show
that the proposed matching scheme can be used for
bootstrapping large-scale Web service interface annotation.

Keywords-Web service annotation; schema matching; XSD;
WSDL

I. INTRODUCTION

Lack of good benchmarks has hindered proper evaluation
of proposed Web service discovery and composition solutions
in practical settings where many Web services are available.
To overcome this shortage, there has been recently some
activities [3] [4] [5] in the field for tackling the analysis of
essential properties of web services and their networks with
the aim to provide feedback to web services discovery and
composition problems from the search space topology
perspective. Since semantic annotations enable construction of
dataflow- and workflow-based networks, which are needed for
analysis, there is a need for a fully automatic cost-effective
web service annotation mechanism. Previous works in web
service analysis suffer from following drawbacks: a) due to
lack of semantic annotations in the vast majority of existing
web services only pure syntactic matching has been
applied [3]; b) only small sets of semantically annotated web
services have been examined [5] due to the high costs related
to labour-intensive manual annotation of web services [1]; and
c) they rely on the assumption that a supporting reference
ontology is provided [4].

In this paper, we report work in progress in developing and
evaluating a semi-automatic cost-effective semantic
annotation approach, which combines a previously proposed
ontology learning method [6] and a cost-effective semantic
annotation method [1], for bootstrapping analysis of large
repositories of web services, which do not include semantic

annotations. The ultimate goal of the reported work is to
provide means for bootstrapping large scale annotation of
Web services to enable further advances in the field relying on
these annotations.

We evaluate the approach both qualitatively and
quantitatively on our corpus of Web service interface
descriptions in two stages. First we manually create a so
called golden ontology and corresponding annotation
heuristics, which will be used then for automated annotation
as suggested in [1]. Then we automatically learn a reference
ontology and corresponding annotation heuristics by using the
scheme proposed in this paper for the same corpus as in the
preceding stage and assess the quality of completely
automatically generated annotations with respect to manually
created ones. The evaluation confirms that the proposed
matching scheme can be used for bootstrapping annotation of
large scale of Web service interfaces in a semi-automatic way
with some certain error margins.

The rest of this paper is organized as follows. In Section 2
we outline our Web service annotation and matching scheme.
In Section 3, we discuss our approach to evaluate the quality
and quantity of applied annotations. Experimental results of
applying the annotations and matching scheme are presented
in Section 4. Finally, Section 5 reviews related work, while
conclusions and future work are presented in Section 6.

II. WEB SERVICE ANNOTATION AND MATCHING SCHEME

Different Web service annotation and matching schemes
have been adopted to deal with integration of heterogeneous
information sources. We employ our ontology learning
approach [6] to first generate a reference ontology from our
collection 1 of Web service corpus (ca 15000 WSDL
documents collected from various repositories in the Web)
and then utilize the generated reference ontology to annotate
the services. In the reference ontology, instances are referring
to the terms while classes refer to conceptual representation of
the underlying terms. In this work, term refers to an XML
schema basic element name or a message part name in the

1Available online at : http://www.soatrader.com/web-services

354 355

web WSDL document and our goal is to annotate the
identified terms. The extracted terms from the WSDL
documents in our collection builds up the dataset which is
considered for ontology learning, annotation and matching.
Our ontology learning mechanism [6] exploits frequently
observed naming patterns in the given dataset and relies on
morphological analysis to identify concepts and relations
between and generate an ontology accordingly. In the
generated ontology, instances refer to the terms and the
conceptual classes are interrelated further using ontological
properties namely: hasProperty, isSynonymOf and isSimilarTo.
While isSynonymOf property conveys that the concepts on the
both side of relation are lexically synonyms, the isSimilarTo
relation expresses a weaker degree of lexical similarity
between two concepts.

We employ the heuristic-based annotation mechanism
reported by Küngas and Dumas [1] to annotate Web services.
In this mechanism annotation heuristics are represented as
rules in the following form: entity_reference synset (e.g.
Password {password, pwd, strPassword, authpassword,
pass}). The meaning of such a rule is that an XML schema
element matched by any element in the synset is mapped to
the entity reference (in our case a concept identifier in the
automatically constructed ontology) on the left-hand side of
the rule. A synset, or a synonym ring, is a group of labels (i.e.
terms) that are considered semantically equivalent. We
construct synsets from the labels of particular instances in an
ontology. Thus according to the heuristic rule example – if
Password is a concept identifier, then password, pwd,
strPassword, authpassword and pass are labels of instances
in the generated reference ontology (i.e. terms).

By utilizing the generated ontology and annotating
respective Web service elements, we promote the process of
correlating Web service inputs and outputs from pure
syntactic level to ontological instance matching level. The
annotation process simply annotates those extracted schema
element names/ WSDL message part names (terms) with their
respective concepts in the generated ontology. In order to
match inputs and outputs of Web services through annotated
elements, we rely on a set of matching rules. Here matching
refers to the process of finding relationship or correspondence
between instances (terms) in an ontology through utilization
of any of following rules adopted from rules proposed
by [11] [12]. By definition two instances are matched if and
only if one of the following matching rules is true:

Rule-1: They both belong to a same concept (e.g. {loc,
location1} isInstanceOf Location).

Rule-2: They belong to lexically synonym or similar concepts
(e.g. (loc isInstanceOf Location), and (place isInstanceOf
Place) where Place isSynonymOf Location .

Rule-3: One of the instances belongs to a concept which
subsumes the concept representing the second instance (e.g.
pair of {ContractId , Id} where {ContractId isInstanceOf
ContractIdentifier},and { ContractIdentifier isSubClassOf
Indentifer} and {id isInstanceOf Identifier}

Rule-4: One of the instances belongs to a synonym or similar
concept which subsumes the concept representing the
second instance (e.g. pair of {bidUId , Id} where {bidUId
isInstanceOf BidUniqueCode},{ BidUniqueCode isSynonymOf
ContractIdentifier}

Rule-5: The instances belong to two concepts inter-related by
other ontological properties (e.g. Address hasProperty
Address_PostalCode).

III. EVALUATION APPROACH

In our evaluation, we initially employ our annotation
scheme to annotate certain elements (terms) from Web service
corpus by generating reference ontology. Next, we evaluate
quality and quantity of matching cases discovered using our
introduced matching rules operating on the reference ontology.

Since automatic Web service matching is the target use-
case for annotated Web services, we measure the quality of
pair-wise matches between annotated XML schema element/
message part names. In order to be able to verify the quality of
the generated reference ontology and subsequent annotations,
initially we limit evaluation dataset to 2000 most frequent
terms extracted from our collection of WSDL documents.
Using this dataset we create two independent ontology
resources. While the first ontology is handcrafted by a human
expert (i.e. an ontology engineer), the second one is
constructed automatically using our ontology learning
mechanism, explained at [6] . We refer to the former case as
Golden ontology while the latter one is called the Generated
ontology. We acknowledge that Golden ontology might suffer
from bias introduced by the human expert due to the lack of
documentation in the underlying Web services. Next, we align
the Generated ontology with Golden one, using Falcon-AO
ontology matching tool [8] and harvest only aligned concepts
and their underlying instances. We refer to this set of
instances as aligned instances and they account for 968
cases [6]. The evaluation goal is to determine how many true
matching cases between every two aligned instances we will
gain ,provided that the precision and recall of the aligned
concepts are ideal (however in practice there exist some
limitations and error margin due to the exploited tool [8]).

We adopt Euznat and Shvaiko’s [7] terminology to
describe our instance matching process. The result of instance
matching process is a set of correspondence elements. Each
correspondence element implies that a relation holds,
according to a particular matching rule, between two instances
in an ontology. A correspondence element OntkCi,j is a triple
<ai, bj, R> where i≠j; i,j=1...N; N is the number of instances;
ai, bj refer to i-th and j-th instance in the ontology referenced
by Ontk; k is the identifier of the ontology, and finally R
specifies the matching rule that reveals kind of semantic
relationship holding between two instance ai and bj. If two
instances are not matched, then we use notation of NM
(NotMatched) instead of the matching rule. For evaluation
purposes, we compare the matching rules R and R’ in
OntGenCi,j=<ai, bj ,R> and OntGoldC’i,j=<ai ,bj ,R’> where
OntGenCi,j denotes the correspondence element obtained in the
Generated ontology (OntGen) while OntGoldC’i,j refers to the

354 355

computed correspondence element for the same pair of
instances ai and bj in Golden ontology(OntGold).

IV. EVALUATION RESULTS

In this section, we present the experiments2 made using the
top 2000 recurrent terms to generate reference ontology,
annotate Web service elements and perform Web service
element (i.e. instances in the reference ontology) match-
making. Automatic instance matching between aligned
instances (968 items) using Golden and Generated ontology
results in 2362 and 3797 correspondence elements
respectively. We perform evaluation based on comparison
between R to R’ in OntGoldC’i,j=<ai ,bj ,R’> and
OntGenCi,j=<ai, bj ,R> for all correspondence elements, as
pointed out in Section 3. The comparison results are grouped
into three groups based on the exploited matching rules:

Matched in both (R≠NM & R’≠NM): This category
embodies the correspondence elements which are matched in
both ontologies and it covers 2837 cases (75% of those
discovered by Golden ontology) and majority of them (2279
cases) are resulted by Rule-1. Our observation reveals that
these identified correct correspondence elements belong to
those instances with clear lexical semantic, and to some extent
having context independent semantic or those conveying
concrete concepts, for example birthday, Social Security
Number, ISBN, authCode, pwd, etc.

Missing matches (R=NM & R ≠ R’): This group consists of
instances that are matched by Golden ontology but not by
Generated ontology and it accounts for 952 cases (25% of
those discovered by Golden ontology). Besides to typical
WordNet [15] limitations [10] one major reason is the fact that
concepts in Golden ontology are more inter-related (well-
organized through handcrafted taxonomical relationships)
than those in Generated ontology. This leads to loss of
possible matches between instances by the ground of
subsumption relation between representing concepts (i.e. by
Rule-3). This flaw is a direct result of inferring taxonomical
relation solely relying on linguistic synthesis. For example,
terms “Caller” (as person who makes phone call) and “Person”
cannot be correlated, because they are neither synonym
according to dictionary nor appeared together in a compound
noun, whereas in Golden ontology they are assigned to two
subsuming concepts. This situation can be alleviated by
introducing a new module in our ontology organization step
where additional domain resources such as domain ontologies,
and taxonomies are incorporated to reorganize hierarchy of
generated concepts.

Extra introduced matches (R’=NM and R ≠ R’): This is the
group of correspondence elements which are only discovered
using Generated ontology but not Golden one and it consists
of 1980 cases. Introduction of these extra matches in
Generated ontology is due to following reasons: 1) Golden
ontology lacks any kind of property relations (such as
isSynonymOf, hasProperty, etc); hence it cannot correlate
instances by ground of Rules 2,4, and 5. The matching cases

2 Available at: http://www.isk.kth.se/~shahabm/AnnotationAnalysis

resulted by Rule-5 are intuitively reflecting PartOf or Having
relationships between matching instances. 2) in few cases
there exist kind of lexical similarity between concept labels ,
which is not covered by Golden ontology for example for the
cases when two instances convey a similar semantic but in a
different context (e.g. {taskName, jobName}). In both cases
we need to assign a confidence degree expressing
trustworthiness of the matching (how close is the matching to
ideal case based on contextual information).In this work, we
rely on human assessment to distinguish correct cases (true
positives) from incorrect ones (false positives). It should be
noted the accuracy of these introduced matchings should be
considered as lower quality matchings compared to those
identified in previous group (i.e. “matched in both”).

Fig. 1 shows the assessment results over introduced
correspondence elements categorized based on the exploited
matching rule. Accordingly, the incorrect figures refer to
quantity of cases that two instances are matched while they do
not have same/related semantic in practice, while correct cases
point to semantically meaningful matched pairs. Accordingly,
the quantity of incorrect matches resulted from Rule-4 is the
highest among all (89%), while Rule-2 and Rule-5 are equally
showing the least amount of incorrect matches (around 40%)
and Rule-3 lies almost in the border, with 51% incorrect cases.
Our observation over cases in group of Rule-3 shows that
occurrence of false positive cases are mostly resulted from
generic concepts. For example concept Code , in Generated
ontology, is so generic that can subsumes any of
CurrencyCode, LicenseStatusCode, and, DesignCode
concepts while in Golden ontology, these concepts are more
accurately classified by looking into their precise semantic of
the term in the Web service corpus. For instance
CurrencyCode refers to the currency abbreviation rather than
a digital code like that of LicenseStatusCode. This deficiency
can be correlated to limitation of using lexical resources as
they do not cover with the same detail different domains of
knowledge and also many of domain independent terms, as
reported by Bergamashi and Sorrentino [2].

On the other hand, it can be seen in Fig. 1 that subsumption
(Rule-3) is reasonably convincing for most of the specialized
(concrete) concepts, which in our case are mainly compound
nouns. For example, StartDate can subsumes any of
futureLaunchDate, flightDepartureDate terms. However,
without further investigation we cannot provide any firm
theory supporting the aforementioned patterns at this point.
The high number of false positives of Rule-4 are due to two

Fig.1 Quantity of “extra introduced mathces” dicovered by matching
Rules 2-5 using Generated ontology

0.6

0.49

0.11

0.61

0.4

0.51

0.89

0.39

0 0.2 0.4 0.6 0.8 1

Rule-2

Rule-3

Rule-4

Rule-5

Incorrect

Correct

356 PB

reasons: 1) it suffers from subsumption errors; and 2) the rule
is based on transitivity of lexical similarity between two terms
which is not always true (e.g. the middle term could possess
two different meaning in WordNet in different domains).
Combination of these two flaws intensifies the vulnerability of
this rule. Finally, as there have been no introduced matching
cases due to Rule-1, they are omitted from Fig. 1.

According to the aforementioned mentioned evaluations, it
can be concluded that without further enhancement, Rule-1,
Rule-2 and Rule-5 are the most promising matching rules in
our matching scheme. Hence, we exploit only these rules for
matching of Web service input and outputs and future analysis
of annotated Web service documents.

V. RELATED WORK

Research in knowledge acquisition methods for the purpose
of (semi) automatic annotation of Web service interfaces can
be roughly divided into the following categories: 1) methods
which utilize linguistic resources and NLP techniques; 2)
methods which rely on machine learning techniques to
classify or cluster similar (or related) names and generalize
them to their ontological concepts; 3) the approaches that
combine the aforementioned methods with online resources.

The works in the first category, exemplified by [11] [12],
capture relationships between WSDL elements and transform
them into ontological concepts and relationships, typically
using simple lexico-syntactic patterns and WordNet dictionary.
They exploit textual descriptions of Web services to improve
or enrich the quality of the generated ontology.

However, the machine learning techniques, belonging to
the second category, exploit NLP techniques only to
normalize their input datasets and then continue with machine
learning techniques. In this light, Heβ et al. [13] developed a
classifier system which initially needs to be trained in order to
generalize (semantic of training data) and predict semantic
labels for (similar) unseen Web services. As we target a large
repository of absolutely non-annotated ad-hoc Web services
from different domains, applicability of such techniques is not
clear. In contrast the clustering methods such as the one
proposed by Dong et al. [14], which relies on the co-
occurrence of parameter names as an heuristic for identifying
ontological concepts, are more appealing since they do not
require any training dataset.

Finally. the approaches in the third category exploit Web
resources (such as search engines) as sources for knowledge
acquisition and augment the Web results with machine
learning and /or NLP techniques. In this direction, Segev and
Sheng [9] combined TF/IDF measures with Web search
results to discover proper domain concepts representing
WSDL elements and then validated it using textual
documentations in WSDL documents. The main obstacle of
utilization of some of the aforementioned work, namely
[9] [11] [12], is the fact that around 94% of WSDL documents
in our collection lack any textual documentation [6], hence,
utilization of those approaches is not feasible in our case.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed and evaluated a scheme suitable
for automated annotation of a large set of Web service corpus.
The experimental results revealed that utilization of certain
rules of the proposed matching scheme can be used for
bootstrapping large-scale annotation of Web service interfaces
in a semi-automatic way. However, we still need to enhance
the quality of generated ontologies by potentially
incorporating external resources such as domain ontologies or
Web resources to the annotation scheme. Since the number of
available Web services and therefore our corpus is expected to
increase, keeping the generated reference ontology updated
will be challenging. Hence, it is not cost-effective to
incorporate the entire dataset for ontology learning purpose.
As part of our future work, we are aiming to discover and
annotate only a subset of whole dataset which its network
properties exhibit closer approximation to the already
observed properties in the Web service networks [3] [4] [5].

ACKNOWLEDGMENT

This research is partly funded by ERDF via the Software
Technology and Applications Competence Centre (STACC)
and ESF via the DoRa program.

REFERENCES
[1] P. Küngas, and M. Dumas,“Cost-effective semantic annotation of XML

schemas and Web service interfaces,” Proc. SCC-09, 2009, pp. 372-379.
[2] S. Bergamaschi, and S. Sorrentino, ”Semi-automatic compound nouns

annotation for data integration systems,” in Proc. SEDB-09, 2009, pp.
221-228.

[3] S.-C. Oh, D. Lee, and S. R. T. Kumara, "Effective Web service
composition in diverse and large-scale service networks," IEEE
Transactions on Services Computing, vol. 1, no. 1, 2008, pp. 15-32.

[4] Y. Cui, S. Kumara, J. Jung-Woon Yoo, and F. Cavdur, "Large-scale
network decomposition and mathematical programming based Web
service composition," in Proc. CEC-09, 2009, pp. 511-514.

[5] H. Kil, S.-C. Oh, E. Elmacioglu, W. Nam, and D. Lee, "Graph theoretic
topological analysis of web service networks," Journal of World Wide
Web. vol.2, no.13, 2009, pp. 321-243.

[6] S. Mokarizadeh, P. Küngas, and M. Matskin, “Ontology learning for
cost-effective large-scale semantic annotation of XML schemas and
Web service interfaces,” in Proc. EKAW-10, 2010, pp. 401-410.

[7] J. Euzenat, and P. Shvaiko, Ontology Matching. Springer, 2007.
[8] W. Hu, and Y. Qu, “Falcon-AO: A practical ontology matching

system,” Journal of Web Semantics, vol.6, no.3, 2008, pp. 237-239.
[9] A. Segev, and Q. Z. Sheng, “Bootstraping ontologies for Web services,”

IEEE Transactions on Service Computing, preprint, 2010.
[10] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider,

"Sweetening ontologies with DOLCE" Proc. EKAW’02, 2002, pp.166-
181.

[11] M. Sabou, C. Wroe, C. Goble, and G. Mishne, "Learning domain
ontologies for Web service descriptions: An experiment in
bioinformatics" Proc.14th Int.Conf.World Wide Web, 2005, pp.190-198.

[12] H. Guo et al., ”Learning ontologies to improve the quality of automatic
Web service matching,” In Proc. ICWS-07, pp. 118-125.

[13] A. Heß, and N. Kushmerick, “Learning to attach semantic metadata to
Web services,” in Proc. ISWC-03, 2003, pp. 258-273.

[14] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, ”Similarity
search for web services, ” in Proc. VLDB-04, 2004, pp. 372-383.

[15] G. A. Miller, “WordNet: A Lexical Database for
English,” Communications of the ACM, vol. 38, no. 11, 1995, pp. 39-
41.

PB 357

A Comparison and Analysis of Some Ontology
Visualization Tools

Simon Suigen Guo
Energy Informatics Laboratory, Faculty of Engineering and

Applied Science
University of Regina

Regina, Saskatchewan, S4S 0A2, Canada
Email: guosi111@uregina.ca

Christine W. Chan
Energy Informatics Laboratory, Faculty of Engineering and

Applied Science
University of Regina

Regina, Saskatchewan, S4S 0A2, Canada
Email: chancw@uregina.ca

Abstract—This paper presents an analysis and comparison of
three existing ontology visualization tools with a new ontology
visualization tool developed at the Energy Informatics
Laboratory of University of Regina, Canada. The new tool is
called Onto3DViz, which is designed as a knowledge engineering
support tool for ontology visualization. It aims to address the
deficiency that existing tools have in their lack of support for
dynamic knowledge visualization. The Onto3DViz is a tool that
supports a new approach of visualization in that it supports: (1)
dynamic knowledge visualization; and (2) complex ontology
visualization in 3-dimensional (3D) computer graphics. This
paper also discusses the strengths and weaknesses of the four
visualization tool when they are measured against a set of
assessment criteria.

Keywords – Ontology, Ontological Visualization, Knowledge
Engineering, 2D Graphics, 3D Graphics

I. INRODUCTION
The Semantic Web (SW) is the next evolutionary step for

the web; it aims to provide semantics to data on the Web,
enabling computers to more easily share and perform problem
solving on the data [1]. SW technology can enable sharing and
re-use of knowledge between Knowledge-Based Systems
(KBS) in a distributed and heterogeneous environment.
Ontologies can enable data on the Web to be structured
semantically for machine processing, as well as to become the
basis for building KBSs. An ontology is an “explicit
specification of a shared conceptualization” [2]. The main
benefit of an ontology is that it supports sharing and re-use of
application domain knowledge across distributed and
heterogeneous software systems [3]. However, the
construction of ontologies is time-consuming and costly.

Software tools can help reduce the effort required to
construct ontologies and knowledge bases. The general
objective of our work is to provide software tool support for
ontological engineering. In this paper we present our work in
developing a visualization tool for ontological engineering
which generates a 3D visualized image of an ontology model.
The visualized 3D model can support Knowledge Engineering

in two ways. First, it supports better communication between
the knowledge engineer and expert, who often are from
diverse backgrounds and do not share the same language or
vocabulary. A visualized model does not rely on textual
descriptions and can avoid difficulties in communication that
arise due to language differences. Secondly, a visualized
model summarizes the elicited knowledge elements in a 3D
model and can support expert validation of the model.

Onto3DViz is an ontology visualization tool, which utilizes
3D graphics to visualize a knowledge model consisting of both
static and dynamic knowledge components. The tool has been
constructed based on the theoretical framework of Inferential
Modeling Technique (IMT) [4], hence Onto3DViz
simultaneously supports a developed knowledge engineering
method and ontology visualization. The tool aims to address
deficiencies of some existing and surveyed visualization tools,
which support neither a knowledge engineering method nor
dynamic knowledge modeling. Onto3DViz employs 3D
graphics to represent knowledge concepts and relationships
among concepts. Compared to a 2D graphic representation, 3D
graphics can support visualizations consisting of complex and
related information in a clear visual model that can be
manipulated for flexible views. Onto3DViz was developed in
Java, it accepts an input ontology that is represented in an
XML-based language document, and it generates a 3D visual
ontology model as output. Hence, Onto3DViz is theoretically
not limited to any machine platform. This tool has been
applied to visualize application ontologies. Figures 1 and 2
show an application ontology visualized in the Onto3DViz.
The representations of the knowledge elements are described
below:

Class: Sphere

Objective: Cylinder

Instance: Box

Task: Cone

Relationship between concepts : Line

358 359

 More details of Onto3DViz and its applications can be found
in [5] and [6].

Fig.1 3D visualized model of the application ontology

Fig. 2 The side view of the visualized application ontology

The objective of this paper is to present a comparison of
Onto3DViz with three other existing ontology visualization
tools: OWLViz [7], Jambalaya [8] and OntoSphere [9] against
a set of selected criteria. Each of these four tools will be
examined and evaluated from the knowledge engineering
perspective. The advantages and disadvantages of these tools
will be compared and discussed.

This paper is organized as follows. Section II presents
relevant background about the field of ontology visualization
tools. Section III describes evaluation of the tool. Section IV
presents the result of the evaluation, and discusses some
strengths and weaknesses of each tool. Section V provides
some concluding thoughts and discusses directions for future
works.

II. BACKGROUND
Ontology visualization tools can help to improve human

understanding of the conceptual model by illustrating the
model in visualized graphics. Since visualization can provide
an instant picture of the knowledge structure to the knowledge
engineer or domain expert, and avoid the need for tedious
examination of the detail relationships among concepts
expressed in an ontology language, these tools enhance the
knowledge acquisition and ontology authoring process. In
other words, the user is able to quickly identify the concepts
and their relationships with other concepts from the visualized
model instead of having to comprehend an ontology from a
textual document.

A. Ontology Visualization Tools
Among the ontology visualization tools that have been

developed, OWLViz, Jambalaya and OntoSphere are three
popular ontology visualization tools that invoked 2D or 3D
computer graphic technology. A summary of these tools is
given as follows:

OWLViz is a graph type visualization plug-in for the
Protégé [10] platform. It can visualize class hierarchies in a
graph instead of the default tree view in Protégé. OWLViz
supports user interactions, such as zooming and searching in
the graph. The class hierarchy is displayed from left to right in
a horizontal manner and the class at the most left is the root
class.

Jambalaya is a Protégé plug-in that implements the Simple
Hierarchical Multi-Perspective (SHriMP) [11] visualization
technique. SHriMP represents a hierarchical structure of
information as a set of nested graphs. It was originally
designed for assisting programmers to visualize object-
oriented software programs, and Jambalaya adapted it for
representing a domain ontology. Jambalaya provides several
viewing perspectives for the ontology model, thereby
enhancing user browsing, exploring and interacting with 2-
dimensional (2D) ontology visualization. Additionally,
Jambalaya provides operations such as browsing, filtering and
searching, so that the user can examine the knowledge
elements of an application ontology at different levels of
abstraction and details.

358 359

OntoSphere has been implemented as a Protégé plug in. By
employing 3D graphics for visualization, OntoSphere extends
the volume of space available for visualizing overcrowded
concepts, and it is the only existing ontology visualization tool
that adopts the 3D view, which is natural for humans. A main
advantage of a 3D representation is that it allows users to
manipulate the visualized knowledge elements of the
application ontology by means of the actions of zooming,
rotating and translating. Through physical manipulation of the
concepts, the user can better understand a complex ontology.

B. Inferential Modeling Technique
The Inferential Modeling Technique is a knowledge

engineering method that supports developing a domain
ontology consisting of both static and dynamic knowledge of
the problem domain. Static knowledge consists of concepts,
attributes, individuals and the relationships among them;
dynamic knowledge includes objectives, tasks, and
relationships among objectives and tasks. Static and dynamic
knowledge are intertwined in that a task is a process that
manipulates static knowledge to achieve an objective. The
details of this modeling technique can be found in [4].

III. EVALUATION METHODOLOGY
An analysis and comparison of existing visualization tools

with Onto3DViz is given in this section. Although
comprehensive surveys had been conducted previously, e.g.
[12], these works do not include tools that support dynamic
knowledge modeling. Also, previous surveys usually
emphasize the graphic visualization methodology aspect, and
ignore consideration of the ontological engineering
methodologies implicit in the tools.

The objective of this analysis is to compare Onto3DViz
with several exsisting ontology visualization tools according to
a set of criteria selected for assessing the quality of ontology
visualization generated by the tools. The tools chosen for
comparison include OWLViz, Jambalaya, and OntoSphere,
which have been introduced in section II, and Onto3DViz. The
criteria for evaluation of these from tools are described below:

1. Representation of Concept Hierarchy – is the
representation of the hierarchical information among
concepts, such as inheritance between classes.

2. Number of viewing perspectives – refers to the different
graphic layouts that each visualization tool supports.
Some tools have only one layout, while others have
multiple layouts.

3. Maximum levels of sub-concepts to be rendered (Max
Level) – is the number of descendant levels that can be
shown in the hierarchical representation.

4. Optimization of rendered space – measures if the tool
can minimize graphic space used in the visualization.

5. Zoomable – is a feature that supports magnification of
the visualization.

6. Concept searching – is a feature that supports searching
for a concept by entering its name.

7. Concept filtering – is a feature that hides or displays only
the selected concept

8. Concept editing – is a feature that supports real-time
ontology editing of the visualized model

9. Focusing – is a feature that supports visualization of only
a single concept or a branch of related concepts

10. Static knowledge visualization – static knowledge
support

11. Dynamic knowledge visualization – dynamic knowledge
support

12. Additional visual aids (such as coloring, sizing) – are
additional features that enhance the visualized model.

13. 2D VS. 3D – indicates if the visualization tool is
developed using 2D or 3D graphic technology.

14. System requirements (such as ontology modeling
platform) – refer to the pre-requisite environment for
executing the tool

Some of these criteria are standard factors in assessing
general ontology visualization; they include Concept
Hierarchy, space, zoomable, concept searching and filtering,
focusing [12]. Since IMT includes the concepts of static and
dynamic knowledge visualization, hence, the static knowledge
visualization and dynamic knowledge visualization are
considered in this analysis. The criteria of max level and
additional visual aids are used to measure the quality of
ontology visualization. The factor of system requirements
aims to evaluate the extent to which the tools depend on other
systems. The assessment of the four tools against this set of
criteria is presented in the next section.

IV. COMPARISON AND DISCUSSION
A summary of comparison of Onto3DViz against the other

tools of OWLViz, Jambalaya and OntoSphere according to
each criterion is presented in TABLE I, and discussion of the
comparison follows.

360 361

TABLE I. Evaluation of Ontology Visualization Tools

OWLViz Jambalaya OntoSphere Onto3DViz

Representation of
Concept Hierarchy

Hierarchical tree
layout

Rich support for
various layouts,

like tree, map, etc

Concept
hierarchy is not
well represented 3D hierarchical tree layout

Number of viewing
perspectives 1 fixed layout

Provides 5
graphic layouts

Provides four
3D scenes 1 dynamic 3D view

Max level
Maximum at 10

descendant levels unlimited unlimited unlimited

Space

Limited optimization,
cannot fit complex
model in a screen

Good
optimization, but

labels are
overlapping

Good
optimization, no

overlaps

Limited optimization, labels
and nodes are overlapped in

complex ontology

Zoomable Not supported Limited zoom Flexible zoom Flexible zoom

Concept searching Supported Supported Supported Not supported

Concept filtering

Supported by user
defining levels of

concepts

Supported by
collapsing the
visual nodes

Supported by
user changing
3D perspective

Supported by hiding static
or dynamic knowledge only

Concept editing
Supported through

Protégé editor

Supported
through Protégé

editor

Supported
through Protégé

editor Not supported

Focusing Not supported

Support by
changing graphic

layouts

Support by user
changing 3D
perspective

Support by user
manipulating 3D model

Static knowledge
support Supported Supported Supported Supported

Dynamic knowledge
support Not supported Not supported Not supported supported

Additional visual
aids Limited Limited Rich Rich

2D VS 3D 2D 2D 3D 3D

System
requirements

Requires Protégé and
GraphViz plug-in Requires Protégé

Requires
Protégé and

Java 3D Requires Java 3D

OWLViz can only do basic ontology visualization in a
root tree model generated from left to right on the computer
screen. It combines ontology editing with visualization.
Hence, the user can edit, search and filter ontology classes in
OWLViz, without it being necessary to shift back to the class
editor in Protégé. However, OWLViz does not support graphic
animation, multi-perspectives, visualization on instance and
other visual aids. It has only one view in its visualization. It is
difficult for the user to navigate among the classes because it
does not optimize on rendering space for the graphical objects
within the size of the computer window. Also it does not
support either zoom-in or zoom-out. OWLViz cannot render
an ontology that has ten or more levels of sub-classes, and it
does not support dynamic knowledge visualization. In order to

visualize an ontology in OWLViz, a plug-in software called
GraphViz [13] is required in addition to the Protégé platform.
In general, OWLViz is only suitable for visualizing a simple
ontology.

Jambalaya provides rich support for ontology
visualization. It overcomes the limitations of 2D graphic in
terms of not having enough space for rendering a large amount
of ontological information, because it employs multi-
perspectives viewing and animation graphics. Jambalaya also
supports ontology editing and searching within the
visualization screen. The user can select and edit concepts
from the visualized model without switching back to the
Protégé class editor. It can visualize a large scale ontology.

360 361

Although Jambalaya has optimized the space to fit all the
ontology concepts into the size of a computer screen,
overcrowded concepts may have their labels being overlapped
with each other. In addition, the visual nodes are too small and
too close to each other in some views, which make it difficult
for the user to select the nodes. In terms of the zoomable
feature, Jambalaya only has limited function because it can
support only either zoom in or out, and provide either a full
view or focus on one concept. The user is not able to use this
zoom function to explore a segment of the visualized
ontology. Jambalaya does not support additional visual aids,
and all the visualized concepts in Jambalaya are of one size
and color. Hence it is hard to see the Representation of the
Concept Hierarchy. Jambalaya does not support dynamic
knowledge visualization; it does not support the versions of
Protégé newer than 4.0 because Protégé changed the plug-in
architecture since version 4.0. Jambalaya is much more
advanced than OWLViz in terms of functionalities. Though
Jambalaya can be applied to explore a complex ontology, the
lack of visualizing space in a 2D graphics environment is the
problem that causes visual objects generated to be
overcrowded and labels to overlap with each other.

OntoSphere employs 3D graphics, and is able to generate
many perspectives, such as rotating, zooming, and translating
the 3D model. It also supports multiple scenes, and the user
can switch among four different scenes in OntoSphere to
explore the 3D visualized ontology model. For example, the
Concept Focus Scene provides the option that OntoSphere
only visualizes one concept instead of the entire ontology.
OntoSphere can support a large scale ontology, and ontology
concept editing and searching. It also provides some visual
aids, such as sizing and coloring of the visual objects for
distinguishing different concepts in the visualized ontology
model.

However, OntoSphere has a limitation when it is used to
render hierarchies in the Root Focus Scene. The technique that
OntoSphere uses to visualize the entire hierarchical model
differs from the general top-down or left-right approaches.
Instead, it visualizes all the domain concepts that around a big
hyperbolic sphere, which represents the root concept. The
problem with this technique is that the inheritance relationship
and relationships among concepts cannot be shown. Moreover,
OntoSphere does not support dynamic knowledge
visualization. Since Protégé has upgraded its plug-in
architecture after version 4.0 and OntoSphere did not upgrade
accordingly, it is not compatible with newer versions of
Protégé after 4.0.

 Onto3DViz can successfully render the complex domain
concepts and relationships among concepts in a 3D model,
thereby creating a visualized knowledge model first
formulated with the IMT during the knowledge acquisition
process. The user can easily examine and manipulate the 3D
model by performing the operations of zooming, rotating, and
translating using the computer mouse or keyboard. The 3D
model clearly shows the hierarchical structures of the static
and dynamic knowledge. For dynamic knowledge, the 3D
model supports representing tasks related to each objective by
arranging the tasks in the correct prioritized order. Onto3DViz

also supports visualizing the relationships between the static
and dynamic knowledge models.

Several weaknesses of the current version of Onto3DViz
are also noted. First, when the visual objects are too close to
each other, the objects and labels become overlapped, which
makes it difficult for users to clearly see details of the model.
Secondly, Onto3DViz does not currently support a search
function. If the user wants to retrieve a particular concept, he
or she has to manually examine the 3D model to find the
corresponding visual object. This can be difficult if the
ontology is complex or consists of a large number of concepts.
Thirdly, if an application ontology consists of too many
hierarchical levels, it is difficult to see the lower level nodes
because they are too small to show in Onto3DViz. This is
because the sizes of the visual nodes are reduced quickly by
successive applications of the scaling technique. The detail of
the scaling technique is described in [5].

In comparison to OWLViz, Jambalaya and OntoSphere,
Onto3DViz provides a new solution for dynamic knowledge
visualization; this is a feature that existing tools do not
support. The implementation reflects an approach which
ensures the ontology visualization tool is independent of the
ontology modeling platform. The weakness in adopting this
approach is that Onto3DViz currently cannot support ontology
editing and searching. The benefit of the approach is that
Onto3DViz is not restricted by the platform; it can visualize an
ontology model as long as the user inputs to the tool a valid
OWL or XML file that represents the ontology.

Onto3DViz is designed as a new solution for dynamic
knowledge visualization. Due to the complexities of
representing both static and dynamic knowledge, it is
necessary for Onto3DViz to employ 3D graphics so as to
access a larger volume of space for rendering the complex
information and relationships. The advantage of 3D
technology over 2D technology is still controversial.
According to [14], 3D representation only marginally
improves upon the screen space while increasing complexity
of the interaction. [15] shows that users of a 3D graphic
application need to have more computer experience than users
of a 2D graphic application. [16] points out that navigation in
a 3D space can be difficult for a novice user. In fact, our study
has revealed that comprehensive 2D visualization tools like
Jambalaya also require a certain level of computer skills on the
users’ part for manipulating visualized models. Compared to
OntoSphere and Onto3DViz, Jambalaya requires the user to
perform complex steps for generating effective ontology
visualizations. Moreover, the advantage of the 3D image is not
shown to its full potential in the dominant 2D display
technology we currently have, because the 2D display only
shows a 2D projection of the 3D ontology model and the depth
of the 3D graphic image cannot be adequately explored. With
increasing popularity of the 3D display technology, the true
benefits of 3D graphics will become more evident when the
user can navigate the ontology model in a real 3D
environment.

V. CONCLUSIONS AND FUTURE WORKS

362 363

This paper presents an analysis and comparison of
Onto3DViz, OWLViz, Jambalaya and OntoSphere against a
set of criteria. The advantages and disadvantages of
Onto3DViz as compared to the other ontology visualization
tools have been discussed. Onto3DViz was designed as a new
ontology visualization tool the supports: (1) visualization of an
ontology with static and dynamic knowledge; and (2)
visualizing a complex application ontology in a new 3D
computer graphic architecture. In the future, the new tool of
Onto3DViz can be enhanced by implementing concept
searching and editing functions, so that the user can quickly
identify and edit a concept in the 3D ontology model.
Moreover, assigning colors to the visual objects can also assist
the user in identifying concepts. For instance, the class objects
are assigned the blue colour and instance objects are assigned
the yellow colour. This new feature would ensure that the
different types of concepts are easily distinguishable in a
visualized ontology. A coloring scheme can be added to the
tree structure of generated visual nodes so that the root is the
darkest shade and the descendent nodes from the root will be
progressively lighter in color, to indicate the different layers of
the tree structure. As well, more user controls can be
implemented which will enhance user-friendliness of the tool.
Integrating or interfacing Onto3DViz with ontology modeling
platform, such as Protégé [10] is also possible in the future,
because Onto3DViz was also develop in Java language.

ACKNOWLEDGEMENT
We are grateful for the generous support of Research

Grants from Natural Sciences and Engineering Research
Council (NSERC) and the Canada Research Chair Program to
the first author.

REFERENCES
[1] T. Berners-Lee, J. Hendler, & O. Lassila, "The Semantic Web",

Scientific American, May 2001, (pp. 34-43).
[2] T. Gruber, “Towards Principles for the Design of Ontologies Used for

Knowledge Sharing”, In Guarino & Poli (eds): Formal Ontology in

Conceptual Analysis & Knowledge Representation, Padova, Italy:
Kluwer, 1993.

[3] N. Guarino, “Formal Ontology in Information Systems”. In Guarino
(ed) 1st International Conference on Formal Ontology in Information
Systems (FOIS’98), Trento, Italy, IOS Press, Amsterdam, 1998, (pp. 3-
15).

[4] C. W. Chan, “From Knowledge Modeling to Ontology Construction”,
Int. Journal of Software Engineering and Knowledge Engineering,
14(6), Dec 2004, (pp. 603-624).

[5] S. Guo & C.W. Chan, A tool for ontology visualization in 3D graphics:
Onto3DViz. The Proceedings of the 23rd Canadian Conference on
Electrical and Computer Engineering. Calgary, AB, May 2010.

[6] S. Guo & C.W. Chan, “Application of a tool for ontology
visualization”, The Proceedings of the 9th IEEE International
Conference on Cognitive Informatics, Beijing, July 2010, (pp. 471-476).

[7] M. Horridge, OWLViz. Retrieved March 10, 2011, from CO-ODE:
http://www.co-ode.org/downloads/owlviz

[8] M. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, & N.
Noy, “Jambalaya: an interactive environment for exploring ontologies”,
Workshop on Interactive Tools for Knowledge Capture (K-CAP-2001),
Victoria B.C., Canada, (p. 239).

[9] A, Bosca, D. Bonino, & P. Pellegrino, “OntoSphere: more than a 3D
ontology visualization tool” Proceedings of SWAP 2005, the 2nd Italian
Semantic Web Workshop. Trento, Italy: CEUR Workshop Proceedings.

[10] Protégé. Retrieved March 10, 2011, from Protégé:
http://protege.stanford.edu

[11] J. Wu, & M. Storey, “A Multi-Perspective Software Visualization
Environment”, conference of the Centre for Advanced Studies on
Collaborative Research 2000, Mississauga, Ontario, Canada, (pp. 31-
40).

[12] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, & E.
Giannopoulou, “Ontology Visualization Methos - A Survey”, ACM
Computing Surveys (CSUR), Volume 39 , Issue 4 (2007), Article No.: 10.

[13] AT&T Research Lab. Graphviz - Graph Visualization Software.
Retrieved March 10, 2011, from Graphviz – Graph Visualization
Software: http://www.graphviz.org

[14] C. Plaisant, J. Grosjean, & B. Bederson, SpaceTree: Supporting
exploration in large node link tree, design evolution and empirical
evaluation. Proceedings of IEEE Symposium on Information
Visualization, (pp. 57–64). Boston.

[15] M. Sebrechts, J. Cugini, S. Laskowski, J. Vasilakis, & M. Miller,
“Visualization of search results: a comparative evaluation of text, 2D,
and 3D interfaces”, Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in information
retrieval, (pp. 3-10)

[16] A. Cockburn, & B. McKenzie, “Evaluating the Effectiveness of Spatial
Memory in 2D and 3D Physical and Virtual Environments”, Proceedings
of ACM CHI'2002 Conference on Human Factors in Computing
Systems. Minneapolis, Minnesota, 20--25 April 2002, (pp. 203—210).

362 363

Knowledge management in next generation networks
Samir Atitallah

Computer sciences department
Ecole Polytechnique de Lausanne

Lausanne, Suisse
samir.atitallah@epfl.ch

Omar Abou Khaled
Computer sciences department

Ecole d’ingénieurs et d’architectes de Fribourg
Fribourg, Suisse

omar.aboukhaled@hefr.ch

Maria Sokhn
Computer sciences department

Ecole dingénieurs et d’architectes de Fribourg
Fribourg, Suisse

maria.sokhn@hefr.ch

Elena Mugellini
Computer sciences department

Ecole d’ingénieurs et d’architectes de Fribourg
Fribourg, Suisse

elena.mugellini@hefr.ch

Abstract— As the amount of information grows, the major issue
is to access these resources, distributed over the network. Since a
large number of the data that we might want to retrieve is not
text-based, the only way to search within this type of information
is by associating metadata. To reach this goal, some projects aim
to optimize the annotation scheme in order to have a standard
unified ontology model to describe the data and make use of this
model to search for information by concept, not only by
keywords. The main goal of the paper is to design and implement
the information retrieval over a peer-to-peer network to perform
high level annotation of scientific talk recordings, offer granular
search facilities and complex queries, and enhance the knowledge
management of the recordings.

Keywords: Knowledge management, peer-to-peer architecture,
ontology, information retrieval

I. INTRODUCTION

Distribution technologies are constantly expanding. They
have faculties unexplored in centralized systems. Their
integration with annex systems such as research and
registration services can lead to distributed solutions that
facilitate and greatly improve the collection of information. In
the field of technology research, it is often limited to research
in "text mode" which causes a considerable loss of information.
Indeed, we know that the information consists mainly of audio-
visual content that is searchable only by the associated
metadata and not its actual content. This restriction has raised
the question of how search and registration technologies can
tap into the potential pool of information. This problem has
grown to develop technologies that aim to break barriers and
allow search engines to index and retrieve information based
on content. These search techniques of a new generation would
effectively and efficiently provide relevant information in the
presence of the exponential growth of distributed multimedia
data volumes. Our approach focuses on developing a scalable
solution that meets the needs of massively distributed data
produced by a variety of services. The magnitude of the
problem can be gauged by the fact that almost everything we
see, read, listen, write will soon be available for computerized
systems.

This paper presents a service based on a P2P architecture
that aims at breaking this technological barrier by defining a
distributed P2P architecture that allows search of audio-visual
content using the paradigm of query by example. Considering
that a video is much more explicit than the text, we attempt to
introduce information about the content. The combination of
research advises with optional metadata annotations of users
and the context of social networking has a capacity of research
results more accurate and complete. The P2P architecture is
based on the ontological model for recording videoconferences,
HELO [1] and its uses within the Framework CALIMERA [2].
It models the information and knowledge transmitted in a life
cycle of the conference. Using HELO we aim to bridge the
semantic gap by providing opportunities to make annotations to
the records of granular scientific discourse, and to improve
information retrieval and display of records.

II. STATE OF THE ART

The semantic approach to existing Web resources is one of
the major challenges for building the Semantic Web. In the
state of the art of semantic web tools, we find many that can be
useful. But rare are those that use systems that exploit the
power of millions of users every day seeking information on
the web. Today, many applications of file sharing peer-to-peer
exist. These applications do not have a major characteristic: the
semantic search. Although most applications of peer-to-peer
sharing offer a keyword search based on indexing data, few are
actually accessing the data content and use powerful annotation
systems that provide detailed information on data. In other
words, there are few projects [3; 4; 5] that offer the user the
opportunity to describe his desire to search in the most intuitive
words and allow an application to extract the necessary
semantic and make it understandable to the machine that will
perform the recovery action that best suits the user. This
absence is due to lack of use of metadata information generated
by annotations and ontology models that describe the data
content rather than a general description of the file.

Many publications and projects have been designed to
manage multimedia information retrieval using a P2P
architecture[6; 7; 8]. Some as VIKEF were developed in order
to provide support for advanced semantic information, content

364 365

production and knowledge acquisition, processing, annotation,
sharing and use by empowering information and knowledge
environments for scientific and commercial communities.
Matterhorn, meanwhile, produce recordings of lectures,
manages existing video, provide distribution channels and
provide user interfaces for students with educational videos.
However, those two projects do not use the possibilities of a
distributed system such as the P2P architecture. Indeed, there
are projects like PHAROS [9] and Sapir [10] that use the power
of P2P to allow the operation of audio-visual metadata by
different peer of the architecture. However these projects do
not rely on ontology dedicated. These ontologies lack of
expressivity needed to model multimedia data generated by
scientific events such as video recorded lectures. To resolve
this problem, we propose a new model named conference
HELO. HELO models the knowledge imparted in a life cycle
of a scientific conference and has the advantage of being
integrated into a framework designed to manage information
about the conference and its recovery. This new ontology
associated with a P2P distributed architecture provides an
environment conducive to the operation of all the information
in a conference through various peer architecture. This
framework, named CALIMERA, is introduced in the next
section.

III. LOGICAL ARCHITECTURE : CALIMERA

The evolution of the web in the last decades has created the
need for new requirements towards intelligent information
retrieval capabilities and advanced user interfaces. Nowadays,
effective retrieval and usage of multimedia resources have to
deal with the issues of creating efficient indexes, developing
retrieval tools and improving user oriented visualization
interfaces. To that end we put forward an integrated framework
named CALIMERA. The framework is based on a High-level
modEL for cOnference (HELO) and aims at enhancing the
information management, retrieval and visualization of
recorded talks of scientific conferences. This section presents
the conference model and its uses within the framework:
performing high level annotation of scientific talk recordings,
offering granular search facilities and complex queries, and
enhancing the knowledge visualization of the recordings. As a
proof-of-concept we present the prototypes that have been
implemented.

Figure 1. CALIMERA architecture global view

Figure 1 outlines the global view of the framework that is
composed of the following modules:

• Tools manager: CALIMERA is a tool independent
framework. The tool manager allows any user to
integrate a tool that may be used for data meta-data
management, query and visualization or both.

• Data and metadata management module consists of
handling the conference high-level information, such
as recording talks, segmenting video recordings,
annotating video segments, managing the context
information of these talks, etc.

• Data and Metadata storage integrates existing data
and metadata formats such as MPEG-7 which is one of
the most widely used standard for multimedia
description, RDF and OWL, which are a more
semantically oriented standards for multimedia
description that integrates high level semantic
description.

• Query and visualization module queries the data and
metadata storage in order to return the video or the set
of video sequences of recorded talks the users are
seeking for.

• Conference model: HELO is a conference model we
designed to model the conference high-level
information conveyed within a conference life cycle.
As cited in the introduction HELO is based on existing
ontologies related to conference domain.

To have more information about this logical architecture
refers to the “Conference knowledge modeling for conference-
video-recordings querying and visualization” paper [1].

IV. PHYSICAL ARCHITECTURE : CALIMERA OVER P2P

This chapter will deal with designing a physical
architecture that uses a version of the Framework CALIMERA
in a distributed way to help expand opportunities and overcome
the limitations of information retrieval mentioned above. This
p2p architecture matches the logical architecture and allows
using independent tools that produce the data and metadata by
each user of the p2p network. Thus it offers the possibility to
generate that information, which require resources and time
cost, by every peer. That information will be accessible by
anyone inside or outside the p2p network.

Figure 2. Logical and Physical architecture

364 365

The following chapters will address the design of the
architecture through the critical inputs that they bring.

A. Data management over P2P networks
The main objective is to develop a file-sharing application

for semantic information sharing conference through a network
user. The research is based on the model developed ontology
conference at the University of Applied Sciences in Fribourg.
We also hope that the implementation of the application based
on P2P architecture meets four requirements:

• The first one concerns the wide distribution of
multimedia data items: each user holds his files at his
end device, and geographical distances separate users.
With no interest in infrastructure investment, we care
for an architecture that could make use of this
distribution.

• The second issue, which is vitally related to the first,
concerns the dynamicity of the users and of their data.
Users must remain free to access and leave the network
at any time. They must have all the rights to introduce
and remove data files for which they are responsible at
any moment. We look for a scalable and dynamically
adaptable system.

• The third one is directly related to the retrieval process:
since we will be leading a semantic search we are
interested to localize data items at any moment during
short periods. We wish to discover the location of any
item in the network in a reasonable time interval.

• Finally, the fourth issue concerns the retrieval results
efficiency and effectiveness: we want to be able to
resolve user complex queries. We want a system that
processes and retrieves data in a semantically
meaningful manner.

Our reflections toward resolving the issues above lead into
the choices that we exposed earlier.

The choice of the peer-to-peer architecture eliminated the
concerns about distribution. In fact, peer-to-peer takes benefit
of this distribution as presented in the state of the art section. It
eliminates the need of major infrastructure implementation:
users share their simplest resources and contribute in the
maintenance of the network. It ensures also that all peers are
equal and holding the same privileges.

The choice of the structured decentralized peer-to-peer
architecture using the JXTA algorithm addresses the issue of
data indexing and network flexibility and scalability. Each peer
has the necessary information to correctly localize any data
item in the network: each peer performs his own routing
calculations and directly addresses responsible nodes. This
eliminates the need to dial into central indexes to localize items
on the peers. On the other hand, the JXTA algorithm is
designed to ensure flexibility and scalability: the distribution of
the keys over the nodes adapts as peers get connected or
disconnected or when new data items are introduced. Periodic
updates of the network are lead by JXTA to recover from
unexpected failures such as when a peer leaves the network

without notifying its neighbors. By this we maintain a high
level of network consistency.

To address the lack of semantic retrievals, we chose to
introduce the RDF language as the data description language
and the base to formulate queries. RDF triples that describe
data items are distributed over the peers by mean of the JXTA
keys. Research will be toward finding the triples that match the
user’s request; the initial results are then RDF triples that
mostly describe the user’s desire. Those triples will hold
information about the file that they describe which by then will
be the file that mostly describes the user’s desire. File retrieval
is then lead in a basic semantically meaningful manner.

B. Metadata management over P2P networks
The architecture is a very generic one. We kept in mind

during the design all possible future ameliorations and
variations in the network.

Figure 3. P2P architecture using a routing algorithm

Peers could represent simple end devices or masters of local
networks for which they act as access points to the peer
network. On another axis, we predicted the presence of the
metadata server as necessary, since the users are widely
distributed and they might annotate their data differently. They
also can produce speech-to-text files metadata that could be
reachable by the others peers. Consequently, when a user is
willing to share a file 1 over the network, his application
contacts the server and downloads the unified metadata scheme
proper to the ontology used. The presence of the server is also
beneficial if new ontology models are to be implemented over
the same network using the same application, in that the
network administrator does not have to contact all peers and
install the new metadata schemes; they are learned
dynamically. It is important to mention that the server has
another role: since the server is always present and holding a
unique fixed IP, it is responsible for creating the peer to peer
network and it offers its URL as the bootstrap URL for the
peers that wish to connect to the network. However, the server
acts as an ordinary peer on the network when it comes to data

366 367

distribution over the network: it holds no central indexes
neither acts like a central storage unit. The JXTA routing
algorithm, where each peer calculates his routes locally and
performs retrieval actions, handles the discovery of the
resources over the network2. Data files are kept at peers
responsible of them. When a research mechanism points to a
file location, a point-to-point connection is established between
the requesting peer and the server peer3 to ensure the channel
for data transfer.

As was mentioned earlier in the report, RDF triples, result
of the parsing of RDF/XML metadata files, are introduced to
the network at three different locations4 each, by applying a key
to an attribute value at each time. Triples are stored at the peers
that receive them into files.

V. PROTOTYPE

In this chapter we introduce a prototype that was developed
to highlight some features of the architecture implementation.
The prototype is based on the JXTA P2P Framework that is
described in the next chapter.

A. P2P Networks : JXTA Platform
The information retrieval is performed over a peer-to-peer

network with distributed data and a distributed searching
technique based on JXTA framework. The Java JXTA platform
is a series of classes and methods for managing and
transmitting application and control data between JXTA
compatible peer platforms. A peer is an identification of a
specific instance of JXTA. The concept of peer is similar to the
way a computer is named on a LAN, except that the name is
not guaranteed to be unique. As a way to make sure that peers
are unique, there is a peer ID. The peer ID is generated like
other IDs. The concept of peer ID is used because there are
multiple methods to reach a peer, so a fixed address or name is
not that useful. Also, in the case of computers behind security
barriers such as firewalls or NATs, the actual computer name
or address is quite useless.

There are different types of peers, divided in two main
categories:

• Edge peers: these peers are located at the edge of the
network; they are the most numerous peers in the
network.

• Super peers: these peers have specific tasks to
accomplish such as keeping a topology of the network,
allowing peers behind a firewall to access the network
or maintaining a Data Hash Table.

B. Design
There are multiple actions that should be performed using

the p2p application. In the first tab of the application interface,

the user can annotate the data he wants to share, based on a
unified annotation predefined model that includes the type of
data and some specific information depending on the type of
data being shared. In the second tab, the user can initiate a
search using a keyword. The query is sent to the neighboring
peers, which will then search for information related to this
keyword. The results will appear in the same table, whether
they come from an ordinary peer in the network or from an
INVENIO5 server, and the user can then select the document he
needs to download. The third tab allows the user to check and
manage the files he is sharing with the other peers on the
network and the fourth tab allows him to connect to a specific
peer knowing its IP address and view the list of peers on the
network.

This figure shows the general design of the p2p application

Figure 4. General design of the p2p application

• GUI (Graphic User Interface): it allows the user to
interact with the application by sharing and managing
the files and sending search queries.

• Controller: it collaborates with the user interface to
send search and download queries through the query
manager and manage the ontology using Jena.

• Query Manager: this is the intermediate layer
between the application layer (GUI, Controller, Jena)
and the network layer (JXTA manager, Download
manager)

• JXTA Manager: this bloc is responsible of all the
connections and the discovery of new peers in the
network.

• Jena: it is a programming toolkit that manages
everything related to the annotation and the ontology.

• Download Manager: this bloc is responsible of
uploading and downloading the shared files.

1) Communication over the network

366 367

In the application developed for this project, we use
decentralized network architecture. When the application is
launched, the peer connects to the JXTA net peer group then
sends advertisements to the peers on the network to exchange
some information about their respective sockets. The classes
and functions of the JXTA framework provide these
functionalities.

2) Nertwork implementation
In the p2p application developed for this project, the class

JXTAManager is responsible for connecting the peer to the
network. It uses the NetworkManager class provided by JXTA
framework and creates a multicast JXTA socket on each peer,
allowing it to send and receive requests and responses. The
application makes use of the Discovery Service offered by
JXTA in order to periodically detect the new peers in the
network and connect to them.

3) Metadata annotation and ontology management
When a user wants to share a file, he chooses the type of

file he wants to share in the annotation tab of the interface.
According to the type of file, the fields to annotate are shown
dynamically in the tab. He can decide which fields he wants to
fill but he cannot add other fields, which makes him comply
with the predefined annotation model.

Once the user clicks on the “submit” button, the local
ontology is updated; the name of the new file and its properties
are added to the OWL file (p2pontology.owl) that should be
located in the same directory as the application itself.

4) Information retrieval and download
The application developed in this project is conceived in a

way to allow all types of peers to join the network. In our
scenario, we have two types of peers: the “normal” peers that
represent the users that might want to share files and search for
information and the INVENIO servers that act like super peers.
Depending on the type of the peer, the request received is
handled differently.

Whether the peer is an INVENIO server or not, the
procedure for sending requests and giving back an answer is
almost the same. In fact, the results appear in the same table,
the only thing that differs is the way the INVENIO server
searches in its own information and the peers extract the
information from the INVENIO responses.

To decide whether a peer is an edge peer or an INVENIO
server, we only have to set the Boolean static attribute
INVENIO (in the P2POntology class) to true. The figure 4
shows the UML diagram of the information retrieval class on a
server INVENIO.

Figure 5. UML diagram of the QueryManager class

5) Jena and ontology search
When the peer is a “normal” peer in the network, using the

function processSearch of the QueryManager class performs
the search for information related to a keyword. This function
uses the Jena Ontology API and is responsible of searching in
the local ontology of the peer. Jena can manipulate different
programming languages such as RDF and OWL. To find
information related to a specific keyword, we search in the
OWL file for a match with this keyword and, according to that,
we send a response to the peer requesting the information. We
will not go into further details about Jena and the ontology
search since this is not the aim of this paper.

6) Invenio search
When an INVENIO server receives a search request, it

handles the request just like any other peer on the network,
which means that it searches for files related to the specific
keyword and respond in an XML message, giving some
information about the file it finds. The only difference is in the
way the INVENIO server searches for the files we need.

Figure 6. Network topology with different types of peers

We could think of many ways to search within the
INVENIO server. Intuitively, the first solution that comes to
mind is to create a module that receives the request and uses
the search engine of the server to find the results. This solution
seems complex for many reasons, one of them being that the
programming language used in INVENIO is Python, while the
peer-to-peer application is written in Java. This leads us to

368 369

think of another simpler solution in order to search within the
database of INVENIO. This solution consists of sending an
HTTP request to the server and parsing the page to extract the
information needed to fill the results table.

When the peer requesting the information receives the
response, it can proceed the same way it does with the other
types of peers to download the file needed. By right clicking on
the selected row, the user can choose to download the page
from the server. In this case, since the peer itself might not be
connected to the Internet, the user sends a request to the server
asking it to provide him with this page. The server then sends
another HTTP request with the corresponding web address and
returns the page back to the peer.

C. Demonstator
The demonstrator shows how the user can interact with the

architecture.

Figure 7. Table showing the results from INVENIO server and other peers

We can recognize the results provided by an INVENIO server
by looking at the IP address of the peer that has them (Figure
6). In the column “information”, we can see the names of the
authors of the file and in the last column we have a link to this
file. Since the peer requesting the information is not necessarily
connected to the internet, he can ask the INVENIO server to
download the file and send it to him.

Figure 8. Visualisation of the content of a specific peer

It is also possible to visualize the content of a peer by using a
graph interface like the prototype NAVIR [11]. This tool
offers the possibility to see the different peers of the network
and the data and metadata that each of them provide. It’s a
easy way to navigate and access over the p2p network.

VI. CONCULSION

In this paper we presented a peer-to-peer architecture that
use the scientific conference model HELO (High-level modEL
for cOnference) used to enhance the retrieval process of talk
recordings (annotation, querying and visualization). We
showed that this architecture use the power of P2P to allow the
operation of audio-visual metadata by different peer of the
architecture.

In the future, our goal is to enhance the retrieval results and
to answer the user more efficiently, we could use the Bayesian
filter to create users profiles depending on the history of their
queries. Each user will have a specific profile as a Professor or
student or researcher for example. After profiling by person,
people of the same profile could be gathered into a group. This
enhances the research also for that users belonging to the same
group will be most probably interested with the same topics,
this eases and quickens the sharing.

REFERENCES

[1] Maria Sokhn, Francesco Carrino, Elena Mugellini, Omar Abou Khaled.
Conference knowledge modeling for conference-video-recordings
querying & visualization. Acm-Medes, Insa Lyon, October, 2009

[2] Y. Liu, D. Zhang, G. Lu, W. Y. Ma. A survey of content-based image
retrieval with high-level semantics, (January 2007)

[3] Maria Sokhn. Calimera. http://calimera.project.eia-fr.ch.
[4] D. Zeinalipour-Yazti, Vana Kalogeraki, Dimitrios Gunopulos.

Information Retrieval in Peer-to-Peer Systems, Computing in Science
and Engineering archive, NJ, USA, July 2004

[5] Maria Sokhn, Elena Mugellini, Omar Abou Khaled, Ahmed
Serhrouchni. Conference knowledge modeling for conference-video-
recordings querying & visualization. Journal of Multimedia Processing
and Technologies Volume 1 Number 2 June 2010

[6] Aberer, K., Klemm, F., Rajman, M., Wu, J.: An Architecture for Peer-to-
Peer Information Retrieval. In: SIGIR’04, Workshop on Peer-to-Peer
Information Retrieval. (2004)

[7] Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP:
Using Gossiping to Build Content Addressable Peer-to-Peer Information
Sharing Communities. In: 12th IEEE International Symposium on High
Performance Distributed Computing (HPDC-12), IEEE Press (2003)
236–246

[8] Lu, J., Callan, J.: Federated search of text-based digital libraries in
hierarchical peer-to-peer networks. In: Advances in Information
Retrieval, 27th European Conference on IR Research (ECIR). (2005)
52–66

[9] Platform for searching of audiovisual resources across online spaces.
http://www.pharos-audiovisualsearch.eu/

[10] SAPIR extends the power of web searches beyond centralized text and
metadata searches to include distributed audio-visual content.
http://sapir.eu

[11] Joël Dumoulin, Maria Sokhn, Elena Mugellini, Omar Abou Khaled.
Multimedia information browsing and visualization. IEEE
VisWeek/InfoViz, Salt Lake City, Utah, USA, October 2010

Peer 1

Peer 2

368 369

A Model for Knowledge Retrieval based on
Semantic Images

H. Andres Melgar S.∗ †, Fabiano D. Beppler‡, Roberto C.S. Pacheco† and Jose L. Todesco†
∗ Sección de Ingenierı́a Informática, Departamento de Ingenierı́a,

Pontificia Universidad Católica del Perú, Lima, Perú
†Programa de Pós-Graduação em Engenharia e Gestão do Conhecimento (EGC)

Universidade Federal de Santa Catarina (UFSC), Brasil
‡ Instituto Stela, Florianópolis, Santa Catarina, Brasil

Abstract—This paper presents a model that aims to support
the visualization of the knowledge stored in digital reposito-
ries through semantic images. In this model images contain
representations of the real world that are a priori known by
the target group, and which have semantic structures that
allows identifying the entities of the domain represented in each
region. The proposed model is supported by the framework for
knowledge visualization proposed by Burkhard and describes
the users’ interactions with the images. The user through the
images can retrieve and view the knowledge related to the
entities represented in each region. A prototype was developed
to demonstrate the feasibility of the model using images in the
biomedical field, the Foundational Model of Anatomy and the
Unified Medical Language System as domain knowledge and
the Scientific Electronic Library Online database as a document
repository. The use of images facilitates the dissemination of
knowledge, because these compose user’s world view and can
easily be related with prior knowledge. Visual representations
are processed quickly in the brain and require less effort than
the processing of textual information.

Index Terms—knowledge visualization, knowledge retrieval, se-
mantic annotation, ontology.

I. INTRODUCTION

The knowledge dissemination and sharing, are complex
tasks for organizations as they often do not know what they
have and do not possess systems to efficiently locate and
retrieve the knowledge that reside in them [1]. A consider-
able amount of explicit knowledge is spread across multiple
documents within organizations. In many cases, the ability to
access efficiently (i.e. retrieval) and reuse this knowledge is
limited.

Information visualization systems can be used to explore
knowledge, to navigate through large volumes of information
and to inspect data to make new discoveries [2], [3]. This
kind of system is especially useful when people need some
information, but they can not translate these needs in key
words to search information [4].

In this context, the knowledge visualization field has been
researching how the use of visual elements can help the
knowledge dissemination process. The use of images that
contain representations of the real world, that are part of
the users world view, allows that knowledge presented by
these images can be easily related to previous knowledge, thus
facilitating knowledge dissemination.

This work presents a model that support knowledge visual-
ization by using semantic images. The goal of the proposed
model is to use images to construct a support structure for
the knowledge visualization process. These images not only
contain a visual representation of the real world, but also
semantic annotations that help describe its content. The idea is
that when a user views an image be able to quickly recognize
which regions have associated knowledge and can to retrieve
the documents related to the regions by selecting only the
region of interest.

This paper is structured as follows: after this introduction,
we present the literature review about knowledge visualization
and semantic images annotation. Subsequently, the proposed
knowledge visualization model is described. In the following
sections, we present the material and methods used for model
development and discussion. Finally, the last section, we
present the conclusions.

II. LITERATURE REVIEW

A. Knowledge Visualization

The knowledge visualization can be defined as the use of
visual representations to improve the transfer of knowledge
between at least two persons or group of people [5], [6].
Making knowledge visible so that it can be accessed, dis-
cussed, valued, appreciated or managed is a long-standing goal
in knowledge management. Because of this the knowledge
visualization has recently become the focus of attention in
academic and business communities [7].

The benefits provided by the visualization seem to be
dependent on the fact that it acts as a frame of reference or as
a temporary storage area for the processes of human cognition.
Visualization enhances the memory of humans to provide an
extensive set of work to analyze and reflect, and thus becomes
an external facilitator of cognition [4]. According to Ware [8]
there are two main theories in psychology that explain how the
vision can be effectively used to realize elements and shapes.
At low level, the theory of pre-attentional processing explains
that some visual elements can be processed quickly. At the
highest level, the Gestalt theory describes some principles used
by our brain to understand an image.

The knowledge visualization systems are designed to make
use of the skills that humans have to process images. The

370 371

images are pre-attentive and these are processed before the text
[9]. Moreover, the use of images that contain representations
of the real world, which are known a priori by the target
group and are part of his world view, allows the knowledge
presented to abeam of these images can easily be related
to prior knowledge of individuals, facilitating learning and
memory [5], [9].

Aiming to guide the knowledge visualization application
within organizations, Burkhard proposed a framework based
on five perspectives that respond to five key questions [5], [6]:
What kind of knowledge needs to be viewed? 2) Why should
knowledge be visualized? 3) Who is being targeted? 4) In
what context should be viewed? and 5) How can knowledge
be visualized?

B. Semantic Image Annotation

The annotation can be defined as the process of making
explicit the interpretation of the document. Creating metadata
by annotating documents is one of the major techniques for
putting machine understandable data [10]. Metadata can be
attached to a wide range of documents; can be expressed in a
wide range of languages and with a wide range of vocabularies
[11]; and can be performed manually, automatically or semi-
automatic [11]–[13].

Ontologies have been used to annotate documents [10], [11].
Ontological structures may give additional value to semantic
annotations allowing inferences and conceptual navigation
[10].

The metadata associated with images can be classified as i)
independent content metadata, where metadata are related to
the image but not described, for example: names of authors,
dates, location, etc; ii) content-dependent metadata, where
metadata is related to low-level features and/or intermediate
level, for example: color, texture, shape; and iii) descriptive
content metadata, where metadata is related to semantic con-
tent. It has to do with relations of the entities of the image
with the real world entities [14].

The descriptive content metadata can be provided at two
levels of specificity: i) descriptive content associated with the
full image [15], [16] and ii) image segmentation with links to
the descriptive content in each segmented region [17], [18].

III. PROPOSED MODEL FOR KNOWLEDGE RETRIEVAL

The proposed model was designed in order to facilitate
knowledge visualization using semantic images as support
structures. The conceptual model described in the figure 1,
consists of four components: the semantic images, document
repository, knowledge repository and visualization. To the
knowledge linked to the images can be recovered efficiently
(i.e., semantic search), both images and documents have been
previously enriched with semantic content (letters a and b
in figure 1) obtained from the knowledge repository (i.e.,
ontologies, taxonomies, thesauri).

The process starts when the user has to satisfy some
information need. The user selects the image (1 in figure 1)
from which the knowledge will be visualized. The selection
criterion will depend directly of the user information needs,

Fig. 1. The proposed model for Knowledge Visualization

taking into consideration the concepts represented in each
image. For example, if the user need to visualized knowledge
associated with the heart, he must select an image in which
the heart is represented.

Once selected the images, the visualization process is exe-
cuted (2 in figure 1). The visualization process aim to provide
users the knowledge stored in document repositories. The
results visualization is done over the images, so that users
quickly realize the amount of documentation associated with
each image region. This is reflected in the image, for example,
changing the color of the regions in which concentrates
most / least amount of documents or include the number of
documents retrieved on each region. From the image, the user
can restrict the search space (number 3 in figure 1) and is
able to use the metadata provided by document repositories
or concepts defined in knowledge artifacts, thus initiating a
new visualization process. Next, we briefly describes each
component.

A. The Semantic Images

In the model, the images are enriched with semantics
structures that allows to represent graphically the domain
concepts in which each of its parts is specified in an explicit
and formal way. It is defined on three levels (figure 2): the
descriptive level aims at identifying and describing the visual
representations; the structural level provides information about
the internal structure in order to make explicit the region
images; the semantic level aims at describing the semantic
mappings.

B. Document Repository

In the model, document repositories are characterized by
a semantic layer that allows to formalize the information
contained in documents. They are defined in four levels:
the descriptive level aims at identifying the repository; the
metadata level aims at describing the information structure; the
content level provides the structures needed to store documents
and metadata. The document repository also has a semantic
level that aim at linking the semantic content of documents.

370 371

Fig. 2. Semantic images

C. Knowledge Repository

This component is composed by the artifacts used to rep-
resent the knowledge domain to perform both the semantic
mapping of the images and documents as well as to make
inferences, when possible, on the concepts used in the visual-
ization processes.

D. Visualization

The visualization component is responsible for presenting
the user search results. This component is based on tasks
defined by Shneiderman [19] to visualize information: first
obtain an overview of the data, then concentrating on items of
interest and filter out irrelevant items, and finally to provide
details on demand. The data overview is done using the
semantic images, where the visual elements are changed in
order that user can easily identify the regions where exists
knowledge.

IV. PROTOTYPE MODEL

In order to demonstrate the feasibility of the proposed
model, we developed a prototype applied to the biomedical
field. The knowledge repository was composed by the Foun-
dational Model of Anatomy ontology (FMA) [20], [21] and
the Unified Medical Language System Metathesaurus (UMLS)
[22]. As documents repository a copy SciELO (Scientific
Electronic Library Online) database was used.

In figure 2 we can see an example of a semantic image.
Four regions in this image were made explicit: the superior
vena cava, the inferior vena cava, the right ventricle and the
aorta. To annotate the images region, we used the FMA.
Each region was linked to a FMA class incorporating to the

Fig. 3. Semantic annotation of documents

semantic image, all explicit knowledge in the FMA ontology.
For example, when linking the R1 region (labeled with veia
cava superior) to the class Superior vena cava, the model
now “understands” that the region is part of the cardiovascular
system (class Cardiovascular system in FMA ontology) which
is also known as Anterior vena cava (synonym in English)
and Vena cava superior (equivalent name in Spanish). Figure
2 also shows how the region R4 (labeled aorta) is mapped
to the UMLS concept C0003483. Using UMLS relations, the
model “knows” that Aneurysm is an aorta disease.

In figure 3 we can see the prototype’s main interface. To
search for the semantic images the user enters the search
terms in the text box in the upper panel (figure 3-A). The
tool recovers all the semantic images associated by processing
the query terms in both the structural level (i.e., text search
for the name of the regions) and in the semantic level (i.e.,
conceptual search by mappings). When the processing is done
on the semantic level, the terms are processed in domain
concepts. This transformation allows the query to be executed
semantically, making the search language independent. For
example, to search for semantic images related to heart, the
user can enter search terms such as words like corazn (heart
in Spanish), or corao (heart in Portuguese). In all cases, the
process returns the same results.

After retrieving the semantic images, it is placed in the
center pane (figure 3-B). The user can use it in two ways:
to obtain knowledge related to the concepts represented in the
regions or to retrieve documents that mention the concepts.

Information related to the concept appears in the top right
pane (figure 3-C). In this prototype version, this information
is presented using the FMA ontology. In this panel the user
can view the name, identification and description of the class.
Using the button ”View additional information”, the user can
get additional information such as names in other languages
or anatomical entities that constitute it. The concepts mapped
in each region can be observed in the right pane in the center
(figure 3-D). This information is obtained from the semantic
level of the image.

When selecting an region in the image, in addition to pre-
senting to the user information about the concept, also shows
the number of documents related to the concepts mapped in
each region.

V. DISCUSSION

In the proposed model both images as the repositories of
documents have been enriched with semantic content enabling

372 PB

the integration of these two components. The semantic content
allows that the model can to “understand” what are the
concepts represented both in images and in the documents
thus facilitating conceptual search. One advantage of this is
the recovery of knowledge independently of the language of
written documents. Due to this “understanding”, the model is
able to retrieve documents related to the concepts represented
in the images helping the user in the search process. This
retrieval mechanism can be seen in the prototype in which to
retrieve documents, the user only need select one region of
the image without specify the search terms as in traditional
retrieval systems.

The idea of the model is that search results are presented
in the images changing the color of the regions where it
concentrates the largest number of documents. This model
behavior is consistent with the visualization tasks defined by
Shneiderman [19].

The reason for using images containing representations of
the real world is based first on the humans’ skills to process
images quickly and secondly in the ease of individuals to relate
prior knowledge associated with an image already known.

The proposed model is generic and can be used in any
domain that allows the concepts representation by images. It
can also be used on any document repository where these can
be mapped into knowledge representations (i.e., ontologies or
taxonomies).

VI. CONCLUSION

One of the advantages offered by the model is the ease
of documents retrieval using only regions of the images. In
traditional IR systems, users translate their information needs
in search terms, they return a list of items that match the
most relevant documents according to the terms informed. In
the proposed model users have to translate their information
needs also in terms, but these are not used to directly seek
the documents, but rather to seek the image to be used in
visualization process.

Another model advantage is the component integrations by
semantic mappings. The images and information repositories
are all integrated by means of semantic information, this
allows a single image can be used to view documents in
different repositories. For example, the image of the heart,
shown in previous sections, can be used to retrieve scientific
articles, organizational competencies, projects, clinical studies,
indicators, medical imaging, among others. This semantic
integration also allows to the model to infer new information
about a particular concept. When render the heart image, the
model can retrieve information related to concepts that are not
explicitly defined in the image, but can be inferred, such as
certain diseases. In heart image when selecting the aorta, for
example, and using the UMLS relations could be recovered
documents related to the aneurysm, a disease that affects the
aorta.

REFERENCES

[1] M. Alavi and D. Leidner, “Review: Knowledge management and knowl-
edge management systems: Conceptual foundations and research issues,”
MIS Quarterly, vol. 25, no. 1, pp. 107–136, 2001.

[2] N. Gershon, S. G. Eick, and S. Card, “Information visualization,”
interactions, vol. 5, no. 2, pp. 9–15, 1998.

[3] J. S. Yi, Y.-a. Kang, J. T. Stasko, and J. A. Jacko, “Understanding and
characterizing insights: how do people gain insights using information
visualization?” in Proceedings of the 2008 conference on BEyond time
and errors. New York, NY, USA: ACM, 2008, pp. 1–6.

[4] J.-D. Fekete, J. J. Wijk, J. T. Stasko, and C. North, “The value
of information visualization,” in Information Visualization: Human-
Centered Issues and Perspectives. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 1–18.

[5] R. A. Burkhard, “Towards a framework and a model for knowledge
visualization: synergies between information and knowledge visualiza-
tion,” in Knowledge and Information Visualization. Berlin/Heidelberg:
Springer, 2005, vol. 3426, pp. 238–255.

[6] M. Eppler and R. A. Burkhard, “Visual representations in knowledge
management: framework and cases,” Journal of Knowledge Manage-
ment, vol. 11, no. 4, pp. 112–122, 2007.

[7] W. Xiao-yue, “Visualization based on concept maps: An efficient way to
knowledge sharing and knowledge discovery in e-science environment,”
in Fourth International Conference on Fuzzy Systems and Knowledge
Discovery, FSKD 2007, M. Yan, Ed., vol. 2. Haikou, Hainan, China:
IEEE Computer Society, 2009, pp. 144–147.

[8] C. Ware, Information visualization: perception for design. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000.

[9] R. A. Burkhard, “Learning from architects: The difference between
knowledge visualization and information visualization,” in Eighth In-
ternational Conference on Information Visualisation (IV’04). Los
Alamitos, CA, USA: IEEE Computer Society, 2004, pp. 519–524.

[10] S. Steffen, M. Er, and H. Siegfried, “An annotation framework for the
semantic web,” in Proceedings of the First Workshop on Multimedia
Annotation, S. Isjizaki, Ed., Tokyo, Japan, 2001.

[11] O. Corcho, “Ontology based document annotation: trends and open
research problems,” International Journal of Metadata, Semantics and
Ontologies, vol. 1, no. 1, pp. 47–57, 2006.

[12] L. Reeve and H. Han, “Survey of semantic annotation platforms,” pp.
1634–1638, 2005.

[13] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta,
and F. Ciravegna, “Semantic annotation for knowledge management:
Requirements and a survey of the state of the art,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 4, no. 1, pp.
14–28, 2006.

[14] A. Hanbury, “A survey of methods for image annotation,” Journal of
Visual Languages & Computing, vol. 19, no. 5, pp. 617–627, 2008.

[15] A. T. Schreiber, B. Dubbeldam, J. Wielemaker, and B. Wielinga,
“Ontology-based photo annotation,” Intelligent Systems, IEEE, vol. 16,
no. 3, pp. 66–74, 2001.

[16] T. Osman, D. Thakker, G. Schaefer, and P. Lakin, “An integrative
semantic framework for image annotation and retrieval,” in Proceedings
of the IEEE/WIC/ACM International Conference on Web Intelligence.
IEEE Computer Society, 2007, pp. 366–373.

[17] W. Hsu, S. Antani, L. R. Long, L. Neve, and G. R. Thoma, “Spirs:
A web-based image retrieval system for large biomedical databases,”
International Journal of Medical Informatics, vol. 78, no. Supplement
1, pp. S13–S24, 2009.

[18] D. Sonntag and M. Mller, “A multimodal dialogue mashup for medical
image semantics,” in Proceeding of the 14th international conference
on Intelligent user interfaces. Hong Kong, China: ACM, 2010, pp.
381–384.

[19] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” in Proceedings of the 1996 IEEE Symposium
on Visual Languages. Boulder, CO, USA: IEEE, Los Alamitos, CA,
United States, 1996, pp. 336–343.

[20] C. Rosse and J. Mejino, “A reference ontology for biomedical infor-
matics: the Foundational Model of Anatomy,” Journal of Biomedical
Informatics, vol. 36, no. 6, pp. 478–500, 2003.

[21] ——, “The foundational model of anatomy ontology,” in Anatomy
Ontologies for Bioinformatics, ser. Computational Biology. London,
UK: Springer, 2008, vol. 6, pp. 59–117.

[22] O. Bodenreider, “The unified medical language system (umls): inte-
grating biomedical terminology,” Nucleic Acids Research, vol. 32, no.
Database Issue, pp. 267–270, 2004.

PB 373

Graph Grammar Based Web Data Extraction
Amin Roudaki

Computer Science Department
North Dakota State University

amin.roudaki@ndsu.edu

Jun Kong
Computer Science Department
North Dakota State University

Jun.kong@ndsu.edu

Abstract—Web data extraction becomes a hot topic after the
invention of World Wide Web, because the large amount of
information on the Web makes it challenging to retrieve useful
information. Due to the diverse designs and presentations of
information on different Web sites, it is hard to implement a
general solution to extract data across different Web sites. This
paper presents a novel method based on graph grammar to
extract the same type of information from different Web sites
without the need of training or adjustment. Our approach
formalizes a common Web pattern as a graph grammar. Then,
based on the visual layout and HTML DOM structure, a Web
page is abstracted as a spatial graph that highlights the essential
spatial relations between information objects. According to the
defined graph grammar, a spatial parsing is performed on the
spatial graph to extract structured records. We have evaluated
our approach on twenty one different Web sites, and achieved the
F1-score as 97.49% which shows promising performance.

Keywords: Web Data Extraction; Graph Grammar; Wrapper

I. INTRODUCTION
Exploring useful information becomes increasingly difficult

as the volume and diversity of available information rapidly
grow. To efficiently discover knowledge from the vast amount
of heterogeneous digital data on the Web, it is critical to extract
meaningful contents from Web pages and organize extracted
information in a structured format, i.e. Web data extraction.

HTML DOM structures could be very diverse among
different Web sites. For example, some Web designers may use
table to present tabular data while others use table to divide
space into different grids for layout purpose. Therefore, even if
two Web pages have similar layouts, their HTML source codes
may be completely different. For example, Figure 1 presents
two Web pages that have similar layouts but different DOM
structures. Due to the diversity, it is challenging to make a
wrapper applicable to different Web sites of the same category.
In addition, a DOM structure is complex. For example, even
the DOM structure of Google homepage includes 110 HTML
tags. The complexity of DOM structures could further increase
the diversity and reduce the accuracy. Recently, layout based
analysis receives more and more attention [3, 14, 19]. In order
to provide efficient Web browsing, Web pages that include
similar information in general are presented with consistent
layouts even though those pages may be implemented
completely differently. Therefore, layout based analysis
addresses the diversity issue to a certain degree. However,
existing layout-based approaches have limited applicability.
Some approaches [19] need training before they are applied to
a Web site. Some approaches are optimized for a specific type
of domains, and may not be easily adjusted to another domain.

For example, the Visual Wrapper [3] is powerful to extract
news stories while it is not applicable to other domains.

This paper presents a novel approach that combines layout
and DOM structure analysis. Our approach extracts structured
records by analyzing the screenshot of a Web page that is
coherent with human’s cognition of visual perception. In our
approach, the screenshot of a Web page is first abstracted as a
spatial graph, in which a node is an information object (such as
text or image) and an edge indicates a close semantic relation
between two information objects. Instead of using machine
vision technique to recognize images and texts, our approach
recognizes information objects based on the DOM structure.
Though a DOM-structure based recognition is not as powerful
as the machine vision technique, it is efficient and sufficient to
recognize texts, links and images that are useful in information
extraction. Based on the spatial graph, we are using the graph
parsing technique to extract structured records.

The graph parsing assumes that Web designers usually
follow some guidelines or patterns to present information on
the Web. This is a valid assumption in practice since a
consistent layout style can provide effective browsing for end
users and ease the efforts of development and maintenance.
This assumption has been validated by our evaluation on
different Web sites and also by other researchers [15]. Those
common guidelines are referred to as patterns that are visually
specified through graph grammars [7] in our approach.

This work is supported in part by ND EPSCoR Grants
#FAR0015845.

(a) Buy.com (b) Amazon.com

Figure 1. The same visual layout with different DOM
structures

374 375

Since the input of data extraction is a Web page that is
abstracted as a spatial graph and the output is a tree, the process
of data extraction can be considered as transforming from one
graph to another one that can be naturally specified through the
graph grammar technology. Graph grammars provide a solid
theoretic foundation to define computing in a two-dimensional
space. In our approach, a graph grammar visually yet formally
defines a Web pattern, and then the data extraction is
implemented as a process of graph parsing that searches in a
spatial graph the sub-structures consistent with the defined
pattern. In order to minimize the manual effort of designing a
graph grammar, we implemented a graphical interactive tool to
facilitate the design of graph grammars. We have evaluated our
approach on 21 Web sites to extract product information. The
results are promising and the performance of our approach
measured in terms of F1-Score (See Section V for further
detail) is high.

II. RELATED WORK
With a clear structure to specify the layout of a Web page,

the HTML source codes have been commonly analyzed to
extract structured data records [1, 4, 5, 6, 8, 9, 10, 11, 12, 16,
18]. Several approaches [6, 8, 11] use the machine learning
technique to automatically derive a wrapper based on a set of
manually labeled training data. Though the above approaches
apply different technologies to derive a wrapper, they all
require a set of training data, which are manually labeled by
human experts. Several approaches [1, 4, 5, 12] automatically
derive a template from sample Web pages and use the extracted
template to discover structured records. These approaches do
not require manually labeled data, which greatly reduces the
manual effort in the data extraction process. However, they
require that Web pages being analyzed must follow the same
template as the sample Web pages. MDR [10] and DEPTA
[16] generate an HTML tag tree based on table and form
related tags, e.g., table, form, tr, td, and etc. This HTML tag
tree significantly reduces the complexity of the original Web
page. Based on the HTML tag tree, they use the string
comparison technique to divide a Web page into different
regions. In each region, it identifies data records by calculating
similarity between tag strings. Zhai et. al. [18] rendered a Web
page and allowed users to select information objects in the
screen shot to define a data pattern. Different from our
approach, this data pattern is defined on the DOM structure, not
on the visual layout. Laber et. al. [9] used some statistical
analysis to analyze the DOM tree elements and identify the
relevant information objects. All of the above methods use
HTML DOM structure as the main source for data extraction.
Instead, our approach, i.e. Visual Grammar Based Extractor -
VGE, implements data extraction based on the information
presentation. The visual analysis can address the issues of
complexity and diverse usages of HTML DOM structures to a
certain degree. By actually rendering a Web page, our approach
supports dynamic information objects which are generated at
run time.

Recently, the visual perception technique has been applied
to extract structured data since it is independent from the
detailed implementation underlying a Web page. These
approaches [3, 14, 19] basically calculate the visual similarity
among different Web pages to group semantically related

information. [3, 19] are limited to extract news stories, and are
not applicable to other domains. ViPER [14] is implemented on
statistical models that emphasize on extracting repetitive data
records.

The Hybrid method takes benefits from both DOM Structure
and Visual Perception, and combines them together. ViNTs
[17] automatically recognizes different content shapes based on
the visual position of information objects. Afterward, a wrapper
is generated based on an HTML structure which represents
each shape. This approach still extracts information based on
HTML DOM structures, though the wrapper is derived from
visual analysis. Instead, our approach specifies extraction rules
from both the layout and the DOM structure. ViNTs is limited
to search results, while our approach is general to different
domains.

III. A GRAMMAR BASED APPROACH

This paper presents a novel and robust approach, i.e. Visual
Grammar based Extractor - VGE, to extracting structured
information. Our approach consists of three components as
shown in Figure 2. The graph generation component abstracts a
Web page as a spatial graph that simplifies the original Web
page and highlights important semantic relations between
recognized information objects. The graph generation proceeds
in the following steps: (1) render a Web page on the screen, (2)
recognize information objects and divide a Web page into
different regions according to its DOM structure, (3) calculate
semantic relations between recognized information objects
based on the layout information, and finally (4) optimize the
spatial graph. Based on the generated spatial graph, the data
extraction is implemented as a graph parsing process that
searches in the spatial graph sub-graphs satisfying certain
spatial properties. Those spatial properties are visually defined
through a graph grammar. The grammar generation component
provides an interactive grammar design tool that allows end
users to define a graph grammar by directly manipulating the
screenshot of a Web page. This interactive grammar design
tool eases the process of developing a graph grammar and
improves the usability of our approach.

A. Graph Generation
HTML is a very flexible language. Information with the

same presentation could be implemented in many different
ways. Being coherent with the HCI principle that consistent
presentations can improve the usability of an interface [13],
Web designers across different Web sites commonly use
similar layouts to present the same type of information.

Web page

Page Rendering

Node and Edge
Generation

Graph
Optimization

Page
Rendering

Interactive Grammar
Design

Graph
Parser

Spatial
Graph

Graph
Grammar

Extracted
Information

Graph
Generation

Grammar
Generation

Figure 2. A Graph Grammar based Extractor

374 375

Therefore, our approach extracts structured records by
analyzing the layout of a Web page. The visual analysis can
address the diversity of HTML usages and make our approach
applicable to different Web sites. The process of graph
generation is a critical step in our approach since it simplifies
original Web pages and eliminates variations among different
Web pages. The simplification only preserves essential
information objects. Especially, the graph generation process
removes (1) style and layout elements, which do not include
any real content, (2) advertisements and (3) menus in the
border areas. The simplification effectively reduces the
complexity of HTML pages and removes potential noises in the
data extraction. The graph generation process proceeds in three
steps: Web page rendering, node and edge generation, and
graph optimization.

The first step in the graph generation is to render a Web
page. The visual layout of a Web page is determined by three
variables, i.e. (1) the actual HTML source code that specifies
the DOM structure of the page, (2) data items such as text and
picture and (3) style sheets and client side scripts which are
executed by a browser at run time. We can access all HTML
elements, especially dynamic elements which are generated on
the fly, only by actually rendering a Web page. Also, the page
rendering determines the position and size of each element.

Based on the dynamic and static HTML elements and their
spatial properties, the second step generates a spatial graph in
which a node represents an information object for data
extraction and an edge indicates a close semantic relation
between the pair of connecting nodes. Contents are stored in
three types of nodes, i.e. image, text and link. The contents
enclosed in the or <a> tags are recognized as an image
node or a link node, respectively. However, it is challenging to
identify a text node since one complete sentence may be
separated by several HTML tags and it is necessary to
consolidate those information pieces together. For example,
inside the text block of a sentence, formatting and styling tags
(such as ,
, ,) can divide the sentence
into several pieces. In the graph generation, all those formatting
and styling tags are removed and adjacent contents are
consolidated as one single text node.

After identifying atomic information objects as nodes, it is
critical to calculate semantic relations between information
objects and use an edge to connect two nodes that are closely
related in semantics. In a two dimensional space, an
information object can have an arbitrary spatial relation with
adjacent nodes. A complete spatial parsing that analyzes
different spatial properties in a graph could be time consuming.
Our approach first derives the semantic relation between
adjacent nodes, and each close semantic relation is represented
as an edge in the spatial graph. Based on the derived semantic
relations, we can limit the spatial parsing to objects that have
semantic relations and thus reduce the search space to speed up
the parsing process. We have extensively investigated different
Web sites and found that a small distance strongly indicates a
close semantic relation between two objects. This observation
is consistent with the Human Computer Interaction principle
that closely related objects should be grouped together and
placed in proximity [13]. Accordingly, we derive the semantic
relation by calculating the distance between two objects. Also,

an HTML DOM structure provides valuable hints for deriving
semantic relations. Web designers group related objects
together by using a container, such as table or div. In general,
two objects belonging to two containers are not related. For
example, in Figure 3, though text objects 4 and 5 are placed in
proximity, they are not semantically related since they belong
to two different containers. Our approach uses HTML DOM
structures to recognize the containers, and semantic relations
are limited to information objects that have one common
(ancestor) container. In order to accommodate different image
sizes and variations in Web pages, we propose a novel
approach to calculating distance and deriving semantic
relations. The size of an information object a is extended to a
certain degree. If the extended object a is overlapping with at
least two corners of another information object b, a has a
semantic relation with b.

The last step in the graph generation is to optimize the
generated spatial graph. In a spatial graph, some nodes may be
considered as noises (such as advertisements and menus),
which do not contribute to the data extraction process. Since
those objects in general are placed in the border areas of a Web
page, we can remove them according to their position. Another
type of noise is small repetitive pictures, such as the “Add to
Cart” icon in Figure 3.

B. Grammar Generation and Parser
The graph generation component generates a spatial graph,

and the data extraction is performed on a spatial graph to
search for information objects having certain spatial relations.
In order to support efficient browsing, the same type of
information in general is presented similarly across different
Web sites. Those consistent spatial features among information
objects are summarized as a Web pattern that is visually
specified through a graph grammar. A graph grammar defines
computation in a multi-dimensional fashion based on a set of
rewriting rules, i.e. productions. Since the input of data
extraction is a graph and the output is a tree structure that
represents structured records, the data extraction is essentially a
process of graph transformation that can be naturally specified
through graph grammars. Furthermore, a graph grammar is
powerful to handle the variations among instances of a Web
pattern. This paper selects the Spatial Graph Grammar (SGG)
[7] as the specifying formalism. With the capability of spatial
specification in the abstract syntax, SGG provides the
flexibility to define a pattern from both the edges (i.e. close
semantic relations) and spatial features (e.g. directions).

2

3

45

1

Figure 3. Different containers in a Web page

376 377

Instead of designing a graph grammar from scratch, we
designed an interactive design tool that allows users to design a
graph grammar visually and intuitively. This interactive tool
renders a sample Web page on the screen, and highlights
recognized information objects in the Web page. Users can
directly select one or more information objects in the Web page
to make a production. This tool supports a direct manipulation
interaction on the grammar design that reduces the gap between
a concrete Web pattern and an abstract graph grammar. With
the help of this tool, even users without much training in graph
grammars may design a graph grammar.

IV. SYSTEM IMPLEMENTATION

We have implemented a prototype for our approach. Our

prototype is built based on VEGGIE - Visual Environment for
Graph Grammars: Induction and Engineering [2]. VEGGIE is
a general visual programming environment, and supports the
Spatial Graph Grammar specification and parsing. VEGGIE
mainly consists of three independent editors (i.e., the Type
Editor, the Grammar Editor, and the Graph Editor) and an SGG
parser. The three editors provide GUIs for designers to visually
design a graph grammar, and are closely related and seamlessly
working together in VEGGIE. Grammar designers can visually
create visual objects, i.e. node types, in the Type Editor, or
import existing node types from a file in the form of GraphML.
Then, based on these defined nodes, the designer can define
productions in the Grammar Editor. The designer can visually
draw or import a host graph to be analyzed by the SGG parser.
As shown in Figure 4, we have extended VEGGIE with two
subsystems, both implemented in Java. The first sub-system is
responsible to generate a spatial graph from a Web page. The
generated spatial graph is fed to the SGG parser for a spatial
parsing. The second sub-system provides an interactive graphic
tool to design a graph grammar.

The Graph Generation sub-system has several components.
The Page Rendering component renders a Web page, extracts
size/position information and passes the output to the Node
Generation to generate nodes. Containment relations are
identified by the Containment Recognizer. The Edge
Generation derives semantic relations based on containers and
spatial properties. The Graph Optimization component
optimizes a generated spatial graph by removing noises.

The Page Rendering component renders a Web page based
on the DJNativeSwing Browser (http://djproject.sourceforge.
net/ns/). The HTML Cleaner component (http://htmlcleaner.
sourceforge.net) solves syntactical problems (e.g., unclosed
tags and markup errors). The HTML Cleaner returns a clean
and well-structured HTML DOM tree that includes all static

and dynamic elements. Based on this DOM tree, the graph
generation component, including node generation, container
recognizer, edge generation and graph optimizer, generates an
optimized spatial graph for data extraction. The second sub-
system eases the process of designing a graph grammar. It
consists of two components, i.e. object selection and grammar
generation.

VEGGIE

Interactive Tool
Graph

Optimization
Node

Generation

DJNativeSwing HTML Cleaner

Graph Generation

Object Selection
(User Interface)

Grammar
Generation

Extensions

Page Rendering

Container
Recognizer

Edge
Generation

Figure 4. The VGE system architecture

Figure 5. Browsing a Web page

Figure 6. A grammar editor

376 377

The prototype provides
a complete system to
support data extraction,
from the specification of
extraction knowledge (i.e.
defining a graph grammar)
to the visualization of
extraction results. At first,
a user uses the Image
Panel, as presented in
Figure 5, to display a Web
page. In Figure 5,
recognized information
objects are highlighted
with rectangles, and edges
indicate close semantic
relations. Based on the
screenshot of a Web page,
a user can select related
information objects to
intuitively design a graph

grammar. After a graph grammar is defined, the user can go to
the VEGGIE Type Editor or Grammar Editor (as presented in
Figure 6) to elaborate the designed graph grammar. Once a
graph grammar is finalized, a user can use the prototype to
extract structured records that are consistent with the defined
graph grammar. A user first inputs the URL of a Web page in
the image panel. Then, the corresponding spatial graph is
automatically generated and can be retrieved in the graph
panel, as presented in Figure 7. By applying the defined graph
grammar to the spatial graph, a small popup window shows up
to present the extracted records, as shown in Figure 8.

V. EXPERIMENT
This section discusses the primary experiment on VGE. We

first discuss the design of the experiment, and then present the
results.

A. Setup
Experiment web pages: We have evaluated our approach on
21 ecommerce Web sites, which include well known Web sites,
such as ebay.com, lycos.com, amazon.com, compusa.com, and
etc.

Measurement: We measured the performance with the
standard metrics: ; ;

Where Ntotal is the number of data records contained in a Web
page; Ecorrect indicates the total number of correctly extracted
data records; and Etotal denotes the total number of data
records extracted from a Web page. We also calculated the F1-
Score, which is the harmonic mean of precision and recall and
is defined as . The F1-Score has been
commonly used as a metric to evaluate the overall performance
in many approaches [3, 9].

Execution Platform: We have evaluated our approach on a
desktop with a Core 2 Duo CPU 2.26 GHz and 4 GB RAM,
running Windows 7 Professional.

B. Evaluation
Precision/Recall/F1-Score: The evaluation results are
presented in Table 1. The recall of our approach is 99.5. The
high recall rate in our approach indicates that graph-grammar-
based visual analysis is powerful to recognize structured
records. The precision of our approach is 95.5%. Our approach
may falsely recognize some records, which are mainly caused
by noise. For example, if an advertisement is placed in the
central area and its overall layout is similar to our selected
pattern (e.g. including a link, a picture and several lines of
textual description that are displayed vertically); this
advertisement may be recognized as a product record. In order
to improve the precision, it is critical to improve the graph
generation process by removing potential noise. F1-Score
shows the overall performance. Our approach has a high F1-
Score of 97.49%. In summary, the results indicate our approach
has a good performance in terms of both precision and recall.

Domain Name
of

Structured
Records

Our approach

Correct Found

shopping.yahoo.com 15 14 14
scistore.cambridgesoft.com 13 13 14
shop.lycos.com 18 18 18
www.barnesandnoble.com 48 48 48
www.borders.com 27 28 29
www.circuitcity.com 5 5 7
www.compusa.com 18 18 21
www.drugstore.com 15 13 14
www.ebay.com 20 20 20
www.etoys.com 32 32 32
www.kidsfootlocker.com 29 29 29
www.kodak.com 20 20 20
www.newegg.com 20 20 26

Table 1. Evaluation Results

Figure 7. A spatial graph

Figure 8. Parsing result

378 379

www.nothingbutsoftware.com 24 24 24
www.overstock.com 18 18 18
www.powells.com 50 50 51
www.softwareoutlet.com 14 14 15
www.ubid.com 8 8 9
www.amazon.com 7 7 8
www.shopping.hp.com 5 5 5
www.qualityinks.com 24 24 26
Total 430 423 443
Recall/Precision 99.5%/95.5%
F1-Score 97.49%

VI. CONCLUSION
This paper presents a novel and general solution to extract

data across different Web sites. Our method works based on
graph grammars to extract the same type of information from
different Web sites without the need of training and adjustment
for different Web sites. Our approach utilizes both the visual
features of a rendered Web page and the HTML DOM
structure to extract structured records. We have implemented a
prototype and tested the prototype on 21 Web sites. The
evaluation shows promising results. Our approach has a high
F1-Score as 97.49%. The evaluation results indicate our
approach has a good performance in terms of both precision
and recall. The main advantage of our approach lies in its
ability to distinguish the most important contents from less
important and noisy information and to convert the complex
HTML DOM structure to a simple spatial graph. The generated
spatial graph significantly reduces the complexity of the
original Web page. Based on the simplified spatial graph, our
approach is efficient to extract structured records through a
graph parsing.

In the future work, we will identify more spatial relations
between information objects, and optimize the graph
generation algorithm. These optimizations may increase the
quality of generated spatial graphs, which can affect both the
precision and recall.

REFERENCES
[1] Arasu, A. and Garcia-Molina, H. 2003. Extracting structured

data from Web pages. In Proceedings of the 2003 ACM
SIGMOD international Conference on Management of Data.
337-348.

[2] Ates, K. and Zhang, K. 2007. Constructing VEGGIE: machine
learning for context-sensitive graph grammars. In Proceedings
of the 19th IEEE international Conference on Tools with
Artificial intelligence - Volume 02. ICTAI. IEEE Computer
Society, Washington, DC, 456-463.

[3] Chen, J. and Xiao, K. 2008. Perception-oriented online news
extraction. In Proceedings of the 8th ACM/IEEE-CS Joint
Conference on Digital Libraries. ACM, New York, NY, 363-
366.

[4] Chuang, S. and Hsu, J. Y. 2004. Tree-structured template
generation for Web pages. In Proceedings of the 2004

IEEE/WIC/ACM international Conference on Web intelligence.
IEEE Computer Society, Washington, DC, 327-333.

[5] Crescenzi, V., Mecca, G., and Merialdo, P. 2001. RoadRunner:
towards automatic data extraction from large Web sites. In
Proceedings of the 27th international Conference on Very Large
Data Bases. P. M. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K.
Ramamohanarao, and R. T. Snodgrass, Eds. Very Large Data
Bases. Morgan Kaufmann Publishers, San Francisco, CA, 109-
118.

[6] Hsu, C. and Dung, M. 1998. Generating finite-state transducers
for semi-structured data extraction from the Web. Inf. Syst. 23,
9, 521-538.

[7] Kong, J., Zhang, K., and Zeng, X. 2006. Spatial graph grammars
for graphical user interfaces. ACM Trans. Comput.-Human
Interact. 13, 2, 268-307.

[8] Kushmerick, N., Weld, D., & Doorenbos, R. 1997. Wrapper
induction for information extraction. In Proceedings of the
Fifteenth International Joint Conference on Artificial
Intelligence. 729-737.

[9] Laber, E. S., de Souza, C. P., Jabour, I. V., de Amorim, E. C.,
Cardoso, E. T., Rentería, R. P., Tinoco, L. C., and Valentim, C.
D. 2009. A fast and simple method for extracting relevant
content from news webpages. In Proceeding of the 18th ACM
Conference on information and Knowledge Management. ACM,
New York, NY, 1685-1688.

[10] Liu, B., Grossman, R., and Zhai, Y. 2003. Mining data records
in Web pages. In Proceedings of the Ninth ACM SIGKDD
international Conference on Knowledge Discovery and Data
Mining. ACM, New York, NY, 601-606.

[11] Muslea, I., Minton, S., and Knoblock, C. 1999. A hierarchical
approach to wrapper induction. In Proceedings of the Third
Annual Conference on Autonomous Agents. O. Etzioni, J. P.
Müller, and J. M. Bradshaw, Eds. AGENTS '99. ACM, New
York, NY, 190-197.

[12] Reis, D. C., Golgher, P. B., Silva, A. S., and Laender, A. F.
2004. Automatic web news extraction using tree edit distance. In
Proceedings of the 13th international Conference on World
Wide Web. ACM, New York, NY, 502-511.

[13] Shneiderman, B. 2009. Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wesley
Longman Publishing Co., Inc.

[14] Simon, K. and Lausen, G. 2005. ViPER: augmenting automatic
information extraction with visual perceptions. In Proceedings
of the 14th ACM international Conference on information and
Knowledge Management. ACM, New York, NY, 381-388.

[15] Zhang, Z., He, B., and Chang, K. C.-C. 2004. Understanding
Web query interfaces: best-effort parsing with hidden syntax. In
Proceedings of 2004 ACM SIGMOD International Conference
on Management of Data, 107-118.

[16] Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C. 2005.
Fully automatic wrapper generation for search engines. In
Proceedings of the 14th international Conference on World
Wide Web. ACM, New York, NY, 66-75.

[17] Zhai, Y. and Liu, B. 2005. Web data extraction based on partial
tree alignment. In Proceedings of the 14th international
Conference on World Wide Web. ACM, New York, NY, 76-85.

[18] Zhai, Y. and Liu, B. 2007. Extracting Web data using instance-
based learning. World Wide Web 10, 2, 113-132.

[19] Zheng, S., Song, R., and Wen, J. 2007. Template-independent
news extraction based on visual consistency. In Proceedings of
the 22nd National Conference on Artificial intelligence - Volume
2. A. Cohn, Ed. Aaai Conference On Artificial Intelligence.
AAAI Press, 1507-1512.

378 379

Cyclic Association Rules:
Coupling Dimensions And Measures

Eya Ben Ahmed, Ahlem Nabli and Faı̈ez Gargouri
University of Sfax, Higher Institute of Computer Science and Multimedia of Sfax, Tunisia

eya.benahmed@gmail.com, ahlem.nabli@fsegs.rnu.tn, faiez.gargouri@isimsf.rnu.tn

Abstract— On-line analytical processing (OLAP) provides
tools to explore data cubes in order to extract interesting
information. Nevertheless, it cannot offer any explanation of
relationships that could exist within data. To achieve this goal,
the association rules were performed on data cubes. We focus in
this work on a particular class of association rules which is the
cyclic association rules. The latter aims to discover rules that
occur in user-defined intervals at regular periods. Generally,
the generated patterns do not take into consideration the
specificities of the multi-dimensional context i.e., the measures
and their aggregations. In this paper, we propose a new method
of extraction of cyclic association rules from both dimensions
and measures. In addition, we redefine the quality metrics of the
derived patterns using the summarizability of measures through
applying the suitable aggregation functions. To prove the utility
of our approach, we undertake an empirical study on a real
data warehouse.

I. INTRODUCTION

Coupling of OLAP with data mining can bring expla-
nations of the correlations that may exist between the
multidimensional data. Recently, many works focused on
mining association rules from data warehouses. Some of
them were mainly interested in mining association rules
from data cubes. A particular form of the generated as-
sociation rules is the cyclic ones. In fact, cyclic associa-
tion rules (CAR) are defined as rules that occur in user-
defined intervals at regular periods throughout a dataset.
Compared to the stampede algorithmic effort for extracting
CAR ([1],[9],[6],[13], [14]), only few works study the CAR
drawn from multi-dimensional context [3] which does not
take enough advantage of the data cube structure. However,
many research works exploit the aggregate function in order
to generate association rules, such as the COUNT function
or the SUM function [4]. Nevertheless, in analysis process,
users generally focus on multi-dimensional data and their
associations according to more elaborated measures than sim-
ple frequencies or summations. So, restricting the considered
aggregate functions to the SUM and the COUNT limits the
possible considered measures or eliminates the concept of the
aggregation measure during the mining process. In fact, some
measures can not be summarized using addition across any
dimension. Such non-additive measures are frequent and ex-
perts highly need to extract association rules from both mea-
sures and dimensions. To better illustrate our contribution,
we assume that the table T shown in table I, is defined over
three dimensions, namely: the Time T of the transactions,
the Location L where the transactions took place (Jordan,
Yemen) , the Range R (let us consider both Licensed Range

and Model Hospital) as well as the three measures, namely:
the sold Quantity Q of the range R, the Exchange
Rate ER, the External Turnover ET . The sold
quantity cannot be aggregated along the time dimension,
similarly, the exchange rate cannot be meaningfully
summarized using addition across any dimension, and the
external turnover cannot be expressively summarized
through addition along all dimensions. For instance, we aim
at building rules combining several dimensions and measures
like ” Every odd quarter, the sold quantity of the
licensed range which is at the rate of 77520 units is sold
in Jordan with an external turnover reaching 750 in
the respect of an exchange rate equal to 1,948%”. The
interestingness measures of such a rule are articulated on the
semantic aggregation of measures using the fitting aggrega-
tion function. For example, 77520 and 750 are occurrences
of different measures and should not be evaluated using the
same criteria. Therefore depending on the summarizability of
each measure, we employ the suitable aggregation function
to qualify the importance of each value on the dataset.

Time Location Range Sold Quantity Exchange Rate External Turnover
T L R Q ER ET
Q1 of 2007 Jordan Licensed Range 77520 1,948% 750
Q2 of 2007 Jordan Licensed Range 75000 1,947% 550
Q3 of 2007 Jordan Licensed Range 77520 1,948% 750
Q4 of 2007 Jordan Licensed Range 80000 1,946% 1000
Q1 of 2008 Yemen Model Hospital 71100 1,382% 450
Q2 of 2008 Yemen Model Hospital 80000 1,382% 800

TABLE I
TABLE T

To the best of our knowledge, few works address the cyclic
patterns mining issue from multi-dimensional context con-
taining semi or non-additive measures. The originality of
our approach is to combine dimensions and measures during
the mining process. We aim to investigate such measures
that cannot be aggregated using any aggregate functions,
especially the COUNT or the SUM function and to redefine
the quality metrics of these generated rules through the
appropriate aggregation functions. In order to mine cyclic
rules from by coupling dimensions and measures, we extend
our approach which exclusively takes into account the mea-
sures on the mining process [2]. This paper is organized as
follows. In Section 2, we give a brief overview of our chosen
discretization technique of quantitative attributes, specially
in the multidimensional context. Then, we represent the
cyclic patterns. After that, we review the multidimensional
association rule mining approaches. To close this section, we

380 381

focus on the measures summarizability concept. In Section
3, we develop the formal background, notations, and defi-
nitions of our proposal. Section 4 studies our contribution.
Section 5 describes our algorithm. In Section 6, we conduct
some experiments performed on real data warehouse. Finally,
Section 7 gives a conclusion and future research directions.

II. RELATED WORKS
In this section, we present the related works.

A. Discretization of quantitative attributes
The equal frequency technique divides the range of possi-

ble values into N bins, each of which holds the same num-
ber of training instances. In the multidimensional context,
Palaniappan et al. underline that the equal frequency method
performs respectable results and is lossless time consuming.
B. Cyclic patterns

The extraction of the CAR was introduced by Ozden et
al. in order to better identify sales trends cyclicly. It involves
the association rules mining from articles characterized by
their regular variation over time, such as the daily, weekly,
quarterly, or annual regular variation which is naturally
cyclic. Such cycles are specified by the user to divide the data
into disjoint segments. Several algorithms were proposed
such as INTERLEAVED and SEQUENTIAL introduced by [9]
or MTP presented by Thuan [13], [14] or the Chiang’s
method to combine cyclic and sequential patterns [5] or
PCAR, proposed by [1].
C. Inter-dimensional association rules mining

Falling within the combination of several analysis dimen-
sions on association rules mining and based on the quality
evaluation of the generated patterns, two main pools can be
distinguished: (i) Approaches using the COUNT function;
(ii) Approaches using the SUM function.

1) Count-based evaluation of inter-dimensional associa-
tion rules: The main idea is to compute the support and the
confidence of inter-dimensional association rules according
to the COUNT function. In fact, a COUNT cell of the cube
stores the number of occurrences of the corresponding multi-
dimensional data values. Several works have investigated this
challenging solution. Firstly, Kamber et al. use the COUNT
function [7]. Plantevit et al. advanced an OLAP-sequential
multi-level mining [12]. Besides, Ben Ahmed et al. [3] study
the CAR mining from data warehouses.

2) SUM-based evaluation of inter-dimensional association
rules: Ben Messaoud et al. redefine the support and the
confidence metrics using the SUM aggregation function [4].
Such contribution scrutinizes facts according to summarized
values of measures more meaningful than the regular number
of occurrences of facts.

Except the proposal of plantevit et al. [11], where an
initiation to the mining process of association rules from
quantitative measures is investigated, all the remainder ap-
proaches neglect the measures during the mining process
of association rules. In addition, they are restricted to the
COUNT function to evaluate the derived rules except the pro-
posal of Ben Messaoud which is mainly based on the SUM
function. Nevertheless, in real situations, the aggregation of
some fact attributes might not be semantically meaningful

along all dimensions. For that reason, the exclusive use of the
COUNT or the SUM aggregation function is mostly unfitting
so the generated rules are imperfectly evaluated.
D. Measures Summarizability

Mandatory to determine the appropriate aggregation opera-
tors, Lenz and Shoshani distinguish three types of measures
[8], namely, (i) Additive measure values can be combined
meaningfully along any dimension (e.g., Add the total sales
or the external turnover over location and time); (ii)
Semi-additive measure values cannot be combined along one
or more of the dimensions, most often the time dimension
(e.g., Do not sum inventory item because the quantity may
be counted several times, but we can sum inventory levels
across products); (iii) Non-additive measure values cannot
be combined along any dimension, usually because of the
chosen formula (e.g., Compute the item price and the cost
per unit of a product).

In this paper, we use the concept of measures sum-
marizability proposed by Lenz [8] to introduce a general
process by coupling both of dimensions and measures to
mine measure-based CAR with a specific evaluation of each
measure depending on its appropriate aggregate functions. To
do this, an algorithm based on the Apriori and incorporating
dimensions and measures is introduced to extract cyclic
rules on one side. On the other side, we integrate the
summarizability of data cube measures in the computation
of the support and the confidence of such rules to better
evaluate the derived patterns.

III. FORMAL BACKGROUND AND NOTATIONS

In this section, we introduce our innovative basic concepts
inspired of the proposal of Plantevit et al. that will be of use
in the remainder.
A. Context partition

We consider that all is set in a multi-dimensional context.
The three necessary data for cyclic mining drawn from
classic context (Customer, Product, Date) become in a multi-
dimensional context sets. Let us consider a relational table
T , in which transactions issued by customers are stored,
defined on a set D of d dimensions and a set M of m
measures. The table is partitioned into two sets: (1) Endogen
context composed of the context dimensions DC and the
context measures MC included in the analysis process; (2)
Exogen context related to all the excluded dimensions and
measures from the analysis. We focus on the following on
the endogen context.

1) Context dimensions: The context dimensions DC can
be divided into three subcategories: (i) Temporal dimension
DT (date in classical context); (ii) Reference dimensions
DR (customer in classical context); (iii) Analysis dimensions
DA (product in classical context). All reference dimensions
DR are a conjunction of several dimensions where each
dimension can have a single attribute value or a set of
occurrences.

2) Context measures: The context measures MCcan be
partitioned into two subcategories: (i) Reference measures
M R (table is partitioned according to tuple values over
reference measures); (ii) Analysis measures M A (tuples over

380 381

analysis measures are those that appear in the items that
constitute the cyclic patterns to be mined).

The analysis measures can be divided into four subcate-
gories: (1) Set of additive measures M SUM when the SUM
function can be used for data aggregation; (2) Set of maximal
measures M MAX when the MAX function can be applied
to aggregate the data; (3) Set of minimum measures M MIN
when the MIN aggregation function can be used; (4) Set
of average measures M AV G when the AVG aggregation
function can be applied.

In our running example shown by table 1, we consider the
whole table as our endogen context composed of : (i) context
dimensions DC={T , R, L} with the temporal dimension
DT ={T}, the reference dimension DR= { L:”Jordan” } and
the analysis dimensions DA={R}; and (ii) context measures
MC={Q, ER, ET} with the analysis measures is equal to all
existing measures and no reference measure is limited to a
fixed value of measure and M MAX ={ Q} and M MIN={ET}
and M AV G={ER}.

Definition 1: (Endogen Sub-cube): Let D’ ⊂ D a
nonempty set of p dimensions {D1,...,D p} extracted from the
data cube C (p ≤ d) with d the cardinality of all dimensions
and M ’⊂ M a nonempty set of q measures {M 1,...,M q}
extracted from the data cube C (q ≤ m) with m the cardinality
of all measures.

The e-tuple (δ1,...,δt) is called an endogen sub-cube of
data C according to : (i) D’ iff ∀ i ∈ {1,...,p}, δi �= /0 and
δi ∈ Dom(D i); (ii) M ’ iff ∀ j ∈ {1,...,q}, γ j �= /0 and γi ∈
Dom(M j).
In our example, in the endogen sub-cube, each e-tuple e =
(d1,...,dp,m1,...,mq) can be written in the form of a triple e
= (r, a , t) where r is the restriction of DR and M R, a is the
restriction of DA and M A and t is the restriction of DT .

B. Measure-Based Uni-dimensional Cyclic Item and Inter-
dimensional Cyclic Itemset

Definition 2: Measure-based Uni-Dimensional Cyclic
Item: Let the analysis dimensions DA = {D1,...,D p} and
the analysis measures M A = {M 1,...,M q} and a length of
cycle l. A measure-based uni-dimensional cyclic item α is
an item satisfying at least one of the following conditions:

• belonging to one of the analysis dimensions, namely,
Dk and having a value of α= dk on the date t and
compulsorily on the date t + l such that ∀ k ∈ [1,p], dk
∈ Dom(Dk);

• belonging to one of the analysis measures, namely,
M l and having a value of α =ml on the date t and
necessarily on the date t + l such that ∀ l ∈ [1,q], ml ∈
Dom(M l).

Typical examples of measure-based uni-dimensional cyclic
item, considered in the multi-dimensional context, shown by
the table III and the delimitation of the context considered
previously, is α= (Licensed Range) because it belongs to the
Range dimension R, being a part of analysis dimension and
its value Licensed Range belongs to the Range domain and
is repeated each odd quarter of 2007. Or α= (77500) because
it belongs to the sold quantity measure Q, being a

part of analysis measure and its value 77500 belongs to the
sold quantity domain and is repeated each odd quarter
of 2007.

Definition 3: Measure-Based Inter-dimensional Cyclic
Itemset: A measure-based inter-dimensional cyclic itemset I
defined on DA = {D1,...,Dk} or M A = {M 1,...,M j} is a
nonempty set of items I = {α1,...,αt} with α1 ∈ DA and ∀ π
∈ [2, θ], απ is a measure-based uni-dimensional cyclic item
defined on DA and/or M A and ∀ π , e ∈ [1, θ], απ �= αθ .

Example 1: An example of measure-based inter-
dimensional cyclic itemset is I:[L = Jordan, R =
Licensed Range,Q = 77500] because it is composed of
three measure-based uni-dimensional cyclic items i.e.,
α1=(Jordan), α2=(Licensed Range) and α3=(77500). It is
repeated quarterly.

C. Support computation of measure-based uni-dimensional
cyclic item and measure-based inter-dimensional itemset
using appropriate aggregate functions

Definition 4: The Support of measure-based uni-
dimensional cyclic Item: The support of the measure-based
uni-dimensional cyclic item α , denoted Supp(α) is com-
puted as follows:

• If α does not belong to one of the analysis measure: the
support is equal to the number of tuples that contain the
item; Supp(α) = COUNT (α)

COUNT (ALL) ;
• If α belongs to one of the analysis measure M l , the

support is computed in the respect of:
1) Ml ∈ M SUM , the support of α is the quotient of

the value of α and the sum of values belonging to
the current measure because the latter is aggregating
using the SUM function; Supp(α) = α

SUM(Ml)
;

2) Ml ∈ M MAX , Supp(α) = α
MAX(Ml)

; the support of α
is the quotient of the value of α and the maximum of
values belonging to the current measure because the
latter is aggregated using the MAX function;

3) Ml ∈ M MIN , the support of α is the quotient of the
difference between the value of α and the minimum
value of the measure, and the difference between the
maximum and the minimum of the current measure:
Supp(α) = α−MIN(Ml)

MAX(Ml)−MIN(Ml)
;

4) Ml ∈ M AV G

– If (α ≤ AV G(Ml)), if α belongs to the measure
aggregating using the AVG function and the value
of α is lower than the average value of the current
measure, the support of α is the quotient of the
value of α and the average of values belonging to
the current measure; Supp(α) = α

AV G(Ml)
;

– else the support of α is the quotient of the dif-
ference between the value of α and the minimum
value, and the difference between the maximum
and minimum of the current measure; Supp(α) =

α−MIN(Ml)
MAX(Ml)−MIN(Ml)

.
In our running example referring to the table III, we consider
the following items:

• (α1=77500) ∈ Q and Q ∈ M MAX , α1 has a support

382 383

equal to Supp(α1) = α1
MAX(Ml)

= α1
MAX(Q) = 77500

80000 =
0.968

• (α2=700) ∈ ET and ET ∈ M MIN , α2 has an
a support equal to Supp(α2) = α2−MIN(Ml)

MAX(Ml)−MIN(Ml)
=

α2−MIN(ET)
MAX(ET)−MIN(ET) = 700−600

700−600 = 1;
• (α3=1,382%) ∈ ER and ER ∈ M AV G with

AVG(ER)= (1,947∗4)+(1,382∗2)
6 = 1,758.

α3=1,382% < AV G(ER) =1,758 so α3 has a support
equal to Supp(α3) = α3

AV G(ER) = 1,382
1,758 = 0.786.

Definition 5: The Support of Measure-Based Inter-
dimensional Cyclic Itemset: Let’s consider a measure-based
inter-dimensional cyclic itemset I = {α1, ...,αp...,αn} com-
posed p dimensions of DA and/or n− p measures of M A.
The support of I, denoted Supp(I) is decomposed into the
support of measure-based uni-dimensional items belonging
to p dimensions and computed using the following formula
COUNT (α1

⋃
αp)

COUNT (DA=ALL) and the ones belonging to n− p measures
and obtained using the following formula ∏n

i=p+1 SUPP(αi).
Supp(I) = COUNT (α1

⋃
αp)

COUNT (DA=ALL) ∗∏n
i=p+1 SUPP(αi) ;

Example 2: The measure-based inter-dimensional cyclic
itemset I=[L = Jordan, R = Licensed Range,Q = 77500]
has a support related to the sales of 77500 units
of the Licensed Range sold in Jordan Supp(I) =
COUNT (L=Jordan,R=Licensed Range)

COUNT (DA=ALL) ∗ ∏3
i=2 SUPP(Q = 77500) =

COUNT (L=Jordan,R=Licensed Range)
COUNT (DA=ALL) ∗ SUPP(Q = 77500) = 4

6 ∗
Q=77500
MAX(Q) = 4

6 ∗ 77500
80000 = 0.666∗0.968 = 0.645.

D. Support and Confidence of Measure-Based Inter-
dimensional Cyclic Rule

Definition 6: Support of Measure-Based Inter-
dimensional Cyclic Rule: The rule support R : X ⇒ Y ,
denoted Supp(R), is equal to the ratio of the support of X
and Y to the total number of tuples in the subcube.

Supp(R) = SUPP(X∪Y)
SUPP(ALL,ALL) ;

The support of de R, Supp(R) ∈ [0, 1].
Definition 7: Confidence of Measure-Based Inter-

dimensional Cyclic Rule: The rule confidence R : X ⇒ Y ,
denoted con f (R), is equal to the ratio of the number of tuples
that contain X and Y to the number of tuples that contain X
in the subcube.

con f (R) = Supp(R)
Supp(X) ;

The confidence of R, con f (R) ∈ [0, 1].
In our running example, the rule R: R =

Licensed Range ⇒ Q = 77500 has : Supp(R) = Supp(R =
LicensedRange ∪ Q = 77500) = COUNT (R=Licensed Range)

COUNT (ALL) ∗
SUPP(Q = 77500) = 4

6 ∗ 77500
MAX(Q) = 4

6 ∗ 77500
80000 = 0.666 ∗

0.968 = 0.645. Con f (R) = Supp(R)
Supp(Y) = Supp(R)

Supp(R=Licensed Range) =
0.645
0.666 = 0.429.

IV. MINING MEASURE-BASED INTER-DIMENSIONAL
CYCLIC ASSOCIATION RULES

Starting from a data cube, we propose the following two
phases to generate measure-based inter-dimensional cyclic
association rules:

• Pre-processing phase contains two steps which are :
(i) the derivation of the endogen sub-cube based on
the user-specification of the endogen context using an
SQL query; (ii) the discretization of continuous valued
measures within the equal frequency discretization tech-
nique;

• Processing phase consists on the mining of measure-
based inter-dimensional CAR from data cube.

In what follows, these phases are detailed.
A. Pre-processing phase

Date Location Range Sold Quantity Exchange Rate External Turnover
D L R Q ER ET
Q1 of 2007 Jordan Licensed Range 75000-80000 1,946%- 1,948% 450-750
Q2 of 2007 Jordan Licensed Range 75000-80000 1,946%- 1,948% 450-750
Q3 of 2007 Jordan Licensed Range 75000-80000 1,946%- 1,948% 450-750
Q4 of 2007 Jordan Licensed Range 75000-80000 1,946%- 1,948% 800-1000
Q1 of 2008 Yemen Model Hospital 71100-75000 1,38%- 1,382% 450-750
Q2 of 2008 Yemen Model Hospital 75000-80000 1,38%- 1,382% 800-1000

TABLE II
TABLE T WITH A DISCRETIZATION OF MEASURES USING EQUAL

FREQUENCY TECHNIQUE

Based on the user-specification of the endogen context,
an SQL query can be launched to derive the endogen sub-
cube in the respect of the selected analysis dimensions
and measures and restrictions on reference dimensions and
measures.

Time Location Range Sold Quantity Exchange Rate External Turnover
T L R Q ER ET
Q1 of 2007 Jordan Licensed Range 77500 1,947% 600
Q2 of 2007 Jordan Licensed Range 77500 1,947% 600
Q3 of 2007 Jordan Licensed Range 77500 1,947% 600
Q4 of 2007 Jordan Licensed Range 77500 1,947% 700
Q1 of 2008 Yemen Model Hospital 73050 1,381% 600
Q2 of 2008 Yemen Model Hospital 77500 1,381% 700

TABLE III
TABLE T OBTAINED AFTER THE PREPROCESSING PHASE

To generate the measure-based inter-dimensional cyclic
association rules from the endogen sub-cube, a discretization
of the context measures is compulsory. We choose in our con-
text the equal frequency technique for many reasons, namely,
the intervals are created so that, roughly, the frequency of
each interval is constant and each interval contains roughly
the same number of contiguous data samples. In our case,
the expert specify the depth to forty otherwise the forty
nearest values will compose an independent interval. For
example, 77520, 75000, 77520, 80000 and thirty six other
values belonging to the range of 75000 and 80000 in the
sold quantity measure compose the interval [75000-
80000].
According to the same method, the obtained sub-cube after
the discretization step is depicted by the table II. Once we
obtain the discretized intervals, we use the median value for
each interval related to continuous valued measure so that we
can involve the summarizability of measures on the mining
process. In fact, the median value can be computed using the
following formula Vmedian = Vmax+V min

2 . For example, in our
case (table II), the considered item for the sold quantity
measure is α = Vmax+V min

2 = 75000+80000
2 = 77500. The output

table is shown by the table III which is the input of our
method.

382 383

B. Mining phase: Extraction of Measure-based Inter-
dimensional Cyclic Association Rules Using Appropriate
Aggregate Functions

After deriving the endogen sub-cube and discretization
of valued measures and dimensions and the transformation
of valued analysis measures using the median of each in-
terval, the MEasure-based inter-Dimensional Cyclic Asso-
ciation Rules using Aggregate functions algorithm, called
MEDCAR takes as input the decortication of the analysis
measures according to the appropriate aggregate functions to
sets, the set of the minimum threshold of support Minsupp
and the minimum threshold of confidence MinCon f and the
length of cycle. It outputs the list of measure-based inter-
dimensional CAR. The used notations are depicted by table
IV and its pseudo-code is illustrated by the algorithm in the
following. In fact, MEDCAR, an iterative process, operates
in three successive steps. First, we proceed by an increasing
level wise search for measure-based inter-dimensional cyclic
large i-itemsets, where the level (i) designs the number of
items in the set.

Notation Description
SC Endogen Sub-cube
α Potential measure-based uni-dimensional cyclic item
I Measure-Based Inter-dimensional cyclic itemset
C i (resp.F i) Set of candidates (resp. frequent) measure-based

inter-dimensional cyclic i-itemsets.
M insupp Minimum support threshold
M incon f Minimum confidence threshold
D t Date t
l Length of cycle
Supp(C) Support of the measure-based inter-dimensional

cyclic itemset C
M MAX set of measures that can be aggregated using MAX
M AV G, M SUM) function(resp. M MIN (resp. MIN, AVG, SUM)

TABLE IV
LIST OF USED NOTATIONS IN THE MEDCAR ALGORITHM.

We denote by C(i) the measure-based inter-dimensional
cyclic candidate i-itemsets potentially frequent, and F(i) the
measure-based inter-dimensional cyclic frequents i-itemsets.
For each level (i), if the set C(i) is not empty, the first step
of our algorithm derives the measure-based inter-dimensional
frequent cyclic patterns F(i) from C(i) with respect of two
conditions: (C1) A measure-based inter-dimensional cyclic
itemset A ∈ C(i) must be a conjunction of members from
analysis dimensions or/and analysis measures; (C2) and a
measure-based inter-dimensional cyclic itemset must have a
support above the Minsupp to be included in F(i). For an
efficient extraction of measure-based inter-dimensional cyclic
frequent itemsets, we exploit the anti-monotonicity property
of the support in the multi-dimensional context. Indeed, any
subset of a frequent cyclic set is frequent cyclic and any
cyclic itemset failing to be frequent, all its supersets will not
be frequent so they will be pruned. The second step uses the
measure-based inter-dimensional cyclic large i-itemsets F(i)
to derive a new set C(i+1) of (i+1)-candidates. A (i + 1)-
candidate is formed by the union of two measure-based inter-
dimensional cyclic i-itemsets A and B from F(i) according
to three conditions: (C1) A and B must have (i - 1)
common measure-based uni-dimensional cyclic items; (C2)
all measure-based inter-dimensional cyclic sub-itemsets A

U B must be instances of DA and/ or M A; (C3) and
all nonempty measure-based inter-dimensional cyclic sub-
itemsets of A U B must be measure-based inter-dimensional
cyclic frequent itemsets.

Algorithm 1: MEDCAR: MEasure-based inter-
Dimensional Cyclic Association Rules using Aggregate
functions

Data: SC, M insupp,M incon f , l, M MAX ,M MIN ,M SUM , M AV G
Result: R: Measure-based Inter-dimensional cyclic rules in SC using Aggregate

functions

begin
F 1= Find 1-frequent cyclic itemsets (SC, l,D t , M inSupp) ;
for (k=2; F k �= /0; k++) do

C k = CandidatGeneration(F k−1);
if C k is a inter-dimensional cyclic itemset then

foreach transaction T ∈ SC at date D t do
C t =subset(C k , T)
foreach candidat C ∈ C t do
C .count = SupportComputing(SC, l,D t , C);
F k = { C ∈ C k , C .count > M insupp }

Return F k = ∪k F k ;
// RuleGeneration
for (i=2; i<k; i++) do

Generate All nonempty subset of F i;
foreach nonempty subset s of F i do
r = s → (F i-s);
if (confidence(r) > M incon f) then

R= R ∪ r;

Return R;
end
Procedure Find 1-frequent cyclic itemsets (SC, l,D t , M inSupp)
Result: F 1
begin

while (!End of tuples in SC) do
foreach transaction T ∈ SC do
foreach item α ∈ T do
foreach transaction T � ∈ SC at date D t+l do
// α ∈ Mk
if (α exists in T �) and (Mk ∈ M A) then

if Mk ∈ M SUM then
Supp(α)= α

SUM(Mk) ; // with m the current measure

if Mk ∈ M MAX then
Supp(α)= α

MAX(Mk) ;

if Mk ∈ M MIN then
Supp(α)= α−MIN(Mk)

MAX(Mk)−MIN(Mk) ;

if Mk ∈ M AV G then
if α >= AV G(Mk) then

Supp(α)= α
AV G(Mk) ;

Supp(α) = α−MIN(Mk)
MAX(Mk)−MIN(Mk) ;

if (α exists in T �) and (α ∈ DA) then
Supp(α)=COUNT(α);

if (Supp(α) > M inSupp) then
F 1 = F 1 ∪ α ;

Return F 1 ;
end
Procedure SupportComputing (SC, l,D t , C)
Result: Supp(C)
begin

NoMoreCyclic: Boolean;
NoMoreCyclic = false;
while ((!End of tuples in SC) and (!NoMoreCyclic)) do

C k = CandidatGeneration(C k−1);
foreach transaction T ∈ SC at date D t+l do
if C exists in T then

if Itemset I of C contains M A then
Supp(C)=COUNT (C - I) ∏n

i=1 Supp(i).
Supp(C)=COUNT(C);

NoMoreCyclic = true;
Return Supp(C) ;

end

Finally, the third stage consists on scanning F(i) level by
level. From every A ∈ F(i), we extract the measure-based

384 385

inter-dimensional CAR with respect to condition, i.e., hav-
ing a confidence above the minimum confidence threshold
MinCon f . V. EXPERIMENTAL RESULTS

Experiments were conducted on a Pentium PC with 1.73
GHz and 1 GB of main memory. In the following, we
report experiments performed on a real sales data warehouse
1, which contains three dimensions (e.g., Time dimension,
Range dimension, Location dimension) and one sales
fact table. The data warehouse is built using relational OLAP
(ROLAP). Figure 1.(a) shows the behavior of our approach
when the frequency interval changes. In fact, the increase of
the frequency intervals, decreases the performance of our
method because if we rise the frequency, the number of
measure-based inter-dimensional cyclic candidates itemsets
will highly grow leading to an increase of the measure-
based inter-dimensional cyclic frequent itemsets. Figure 1.(b)
presents a test of our algorithm on varying the length of
cycle. For small support values, the running time consider-
ably increases by decreasing the length of cycle. However,
for large supports, the length of cycle has a less effect on
the performance of our algorithm. In the figure 1.(c), we
clearly notice that the efficiency of the algorithm closely
depends on the number of dimensions involved during the
mining process. Similarly, the running time obviously in-
creases according to the number of involved measures as
shown by figure 1.(d). When the number of dimensions
(respectively measures) is high, the number of measure-based
inter-dimensional cyclic frequent itemsets mined among sev-
eral candidates is high. On the contrary, when this number
of dimensions (respectively measures) is low, the potential
measure-based inter-dimensional cyclic frequent itemsets is
also low).
Interestingly enough, these experiments highlight acceptable
runtime processing. The efficiency of our algorithm is due to:
(i) the use of constraint based mining through the choice of
dimensions and measures analysis which highly reduce the
search space of CAR and therefore, considerably decreases
the runtime of the mining process; (ii) the use of the Apriori
property which is definitely suited to sparse data cubes and
considerably reduces the complexity of measure-based inter-
dimensional cyclic large itemsets search. The usefulness
of our proposal is motivated by coupling dimensions and
measures.

VI. CONCLUSION
In this paper, we proposed a new method to extract

measure-based cyclic association rules taking into considera-
tion the summarizability of measures during the evaluation of
the generated measure-based inter-dimensional patterns from
the OLAP context. Thus, a new definition of measure-based
inter-dimensional cyclic patterns is provided. A redefinition
of their evaluation metrics inspired from the summarizability
characteristic of involved measures is presented using the
relevant aggregation functions characterizing such a measure.
Accordingly, a new method called MEDCAR to extract such

1The data warehouse is related to pharmaceutical listed company. It is
built using the available information at http ://www.bvmt.com.tn/companies/
?view=listed.

(a) (b)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e(

s)

MinSupp(%)

Interval Frequency=10
Interval Frequency=50

Interval Frequency=100

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e(

s)

MinSupp(%)

Length of cycle=2
Length of cycle=4
Length of cycle=6

(c) (d)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e(

s)

MinSupp(%)

Dimensions Number=3
Dimensions Number=4
Dimensions Number=5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

R
un

tim
e(

s)

MinSupp(%)

Measures Number=3
Measures Number=4
Measures Number=5

Fig. 1. The running times of our algorithm according to the (a) frequency
interval, (b) length of cycle, (c) number of dimensions, (d) number of
measures.

patterns is introduced.
Other avenues for future work mainly address the following
issues: (i) use of other discretization technique to guarantee a
lossless information for measure, (ii) discovery of unexpected
cyclic patterns in OLAP context, (iii) mining of measure-
based inter-dimensional cyclic patterns under time constraint
such as the integration of excluded intervals.

REFERENCES
[1] E.Ben Ahmed and M.S.Gouider, “Towards a new mechanism of ex-

tracting cyclic association rules based on partition aspect“, IEEE
International Conference on RCIS, pp 69–78,2010.

[2] E.Ben Ahmed, A.Nabli and F.Gargouri, “Usage Des Mesures Pour La
Génération Des Règles d’Associations Cycliques“, Conférence franco-
phone sur les entrepôts de données et l’analyse en ligne,2011.

[3] E.Ben Ahmed and F.Gargouri, “Règles d’association cycliques dans
un contexte multidimensionnel“, Atelier des Systmes Décisionnels
(ASD’10), Tunisia, 2010.

[4] R.Ben Messaoud, O.Boussaid, S.L Rabasda and R.Missaoui, “Enhanced
mining of association rules from data cubes“, Proceedings of the 9 th
ACM International Workshop on Data Warehousing and OLAP (DOLAP
2006), pp 11–18, 2006.

[5] D.Chiang, C.Wang, S.Chen and C.Chen, “The Cyclic Model Analysis
on Sequential Patterns“, IEEE Trans. on Knowl. and Data Eng., pp
1617–1628, 2009.

[6] J.Han, W.Gong and Y.Yin “Efficient Mining of Partial Periodic Patterns
in Time Series Database“, ICDE, pp 106–115,1999.

[7] M.Kamber, J.Han and J.Y.Chiang “Metarule-guided mining of multi-
dimensional association rules using data cubes“, Proceedings of the
KDD’97 pp 207–210,1997.

[8] H.J.Lenz and A.Shoshani, “Summarizability in OLAP and Statistical
Data Bases“, pp 132–143, 1997.

[9] B.Ozden, S.Ramaswamy and A.Silberschatz , “Cyclic Association
Rules“, Proceedings of the Fourteenth International Conference on Data
Engineering pp 412–421, 1998.

[10] S.Palaniappan and T.K.Hong, “Discretization of Continuous Valued
Dimensions in OLAP Data Cubes“, International Journal of Computer
Science and Network Security, pp 116–126, 2008.

[11] M.Plantevit, A.Laurent and M.Teisseire, “Motifs séquentiels multidi-
mensionnels et mesure:Différentes techniques pour calculer le support“,
Ingénierie des Systèmes d’Information, pp9–32, 2008.

[12] M.Plantevit, A.Laurent, D.Laurent, M.Teisseire and Y.Choong “Min-
ing multidimensional and multilevel sequential patterns“, ACM Trans-
actions on Knowledge Discovery from Data, pp 155–174,2010.

[13] N.D.Thuan, “Mining Cylic Association Rules in Temporal Database
“, The Journal Science and technology developement, Vietnam National
University , pp 12–19, 2004.

[14] N.D.Thuan, “Mining Time Pattern Association Rules in Temporal
Database“, SCSS, pp 7-11, 2008.

384 385

Measuring Similarity in Large-scale Folksonomies

Giovanni Quattrone1, Emilio Ferrara2, Pasquale De Meo3, Licia Capra1
1Dept. of Computer Science, University College London, UK

2Dept. of Mathematics, University of Messina, IT
3Dept. of Physics, Informatics Section, University of Messina, IT

E-mail: {g.quattrone,l.capra}@cs.ucl.ac.uk; {eferrara,pdemeo}@unime.it

Abstract

Social (or folksonomic) tagging has become a very popu-
lar way to describe content within Web 2.0 websites. Unlike
taxonomies, which overimpose a hierarchical categorisa-
tion of content, folksonomies enable end-users to freely cre-
ate and choose the categories (in this case, tags) that best
describe some content. However, as tags are informally de-
fined, continually changing, and ungoverned, social tagging
has often been criticised for lowering, rather than increas-
ing, the efficiency of searching, due to the number of syn-
onyms, homonyms, polysemy, as well as the heterogeneity of
users and the noise they introduce. To address this issue, a
variety of approaches have been proposed that recommend
users what tags to use, both when labelling and when look-
ing for resources. As we illustrate in this paper, real world
folksonomies are characterized by power law distributions
of tags, over which commonly used similarity metrics, in-
cluding the Jaccard coefficient and the cosine similarity, fail
to compute. We thus propose a novel metric, specifically
developed to capture similarity in large-scale folksonomies,
that is based on a mutual reinforcement principle: that is,
two tags are deemed similar if they have been associated to
similar resources, and vice-versa two resources are deemed
similar if they have been labelled by similar tags. We of-
fer an efficient realisation of this similarity metric, and as-
sess its quality experimentally, by comparing it against co-
sine similarity, on three large-scale datasets, namely Bib-
sonomy, MovieLens and CiteULike.

1. Introduction

The rise of Web 2.0 has transformed users from pas-
sive consumers to active producers of content. This has
exponentially increased the amount of information that is
available to users, from videos on sites like YouTube and
MySpace, to pictures on Flickr, music on Last.fm, blogs
on Blogger, and so on. This content is no longer cat-

egorised according to pre-defined taxonomies (or ontolo-
gies). Rather, a new trend called social (or folksonomic)
tagging has emerged, and quickly become the most popu-
lar way to describe content within Web 2.0 websites. Unlike
taxonomies, which overimpose a hierarchical categorisation
of content, folksonomies empower end users by enabling
them to freely create and choose the tags that best describe
a piece of information (a picture, a blog entry, a video clip,
etc.). However, this freedom comes at a cost: since tags are
informally defined, continually changing, and ungoverned,
finding content of interest has become a main challenge, be-
cause of the number of synonyms, homonyms, polysemy, as
well as the inevitable heterogeneity of users and the noise
they introduce.

In order to assist users finding content of their own in-
terest within this information abundance, new techniques,
inspired by traditional recommender systems, have been
developed: for example, whenever a user searches from
some content using query tags {t1, . . . , tm}, new tags
{tm+1, . . . , tm+n} are being added to the query, based on
their similarity to their original query tags. This is done to
increase the chances of finding content of relevance in these
extremely sparse settings. Various metrics have been used
to compute the similarity among folksonomy entities, in-
cluding, for instance, cosine similarity, Jaccard coefficient,
and Pearson Correlation. Performance results demonstrate
an increase in accuracy and coverage of searches when us-
ing these techniques; however, evaluation has been con-
ducted on manipulated datasets so to obtain a much denser
one. We argue that such manipulations alter the nature of
real folksonomies, and indeed eliminate the problem, rather
than solving it.

Unmodified real-world folksonomies are characterized
by two key properties: the power law distribution of tags,
and the non-independence of data. Empirical studies [4, 5]
illustrate that tag usage in folksonomies follows a power
law distribution; this means that, if we were select any two
tags, the probability that the resources jointly labelled by
them is non-zero is extremely low. As a result, comput-

1

386 387

ing tag similarity on un-modified folksonomies, using tra-
ditional metrics like cosine similarity, would almost always
yield close-to-zero values, thus failing to support users in
retrieving resources relevant to their queries. Furthermore,
metrics like cosine assume that tags are semantically inde-
pendent of each other; once again, this assumption does not
hold in real folksonomies, where tags may be synonyms to
each other.

In this paper, we propose a novel similarity metric that
can be used to accurately quantify tag similarity in large-
scale real-world folksonomies (Section 3). This similar-
ity metric is computed following an iterative algorithm,
grounded on a mutual reinforcement principle: that is, two
tags are similar if they label similar resources, and vice-
versa, two resources are similar if they have been labelled
by similar tags. We describe an efficient realisation of this
similarity metric (Section 4), and empirically quantify its
quick convergence on three large-scale datasets, namely
BibSonomy1, MovieLens2, and CiteULike3. We measure
Precision and Recall of our metric, and compare it to co-
sine similarity on these unprocessed datasets (Section 5).
Our findings demonstrate that, when considering our un-
manipulated datasets, the performance of our novel similar-
ity metric provides higher Precision and Recall w.r.t. the
cosine similarity. Section 6 covers related works on simi-
larity measures, mainly applied to folksonomies. Finally, in
Section 7 we draw our conclusions.

2. Background

In this section, we formally introduce some concepts that
will be extensively used in the following, when presenting
our approach. The first concept we consider is that of a
folksonomy [12]:

Definition 2.1 Let US = {u1, . . . , unu
} be a set of users,

let RS = {r1, . . . , rnr
} be a set of resource URIs and let

TS = {t1, . . . , tnt
} be a set of tags. A folksonomy F is a

tuple F = �US,RS, TS,AS�, where AS ⊆ US×RS×TS
is a ternary relationship called tag assignment set.

In this definition we do not make any assumption about
the nature of resources; they could be URLs (like in De-
licious), photos (as in Flickr), music files (as in Last.fm),
documents (as in CiteULike), and so on.

According to Definition 2.1, a folksonomy F is a “three-
dimensional” data structure whose “dimensions” are repre-
sented by users, tags and resources. In particular, an el-
ement a ∈ AS is a triple �u, r, t�, indicating that user u
labelled resource r with tag t. To simplify modeling and

1http://www.bibsonomy.org/
2http://www.movielens.org/
3http://www.citeulike.org/

management of folksonomies, their inherent tripartite graph
structure is often mapped into three matrices, whereby each
matrix models one relationship at a time (i.e., between tags
and resources, tags and users, and resources and users) [19].
In this paper, we adopt the same matrix-based representa-
tion. Specifically, being nr, nt and nu the number of re-
sources, tags and users respectively, we represent a folk-
sonomy as the following three matrices:

• TR (Tag-Resource): a nt ×nr matrix such that TRij

is the number of times the tag i labelled resource j;

• TU (Tag-User): a nt × nu matrix such that TUij is
the number of times the tag i has been used by user j;

• RU (Resource-User): a nr × nu matrix such that
RUij is the number of times resource i has been la-
belled by the user j.

Tag similarity within a folksonomy can then be com-
puted by looking at the resources these tags have been at-
tached to. In particular, each tag ti can be mapped onto a
vector tr(i) corresponding to the i-th row of TR. Given
an arbitrary pair of tags ti and tj , their similarity s(ti, tj)
can be computed as the cosine similarity (CS) of the vec-
tors tr(i) and tr(j):

s(ti, tj) =
�tr(i), tr(j)�√�tr(i), tr(i)�

√�tr(j), tr(j)�
(1)

being �·, ·� the usual inner product in Rnr .
Cosine similarity has been successfully applied in the

context of Information Retrieval [16]. Within a folksonomy,
Equation 1 states that the similarity score of a pair of tags
is high if they jointly co-occur in labelling the same subset
of resources. However, two key properties of folksonomies,
that are, (i) the power law distribution of tags and (ii) their
non-independence, cause Equation 1 to yield very poor re-
sults in this domain, as we shall discuss next.

Power Law in Tag Distribution. Let us consider a real-
world folksonomy like BibSonomy. BibSonomy [11, 13] is
a social bookmarking service in which users are allowed to
tag both URLs and scientific papers. A power law distribu-
tion of tags on scientific references emerges. In particular,
resources were described by no more than 5 different tags
(roughly 81%), and usually less than 3 (roughly 58%). A
small portion of frequently adopted tags used to bookmark
scientific references, and a long tail of tags (roughly 81%)
being used less than 5 times.

Following the above observations, matrix TR is rather
sparse; thus, if we were to select any pair of tags ti and
tj , most of the components of the corresponding vectors
tr(i) and tr(j) would be 0 and, therefore their inner product
would be close to 0. The cosine similarity between any ti
and tj would therefore be almost 0, regardless of the initial

386 387

choice of ti and tj . Such counter-intuitive result is an effect
of the inadequacy of cosine similarity to capture properties
of tags in large-scale real folksonomies.

Non-Independence of Tags. Cosine similarity implic-
itly assumes that the components of the vectors appearing in
Equation 1 are independent of each other. Such an assump-
tion does not often hold true. For instance, consider a folk-
sonomy consisting of two resources r1 and r2, representing
two different scientific papers, both discussing about folk-
sonomies. Suppose that the paper associated with r2 is an
extension of the paper associated with r1. Finally, assume
to bookmark the resource r1 with the tag t1 = “folkson-
omy” and to bookmark the resource r2 with the tag t2 =
“social tagging”. In this case, the similarity between t1 and
t2 computed according to Equation 1 would be 0, even if t1
and t2 should result similar each other. The mutual similar-
ity between t1 and t2 can be assessed only if we consider
the non-independence of the resources they label.

3. Approach Description

In this section, we present a new definition of tag (and re-
source) similarity, that is particularly suited to quantify sim-
ilarity of elements (be them tags of resources) in datasets
characterized by power law distribution and non-indepen-
dence of data. Our definition of similarity relies on the mu-
tual reinforcement principle:

Two tags are similar if they label similar re-
sources, and conversely, two resources are sim-
ilar if they are labelled by similar tags.

In the following, we shall derive a mathematical formula
to compute tag and resource similarity on the basis of the
principle stated above. After this, we shall illustrate why
our formula is able to effectively address the power law and
non-independence challenges.

We designed an iterative algorithm to compute the sim-
ilarity score. In the base case, given a pair of tags �ta, tb�
and a pair of resources �ra, rb�, we define the tag similarity
st0(ta, tb) and the resources similarity sr0(ra, rb) as fol-
lows:

st0(ta, tb) = δab sr0(ra, rb) = δab (2)

being δab the Kronecker symbol4. Equation 2 reflects the
fact that, in the initial step, each tag (resp., resource) is sim-
ilar only to itself and it is dissimilar to all other tags (resp.,
resources).

At the k-th step, let stk−1(ta, tb) (resp., srk−1(ra, rb))
be the tag (resp., resource) similarity between the tags ta

4We recall that the Kronecker symbol δab is equal to 1 if a and b coin-
cide and 0 otherwise.

and tb (resp., resources ra and rb). We apply the following
rules to update stk−1(ta, tb) (resp., srk−1(ra, rb)):

stk(ta, tb) =
ST k(ta, tb)√

ST k(ta, ta) ∗
√

ST k(tb, tb)
(3)

srk(ra, rb) =
SRk(ra, rb)√

SRk(ra, ra) ∗
√

SRk(rb, rb)
(4)

where:

ST k(ta, tb) =

nr∑
i,j=1

TRai ∗Ψij ∗ srk−1(ri, rj) ∗TRbj (5)

SRk(ra, rb) =

nt∑
i,j=1

TRia ∗Ψij ∗ stk−1(ti, tj) ∗TRjb (6)

Here Ψij is equal to 1 if i = j and it is equal to ψ if i �= j,
where ψ (called propagation factor) is a value belonging to
the interval [0, 1] ∈ R.

Equations 3–4 rely on the following intuitions. Given a
pair of tags �ta, tb�, at the k iteration, we consider all pair of
resources �ri, rj� in our folksonomy and we take their sim-
ilarity srk−1(ri, rj) into account to compute stk(ta, tb). In
particular, we compute a weighted sum of all the similarity
values srk−1(ri, rj), where the weights reflect the strength
of the association between the tag ta and the resource ri,
and the tag tb and the resource rj . As a consequence, the
higher the similarity between ri and rj , the higher the con-
tribution of the association between the tag ta and the re-
source ri, and the tag tb and the resource rj . Finally, the
term Ψij is instrumental to give higher relevance to tags
that labelled the very same resources, w.r.t. the fact that
they labelled two similar (but different) resources.

Note that, in the special case in which ψ = 0, our
method does not depend on k and Equations 3–4 reduce to
the cosine similarity formulation. In fact, in this particular
case, all the contributions srk−1(ri, rj) and stk−1(ri, rj)
are disregarded when i �= j, and are taken into considera-
tion only when i = j. Since all contributions srk−1(ri, ri)
and stk−1(ri, ri) are equal to 1 by definition, it follows that
Equations 3–4 reduce to the cosine similarity formulation.

Equations 3–4 are able to effectively address the power
law and non-independence of data challenges we outlined
above. In fact:

• In the computation of tag (resp., resource) similarity,
we leverage on the similarity of all pairs of resource
(resp., tag) similarities. As a consequence, unlike co-
sine similarity, we do not restrict ourselves to consider
only the resources jointly labelled by two tags (resp.,
the tags jointly labelling two resources), which can be
few, but we iteratively propagate similarity scores by
considering all the pairs of similar resources jointly la-
belled by the two tags (resp., all the pairs of similar

388 389

tags jointly labelling two resources). In this way we
are able to face the power law occurring in tag usage.

• In our definition of similarity, if two tags label sim-
ilar, even if not coincident, resources their similarity
score will be greater than 0, whereas the cosine sim-
ilarity would return 0. As a consequence, our simi-
larity method takes into account forms of correlation
among pairs of resources and/or tags rather than as-
suming their independence.

4. Realization

From a computational standpoint, Equations 3–4 could
entail a large overhead for two reasons:

• From a theoretical standpoint, our approach may need
an infinite number of iterations. As a consequence, we
need a stopping criterion allowing us to safely termi-
nate the execution of Equations 3–4 after a finite (and
low) number of iterations.

• Equation 3 (resp., Equation 4) requires the computa-
tion of n2

r resource-resource (resp,. n2
t tag-tag) simi-

larities, at each k-th step. This could make our simi-
larity measure inapplicable in practical cases, because
each iteration requires exactly n2

r × n2
t computations.

Fortunately, there are two important results making our
similarity measure applicable and entailing the same com-
plexity level as cosine similarity. The first result can be
stated by the theorem showed and proved in the Appendix5

which affirms that the sequences stk(ta, tb) and srk(ra, rb)
defined as in Equations 3–4 converge.

This theorem ensures that, after a certain number of it-
erations, Equations 3–4 converge to stable values. During
experimentation conducted on three real folksonomies (see
Section 5.1), we empirically found that convergence was
achieved after as little as five iterations, thus suggesting that
our similarity measure is applicable in practical cases.

Furthermore, Equations 3–4 can be defined, without any
loss of generality, as a simple matrix product (such as in
cosine similarity). Specifically, let stk and srk be the tag-
tag and resource-resource similarity matrices respectively,
with st0 = It and sr0 = Ir; here st0 = It (resp., sr0 = Ir)
is the nt×nt (resp., nr×nr) identity matrix. If we indicate
with the symbol “◦” the Hadamard matrix product6 [7], at
the k-th step, the stk and srk matrices can be computed as:

stk = STk ◦DTk (7)
srk = SRk ◦DRk (8)

5See http://tinyurl.com/proof-seke2011.
6Given two matrices A and B of the same dimensions, the Hadamard

product A ◦ B is a matrix of the same dimensions of A and B and it is
defined as follows: (A ◦B)ij = Aij ·Bij

where:

STk = TR× (
Ψr ◦ srk−1

)×TRt (9)

SRk = TRt × (
Ψt ◦ stk−1

)×TR (10)

DTk
ab =

1√
STk

aa

√
STk

bb

(11)

DRk
ab =

1√
SRk

aa

√
SRk

bb

(12)

In the above equations, we have indicated with Ψr

(resp., Ψt) a square matrix nr×nr (resp., nt×nt) where all
the elements are set to ψ, with the exception of the diagonal
where the elements are set to 1; the symbol TRt represents
the transpose of matrix TR. We have thus reduced the com-
putational complexity of each iterative step from n2

r ×n2
t to

a simple matrix product; this reduction, coupled with the
empirical observation that 5 iterative steps are sufficient to
find convergence, makes our similarity metrics suitable in
practical contexts. The last question that needs answering
is how effective (in terms of Precision and Recall) our simi-
larity metric is w.r.t. traditional ones like cosine. We answer
this question next.

5. Experiments

In order to evaluate the performance of our similarity
measure, we built a prototype in Java and MySQL and
we conducted experiments using three well known social
tagging websites: Bibsonomy, CiteULike, and MovieLens.
The experiments we carried out aimed to answer the follow-
ing question:

If we consider any two tags ti and tj belonging to
a folksonomy, is our similarity measure capable
of accurately assessing the extent to which they
are related (similar) each other? And can it do
so even when such tags have been drawn from the
long tail of low popularity tags?

5.1. The Dataset

To answer the above question, we conducted experi-
ments on the following three datasets.

Bibsonomy. Bibsonomy is a social bookmarking web-
site promoting the sharing of both scientific reference and
general URL. We downloaded a snapshot of the website in
June 2009, containing bookmarks made between January
1999 and June 2009.

CiteULike. CiteULike is a social bookmarking website
that aims to promote and develop the sharing of scientific
references amongst researchers. CiteULike enables scien-
tists to organize their libraries with freely chosen tags which
produce a folksonomy of academic interests. CiteULike

388 389

Dataset Users Resources Tags Bookmarks

Bibsonomy 4,696 578,587 147,076 648,924
CiteULike 57,053 1,928,302 401,620 2,281,609
MovieLens 4,009 7,601 15,240 55,484

Table 1. Features of our datasets

runs a daily process which produces a snapshot summary of
what articles have been posted by whom and with what tags
up to that day. We downloaded one such archive in Novem-
ber 2009, containing bookmarks made between November
2004 to November 2009.

MovieLens. MovieLens is a rate-based recommenda-
tion website that suggests to users movies they might like.
We downloaded such dataset in January 2009, containing
bookmarks made from December 2005 to January 2009.

Table 1 summarizes the features of the involved datasets.

5.2. Simulation Setup

Our experimental investigation aimed to quantify, in
each of the above datasets, the extent to which our simi-
larity measure was capable of identifying related tags, es-
pecially when tags were drawn from the long tail. To in-
vestigate this, for each dataset of Table 1 has been used as
follows. We split it into two different sets, called test set
and train set. Each train set was composed of 90% random
bookmarks taken from the involved dataset; we used these
bookmarks for training purposes. Test sets contained the
remaining 10% of bookmarks which were used for testing.
Each bookmark in a test set has then been used as a query;
specifically, if the number of tags in such bookmark was
large enough, then these were split into two different sets –
if possible of the same size – called tSetQ (query tag set)
and tSetE (expected tag set). In our experiments, a book-
mark was considered large enough if it had at least 3 tags
associated. Tags composing tSetQ were used to query the
train set; in particular, we selected from the train set the k
tags most similar to tags belonging to tSetQ, according to
two metrics: the one we proposed in Section 3, and cosine
similarity, which we used as benchmark. We denote this set
as tSetR (result tag set). The value of k was chosen equal
to the size of the expected set in such a way that tSetR and
tSetE had the same size. Finally, we compared tSetR with
tSetE : the higher the overlap between tSetR and tSetE ,
the more effective the similarity measure in identifying re-
lated tags. This follows the intuition that, if a user associ-
ated a set of tags to a certain resource, such tags are related
to each other (that is, tSetE contains tags related to those
contained in tSetQ).

To quantitatively evaluate our similarity measure, we
computed two metrics commonly used in Information Re-

Propagation Bibsonomy CiteULike MovieLens

ψ = 0 0.100638896 0.057922233 0.075126961
ψ = 0.15 0.128318833 0.063290603 0.112358995
ψ = 0.3 0.139761842 0.070652236 0.115026291
ψ = 0.6 0.140748308 0.079320913 0.115534133

Table 2. Precision values in our datasets

Propagation Bibsonomy CiteULike MovieLens

ψ = 0 0.100625714 0.057864697 0.075143054
ψ = 0.15 0.128373044 0.063273342 0.110927464
ψ = 0.3 0.139939546 0.070634975 0.119373901
ψ = 0.6 0.140429576 0.079303652 0.119949092

Table 3. Recall values in our datasets

trieval, namely Precision and Recall [1]:

Precision = |tSetR∩tSetE |
|tSetR| (13)

Recall = |tSetR∩tSetE |
|tSetE | (14)

We computed Precision and Recall values for each test
bookmark; we repeated this process 10 times over different
train and test splits of the datasets. The results we present
next are averages of such runs.

5.3. Results

Tables 2 and 3 shows values of Precision and Recall we
obtained by applying our similarity measure on the datasets
of Table 1, for different values of ψ (see Equations 3–4).
The benchmark is our similarity measure with ψ = 0, that
is, the case in which our similarity measure reduces into
cosine similarity.

From the analysis of Tables 2 and 3 we can draw the
following main observation: in large scale folksonomies,
classical approaches – such as cosine similarity (ψ = 0) –
have difficulties finding similarity relationships among the
tags belonging to the long tail, as their Precision and Re-
call is lower than those achieved with our iterative approach
for any value of ψ. The considered datasets are character-
ized by a very long and prominent tail of low popularity
tags; in these real cases, out iterative measure of similarity
produces Precision/Recall that is approximately 40% better
than cosine similarity for BibSonomy and CiteULike, and
approximately 50% better for MovieLens.

6. Related Work

In the last few years, folksonomies have been the subject
of extensive research. An interesting survey on the charac-
teristics of folksonomies can be found in [4]. One of the
first investigations into the characteristics of folksonomies

390 391

has been presented by Mathes [18]: in that work, the author
discusses advantages (e.g., simplicity of use) and disadvan-
tages (e.g., ambiguity, synonyms) of folksonomies, and in-
vestigates the community aspects behind folksonomies, on
two scenarios, Flickr7 and Delicious8.

Despite their easy-of-use, the lack of structure that char-
acterises folksonomies makes it difficult to browse and find
relevant content. To tackle this issue, the research com-
munity has been actively researching techniques to support
information retrieval. Approaches in this area have fol-
lowed one of two streams: they have either tried to empir-
ically derive an ontology from the underlying folksonomy,
or they have tried to apply graph-exploration techniques on
the folksonomy itself.

Lambiotte [14] and Mika [19], for example, were the
first to extend the classic bipartite model of tag-resource
towards a tripartite model, which takes into account both
users (as actors), tags (as concepts) and resources (as in-
stances); they showed that, by applying this model to De-
licious, a lightweight ontology could be extracted from the
underlying folksonomy. Similarly, [9] used similarity met-
rics to reconstruct a concept hierarchy.

Hotho et al. [12, 20] followed a different approach in-
stead: they presented a formal model, which converts a
folksonomy into an undirected weighted graph, and cou-
pled it with a new search algorithm, namely “FolkRank”,
based on the well-known seminal “PageRank” [2]. They
applied this algorithm to Delicious, and showed how it can
be used as a tag recommender system. Other extensions of
recommender systems to folksonomy structures have been
explored [21, 10]; some of these have been assessed against
one of the datasets we adopted in this study, namely Bib-
Sonomy [11, 13].

All the above approaches rely on a similarity measure
to quantify tag relatedness. Measures which have been of-
ten used in the literature include the Jaccard coefficient [8],
the cosine similarity [6], and a number of improvements
over it [15, 22]. Liu et al. [15] dwelt further into the prob-
lem of computing similarities in folksonomies; in particu-
lar, they questioned the common assumption that text cat-
egorization can be mapped onto orthogonal spaces, due to
problems of synonyms and ambiguities (as already figured
out by [18]). They then devised an improved similarity met-
ric (“SNOS”, Similarity equations in the Non-Orthogonal
Space) which is optimized for comparing objects mapped
onto non-orthogonal spaces, considering a principle of “mu-
tual reinforcement” from which we drew inspiration in this
work. They proved the convergence of this technique and
experimentally investigated the performance of SNOS on
synthetic datasets, such as the formerly called MSN search

7http://www.flickr.com/
8http://www.delicious.com/

engine (now, Bing9). Their novel metric was shown to out-
perform the classic cosine similarity, if applied to the con-
text of finding similar queries. Some of their findings are
here extended to the domain of folksonomies.

Similarity measures have often been evaluated on differ-
ent datasets, making it difficult to assess their relative ad-
vantages and disadvantage in different domains. Further-
more, they have often been applied to manipulated datasets,
making the comparison even more difficult. Indeed, in or-
der to critically compare them, an evaluation framework
has recently been proposed [17], with the aim of provid-
ing support to systematically compare several tag similar-
ity measures, using data from Delicious [3]. This work
contributes to the assessment of the suitability of similarity
measures to scenarios characterized by power-law distribu-
tion of tags and non-independence of data, showing how
traditional measures like cosine do not work, and proposing
an alternative, iterative measure that provides good accu-
racy instead.

7. Conclusions

In this paper, we have shown that real world folk-
sonomies are characterized by power law distributions of
tags and non-independence of data. Under these conditions,
traditional similarity measures like cosine similarity fail to
capture tags relatedness. To remedy this, we have proposed
a novel metric, specifically developed to capture similarity
in large-scale folksonomies, that is based on the mutual
reinforcement principle: that is, two tags are deemed
similar if they have been associated to similar resources,
and vice-versa two resources are deemed similar if they
have been labelled by similar tags. We have described an
efficient realisation of this similarity metric, and assessed
its quality experimentally, by comparing it against cosine
similarity, on three large-scale datasets, namely Bibson-
omy, MovieLens and CiteULike.

Acknowledgement. The research leading to these re-
sults has received funding from the European Community’s
Marie Curie Fellowship Programme (FP7-PEOPLE-2009-
IEF) under the Grant Agreement n. 38675. The authors are
solely responsible for it and it does not represent the opin-
ion of the Community. The Community is not responsible
for any use that might be made of information contained
therein.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison Wesley Longman, 1999.

9http://www.bing.com/

390 391

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer networks
and ISDN systems, 30(1-7):107–117, 1998.

[3] C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Se-
mantic Grounding of Tag Relatedness in Social Book-
marking Systems. In Proc. of the 7th International
Conference on The Semantic Web, pages 615–631.
Springer-Verlag, 2008.

[4] C. Cattuto, C. Schmitz, A. Baldassarri, V.D.P. Serve-
dio, V. Loreto, A. Hotho, M. Grahl, and G. Stumme.
Network properties of folksonomies. AI Communica-
tions, 20(4):245–262, 2007.

[5] P. De Meo, G. Quattrone, and D. Ursino. Exploitation
of semantic relationships and hierarchical data struc-
tures to support a user in his annotation and brows-
ing activities in folksonomies. Information Systems,
34(6):511–535, 2009.

[6] J. Diederich and T. Iofciu. Finding communities of
practice from user profiles based on folksonomies. In
Proc. of the 1st International Workshop on Building
Technology Enhanced Learning solutions for Commu-
nities of Practice, pages 288–297, 2006.

[7] G.H. Golub and C.F. Van Loan. Matrix Computations,
third edition. Johns Hopkins University Press, 1996.

[8] Y. Hassan-Montero and V. Herrero-Solana. Improving
tag-clouds as visual information retrieval interfaces.
In International Conference on Multidisciplinary In-
formation Sciences and Technologies, pages 25–28,
2006.

[9] P. Heymann and H. Garcia-Molina. Collaborative cre-
ation of communal hierarchical taxonomies in social
tagging systems. Technical Report 2006-10, Stanford
InfoLab, April 2006.

[10] P. Heymann, D. Ramage, and H. Garcia-Molina. So-
cial tag prediction. In Proc. of the 31st annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 531–538.
ACM, 2008.

[11] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
BibSonomy: A social bookmark and publication shar-
ing system. In Proc. of the First Conceptual Structures
Tool Interoperability Workshop, pages 87–102, 2006.

[12] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. In-
formation retrieval in folksonomies: Search and rank-
ing. The Semantic Web: Research and Applications,
pages 411–426, 2006.

[13] R. Jäschke, A. Hotho, C. Schmitz, and G. Stumme.
Analysis of the publication sharing behaviour in Bib-
Sonomy. Conceptual Structures: Knowledge Archi-
tectures for Smart Applications, pages 283–295, 2007.

[14] R. Lambiotte and M. Ausloos. Collaborative Tagging
as a Tripartite Network. Lecture notes in computer
science, pages 1114–1117, 2006.

[15] N. Liu, B. Zhang, J. Yan, Q. Yang, S. Yan, Z. Chen,
F. Bai, and W.Y. Ma. Learning similarity measures in
non-orthogonal space. In Proc. of the thirteenth ACM
international conference on Information and knowl-
edge management, pages 334–341. ACM, 2004.

[16] C.D. Manning, P. Raghavan, and H. Schutze. Intro-
duction to Information Retrieval. Cambridge Univer-
sity Press, 2008.

[17] B. Markines, C. Cattuto, F. Menczer, D. Benz,
A. Hotho, and G. Stumme. Evaluating similarity mea-
sures for emergent semantics of social tagging. In
Proc. of the 18th international conference on World
Wide Web, pages 641–650. ACM, 2009.

[18] A. Mathes. Folksonomies-cooperative classification
and communication through shared metadata. Com-
puter Mediated Communication, 2004.

[19] P. Mika. Ontologies are us: A unified model of so-
cial networks and semantics. Web Semantics: Science,
Services and Agents on the World Wide Web, 5(1):5–
15, 2007.

[20] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme.
Mining association rules in folksonomies. Data Sci-
ence and Classification, pages 261–270, 2006.

[21] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the se-
mantic web: Collaborative tag suggestions. In Proc.
of Collaborative Web Tagging Workshop at 15th Inter-
national World Wide Web Conference, 2006.

[22] B. Zhang, H.J. Zeng, W.Y. Ma, Z. Chen, N. Liu, and
J. Yan. Method and system for determining similarity
of items based on similarity objects and their features,
May 12 2009. US Patent 7,533,094.

392 393

Exploiting semantic aspects to evolve a text-based search on a legacy document
management system

Johann Grabner, Andreas Mauczka, Mario Bernhart and Thomas Grechenig
Research Group for Industrial Software

Vienna University of Technology, 1040 Vienna, Austria
{johann.grabner, andreas.mauczka, mario.bernhart, thomas.grechenig}@inso.tuwien.ac.at

Abstract

Semantic technologies provide the means to create a
more efficient human-computer interaction. In this paper
we showcase how to use semantic technologies in the design
of a Document Management System (DMS) to re-engineer a
legacy DMS using a text-based search. Due to the historical
growth of the database, a text-based search without using
domain knowledge delivers bloated result-sets that prevent
an efficient use of the DMS. The requirement of an intel-
ligent search can be suitably addressed by using semantic
technologies, thus we propose such a new design of a DMS.
We employ concepts used in ontologies to provide search
results based on hierarchies that are based on concepts of
natural language. We construct a metamodel for the appli-
cation domain to deliver fitting suggestions along with the
search results. Finally, we realise a prototype as a proof-
of-concept based on the introduced design to highlight the
evident advantages of a semantic approach.

1. Introduction

In recent times social interaction and collaboration en-
tered the spotlight of websites, flaunting the title Web 2.0
[10]. After the wide acceptance and success of applications
in Web 2.0, the semantic web as an evolutionary follow up
of the classical web, which extends the classical web by
using the context of information to process information, is
rapidly gaining importance[9]. Folksonomies of Web 2.0
are the product of the collaboration of large amounts of in-
dividuals with unique perspectives. To be able to gain a
foothold in daily life, semantic web products will have to
extend Web 2.0 products like Folksonomies by semantic as-
pects.

A text-based search retrieves information containing the
exact or terms similar to the search string. If you search just
for a certain text, a text-based search is capable of delivering

satisfying results. A text-based search is very likely to fail
to find the context behind a search string, however. In the
present study whe introduce a search capable of getting both
the information and the context of a given text.

Legacy systems tend to evolve into behemoths that might
get the required task done, but rather slowly. This is espe-
cially tedious when the legacy system is a stand-alone sys-
tem of an organisation - and every user is forced to work
in this system. The legacy system analysed in this work
is a document management system, called internally Office
Information System, used for filing and searching of docu-
ments. This document management system (DMS) has, due
to natural growth of the document base, outlived the useful-
ness of its own text-based search as search results tend to
deliver unmanageable amounts of data.

Therefore the capabilities of text-based search are seem-
ingly met and a new approach was suggested, which is pre-
sented in this paper. We propose a concept for a seman-
tic search for this DMS and we implement a prototype for
the users of the legacy system. We will employ tagging-
mechanics and constructs of natural language to support
search, file and even navigation through the database. We
realise a customised triplestore by using open source tech-
nologies. Furthermore we use a Folksonomy with semantic
extensions to provide qualitative suggestions for categorisa-
tion, navigation and search. Finally, we give a short intro-
duction of the metamodel used to model semantic relations
between hypernyms and instances.

2. The Legacy Document Management System

The office (Organisational Unit E010 - “Organisation
and Coordination”) of the Vienna University of Technology
is responsible for all incoming documents by mail, the dis-
tribution of these documents to the according organisational
units and finally for the archiving of these documents for a
period of ten years. The existing workflows are supported
by a legacy software system named “OIS” (Office Informa-

1

392 393

tion System). The existing system is in its final software
lifecycle stage, since it is not capable of meeting today?s
requirements and problems in the processing of the existing
amount of data arise. The system is in use since approxi-
mately 20 years and more than 200.000 files have been en-
tered into the system, averaging at 10.000 files per year.

Examples of problems with the legacy DMS are:

• Lack of support when filing documents - currently the
order of the system is maintained by the experience
and established conventions of the users.

• No filing across topics - the legacy system can only
attach documents to one topic. Content covering mul-
tiple topics can not be realised at the moment.

• Traceability of content - the description of content
of a document is currently subject to undocumented
conventions. These conventions determine which at-
tributes are used to describe the content (e.g. contract-
name, paragraph..).

• Limited number of search results - the maximum num-
ber of results is currently limited. Due to the nature of
the DMS, not all relevant search results are listed by
the system.

• Step-wise refining of search criteria - based on a result
set, it is currently not possible to step-wise refine the
search criteria to get better results.

The existing problems are faced by proposing a de-
sign and a prototype realisation as a proof of concept of
an innovative and semantic document management system
(DMS). By using a semantic approach we hope to improve
the search beyond the capabilities of a classical, text-based
search engine. To improve acceptance of the new DMS,
current system users were heavily involved during design
and implementation of the prototype. We integrate domain
knowledge of the OIS users to find possible innovations in
the area of DMS as the user group is considered as very
experienced DMS users.

Finally a prototype of the DMS is implemented that in-
tegrates the semantics of the domain into the current work-
flows. By taking these semantic relationships into consid-
eration, this prototype is capable of assisting during search
and filing of documents by giving content and context re-
lated suggestions. To be able to give these suggestions, the
system needs to derive the knowledge from the domain and
from the current usage of the DMS by the users.

3. Design and Implementation of a Semantic
Solution

The scenario described earlier is augmented by a number
of factors that have to be taken into consideration for the fi-

nal solution. These are current user-problems, additional
requirements beyond the scope of the legacy DMS gath-
ered in stakeholder-interviews and project management in-
put. The boundaries of the new semantic solution are given
by current workflows and processes. The search-function
is considered a primary factor for the quality of the DMS
in the given scenario as it is of central importance for the
workflow in the enterprise. Another important factor are
standardised descriptions and how to handle them in a user-
friendly manner. The integration of semantic aspects into a
folksonomy is required for a working tagging system in the
context of this work. As it is one of the major problems of
the current system and the system continously grows every
year, suggestions for navigation through the data sets, but
also for tagging have become a key requirement that needs
to be addressed.

In the following chapters we show how we addressed
these concerns in our concept and we give a short insight
into the technical realisation in form of a prototype.

3.1. Improving the Search Beyond the Scope of a
String Comparison

A text-based search is capable of returning exact or sim-
ilar matches This scope however is too narrow for the re-
quirements of the stakeholders because it does not provide
accurate search results in the existing database. A semantic
factor is missing [3]. Due to this deficiency, semantic rela-
tionships between terms won’t be recognised and therefore
excluded from the search results. To address these issues
the system is able to ask the desired meaning of a term, if
the user just entered a homonym. Furthermore the system
is capable of mapping alternate naming to the same term.
By supporting homonyms, synonyms and abbreviations in
the DMS a new quality of search results for the user can be
achieved.

3.2. Standardised Descriptions

Natural language with its numerous possibilities of ex-
pression and different points of view of similar terms repre-
sent obstacles in the standardisation of textual descriptions.
This lack of standardisation prevents an automated process-
ing of descriptions. To avoid these pitfalls, we employ the
use of tags. This concept is being used in the Web 2.0 [10],
[11] with big promise. However, using tags does not guar-
antee standardised description texts. But the simplification
of language lowers the risk of complex descriptions and im-
proves the automated processing of these descriptions.

3.3. Folksonomy with Semantic Extensions

A certain degree of freedom for creating tags in the daily
usage of the system is a required trade off to increase user-

2

394 395

acceptance of the application. Similar to [9] and the success
of Web 2.0, we believe a collective intelligence of the users
is more productive than restrictions on the system. This
holds especially true considering the collective need to have
a usable tool. The focus of the concept therefore lies in the
support of the workflows of the users and to create a more
efficient work-experience. By using semantics in the pro-
cessing of the data, the system is capable of supporting the
user by proposing meaningful suggestions that are similar
in content (and not just textually). Furthermore suggestions
build a fundamental design element for navigating the ex-
isting datasets. To provide qualitative suggestions for cate-
gorisation, the language concept of hypernyms [4] is used
in addition to homonyms and synonyms. By using the natu-
ral boundaries of the application domain, it was possible to
build a metamodel based on the relationships between the
generic terms (similar to the ontologies presented in [6]).
We use only one metamodel in the application instance for
the prototype.

Connections between hypernyms are modelled using
only one kind of semantic relation. This relationship is a
hierarchical relationship and shows which hypernym is the
subordinate of the other (a meronym). Therefore, the focus
is on the existence of a relation between two hypernyms and
not on a detailed description of the relation itself. The user
has to define the kind of relation of the suggested tags with
the entered term himself, the system just shows connected
tags. The system relies on the associations of the user to the
shown combinations of different tags.

The simplified ontology of the user-domain reflected by
the metamodel is the key element for semantic extensions.
When performing a search with a combination of tags, the
result set not only will contain matching tags, but also com-
binations of subordinate tags of the search tags (meronyms
of the search tags). A tag used as a keyword in a search
therefore represents a semantic tag space (all meronyms of
the tag are included), containing the existing semantically
relevant tags in the system.

3.4. Suggestions for navigation and tagging

Each result set of a user search comes with suggestions
for further navigation[2]. These suggestions include recom-
mendations derived from the domain knowledge to further
constrain the result set of the follow up search and the tags
created together with the tags of the search criteria Figure 1.
To create the domain knowledge driven recommendations,
meronyms of the entered tags are used. To refine the initial
search, the user can add meronyms step by step to seman-
tically tune the result set until it fits his expectations. The
system also delivers suggestions for creating a tag or tag-
ging documents (see [5]). During tag creation the user gets
a suggested list of meronyms related to the created tag af-

Figure 1. Example of suggestions for naviga-
tion

ter choosing a hypernym. The metamodel is used to find
the tags qualified for a relation Figure 2. For tagging docu-
ments, the system suggests combinations of tags sorted by
frequency of appearance. Thus the user ins informed which
sets of tags were used for prior tagging of documents. By
showing possible matchings, the system guides the user to
place his documents in the proper (best-fitting) filing area.
The system supports the user by using the domain knowl-
edge to provide suggestions in every aspect of the applica-
tion.

The structure of the hypernyms is built using three se-
mantic axes (based on concepts presented in[12]). These
axes are time, place and content. The suggested tags for
navigation are grouped according to hypernyms on the se-
mantic axes Figure 1. A strategy for visualisation of the
search results is selected depending on the numbers of tags
related to the search criterion. If there are less than six en-
tries, the tags are listed consecutively. For more than six
and less than 100 tags a combo-box is used. If more than
hundred related tags exist, a text field with auto-completion
is used together with a list of the top five tags used together
with the search criterion.

3.5. Technical Implementation

The concept presented in the earlier sections is imple-
mented in a prototype. The database technology was con-

3

394 395

Figure 2. Overview of meronyms, classes and instances structure

strained due to a given software environment of the legacy
application. Therefore a relational database system had to
be used to create a customised triplestore. Due to the con-
straints earlier using a stand-alone triplestore or an exist-
ing triplestore based ona relational database management
system (RDBMS) had to be discarded. The underlying
RDBMS of the legacy application is MySQL1, thus MySQL
is the RDBMS on which the customised triplestore is build
on. The triplestore is realised by using two tables in the
database. The first table holds unique identifiers of the re-
sources (realised as URIs) including the used literals. The
second table holds ternary relationships between the re-
sources of the first table and is representing therefore the
triplestore. This option for realising the triplestore was not
chosen deliberately but to conform to organisational con-
straints on the prototype.

As there were no such constraints on the choice of the
web application framework, we chose “Ruby on Rails”2.
Development started out swiftly due to numerous Code-
Generators and Plugins available. RESTful Routes 3 are
used to give access to the existing resources in the system.
Every tag has a URL, which is used as unique identifier for
the resources in the database. Auto-completion for enter-
ing tags is implemented using functionality provided by the

1http://www.mysql.com/
2http://rubyonrails.org/
3http://guides.rubyonrails.org/routing.html#restful-routes

“Yahoo! User Interface Library”4.

Figure 3. Classdiagram of the triplestore

We use the Metadata Terms of the Dublin Core Meta-
data Initiative5 (DCMI) to describe the resources in the
triplestore. Every resource of a type has at least a title.

4http://developer.yahoo.com/yui/
5http://dublincore.org/

4

396 397

The type of the resource is specified by its given hyper-
nym. Synonyms and denominators or abbreviations are op-
tional for the descriptions. The predicates “dcterms:title”,
“dcterms:identifier” and “dcterms:alternative” are included
from the standard to put tags and literals into the rela-
tions according to the DCMI Standard5. We use “dc-
terms:hasPart” to express meronym-like relationships be-
tween two tags. For reasons of performance additional at-
tributes of resources are stored in conventional database ta-
bles. These attribute-tables hold the application-specific,
DMS relevant data about the corresponding resources in the
triplestore. To improve data queries, statistics about tags
and documents are recorded in caching-tables. These ta-
bles are constantly updated. Furthermore, to improve per-
formance consecutive queries on the same table are congre-
gated into a single query.

4. Related Work

Folksonomies and the extensions of Folksonomy by us-
ing semantic aspects is currently a hot topic due to high
activity in this area in the semantic research. Marchetti
et al. identify in [8] weaknesses of existing, collabora-
tive tagging-systems. Based on services of Wordnet 6 and
Wikipedia 7 a semantic, collaborative tagging-system is im-
plemented. Entries in Wikipedia and Wordnet are used to
allow the user to learn more on a concept behind a tag. To
connect a resource and a concept the user is able to choose
from different relations. The main difference between the
system in [8] and our system is that the system in [8] has
external dependencies (e.g. Wordnet, Wikipedia, ..). The
specification of a semantic statement is the argument for the
semantic search, while our system accepts tags as search in-
put. The main focus in [8] is semantic tagging - no semantic
navigation for result sets is implemented.

Hope et al. [4] present a semantic tagging-system for
blogs. They use hypernyms for their semantic. Compared
to our work, Hope et al. chose a simplified approach as they
do not rely on meronyms nor do they have a navigation.
Similar to [8] they created a prototype using Wordnet to
create an ontology of tags.

An interesting approach to generate semantic tag-
hierarchies for navigation in an existing Folksonomy is pre-
sented in Laniado et al. [7] . In [11], Specia et al. build a
semantic tag-hierarchie by using co-occuring tags in folk-
sonomies. Both Specia et al. and Laniado et al. deliver the
foundations for approaches to extend Folksonomies with se-
mantic aspects. Our work relied on their research during
migration of the data from the legacy system.

5http://dublincore.org/
6http://wordnet.princeton.edu/
7http://www.wikipedia.org/

5. Conclusion

The proposed design of a semantic search based on a se-
mantic tagging-system is not only restricted to the use in
the DMS area. Any resources can actually be described
using the tagging system. By supporting aspects of natu-
ral language, the way in which users and machines interact
with each other can be improved. Applications that incorpo-
rate domain knowledge and aspects of natural language are
capable of providing a level of service superior to conven-
tional text-based searches. Concrete suggestions to refine
the search result set can be directly derived from domain
knowledge. The system is capable of asking the user to cor-
rectly specify ambiguous entries and actively support the
user with semantic suggestions. We only used hypernyms
and meronyms out of the number of possible semantic rela-
tions to provide the users with tangible, in natural language
common relations. Simplicity is a key factor for acceptance
of a system, especially in the domain of document manage-
ment as users working with a DMS tend to be no computer
experts. By passing into the semantical web, applications
are required to show the user semantic aspects in the pro-
cessing of information in a simplified fashion [1].

The prototype of the DMS has an improved search func-
tionality over the legacy system and was widely accepted
by the current DMS users. Descriptions and categorisations
into filing areas were migrated from the legacy system as
tags into the prototype to allow a smooth integration for the
users.

5.1. Future Work

There are several possibilities to extend the presented
method for realising a semantic tagging-system. The real-
isation of distributed queries across several application in-
stances in different domains might be a possible extension.
Using ontologies to transfer domain knowledge seems an
obvious, possible next step. The modelled domain knowl-
edge may not only be used for semantic suggestions but also
for answering questions a user might pose. New co-workers
might be integrated easier by finding proper visualisation
techniques of the domain knowledge. A problem that has
not been addressed yet is the tracking of changes in domain
knowledge. Filing structures in the DMS, terms and seman-
tics all change over time. There is a strong need for mecha-
nisms to reconstruct changes in the domain knowledge.

References

[1] H. Alani, Y. Kalfoglou, K. Hara, and N. Shadbolt. To-
wards a killer app for the semantic web. 4th Inter-
national Semantic Web Conference, ISWC 2005, Gal-

5

396 397

way, Ireland, November 6-10, 2005. Proceedings, Jan
2005.

[2] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke.
Personalizing navigation in folksonomies using hi-
erarchical tag clustering. Proceedings of the 10th
International Conference on Data Warehousing and
Knowledge Discovery, Jan 2008.

[3] R. Guha, R. McCool, and E. Miller. Semantic search.
Proceedings of the 12th international conference on
World Wide Web, Jan 2003.

[4] G. Hope, T. Wang, and S. Barkataki. Convergence
of web 2.0 and semantic web: A semantic tagging
and searching system for creating and searching blogs.
Semantic Computing, 2007. ICSC 2007. International
Conference on, pages 201 – 208, Sep 2007.

[5] R. Jaschke, L. Marinho, A. Hotho, and L. Schmidt-
Thieme. Tag recommendations in folksonomies. 11th
European Conference on Principles and Practice of
Knowledge Discovery in Databases, Warsaw, Poland,
September 17-21, 2007. Proceedings, Jan 2007.

[6] H. Kim, S. Scerri, J. Breslin, and S. Decker. The state
of the art in tag ontologies: a semantic model for tag-
ging and folksonomies. Proceedings of the 2008 In-
ternational Conference on Dublin Core and Metadata
Applications, Jan 2008.

[7] D. Laniado, D. Eynard, and M. Colombetti. A seman-
tic tool to support navigation in a folksonomy. HT ’07:
Proceedings of the eighteenth conference on Hypertext
and hypermedia, Sep 2007.

[8] A. Marchetti, M. Tesconi, and F. Ronzano. Semkey:
A semantic collaborative tagging system. WWW07
Workshop, Tagging and Metadata for Social Informa-
tion Organization, 2007.

[9] E. Motta and M. Sabou. Next generation semantic
web applications. First Asian Semantic Web Confer-
ence, Beijing, China, September 3-7, 2006. Proceed-
ings, Jan 2006.

[10] S. Murugesan. Understanding web 2.0. IT Profes-
sional, 9(4):34 – 41, Jul 2007.

[11] L. Specia and E. Motta. Integrating folksonomies with
the semantic web. 4th European Semantic Web Con-
ference, ESWC 2007, Innsbruck, Austria, June 3-7,
2007. Proceedings, Jan 2007.

[12] M. Tvarozek and M. Bieliková. Personalized faceted
navigation in the semantic web. 7th International
Conference, ICWE 2007 Como, Italy, July 16-20, 2007
Proceedings, Jan 2007.

6

398 399

Extracting Ontology Hierarchies From Text

Jone Correia, Rosario Girardi, Carla Faria
Federal University of Maranhão

São Luis, Brazil
jonecorreia@ufma.br, rgirardi@deinf.ufma.br, carlafaria@ifma.edu.br

Abstract — Ontologies are an approach for knowledge
representation capable of expressing a set of entities and their
relationships, constraints, axioms and vocabulary of a given
domain. Manual construction of ontologies by domain experts
and knowledge engineers is an expensive and time consuming
task so, automatic and/or semi-automatic approaches are needed.
Ontology Learning looks for automatically or semi-automatically
identifying ontology elements like classes, taxonomic and non-
taxonomic relationships, properties and axioms from textual
resources. This article proposes a process for the automatic
extraction of ontology taxonomic relationships from English texts
using natural language processing techniques. Some experiments
using a legal corpus were conducted in order to evaluate it. Initial
results are promising.

Keywords - Ontology, Ontology Learning, Natural Language
Processing, Taxonomic Relationships, Ontology Hierarchies

I. INTRODUCTION

Ontologies are used by modern knowledge-based systems
allowing the representation and sharing of knowledge about an
application domain [9]. They provide a formal means of
knowledge representation capable of expressing a set of
entities, their relationships, constraints and rules (conditional
statements) of a given domain [10][15].

Ontology Learning looks for identifying ontology elements
like classes, taxonomic and non-taxonomic relationships,
properties and axioms from textual resources. Manual
construction of ontologies by domain experts and knowledge
engineers is an expensive and time consuming task so,
automatic and/or semi-automatic approaches are needed.

This paper proposes a process for automatic learning
of ontologies from text based on Natural Language Processing
(NLP) [1][4] techniques. Particularly, the process looks for
identifying taxonomic relationships. An experiment conducted
to evaluate this the process using a legal corpus is also
described.

The article is organized as follows. Section II introduces the
ontology definition used in this work. Section III presents an
overview of the proposed process. Section IV describes an
experiment conducted to evaluate it. Section V summarizes
related work and, finally, section VI concludes the article
discussing results and future work.

II. AN ONTOLOGY DEFINITION

Ontologies are formal specifications of concepts in a
domain of interest. Their classes, relationships, constraints and
axioms define a common vocabulary to share knowledge [10].

Formally, an ontology can be defined as the tuple:

 O = (C, H, I, R, P, A) (1)

where,

C = CC ∪ CI is the set of entities of the ontology. They are
designated by one or more terms in natural language. The set
CC consists of classes, i.e., concepts that represent entities that
describe a set of objects (for example, “Mother” ∈ CC) while
the set CI is constituted by instances, (for example “Anne
Smith” ∈ CI).

H = {kind_of (c1,c2) | c1 ∈ CC, c2 ∈ CC } is the set of
taxonomic relationships between concepts, which define a
concept hierarchy and are denoted by “kind_of(c1,c2)”,
meaning that c1 is a subclass of c2, for instance,
“kind_of(Mother, Person)”.

I = {is_a (c1,c2) | c1∈ CI ∧ c2∈ CC} ∪ {propK (ci,value) | ci
∈ CI} ∪ {relK (c1, c2,cn) | ∀I, ci ∈ CI} is the set of
relationships between ontology elements and its instances. For
example, “is_a (“Anne Smith”, Mother)”,
“date_of_birth(“Anne Smith”, 02/12/1980)” and
“mother_of(“Anne Smith”, “ Katie Smith”)” are relationships
between classes, relationships, properties with its instances.

R = {relk (c1,c2,..., cn) | ∀i, ci ∈ CC} is the set of ontology
relationships that are neither “kind_of” nor “is_a”. For
example, “mother_of(Mother, Daugther)”.

P = {propK (ci,datatype) | ci ∈ CC} is the set of properties
of ontology entities and its basic datatype. For instance,
“date_of_birth (Mother, mm/dd/yyyy)”.

A = {conditionx conclusiony (c1,c2,..., cn) | ∀j, cj ∈ CC}
is a set of axioms, rules that allow checking the consistency of
an ontology and infer new knowledge through some inference
mechanism. The term conditionx is given by conditionx =
{(cond1,cond2,…,condn) | ∀z, condz ∈ H ∪ I ∪ R}. For
example, “ ∀ Mother, Daughter1, Daughter2,
mother_of(Mother, Daughter1), mother_of(Mother,
Daughter2) sister_of (Daughter1, Daughter2)” is a rule that

This work is supported by the Brazilian Government agencies: CNPq,
CAPES and FAPEMA

398 399

indicates that if two daughters have the same mother then, the
daughters are sisters.

III. A PROCESS FOR ACQUIRING TAXONOMIC
RELATIONSHIPS

Figure 2 illustrates the proposed process for the automatic
acquisition of ontology taxonomic relations, that is, the H set of
the ontology definition in section II. It consists of four steps:
"Tagging", "Extraction of Candidate Classes", "Identification
of Hyponyms and Synonyms" and "Identification and
Representation of Taxonomic Relationships".

The input of the process is a corpus consisting of a set of
textual documents in a particular application domain. The step
"Tagging" is intended to identify the tokens, sentences,
grammatical classes and lemmas with the application of NLP
techniques. Then, the "Extraction of Candidate Classes” phase
is responsible for separating the tokens which are likely to be
classes of the ontology hierarchy. The step “Identification of
Hyponyms and Synonyms" identifies the synonyms and
hyponyms of the candidate classes obtained in the previous
step. The last stage of the process is the "Identification and
Representation of Taxonomic Relations" phase which aims at
identifying the final taxonomic relations using heuristic
patterns and their representation in an ontology specification
language. In the next sub-sections the transformations made at
each stage of the process are presented in detail.

Figure 2. A process for the acquisition of taxonomic relations of an ontology

A. Tagging
The step "Tagging" has a corpus as input and aims at

transforming them into a model that can be processed
computationally. This step consists of the following activities:
“Tokenization”, “Division in Sentences”, “Lemmatization” and
“Lexical Analysis” (Figure 3).

Figure 3. Activities of the "Tagging" phase

The “Tokenization” activity identifies the terms (tokens) in
the document. The activity “Division in Sentences” organizes
the identified tokens by grouping them into sentences. The
activity "Lemmatization" performs the reduction of each token
to its basic form . This form generalizes the inflected forms of a
token making possible the grouping of tokens. The activity
"Lexical Analysis" aims at identifying the grammatical classes
for each token selected in the tokenization activity.

The result of this step is the corpus tagged with tokens,
sentences, lemmas and grammatical categories. For example,
Figure 4 shows the Tagger phase applied to the sentence "Mens
have mothers. Mothers are great people!". For example, Figure
4 shows the processing results of applying the “Tagging” phase
to the text fragment “Mens have mothers. Mothers are great
people!”.

The first frame shows the terms that were marked as
tokens: "Men", "Have", "Mothers", "Mothers", "Are", "Great"
and "People". Dots and spaces are also tokens, however, for
illustrative purposes, only the terms were shown. The second
frame shows the result of dividing the text into sentences:
"Men Have mothers" and "Mothers are great people”. Next
"Lemmatization" is performed on each term. For example, the
term "mothers" has "mother” as lemma. The last frame
corresponds to Lexical Analysis and shows each token and its
corresponding part of speech. For example, the term "mothers"
is tagged NNS [14] indicating that this is a plural noun.

Figure 4. Example of a "tagged" text

B. Extraction of Candidate Classes
This phase aims at selecting candidate classes among

concrete and abstract nouns.

The hypothesis assumed in this work is that only nouns
may be considered classes. Thus, conceptually speaking, we
can find two kinds of nouns: concrete nouns and abstract
nouns. Concrete nouns are used to represent people names
(anthroponyms) or place names (toponyms), which essentially
characterizes class instances. Therefore, in the “Extraction of
Candidate Classes” anthroponyms and toponyms are ignored
and only concrete and abstract nouns are selected.

The products of this step are candidate classes, sentences,
lemmas and grammatical classes.

400 401

(i) NP0 such as NP1 {, NP2 ... , (and | or) NPi}
(ii) such NP0 as {NP ,}* {(and | or)} NP
(iii) NP {, NP}* {,} or other NP0
(iv) NP {, NP}* {,} and other NP0
(v) NP0 {,} including { NP ,}* {or | and} NP
(vi) NP0 {,} especially { NP ,}* {or | and} NP

C. Identification of Hyponyms and Synonyms
The "Identification of Hyponyms and Synonyms" looks for

the identification of synonyms and hyponyms in WordNet [21],
a lexical database that contains natural language terms, their
definitions and their semantic relationships as synonymy,
hyponymy and hypernym. The classes selected in the previous
step are located in Wordnet and whenever a synonym or
hyponym is found this occurrence in the text is stored. That is,
each class is associated with an array of synonyms and
hyponyms from the text. The product of this step is the same
product from the previous stage plus the relations of synonymy
and hyponymy, of each select term, found in Wordnet.

D. Identification and Representation of Taxonomic
Relationships
The "Identification and Representation of Taxonomic

Relationship" aims at discovering taxonomic relationships
through the application of heuristic patterns and at representing
them in an ontology specification language. Each sentence is
analyzed in order to match the patterns. To test the existence of
hyponymy relations we apply regular expressions on
sentencing patterns with heuristic examples as the Hearst
patterns [11]. Regular expressions are a formal method to
specify a text pattern [12]. For example, applying the regular
expression “([A-Za-z]+,.)+[A-Za-z] + and other [A-Za-z]+” to
"My daughter loves dolls, masks and other toys", the matched
pattern should be "My daughter loves dolls, masks and other
toys". The tokens "Dolls" and "Masks" are related to "Toys" in
a relationship of hyponymy, thus being "Toy" a superior class
of "Doll" and "Mask" in the hierarchy of an ontology. This
matching represents the pattern (iv) in the table of Hearst
heuristics patterns of Figure 5, where NP0 represents a token
hierarchically superior to the other NP.

Figure 5. Heuristic Patterns of Hearst (Hearst, 1992)

The products of this phase are the taxonomic relationships,
the set H of the definition of ontology in Section II, represented
in an ontology specification language.

IV. EVALUATION

A case study in the area of Family Law allows for a
preliminary assessment of the effectiveness of the proposed
process. For that, a prototype tool called T-NLPDumper has
been developed for automating the process using Java [13].

A corpus from the Family Law Doctrine [7] has been used
in the case study. One hundred sentences randomly selected
from the corpus has been manually analyzed by a domain
expert, who did the manual identification of taxonomic
relationships. These results (Figure 6) were manually compared
with the results found on the automatic extraction of taxonomic
relationships with the T-NLPDumper tool .

The results were also compared with an adaptation of the
precision measure from the Information Retrieval area [5],
considering the number of correctly extracted taxonomic
relations.

Precision is the ratio between the number of taxonomic
relationships extracted correctly (NREC) and number of
taxonomic relationships extracted (NRE).

 P = NREC / NRE (2)

The precision value obtained in this experience was
81,57%.

Figure 6. Part of the ontology hierarchy obtained as a result of the experience.

V. RELATED WORK

Table 1 shows the main approaches for automatic and semi-
automatic identification of taxonomic relationships.

The main techniques used (second column of Table 1) are
based on lexical syntactic patterns [11][19], statistics with
Markov Logic Networks (MLR) [6] and Machine Learning
techniques (ML) [3][2][16]. More recent works have in
common the application of techniques of Natural Language
Processing (NLP) in association with other techniques.

 The approaches described in [6][16][19] and the one
proposed in this article use WordNet as a lexical base for the
extraction of hyponyms and GATE [8] to perform the Natural
Language Processing tasks. Weka [20] was used as a
framework for the clustering tasks in [16], while the tools
TreeTagger [18] and Lopar [17] are used in [3] to find
grammatical categories and as a parsing tool, respectively.

The effectiveness is shown in terms of the precision
obtained for each approach in their experiments. However,
these numbers cannot be considered for comparative purposes,
because the evaluation of each approach was performed with
different corpora and ontologies.

400 401

TABLE I. COMPARATIVE TABLE OF THE MAIN TECHNIQUES
FOR LEARNING TAXONOMIC RELATIONSHIPS

Approach /
Year

Main
Technologies

Main
Tools

Effectiveness
(Precision) /

Domain

Level of
Automation

Cimiano et
al., 2004 [3]

CFA
NLP TreeTagger

Lopar

29,33% /
Tourism
33,11% /
Finance

Automatic

Drumond,
2009[6]

NLP
MLN
Dictionary
PREHE

GATE
Wordnet

17% /
Tourism

Semi-
Automatic

Caraballo,
1999 [2]

ML-
Clustering - 39% / Wall

Street Journal Automatic

Sarmento,
2009 [16]

ML -
Clustering
NLP
Dictionary

WEKA
GATE
Wordnet

n/a / Tourism Semi-
Automatic

Hearst, 1992
[11]

Lexical
Syntactic
Patterns

- 63% Automatic

Ting Wang
et al. 2006
[19]

Lexical
Syntactic
Patterns
SVM
NLP
Dictionary

Wordnet
GATE 73,87% /- Automatic

Correia et al,
2011

NLP
Heuristic
Patterns
Dictionary

GATE
Wordnet

81,57% /
Family Law Automatic

The approaches in [2], [3], [11] and the one proposed in this
work provide solutions for a fully automatic acquisition of
taxonomic relations, while the approaches in [16] and [6]
propose just semi-automatic solutions.

Main advantages of the technique proposed here are its
domain independency and high precision value (more than
80%).

VI. CONCLUSION

The automatic process for ontology learning proposed in
this paper is based on natural language processing and consists
of four steps: "Tagging", "Extraction of Candidate Tokens",
"Identification of Hyponyms and Synonyms" and
"Identification and Representation of Taxonomic Relations".

The process has been evaluated through a case study
conducted in the domain of Family Law, showing good results,
and demonstrating that the use of techniques of natural
language processing represents a promising approach for
learning taxonomic relationships of ontologies.

Currently, new heuristic patterns are being developed in
order to improve the identification of taxonomic relationships.
The development of a tool for implementing all the proposed
process is also under construction.

Finally, to improve the results of the proposed tool it is
necessary to compare them with concept extractions done
manually by domain experts in other domains.

REFERENCES

[1] Allen J.: Natural Language Understanding. Redwood City, CA: The
Benjamin/Cummings Publishing Company, Inc (1995).

[2] Caraballo, S.A. Automatic construction of a hypernym-labeled noun
hierarchy from text. Proceedings of the 37th annual meeting of the
Association for Computational Linguistics on Computational
Linguistics, Association for Computational Linguistics Morristown, NJ,
USA, p. 120–126, 1999.

[3] Cimiano, P.; Hotho, A.; Staab, S. Learning Concept Hierarchies from
Text Corpora using Formal Concept Analysis. 2004.

[4] Dale R., Moisl H., Somers H. L.: Handbook of natural language
processing. CRC (2000).

[5] Dellschaft K., Staab S. (2006) “On how to perform a gold standard
based evaluation of ontology learning”, In: Proceedings of the 5th
International Semantic Web Conference, p. 228 – 241, Athens. Springer.

[6] Drumond, L. Automatic Acquisition of Concepts Hierarchies Using
Statistical Relational Learning. Master's Dissertation, Federal University
of Maranhão, 2009. (In Portuguese)

[7] Family Law. Available at <http://en.wikipedia.org/wiki/Family_law/>
Accessed 13/June/2010.

[8] GATE. General Architecture for Text Engineering. Available at
<http://gate.ac.uk/> Accessed 14/June/2010.

[9] Girardi, R. Guiding Ontology Learning and Population by Knowledge
System Goals. International Conference on Knowledge Engineering and
Ontology Development. Valencia. 2010

[10] Guarino N., Masolo C., Vetere C. (1999) “Ontoseek: Content-based
Access to the web”, IEEE Intelligent Systems, v. 14(3), p. 70-80.

[11] Hearst, M. Automatic acquisition of hyponyms from large text corpora.
In: International Conference on Computational Linguistics, 14., 1992,
Nantes. Proceedings... . Morristown: Association For Computational
Linguistics, 1992. p. 539 - 545.

[12] Jargas, Marinho. Regular Expressions. Publisher Novatec. 2ed. 2008. (In
Portuguese).

[13] Java. Oracle. Available at:
<http://www.oracle.com/technetwork/java/index.htm>. Accessed:
15/September/2010.

[14] Marcus, M.; Santorini, B.; Marcinkiewicz, M. Building a Large
Annotated Corpus of English: The Penn Treebank. Computational
Linguistics: Special Issue on Using Large Corpora, [S. l.], v. 19, n. 2, p.
313-330, 1993.

[15] Nierenburg S., Raskin V.: Ontological Semantics, MIT Press (2004).
[16] Sarmento, G. Application of Hierarchical Cluster Techniques for

Extracting Taxonomic Relations of Ontology. CGCC-UFMA Final
Degree work (2009). (In Portuguese)

[17] Schmid, H. Lopar: Design and implementation. In Arbeitspapiere des
Sonderforschungs bereiches 340, No. 149. 2000.

[18] Schmid, H. Probabilistic part-of-speech tagging using decision trees. In
Proceedings of the International Conference on New Methods in
Language Processing. 1994.

[19] Ting Wang et al. Automatic Extraction of Hierarchical Relations from
Text. 2006

[20] Weka project. Available at: <http://www.cs.waikato.ac.nz/ml/weka/>.
Accessed: 13/June/2010..

[21] Wordnet. WordNet: A lexical database for English. Cognitive Science
Laboratory, Princeton University, Available at:
<http://wordnet.princeton.edu/>. Accessed: 16/September/2010.

402 403

From Glossaries to Ontologies: Disaster Management
Domain

Katarina Grolinger, Kevin P. Brown, Miriam A.M. Capretz
Department of Electrical and Computer Engineering, Faculty of Engineering

The University of Western Ontario
London, ON, Canada N6A 5B9

{kgroling, kbrow43, mcapretz}@uwo.ca

Abstract - Our society’s reliance on a variety of critical
infrastructures (CI) presents significant challenges for disaster
preparedness, response and recovery. Experts from different
domains including police, paramedics, firefighters and various
other CI teams are involved in the fast paced response to a
disaster, increasing the risk of miscommunication. To ensure
clear communication, as well as to facilitate CI software
interoperability, a common disaster ontology is needed.
We propose using the knowledge stored in domain glossaries,
vocabularies and dictionaries for the creation of a lightweight
disaster management domain ontology. Glossaries, vocabularies
and dictionaries are semi structured representations of domain
knowledge, where significant human effort has been invested in
choosing relevant terms, determining their definitions, acronyms,
synonyms and sometimes even relations. We use that knowledge
built into semi formatted documents for ontology learning. In
particular, we look at five glossaries/vocabularies from the
disaster management domain and analyze their content similarity
and structure. A lightweight disaster ontology is created
exploiting the structure of the semi-structured source documents.

Keywords- Ontology, Glossary, Disaster Management,
Ontology Learning

I. 1. INTRODUCTION

Today we rely heavily on a variety of critical
infrastructures (CI) such as electrical systems, water supplies,
telecommunications, transportation, emergency services and
others. Each of these systems is highly complex with their
daily operation, maintenance and repairs requiring specialized
domain knowledge. On the other hand, there exists significant
interdependency between these systems: water distribution
systems rely on electricity to power water pumps and
emergency response teams rely on a variety of
telecommunication methods. The significance of the
cascading effects caused by interdependencies of CI has been
recognized and significant efforts have been made in attempts
to understand and manage them better [1] [2].

The variety of infrastructure systems involved, together
with their interdependencies, demand an interdisciplinary
approach to disaster management. Involvement of experts
from different domains, and the need for exchange of
information across domains (between people, as well as

between machines), represent significant challenges in
achieving successful communication. A word in common to
two or more domains may have different meanings; or,
conversely, different terms may represent the same concept. In
fast paced emergency response situations, this may cause
misunderstandings and possibly result in severe consequences.

The importance of having a common understanding within
the disaster management field has been recognized;
consequently, different glossaries, vocabularies and
dictionaries have been created by multiple agencies involved
in the disaster prevention, response and recovery processes [3]
[4] [5] [6] [7]. Depending on the main focus of the agency,
these glossaries, vocabularies and dictionaries vary with
regards to the terms they include as well as term definitions.
Furthermore, because they are mainly created to be used by
people, they are in text form (PDF or text files) that cannot be
easily read and understood by computers. As such, these
glossaries, vocabularies and dictionaries cannot be used in the
information systems that are becoming an integral part of any
disaster response process. The way of making this knowledge
available for use by computers is through ontologies.

An ontology is a formal, explicit specification of a shared
conceptualization [8] that provides a common understanding of
information. Additionally, ontologies provide a way of
representing human knowledge, making it readable and
understandable for machines. This, in turn, represents the
basis for achieving semantic interoperability.

In this paper we look at five glossaries and vocabularies
each from a different Canadian or American disaster
management agency, analyze their differences and propose the
creation of an ontology from these glossaries, vocabularies and
dictionaries. In the remainder of the paper, the term glossary
will be used to represent glossaries, vocabularies and
dictionaries.

This paper is organized as follows: Section II reviews
related work including ontologies in disaster management and
ontology learning. Emergency management glossaries are
presented in Section III together with comparative analyses.
Section IV describes ontology creation from glossaries and the
conclusions and future work are presented in Section V.

402 403

II. RELATED WORK

The main directions of research efforts related to CI
interdependencies are: research dealing with analyzing past
incidents that involved CI interdependencies [1] [2], studying
infrastructure interdependencies through the use of simulators
[9] [10] [11] and ontologies in disaster management [12] [13].
Particularly relevant to our work is the work on ontologies.

Peng et al. [12] propose the Emergency Case Ontology
Model (ECOM) as a way of organizing the emergency case
knowledge by taking into consideration relations among
emergency cases. The proposed model handles heterogeneity
among different earthquake disasters, but it is earthquake
specific and does not consider other emergencies.

Castorini et al. [13] propose the Knowledge Base System
(KBS) founded on ontologies with the main goal of modeling
CI and their interdependencies. The proposed framework
consists of: MKIONT (Meta Knowledge Infrastructure
ONTology) which defines a template for conceptualization;
IONT (Infrastructure ONTology) which represents knowledge
of a specific CI domain (e.g. water distribution or
telecommunication); FONT (Federation ONTology) which
describes interactions between infrastructures and the Gateway
which provides a connection between the KBS and simulators.

Another field relevant to this work is ontology learning,
which is the process of building an ontology from scratch by
enriching, or adapting an existing ontology in a semi-automatic
fashion using distributed and heterogeneous knowledge and
information sources. The majority of research efforts in
ontology learning focuses on learning from unstructured
sources [14] [15] [16], primarily text documents, as a
significant portion of today’s knowledge is stored in such
form. Gómez-Pérez and Manzano-Macho compared different
ontology leaning methods from unstructured text [17], and
presented advantages and disadvantages of each method.
Other possible sources of information for ontology learning are
structured sources such as databases and semi-structured
documents including XML schemas, web pages, glossaries,
dictionaries and vocabularies. Since semi-structured sources
have various structure elements, the structure can be exploited
to extract concepts and/or relations

Zhao and Li [18] propose ontology learning from the
hierarchy structure of organization websites. The approach is
motivated by the observation that the organization web site is
organized in a hierarchical sitemap that reflects a shared view
of the organization structure. Consequently, they use the
sitemap hierarchy to create the lightweight organizational
ontology.

Karoui et al. [19] combine exploiting the structure of the
HTML documents with natural language processing techniques
for ontology learning. They propose the Contextual Concept
Discovery (CCD) algorithm based on K-means clustering and
guided by a structural context. In HTML documents they
observe physical links, such as heading-paragraph links that
represent the structure of documents and logical links that
represent links between tags, such as keyword tags. When
terms appear in the same context, within the same block tag or

within linked elements, it indicates their co-relation. This
structural context drives the incremental use of K-means
algorithm in identification of ontology concepts.

Davulcu et al. [20] use taxonomy-directed web sites to
bootstrap the ontology population task of extracting instances
of concepts and their classification into ontology concepts.
OntoMiner detects HTML markup and turns it into
hierarchical structures that are in turn used for ontology
population. Shinzato and Torisawa [21] use itemization and
listing in HTML documents to extract hyponym relations.

Navigli and Velardi [22] enrich the CIDOC CRM cultural
heritage core ontology using the Art and Architecture
Thesaurus (AAT). Descriptions of the meanings of the terms
from AAT are processed using NLP (Natural Language
Processing) techniques, annotated with CIDOC properties and
formalized. The core ontology is enriched from formalized
term definitions.

García-Silva et al. [23] propose a methodology for creating
ontologies by reusing and re-engineering non-ontological
resources. Their proposed patterns for re-engineering define a
process to transform non-ontological resources into ontologies.
While [23] is concerned with the transformation process, we
explore to which extent the structural elements of glossaries
can be used in ontology creation.

III. EMERGENCY MANAGEMENT GLOSSARIES AND
VOCABULARIES

Glossaries and vocabularies play a significant role in
emergency management due to the importance of clear
communication during disaster response. Misunderstandings
could lead to severe consequences, even the loss of life.
Therefore government and private agencies involved with
disaster management often create and publish dictionaries of
relevant emergency terms. Depending on the focus of each
agency, the included terms and their definitions may be
significantly different.

We have analyzed five glossaries/vocabularies readily
available from the web. Two are from Canadian sources: the
Emergency and Crisis Communication Vocabulary from
Government Services Canada [3] and the EMO (Emergency
Management Ontario) glossary [4] from the Ontario
provincial government. The remaining three sources are
American: NIMS (National Incident Management System)
glossary [5], ICDRM (The Institute for Crisis, Disaster and
Risk Management) glossary [6] and ICS (Incident Command
System) glossary [7]. The five listed glossaries were chosen
since they are relatively generic nonspecific management
glossaries dealing with generic disasters and are not disaster
(i.e. flood or earthquake) or responder type (i.e. firefighters or
CI teams) specific. The ICS glossary is somewhat specific
since it deals with command and control in particular, but its
main goal is coordination among the different actors in
emergency situations which is not highly dependent on disaster
or responder type. The two Canadian sources contain English
and French terms and definitions, but for the purpose of this
analysis, due to the need to compare to American glossaries

404 405

which are only available in English, we have considered only
the English terms of the glossaries. The same approach can be
applied on the French part of those glossaries, or even
glossaries in different languages.

A. Glossary Content Comparison
All five observed glossaries describe the same domain and

therefore it is expected that the terms included in them are
similar and that a high number of terms is defined in most
glossaries. Some discrepancy between Canadian and
American dictionaries may exist due to the slight differences of
American and Canadian English. As a first step, we looked
into the five glossaries to see if, and to which degree, our
expectations of content similarity were correct.

From the five observed glossaries, four are relatively close
in the size (Table I) and include between 115 and 167 term
definitions, while ICDRM is significantly larger, including 572
term definitions. As opposed to the other four glossaries that
are intended to be used in practice, ICDRM is established for
the purposes of emergency management education and
practice. ICDRM was created by the Institute for Crisis,
Disaster, and Risk Management, at The George Washington
University.

Table II depicts the overlap between the observed
glossaries. Even though all five glossaries are relatively
generic emergency glossaries, there is very little overlap
between them. Only seven terms are defined in all five
glossaries: emergency, hazard, mitigation, preparedness,
recovery, response and threat. And only five terms appear in
four glossaries: communications, incident, incident
management team, prevention and public information officer.
Some terms that could be considered significant disaster
management terms, such as risk assessment, disaster, crisis
and alert, are defined in only two glossaries. This
demonstrates that a single glossary does not fully cover the
domain and cannot be used as a standalone source for the
creation of a disaster ontology. The high number of terms
appearing in only one glossary is in part caused by the fact that
the ICDRM glossary contains significantly more terms than the
remaining four.

To further investigate the commonalities among glossaries,
we observed the number of overlapping terms between pairs of
glossaries. Table III shows the number of overlapping terms in
pairs of glossaries and the percentage of relative overlap. The
relative overlap is calculated as:
Relative overlap = (2 x number of overlapping
terms) / total number of terms in the pair of
glossaries x 100%.

The overlap between the Canadian (Emergency and Crisis
Communication and EMO) and the American glossaries is
relatively low – 10% or less. However, overlap between the
two Canadian glossaries is still only 14%. A high number of
term overlap occurs between the different American glossaries,
with the highest between NIMS and ICS at 52%. This high
term overlap can be explained by the fact that both ICS and
NIMS are created by Federal Emergency Management Agency
(FEMA).

TABLE I. GLOSSARY SIZE

Emer. and
Crisis Com

EMO NIMS ICDRM ICS

of terms 115 129 167 572 153

TABLE II. TERM OVERLAP BETWEEN GLOSSARIES

Number of glossaries term
appears in

Number of terms

1 638
2 84
3 67
4 5
5 7

TABLE III. NUMBER OF OVERLAPPING TERM IN PAIRS OF GLOSSARIES AND
RELATIVE OVERLAP.

Emer. and
Crisis Com

EMO NIMS ICDRM ICS

of terms 115 129 167 572 153
Emer. and
Crisis Com

17
(14%)

13 (9%) 30 (9%) 10 (7%)

EMO 14 (9%) 34 (10%) 9 (6%)
NIMS 93 (25%) 84 (52%)
ICDRM 81 (22%)

There is a significant overlap of 25% between NIMS and
ICDRM caused by the fact that ICDRM is developed with
NIMS as its basis; moreover, a high number of ICDRM terms
cite NIMS’ definitions.

Among the five glossaries, we expected significant term
overlap due to their shared domain and purpose, but the
findings are on the contrary. Only high overlap is found
between glossaries created within the same agency, ICS and
NIMS glossaries. Overlaps between other pairs are generally
low, and somewhat higher between pairs of glossaries from
American sources.

Even for terms defined in all glossaries, definitions are
often quite different across the glossaries; this is illustrated in
Table IV with Threat as an example. In the five glossaries,
there are five different definitions of term Threat. ICDRM
gives two definitions of the term Threat, with one being the
same as the definition in ICS.

In some situations, different terms have similar meanings.
If we look at definition of the term Hazard in the ICDRM and
NIMS glossary, ‘Something that is potentially dangerous or
harmful, often the root cause of an unwanted outcome,’ it is
very similar to the definition of the term Threat in the EMO
glossary. The EMO glossary defines a Threat as, ‘A person,
thing or event regarded as a likely cause of harm or damage.’
The two terms, threat and hazard, are defined as distinct terms
in all five glossaries, but some of their definitions make it hard
to distinguish between the meanings.

This analysis shows that even though the five glossaries
deal with the same domain and have the same purpose, they
are very different in the terms that they define as well as in
term definitions.

404 405

TABLE IV. TERM THREAT IN DIFFERENT GLOSSARIES

Glossary Term Definition
Emerg. and
Crisis Comm.

The combination of the presence of a hazard
and an exposure pathway.

EMO A person, thing or event regarded as a likely
cause of harm or damage.

NIMS Natural or manmade occurrence, individual,
entity, or action that has or indicates the
potential to harm life, information, operations,
the environment, and/or property.

ICDRM An indication of possible violence, harm, or
danger.

ICDRM The possibility of a hazard occurrence;
something that has the potential to cause
harm.

ICS An indication of possible violence, harm, or
danger.

Therefore, the creation of a domain ontology needs to use a
variety of domain glossaries to encompass vocabularies of
different domain members and to achieve better domain
coverage.

B. Glossary Structures used for Ontology Creation
Glossaries, as semi-structured documents, have structure

and formatting that can be used to facilitate ontology creation.
The typical structure of a glossary is a term or label followed
by the term’s definition. For example, ‘Communications:
The process of transmission of information through verbal,
written, or symbolic means.’ In all five observed glossaries,
the term label is distinguished from the rest of the text by bold
font; for example, ‘Hazard: Something that is…’. In three
sources, the term is separated from its definition by a colon,
while the other two use new lines. Glossary terms are concepts
significant for a domain of interest. Therefore, we extract
glossary terms using source document formatting and create
initial ontology concepts.

Acronyms are typically included in glossaries. In [3],
acronyms are separated from the term by using a semicolon:
‘business resumption planning; BRP’. In the remainder of
the observed glossaries, acronyms are in brackets following the
term: ‘Emergency Operations Center (EOC):…’. This is
used to extract properties of the concepts for the ontology.
Some of the documents, such as EMO, NIMS and ICS also
have a separate section for lists of the acronyms, where only
the acronym and its meaning are listed. Often, this is a
duplication of the acronym listed with the term definition.

Redirection is commonly used to lead from one term to
another one: ‘Action Plan: See Incident Action Plan‘. If the
term does not have definition, but it only has redirection,
redirection is used to lead to a synonym term where the
description is specified. In the observed documents,
redirection is performed through the use of the ‘See’ word
preceding a redirecting term. Therefore, if the term does not
have a description and it is followed by a redirecting ‘See’
word, the two terms are considered synonyms. For the

identification of synonyms, EMO also uses the ‘synonym’
word in formatting such as ‘full-scale exercise (synonym: field
exercise)’.

Some terms are described and also contain a redirecting
‘See’ word; for example: ‘Competency: A specific knowledge
element… See “Proficiency”’. In this case, description of a
redirecting term competency and a redirected proficiency term
are not the same, and therefore the terms are not synonyms. In
this situation ‘See’ indicates a related or similar concept. In
the presented example, ‘See’ indicates that term competency is
related to term proficiency. EMO uses ‘See also’ in lieu of
‘See’ from the presented example to indicate related terms:
‘Incident Action Plan (IAP): An oral or written plan ... See
also “Action Plan.”’. These two patterns are used for the
creation of relations between ontology concepts. In the
Emergency and Crisis Communication Vocabulary, relations
among terms are given more significance than in the other
observed documents. The abbreviation ‘cf.’ is used to identify
a cross-reference to a related concept, each being separated by
a semi-colon; for example, ‘mitigation … cf. emergency
management; preparedness; recovery; response; resumption’.
Of the 115 terms defined in this document, related term(s) are
specified for 91. Commonly, several related terms are
specified for a single term, bringing the total number of
relations specified in this way to 242. Even though this pattern
appears in only one of the observed glossaries, it is a
significant resource for the creation of relations in an ontology.

Some glossaries distinguish among different meanings of a
single term. The emergency and Crisis Communication
Vocabulary uses number superscripts to indicate different
meanings, while EMO uses numbers in brackets following the
term: ‘hazard (1) A risk that is a threat. hazard (2) An event
...’. ICDRM uses bullets to specify different definitions, as in:

‘Hazard:
• A potential or actual force, …
• Something that is …’

ICDRM has formatting features indicating taxonomic
hierarchies. For example, the term volunteer is in the ICDRM,
but its definition is not specified. The term volunteer is
followed by bulleted list where each bullet specifies definitions
of a specific kind of volunteer, such as Accepted volunteer,
Affiliated volunteer, Recruited volunteer and others. This
pattern defines a hyponym (is-a) relation where one concept is
a subconcept of another concept; for example, Affiliated
volunteer is a special kind of Volunteer. This is the only
structural pattern in observed glossaries that we use for the
extraction of hyponym relations.

IV. DISASTER ONTOLOGY

A glossary, in general, contains explanations of concepts
relevant for certain field. Domain experts’ knowledge was
used in the process of the glossary creation and it is built into
the glossary itself. Terms defined in the glossary are identified
as relevant terms by the people and organizations that created
the glossary. Other elements, such as synonyms, related terms,
acronyms and subconcepts, are extractions of domain

406 407

knowledge as well. The structures of the glossaries represent a
strong foundation for the creation of an initial domain
ontology.

We use the formatting aspects of glossaries described in
subsection III.B as a source of information for the ontology’s
creation. We use only the formatting elements to extract an
ontology, without the use of any natural language processing
techniques. Fig. 1 depicts the use of the formatting elements of
glossaries in ontology learning. The left column shows the
structural elements observed in one or more glossaries. It is
followed by the example of each pattern from one of the
observed glossaries. Those formatting patterns identify
fragments of the glossaries that are translated into different
ontology elements as shown in the ontology element column of
the Fig. 1. Patterns used in the ontology creation process are
only those found in the five disaster management dictionaries
analyzed. The use of other glossaries, dictionaries or
vocabularies may demand different or additional patterns
depending on the structure of the source document.

Using a single glossary for ontology creation would limit
the ontology to the view of the domain described by the
glossary creator; this single view is likely to not be shared by
other participants in the same domain. The coverage of the
domain would also be limited. To alleviate this, we use the
multiple glossaries described in Section III for the ontology
creation.

Fig. 2 illustrates a fragment of the ontology created from
the five observed glossaries using only their formatting
elements without the use of any natural language processing
techniques.

Figure 1. From formatting element to ontology component

Figure 2. Fragment of ontology created from glossaries

The concepts hazard and threat appear in all five
glossaries. The concept Plan is defined only in the ICDRM
glossary, while the other glossaries contain definitions of more
specific plans, such as preparedness plan and response plan.
Emergency management plan is identified as a synonym of
emergency plan and action plan is a synonym of incident
action plan.

For use by machines and software systems, the created
ontology can be represented in an ontology language of choice,
such as OWL (Web Ontology Language), OIL (Ontology
Interchange Language) or others. The choice of representation
language does not change the ontology learning process, but it
only changes how the ontology is represented for automatic
processing.

V. CONCLUSIONS AND FUTURE WORK

In disaster management, involvement of various teams with
different views of the domain presents a significant challenge
in achieving a successful communication process. A way of
achieving a common understanding among teams is through
ontologies. Even though this work focused on disaster
management, similar situations exist in other fields where
different views of the domain are expressed through a variety
of glossaries.

We explore the use of glossaries as semi-formatted stores
of domain knowledge for ontology creation. Domain experts’
knowledge was used in the process of glossary creation and is
built into the glossary in the form of content and formatting.

Not only do glossaries contain a list of terms that may be
used for ontology creation, but they also contain additional
structural patterns that we propose may also be used. In
addition, we investigate the discrepancy between different
views of the same domain expressed in domain glossaries. As
a case study, we observe five glossaries from the disaster
management domain; however, is it expected that glossaries
from other domains will demonstrate similar properties. Even

406 407

though the five observed emergency management glossaries
are relatively generic, their content overlap is very low, with
only five terms appearing in all five. Even between two
glossaries created by the same emergency management agency,
term overlap is only 52%. This indicates that for ontology
creation, it is preferable to use multiple domain glossaries from
different sources. This will lead to better domain coverage and
facilitate a true shared conceptualization.

Formatting of the documents is similar across observed
glossaries. All five glossaries use similar formatting to
distinguish between terms and their definitions, and similar
methods to identify synonyms, acronyms and related terms.
We use the formatting of documents to extract terms,
synonyms, acronyms, hyponyms and referenced terms to create
an initial ontology. The main advantage of this approach is the
use of domain knowledge built into domain glossaries and the
relative simplicity of the processing. The initial ontology
created using this approach is lightweight, without
considerable detail, but the quality of included terms and
relations is high due to the high reliability of the source
document. The created lightweight ontology can be enriched
by applying further processing using statistical methods or
natural language processing methods, such as the approach
proposed by Navigli and Velardi [22].

The direction of the future work is towards fully utilizing
the structure of semi-formatted documents for ontology
learning. A rule engine that will enable specifying custom
rules for the extraction of concepts and relations from generic
semi-formatted documents needs to be created. This rule
engine will enable the user to specify how formatting should be
used in ontology learning. Because this approach creates
lightweight ontologies, we want to integrate it with other
ontology learning mechanisms from un-structured text. Also, a
way of distinguishing between the significance of different
source documents is needed; that is, a method that will account
for source relevance and reliability.

ACKNOWLEDGMENT

Support for this work was provided by Canada's Advanced
Research and Innovation Network (CANARIE) and Natural
Sciences and Engineering Research Council (NSERC) of
Canada.

REFERENCES

[1] S.M. Rinaldi, J.P. Peerenboom, T.K. Kelly. Identifying, Understanding,
and Analyzing Critical Infrastructure Interdependencie, Control Systems
Magazine, IEEE. Issue 6 vol.21, 2001, pp.11-25.

[2] E. Luiijf, E. Nieuwenhuijs, M. Klaver, M. van Eeten, E. Cruz, Empirical
Findings on Critical Infrastructure Dependencies in Europe, Critical
Information Infrastructure Security, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2009, pp. 302-310.

[3] Emergency and Crisis Communication Vocabulary, Public Works and
Government Services Canada,
http://www.btb.gc.ca/publications/documents/crise-crisis.pdf.

[4] Emergency Management Ontario (EMO) English-French Glossary,
Emergency Management Ontario, Ministry of Community Safety and
Correctional Services, http://www.onterm.gov.on.ca/EMOlexicon.pdf.

[5] National Incident management System (NIMA) glossary, Federal
Emergency Management Agency, United States Department of

Homeland Security,
http://www.fema.gov/emergency/nims/Glossary.shtm.

[6] ICDRM/GWU Emergency Management Glossary of Terms. The
Institute for Crisis, Disaster, and Risk Management (ICDRM) at the
George Washington University (GWU), Washington, D.C.,
http://www.gwu.edu.proxy2.lib.uwo.ca:2048/~icdrm/publications/PDF/
EM_Glossary_ICDRM.pdf.

[7] Incident Command System (ICS) glossary, Federal Emergency
Management Agency, United States Department of Homeland Security,
http://training.fema.gov/EMIWeb/IS/ICSResource/assets/ICSGlossary.p
df.

[8] R. Studer , V.R. Benjamins, D. Fensel. Knowledge Engineering:
Principles and Methods, Data and Knowledge Engineering. Issue 1-2
vol.25, 1998, pp.161-197.

[9] H.A. Rahman, M. Armstrong, D. Mao, J.R. Marti, I2Sim: A Matrix-
Partition Based Framework for Critical Infrastructure Interdependencies
Simulation, Proceedings of the Electric Power Conference. 2008, pp. 1-
8.

[10] A. Usov, C. Beyel, E. Rome, U. Beyer, E. Castorini, P. Palazzari, et al.,
The DIESIS Approach to Semantically Interoperable Federated Critical
Infrastructure Simulation, Proceedings of the Second International
Conference on Advances in System Simulation. 2010, pp. 121-128.

[11] A. Tofani, E. Castorinia, P. Palazzaria, A. Usovb, C. Beyelb, E. Romeb,
et al. Using Ontologies for the Federated Simulation of Critical
Infrastructures, Proceedings of the International Conference on
Computational Science. Issue 1 vol.1, 2010, pp.2301-2309.

[12] Y. Peng, W. Wenjun, D. Cunxiang, Application of Emergency Case
Ontology Model in Earthquake, Proceedings of the International
Conference on Management and Service Science. 2009, pp. 1-5.

[13] E. Castorini, P. Palazzari, A. Tofani, P. Servillo, Ontological Framework
to Model Critical Infrastructures and their Interdependencies,
Complexity in Engineering. 2010, pp. 91-93.

[14] J. Völker, P. Haase, P. Hitzler, Learning Expressive Ontologies,
Proceedings of the 2008 conference on Ontology Learning and
Population: Bridging the Gap between Text and Knowledge. vol.
167,Issue. 2/8/2010,2008, pp. 45-69.

[15] A. Maedche, S. Staab, Discovering Conceptual Relations from Text,
Proceedings of the 13th European Conference on Artificial
Intelligence. 2000, pp. 321-325.

[16] M.A. Hearst, Automatic Acquisition of Hyponyms from Large Text
Corpora, Proceedings of the 14th conference on Computational
linguistics. vol. 2,1992, pp. 539-545.

[17] A. Gómez-Pérez, D. Manzano-Macho. An Overview of Methods and
Tools for Ontology Learning from Texts, The Knowledge Engineering
Review. Issue 3 vol.19, 2004, pp.187–212.

[18] Y. Zhao, J. Li, Domain Ontology Learning from Websites, Ninth Annual
International Symposium on Applications and the Internet. 2009, pp.
129-132.

[19] L. Karoui, M. Aufaure, N. Bennacer, Contextual Concept Discovery
Algorithm, Proceedings of the Twentieth International Florida
Artificial Intelligence Research Society Conference. 2007, pp. 460-465.

[20] H. Davulcu, S. Vadrevu, S. Nagarajan, I.V. Ramakrishnan, OntoMiner:
Bootstrapping and Populating Ontologies from Domain-Specific Web
Sites, Intelligent Systems, IEEE. vol. 18,Issue. 5,2003, pp. 24-33.

[21] K. Shinzato, K. Torisawa, Acquiring Hyponymy Relations from Web
Documents, Proceedings of North American Chapter of the Association
for Computational Linguistics - Human Language Technologies
NAACL-HLT. 2004, pp. 73-80.

[22] R. Navigli, P. Velardi, From Glossaries to Ontologies, Extracting
Semantic Structure from Textual Definitions, Proceeding of the 2008
conference on Ontology Learning and Population: Bridging the Gap
between Text and Knowledge. vol. 167,2008, pp. 71-104.

[23] A. García-Silva, A. Gómez-Pérez, M.C. Suárez-Figueroa, B. Villazón-
Terrazas, A Pattern Based Approach for Re-Engineering Non-
Ontological Resources into Ontologies, Lecture Notes in Computer
Science. vol. 5367 LNCS,2008, pp. 167-181.

408 409

Packaging Controlled Experiments Using
an Evolutionary Approach Based on Ontology

Lilian Passos Scatalon, Rogério Eduardo Garcia, Ronaldo Celso Messias Correia
Departamento de Matemática, Estatı́stica e Computação

Faculdade de Ciências e Tecnologia – Universidade Estadual Paulista “Júlio de Mesquita Filho”
Rua Roberto Simonsen, 305 – CEP 19060-900 – Presidente Prudente - SP, Brazil

lilian.scatalon@gmail.com, rogerio@fct.unesp.br, ronaldo@fct.unesp.br

Abstract

A body of knowledge in Software Engineering requires
experiments replications. The knowledge generated by a
study is registered in the so-called lab package, which must
be reviewed by an eventual research group with the inten-
tion to replicate it. However, researchers face difficulties
reviewing the lab package, what leads to problems in share
knowledge among research groups. Besides that, the lack
of standardization is an obstacle to the integration of the
knowledge from an isolated study in a common body of
knowledge. In this sense, ontologies can be applied, since
they can be seen as a standard that promotes the shared
understanding of the experiment information structure. In
this paper, we present a workflow to generate lab packages
based on EXPEROntology, an ontology of controlled ex-
periments domain. In addition, by means of lab packages
instantiation, it is possible to evolve the ontology, in order
to deal with new concepts that may appear in different lab
packages. The iterative ontology evolution aims at achieve
a standard that is able to accommodate different lab pack-
ages and, hence, facilitate to review and understand their
content.

Keywords: Controlled Experiment, Experimental Soft-
ware Engineering, Ontology, Knowledge Representation.

1. Introduction

Controlled Experiment in Software Engineering (SE) at-
tempts to assess methods, techniques and tools applied on
software development activities [5, 4]. By using a simi-
lar model of practitioners building software, subjects ap-
ply methods, techniques and tools under controlled envi-
ronment, producing data that allow evaluating, measuring
and comparing their performance under pre-defined condi-
tions. The collected data set leads to conclusions that are

meaningful on controlled conditions, considering the pop-
ulation from which subjects are representative. However,
results from a single experiment cannot establish definitive
facts about a phenomenon due to variations introduced by
different system domains, personal background and experi-
ence and cultural environments [6, 21, 23, 27, 20]. Gaining
insight into such variations requires running multiple inde-
pendent studies on a topic [26, 20] – for example, varying
the subjects profiles, the adopted procedures or even the ex-
perimental design help on establish knowledge about a topic
[22, 20]. So, by executing multiple experiments that ad-
dress these variations, researchers build knowledge on SE
discipline, as well as help the practitioner understand how
to build software systems better [4].

In this sense, the International Software Engineering Re-
search Network (ISERN) was formed with researchers that
promote SE research in an experimental context. According
to the ISERN Manifesto [17], in order to build basic models
and components on SE discipline, it is important to con-
sider characteristics from specific environments, since each
one imposes variations in the effects of technologies.

Replications of a study that investigates a technology by
different research groups can deal with those execution vari-
ations, allowing to draw conclusions that reach a broader
context and, thus, consolidating knowledge in SE. Replicate
a study depends on the effective review of its lab package,
to understand the adopted procedures and guarantee process
conformance with the previous experiment [6, 28]. The de-
scription of a study – including the procedures, the results
and conclusions – is registered in the lab package [26]. The
lab package carries the knowledge to be transferred among
researchers in order to enable replications and to report the
experimental findings, aimed to contribute to the advance of
the discipline and the application in industry.

However, knowledge sharing problems among research
groups arise, such as difficulties in reviewing lab packages
[26] and integrating this knowledge in a common body [18],

1

408 409

mostly because the lack of standardization of lab pack-
ages. Dealing with such problems minimizes the risk of
an experiment being isolated. Noticing how those problems
have influenced on replications, Mendonça et al. [20] pre-
sented the Framework for Improving the Replication of Ex-
periments (FIRE). The FIRE suggests standardizing pack-
ages and evolving knowledge repositories in order to share
knowledge, which should be available in a common body
and also understandable to researchers willing to execute a
replication.

In this direction, Garcia et al. [14] elaborated the
EXPEROntology: an ontology of controlled experiments
domain, with the purpose of formally describe concepts that
compose a lab package. Ontologies have already been ap-
plied in Software Engineering aiming at the standardization
of the concepts of a domain and knowledge reuse and share
[12, 13, 2, 7, 3].

The packaging of information about a study can incor-
porate the ontology as a standard in order to deal with the
complications in integrating and transferring the knowledge
from experiments, considering that knowledge representa-
tion and sharing is a recurring application to which ontolo-
gies are designed for [15, 29]. According to Amaral and
Travassos [1], packaging should be done phase by phase,
throughout the experimental process [31]. So, in this con-
text, it is proposed a workflow that suggests this packaging
based on the concepts defined in EXPEROntology. And,
since its definitions are not necessarily static, the ontology
can absorb new concepts, as lab packages containing differ-
ent sets of information are instantiated.

The remainder is organized as follows. In Section 2 is
given an overview of replications importance and is pre-
sented the problem in knowledge sharing among research
groups. With the purpose to address such problems, in Sec-
tion 3 is argued about the use of an ontology to represent
the knowledge from a study. In Section 4 is presented the
proposed workflow that applies and evolves the ontology as
a standard to lab packages. Finally, in Section 5, the contri-
butions and future work directions are summarized.

2. Replications, Knowledge Transfer and Inte-
gration

Several issues involved in running an experiment present
sources of variations that limit the generalization to apply
the conclusions. The participants may be from different
cultural environments or imposed to a different set of con-
ditions during the execution [22, 20]. Therefore, in order
to generalize the conclusions, these variations should be ex-
plored and dealt with in replications of the study.

To effectively attend to the conditions variation, different
research groups might execute replications in their own lab-
oratory environment. Thereby, if obtained results confirm

previous conclusions, it is demonstrated that they are appli-
cable to a broad context. Conversely, if the results do not
confirm the conclusions of the previous study, the influence
of the variations can be identified and produce other relevant
conclusions on the topic. Therefore, the knowledge about a
technology can be consolidated across replications based in
the study that investigates it. Besides, the selected variables
to model the phenomenon or the adopted procedures in the
realization may not be ideal. In this sense, similar repli-
cations, accomplished by the original experimenters or not,
can build confidence in the procedure and the result [8].

Replicating a study, in a not completely independent
way, depends on the effective review of its original exe-
cution, to understand the procedures and the experimental
design of the previous study for process conformance sake
[28], that is, to produce comparable results. The lab pack-
age is the tool that carries study information. Thus, repli-
cations can be encouraged with the availability of lab pack-
ages [26]. And, given the amount of effort required to con-
duct an experiment, it is reasonable to facilitate the reuse of
experimental artifacts by providing a lab package [8]. From
its review, researchers have access to how the previous study
was conducted.

However, the review of lab packages by researchers
presents difficulties [26], what can be considered an obsta-
cle in knowledge transfer among research groups. Noticing
knowledge transfer problems as barriers to the conduction
of replications, Mendonça et al. [20] proposed the Frame-
work for Improving the Replication of Experiments (FIRE),
which is composed by the two cycles of activities, as il-
lustrated in Figure 1. The internal cycle represents the ex-
ecution of a study by a research group. The external cy-
cle (inter-group) represents the activities whose purpose is
to integrate the knowledge generated by running a study
(internal cycle) in a common body of knowledge. In that
sense, the lab package can be effectively reviewed by even-
tual replicators from a different research group aimed to set
the experiment (replication) goals. One might observe in
Figure 1 that criate/evolve package influences the external
activity share knowledge. Likewise, in the other point that
the cycles intercept, understand lab packages is crucial to
set experiment goals of a new replication.

It can be considered, therefore, that the lab package rep-
resents the output of the internal cycle carrying out infor-
mation about an isolated study, and also the input of the
internal cycle of a possible replication, considering that re-
searchers should review and understand the original exper-
iment lab package. So, with regard to share knowledge and
favor better understanding of lab packages (in the external
cycle), the way which the lab package information must be
represented is important, what is endorsed by the activity of
standardize packages.

In the other hand, activities of the external cycle of FIRE

410 411

Figure 1. The FIRE [20]

also suggest to integrate the knowledge generated by an
isolated study in a common body. This established body
of knowledge may support decision making to practitioners
in software development process [18] and the available lab
packages should supply an experimental infrastructure to
support future replications as well [26], whose results can
sustain the progress of such body of knowledge. However,
a major problem for this integration is the heterogeneity in
the way that experiments are reported [18], which present
different sets of information or level of details [9]. Ac-
cordingly to FIRE, to integrate the knowledge or to evolve
knowledge repositories, it is necessary to standardize pack-
ages (see Figure 1). Indeed, Carver [9] highlights the im-
portance of standardization to deal with this heterogeneity.

3. Ontologies as the Common Solution

Shull and his partners have pointed out that lab pack-
ages are important tools for supporting replications (easy-
available designs and materials facilitate replications by re-
ducing the amount of effort required from independent re-
searchers), but well-designed lab packages are crucial for
facilitating better and comparable replications [28]. There-
fore, it must be promoted well-defined knowledge repre-
sentation into the lab packages. Additionally, there is not
a broadly adopted standard to report experiments in Soft-
ware Engineering, even though guidelines have been pro-
posed [19, 18]. So, those issues suggest the establishment
of a structure for lab packages, that also support a better un-
derstanding to reviewers. In this sense, an ontology can be
used to describe the model of information that compose a
lab package, aiming at provide a standard and favor a better
understanding.

Ontologies are means to formally represent the structure
of a specific domain, by defining explicitly entities and their

relationships that emerge from its observation [16]. The
concepts interpretation is restricted by axioms, and thus the
ontology-based information carries embedded meaning, al-
lowing agents from different contexts to interpret it consis-
tently.

Considering the role of ontologies in knowledge rep-
resentation and sharing [15, 24], and problems related
to knowledge integration and transfer in Experimental
Software Engineering, Garcia et al. have proposed an
ontology for the controlled experiments domain: the
EXPEROntology [14]. Basically, this ontology helps to
elucidate concepts and relations concerning controlled ex-
periments. Garcia et al. [14] presented the conceptualiza-
tion in two levels of refinement and axioms to formalize
it. Concepts like controlled experiment, replication, expe-
riment validity and lab package are defined in the first level.
The second level comprises the refinement of concepts on
the first one. The main aspect is a more accurate definition
of lab package, which defines and relates concepts from the
experimentation process [31], that is, concepts whose in-
stances are information of the lab package.

The main goal on using the EXPEROntology is to incor-
porate the benefits that ontologies provide to the knowledge
transfer by organizing lab packages: the shared understand-
ing of information [24], what is essential to allow transfer-
ring effectively the knowledge embedded into a lab pack-
age. Besides, the ontology itself – with concept definitions
– can be considered as standard of information organization
that the lab package has to include.

4. The Proposed Evolutionary Approach Based
on Ontology

Several experiments have been conducted and their re-
sults published, but each researcher publishes what consid-
ers most important in the experiment report [18]. There
is not a broadly adopted standard to lab packages. In this
context, the EXPEROntology was proposed to deal with
the necessity of a established standard, that also eases the
understanding of lab package information. With the pur-
pose to apply EXPEROntology, initially was proposed
the instantiation of lab packages information based on
EXPEROntology concepts, according to the experimen-
tal process [31, 1]. To support this initial approach, the
EXPEROntology was implemented using OWL (Web On-
tology Language) and, then, a tool was developed to instan-
tiate the concepts [25]. However, during the tool validation,
it was faced the lack of standardization problem, what leads
to the difficulties in knowledge integration, as stated in Sec-
tion 2.

Thus, not only the use of EXPEROntology in packaging
experiment data set should be considered, but also the cur-
rent reporting practice, since it is usual lab packages con-

410 411

taining different sets of information. For example, details
about treatments might be missing, becoming unable to ap-
ply ontology concepts straightly. So, it is necessary to deal
with different sets of information to accommodate them ac-
cording to EXPEROntology.

Despite problems found during instantiation using the
tool [25], the ontology-based packaging proved itself to be
appropriate, since the lab packages were generated in a for-
mat that makes explicit the meaning of the information rep-
resented, what enables machine processing – the ontology is
expressed in a language with formal semantics [30]. How-
ever, considering the need for a standardization that com-
plies with the inconsistency of published experiments [9],
the EXPEROntology should address the different manners
in which an experiment execution is registered. This sug-
gests that the initial ontology should evolve, incorporating
new concepts.

In this direction, we propose a workflow, which includes
the evolutionary approach to the lab packages instantiation
using the EXPEROntology. As illustrated in Figure 2, the
inputs of the workflow are the lab package to be instanti-
ated and the EXPEROntology – the concepts descripted
and their relationships are used as parameters to instantiate
the lab package. Each phase of experimental process has its
own goal and concepts defined in EXPEROntology. Fol-
lowing experimental process, the concepts are used as pa-
rameters to a mining process aimed to match corresponding
information, which is initially presented without a standard.
Thereby, it is possible to instantiate information in the OWL
lab package.

To describe the workflow activities, the concepts de-
fined to Planning and Definition phases in the ontology for
Lab Packages are presented throughout the experimenta-
tion process, highlighted in the following. At first, the ini-
tial hypothesis of a controlled experiment is established.
It is composed by the object of study, in agreement with
a purpose, under a quality focus, and in a specific con-
text. The Definition phase is the basis for the Planning
phase and the initial hypothesis generates the hypotheses
formalized. These hypotheses have null hypothesis and
the alternative hypothesis, as attributes. From the hypoth-
esis formalized, the experimenter defines the experiment
variables – dependent and independent variables. Dur-
ing the planning phase s/he also defines the experiment
objects: technologies to be studied (techniques, methods
or tools) and artifacts (documents, tools or forms) to be
used. Each subject has his/her profile recorded to char-
acterize his/her background. Capturing the subject back-
ground aims at identifying possible influence on results.
For instance, previous knowledge about experiment objects
or domain application might influence the results obtained.
The subjects’ profile must be considered to create the ex-
perimental design, which is built combining experiment

objects, independent variables and subjects, in agreement
with the hypothesis under investigation. In addition, the
subjects’ profile must be considered in analysis. Based on
the experimental design, an execution plan must be elabo-
rated in order to describe the entire controlled environment
to conduct the experiment.

For instance, conducting the mining process focusing
on Definition phase, the concepts Purpose and Context are
essential to compose the Initial Hypothesis (parameters to
mining process). And considering the experiments pub-
lished by De Lucia et al. [11] as data set (lab package), after
mining process we obtained “Compare ER and UML class
diagrams in data modeling” and “Academic” as information
corresponding to Purpose and Context, respectively.

Additionally, the mining process might fail: or the min-
ing do not match meaningful values to concepts; or do not
match at all. This situation might be consequence of miss-
ing data in the lab package, what indicate to experimenters
that s/he should handle during the activities of FIRE internal
cycle. Also, this situation might be consequence of missing
concept, i.e., the EXPEROntology have to be updated in
order to evolve it. Considering the same experiment from
the previous example [11], the researchers applied feed-
back questionnaires after tasks execution. The information
of subject feedback analysis did not match properly to the
concept Questionnaire, since Questionnaire concept is de-
fined in the EXPEROntology to represent subject profile,
and its relation with feedback analysis was missing. This
mechanism of discover and insert missing concepts auto-
matically is facilitated by the ontology formal description,
which enables machine processing.

The instantiation of several lab packages following the
proposed workflow allows capturing missing concepts and,
consequently, evolve the EXPEROntology. This can be
accomplished similarly as the tool validation, by using in-
formation extracted from published experiments [10], but
only after a comprehensive review of the literature. As the
lab packages are instantiated through the workflow, the on-
tology approximates to the semantic standard that allows
to accommodate variations on lab packages, and thereby,
the EXPEROntology evolution improves its application on
packaging experiments as well.

5. Conclusions

In this paper we propose a workflow to apply and evolve
the EXPEROntology to package controlled experiments in
Software Engineering. The use of an ontology as a stan-
dard to instantiate experiment information was already im-
plemented [25] aiming at improve the understanding of lab
packages, since problems concerning their review by re-
searchers were pointed out [26].

The validation of such approach has shown that its main

412 413

ExperOntology

Match and
instantiate

Lab
Package

OWL Lab
Package

Missing
concepts

ExperOntology
evolution

ExperOntology
application on

packaging

Evolve
ontology

Definition

Mining repository Mining repository

Planning Operation

Mining repository

Analysis

Mining repository

Figure 2. The evolutionary approach proposed for Packaging Controlled Experiments

contribution is the creation of lab packages according to a
structured and organized way that makes explicit and mean-
ingful the represented information. Also, ontologies enable
machine processing, since are expressed in a language that
presents formal semantics [30]. As pointed out by Jedl-
itschka et al. [18], experiments reports in practice con-
tain different sets of information, what produced the re-
quirement to evolve the ontology, in order to accommodate
variations on the sets of information that lab packages can
present. This heterogeneity entangles the integration of the
knowledge generated by each isolated study in a common
body [18]. In this sense, the EXPEROntology can be seen
as a unifying model, in which lab packages are instantiated,
therefore enabling integration. Also, create/evolve package
activity proposed on FIRE (see Figure 1) suggests that the
initial ontology should evolve, incorporating new concepts,
what is addressed by the proposed approach. Consequently,
a semantic standard that deal with the heterogeneity issue
can be accomplished.

As input to the workflow we consider the lab package
as the data set describing an experiment. In this sense, any
experiment description might be used: for example, an ex-
periment description found in literature. In this case, the
workflow should be applied in parallel with a literature re-
view, in order to apply the information extraction from pa-
pers describing experiments [10]. Through this mechanism,
it is also possible to assess the new concepts being inserted.

References

[1] E. A. G. Amaral and G. H. Travassos. A package model
for software engineering experiments. In Proceedings of IS-
ESE 2003 - International Symposium on Empirical Software
Engineering, pages 21–22, 2003.

[2] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado. To-
wards the establishment of an ontology of software testing.
In SEKE (Software Engineering & Knowledge Engineer-
ing), pages 522–525, 2006.

412 413

[3] E. F. Barbosa, E. Y. Nakagawa, A. C. Riekstin, and J. C.
Maldonado. Ontology-based development of testing related
tools. In SEKE (Software Engineering & Knowledge Engi-
neering), pages 697–702, 2008.

[4] V. Basili. Empirical Software Engineering Issues, LNCS
4336, chapter The Role of Controlled Experiments in Soft-
ware Engineering Research, pages 33–37. Springer Verlag,
2007.

[5] V. Basili and M. Zelkowitz. Empirical studies to build a
science of computer science. Communications of the ACM,
50(11):33–782, 2007.

[6] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge
through families of experiments. IEEE Transactions on Soft-
ware Engineering, 25(4):456–473, 1999.

[7] J. Biolchini, P. G. Mian, A. C. C. Natali, T. U. Conte, and
G. H. Travassos. Scientific research ontology to support sys-
tematic review in software engineering. Advanced Engineer-
ing Informatics, 21(2):133–151, 2007.

[8] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller.
Guide to Advanced Empirical Software Engineering, chap-
ter Replication’s Role in Software Engineering, pages 365–
379. Springer-Verlag London, 2008.

[9] J. C. Carver. Towards reporting guidelines for experimen-
tal replications: A proposal. In International Workshop
on Replication in Empirical Software Engineering Research
(RESER), 2010.

[10] D. Cruzes, M. Mendonça, V. Basili, F. Shull, and M. Jino.
Extracting information from experimental software engi-
neering papers. In Proceedings of the XXVI International
Conference of the Chilean Society of Computer Science,
pages 105–114, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[11] A. De Lucia, C. Gravino, R. Oliveto, and G. Tortora.
An experimental comparison of ER and UML class dia-
grams for data modelling. Empirical Software Engineering,
15(5):455–492, 2010.

[12] R. Falbo, F. B. Ruy, and R. D. Moro. Using ontologies to
improve knowledge integration in software engineering en-
vironments. In World Multiconference on Systemics, Cyber-
netics and Informatics, 1999.

[13] R. Falbo, F. B. Ruy, and R. D. Moro. Using ontologies to
add semantics to a software engineering environment. In
SEKE (Software Engineering & Knowledge Engineering),
pages 151–156, 2005.

[14] R. E. Garcia, E. N. Hohn, E. F. Barbosa, and J. C. Maldon-
ado. An ontology for controlled experiments on software
engineering. In SEKE (Software Engineering & Knowledge
Engineering), pages 685–690. Knowledge Systems Institute
Graduate School, 2008.

[15] T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Int. Journal Human-Computer
Studies, 43:907–928, December 1995.

[16] N. Guarino, D. Oberle, and S. Staab. Handbook on Ontolo-
gies, chapter What is an ontology?, pages 01–17. Springer
Verlag, 2009.

[17] ISERN. ISERN manifesto. Available at http://isern.iese.de.
[18] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Guide to

Advanced Empirical Software Engineering, chapter Report-
ing Experiments in Software Engineering, pages 365–379.
Springer-Verlag London, 2008.

[19] B. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. E. Emam, and J. Emam. Preliminary
guidelines for empirical research in software engineering.
IEEE Transactions on Software Engineering, 28:721–734,
August 2002.

[20] M. G. Mendonça, J. C. Maldonado, M. C. F. de Oliveira,
J. Carver, S. C. P. F. Fabbri, F. Shull, G. H. Travassos, E. N.
Hohn, and V. R. Basili. A framework for software engineer-
ing experimental replications. In ICECCS, pages 203–212,
2008.

[21] J. Miller. Can results from software engineering experiments
be safely combined? In Proceedings of the 6th International
Symposium on Software Metrics, pages 152–, Washington,
DC, USA, 1999. IEEE Computer Society.

[22] J. Miller. Applying meta-analytical procedures to software
engineering experiments. Journal of Systems and Software,
54:29–39, September 2000.

[23] J. Miller. Replicating software engineering experiments: a
poisoned chalice or the holy grail. Information & Software
Technology, 47:233–244, March 2005.

[24] N. F. Noy and D. L. McGuinness. Ontology development
101: A guide to creating your first ontology. Technical re-
port, Stanford University, 2001.

[25] L. P. Scatalon, R. E. Garcia, and R. C. M. Correia. Uma
ferramenta para instanciação de ontologia de experimentos
controlados em engenharia de software (in portuguese). In
6th Iberian Conference on Informations Systems and Tech-
nology (CISTI 2011), 2011. Accepted (to appear).

[26] F. Shull, V. R. Basili, J. Carver, J. C. Maldonado, G. H.
Travassos, M. G. Mendonça, and S. C. P. F. Fabbri. Repli-
cating software engineering experiments: Addressing the
tacit knowledge problem. In Proceedings of the 2002 In-
ternational Symposium on Empirical Software Engineering,
pages 7–16, Washington, DC, USA, 2002. IEEE Computer
Society.

[27] F. Shull, J. Carver, G. H. Travassos, J. C. Maldonado,
R. Conradi, and V. Basili. Lecture Notes on Empirical Soft-
ware Engineering, chapter Replicated Studies: Building a
Body of Knowledge about Software Reading Techniques,
pages 39–84. World Scientific Publications, 2003.

[28] F. Shull, M. G. Mendonça, V. R. Basili, J. Carver, J. C. Mal-
donado, S. C. P. F. Fabbri, G. H. Travassos, and M. C. Fer-
reira. Knowledge-sharing issues in experimental software
engineering. Empirical Software Engineering: An Interna-
tional Journal, 9:111–137, March 2004.

[29] M. Uschold and M. Gruninger. Ontologies: Principles,
methods and applications. Knowledge Engineering Review,
11:93–136, 1996.

[30] W3C. W3C Recommendation. OWL Web Ontology
Language Semantics and Abstract Syntax. Available at
http://www.w3.org/TR/owl-semantics, 2004.

[31] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in Software Engineer-
ing: An introduction. Kluwer Academic Publishers, Boston,
USA, 1999.

414 415

Knowledge Engineering in the domain of Carbon
Dioxide Capture Process System

Q. Zhou, A.J. Wiebe, C. W. Chan
Energy Informatics Laboratory, Faculty of Engineering and

Applied Science
University of Regina

Regina, Saskatchewan, Canada, S4S 0A2
Christine.chan@uregina.ca

Abstract—This paper presents knowledge engineering work for
building a knowledge-based system (KBS) for the amine-based
CO2 capture process system at International Test Center for CO2
capture (ITC) located in Regina, Saskatchewan of Canada. The
knowledge acquisition process was conducted for building
knowledge base for the CO2 capture process system. The
knowledge base includes static and dynamic knowledge. The
static knowledge includes the information on constructive
components of the reaction instruments, fluids, and the control
devices in the CO2 capture system. The dynamic knowledge
specified operation tasks of the CO2 capture process system,
which are expressed as the control strategies for dealing with 25
critical process parameters when a fault condition emerges. The
knowledge obtained is represented in the knowledge table. In this
paper, we present our work in knowledge engineering and how
the knowledge table provided the foundation for developing an
expert system for automatic monitoring, control, and fault
diagnosis of the CO2 capture process system at ITC and for
implementing the ontology for the CO2 capture process system.

Keywords-knowledge engineering; ontology; knowledge-based
expert system; CO2 capture

I. INTRODUCTION

Combustion of fossil fuels in power generation and in
various industrial processes such as cement manufacture and
hydrogen production emits large amounts of CO2. It is reported
that CO2 is a primary greenhouse gas and causes enhanced
global warming. Due to increasing public concern about
environmental pollution and climate change, the technology of
amine-based carbon dioxide (CO2) capture has been widely
adopted for reducing industrial CO2 emissions and mitigating
global warming. The amine-based CO2 capture process system
is a complicated chemical process system which involves over
a dozen reaction instruments and a number of control devices
such as pumps and valves. The operators of the CO2 capture
process system are required to detect the abnormal condition in
a timely manner and to fix the problem promptly so as to
ensure reliable performance of the process system. Therefore,
developing a systematic knowledge depository which collects
both the domain and operation knowledge of the CO2 capture
process system is useful. A KBS can help the novice operators
in monitoring and diagnosing the system. This paper discusses
the process of knowledge acquisition (KA) and development of

the knowledge base for the CO2 capture process system. As a
result of the KA process, a knowledge table was generated,
which formed the basis for the conceptual model of the KBS as
well as an implemented ontology of the domain.

The paper is organized as follows: Section 2 gives a brief
description about the CO2 capture process system at ITC.
Section 3 describes the knowledge acquisition process and
presents the conceptual structure of the developed knowledge
base. Section 4 discusses the mapping of the elements of the
knowledge base to the structure of DeltaV Simulate (a
trademark of Emerson Corp., USA). Section 5 presents a case
study of the expert system developed on DeltaV Simulate.
Section 6 describes the development of the implemented
ontology for the CO2 capture process system based on the
conceptual knowledge base. Section 7 gives a conclusion and
includes some discussion about future work.

II. PROBLEM DOMAIN

In the amine-based CO2 capture process, an amine solvent
is used to absorb CO2 from the flue gas, and CO2 is
subsequently extracted from the amine solvent, which can then
be regenerated and reused. The amine-based CO2 capture
technology has been implemented at the International Test
Center for CO2 capture (ITC); the CO2 capture process system
is the problem domain for the KBS. More details of the CO2
capture process system can be found in [6].

III. KNOWLEDGE ACQUISITION

The objective of the knowledge acquisition process is to
obtain systematic knowledge about the CO2 capture process
system, and identify the knowledge needed for performing
monitoring and diagnosis. Knowledge acquisition for this
project lasted six months and involved discussions with the
experts during interviews, observation, and field studies on site.
During the interviews, the expert provided illustrations,
answered questions, and verified the acquired knowledge. The
result of the knowledge acquisition process was analyzed based
on the Inferential Modeling Technique (IMT) [1], and the
knowledge base of the CO2 capture process system was
developed. The knowledge base includes two parts: static
knowledge and dynamic knowledge. The static knowledge
defines the constructive components of the CO2 capture plant

414 415

and specifies the reaction instruments, process parameters, and
control devices. The dynamic knowledge was developed by
representing the problem-solving skills of the experienced
process operators, which included the diagnosis and remedial
control actions for the 25 critical parameters when an abnormal
condition is detected.

A. Static Knowledge
The static knowledge includes three classes: reaction

instruments, process parameters, and control devices; they are
discovered as follows.

1) Reaction Instruments
There are in total 16 reaction instruments in the CO2

capture process. Each reaction instrument carries out a specific
function and produces different output fluids. The sixteen
reaction instruments are divided into three subclasses of objects
according to their functions: (1) Pre-treatment section, which
includes the steam boiler, micro turbine, inlet-gas scrubber; (2)
Absorption-based CO2 section, which includes the absorber,
off-gas scrubber, lean amine storage tank, lean amine cooler,
rich amine vessel, lean/rich amine exchanger, stripper, reboiler,
and reclaimer; (3) Post-conditioning section for product
purification, which includes the reflux condenser, reflux
accumulator, CO2 wash scrubber, and CO2 dryer unit.

2) Process Parameters
The fluids circulating in the system include: flue gas

containing CO2, off gas free from CO2, CO2, steam, amine
solvent, and water. They go through and undergo changes in
different reaction instruments. The attributes of the fluids are
defined as the process parameters which reflect performance of
the plant, and there are in total over one hundred process
parameters in the CO2 capture plant. The values of the
attributes are constantly changing in the process, even for the
same type of fluid. The design decision was made to divide the
attributes of each fluid into groups based on their locations, or
which reaction instrument they have gone through. Therefore,
the attributes of fluids have been defined as the attributes of the
reaction instrument from which it flows. In this way, over one
hundred process parameters in the plant can be grouped into 16
reaction instrument based groupings.

3) Control Devices
The control devices include the two classes of pumps and

valves, which are used to regulate the flow of fluid. The pumps
can be either opened or closed, and the valves can be opened,
closed, or partially closed. Manipulating the pumps and valves
can regulate the flow of fluids and change their attributes, or
the process parameters. As the process parameters are divided
into 16 classes according to the reaction instrument to which
they belong, the control devices can be divided in the same way
based on the process parameters that they regulate, i.e., 16
groups of control devices based on which reaction instrument
they control.

As a result, the entire system can be viewed in terms of
sixteen reaction components, their relevant attributes, and the
relevant control devices. The relationships among these classes
of the CO2 capture process system are illustrated in Figure 1.
The objects are denoted with the square boxes, and their
respective attributes are denoted with the ellipse boxes. The

object of reaction instrument processes some input fluids and
produces the output fluids. The attributes of its output fluid are
specified as this reaction instrument’s attributes, which are
represented by the dotted arrows. Also, the reaction instrument
has its own attribute of fluid level, which is represented by the
solid arrows. These attributes can be divided into the subclasses
of temperature, pressure, flow rate, and level. The arrows
pointing from the attributes of reaction instrument to the
control devices indicate that these process parameters are
directly controlled by the pumps and valves. The pumps and
valves can be further classified by their own attributes. These
attributes include: (1) type, which defines control mechanism
of the valve/pump; (2) fluid, which specifies what fluid the
valve/pump controls; (3) state, which specifies the status of a 2-
state control device, it has the values of On and Off; (4)
location, which indicates where the valve/pump is installed;
and (5) name, which is a brief description of the valve/pump.

Dynamic Knowledge
The dynamic knowledge represents the tasks of monitoring

each reaction instrument, which includes the subtasks of
monitoring its related attributes, or process parameters. During
knowledge acquisition, twenty five critical process parameters,
their desirable operating ranges, and the control actions when
an abnormal condition emerges are specified.

The domain knowledge was analyzed based on the IMT,
which emphasizes decomposition of the information into
knowledge elements. The knowledge elements were then
represented in the table format, which became the knowledge
table. Table 1 provides a segment of the table that shows the
knowledge element of inlet gas scrubber.

The table consists of 8 columns, the first four columns
describe the static information, namely, the reaction instrument
to which the attribute belongs, the attributes’ number, tag, and
name respectively. The fifth and sixth columns together
describe the attribute’s range of normal operation. For example,
for the parameter of inlet-gas scrubber water level control (LC-
410), the high limit of its desirable operating range is 65%, and
the low limit is 60%. The “low low” limit indicates the critical
condition which causes safety concerns. If the actual value of
the attribute exceeds the limit value, the corresponding control
action is executed. The seventh and eighth columns present the
control action and diagnosis or explanation for that control

Figure 1. Relationship among the classes of the CO2 capture
process system

416 417

action, respectively. For inlet-gas scrubber water level control
(LC-410), the valve ED-420 should be open when its value
exceeds the high limit of 65% to increase water drainage of the
tank; the valve EV-300 should be open if its value drops below
the low limit of 60% to increase make-up water supply to the
scrubber. However, if the remedial action is not taken in time
and the attribute falls to the critical level of 30%, the pumps of
P-420 and B-200 should both be shut off immediately to stop
the wash water circulation and cut off the gas supply to the
absorber.

TABLE I. SAMPLE SEGMENT OF KNOWLEDGE TABLE

IV. MAPPING KNOWLEDGE TABLE TO DELTAV STRUCTURE

The knowledge represented in the knowledge table is
mapped into knowledge representation constructs in DeltaV
Simulate. The DeltaV Simulate has a five-level hierarchical
structure, which includes from top to bottom: (1) plant area, (2)
module, (3) algorithm, (4) function block, and (5) parameter.
The mapping from the knowledge table to the DeltaV system is
presented as follows.

The plant areas are logical divisions of the process control
system, which can be based on physical plant locations or main
process functions. A plant area consists of modules, and each
module is a logic control entity responsible for configuring the
control strategies. It contains algorithms, alarms, and other
characteristics that define the process control. Algorithms
define the logic steps that describe how the module behaves
and how the tasks are accomplished. In this intelligent system,
the function block diagrams (FBD) were used to continuously
execute control strategies. The basic component of a FBD is a
function block, which contains the control algorithm and
defines the behaviour of the module. Each function block
contains parameters which are the user-defined data
manipulated by the module’s algorithm in its calculations and
logic. The structure of DeltaV Simulate is shown in Figure 2,
and the details of each hierarchical component are explained
from the top to bottom level as follows.

Level 1: as the plant area is the logical division of the
process based on the location or the function, each reaction
instrument is defined as a plant area for two reasons. Firstly,
every reaction instrument has its particular function. Secondly,
the process parameters and the control devices are classified by
which reaction instrument they belong to, i.e. the location.
Therefore, defining 16 reaction instruments into 16 plant areas
properly divides the entire plant into 16 functional and
structural areas. It also can be observed from Figure 1 that the
reaction instruments, the process parameters and the control
devices are interrelated in a top-down hierarchy. Therefore,
defining the reaction instruments as the top level logically

supports the construction of the lower hierarchical components
in DeltaV Simulate.

Level 2: modules are at the next level in the structural
hierarchy of DeltaV Simulate, and a module is a logic control
entity responsible for configuring the control strategies. These
control strategies indicate the manipulation of the control
devices, i.e., pumps and valves, to adjust the process
parameters. The attribute of type of the control devices reflects
that primarily two mechanisms of PID control and 2-state
control are used to manipulate pumps and valves.
Corresponding to these two types of control strategies, there are
two types of modules: PID control modules and 2-state
modules. The PID control modules configure the control
strategies for the PID valves; the 2-state modules configure the
control strategies for the control devices with two states, i.e.,
the pumps and solenoid valves.

Level 3: function block diagram (FBD) is a diagram that
contains multiple interconnected function blocks. It generally
contains input signal function block, control function block,
and output signal function block. Different control function
blocks are used and the choice depends on what control
mechanism the module deploys. The control function block is
the item that contains the most critical parameters.

Level 4: a function block defines the behaviour of an
algorithm for a particular module. Two types of function blocks
of 2-state function block and PID control function block are
used for the control function block. Since the PID control
valves are used to control the attributes of the reaction
instruments, the attributes of reaction instruments and their
relative PID control valves are combined into the PID control
function blocks, which enable the present values of the
attributes to approach their desired values by controlling the
PID valves. The pumps and solenoid valves manipulate the
attributes of the reaction instruments by switching between the
ON/OFF states, i.e. between the current state and desired state.
Therefore, the pumps and solenoid valves are represented by
two-state control function blocks.

Level 5: parameters define the values of the attributes of the
reaction instruments. As mentioned earlier, a PID function
block controls a PID valve, so as to enable the present value of
an attribute of the reaction instrument to approach its desired
values. Therefore, the critical parameters of a PID function
block include the present values of the attribute, the high/low
values that specify the operating limits beyond which an alarm
is activated, and the set-point value which represents the
desired value. For the 2-state function blocks, the critical
parameters are the current and desired states of the 2-state
control devices.

The knowledge table developed based on knowledge about
the CO2 capture system clarifies the domain knowledge and
supports encoding the knowledge into the hierarchical structure
of DeltaV Simulate using a top-down approach. The
knowledge table also supports a more efficient design of the
expert system implemented on the DeltaV Simulate; the
developed system involves a mapping of the knowledge table
constructs to the DeltaV Simulate mechanisms. The reaction
instrument of inlet gas scrubber and its related PID valve PCV-
901 is used as an example to explain how each hierarchical

416 417

level is developed on DeltaV Simulate based on information in
the knowledge table. The components are shown in Figure 2
and the details are described below.

The reaction instrument of inlet gas scrubber is defined as a
plant area. Its related PID valve PCV-901 together with the
attribute it controls, i.e., the pressure of off gas (PT-901), are
combined into a PID control module. The module is
represented in a function block diagram, which consists of
function blocks for input signals, output signals, and most
importantly, for the control strategy. As shown in Figure 2, the
function block for the control strategy conducts PID-control.
The key parameters contained in this PID function block
include: the present value of the off gas pressure, the set-point
value of the off gas pressure, and the high and low limit values
of the off gas pressure. If a value is beyond the range defined
by the high and low limit values, the alarm function embedded
in the PID function block is activated. A sample scenario is
present in the next section.

V. EXPERT SYSTEM ON DELTAV SIMULATE

A sample interface of the expert system developed on
DeltaV Simulate describes the scenario in which the inlet-gas
scrubber wash water flow rate (FT-420) is in an abnormal
condition. The interface is shown in Figure 3. The current value
of FT-420 shown on the panel of FC-420 is 0kg/min, which is
lower than its normal low limit of 5kg/min and indicates the
water circulation between the inlet gas scrubber and water tank
has stopped because the pump is shut. The alarm is activated
and displayed on the interface, as a result, the panel for FC-420
turns to the blue color. The diagnosis and control suggestions
are sent to a message board on the user interface: “If P-420 is
on, open up FCV-420 to increase water returning from the
scrubber to water tank; if P-420 is off, turn on P-420.” The red
color of pump P-420 indicates its closed status. Therefore,

according to the control suggestion, P-420 should be opened so
the water circulation will restart.

VI. FROM KNOWLEDGE TABLES TO IMPLEMENTED
ONTOLOGIES

In addition to being used as the basis for development of
the expert system, the knowledge tables were also used as the
basis for building an implemented ontology of the domain. An
implemented ontology can serve as the shareable and reusable
knowledge base for supporting development of diverse KBS’s.
The implementation was conducted using both Protégé and
Dyna [2]. Protégé is a freely available open source ontology
editor and knowledge base framework implemented in Java. It
supports constructing OWL ontologies as well as creating add-
ons for other ontology or knowledge based applications. Dyna
[2], is one such add-on. It is for the specification of dynamic
knowledge. Being an add-on to Protégé allows Dyna to access
the OWL ontology directly in the Dyna environment. This
means that a dynamic action (or task) specified in Dyna can be
linked to the OWL class in Protégé.

The static knowledge in the knowledge table was
implemented using the OWLClasses of Protégé, and the
dynamic knowledge was implemented with a Protégé add-on
called Dyna. The conversion of knowledge elements specified
in the knowledge table to the implemented ontology is
explained with the knowledge element of CO2 wash scrubber
shown in the knowledge table segment in Figure 4 and
discussed as follows.

TABLE II. KNOWLEDGE TABLE: EXAMPLE OF
O15_CO2_WASH_SCRUBBER

Figure 3. Interface of Expert System

Figure 2. Hierarchical structure of sample component in DeltaV
Simulate

418 419

The class of CO2 wash scrubber has the two attributes of
the CO2 wash scrubber differential pressure, and CO2 wash
scrubber level control. In the table shown in table 2, the class of
CO2 wash scrubber is referred to as “Object C15”. Implicitly,
there were two kinds of relationships among the classes.
Firstly, an inheritance relationship exists among parent and
child classes, e.g. the relationship between SC_3_Post-
Conditioning_Unit_for_Product_Purification_Parts and O15_
CO2_Wash_Scrubber is an inheritance relationship. The two
classes are specified in Protégé and shown in Figure 4.

The second kind of relationship is an aggregate relationship
in which one class is a composite of several component classes,
e.g. the relationship between O15_ CO2_Wash_Scrubber and
its component objects of FT_720_CO2_scrubber and LC_710_
CO2_scrubber, which are shown in Figure 5. Protégé converts
the parent-child relationship in the first relationship into the
OWL statements about the class of CO2 wash scrubber, its
parent class, and the other classes which are disjoint from it.
These OWL statements are shown in Figure 6.

The aggregate relationship among the classes shown in
Figure 6 is converted into the OWL statements about the class

of CO2 product flow rate; it is a subclass of CO2 wash scrubber,
and the classes from which it is disjoint. The OWL statements
are shown in Figure 7.

According to the IMT, the dynamic knowledge is
decomposed into the knowledge elements of objectives and
tasks, which are specified in the knowledge table. An example
of this representation is given in section B Dynamic Knowledge
Dyna performs two functions in converting the knowledge
table into an implemented ontology. First, it converts the
information into OWL statements, and secondly, it tests the
specified behavior to ensure that the representation is correct.
Based on the knowledge specified in the columns of Operate
Limit, Limit value, Controlling Decision, and Diagnosis and
Explanation of the knowledge table shown in Table 2, Dyna
converts this segment of dynamic knowledge related to the
attribute of level control of the class of CO2 wash scrubber
level control (C15A2_LC-710) into the OWL statements
shown in Figure 8.

The testing function of Dyna requires the user to make up a
test case for each behaviour that is specified in the knowledge
table. The test case for the same knowledge element involves
specifying three different values of 9.5, 5.0, and 0.0 for the
attribute which would trigger the corresponding “print”
statements. The test case is shown in Figure 9.

 <owl:Class rdf:about="#FT-701_Wet_CO2_Product_Flow_Rate">
 <rdfs:subClassOf rdf:resource="#OP15_CO2_Wash_Scrubber"/>
 <owl:disjointWith rdf:resource="#DPT-
700_CO2_Wash_Scrubber_Differential_Pressure"/>
 <owl:disjointWith rdf:resource="#LC_710_CO2_Scrubber"/>
 <owl:disjointWith rdf:resource="#FT_720_CO2_Scrubber"/>
 <owl:disjointWith rdf:resource="#TE-720_CO2_Scrubber"/>
 <owl:disjointWith rdf:resource="#PT-701_Wet_CO2_Product_Pressure"/>
 <owl:disjointWith rdf:resource="#TE-701_Wet_CO2_Product_Temperature"/>
 </owl:Class>

Figure 7. OWL Statements on the FT-701 Wet CO2 Product Flow Rate
and its disjoint classes

Figure 5. OP15 Class Specified in Protégé

Figure 4. O15 Class Hierarchy Specified in Protégé

<Task><Name>C15A2_LC_710</Name>
<Documentation>CO2 wash scrubber level control</Documentation>
<SubTaskList/><DependencyList/>
<TaskArgList><TaskArg><VarType>float</VarType>
<VarName>co_level</VarName></TaskArg></TaskArgList>
<TaskReturn/>
<Behaviour>if(co_level > 95.0){
 print "open EV_720"
 EV_720.state = "open"
}else if(co_level <= 0.0){
 print "shut off P_720"
 P_720.power = "off"
}else if(co_level < 5.0){
 print "open EV_303"
 EV_303.state = "open"
}</Behaviour><ObjectList>
<Object rdf:resource="http://www.owl-

ontologies.com/Ontology1276705464.owl#LC_710"/>

Figure 8. XML file dyna produced describing C15's behaviour

<owl:Class rdf:about="#O15_CO2_Wash_Scrubber">
 <rdfs:subClassOf rdf:resource="#SC_3_Post-
Conditioning_Unit_for_Product_Purification"/>
 <owl:disjointWith rdf:resource="#O16_CO2_Dryer_Unit"/>
 <owl:disjointWith rdf:resource="#O14_Reflux_Condenser"/>
 <owl:disjointWith rdf:resource="#O13_Reflux_Accumulator"/>
 </owl:Class>

Figure 6. OWL Statements on the Class of CO2 Wash Scrubber

418 419

Decomposition of domain knowledge into its discrete
elements facilitates knowledge sharing and reuse because an
ontology that has a particular class, e.g., a pump class would
enable it to link with other ontologies that also have that
particular class of a pump. While the current version of the
implemented ontology does not link to any other ontologies, it
is possible that such a link can be established. For example,
Ontocape [5] is a large ontology on the chemical process
system domain that includes useful classes of knowledge on
substance and measurement. It is an item on the future
research agenda to see if some components of knowledge
clarified and represented in Ontocape can be incorporated into
the implemented ontology developed.

VII. CONCLUSION AND FUTURE WORK

The objective of the work is to clarify and represent the
domain knowledge of the CO2 capture process system as the
basis for building the ontology of this chemical process system.
Knowledge engineering for the CO2 capture process system
based on the IMT resulted in documentation of the elicited
domain expertise in a knowledge table. The domain knowledge
was decomposed and clearly specified in the knowledge table.
The explication was helpful because it clarified for the
knowledge engineer the roles and relationships among the roles
of the different knowledge elements. An expert system
developed based on the represented knowledge can serve as a
decision-support tool for the novice operator. When any fault
occurs in the CO2 capture process system, the time for
diagnosis can be greatly shortened and the effective remedial

control action can be deployed in a timely manner. This would
help enhance efficiency the CO2 capture process system. Also,
the clarified knowledge about the constructive and reactive
components facilitates understanding of the process system and
construction of the expert system for automatic monitoring,
control and diagnosis of the CO2 capture process system. As
well, it supports conversion of the knowledge table to an
implemented ontology, which can be reused or extended in the
future for building other knowledge based systems.
Developing the ontology contributes to realization of the
semantic web, which aims to structure data found on the
internet by means of ontologies. Therefore, semantic web
technology such as ontologies would enhance the ability of
computers to search for information on the internet and support
widespread use of agent technology for performing complex
online tasks.

ACKNOWLEDGMENT

We are grateful for the generous support of Natural Science
and Engineering Research Council (NSERC) and the Canada
Research Chair Program.

REFERENCES

[1] C.W. Chan, “From Knowledge Modeling to Ontology Construction,”
International Journal of Software Engineering and Knowledge
Engineering, vol. 14 (6), pp. 603–624, 2004.

[2] R. Harrison and C.W. Chan, “Tools for Industrial Knowledge Modeling
and Management,” M.A.Sc. Thesis, U of Regina, Regina, pp. 1-175,
2007.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific America, pp. 1-36, 2001.

[4] L.L. Chen and C.W. Chan, “Ontology Construction from Knowledge
Acquisition,” Proceedings of Pacific Knowledge Acquisition Workshop,
pp. 1-16, 2000.

[5] J. Morbach, A. Wiesner, W. Marquardt, “OntoCAPE—A (re) usable
ontology for computer-aided process engineering,” Computers &
Chemical Engineering, pp. 1546-1556, 2009.

[6] Q. Zhou, C.W. Chan, P. Tontiwachiwuthikul, R. Idem, D. Gelowitz, “A
Statistical Analysis of the Carbon Dioxide Capture Process,”
International Journal of Greenhouse Gas Control 3, pp. 535-544, 2009.

</ObjectList><PreCondition/><TestSuite><TestSetup/>
<TestCaseList><TestCase><TestCaseName>test</TestCaseName>
<TestCaseCode>C15A2_LC_710(96.0)
assert(EV_720.state == "open")
C15A2_LC_710(4.0)
assert(EV_303.state == "open")
C15A2_LC_710(0.0)
assert(P_720.power == "off")</TestCaseCode>
</TestCase></TestCaseList></TestSuite></Task>

Figure 9. Same XML file as above describing the testing of C15
behaviour

420 421

Maintainability Predictors for Relational Database-
Driven Software Applications: Results from a Survey

Mehwish Riaz, Emilia Mendes, Ewan Tempero
Department of Computer Science, The University of Auckland

Auckland, New Zealand
mria007@aucklanduni.ac.nz, emilia@cs.auckland.ac.nz, e.tempero@cs.auckland.ac.nz

Abstract—Software maintainability is a very important quality
attribute. Its prediction for relational database-driven software
applications can help organizations improve the maintainability
of these applications. The research presented herein adopts a
survey-based approach where a survey was conducted with 40
software professionals aimed at identifying and ranking the
important maintainability predictors for relational database-
driven software applications. The survey results were analyzed
using frequency analysis, and results suggest that maintainability
prediction for relational database-driven applications is not the
same as that of traditional software applications. The results also
provide a baseline for creating maintainability prediction models
for relational database-driven software applications.

Software maintainability, relational database-driven software
applications; survey; predictors; frequency analysis

I. INTRODUCTION

Software maintainability is the ease with which a software
system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changed
environment [6]. It is inherently associated with the process of
software maintenance which has long been known to have the
major amount of software costs associated to it [12]. In order
to manage these costs, it is important to understand, predict and
improve software maintainability [12]. Software
maintainability prediction involves proposing and validating
predictors that have a bearing on software maintainability [1]
and then employing these predictors to create software
maintainability prediction models [13]. With the help of a
maintainability prediction model, software organizations can
better manage their maintenance resources and adopt a
defensive design [11].

Database-driven applications have gained much popularity
in modern software development [4] with relational databases
as the most used and most successful type of database [15].
Relational databases are different from and more formalized
than other types of databases and persistence mechanisms [2].
Database-driven applications consist of a database, a Database
Management System (DBMS), and a set of applications that
interact with the database through this management system [7].
Relational database-driven applications are therefore, those
database-driven applications that have a relational database
backend. The change in requirements cause these applications
to undergo maintenance resulting in storing increased number
of data sources and relationships; increased database

complexity; and increased coupling between the database and
application [9]. This suggests that the maintainability of these
applications is also impacted by database specific factors in
addition to application specific factors [13].

Given the importance of relational database-driven software
applications in modern software development, it is important to
investigate the factors that impact upon their maintainability in
order to enable maintainability prediction. This paper is a step
towards predicting maintainability of relational database-driven
application by providing a validated list of predictors that have
an impact on the maintainability of relational database-driven
applications. This list of predictors was initially gathered with
the help of twelve interviews conducted with software
professionals [13]. The interviews’ analyses resulted in the
identification of 120 predictors. The focus of the work
presented herein is to rank these predictors, with respect to the
strength of their impact on the maintainability of relational
database-driven applications, via another survey conducted
with a larger sample of software professionals. The main
contributions of this paper are therefore to:

Further validate the predictors of maintainability
identified by Riaz et al. [13] within the context of
relational database-driven software applications.

Rank the maintainability predictors for relational
database-driven software applications in terms of their
relative importance to predicting maintainability.

Establish whether the predictors presented by Riaz et al.
[13] positively or negatively impact the maintainability of
relational database-driven applications.

Present evidence on the type of applications and DBMS
used the most in practice.

The remainder of the paper is organized as follows. Section
II gives an account of the related work. Section III details the
research methodology. Section IV presents the results. A
discussion on the results and threats to validity are given in
Section V, followed by conclusions in Section VI.

II. RELATED WORK

The research presented herein is informed by the results of:
(1) a Systematic Review (SR) conducted on the topic of
‘Software maintainability prediction and metrics’ [12]; and (2)
twelve interviews conducted with software professionals [13]

420 421

aimed at gathering evidence relating to the maintainability
prediction of relational database-driven applications.

The results of the SR revealed very little evidence on
maintainability prediction. The total number of studies selected
in the SR was 15. These studies were further analyzed to assess
if the datasets used in these studies completely or partially
comprised relational database-driven software applications.
Only three of these studies [3] [5] [8] had used relational
database-driven software applications for the purpose of their
research evaluation. However, only one of these studies [5]
presented a maintainability prediction model but did not
provide its prediction accuracy; the other two studies only
presented measures [3] and factors [8] that impacted upon
software maintainability, without any associated
maintainability prediction model. Further analysis of these
studies revealed that although they used relational database-
driven applications, none of their proposed predictors or factors
related specifically to a back-end database or to the interaction
between a back-end database and the front-end application.

To further investigate maintainability prediction in the
context of relational database-driven applications, interviews
with software professionals were conducted to gather evidence
from practice [13]. The results from the interviews revealed
that a formal prediction model, or approach to predicting the
maintainability of relational database-driven applications is not
used in practice. The practitioners rely on expert judgement
when assessing maintainability of relational database-driven
applications. The analysis of these interviews also resulted in a
list of factors that impact upon the maintainability of relational
database-driven applications and may be used as their
maintainability predictors.

III. RESEARCH METHODOLOGY

A. Survey-based Questionnaire
In order to determine which maintainability predictors are

the most relevant and stand out the most from the list of
predictors compiled with the help of SR and interviews’ results,
a survey was conducted with software practitioners. The list
used in the survey comprised a total of 120 predictors [14], and
the survey was informed by the results from the SR and the
conducted interviews. It aimed at ranking these predictors in
terms of their relative impact on the maintainability of
relational database-driven software applications.

The survey questionnaire had 3 parts: The first part related
to the respondents’ characteristics, such as job function at the
company, highest qualification, and total experience in years;
and companies’ characteristics, such as the year it was
established, whether it is involved in developing relational
database-driven applications, and the DBMS used most often.

The second part related to maintainability predictors. There
were a total of 120 predictors, which belonged to one of the 10
categories below:

1. Database design
2. Relational database-driven applications
3. Design aspects of relational database-driven

applications

4. Size, scope, and complexity of relational database-
driven applications

5. Quality, quality assurance, and testing of relational
database-driven applications

6. Change and maintenance of relational database-driven
applications

7. Development and deployment environment of
relational database-driven applications

8. Web applications with relational database back-end
9. Organizational culture and policies
10. Team communication and project management.

The possible responses against each of the factors, in
relation to their impact on the maintainability of relational
database-driven applications, were recorded on a 7-point bi-
polar scale. The responses could be one of ‘high decrease’,
‘medium decrease’, ‘low decrease’, ‘no impact’, ‘low
increase’, ‘medium increase’, and ‘high increase’. The scale
was designed such that both the direction of the factors’
relationship (positive or negative i.e., whether a given factors
increase maintainability or decreases maintainability,
respectively) and the strength of the relationship with
maintainability could be determined.

The third part of the questionnaire recorded opinions on
which aspect of a relational database-driven application, from
interface, data model, or algorithm objects/computation
intensive modules, was hardest to maintain; asked of any
additional predictors of maintainability; and recorded
information on how a judgment is made on the maintainability
of relational database-driven applications in a company (for
which the option supplied was the amount of time to carry out a
maintenance task). Refer to Riaz [14] for the complete survey
questionnaire.

The survey was tested with a pilot run of four practitioners.
Based on the feedback from the pilot, the survey was improved
where the predictors from the SR, especially those that
corresponded to various software metrics, were described using
a simpler language in order to be clearly understandable by the
practitioners.

B. Survey process
In order to conduct the survey, approval from the

University of Auckland Human Participants Ethics Committee
was obtained (Ref. 2009/527). The process prescribed by
UAHPEC was to contact the competent authorities within the
companies which would then extend the invitation to their
employees. The invitations were sent to more than 50
companies in New Zealand and more than 25 companies in
Pakistan through email. The email addresses were obtained
through companies’ listings on the Internet. In addition, a
mailing list of the University of Auckland’s Center of Software
Innovation and authors’ own contacts were also used to make
contact with the companies. The email invitation explained the
purpose and nature of the survey, provided the Web link to the
survey, and asked the companies’ competent authorities to
request participation by those employees within their
companies that had experience with developing and/or
maintaining relational database-driven software applications.

422 423

The survey and the relevant UAHPEC documents were
made available online and were filled out via a Web interface
[14]. Some respondents also downloaded the questionnaire and
returned an e-copy. The survey was conducted between June
2010 and September 2010.

C. Data Source
The data source used herein comprised responses of a total

of 40 software professionals - 13 from 8 different software
companies in New Zealand and 27 from 15 different software
companies in Pakistan, where one respondent was self-
employed. The roles of the participants varied from ‘Software
Developer’ to ‘Head of Development’. The participants had at
least 2 years of experience with software development and/or
maintenance, and had an average experience of 7.8 years with a
minimum of 2 and maximum of 28 years of experience.

The two countries, Pakistan and New Zealand, were chosen
for the following reasons: i) the interviews of which this
research is informed were also conducted in New Zealand and
Pakistan; ii) the results of the interviews established that the
context of this research was not culture-sensitive as the focus
was on software applications in general and not specific aspects
related to people or their way of carrying out their work; and
iii) the first author is originally from Pakistan and research is
being carried out at the University of Auckland, New Zealand
to which all the three authors are affiliated.

In terms of the participating companies, only 3 companies,
from which only one respondent each participated, were
created 1, 2 and 5 years ago. All the other companies were at
least 10 years old. In addition, all companies except two were
engaged in development or maintenance of applications where
90% or more of their applications had relational database
backend. The other two also were involved in developing or
maintaining relational database-driven applications; however,
most of their work did not involve this type of development. In
relation to the use of DBMS, all the participating companies
used either Oracle or Microsoft SQL Server.

D. Data Analysis
Prior to analyzing the data, it was consolidated from two

different sources, a database residing on Microsoft SQL Server
used for the online survey and e-copies of the survey forms
filled by some respondents for which the data was manually
entered. Frequency analysis was the technique used for data
analysis. It was well suited to the purpose as the intention was
to see how many respondents thought of a predictor as having
an impact 1 to 7 (high decrease to high increase) on the
maintainability of relational database-driven software
application.

During the frequency analysis, initially only the predictors
that were reported to have an impact of ‘high decrease’ or ‘high
increase’ on the maintainability of relational database-driven

applications were considered. However, the frequency values
did not stand out when only the extreme ends of the bi-polar
scale were considered. For instance, for most of the factors the
proportion of the respondents (out of 40) that chose one of the
extreme ends of the scale (1 and 2 OR 6 and 7) were half or
less than half i.e., between 15 and 20 (out of 40 respondents)
and the proportion of the respondents that chose other options
‘medium decrease’ to ‘medium increase’ was equal or higher to
those that selected one of the values at the extreme ends of the
scale. Therefore, for final analysis, the sum of the frequencies
for ‘high decrease’ and ‘medium decrease’ (1 and 2 on the bi-
polar scale), and ‘medium increase’ and ‘high increase’ (6 and
7 on the bi-polar scale) were considered. The sum of the
frequencies for the two ends of the bi-polar scale presented a
better choice and represented better insights into the data.

IV. RESULTS

A. Maintainability Predictors
The results of the survey data analysis corresponding to the

second part of the survey are presented in Figure 1, and show
only those maintainability predictors for relational database-
driven applications that had frequency values of 21 or higher
i.e., those predictors that were reported by more than 50% of
the respondents as having a high impact on the maintainability
of the mentioned applications. Note that, the predictors
presented in the table are all those predictors that had an impact
of ‘medium increase’ or ‘high increase’ on the maintainability
of relational database-driven applications. None of the
predictors that had an impact of ‘medium decrease’ or ‘high
decrease’ on maintainability were selected as a result of the
frequency analysis. This shows that all the predictors listed in
Figure 1 have a positive relationship with the maintainability of
relational database-driven software applications i.e., they all
result in an increase in the maintainability of relational
database-driven applications whenever they also increase.

The number of selected predictors for each category (as
defined in the survey questionnaire and mentioned in Section
III-A) against the total in that category are given in Table I.
Note that predictors belonging to categories ‘Size, Scope, and
Complexity of Relational Database-Driven Software
Applications’ and ‘Web Applications with Relational Database
Backend’ were not selected during frequency analysis and are
therefore not presented in the results discussed further.

It is also worth noting that the best predictor relates to the
relational database schema. In addition, other predictors, such
as good database design, optimal use of DBMS features, are
also among the top predictors of maintainability for relational
database-driven software applications. Note that these
predictors were not reported in the studies selected in the SR
yet these rank higher than the predictors that were identified
both by SR and interviews.

422 423

0 5 10 15 20 25 30 35 40

Correct definition of entities
Good software design or architecture

Skilled and experienced human resources
Good database design

Ability to foresee future changes to the application
Customizable and parameterized application

Tiered or layered application (e.g., a separate data access layer)
Good quality (optimal) code

Following standards (e.g., for coding and naming, etc.) and practices
Unit testing

Optimal use of database features
Communication between front-end developers and database architects

Maintaining logs and changes to the application
Choice of database engine

Development and testing tools
Normalization of the database schema

Complete, up-to-date and high quality documentation
Understandability of the application

Understanding a change request and its impact upon maintainability
Choice of data types used in the database

Formal versioning using a Version Management System (VMS)
Knowledge of the application’s deployment environment

Introducing policies for making changes to the application and/or database
Design reviews between the team and with the client

Code inspection, formal reviews and peer-reviews
Strong emphasis on quality assurance

Strong emphasis on properly conducting the requirements phase
Use of packaged software (or reusable components)

Using frameworks for development that allow test harnessing
Implementation of basic checks at the database level

Flexibility and scalability of the application
Reproducibility of behaviour

Regression testing
Testing of all use cases

User acceptance testing
Scenario-based testing

Stored procedures
Load testing

Choice of data adapters
Correct use of indexes

Performance of SQL queries
Data quality

Use of features provided by database engines
Quality of comments

Sum of Frequencies for 'High Increase' and 'Medium Increase'

Figure 1. Predictors of maintainability for relational database-driven software applications

The percentages of predictors selected for each category
presented in Table I.

TABLE I. PERCENTAGE OF MAINTAINABILITY PREDICTORS PER
CATEGORY

Category Frequency
Total in

Category
Selection

Percentage
Database Schema 4 19 21%
Relational Database-Driven
Applications

7 15 47%

Design Aspects of Database-
Driven Applications

4 9 44%

Quality, QA, and Testing 17 20 85%
Change and Maintenance 4 10 40%
Development and Deployment
Environment

4 7 57%

Organizational Culture and
Policies

2 4 50%

Team, Team Communication,
and Project Management

2 7 29%

The results given in Table I show that the most important
category of predictors was ‘Quality, Quality Assurance, and
Testing’, both in terms of total number of predictors selected
for overall analysis and number of predictors selected from the
total number of predictors within the category. The second
important category, perhaps not in terms of the percentage of
factors selected from the category, but the number of factors
contributing to maintainability prediction is ‘Relational
Database-Driven Applications’. Other important categories
relate to ‘Development and Deployment Environment’ and
‘Organizational Culture and Policies’. The results clearly
indicate that the factors related to quality, database schema,
relational database-driven application play an important role in
predicting maintainability. However, the results also indicate
that the factors related to development environment and
organizational culture are also considered important by

424 425

practitioners in order to determine the maintainability of
relational database-driven applications.

B. Ranking of the Aspect of Relational Database-Driven
Applications for Ease of Maintenance
The first section of the third part of the survey asked the

respondents to assign a ranking of 1(easiest) to 3(hardest) to
each of three listed aspects of the relational database-driven
applications i.e., application’s interface, application’s data
model, and application’s algorithmic objects or computation
intensive modules. The results (see Figure 3) show that the
application’s interface was considered the easiest to maintain
by 33 respondents, followed by the application’s data model
(24 respondents) and algorithmic objects (23 respondents). As
such, there was not too much difference between the number of
respondents for second and third rankings, which suggest that
the data model of a relational database-driven software
application can be as difficult to maintain as algorithmic or
computation intensive objects.

0

5

10

15

20

25

30

35

1 2 3

Interface of
application
console, etc

Data model
application

Algorithm o
computatio
intensive m
the applicat

Figure 2. Ranking of the aspects of relational database-driven applications as
per ease of maintenance

In addition to the ranking against the application’s aspects,
this part of the survey also asked if the respondents wanted to
report any other factors they believed were important for
predicting maintainability of relational database-driven
applications. Only three respondents added their responses,
which included software development process level used in an
organization; non-technical aspects related to customer
behavior which drives the timelines for performing
maintenance tasks; and conformance of DBMS to standards,
reliability of WANs, and impact of other software installed on
the system such as anti-virus, operating system etc. As such,
these factors were not considered significant as part of the
analysis as each of these were reported by only one respondent
and would have ultimately been eliminated from the list of top
maintainability predictors.

C. Measures of Maintainability for Relational Database-
Driven Software Applications
The second section of the third part of the survey was

aimed at recording the most used measure of maintainability
among time to carry out a maintenance task, own experience
and judgment, and an equation or a more sophisticated method.
Thirteen respondents provided no answer to this question.
Among the 27 responses received, 20 favored expert judgment,
4 favored time to carry out a maintenance task, 1 favored a
more sophisticated method, and two reported a combination of

time to carry out a maintenance task and their judgment. The
one respondent who mentioned an equation or more
sophisticated method also added a note to indicate that there is
no use of an equation or model but the company uses mature
practices so it has its own parameters to assess maintainability.

Overall, their own experience and judgment was the
measure reported by most surveyed practitioners to measure
the maintainability of relational database-driven applications.
This suggests that maintainability of relational database-driven
applications is determined by subjective assessment in practice.

V. DISCUSSION

This paper presents the results of a survey conducted with
software professionals. The survey was informed by a
previously conducted SR [12] and the results of interviews
conducted with software professionals [13]. It was aimed at
identifying maintainability predictors that had the highest
impact on the maintainability of relational database-driven
software applications. A list of 120 predictors belonging to 10
different categories was used on which expert opinions from
software professionals were recorded. The survey results
suggest that the top 5 predictors related to 'Database Design',
'Design Aspects of Relational Database-Driven Applications',
'Team, Team Communication and Project Management', and
'Change and Maintenance'. The number of predictors selected
by more than 50% respondents was highest for the category
'Quality, Quality Assurance, and Testing' followed by the
predictors related to 'Relational Database-Driven Application'.

The main contribution of this paper is that it identifies the
top predictors of maintainability for relational database-driven
applications. Other contributions include establishing and
supporting by evidence that the type of applications most
developed in software organizations have a relational database
backend, as discussed in Section III-C; interface of a relational
database-driven application is considered easiest to change by
software practitioners whereas data model and computation
intensive modules are considered equally difficult to maintain
in comparison to interface; and maintainability in practice is
measured using expert judgment.

The results of the survey presented some interesting
findings in terms of the factors considered important by
software practitioners. From the results of the SR, the most
frequently mentioned predictors related to coupling,
complexity and size related measures. However, the survey
results suggested that the factors related to ‘Size, Scope, and
Complexity of Relational Database-Driven Applications’ were
not ranked higher than predictors belonging to other categories
by the surveyed software practitioners. In fact, the list of
predictors ranked higher by more than 50% of the respondents
does not include any factor from this category. This is a very
important finding suggesting a huge gap between research and
practice with regards to the perception of maintainability
predictors in the context of relational database-driven
applications. The possible reasons for this can be that most
research experiments reported in literature are not performed in
an industrial setting and the applications used in research
experiments are generally small in scope. This makes it easier
to gather metrics and experiment on these applications whereas

424 425

in practice there is lesser room for experimentation due to tight
deadlines. In addition, in practice no sophisticated techniques
for maintainability prediction are used and therefore,
practitioners rely more on the visible factors on which that they
can more easily formulate a judgment on maintainability. Also,
the sample size for this research is not large so there is also the
possibility of lack of external validity. We believe that
irrespective of the reasons, there is a need to further investigate
maintainability predictors of for relational database-driven
applications. In this regard, our work in progress involves
gathering project specific data on the predictors identified
herein and creating maintainability prediction models based on
the gathered data. This, in addition to providing prediction
models, will also be a means to validating the predictors and
will suggest a need to consider predictors other than the ones
selected herein.

The maintainability predictors for software applications
suggested in the literature involved measures related to
coupling, complexity and size of the application. The results of
the survey suggest that size related measures are not important
predictors whereas predictors related to database design are
very important for maintainability prediction of relational
database-driven applications. This suggests that the
maintainability of relational database-driven applications is
different from that of the software applications.

It may appear that the data analysis method used is not very
sophisticated and rigorous. However, the purpose of this survey
was to identify top predictors from the list of 120 predictors
such that these could be used for future work involved in this
research. The analysis technique used perfectly suited the
purpose and the use for a more sophisticated technique was
hence, not required. Moreover, there are examples in the
literature on software prediction where frequency analysis has
been used to rank the predictors to be used further for the
creation of prediction models [10].

The possible limitations of this research are related to
unequal number of respondents from the two countries and
smaller sample size. While equal number of respondents from
both countries would have provided better opportunity for data
analysis and comparison of results, the research itself was
context free as established by the results from the interviews
[13]. Therefore, we believe that the unequal number of
respondent in this case is not a threat to the validity of the
research. In regards to small sample size, we believe that it
poses threats to the external validity of the research as the
chances of obtaining different results from a larger sample size
cannot be ignored. However, considering the number of
companies to which invitations to participate were emailed, the
length of the survey, and the time frame within which the
survey had to be completed; we believe that the sample data is
of a considerable size to derive valuable conclusions.

VI. CONCLUSIONS

This paper presents the results of a survey conducted with
software professionals. The survey was informed by the results

of a previously conducted SR and interviews conducted with
software professionals. The aim of the survey was to rank the
120 maintainability predictors of relational database-driven
applications belonging to 10 different categories for their
strength in predicting maintainability. Out of 120 total factors,
44 factors were found to have an impact of either 'high
increase' or 'medium increase' on maintainability, as per more
than 50% of the respondents. The most important category of
predictors was 'Quality, Quality Assurance' and Testing'
whereas the top predictor ‘Correct definition of entities’
belonged to the category 'Database Design'. Our results also
suggest that the practitioners measure maintainability using
expert judgment and consider computation intensive modules
of relational database-driven applications as easy or difficult to
maintain as the data models.

Future work involves creating maintainability prediction
models for relational database-driven software applications. In
this regard, the work on gathering project related data on the
predictors is already in progress.

REFERENCES

[1] P. Bhatt, et al., “Influencing Factors in Outsourced Software
Maintenance”, ACM SIGSOFT Soft. Eng. Notes, 31, 3, pp. 1 – 6, 2006.

[2] A. Cleve, T. Mens, and J. Hainaut, “Data-Intensive System Evolution”,
Computer 43, 8 (August 2010), pp. 110-112.

[3] E.H. Ferneley, “Design Metrics as an Aid to Software Maintenance: An
Empirical Study”, J Softw Maint: Res. Pract., 11, pp. 55-72, 1999.

[4] S.K. Gardiokiotis, “A Structural Approach towards the Maintenance of
Database Applications”. IDEAS ’04, 277-282, 2004.

[5] M. Genero, J. Olivas, M. Piattini, F. Romero, “Using metrics to predict
OO information systems maintainability”, ICAISE, pp. 388-401, 2001.

[6] IEEE Std. 610.12-1990, “Standard Glossary of Software Engineering
Terminology”, IEEE Computer Society Press, Los Alamitos, CA, 1993.

[7] G.M. Kapfhammer and M.L. Soffa, “A Family of Test Adequacy
Criteria for DB-Driven Applications”, ESEC/FSE 2003, pp.98-107.

[8] J.S. Lim, S.R. Jeong, S.R. Schach, “An empirical investigation of the
impact of the object-oriented paradigm on the maintainability of real-
world mission-critical software”, J Syst Software, 77, pp.131-138, 2005.

[9] A. Maule, W. Emmerich, and D.S. Rosenblum, “Impact Analysis of
Database Schema Changes”, ICSE ’08, pp. 451-460, 2008.

[10] E. Mendes, N. Mosley, and S. Counsell, “Investigating Web size metrics
for early Web cost estimation”, J. Syst. Softw. 77, 2, pp. 157-172, 2005.

[11] P. Oman, and J. Hagemeister, “Construction and Testing of Polynomials
Predicting Software Maintainability”. J Syst Software, 24, 1994.

[12] M. Riaz, E. Mendes, and E. Tempero, “A Systematic Review of
Software Maintainability Prediction and Metrics”, ESEM 2009, pp. 367-
377, 2009.

[13] M. Riaz, E. Mendes, and E. Tempero, “Towards Maintainability
Prediction for Relational Database-Driven Software Applications –
Evidence from Software Practitioners”, ASEA 2010, pp. 110-119, 2010.

[14] M. Riaz, “Survey of software maintainability prediction for relational
database-driven software applications”,
http://www.cs.auckland.ac.nz/survey_2010.

[15] M. Seltzer, “Beyond Relational Databases”, Communications of the
Acm, (July 2008), 51, 7, pp. 52-58, 2008.

426 427

How Annotations are Used in Java:
An Empirical Study

Henrique Rocha∗, Marco Tulio Valente∗

∗Department of Computer Science
Federal University of Minas Gerais (UFMG)

Email: henrique.rocha@gmail.com, mtov@dcc.ufmg.br

Abstract—Since 2004, Java provides support to general pur-
pose annotations (also known as metadata) that allows developers
to define their your own annotation types. However, seven years
after their inception in the Java language, we still do not have
empirical evidence on how software developers are effectively
using annotations in their systems. Therefore, this paper presents
an empirical study on how annotations are used on a corpus of
106 open-source Java systems. On total, we have evaluated more
than 160,000 annotations that have been applied to the source
code of such systems. Our main findings can be summarized
as follows: (a) the so-called annotation-hell phenomena affects
many of the evaluated systems; (b) developers are using both
pre-defined annotations and annotations defined by external
frameworks, mostly annotations dedicated to persistence and
testing; (c) most of the evaluated annotations have been employed
to annotate methods (more than 90%); (d) although Java does
provide not support to annotations for anonymous classes, several
programs from our corpus have applied annotations to such
classes.

Index Terms—Annotations, Empirical Studies, Qualitas Cor-
pus.

I. INTRODUCTION

Annotations have been one of the features introduced in
J2SE 5.0 released in 2004 [3], [1]. Annotations are a meta-
data feature that provides the ability to associate additional
information to Java elements (like classes and methods).
Annotations have no direct effect on the code they annotate,
and they do not change the way in which the source code is
compiled. There are at least the following possible uses for
annotations [3], [1], [6]:

• Compiler information (using compiler anno-
tations) to suppress warnings and to detect
errors. For example, developers can use the
@SuppressWarning("unchecked") annotation to
suppress the unchecked warning that can be raised when
using an old code written before J2SE 5.0.

• Generation of additional files such as source code, XML,
help files, and so on. For example, developers can anno-
tate some system’s functions with @Help("...") and
later an annotation processing tool can read this metadata
and generate a help file.

• Source code documentation by javadoc and similar tools
(using the java.lang.annotation.Documented
annotation).

• Since annotations can be processed at runtime, they can
be used for logging, testing and other utilities.

• Some APIs (like Java Persistence API) relies on anno-
tations as a declarative way to provide their services.
Instead of calling methods or declaring objects, an an-
notation is placed in the program elements that the
developers want to be annotated. For example, to define
a class as a JPA entity, we just need to put the @Entity
annotation on the class.

Although annotations have several useful applications, their
use could massively contribute to code pollution. This phe-
nomenon is usually called annotation hell, i.e. the source code
becomes cluttered with so many annotations leading to poor
code readability and understandability.

The ultimate goal of our research is to empirically investi-
gate the use of annotations in Java programs. Annotations have
been a part of the Java language for almost seven years, and
now it is reasonable to assume that they are being used in most
Java applications. We are particular interested in providing
answers to the following questions: (a) Which are the most
used annotations? (b) Which program elements (i.e. methods,
classes) are annotated more frequently? (c) Are there many
systems suffering from the annotation hell phenomenon?

In order to answer such questions, we present the results
of an in-depth empirical study including the inspection of
annotations in 106 open-source Java systems that are a part
of the Qualitas Corpus. The Qualitas Corpus is a collection
of open-source Java sytems designed to help code analysis
in empirical studies [9], [8]. Basically, we developed two
approaches to extract the annotation data from the Qualitas
Corpus. The results from both approaches are shown and
compared, providing a better analysis to the use of annotations
and even showing some tendencies that programmers are
following.

The remainder of this paper is organized as follows. In
Section II, we provide an introduction to the use of annotations
in Java, explaining their most recomended uses and underlying
syntax. Section III describes the methodology used for the em-
pirical study, including the two approaches we have followed
to retrieve annotations in Java systems. Section IV analyzes
and discuss the obtained results. In Section V we present this
study’s threats to validity. Section VI discusses related work
and Section VII concludes the paper, summarizing its main

426 427

contributions and outlining future work.

II. ANNOTATIONS

Annotations are a metadata feature that does not directly
affect the code they annotate. As mentioned in the Intro-
duction, they can be used for several purposes like runtime
testing, generating additional files, providing information to
compilers, and providing a simple and declarative form to use
API features [3], [1], [6].

In terms of implementation, annotations can be considered a
special kind of interface [3], [1]. To distinguish an annotation
declaration from an interface, annotations are declared using
the @interface keyword. Listing 1 shows a code fragment
that declares an annotation called Author. Annotations can
make use of access modifiers just like interfaces (public).
In the example, the Author annotation has the element
name which has a String type and by default has the
"[unassigned]" value. Annotations elements are a special
kind of method declaration.

1 public @interface Author {
2 String name() default "[unassigned]";
3 }

Listing 1. Code fragment declaring an Annotation

Listing 2 shows how the Author annotation can be used to
annotate a class. This code also shows some JPA annotations.
For example, the @Entity denotes that the Customer class
will be made persistent by JPA. The @Id annotation is used
to define the entity’s primary key.

1 @Author{name="Henrique"} @Entity
2 class Customer implements Serializable{
3

4 @Id
5 public Integer getCustomerId(){
6 ...
7 }
8 ...

Listing 2. Annotations Example

Annotations can be divided based on their retention policy
into three types: Source, Class and Runtime annotations [3].
Source annotations are processed during compilation (usually
by a compiler plug-in), but they have no effect on the generated
code. Class annotations are also processed during compilation
and they are stored in the generated class files. Runtime
annotations are stored in class files and can be recovered at
runtime through the Java Reflection API.

There are some predefined annotations in Java, including
the following compiler annotations: @Deprecated,
@Override, and @SuppressWarning. The
@Deprecated annotation indicates that the marked
component is deprecated and should no longer be used.
The @Override is an annotation for methods only, and it
indicates that the method is supposed to override a superclass
method. Finally, the @SuppressWarning annotation
disables a specific warning the compiler would otherwise
generate.

The additional data provided by annotations can be pro-
cessed by the compiler, other tools or, in the case of runtime
annotations, they can be examined at runtime using reflection.
The most common tool to work with annotations is the annota-
tion processing tool (apt) provided in the Java development
toolkit. The apt retrieves annotations in source files, using
custom factories and visitors so that programmers may process
annotations according to their needs.

III. METHODOLOGY

In this section we describe the target systems used in the
study (Section III.A) and the methodoly we followed in the
research (Section III.B).

A. Target Systems

We defined the scope of our study to be the systems
contained in the Qualitas Corpus [9]. The Qualitas Corpus
is a curated collection of open-source Java systems whose
ultimate goal is to reduce the effort in finding, obtaining, and
organizing code sets to be used in empirical studies [9]. We
used the Qualitas Corpus version 20101126r, that contains
only the most recent versions of the 106 systems.

B. Study Design

To retrieve the annotations used by the systems in the
Qualitas Corpus, we implemented a factory class for the apt
tool, that is a part of the Java SE Development Kit (JDK)
version 1.6.0 update 24. The apt parses the source files and
provides to the factory class each annotation found, as well
as details about the annotation. Basically, our factory class
saves all the relevant information about the annotations in a
relational database for latter analysis.

Since apt is the official Java tool to process annotations,
our original plan was to use it to examine all annotations used
by the systems included in the Qualitas Corpus. However,
the apt tool has stopped with runtime errors while trying
to process 15 systems – Table I shows the name of these
systems. The errors occurred on the tool itself, and even bug
report information has been raised to contact the manufacturer.

TABLE I
QUALITAS CORPUS SYSTEMS THE APT HAS NOT BEEN ABLE TO PROCESS

System System System
Castor javacc nakedobjects
Cayenne jboss netbeans
gt2 jrefactory springframework
Hibernate maven struts
jFin DateMath myfaces tapestry

Due to the apt errors, we created a textual search program
to find annotations in source files. Originally, this textual
search approach has been used on the systems that the apt
tool has not been able to process. Latter we expanded the
textual search to analyze all the systems to better compare the
differences between both approaches.

428 429

TABLE II
ANNOTATIONS FOUND ON THE QUALITAS CORPUS

System KLOC APT Textual Search System KLOC APT Textual Search
Total Density Total Density Total Density Total Density

ant 107.770 4 0.04 4 0.04 jgrapht 11.931 53 4.44 53 4.44
antlr 25.243 984 38.98 995 39.42 jgroups 96.325 1436 14.91 1436 14.91
aoi 111.725 21 0.19 21 0.19 jhotdraw 75.958 3143 41.38 3570 47.00
argouml 194.859 2038 10.46 2047 10.51 jmeter 81.010 1164 14.37 1234 15.23
aspectj 412.394 889 2.16 893 2.17 jre 914.867 1182 1.29 1197 1.31
azureus 453.433 39 0.09 40 0.09 jrefactory 113.427 – – 44 0.39
castor 115.543 – – 929 8.04 jruby 160.360 5139 32.05 5217 32.53
cayenne 127.529 – – 3473 27.23 jspwiki 43.326 158 3.65 160 3.69
checkstyle 23.316 1413 60.60 1529 65.58 jung 37.989 422 11.11 432 11.37
cobertura 51.860 12 0.23 12 0.23 junit 6.164 171 27.74 213 34.56
compiere 400.257 3621 9.05 3752 9.37 lucene 113.223 106 0.94 112 0.99
derby 592.817 22 0.04 22 0.04 marauroa 13.823 424 30.67 434 31.40
drjava 62.380 123 1.97 177 2.84 maven 54.336 – – 880 16.20
eclipse SDK 2282.511 798 0.35 916 0.40 megamek 258.957 1649 6.37 1839 7.10
findbugs 109.096 2122 19.45 2387 21.88 myfaces core 119.529 – – 2844 23.79
fitlib 27.539 625 22.70 658 23.89 nakedobjects 110.378 – – 4578 41.48
freecol 81.671 205 2.51 278 3.40 netbeans 1890.536 – – 57820 30.58
freecs 23.012 5 0.22 6 0.26 picocontainer 9.259 196 21.17 206 22.25
gt2 446.863 – – 7001 15.67 pmd 60.875 769 12.63 786 12.91
heritrix 61.681 150 2.43 177 2.87 poi 143.507 286 1.99 294 2.05
hibernate 163.858 – – 6755 41.22 proguard 55.567 45 0.81 45 0.81
hsqldb 123.268 22 0.18 22 0.18 quartz 26.819 32 1.19 33 1.23
htmlunit 40.004 5881 147.01 5959 148.96 roller 50.980 96 1.88 97 1.90
informa 9.722 3 0.31 3 0.31 rssowl 73.230 1639 22.38 2434 33.24
ireport 221.490 5454 24.62 5549 25.05 spring 160.302 – – 7883 49.18
itext 76.369 371 4.86 371 4.86 squirrelsql 6.944 4 0.58 15 2.16
jFinDateMath 4.807 – – 64 13.31 struts 74.670 – – 1848 24.75
jasperreports 170.064 99 0.58 106 0.62 sunflow 21.648 17 0.79 25 1.15
javacc 13.772 – – 8 0.58 tapestry 53.367 – – 4263 79.88
jboss 281.643 – – 2582 9.17 tomcat 166.478 2717 16.32 2897 17.40
jchempaint 90.831 8923 98.24 8923 98.24 trove 2.196 3 1.37 4 1.82
jedit 107.469 486 4.52 523 4.87 weka 224.356 21 0.09 21 0.09
jena 70.948 1148 16.18 1474 20.78 Total 56330 160570

IV. RESULTS

In this section we present the results from our study. Table II
shows the systems, their Kilo non-comment Lines of Code
(KLOC), the total annotations found and the annotation density
as retrieved by the apt tool and by the textual search. The
annotation density is calculated by dividing the number of
annotations by the KLOC. Therefore, this density represents
an average of how many annotations are present in every one
thousand lines of code. As mentioned, the apt tool crashed
with an internal bug on 15 systems, these systems are shown
on the table with a “–”.

Two more aboservations should be made about the data in
Table II, first the table shows that the size of the evaluated
systems has no impact on the runtime errors raised by the apt
tool. For example, the castor system has 115.543 KLOCs
and caused a crash in the apt, while the Eclipse_SDK sys-
tem has 2,282.490 KLOCs and has been sucessfully processed.

Second, Table II also shows a slight difference between
the number of annotations found by the apt and by the
textual search. Investigating further, we discovered that Java
does not support annotations in the scope of anonymous
classes. Because of that, the apt has completely ignored those
annotations. On the other hand, the implemented textual search
has count such annotations.

To better inspect the different measurements regarding an-

notations in anonymous classes, we will use the jhotdraw
system as an example. As can be observed on Table III,
the measurements have a difference of 427 annotations in
their count. Table III also shows the particular annotations
present in the jhotdraw system. As we can observe, the
main difference is in the @java.lang.Override anno-
tation, followed by the @java.lang.SupressWarning
annotation. In fact, this seems to be case not only for the
jhotdraw, but for every system in the Qualitas Corpus with
a different annotation count between the apt and the textual
search.

TABLE III
JHOTDRAW ANNOTATIONS

Annotation APT Textual Search
@java.lang.Override 2909 3323
@java.lang.SuppressWarnings 89 102
@org.jhotdraw.annotations.Nullable 95 95
@org.jhotdraw.annotations.NotNull 42 42
@java.lang.Deprecated 4 4
@java.lang.annotation.Documented 2 2
@java.lang.annotation.Target 2 2
Total 3143 3570

From all the 106 analyzed systems, 41 did not have a single
annotation – Table IV shows these systems and the year of
their release date. Analysing the years on this table, we can

428 429

conclude that seven systems were release before 2004 (i.e.
before the introduction of annotations in Java) and another
seven systems have been release in 2004.

TABLE IV
QUALITAS CORPUS SYSTEMS WITHOUT ANNOTATIONS

System Year System Year System Year
axion 2003 jasml 2006 nekohtml 2010
c jdbc 2005 jext 2004 openjms 2007
colt 2004 jfreechart 2009 oscache 2007
columba 2005 jgraph 2009 pooka 2008
displaytag 2008 jgraphpad 2006 quickserver 2006
drawswf 2004 jmoney 2003 quilt 2003
emma 2005 joggplayer 2002 sablecc 2005
exoportal 2006 jparse 2004 sandmark 2004
fitjava 2004 jpf 2007 velocity 2010
galleon 2006 jrat 2003 webmail 2002
ganttprj 2009 jsXe 2006 xalan 2007
ivatagrp 2005 jtopen 2010 xerces 2010
jag 2006 log4j 2010 xmojo 2003
james 2004 mvnforum 2010

Finally, Table V shows the top ten Qualitas Corpus systems
with annotations using both measurements. Based on this
table it is possible to conclude that some of the systems the
apt was not able to process have a large number of annota-
tions, for example, netbeans, spring framework and
hibernate.

TABLE V
TOP TEN QUALITAS CORPUS SYSTEMS WITH THE HIGEST NUMBER OF

ANNOTATIONS

APT Textual Search
System Total Density System Total Density

jchempaint 8923 98.24 netbeans 57820 30.58
htmlunit 5881 147.01 jchempaint 8923 98.24
ireport 5454 24.62 spring 7883 49.18
jruby 5139 32.05 gt2 7001 15.67
compiere 3621 9.05 hibernate 6755 41.22
jhotdraw 3143 41.38 htmlunit 5959 148.96
tomcat 2717 16.32 ireport 5549 25.05
findbugs 2122 19.45 jruby 5217 32.53
argouml 2038 10.46 nakedobjects 4578 41.48
megamek 1649 6.37 tapestry 4263 79.88

In the remainder of this subsection we first discuss the
results using the apt tool (Section IV.A). Second, we show
the results provided by the textual search approach (Section
IV.B). And finally, we discuss both results in order to clarify
our main findings (Section IV.C).

A. APT

Table VI shows the top ten analyzed systems with the high-
est annotation density. For example, the htmlunit system –
the system that presented the highest annotation density – has
a 147.01 density, which means that on average on each one
thousand lines of code there will be 147 annotations.

Table VII show the total number of annotations from all
systems processed by the apt classified by program element.
In this classification, a type denotes packages, classes, enums
or interfaces. As we can see, more than 92% of the annotations
are used to annotate methods.

TABLE VI
TOP TEN QUALITAS CORPUS SYSTEMS WITH HIGHEST ANNOTATION

DENSITY AS PROCESSED BY THE APT

System KLOC Annotations
Total Density

htmlunit 40004 5881 147.01
jchempaint 90831 8923 98.24
checkstyle 23316 1413 60.60
jhotdraw 75958 3143 41.38
antlr 25243 984 38.98
jruby 160360 5139 32.05
marauroa 13823 424 30.67
junit 6164 171 27.74
ireport 221490 5454 24.62
fitlib 27539 625 22.70

TABLE VII
ANNOTATIONS BY PROGRAM ELEMENT

Element Annotations Percentage
Type 2459 4.36
Constructor 612 1.09
Field 865 1.54
Method 51931 92.19
Parameter 463 0.82
Total 56330 100

Finally, Table VIII presents the most used annotations
in the processed systems. As expected, the three compiler
annotations are used very frequently in such systems.

TABLE VIII
MOST USED ANNOTATIONS IN THE QUALITAS CORPUS SYSTEMS

PROCESSED BY APT

Annotation Number Percentage
@java.lang.Override 28723 50.99
@Test 11327 20.10
@org.jruby.anno.JRubyMethod 2762 4.90
@org.openscience.cdk.annotations.TestMethod 2735 4.85
@java.lang.SuppressWarnings 2699 4.79
@java.lang.Deprecated 1783 3.16
@com.grlsoft.htmlunit.BrowserRunner.Alerts 1523 2.70
@org.openscience.cdk.annotations.TestClass 443 0.78
@RunWith 359 0.63
@org.jgroups.annotations.Property 290 0.51
@BeforeClass 279 0.49

B. Textual Search

Table IX shows the ten analyzed systems with the highest
annotation density, as processed by our text-based search
approach. By comparing Tables VI and IX, it is possible
to conclude that some systems the apt has not been able
to process have a high density value and they appeared
on the textual search (tapestry, spring framework,
nakeobjects, hibernate). The system that presented the
highest and second highest densities were respectivelly the
htmlunit and jchempaint.

Due to limitations inherent to the textual search approach,
we could not determinate to which program element the
annotations belong to. Finally, Table X presents the most used
annotations in all systems. We can observe that, as in the apt
tool based results, the compiler annotations are widely used.

430 431

TABLE IX
TOP TEN QUALITAS CORPUS SYSTEMS WITH THE HIGHEST ANNOTATION

DENSITY AS PROCESSED BY THE TEXTUAL SEARCH

System KLOC Annotations
Total Density

htmlunit 40.004 5959 148.96
jchempaint 90.831 8923 98.24
tapestry 53.367 4263 79.88
checkstyle 23.316 1529 65.58
springframework 160.302 7883 49.18
jhotdraw 75.958 3570 47.00
nakedobjects 110.378 4578 41.48
hibernate 163.858 6755 41.22
antlr 25.243 995 39.42
junit 6.164 213 34.56

TABLE X
TEXTUAL SEARCH ANNOTATIONS MOST USED IN THE CORPUS’ SYSTEMS

Annotation Number Percentage
@Override 92275 57.46
@Test 20875 13.00
@SuppressWarnings 7714 4.80
@Deprecated 3377 2.10
@Column 2836 1.76
@JRubyMethod 2755 1.71
@TestMethod 2735 1.70
@Alerts 1509 0.93
@Entity 1121 0.69
@Id 951 0.59

C. Analysis

Based on the results presented on this paper we can present
some interesting findings about the use of annotations.

First, by inspecting Tables VI and IX, we can observe
that the annotation density values for these systems (specially
those on Table IX) are a strong indication they might be
suffering from annotation hell. For example, when we analyze
the htmlunit system, it scored the highest density in both
approaches, having almost 150 annotations per KLOC (or
approximatly one annotation at 7 lines of code).

A second interesting finding is about the annotations used
on the systems. We initially expected that all three compiler
annotations to be amongst the most used ones. But the
second most used annotation was the @Test annotation. The
@Test annotation is used to test methods dynamically through
reflection. Apparently, this has become a popular standard used
by several programmers.

Moreover, we can see on Table X that the annotations
@Column, @Entity and @Id are used very frequently.
These annotations are used by the Java Persistence API to
map Java classes to relational database tables.

Another annotation used frequently, as
presented on Tables VIII and X, is the
@org.jruby.anno.JRubyMethod. This annotation
is used by the jruby system to specify methods signatures
using Java code and to use them as method calls in Ruby
code. To illustrate the use of @JRubyMethod, Listing 3
shows an example of a readchar method marked with this
annotation. As mentioned, the goal is to mark this method

callable from code within Ruby.

1 @JRubyMethod(name = "readchar")
2 public static IRubyObject readchar(

ThreadContext context, IRubyObject recv)
{

3 ...

Listing 3. JRubyMethod Annotation Example

A third interesting finding comes from the observation of
Table VII. As we can see, most annotations were used to
annotate methods (over 90%), which is a huge difference to
the second most used annotation, the types annotations with
almost 5%. Very few annotations have been used to mark
constructors, fields and parameters.

Finally, another interesting finding was that although Java
does not support annotations for anonymous classes, many
programs are using it. The reason why the annotation count
differ from the apt and the textual search is mainly because
of those anonymous class annotations. Analyzing the table
we can see that in 38 out of 50 systems evaluated by both
approches we have anonymous class annotations.

Investigating this occurence further, we discovered another
reason for such form of use. Some programming IDEs warn
the programmer to use annotations or even generates code
with annotations, regardless they are located in anonymous
class. We tested this feature using the Eclipse IDE build ID
20110218-0911 to generate the code for an anonymous inner
class for a button event, and the IDE generated the method
with an @Override annotation.

V. THREATS TO VALIDITY

Two main factors can impact on the validity of the results
presented in this paper. First, our chosen systems might not
be representative of all annotations used by the entire Java
community. To minimize this threat we used the Qualitas
Corpus that has 106 open-source systems from which 65 had
annotations.

The second threat is related to the apt bugs. We were not
able to determine what caused the bug that made the apt to
crash while processing 15 systems from the Qualitas Corpus.
To minimize this threat we developed a second approach based
on a textual search. In this way the results obtained by the apt
could be compared and validated to the results obtained by the
textual search. However, using the textual search approach it
was not possible to extract the annotations’ full qualified name,
nor which Java program element have been annotated.

VI. RELATED WORK

Annotations can be considered a relative new feature in the
Java language. Probably because of that, there is not many
works related to studying the use of annotations in existing
systems. However, there are studies related to creating tools
to verify the correct use of frameworks and APIs annota-
tions. One of those efforts presents the AnnaBot tool [1],
that demonstrate its usefulness using Java Persistence API
examples. Another proposed tool to verify frameworks and

430 431

APIs annotations is the ModelAn [6], which is a model based
approach, and uses the Fraclet as a case study.

On the field of empirical studies about Java constructions
and abstractions, there are many related work. First, there is an
empirical study of UpgradeJ [10] which is a variant of the Java
language. UpgradeJ is a language that allows multiple versions
of classes to co-exist, thus supporting dynamic software updat-
ings. The empirical study has evaluated different versions of
classes on open-source Java applications and estimated how
many of the classes changes could be handle by UpgradeJ
dynamically. The results show that most changes could be
supported without a significant code rewrite.

There is also a work aiming to evaluate the use of non-
private fields in Java applications since there is little empirical
evidence to this practice [8]. This study has relied on 100
open-source Java applications (that we could consider to be an
ancestor to the Qualitas Corpus [9]). The study has concluded
that it is not uncommon for systems to declare non-private
fields and do not take advantage of that access.

Another empirical study that uses a Qualitas Corpus release
aims to find how programmers are overriding methods [7].
This work relies on a set of metrics to analyze the systems and
how well their overriding implementation is. This study found
that most subclasses override at least one method. It also found
some questionable uses of overriding in the Qualitas Corpus
systems.

The analysis of class coupling and the choice of refactoring
(or removing) them in latter releases of the systems is the topic
of another empirical study [5]. This study shows that the size
of the source code does not affect the redesign choices, and a
strong tendency that some classes have towards their removal.

Annotations have also been investigated in the scope of
aspect-oriented software development. For example, annota-
tions are often mentioned as an alternative to design more
robust pointcuts. Kiczales and Mezini recommend using an-
notations when: (i) it is difficult to write a stable regular
expression or enumeration-based pointcut; (ii) the name of the
annotation is unlikely to change; (iii) the annotation denotes
a well-defined semantic property (and not properties that are
only true in some configurations of the system) [4]. Eaddy
and Aho propose using annotations at the statement level for
exposing join points needed by heterogeneous concerns and
for enabling fine-grained advising [2]. However, their proposal
can lead to a widespread use of annotation and thus can
increase the code scattering and tangling phenomenon usually
associated to Java annotations.

VII. CONCLUSIONS

We have presented a large empirical study on the use of
annotations in open-source Java systems. Our motivation for
this work was mainly because as a new language feature,
it is difficult to find studies analyzing the use annotations.
After analyzing the systems using the official Java annotation
processing tool, we had to develop a textual search program to
process the systems where the apt hast failed. Using the apt
we were able to process 50 systems with 56,330 annotations;

and using the textual search we processed 65 systems with
160,570 annotations.

We have also shown that some systems have a very high
annotation density. Moreover, some of the discoveries found
by our analysis from both approaches confirm that the most
used annotations are the compiler ones. Also that methods
are the most annotate element, and that the JPA annotations
are popular. We also found that programmers are using the
@Test as a standard annotation to mark methods that will be
dynamically tested by reflection.

Finally, although the Java language does not support an-
notations inside anonymous classes, programmers are still
annotating them. Some programming IDEs generate code
with annotations even in anonymous classes. This indicates
a tendency that maybe should be included on latter versions
of the Java language.

As future work we hope to inspect even further the anno-
tations on Java applications, processing and analyzing more
annotated data.

REFERENCES

[1] I. Darwin. Annabot: a static verifier for Java annotation usage. In 2nd
International Workshop on Defects in Large Software Systems, pages
21–28, 2009.

[2] M. Eaddy and A. V. Aho. Statement annotations for fine-grained
advising. In ECOOP Workshop on Reflection, AOP, and Meta-Data
for Software Evolution, pages 89–99, 2006.

[3] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specifica-
tion, 3rd Edition. Addison-Wesley, 2005.

[4] G. Kiczales and M. Mezini. Separation of concerns with procedures,
annotations, advice and pointcuts. In 19th European Conference on
Object-Oriented Programming (ECOOP), volume 3586 of Lecture Notes
in Computer Science, pages 195–213. Springer, 2005.

[5] A. Mubarak, S. Counsell, and R. M. Hierons. An empirical study
of ”removed” classes in Java open-source systems. In Advanced
Techniques in Computing Sciences and Software Engineering, pages 99–
104. Springer, 2010.

[6] C. Noguera and L. Duchien. Annotation framework validation using
domain models. In Model Driven Architecture Foundations and
Applications, volume 5095 of Lecture Notes in Computer Science, pages
48–62. Springer, 2008.

[7] C. S. Tempero, E. and J. Noble. An empirical study of overriding in
open source Java. In 33rd Australasian Computer Science Conference
(ACSC), volume 102, pages 3–12, 2010.

[8] E. Tempero. How fields are used in Java: An empirical study. Software
Engineering Conference, Australian, 0:91–100, 2009.

[9] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. Qualitas corpus: A curated collection of Java code for
empirical studies. In Asia Pacific Software Engineering Conference
(APSEC), pages 336–345, dec 2010.

[10] E. Tempero, G. Bierman, J. Noble, and M. Parkinson. From Java to
UpgradeJ: an empirical study. In 1st International Workshop on Hot
Topics in Software Upgrades, pages 1–5, 2008.

432 433

Automated Extraction of Data Lifecycle Support from
Database Applications

Kaiping Liu1, Hee Beng Kuan Tan1, Xu Chen2, Hongyu Zhang3 and
Bindu Madhavi Padmanabhuni1

1 School of Electrical and Electronic
Engineering, Nanyang Technological

University
{kpliu, ibktan}@ntu.edu.sg

padm0010@e.ntu.edu.sg

2 Institute of Computing Technology,
Chinese Academy of Sciences

Beijing, China, 100190
 chenxu@software.ict.ac.cn

3 School of Software,
Tsinghua University

Beijing, China, 100084
hongyu@tsinghua.edu.cn

Abstract—Database application is one of the most common types
of systems. Grounded on the simple concept of data lifecycle—
any data in database is created from insertion, used via selection
and modification and terminated at deletion—this paper
proposes a novel approach to reverse engineer the data lifecycle
automatically from the source code of database applications. The
extracted information can be used for the selection of open-
source database applications for adaptation. It can also be used
for maintenance and verification of database applications. A tool
has been developed to implement the proposed approach for
PHP-based database applications. Case studies have also been
conducted to evaluate the use of the proposed approach.

Keywords-data lifecycle; extraction; reverse engineering;
maintenance; verification

I. INTRODUCTION

Due to the complexity of software development and absent
or incomplete associated documentation through most stages of
the whole software development life cycle, recovery of system
inner features automatically from program source code is
important in system comprehension, verification and
maintenance. Reverse engineering is the process of analyzing a
subject system to create representations of the system at a
higher level of abstraction [1], and is a suitable approach for
this purpose.

During the past decades, much effort has been focused on
this area. Michael L. Nelson conducted a survey on the reverse
engineering and program comprehension in [2]. He presented
various approaches to automating reverse engineering
including syntactic analysis, graphing methods and execution
and testing method. In 2000, H. A. Muller.et al [3] presented a
roadmap of reverse engineering building on the program
comprehension theories. They discussed the code reverse
engineering and explored the spectrum of reverse engineering
tools.

Database application is one of the most common types of
systems, it is important to provide support to analyze the code
of the database applications automatically. The specific
characteristic of database applications is data manipulation and
the data maintained in the database is always dynamic. The
flow of data processing, from insertion to being used to finally
deletion, indicates a lifecycle of data in the database, which can
be a representative aspect of database applications.

Based on the basic concept of data lifecycle, this paper
proposes a novel approach to reverse engineer the data
lifecycle automatically from the source code of database
applications. This basic but representative information is an
easy to use and understand indicator that benefits the selection,
maintenance and verification of database applications.

The paper is organized as follows. Section 2 depicts the
data lifecycle. Section 3 discusses the proposed approach.
Section 4 reports our evaluation. Section 5 presents the related
work and Section 6 concludes the paper.

II. DATA LIFECYCLE

Data maintained in a database is usually dynamic. Once the
data is created from insertion, the data should be used, updated,
and finally removed once it becomes obsolete. This implies that
an attribute and table defined in the schema have a lifecycle
that starts from being inserted, via being used as and when
needed, and optionally being updated in any number of times,
to being deleted. We call such characteristics data lifecycle of
attribute and table respectively. Fig. 1 depicts the data lifecycle
using state transition diagram.

inserted

used

updated

insert
use

update

update use

delete

delete

use

update

Figure 1. Data lifecycle of attribute and table

The property of the data lifecycle implies directly that any
database application must include related operations to support
the data lifecycle of attribute and table. Any missing of
database operation for supporting the data lifecycle is very
serious. Programs in database applications provide support to
data lifecycle by performing four database operations: INSERT,
SELECT, UPDATE and DELETE.

432 433

TABLE I. TYPES AND CLASSIFICATION OF DATA LIFECYCLE SUPPORT

SELECT INSERT UPDATE DELETE Category IMPLICATION

T F T T Undefined Data is updated, used and deleted without defined
T F T F Undefined Data is updated and used without deleted and defined
T F F T Undefined Data is used and deleted without updated and defined
F F T T Undefined Data is updated and deleted without used and defined
T F F F Undefined Data is used without updated, defined and deleted
F F T F Undefined Data is updated without used, deleted and defined
F F F T Undefined Data is deleted without updated, used and defined
F T T T Redundant Data is defined, updated and deleted without used
F T F T Redundant Data is defined and deleted without updated and used
F T T F Redundant Data is defined and updated without used and deleted
F T F F Redundant Data is defined without used updated and deleted
T T T F Undeletable Data is defined, used and updated without deleted
T T F F Undeletable Data is defined and used, without updated and deleted
T T F T Non-modifiable Data is defined, used and updated without updated
F F F F Reserved Data is specified without defined, used, updates and deleted
T T T T Complete Data is specified then defined, used, updates and deleted

In a database application, most of the attributes and tables
should be provided with a complete data lifecycle. That is,
there are programs in the application which perform insertion,
selection, updating and deletion for these attributes and tables.
However, we should note that there are some special cases on
updating and deleting the data, e.g., the application of initial
public offer of a company stock. The record can’t be updated or
cancelled when it is confirmed.

Table I shows all the sixteen possible combinations of data
lifecycle support provided in a database application with
SELECT, INSERT, UPDATE and DELETE operations. We
can classify the sixteen possible combinations according to
their implications. For example, if insertion, selection, updating
and deletion are all provided for an attribute, then the data
lifecycle for that attribute is basically complete. If none of these
database operations is provided, then basically the attribute or
table is just to be reserved for future use. In addition to the
details of data lifecycle support types, Table I also shows the
classification of data lifecycle support provided in a database
application.

III. EXTRACTION OF DATA LIFECYCLE SUPPORT

In this section, we give detailed description on the
extraction of data lifecycle support from the source code of
database applications.

Considering different purposes, our approach extracts data
lifecycle support of the attribute and table respectively. The
data lifecycle support of attribute provides detailed information
about the lifecycle support of each attribute and its category.
The data lifecycle support of table is the combination of data
lifecycle of attributes within the table and provides detailed
information about the lifecycle support of each table and its
category. Next, we describe the extraction process.

In the extraction, for each SQL query, we need to identify:
the operation type (SELECT, UPDATE, INSERT or DELETE);
attribute names and table names that are involved. In practice,

an SQL query is usually formed as a string literal or more often
a string variable, and is then passed to some specific query
functions, e.g. mysql_query in PHP if MySQL is used. Based
on our observation, the value of the SQL string variable
commonly varies according to some conditions, i.e. the actual
value taken by the query function is subject to different
program paths chosen during execution. Fig. 2 shows a simple
snippet of PHP code as an example for this.

1. <?php
2. if (…)
3. $attr = 'col1';
4. else
5. $attr = 'col2, col3';
6. mysql_query('SELECT ' . $attr . ' FROM table');
7. ?>

Figure 2. A PHP code snippet

From Fig 2, it can be observed that the SQL query in line 6
is constructed by concatenation of three strings, the second of
which is a variable with different execution values under
different conditions. For the extraction, first, we compute the
control flow graph and then perform control and data
dependency analysis.

A. Construction of Control Flow Graph and Control
Dependence Analysis
All SQL query function call sites in the source code should

be identified, and parameters they take can then be evaluated.
We compute standard control flow graph (CFG) for each
program. Fig. 3 shows the CFG for the code in Fig. 2.

Starting from the entry block, the control flow graph is
traversed and each basic block encountered is checked to see
whether it contains query function calls. We can locate one
such function call in the node 5 in Fig. 3 representing line 6 in
the code in Fig. 2. The parameter which contains the SQL
query is extracted. For each query, it would be either one single

434 435

Figure 3. CFG for example code in Fig. 2

variable, or the concatenation of several string literals and
variables. In Fig. 2, the parameter only includes one variable:
$attr. The actual value of the variables vary according to
different condition values taken in the predicate nodes before
the function, whose different successive paths would assign
different values to the variables that are used directly or
indirectly by the query function. To include all possible values
for the variables for the precision of the extraction process, we
need to further adopt data dependence analysis.

B. Data Dependence Analysis
For each basic node in CFG that contains one or more SQL

query function calls, we extract paths in the CFG starting from
the entry node and passing through the function call node. For
example, from the CFG in Fig. 3, we obtain two paths for node
5. One is 1 –> 2 – >3 –> 5 and the other is 1 –> 2 –> 4 –> 5.

For each such path, data dependence analysis is performed
for every variable that is used in the function call. We trace
each variable’s direct or indirect definition from the function
call node backward along the path, until either 1) a constant
assignment is encountered, for example: $attr = 'col1'; 2)
assignment with values that are unable to be determined, such
as return value of user input functions. If the string value of one
variable can be determined, this variable is replaced by its
actual value; otherwise it is replaced by an empty string. All
these strings are concatenated in the same order as they are
listed in the function call. By this way, the string value of the
parameter used in SQL query function is extracted.

In this way, for the above example, from the first path, we
generate the SQL query: “SELECT col1 FROM table”; from
the second path, we produce “SELECT col2, col3 FROM
table”. These queries are put into a set for further analysis.

C. Data Lifecycle Generation
After the possible values of the SQL string variable used in

the query function are retrieved, the set of SQL query strings
are formed. When we parse each SQL query, the operation type
of the query, i.e., either SELECT, UPDATE, INSERT or
DELETE, is first determined. Next, the attribute names and
table names are obtained from the strings according to the
standard SQL grammar specification. For some set of SQL
queries, the operation type, attribute names and table names are
identical, and the changing part is the values that are used by
the attributes, for example, values in the conditions in WHERE
clause. In our approach, these different SQL queries are treated
as duplicated and we only keep one of them.

For the example in Fig. 2, we finally extract two selection
operations, the first one selects attribute “col1” from table
“table”; the second one selects attributes “col2” and “col3”
from the same table. We count the two operations into the

corresponding data lifecycle information for the attributes and
the table.

Finally, with these retrieved attribute operations and their
occurrence sites, we integrate them together to count operations
on each attribute in each table. Based on these, data lifecycle
for attributes and tables as described above can be generated
accordingly. Fig. 4 shows the above mentioned data lifecycle
extraction process.

Algorithm extractDataLifecycle:
Input: source code files of one software system
Output: Data lifecycle information
Begin:
for each source code file F do:

Generate control flow graph G for F;
Traverse G and identify query function invocations;
for each invocation node I do:

Extract parameter list from I;
for each variable V do:

for each path p in G that passes I do
 Perform data dependency analysis for V on P;
 Trace definitions backward along P;

if the last traceable definition is string
 literal then:

 Replace V with the string value;
else:

 Replace V with empty string;
endIf;

endFor;
endFor;
Generate a SQL query by concatenation of string

values of all variable;
Parse the SQL query and record
 operation type, attribute names and table names;

endFor;
endFor;
Integrate all extracted information for each attribute of each
table;
Generate data lifecycle;
End.

Figure 4. The pseudo-code of data lifecycle extraction

IV. EVALUATION

In this section, we evaluate our proposed approach for the
selection, maintenance and verification of database applications
with case studies. We start by first giving a description of our
prototype tool.

A. Prototype Tool
Many database applications are developed using PHP.

Hence, we implemented a prototype tool in Java for PHP
applications in order to verify our proposed approach. PHP is
the widely used scripting language for developing web
application. We used Pixy [4], an open-source PHP analyzer to
parse the PHP source code.

The tool analyzes the source code and extracts the data
lifecycle support automatically. It works in the following steps:
first it scans through the PHP system and finds all the PHP
source code files; second, it parses each file to generate
corresponding control flow graph, and then identifies the query

434 435

execution functions; third, the tool computes data dependency
for the variables involved in the query functions, and based on
that possible SQL queries are generated, the operation types
and table and attribute names involved are determined; finally,
according to the information extracted, the data lifecycle
support is generated automatically. Though some variables’
values cannot be decided during data dependency analysis, we
observed that these variables are mostly used as the values of
attributes, and in most cases the operation types, attribute and
table names involved in the queries can be resolved from string
literals.

Fig. 5 shows a diagram depicting the workflow of the
prototype tool.

Figure 5. The workflow of the prototype tool

B. Case Studies
1) Selection

Due to the lack of documentation, selection of an
appropriate open-source database application for use from the
huge repository is not an easy task. Our approach extracts easy
to use and understand lifecycle support information
automatically to assist the users in the selection process.

To aid the selection process, we give summarized
information of the system. With this information, one can
assess the quality of the whole system directly from the
analysis of data lifecycle completeness. Furthermore, with the
information of data lifecycle of attributes and tables, the user
can look into detailed information of implementation and be
clear about the data lifecycle for each attribute and table.

For the selection process, we evaluated our proposed
approach on four real-world PHP DB applications from
sourceforge.net. They are School Mate (v1.5.4, a PHP/MySQL
school administration and management), Open-School (pre-
alpha release, a web-based School Management Software),
LAMP School (v0.3 beta, an online school register system) and
School Admin (v0.3, a web-based software for schools and
colleges). The four systems provide similar functionalities, but
differ in their completeness and maturity. Our tool is applied to
analyze them and discover their data lifecycle support
information.

Due to the space limit, summarized information of two
systems is shown in Table II. From the experiment, we know
that the percentage of complete category is highest for School
Mate (45.3%) followed by LAMP School (42.0%) whereas
School Admin has the lowest percentage (1.2%) of complete
attributes. The percentage of undefined attribute of School
Mate is the lowest (21.3%) while that of Open-School’s is the
highest (46.0%). Besides, the percentage of the reserved

attributes of School Mate (4.3%) is lower than that of the other
three (12.4%, 28.0% and 35.3% for Open-school, LAMP
School and School Admin respectively). It also has no
undeletable attribute in it. Both the Open School and Lamp
School have no redundant attributes or tables while School
Admin and School Mate have 8.2% and 6.8% redundant
attributes respectively. Furthermore, only in School Admin, the
percentage of undeletable category is 17.6% while there are no
undeletable attributes and tables amongst the other three.

TABLE II. SUMMARIZED DATA LIFECYCLE SUPPORT

School Mate
Table Attribute

% # %

Complete 11 73.3 53 45.3
Redundant 0 0 8 6.8

Non-modifiable 2 13.3 26 22.2
Undeletable 0 0 0 0
Undefined 2 13.3 25 21.3
Reserved 0 0 5 4.3

Total 15 100 117 100

School Admin
Table Attribute

% # %
Complete 1 6.3 1 1.2

Redundant 3 18.8 7 8.2
Non-modifiable 1 6.3 6 7.1

Undeletable 3 18.8 15 17.6
Undefined 1 6.3 26 30.6
Reserved 7 43.8 30 35.3

Total 16 100 85 100

The above mentioned information suggests that each
system has some advantages against others as well as some
disadvantages. Usually a more complicated and better
established system would have more complete data lifecycles.
On the contrary, systems that have not been fully developed
may have poor data lifecycles.

The empirical results can facilitate the user when selecting
a suitable database application for adaptation. Considering the
huge amount of open-source systems available on the Internet,
the data lifecycle support is a good way to start and help the
selection process.

2) Maintenance

The data lifecycle support for attributes and tables is also
useful in database application maintenance since it reveals the
completeness of functions from inside the source code. In this
section, we demonstrate how the data lifecycle support can be
used in the maintenance process for cases of undefined, non-
modifiable, undeletable, redundant and reserved respectively.
We use Table III and Table IV for demonstration.

Undefined

If the data lifecycle support information provided for an
attribute or table in a database application is classified as
undefined, it is certainly not adequate and additional programs
must be coded to address this flaw.

436 437

TABLE III. DATA LIFECYCLE OF ATTRIBUTE FOR SCHOOL ADMIN*

Attribute Table S U I D Category

admid admission T F T T Non-modifiable
cls classes T F T F Undeletable

reasonofrej admission F T T T Redundant
email emp F T F F Undefined
empid emp F F F F Reserved
statid admission T T T T Complete

* S = Select, U = Update, I = Insert, D = Delete. This is only a part.

TABLE IV. DATA LIFECYCLE OF TABLE FOR SCHOOL ADMIN*

Table S U I D Category

assign F F F F Reserved
rght F F F F Reserved

rolerght F F F F Reserved
* Only a part of the table is shown.

From Table III, we found that the attribute “email” in table
“emp” is undefined, which means there is no insertion for this
attribute, but there is an update operation for it. Although there
is a case that an attribute has a default value and its insertion is
not compulsory, we note that this might still be a flaw in design.
However, by manual inspection, we found that in the project
School Admin, the attribute “email” in fact has no default value,
so this is actually an error or incompleteness of implementation.
An additional function for this is thus needed.

Non-modifiable/Undeletable

If the data lifecycle support information provided for an
attribute or table in a database application is classified as non-
modifiable or undeletable, then its adequacy depends on the
application characteristics or the requirements; developers can
examine whether additional programs are needed be coded for
the adequacy of data lifecycle.

It can be seen from Table III that attribute “admid” in table
“admission” is non-modifiable. This indicates that once a
record is inserted, its attribute “admid” can never be changed.
After investigation, we found that this attribute is not an
attribute that requires special control to disallow from changes.
The value of this attribute can be changed from time to time.

Besides, the attribute “cls” in table “classes” is undeletable.
It is also possible that some attributes are not allowed to be
deleted, but it is not the case for this attribute either.

Hence, additional functions should be added to the
application to enable the users to modify or delete the values of
the two attributes.

Redundant

If the data lifecycle support information provided for an
attribute or table in a database application is classified as
redundant, a developer should examine whether it is really
needed for the application. This may lead to the introduction of
additional programs to use it or removal of unnecessary
attribute or table.

As can be seen from Table III, the attribute “reasonofrej” in
table “admission” is redundant for it is never used. According
to this information, developers can decide either to add

functions that use this attribute, or remove it and its other
operations correspondingly.

Reserved

If the data lifecycle support information provided for an
attribute or table in a database application is reserved, a
developer can decide whether he still wants to retain the
reserved attribute/table.

From Table III, we learnt that attribute “empid” in table
“emp” is reserved. Also from Table IV that, tables “assign”,
“rght” and “rolerght” are reserved. This is resulted from that
there is not any operation on them. Consequently, whether to
delete the attribute or tables from the schema depends on the
real adaptation and developers. We found that these tables
could be retained because the system is not fully developed yet
and further enhancement and extension could be made.

As the above cases demonstrated, data lifecycle information
reveals overall status and defect or incompleteness of
implementation. Problems with the code could thus be located
more easily and quickly. Since software maintenance could
often be costly and time-consuming, especially when a new
developer tries to have a broad picture of the existing system,
data lifecycle can thus be a cost-effective facilitation for the
maintenance process.

3) Verification

Software verification seeks to provide objective evidence
that the design outputs of a particular phase of the software
development life cycle meet the specification for that phase.
When development reaches a stage, e.g. a milestone, developer
would like to check the correctness of the specified programs in
that stage. We show a simple example to demonstrate the use
of data lifecycle in database application verification.

TABLE V. DATA LIFECYCLE OF ATTRIBUTE IN LAMP SCHOOL

Attribute Table S U I D Category

idalunno alunni T F F T Undefined
idcattedra cattedre T F F T Undefined

As is shown in Table V, the attribute “idalunno” in table
“alunni” is undefined, i.e. there is no insertion operation for it.
However, in the source code file “alu_conf.php”, we found the
following SQL query:

"SELECT * FROM alunni WHERE idalunno='$c'"

It can be seen that the attribute “idalunno” in table “alunni”
is used as the condition in WHERE clause. However, since its
value has never been defined, the result of this selection would
be always empty and thus this operation would be
inappropriate. This indicates design flaws or incompleteness of
implementation against the original design.

Besides, there is another SQL query in a different source
code file “del_cat.php” shows the same flaw:

"DELETE FROM cattedre WHERE (idcattedra=
$_GET[idcl])"
The cases above are only two similar flaws example among

all in the source code files. Data lifecycle support helps expose

436 437

such flaws with straightforward information. Reviews can thus
be conducted to draw these problems.

V. RELATED WORK

Software reverse engineering plays a critical important role
in many aspects such as software maintenance and software
comprehension. Over the past decades, a large number of
studies have been conducted and quite a number of tools have
been developed. In [1], Elliot J. Chikofsky and James H. Cross
II et al provided taxonomy of software reverse engineering, in
which six definitions of terms were given. Bellay and Gall
reported an evaluation of four reverse engineering tools that
analyze C source code [5]. They used a number of assessment
criteria derived from Brown and Wallnau’s Technology Delta
Framework [6].

Reverse engineering has long been employed in software
maintenance process. Rainer Koschke surveyed software
visualization in software maintenance, reverse engineering and
re-engineering in [7], where several representations for both
software and specification were described. H. A. Müller
presented using reverse engineering approach to aid subsystem
identification, which could be used to provide better
understanding and maintenance of a large software system [8].
P. Benedusi et al showed the use of hierarchical data flow
diagrams in reverse engineering for software maintenance [9].
They focused on methodology at different levels of abstraction.
Roger H. L. Chiang et al proposed extraction of ERR model
from a relational database through data schema and data
instance analysis [10]. However, we focus on extraction of data
lifecycle from source code analysis.

Reverse engineering can also be used to enhance the
understanding of software systems, and better understanding
can result in better maintenance. S. Rugaber gave introductions
of methodology, representation and tools in this area of
research [11]. In [12], the authors described the results of the
use of Rigi project in reverse engineering, which builds mental
models from the discovered abstractions. Eleni Stroulia
employed dynamic behavior analysis in reverse engineering to
understand the system’s process and uses [13]. Instead, our
approach uses static analysis. J. Henrard et al described
techniques in database reverse engineering [14]. However, they
focused on generic methodology for construction of
representation from different patterns, while our approach
focuses on data lifecycle usages.

VI. CONCLUSION

Though the proposed approach is simple and useful, to the
best of our knowledge, no such approach has been proposed in
the literature. For a database application, there are four
database operations supporting the data lifecycle: INSERT,
UPDATE, SELECT and DELETE. We classify the possible
sixteen combinations from these four operation types into six
categories. We propose an approach to reverse engineer the
data lifecycle automatically from the source code of the
database applications. To verify the proposed approach, we

developed a tool for PHP database applications and conducted
case studies to evaluate the proposed approach using the tool.

The first benefit of our approach is the automatic data
lifecycle extraction can lighten the burden of analyzing the
code manually when the users try to understand the systems’
database usage and behavior. Users can infer design flaws and
completeness of the database from the extracted data lifecycle
support directly. Secondly, the straightforward information
provided by our approach can facilitate the selection,
maintenance and verification of database applications.

ACKNOWLEDGMENT

We would like to take this opportunity to express our
thanks to the developers of Pixy for releasing their tool as open
source software, which helps a lot in our prototype tool
development.

REFERENCES

[1] Elliot J. Chikofsky, James H. Cross II, "Reverse Engineering and Design
Recovery: A Taxonomy," IEEE Software, vol. 7, no. 1, pp. 13-17,
Jan./Feb. 1990

[2] Nelson, M., A Survey of Reverse Engineering and Program
Comprehension , Arxiv preprint cs/0503068, 2005

[3] Müller, H.; Jahnke, J.; Smith, D.; Storey, M.; Tilley, S. & Wong, K.
Reverse engineering: A Roadmap, Proceedings of the Conference on the
Future of Software Engineering, 2000, 47-60

[4] Jovanovic, N., Kruegel, C. and Kirda, E., Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities, Proc. IEEE Symp on
Security and Privacy, Oakland, CA, May 2006

[5] Bellay, B. & Gall, H., A Comparison Of Four Reverse Engineering
Tools, Proceedings of the Fourth Working Conference on Reverse
Engineering, 1997, 2002, 2-11

[6] A. Brown and K.Wallnau., A Framework For Evaluating Software
Technology, IEEE Software, page 39-49, September 1996.

[7] Koschke, R. Software Visualization in Software Maintenance, Reverse
Engineering, and Re-Engineering: A Research Survey, Journal of
Software Maintenance and Evolution: Research and Practice, John
Wiley & Sons, 2003, 15, 87-109

[8] Müller, H. A., Orgun, M. A., Tilley, S. R. and Uhl, J. S. (1993), A
Reverse-Engineering Approach To Subsystem Structure Identification,
Journal of Software Maintenance: Research and Practice, 5: 181–204

[9] Benedusi, P.; Cimitile, A. & De Carlini, U., A Reverse Engineering
Methodology to Reconstruct Hierarchical Data Flow Diagrams for
Software Maintenance, Proceedings of International Conference on
Software Maintenance, 1989., 2002, 180-189

[10] Chiang, R. H. L.; Barron, T. M. & Storey, V. C. Reverse Engineering of
Relational Databases: Extraction of An EER Model From A Relational
Database, Data & Knowledge Engineering, 1994, 12, 107 – 142

[11] Rugaber, S., Program Comprehension For Reverse Engineering, AAAI
Workshop on AI and Automated Program Understanding, 1992

[12] Muller, H.; Wong, K. & Tilley, S., Understanding Software Systems
Using Reverse Engineering Technology, Object-Oriented Technology
for Database and Software Systems, 240-252

[13] Stroulia, E. & Systä, T., Dynamic Analysis For Reverse Engineering
And Program Understanding, ACM SIGAPP Applied Computing Review,
ACM, 2002, 10, 17

[14] Henrard, J.; Englebert, V.; Hick, J.; Roland, D. & Hainaut, J., Program
Understanding In Databases Reverse Engineering, Database and Expert
Systems Applications, 1998, 70-79

438 439

438 439

440 441

440 441

442 443

442 443

444 445

An Empirical Study on Classification of
Non-Functional Requirements

Wen Zhang, Ye Yang, Qing Wang, Fengdi Shu
Laboratory for Internet Software Technologies

Institute of Software, Chinese Academy of Sciences
Beijing 100190, P.R.China

{zhangwen,ye,wq, fdshu}@itechs.iscas.ac.cn

Abstract—The classification of NFRs brings about the benefits
that NFRs with respect to the same type in the system can be
considered and implemented aggregately by developers, and as
a result be verified by quality assurers assigned for the type.
This paper conducts an empirical study on using text mining
techniques to classify NFRs automatically. Three kinds of index
terms, which are at different levels of linguistical semantics, as
N-grams, individual words, and multi-word expressions (MWE),
are used in representation of NFRs. Then, SVM (Support Vector
Machine) with linear kernel is used as the classifier. We collected
a data set from PROMISE web site for experimentation in
this empirical study. The experiments show that index term as
individual words with Boolean weighting outperforms the other
two index terms. When MWEs are used to enhance represen-
tation of individual words, there is no significant improvement
on classification performance. Automatic classification produces
better performance on categories of large sizes than that on
categories of small sizes. It can be drawn from the experimental
results that for automatic classification of NFRs, individual words
are the best index terms in text representation of short NFRs’
description and we should collect as many as possible NFRs of
software system.

Keywords—Non-Functional Requirements, Automatic Classifi-
cation, Support Vector Machine.

I. INTRODUCTION

Non-functional requirements (NFRs) describe the expected
qualities of a software system such as usability, security and
look and feel of user interface. These qualities do impact on
the architectural design of the software system [1] and satisfac-
tion of stakeholders relevant with the software system [2] [3]
[4]. NFRs are put forward by stakeholders with no expertise
in software engineering and the number of NFRs is often
very large. Moreover, NFRs are scattered over the functional
requirements and the types of the NFRs are unknown because
they are written in natural language. These charateriestics
of NFRs make its classification a labor-intensive and time-
consuming job without the adoption of automatic techniques.
Nevertheless, software developers cannot ignore NFRs because
they are decisive on the success of the software system.

Compared with functional requirement, NFRs tend to be
properties of a system as whole, and hence cannot be verified
for individual components or modules [19] [23]. This makes
the classification of NFRs necessary in development because
, on the one hand,we need to handle NFRs in a different way
from functional requirements and, different types of NFRs
should be handled by developers with different expertise.

For instance, in a security critical, mission critical, or
economy vital software systems, formal method with model
checking of the correctness of specification on system security
is used to determine whether or not the ongoing behavior
holds of the system’s structure. However, a serious (and
obvious) drawback of model checking is the state explosion
problem because the size of the global state graph is (at least)
exponential in the size of the program text [21]. Thus, an
exigent demand from system developers is to identify the
security-related NFRs from the requirement document and
express them using formal specifications, and then to conduct
verification of the satisfaction of system’s properties on those
security specifications.

On the other hand, the classification of NFRs benefits an
overall decision on the systems’ satisfaction on each category
of NFRs and the progress of system development developers
have made. Functional requirements can be measured as either
satisfied or not satisfied, but NFRs can not merely measured by
a linear scale as degree of satisfaction [25]. In system testing,
for example, we can customize our test strategy based on the
classification of NFRs and thus system behaviors of NFRs
were reported directly to the project manager.

Most, if not all, projects have resource limitations and
time constraints, with different requirements having different
concerns of software systems. Even after the requirements are
elicited and collected, they are still just an unorganized set of
data. As such, it is necessary to categorize the requirements
into different types so as to match problems and solutions
in separate domain of discourse, especially for large-scale
software projects with hundreds or even thousands of require-
ments.

In human resource allocation and optimization [22], differ-
ent developers possess different expertise in handling various
aspects of software development. Different tasks in develop-
ment may need different expertise and capability from the
developers. Thus, a match of developers and tasks is at the
core of the success of software development. The identifi-
cation of different types of NFRs results in the formation
of different types of development tasks. Consequently, those
tasks are assigned to developers aggregately according to their
expertise and capability level. For instance, the NFRs with
”performance” type and the NFRs with ”maintainability” type
should be dealt with by developers with different expertise.

444 445

We forward NFRs of the type ”look and feel” to UI (User
Interface) design experts of the system so that the satisfaction
of these NFRs can be ensured throughout the whole system.

Methods for the elicitation of NFRs include questionnaires,
checklists and templates for inquiring stakeholders concerning
quality issues [24]. Basically, NFRs are made of textual
sentences whose contents concern the expected qualities of
a software system. For instance, ”The application shall match
the color of the schema set forth by Department of Homeland
Security. LF” is a typical NFR record fetched out from the
data set and it comprises two parts: textual description and
NFR type as ”LF”. The description of NFR is very simple and
easy to understand. It does not need professional knowledge of
engineering aspects. Thus, text mining, which combines both
natural language processing (NLP) and statistical machine
learning, can be used for the task of automatic classification
of NFRs.

Although there is substantial literature on NFR classification
[2] [4] [5] [17] , we find two problems. First, most methods
are purely intuitive and derived without theoretical support
or mathematical model. Also, some methods are extremely
labor-intensive and time-consuming, and others are qualitative,
without quantitative analysis. Second, the index terms used
in existing automatic classification of NFRs are keywords
extracted directly from requirements without feature selection.
This would cause huge dimensionality of NFR vectors and
consequently bring about huge computation when quantitative
methods are used. Most importance, we are uncertain that
other index terms than keywords are more appropriate for
automatic classification of NFRs.

The questions devised for this empirical study are: 1) among
existing indexing methods, which one is the best performance
for automatic classification of NFRs, and 2) is it possible to
produce better performance with SVM than those derived in
previous work?

The remainder of this paper is organized as follows. Section
2 describes the research approach employed in this paper.
Section 3 conducts experiments of using SVM and different
index terms to classify NFRs. Section 4 present the related
work and Section 5 concludes this paper.

II. RESEARCH APPROACH

The research approach adopted in the empirical study is
shown in Figure 1 to automate the classification of NFRs. First,
NFRs’ textual description are represented using different types
of index terms as N-grams, individual words, and MWEs,
respectively. Then, we transfer NFR textual description into
numerical vectors in different feature space determined by
different types of index terms. Second, support vector machine
(SVM), which is a popular classifier in machine learning [6]
[9], is used to classify NFR vectors. Finally, performance of
each classification is evaluated.

A. Index Terms
The requirement data set we collected from the PROMISE

web site (http://promisedata.org/repository) and it contains 625
records of both functional and non-functional requirements.

Fig. 1. Procedures of automatic classification of NFRs.

N-gram Representation. N-gram is proposed in text min-
ing to categorize documents with textual errors such as
spelling and grammatical errors, and it has been proved as
an effective technique to handle these kinds of errors [7].
An N-gram is an N-character contiguous fragment of a long
string. Since every string is decomposed into small fragments,
any errors that are present in words only affect a limited
number of those fragments. If we measure the similarity of
two strings based on their N-grams, we will find that their
similarity is immune to most textual errors. We used bi-gram
(344 2-grams) and tri-gram (1,295 3-grams) for representation
of NFRs, respectively.

Word Representation. The method of using individual
words of a text content to represent the text can be traced
to Salton et al[10]. We follow this idea to use words in NFRs
for representation. First, we eliminated stop words from NFRs’
description 1. Second, word stemming 2 was conducted to map
word variants to the same stem. We set the minimum length
of a stem as 2. That is, only the stems which have more than
2 characters will be accepted as stems of words. Thus, 1,127
individual word stems are produced from the data set.

MWE Representation. We used the method proposed by
Justeson and Katz [12] for MWE extraction from NFRs.
The basic idea behind this method is that a MWE should
include 2 to 6 individual words and it should occur in a
collection of documents more than twice. Nevertheless, the
part of speeches of individual words of a MWE should meet
the regular expression described in formula 1.

((𝐴𝐴 ∣ 𝑁𝑁)+ ∣ (𝐴𝐴 ∣ 𝑁𝑁)∗(𝑁𝑁𝑁𝑁)?(𝐴𝐴 ∣ 𝑁𝑁)∗)𝑁𝑁 (1)

Here, A denotes an adjective, N denotes a noun and P
denotes a preposition. Using the method adopted from [11],
we extracted 93 MWEs from the data set.

1We obtain the stop words from http://ftp.uspto.gov/patft/help/stopword.htm
2we use Porter stemming algorithm that is available at http://tartarus.org/

martin/PorterStemmer/

446 447

B. Feature Selection

In this paper, we adopt information gain (IG) [8], which
is a classic method for feature selection in machine learning,
to select informative index terms for automatic classification
of NFRs. IG is defined as the expected reduction in entropy
caused by partitioning NFRs according to a given term. The
formula of IG is presented in Equation 2 and the formula of
entropy is depicted in Equation 3.

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆𝑆𝑆𝑆) = 𝐸𝐸𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆)−
∑

𝑣𝑣∈𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴)

∣ 𝑆𝑆𝑣𝑣 ∣
∣ 𝑆𝑆 ∣ 𝐸𝐸𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)

(2)

𝐸𝐸𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) =
𝑐𝑐∑

𝑖𝑖=1

−𝐸𝐸𝑖𝑖 log 𝐸𝐸𝑖𝑖 (3)

Here, S is the collection of the types of all NFRs such as
PE (performance) and US (usability). Value(A) is a set of all
possible values of index term A. S𝑣𝑣 is a subset for which A
value v, c is the number of categories of all NFRs, and p𝑖𝑖 is the
proportion of the NFRs that belong to category i. To observe
the performances of textual features on automatic classification
dynamically, the different feature sets of textual features are
constructed at different removal percentages of low IG value
terms (see also removal ratio in Section 3.2).

C. SVM Classifier

The classifier used for automatic classification is support
vector machine (SVM) [6] [9], that is introduced in statistical
machine learning. We selected this method in this paper be-
cause Gokyer et al [9] used it to transfer NFRs to architectural
concerns and preferred effectiveness was achieved. In this
paper, the linear kernel (u*v) is used for SVM training because
it is superior to non-linear kernels for classifying textual
contents validated by prior research [8] [13].

III. EXPERIMENT

A. Categories of the data set

Table 1 lists the categories of both functional and non-
functional requirements in the data set and their numbers.
Functional requirements occupy the largest proportion in the
data set, amounting to 40.8% (255/625). Moreover, there is
a skew distribution among the NFR categories in the data
set. For instance, the largest category ”usability” has 67 cases
while the smallest category ”Palm Operational” has only one
case. We adopt binary classification in this paper because skew
distribution often deteriorates the performance of multi-class
classification [28] .

In binary classification, if the number of positive (negative)
cases is much larger than the number of negative (positive)
cases, the performance of automatic classification may be not
convincing because of the biased distribution of data points.
For example, if 90% cases in a data set are positive, then
the accuracy of automatic classification should be greater than
90% if the classifier predicts all the data points with positive

TABLE I
CATEGORIES OF REQUIREMENTS AND THEIR NUMBERS IN THE DATA SET

Abbr. Full Name Num
F Functional 255

US Usability 67
SE Security 66
O Operational 62
PE Performance 54
LF Look And Feel 38
A Availability 21

SC Scalability 21
MN Maintainability 17
L Legal 13

FT Fitness 10
PO Palm Operational 1

labels. For this reason, the categories ”usability”, ”security”,
and ”Look And Feel” with relatively medium sizes in the data
set are used as the positive classes for binary classification one
by one and meanwhile, the NFRs in remaining categories are
used as negative classes.

B. Classification Process

There are actually two kinds of work involved in represent-
ing textual contents: indexing and term weighting. Indexing is
the job of assigning index terms for textual contents and term
weighting is job of assigning weights to terms, to measure the
importance of index terms in textual documents. We employ
Boolean values as term weights for the index terms for the
reason that most NFRs in the data set are very short and
contain less than 20 index terms so they do not need complex
weighting schemes such as those mentioned for document
representation [15].

IG is employed to change the percentages of index terms
used for representation. The removal ratio is predefined to
remove the index terms with small entropy. For instance, if we
set the removal ratio to 0.1 for representation with individual
words, then a percentage of 90% of individual words with
smaller entropy will be eliminated from the feature set and
we only use the remaining 10% of individual words for the
representation of NFRs. The purpose of varying different
percentages of index terms for representation is that we want
to observe the robustness of classification performances when
the set of index terms become smaller and smaller. This is
especially important for deciding which type of index terms
should be used for representing NFRs when computation
capacity is not enough to support large dimension of vectors
in training classifier. In representation with MWEs, we use
all the 1,127 individual words and a proportion, which is is
defined by the removal ratio, of MWEs as the index terms.

The experiments in this paper are carried out with 10-fold
cross-validation technique. In each experiment, we divide the
whole data set (for both positive and negative classes) into
10 subsets. The 9 of 10 subsets are used for training and
the remaining one subset is used for testing. We repeat the
experiment 10 times and the performance of the classification
is measured as average precision and recall [2] of the 10
repetitions.

446 447

C. Experimental Results
The outcome of our experiments shows that the precisions

of all the automatic classification tasks are significantly higher
than those of the classification approach proposed by Cleland-
Huang et al [2]. Yet, the recalls of the automatic classifications
in this paper are not comparable to the classification proposed
by Cleland-Huang et al. We do not list the precisions and
recalls produced in our experiments due to space limitation
(Readers who have an interest in the precisions and recalls
are welcome to ask the authors for more details).

We conjecture that the high recalls of the results of Cleland-
Huang et al [2] can be attributed to the small size (within the
range between 10 and 20) of index terms they employed in
their experiments, which is much smaller than the sizes of
index terms (within the range between 100 and 1,000) used in
our experiments. When small size of index terms is used, larger
number of NFRs is classified as relevant NFRs of the category.
Consequently, more irrelevant NFRs will be misclassified as
relevant. Considering an extreme case of classifying relevant
NFRs with ”Usability”, if all the NFRs are regarded as relevant
with ”Usability”, then the recall of automatic classification will
be 100%. However, this classification result may be of less
help for automating the task of classification. Thus, we argue
that for automatic classification of NFRs, precision should be
given more importance if recall is acceptable.

The F-measure [16] described in Equation 4 combines both
precision and recall for performance evaluation. We used
F-measure as the indicator for performance evaluation. In
general, the larger the F-measure is, the better the classification
result is. Here, for the purpose of comparison, we make out
the F-measures of Cleland-Huang et al [2] as the baseline
performance in the experiments.

𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
2× 𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝× 𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑟𝑟𝑟𝑟

𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝+ 𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑟𝑟𝑟𝑟
(4)

Figures 2-4 show the experimental results of classifying the
assigned three categories ”Usability”, ”Security”, and ”Look
And Feel” at different removal ratios using four types of index
terms (2-gram, 3-gram, word and MWE) to represent NFRs.

First, it can be seen that the representation with individual
words has the best performance measured by F-measure nearly
on all three categories. In some cases, representation with ter-
minologies improves the precision of automatic classification
of representation with individual words (when the removal
ratio arrives at 0.9). That is, even if most index terms are
removed from the feature set, their performances do not
decline drastically. However, in most cases, representation
with terminologies is not able to improve the performances
of automatic NFR classification compared with representa-
tion with individual words, even worse than that of 3-gram
representation. Both representation with individual words and
terminologies produce very robust classification.

This outcome implies that for automatic classification of
NFRs, representation with individual words is sufficient to
produce a desirable performance. This outcome is very dif-
ferent from the experimental results produced by Zhang et al

00.10.20.30.40.50.60.70.80.9
0.4

0.45

0.5

0.55

0.6

0.65

F−
m

ea
su

re

Removal Ratio

2−gram
3−gram
individual words
terminology
baseline

Fig. 2. Classification performances on category ”Usability”.

00.10.20.30.40.50.60.70.80.9
0.4

0.45

0.5

0.55

0.6

0.65
F−

m
ea

su
re

Removal Ratio

2−gram
3−gram
individual words
terminology
baseline

Fig. 3. Classification performances on category ”Security”.

00.10.20.30.40.50.60.70.80.9

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F−
m

ea
su

re

Removal Ratio

2−gram
3−gram
individual words
terminology
baseline

Fig. 4. Classification performances on category ”Look And Feel”.

448 449

[8]. They argued that MWEs are superior to individual words
for classifying news documents automatically. We explain that
the lengths of NFRs in the data set are much shorter (20
individual words on average) than those of Reuters-21578
news documents (80 individual words on average) so the
semantics inherent in textual contents of NFRs is not so much
important as those inherent in news documents.

Second, for representation with N-grams, representation
with 3-grams outperforms that with 2-grams. This outcome
can be attributed to that the number of 3-grams is much
larger than that of 2-grams (see Section 2.1). Moreover, the
robustness of the 3-gram representation is better than the 2-
gram representation because the magnitudes of variations of
F-measures of the 3-gram representation are smaller than those
produced by the 2-gram representation.

Thirdly, for classification on different categories, the per-
formance on ”Security” is as almost the same as that on
”Usability” but outperforms that on ”Look And Feel”. The
number of NFRs in category ”Security” (66) is approximately
equal to that in category ”Usability” (67), which is much
larger than the number of ”Look And Feel” (38). We explain
that automatic classification would produce more favorable
performance on categories those having large sizes than those
having small sizes.

Based on the experimental results, the answer for question
1 devised for this case study in Section 1 should be that to
date, keywords are the most effective index terms for automatic
classification of NFRs and for question 2, our answer is that
the machine learning technique, at least SVM, can improve
the classification significantly.

IV. RELATED WORK

NFR has attracted much interest of researchers from soft-
ware engineering field. Much work has been invested in
managing NFRs. Tran and Chung [20] proposed a prototype
tool for explicit representation of NFRs. They aim to consider
NFRs in a more goal-oriented perspective and argue that NFRs
have much influence on the design of the solution as well as
reinforce engineering process. In order to formulate implicit
relationships of NFRs , ontology and graphic visualization are
used in their tool to express softgoals and their interdependen-
cies explicitly.

Cleland-Huang et al [4] introduce a goal-centric approach to
managing the impact of change upon the NFRs of a software
system. They partition NFRs into different softgoals of a
system and construct a softgoal interdependency graph (SIG)
to trace both direct and indirect impacts of software changes on
NFRs. Probabilistic network model is employed to enable the
traceability of impacts. However, the job of constructing SIG
is labor-intensive and time-consuming because of the lack of
automatic approaches. If we can classify NFRs into different
softgoals automatically, it would be much easier to identify
the relations between subgoals and softgoals. That is, human
workload involved in constructing SIG will be reduced to a
great extent.

In another work, Cleland-Huang, et al.[2] proposed an
information retrieval method to discover and identify NFRs
from system specification. Their basic assumption is that
different types of NFRs are characterized by distinct keywords
(index terms) that can be learned from documents of that
type. However, their method of selecting index terms is ad-hoc
and does not consider any linguistic properties of those index
terms. Moreover, the classifier used in their method, which is
based on the additive weights of index terms on a given NFR
type, is quite simple without any theoretical ground.

Rosenhainer [14] proposed aspect mining to identify cross-
cutting concerns in requirements specifications. Two tech-
niques are suggested to be used for aspect mining: identi-
fication through inspection and identification supported by
information retrieval (IR). The former one is manual and
the later one is semi-automatic. Rosenhainer argued that IR-
based technique is more promising than manual method and
their experimental results on interactions between functional
and non-functional requirements have validated this argument.
This work encourages our study in this paper to use IR
techniques for automatic classification of NFRs.

Casamayor et al [24] employed naı̈ve Bayes and EM
(Expectation Maximization) algorithm as a semi-supervised
learning approach to classify non-functional requirements in
textual specifications. They used the same data set as used
in this paper and reported that their algorithm produced an
average accuracy above 70%. In fact, the performance of SVM
in our experiments is better than theirs because we exclude
those categories of small number of data points. That is,
unbalanced distribution of data points is purposely alleviated in
our experiments. Moreover, our conjecture is also validated by
their experimental results that those category of large number
of data points such as ”usability”, ”security” and ”Look And
Feel”.

V. CONCLUDING REMARKS

NFR is crucial to the success of a software system as it
describes necessary qualities of system to avoid devastating
effects and system failure [17]. In this empirical study, vector
space model and machine learning technique are employed to
classify NFRs automatically. We used different index terms to
transfer NFRs into numeric vectors and examined their per-
formances on automatic classification of NFRs. The machine
learning classifier we adopted in this paper is SVM with linear
kernel, which is widely recommended as a promising classifier
for text mining. Information gain for feature selection and
SVM for automatic classification is introduced. We conducted
experiments using the data set collected from PROMISE data
set.

The experimental results show that individual words, when
used as the index terms, have the best performance in classi-
fying NFRs automatically. We noticed that, in most cases, the
more samples in a category in data set, the better performance
the automatic classifier will produce on the category. This
outcome illustrated that the number of NFRs in the data set is
an important factor for automating the classification of NFRs.

448 449

This inference suggests that we need to collect NFRs as many
as possible if automatic classification is desired.

This work can be applied in at least two aspects in software
engineering currently. First, it can be used to identify NFRs
in requirement specification. Usually, customers, testers, and
stakeholders of a software system will mix their desirable
qualities in a specification. Whereas functional requirements
describe what the system needs to do, NFRs describe con-
straints on the solution space and capture a broad spectrum
of properties, such as usability and security [18]. Because the
solutions of functional requirements and NFRs are different, or
the time to consider these two kinds of requirement in system
design is different, we must differentiate these two kinds of
requirements. Second, different NFRs are often handled by
different designers and developers with different background
knowledge in architecture, it is crucial to classify the NFRs
into different categories so that the NFRs in the same category
can be processed as a comprehensive requirement in system
design.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under Grant Nos. 90718042, 60873072,
61073044, and 60903050; the National Science and Technol-
ogy Major Project; the National Basic Research Program under
Grant No. 2007CB310802; the Scientific Research Foundation
for the Returned Overseas Chinese Scholars, State Education
Ministry.

REFERENCES

[1] Y. Yang, J. Bhuta and D. Port and B. Boehm, Value-Based Processes for
COTS-Based Applications, IEEE Software, 22(4), 54-62, July/August,
2005.

[2] J. Cleland-Huang, R. Settimi and X. Zou and P. Solc, The Detection and
Classification of Non-Functional Requirements with Application to Early
Aspects, In Proceedings of the 14th IEEE International Requirements
Engineering Conference, 36-45, 2006.

[3] B. Nuseibeh, Weaving Together Requirements and Architecture, IEEE
Computer, 34(3), 115-117, 2001.

[4] J. Cleland-Huang, et al, Goal-Centric Traceability for Managing Non-
Functional Requirements, In Proceedings of the 27th International Con-
ference on Software Engineering, 362-371, 2005.

[5] D. Zhang and J. J. P. Tsai, Machine Learning and Software Engineering,
Software Quality Journal, 11, 87-119, 2003.

[6] V. Vapnic, The Nature of Statistical Learning Theory, Springer, New York,
1995.

[7] W. B. Cavnar and J. M. Trenkle, N-Gram-Based Text Categorization, Pro-
ceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, 161-175, 1994.

[8] W. Zhang, T. Yoshida and X. J. Tang, Text classification based on multi-
word with support vector machine, Knowledge-based Systems, 21(8),
879-886, 2008.

[9] G. Gokyer, et al, Non-functional Requirements to Architectural Concerns:
ML and NLP at Crossroads, Proceedings of International Conference on
Software Engineering Advances, 2008.

[10] G. Salton and A. Wong and C. S. Yang, A Vector Space Model for
Automatic Indexing, Communications of the ACM, 18(11), 613-620,
1975.

[11] W. Zhang, T. Yoshida and X. J. Tang, Improving effectiveness of
mutual information for substantival multiword expression extraction,
Expert Systems with Applications, 36(8), 10919-10930, 2009.

[12] J. S. Justeson and S. M. Katz, Technical terminology: some linguistic
properties and an algorithm for identification in text, Natural Language
Engineering, 1(1), 9-27, 1995.

[13] Y. M. Yang and X. Lin, A re-examination of text categorization methods,
In Proceedings on the 22nd Annual International ACM Conference on
Research and Development in Information Retrieval, 42-49, 1999.

[14] L. Rosenhainer, Identifying Crosscutting Concerns in Requirements
Specifications, In Proceedings of OOPSLA Early Aspects 2004: Aspect-
Oriented Requirements Engineering and Architecture Design Workshop,
2004.

[15] G. Salton and C. Buckley, Term weighting approaches in automatic text
retrieval, Information Processing Management, 24, 513-523, 1998.

[16] J. Han and M. Kamber, Data Mining Concepts and Techniques, Morgan
Kaufmann Publishers, New York, 2006.

[17] F. Brooks, No sliver bullet-essence and accidents of software engineer-
ing, IEEE Computer, 20(4), 10-19, 1987.

[18] I. Sommerville and P. Sawyer, Viewpoints: Principles, Problems, and
a Practical Approach to Requirements Engineering, Annals of Software
Engineering, 3, 101-130, 1997.

[19] B. Nuseibeh and S. Easterbrook, Requirement Engineering: A Roadmap,
Proceedings of the Conference on The Future of Software Engineer-
ing(ICSE’00), 35-46, 2000.

[20] Q. Tran and L. ChungL, NFR-Assitant: Tool Support for Achieving
Quality, Proceedings of IEEE Symposium on Application-Specific Sys-
tems and Software Engineering and Technology (ASSET’99),1999.

[21] E. A. Emerson, The beginning of model checking: A personal perspec-
tive, 25 Years of Model Checking, 27-45, 2008.

[22] J. Xiao, L. J. Osterweil, Q. Wang and M. Li, L, Disruption-Driven Re-
source Rescheduling in Software Development Processes, In Proceedings
of 4th International Conference on Software Process, 234-247, 2010.

[23] L. Chung, J. Prado Leite, On Non-Functional Requirements in Software
Engineering, A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS
5600, 363-379, 2009.

[24] A, Casamayor, D. Godoy and M. Campo, Identification of non-
functional requirements in textual specifications: A semi-supervised learn-
ing approach, Information and Software Technology, 52, 436-445, 2010.

[25] F. Tsui and O. Karam, Essentials of Software Engineering (Second
Edition), Jones and Bartlett Publishers, Sudbury, Masshachusetts, 2011.

[26] G. Salton and M.J. McGill, Introduction to Modern Information Re-
trieval, McGraw-Hill Book Company, New York, NY, USA, 1986.

[27] J. Davis and M. Goadrich, The relationship between precision-recall
and ROC curves, In Proceedings of the 23rd international conference on
Machine learning, 233-240, 2006.

[28] J. Weston and C. Watkins, Multi-class support vector machines, In
Proceedings of 7th European Symposium on Artificial Neural Networks,
219-224, 1999.

450 451

Assessing the Impact of Aspects on Design By Contract Effort:
A Quantitative Study

Henrique Rebêlo1 Ricardo Lima1 Uirá Kulesza2 Cláudio Sant’Anna3
Roberta Coelho2 Alexandre Mota1 Márcio Ribeiro1,4 César Oliveira1

1Federal University of Pernambuco, PE, Brazil
{hemr, rmfl, acm, mmr3, calo}@cin.ufpe.br

2 Federal University of Rio Grande do Norte, RN, Brazil
{uira, roberta}@dimap.ufrn.br

3 Federal University of Bahia, BA, Brazil
santanna@dcc.ufba.br

4 Federal University of Alagoas, AL, Brazil
marcioribeiro@ic.ufal.br

Abstract

Although it is assumed that the implementation of de-
sign by contract is better modularized by means of aspect-
oriented (AO) programming, there is no empirical evidence
on the effectiveness of AO for modularizing non-trivial de-
sign by contract code in well-understood modularity at-
tributes. This paper reports a quantitative case study of the
adequacy of aspects for modularizing design by contract
concern. The study consisted of refactoring a real-life ap-
plication so that the code responsible for implementing the
contract enforcement strategies was moved to aspects. Our
analysis was driven by fundamental modularity attributes,
such as separation of concerns, coupling, and size. We have
found that AO techniques improved separation of concerns
between the design by contract code and base application
code. However, contradicting the general intuition, the AO
version of the system did not present significant gains re-
garding four classical size metrics we employed.

1 Introduction

Design by Contract (DbC), originally conceived by
Meyer [12], is a technique for developing and improving
functional software correctness. The key mechanism in
DbC is the use of the so-called “contracts”. A contract for-
mally specify an agreement between a client and its sup-
pliers. Client classes must satisfy the supplier class condi-
tions before calling one of its methods. When these condi-

tions are satisfied, the supplier class must guarantee certain
properties, which constitute the supplier class’s obligations.
However, when a client breaks a condition (client violation),
a runtime error occurs. The use of such pre- and postcondi-
tions and invariants to specify software contracts dates back
to Hoare’s 1969 paper on formal verification [7]. The nov-
elty with DbC is to make these contracts executable. This
is useful for isolating errors during debugging, and for val-
idating contracts that are used as documentation or for in-
creasing code reliability and correctness [1, 15].

It is assumed that the contracts of a system is de-facto
a crosscutting concern that can be better modularized by
the use of aspect-orientation [8, 10, 11]. Recent stud-
ies [10, 8, 1, 15, 16] have shown that object-oriented ab-
stractions are not able to modularize the main features of
design by contract methodology, such as invariants and pre-
and postconditions, and tend to lead to programs with poor
modularity (scattered and tangled DbC code).

To the best of our knowledge, Lippert and Lopes [10]
conducted the most well-known systematic study that ex-
plicitly investigated the use of AO to implement classical
design by contract features such as pre- and postcondi-
tions of a large OO framework, called JWAM. Among other
things, they compared the contracted Java and AspectJ im-
plementations of such OO framework. According to their
findings, the AspectJ implementation improved the modu-
larity of design by contract concern. Also, they argue that
the use of AO drastically reduced the number of contracts
(e.g., precondition) and lines of code (LOC). However, the
authors presented their findings in terms of a qualitative as-

450 451

sessment. Quantitative evaluation consisted solely of count-
ing LOC. Hence, there is no empirical evidence that AO
techniques promote a superior solution in well-understood
modularity attributes such as separation of concerns, cou-
pling, and size, when used for modularizing non-trivial ho-
mogeneous and heterogeneous design by contract code.

This paper complements Lippert and Lopes work [10]
by performing quantitative assessments of OO and AO im-
plementations for invariants and pre- and postconditions
of a real-life web-based information system, called Health
Watcher (HW) [6]. The OO version was implemented in
Java, whereas the AO version was implemented in AspectJ.
Our evaluation focused upon on well-known modularity
attributes such as separation of concerns, coupling, and
size [17, 5]. We have found that the AO solution improved
the separation of design by contract concern of the HW sys-
tem. Moreover, the use of aspects have exhibited signifi-
cant reuse of DbC features such as preconditions. However,
the AO implementation of HW has not presented significant
gains regarding four classical size metrics.

This paper is structured as follows: Section 2 describes
our experimental settings and justifies the decisions made to
ensure the study is valid. The results gathered from apply-
ing the modularity metrics are discussed in Section 3. Sec-
tion 4 analyzes the obtained results and points some con-
straints on the validity of our study. Finally, Sections 5 con-
cludes this paper by summarizing this paper’s findings.

2 Experimental Settings

This section describes the configuration of our study.
Section 2.1 briefly exemplifies and explains how we moved
design by contract code to aspects. The choice of the target
system is discussed in Section 2.2. In addition, the met-
rics used in the assessment process (Section 2.3), and our
assessment procedures (Section 2.4) are described.

2.1 Aspectizing Design By Contract

Our study focused on the placement of contracts. We
moved all the JC. requires , JC.ensures, and JC. invariant calls
in the selected portions of the selected target system to as-
pects. These methods are declared in the JC class which
encapsulate all the Java contract operations. As such, the
methods calls JC. requires , JC.ensures, and invariant denotes
pre- and postconditions, and invariants of the target system,
respectively.

We used the Extract Fragment to Advice [13] refactor-
ing to move contracts to aspects. Figure 1 illustrates this
mechanics. It shows a trivial example of aspectization of
preconditions using a before advice. Note that since the two
methods of the class C have the same precondition α, we
were able to refactor it to single advice, hence exploring

c l a s s C {
vo id m() {

JC . r e q u i r e s (α) ;
. . . / / co re concern

}
vo id n () {

JC . r e q u i r e s (α) ;
. . . / / co re concern

}
}

⇒

c l a s s C {
vo id m() {

. . . / / co re concern
}
vo id n () {

. . . / / co re concern
}

}
a s p e c t A {

p o i n t c u t pcd () :
e x e c u t i o n (vo id C . ∗ ())) ;

before () : pcd () {
JC . r e q u i r e s (α) ;

}
}

Figure 1. Refactoring DbC code to aspects.

reuse opportunities. Due to space constraints, we do not
show how we extracted other DbC features to advice.

2.2 Target System Selection

The first major decision we had in our investigation was
the selection of the target system. The chosen system is a
real web-based information system, called Health Watcher
(HW) [6]. The main purpose of the HW system is to allow
citizens to register complaints regarding health issues. This
system was selected because it met a number of relevant
criteria for our intended evaluation. First, it is a real and
non-trivial system with available OO and AO implementa-
tions with a number of recurring concerns and technologies
common in day-to-day software development, such as GUI,
persistence, concurrency, RMI, Servlets and JDBC [6]. Sec-
ond, the original implementation of HW is composed by
eleven use cases that are detailed described by an available
requirements document, which is essential to understand its
main functionalities [6]. Third, other qualitative and quan-
titative studies of the HW system have been recently con-
ducted [9, 4, 6, 3], and so provided a solid foundation for
this study.

2.3 The Metrics

In our study, a suite of metrics for separation of concerns
(SoC), coupling, and size [17, 5] were selected to evaluate
the OO and AO implementation versions of the HW sys-
tem. This suite was adapted from classic OO metrics [2]
to be applied to the AO paradigm. In addition, the chosen
metrics have already been used in several empirical case
studies [5, 9, 4, 6, 3]. For all the employed metrics, a lower
value implies better results. Table 1 summarizes each met-
ric used in this case study, and associates it with the relevant
modularity attribute.

Separation of Concerns (SoC) metrics measure the de-
gree to which a single concern (design by contract in our

452 453

Table 1. The Metrics Suite.
Attributes Metrics Definitions

Concern Diffusion Number of classes and aspects that contribute
over Components (CDC) to the implementation of a concern [5].

Separation Concern Diffusion Number of methods and advice that contribute
of Concerns over Operations (CDO) to a concern’s implementation [5].
(SoC) Concern Diffusion over LOC Counts the number of transition points for each concern

(CDLOC) through the lines of code. Transition points are points
in the code where there is a “concern switch” [5].

Coupling Coupling Between Number of classes and aspects declaring methods or fields
Components (CBC) that may be called or accessed by other components [2].
Lines of Code (LOC) Number of lines of code [2].
Design By Contract Lines of Code (DbCLOC) Number of lines of code that are relative to DbC.
Number of Preconditions (NOPre) Number of preconditions of each class or aspect.

Size Number of Postconditions (NOPo) Number of postconditions of each class or aspect.
Number of Invariants (NOI) Number of invariants of each class or aspect.
Number of Attributes (NOA) Number of attributes of each class or aspect [2].
Number of Operations (NOO) Number of methods and advice of each class or aspect [2].
Vocabulary Size (VS) Number of components of the system [2].

study) affects the system. The coupling metric CBC indi-
cates the degree of dependency between components. Ex-
cessive coupling is not desirable, since it is detrimental to
modular design. Size metrics are important to evaluate the
complexity and different perspectives of the final system. In
this way, the metric group includes metrics for both general
system attributes (e.g., Number of Lines of Code) and quan-
tities that are specific to design by contract such as Number
of Preconditions (NOPre). The size metrics related to DbC
are useful to quantify reuse of design by contract code in
refactored versions of a particular target system. For further
details about SoC, CBC, and size metrics, refer to [2, 17, 5].

2.4 Assessment Procedures

The main goal of this empirical case study is to answer
how the HW system behaves regarding design by contract
modularity when implemented with AO techniques. To this
end, our study was divided into three major phases: (i) the
implementation of the design by contract concern and align-
ment of the original HW according to its requirements doc-
ument; (ii) the refactoring of the design by contract con-
cern (developed in phase i) of HW to aspects, and (iii) the
assessment of the two versions (the OO and AO versions
developed in phases i and ii, respectively) of HW system.

In the first phase, we implemented the design by contract
concern for the OO solution of the HW system, which is
already available and implemented in Java. As aforemen-
tioned, HW comprises several classical crosscutting con-
cerns, but no existing quantitative work have explored the
design by contract one. We analyzed the entire available re-
quirements document of the HW system to understand its
functionalities and involved actors. This was fundamental
to apply required preconditions, postcondition, and invari-
ants for all the HW use cases. The implementation com-

prehends both homogeneous and heterogeneous contracts
for the HW use cases. We found some inconsistences of
the original HW implementation by its validation with con-
tracts. Since this task is out of scope, we just mention that
we made an alignment (fixing the found bugs) of the HW
implementation to fulfil its requirements.

The second phase involved the refactoring of the design
by contract crosscutting concern of HW system to aspects.
After extracting all the contracts to aspects, we looked for
reuse opportunities and eliminated identical contracts al-
ready moved to AspectJ advice. Basically, we implemented
contracts in the aspects using before and after advice. Even-
tually, when we have old expressions, which refers to both
pre- and post-state of a method execution, we used around
advice. Further details on how to instrument old expres-
sions with around advice, refer to [15, 16].

The goal of the third phase was to compare in a quanti-
tative way the OO and AO versions of the HW system per-
formed in the previous phases. In the measurement process,
the data was partially gathered by the AJATO measurement
tool 1. It supports some metrics: LOC, NOA, NOO. Ad-
ditionally, we used the AOP metrics tool 2 to collect CBC,
LCOO, and VS. Eventually, we collected the SoC metrics
(CDC, CDO, CDLOC) [17, 5] manually.

The data collection of SoC metrics (CDC, CDO and CD-
LOC) was preceded by what the metrics’ authors call as
“shadowing” process. In this process, the code implement-
ing DbC was identified and shadowed in every class, inter-
face and aspect. The metrics were, then, manually com-
puted based on the shadowed code. The complete descrip-
tion of the gathered data, measurement tools, and shadowed
code is available at [14]

1http://www.teccomm.les.inf.puc-rio.br/emagno/ajato/
2http://aopmetrics.tigris.org/

452 453

Table 3. Coupling and Size Metrics.
Metric CBC LOC DbCLOC NOPre NOPo NOI NOA NOO VS

Before Classes 342 7376 1272 467 346 383 183 530 89
Refactoring OO Aspects - - - - - - - - -

Total 342 7376 1272 467 346 383 183 530 89
After Classes 279 6084 26 0 0 0 183 530 89

Refactoring AO Aspects 42 1150 1150 79 173 36 0 192 11
Total 321 7234 1176 79 173 36 183 722 100
Diff. -6.14% -1.92% -7.54% -83.08% -50% -90.60% 0% +26.59% +11%

Table 2. Separation of Concerns Metrics.
Metric CDC CDO CDLOC

Before Classes 51 297 1193
Refactoring OO Aspects - - -

Total 51 297 1193
After Classes 1 4 0

Refactoring AO Aspects 11 192 0
Total 12 196 0
Diff. -76.47% -34% -100%

3 Study Results

This section presents the results of the measurement pro-
cess. The data have been collected based on the set of de-
fined metrics (Table 1). We present the results by means of
tables. Rows labelled “Diff.” indicate the percentage dif-
ference between the original and refactored versions of the
HW. A positive value means that the OO version fared bet-
ter, whereas a negative value indicates that the AO version
exhibited better results.

3.1 Quantifying Separation of Concerns

Table 2 shows the obtained results of the separation of
concern metrics. The “Diff.” row shows significant differ-
ences in favor of the AO implementation in terms of the
Concern Diffusion over Components (CDC). This diver-
gence is a direct consequence of the adopted strategy for
creating new DbC aspects in HW system. For example, we
created a new aspect whose sole responsibility was to im-
plement all the non-null input parameters required to fulfil
the HW requirements. This classical contract checking de-
notes an example of homogenous contracts of the HW sys-
tem. In cases when we had heterogenous contracts, we cre-
ate one aspect per layer to encapsulate the HW contracts.
This scenario contributed to a better result in favor of the
AO implementation regarding the CDC metric. The DbC
concern is spread over 51 components (classes or interfaces)
in the OO version, whereas in the AO solution it was only
12 components (in which 11 are aspects). This led us to a
percentage reduction of 76.47% in favor of AO version.

Still regarding the AO solution, the DbC concern fared
better for the CDO metric. It is scattered over 297 in the

OO solution against to only 196 operations relative to the
AO solution. As a result, we had a 34% percentage of re-
duction in favor to AO solution. Finally, the Concern Dif-
fusion over LOC (CDLOC) was the metric where the AO
implementation of HW system performed better against its
counterpart in OO implementation. This implies that the de-
sign by contract concern is more tangled in the OO solution
than in the AO implementation. The OO solution presents
1193 “concern switches” over the system code, whereas the
AO solution had no occurrence of concern switches. This
means that the DbC concern was completely untangled, lo-
calized, and isolated with aspects.

3.2 Quantifying Coupling and Size

Table 3 shows the obtained results for the coupling and
size metrics. Regarding coupling, as observed, there is
a small difference in favor of the AO implementation of
HW system. Aspects reduced the coupling between sys-
tem classes by removing the DbC-related code from them.
However, the aspects still need to reference and, thus, are
coupled to classes on which they introduce the DbC behav-
ior. Hence, we had only 6.14% percentage reduction in fa-
vor of AO solution (see the CBC column in Table 3).

Contradicting the general intuition that aspects make
programs smaller [10, 8] due to reuse, the OO version and
its counterpart in AO did not present significant gains in re-
lation to the four classical metrics: VS, NOO, LOC, and
NOA. For instance, the Vocabulary Size (VS) grew as ex-
pected with 11% more components (classes + aspects) due
to the introduction of design by contract aspects. Thus, AO
version involved 100 components (with 11 created aspects),
whereas the OO implementation included only 89 compo-
nents to comprise the same functionalities. Moreover, the
Number of Operations (NOO) grew significantly in the AO
version due to the modularization of DbC with new mech-
anisms such as advice. As a result, we had 26.59% more
method-like definitions in the AO version. In the HW sys-
tem, the difference of the number of LOC was only 1.92%
in favor to AO solution. Hence, even with significant reuse
of design by contract code as we discuss next, the aspect
code for realizing the DbC concern requires a lot of ex-
tra idioms which led to extra effort during implementation.

454 455

This finding, contradicts the Lipert and Lopes study [10], on
which they had a reduction of more than 50% in LOC due
to reuse. This happens because while HW system has ho-
mogeneous contracts that can be significantly reused, some
heterogenous contracts can be harmful to the final LOC due
to the poor reuse of such heterogeneous contracts and the
extra aspect code needed to “aspectize” the design by con-
tract concern. Finally, we had no difference between the
two versions in relation to the Number of Attributes (NOA).

As aforementioned, in order to quantify the reuse of the
design by contract code, we employed specific metrics to
DbC concern: DbCLOC, NOPre, NOPo, NOI. The Number
of LOC relative to DbC (DbCLOC) was the only specific
size metric in which the benefits by the AO solution was
less than 10% (7.54%). This happens because the DbC as-
pects used to modularize the HW contracts (e.g., invariants)
have significant extra code (such as pointcuts to intercept
the join points involved in the DbC concern realization and
advice contextual information) to cope with the crosscutting
concern modularization.

The remaining three DbC size metrics performed signif-
icantly better in favor to AO solution. For instance, the
Number of Invariants (NOI) exhibited a reuse of 90.60%.
This is understandable since an invariant implementation in
Java needs to be invoked several times to fulfil its seman-
tics. An invariant holds after every constructor execution
and just before and after every instance method execution
of a class [15]. With AO and AspectJ, we can modularize
an invariant with two advice reducing the so scattered im-
plementation of invariant calls to only 2 occurrences [15].

In relation to pre- and postconditions, we had a higher
reuse of preconditions in the AO implementation (83.08%).
Regarding postconditions, the AO solution fared better with
a reuse of 50% against its counterpart in OO implementa-
tion. In fact, these numbers can substantially vary depend-
ing the degree of homogeneous and heterogeneous pre- and
postconditions that can appear in a particular system. In the
HW system, we observed that the postconditions are less
reusable than preconditions, due to postconditions present
more heterogenous contracts.

4 Discussion

This section makes a qualitative analysis of the obtained
results (Section 3). Furthermore, we discuss the constraints
on the validity of our empirical case study.

4.1 Empirical findings

Our empirical case study confirms some of the findings
of the qualitative study conducted by Lippert and Lopes
(LL) [10], which claims that the design by contract concern
is better modularized with AO programming.

Despite the fact we had significant gains of SoC metrics
in favor of the AO implementation of HW system, we found
out that reusing contracts can be more difficult than usually
advertised [10]. Contracts reuse depends directly on their
types (e.g., postconditions) and mainly if such contracts are
homogeneous or heterogenous.

For instance, since the nature of an invariant cross-
cuts several methods in a single class, it is naturally more
reusable than pre- and postconditions that are relative to
particular methods. However, pre- and postconditions can
present significant reuse depends on their contracts. In
other words, if several constrained methods present an in-
tersection of common contracts, their reusability can be im-
proved. As an example, similarly to LL [10], we found that
several methods in HW present the following homogeneous
postcondition: JC.ensures (result != null). This postcondi-
tion states that every method using this contract must re-
turn an object that is non-null. The same situation also oc-
curred for preconditions on input object parameters. In the
HW system we observed that the reuse of postconditions
was quite low (50%) when compared with preconditions
(83.08%) and invariants (90.60%). This scenario happens
due to postconditions in HW being more heterogenous than
preconditions or invariants. We found more reusability op-
portunities for heterogenous preconditions than the hetero-
geneous postconditions. With this finding, we can conclude
that the more heterogenous is a contract, its reuse with AO
programming is minimized.

Another important finding of our study is related to the
program size after refactoring to aspects. LL [10] discuss
that by using AO programming they could reduce more than
50% of the total design by contract LOC due to the reuse.
However, contradicting this general intuition that aspects
make programs considerable smaller, we found that despite
the higher reuse of DbC concern with the AO version of
HW system, the gains in terms of the overall system LOC
was only 1.92% and only 7.54% considering exclusively the
LOC of DbC concern. This was a directly consequence for
looking to reusability opportunities for heterogenous con-
tracts. During modularization, we take into account the in-
tercepted join points, contextual information and so forth.

4.2 Study Constraints

System. Although it can be argued that using a single
system for such a study is a limiting factor, we claim that
the HW system is representative in terms of the non-trivial
applied contracts. The HW system is good candidate for
empirical studies due to have a lot of documentation and
resources available [6]. Naturally it is desirable to involve
more systems and more approaches.

Metrics. The applicability, usefulness, and representa-
tive of the set of the metrics used in this study can be ques-

454 455

tioned. However, due to the nature of the study and the fact
that separation of concerns is central to this study, the de-
sign by contract crosscutting concern was naturally the one
which varied most. Hence, we used a set of metrics related
to separation of concerns to better assess the SoC involving
DbC. In addition, the SoC metrics described in Section 2.3
have already been proved to be effective quality indicators
in several case studies [5, 9, 4, 6, 3].

Languages. In addition, the scope of our experience is
limited to Java and AspectJ languages. In relation to design
by contract features, our experience only considered the im-
plementation of pre-, postconditions, and invariants.

5 Concluding Remarks

In this paper, we presented an empirical case study to
assess various facets of design by contract modularity of
object-oriented and aspect-oriented implementations of a
real-life system. This study was the first to include a quanti-
tative analysis of design by contract implementations using
well-undertood and experimented modularity metrics such
as separation of concerns, coupling, and size.

From this analysis we have discovered a number of in-
teresting outcomes. Firstly, the use of aspect-orientation
to modularize design by contract improved the separation
of concerns when compared to its counterpart in object-
orientation. Secondly, the use of aspects tended to present
a significant reuse of design by contract features, specially
invariants, which we had a reuse more than 90%.

Furthermore, even with the high reuse achieved by AO
programming when modularizing DbC, we found out that
the aspectization of crosscutting concern such as DbC does
not necessarily makes a program drastically smaller than
the non-modular one with OO. Aspect code involves much
more than just encapsulate a call to a precondition. It is re-
sponsible to prepare the crosscutting behavior by intercept
all the join points in a system, expose contextual informa-
tion and so forth. The overall conclusion regarding design
by contract modularity is that aspects achieve higher reuse
than OO decompositions when handling homogenous con-
tracts, however, not always with large code reduction.

One of the most immediate future work is to derive a
predictive model for using aspects to implement design by
contract, based on our experience of this study. Hence, de-
velopers may recognize the situations where it is advanta-
geous to aspectize design by contract code. Moreover, we
intend to conduct a scalability study to analyze how aspects
scale up when the number of contracts grows.

Acknowledgements

This work is partially supported by INES, funded by CNPq
and FACEPE, under grants 573964/2008-4 and APQ-1037-

1.03/08. Ricardo Lima is also supported by CNPq under
grant No. 314539/2009-3. Henrique Rebêlo is also sup-
ported by FACEPE under grant No. IBPG-1664-1.03/08.
Cláudio Sant’Anna is also supported by CNPq under grant
No. 480374/2009-0.

References

[1] L. C. Briand et al. Instrumenting contracts with aspect-
oriented programming to increase observability and support
debugging. In Proc. of the 21st IEEE ICSM, 2005.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE TSE., 20:476–493, June 1994.

[3] R. Coelho et al. Assessing the impact of aspects on excep-
tion flows: An exploratory study. In Proceedings of the 22nd
ECOOP, Berlin, 2008. Springer-Verlag.

[4] F. C. Filho, A. Garcia, et al. Exceptions and aspects: the
devil is in the details. In SIGSOFT ’06/FSE-14: Proceedings
of the 14th ACM SIGSOFT FSE, USA, 2006.

[5] A. Garcia et al. Modularizing Design Patterns with Aspects:
A Quantitative Study. In Proceedings of the 4th AOSD, New
York, NY, USA, March 2005. ACM Press.

[6] P. Greenwood et al. On the impact of aspectual decompo-
sitions on design stability: An empirical study. In ECOOP,
pages 176–200, 2007.

[7] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, 1969.

[8] G. Kiczales et al. Getting started with aspectj. Commun.
ACM, 44:59–65, October 2001.

[9] U. Kulesza et al. Quantifying the effects of aspect-oriented
programming: A maintenance study. In Proceedings of the
22nd IEEE ICSM, USA, 2006.

[10] M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. In Pro-
ceedings of the 22nd ICSE, ICSE ’00, USA, 2000. ACM.

[11] M. Marin et al. A classification of crosscutting concerns. In
Proceedings of the 21st IEEE ICSM, pages 673–676, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[12] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[13] M. P. Monteiro and J. a. M. Fernandes. Towards a catalog of
aspect-oriented refactorings. In AOSD’05, 2005.

[14] H. Rebêlo et al. Design by contract as aspects. Available
from: http://cin.ufpe.br/˜hemr/seke11.

[15] H. Rebêlo et al. Implementing java modeling language con-
tracts with aspectj. In Proc. of the 2008 ACM SAC, 2008.

[16] H. Rebêlo et al. The contract enforcement aspect pattern. In
Proceedings of the 8th SugarLoafPlop, pages 99–114, 2010.

[17] C. Sant’anna et al. On the reuse and maintenance of aspect-
oriented software: An assessment framework. In Proceed-
ings XVII SBES, pages 19–34, Oct 2003.

A. Online Appendix

We invite researchers to replicate our case study. Source
code of the OO and AO versions of the HW system, used
measurement tools, shadowed code, and our results are
available at [14].

456 457

456 457

458 459

458 459

460 461

.

460 461

462 463

Causal Networks Based Process Improvement
D. Günther1, R. Neumann2, K. Georgieva2 and R. R. Dumke2

1CERT, Volkswagen AG, Wolfsburg, Germany
2Dept. of Computer Science, University of Magdeburg, Magdeburg, Germany

Abstract - This paper includes a causal-based modelling of
software process models in order to analyse the correct
relationships between the different (key) process areas of these
models. A first short description of causal network approaches
shows the identified problems and possible benefits using these
formal techniques in the software engineering area. The
definition and extension of the causal modelling using causal
networks helps to understand the relationships between the
different software process artefacts and their causalities. Our
causal network based process model (CNPM) concept describes
the considered objects outside and inside the software processes
or functions and their causalities expressed as roles. The
description of first applications of the CNPM approach for the
Capability Maturity Model Integration (CMMI) demonstrates
the meaningfulness of this approach.

Keywords - Software process improvement, causal network,
process analysis and evaluation, software quality

I. INTRODUCTION
Causal networks as a special kind of semantic networks

are very expressive in order to see or analyze the relationships
between process activities, areas and indicators in a logical
manner. Typical results of such a modelling are

The consequence of process activities to other ones
involving different quality characteristics like
correctness, completeness etc. (see [4] and [13])

The repercussion of the chosen approaches for process
evaluation and improvement (see [3] and [9])

The overview about strong and weak process connections
in order to keep quality improvements (see [2], [5] and
[6])

The application of (causal) model-based principles in
order to reduce the process complexity and
involvements (see [1], [7] and [10]).

In a general manner a causal network “is a directed
acyclic graph arising from an evolution of a substitution
system, and representing its history” [13]. The process
evolution involves causal relationships between events, states,
entities, objects, artefacts etc. which could be based on a
special kind of empirical reasoning. In following we will
characterize a causal network based approach that helps to
identify incompleteness and mismatches of text-based process
models in an explicit manner.

II. CAUSAL NETWORK-BASED PROCESS
MODEL DESCRIPTION AND ANALYSIS

The causal network based process model (CNPM)
concept is defined in the following four parts and components
of this approach (see [2], [3] and [11]):

A. Causal Network Model Components

The causal network model MCNPM is based on the
following software process ingredients and involvements:

MCNPM = UCNPM, VCNPM, FCNPM ,
where

UCNPM is a set of background variables that is determined
by objects o CNPM

iu, (i {1,2,…,m}) as software
process artefacts outside the considered model

VCNPM is a set {V CNPM
1 , V CNPM

2 ,…, V CNPM
n } of

variables that are determined by objects o CNPM
iv, (i

{1,2,…,n}) in the model – that is, variables or objects
in UCNPM VCNPM; and

FCNPM is a set of functions {f CNPM
1 , f CNPM

2 ,…, f CNPM
n }

such that each f CNPM
i (i {1,2,…,n}) is a mapping

from (the respective domains of) UCNPM

(VCNPM\V CNPM
i) to V CNPM

i and such that the entire
set FCNPM forms a mapping from UCNPM to VCNPM. In
other words, each f CNPM

i tells us the value V CNPM
i

given the values of all other variables in UCNPM

VCNPM, and the entire set FCNPM has a unique solution
VCNPM (o). Symbolically, the set of equations FCNPM

can be represented by writing

o CNPM
iv, = f CNPM

i (r CNPM
i , o CNPM

jv, , o CNPM
ju,),

i,j =1, . . ., n, i j
where r CNPM

i is any realization of the unique minimal

set of variables as roles1 CNPM
iR in

1 Against the causality in natural science, software processes
are based on activities of subjects. Therefore, we use a
description of subjects as roles. Note that the roles define the

462 463

VCNPM\V CNPM
i sufficient for representing f CNPM

i .
Examples of this CNPM description are

1. M CNPM
1 = U CNPM

1 , V CNPM
1 , F CNPM

1 with

U CNPM
1 = {‘Object 1’}, V CNPM

1 = {‘Object 2’},

F CNPM
1 = {o CNPM

1 , r CNPM
1 }, o CNPM

1 =

{‘Function 1’} and r CNPM
1 = {‘Role 1’}

2. M CNPM
2 = U CNPM

2 , V CNPM
2 , F CNPM

2 with

U CNPM
2 = {‘Object 2’}, V CNPM

2 = {‘Object 3’},

F CNPM
2 = {o CNPM

2 , r CNPM
2 }, o CNPM

2 =

{‘Function 2’} and r CNPM
2 = {‘Role 1’}

Considering the different levels of causality as
dependencies and improvements leads to different kinds of
analysis and interpretations.

B. Causal Network Model Operations

The MCNPM can be modified in the following manner
considering the typical causal relationships between software
process artefacts2

Union or summarizing of CNPM models consists of the
union of the different model parts. A unified CNPM
model M

:

CNPM
3 could be built as f_join(M CNPM

1 ,

M CNPM
2) with U CNPM

3 = {‘Object 1’}, V CNPM
3 =

{‘Object 2’, ‘Object 3’}, F CNPM
3 = {o CNPM

3 , r CNPM
3 },

o CNPM
3 = {‘Function 1’, ‘Function 2’} and r CNPM

3 =
‘Role1’

Partitioning of a CNPM model consists of
building sub models and special parts of
models.

Restructuring of a CNPM model is reasonable in
different practical situations and consists of
addition and extraction of any model parts.

C. Causal Network Model Analysis

The MCNPM can be analyzed considering the typical causal
relationships between software process artefacts in the
following manner. The CNPM model could be considered as
a directed graph where every node has some predecessors and
any successors. Hence, it is possible to analyze or count these
elements for a first level of CNPM analysis and evaluation.
For instance, we obtain the number of all roles in the CNPM,

causal heuristics addressed to the considered/presented
function in the set of the software process artefacts.
2 The full formal description you can find in [3] and [11].

the number of derived objects etc. Based on this idea, we can
define the following function f CNPM

inputextract _ of analysis as

f CNPM
inputextract _ : M CNPM

x f CNPM
i U CNPM

i

where M CNPM
x = <U CNPM

x , V CNPM
x , F CNPM

x > , f CNPM
i

F CNPM
x , U CNPM

i U CNPM
x and

U CNPM
i = { u CNPM

i : u CNPM
i = predecessor(f CNPM

i)}.

Applying these functions to our described examples of
CNPM models we can derive the following characteristics:

predecessor(f CNPM_M2
1) = {‘Role 1’, ‘Object 2’}

predecessor(f CNPM_M3
1) = {‘Role 1’, ‘Object 1’}

successor(f CNPM_M3
2) = {‘Object 3’}

D. Causal Network Model Exploration

The MCNPM can be evaluated in the following manner
considering the typical causal relationships between software
process artefacts. The CNPM model could be characterized
as empirical evaluation that requires the identification of the
empirical aspects explicitly. Such empirical characteristic for
objects could be process artefact level, artefact quality or
process artefact performance. From this point of view, the
CNPM model evaluation could be performed as following:

causal coverage analysis of the fulfilled requirements
from a special software process point of view,

causal trace analysis of the successful consideration of
process flow based requirements,

causal achievement analysis of the derived results and
outputs in different parts on the CNPM model.

In order to explain some of these kinds of analysis we will
consider the CPNM model M CNPM

x describing the empirical-

based process aspects mainly and the CPNM model M CNPM
y

describing the causal basics in general. On that we
characterize a simple causal coverage analysis as

coverage CNPM
My = (|F CNPM

y |+|U CNPM
y |+|V CNPM

y |)/

(|F CNPM
x |+|U CNPM

x |+|V CNPM
x |)

where F CNPM
x F CNPM

y , U CNPM
x U CNPM

y , V CNPM
x

V CNPM
y .

464 465

Furthermore, in the case of coverage lower 1 we have the
situation of any missing objects. That could be characterized
in the following manner.

F CNPM
nctionmissing_fu = { F CNPM

x \F CNPM
y :F CNPM

y

F CNPM
x }

F CNPM
putmissing_in = { U CNPM

x \ U CNPM
y : U CNPM

y U CNPM
x }

F CNPM
tputmissing_ou = { V CNPM

x \ V CNPM
y : V CNPM

y V CNPM
x }

For the causal trace analysis and achievement analysis the
existing graph algorithm and methods of evaluation can be
used that would not be considered here.

III. CNPM APPROACH APPLICATION FOR CMMI
ANALYSIS

One of the possible uses for the CNPM model is the
mapping of process standards. This shall be described by
example of the key process area „Organizational Training“
(OT) of the CMMI (see [8] and [12]). Also it will be
considered that specific practices of this model give a hint for
the implementation of a CMMI conformant process
environment. The specific practice (SP) 1.1 will be used as an
example for the implementation of a first part of an CNPM
network.

A. CNPM-Based Analysis of SP 1.1

The CMMI practice SP 1.1 as “Establish the Strategic
Training Needs” contains the following sub practices:

Analyze the organization’s strategic business
objectives and process improvement plan to identify
potential future training needs.

Document the strategic training needs of the
organization.

Determine the roles and skills needed to perform the
organization’s set of standard processes.

Document the training needed to perform the roles in
the organization’s set of standard processes.

Document the training needed to maintain the safe,
secure and continued operation of the business.

Revise the organization’s strategic needs and
required training as necessary.

To create a network it is necessary to split the text into
tasks, objects and roles. This decomposition leads to the
following elements:

Objects: Strategic business objectives, Process improvement
plan, Set of standard processes, Training needs for

roles and skills, Training needs for business, Needed
roles, Needed skills

Functions: Analyse, Document strategic training needs,
Determine roles and skills, Document training needs
to perform standard processes, Document training
needs for safe, secure, continued business, Revise if
necessary

Roles: The text of the CMMI contains no detailed
information about the role executing the task. But it
gives the general definition, that the management is
responsible for all quality activities. So for the
following networks the management will be used as
executing instance of this task.

The resulting network is shown in the following figure 1.

Figure 1: Organizational Training-SP 1.1 – first approach

A deeper analysis of the objects contained in this network
shows, that there is no task, creating the objects „training
needs for roles and skills“ and „training needs for business“.
This shows the incompleteness of the CMMI in some detailed
views. The inserted processes are the following:

Determine training needs for roles and skills

Determine training needs for business

Furthermore, it can be seen, that the network contains two
functions for documenting two different types of training
needs. Giving credit to the fact that the documentation of
training needs doesn’t depend on the type of the training need
that is to be documented, both functions can be combined to a
single one.

Document training needs

The network constructed by these changes is shown in the
figure 2. Using the methods described above, the derived
networks about the other SP 1 components (as SP 1.2, 1.3,
1.4, 2.1 and 2.2) can be combined to show the complete
picture of the tasks fulfilling the requirements of key process
area “organizational training”.

464 465

Figure 2: Organizational Training - restructured

B. CNPM-Based Analysis of CMMI Process Descriptions

Further results of CMMI key process (KP) analysis can be
characterized as the following chosen situations

KP “Causal analysis and resolution”: created but not used
practice 2.1 the “Products”,

KP “Configuration management”: created but not used
practice 1.2 the “Change request data base”; double (not
unique) definition of practice 3.1 as “Configuration
documentation”

KP “Decision analysis and resolution”: created but not
used practice 1.1 the “Organization standard processes”

KP “Organizational training”: missing management
component (see above)

KP “Project monitoring and control”: created but not
used practice 1.3 the “Risks documentation” and
practice 1.6 the “Changes documentation”

KP “Project planning”: created but not used practice 2.5
the “Knowledge management”

KP “Process and product quality assurance”: created but
not used practice 1.2 the “Evaluation criteria” and
practice 1.1 “Quality requirements”

KP “Requirements development”: created but not used
practice 1.23 the “Requirements history” and practice
1.5 the “Review results”

Note, that the analysis of the KP’s “Integrated project
management”, “Measurement and analysis”, “Organizational
innovation and deployment”, “Organizational process focus”

and “Organizational process performance” could be identified
with correct (causal-based) semantics.

IV. CONCLUSIONS
The presented CNPM-based approach was applied in

practice in order to transform the textual CMMI standard in a
causal network based form. This implies the chance of
explicit description of the CMMI process evaluation from an
implicit one. Furthermore it allows to consider other
causalities and empirical relationships in the software process
area depending on concrete industrial situations and
methodologies.

In our further research we interpret any improvements in
order to keep causal-based correctness in the CMMI. These
investigation led to any improvement documented in our next
papers.

V. REFERENCES

[1] F. P. Deek, J. A. M. McHugh, , and O. M. Eljabiri: “Strategic
Software Engineering – An Interdisciplinary Approach”. Auerbach
Publications, Boca Raton London New York, 2005

[2] R. R. Dumke, M. Blazey, H. Hegewald, D. Reitz, and K. Richter:
“Causalities in Software Process Measurement and Improvement”.
Proc. of the MENSURA 2006, Nov. 6-8, 2006, Cardiz, Spain, pp.42-
52

[3] R. R. Dumke, K. Richter, E. Asfoura, and K. Georgieva: “Process
Improvements Using Causal Networks”. Proc. of the SERP 2009, July
13-16, Las Vegas, pp. 451-457

[4] W. Emmerich, M. Aoyama, J. Sventek: “The Impact of Research on
Middleware Technology”. Software Engineering Notes, January 2007,
pp. 21-46

[5] N. Fenton, P. Krause, and M. Neil: “Probabilistic Modelling for
Software Quality Control”. Proc. of the European Conference on
Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, Toulouse 2001

[6] J. Ferguson, and S. Sheard: “Leveraging Your CMM Efforts for
IEEE/EIA 12207”. IEEE Software, September/ October 1998, pp. 23-
28

[7] W. A. Florac and A. D. Carleton: “Measuring the Software Process –
Statistical Process Control for Software Process Improvement”.
Pearson Education, 1999

[8] M. K. Kulpa and K. A. Johnson,: “Interpreting the CMMI – A Process
Improvement Approach”. CRC Press Company, 2003

[9] J. Pearl: “Causality – Models, Reasoning, and Inference”. Cambridge
University Press, 2000

[10] L. H. Putnam and W. Myers: “Five Core Metrics – The Intelligence
Behind Successful Software Management”. Dorset House Publishing,
New York, 2003

[11] K. Richter: “Causal-Based Networks Supported Process
Improvement”. Software Engineering Notes, 34(2009)9, p. 32

[12] SEI: Capability Maturity Model Integration (CMMISM), Version 1.1,
Software Engineering Institute, Pittsburgh, March 2002, CMMI-
SE/SW/IPPD/SS, V1.1

[13] E. Weisstein: “Causal Networks. Script in Computer Science”,
http://mathworld.wolfram.com/ CausalNetwork.html (February 1,
2011)

466 467

Measuring Levels of Abstraction in Software Development

Frank Tsui, Abdolrashid Gharaat, Sheryl Duggins, Edward Jung
School of Computing and Software Engineering

Southern Polytechnic State University
Marietta, Georgia, USA

Abstract – In software engineering and development,
we are expected to utilize the technique of
abstraction. Yet, it is one of the most confounding
topics. In this paper we explore the concept of
abstraction as applied to software engineering, define
and discuss a conceptual metric called levels-of-
abstraction, LOA, and show some attributes of LOA.

Keyword: software, abstraction, measurement

I. Introduction

In developing software from requirements we are
often faced with a “first step” syndrome of where
should one start. Many high level architectural styles
and patterns [1] have helped overcome this initial
hurdle. However, we are still faced with further
analysis to group similar requirements together along
functional line or along some data usage line into
sub-components. The question that faces many
developers during this early stage of analysis is the
decision of what should be the appropriate level of
abstraction for specification, design and
implementation. In this paper we first explore the
general notion of abstraction and enhance the concept
to include levels-of-abstraction as it applies to
software engineering. Next we propose a
“conceptual” metric for levels-of-abstraction, LOA,
which helps us gauge the amount of abstraction.
Finally, we show some interesting attributes of LOA .
This is a report on the current status of our research.
This research is showing some promise in the area of
explaining and formulating guidelines for the amount
of abstraction and the depth of abstraction required in
performing different software engineering activities.

II. General Concepts Related to Abstractions in
Software Engineering

One of the fundamental reasons for engaging in the
task of abstraction in software analysis, design and
development is to reduce the complexity to a certain
level so that the “relevant” aspects of the
requirements, design and development may be easily

articulated and understood. This starts with the
requirements definition through design to actual code
implementation. The general relationships of the
individual world domain, the abstractions of those
domain entities, and the artifacts specifying those
abstractions are shown in Figure 1. The bold, vertical
arrows represent the intra-transformations occurring
within each individual world domain of requirements,
design, and implementation. The horizontal arrows
represent the inter-transformations occurring across
those domains.

Figure 1: Relationships Among Abstractions, Software
Artifacts, and Individual World Domains

User
Needs/Wants

Executing
Software
System

Design
Solutions

Implementation
Models of

Abstraction

Requirements
Models of

Abstraction

Design
Models of

Abstraction

Requirements
Document

Design
Document

Implementation
Code

Individual world
domains

specifications
of
abstractions

abstractions

The term abstraction used in the form of a verb, as
represented with bold vertical arrows in Figure 1
from individual world domain to abstractions, would
include the notion of simplification. Simplification
represents the concept of categorizing and grouping
domain entities into components and relating those
components. We simplify: (a) by reduction and (b) by
generalization. By reduction, we mean the
elimination of the details. Generalization, on the
other hand, is the identification and specification of
common and important characteristics. Through these
two specific subtasks of reduction and generalization
we carry out the task of abstraction. Rugaber[6] states
that design abstraction is a “unit of design vocabulary
that subsumes more detailed information.” This
notion of abstraction via simplification is also similar
to the notion explicated by Kramer [3,4], Perry [5],

466 467

Tsui, Gharaat, Duggins and Jung [7] and Wagner and
Deissenboeck[8]. Thus via the process of abstraction,
we aim to simplify or decrease the complexity of the
domain of software design solution.

At the early stage of software development,
requirements represent the needs and wants of the
users and customers. Different degrees of abstraction
may be employed depending on the amount of details
that need to be portrayed in the requirements. The
intra-transformation is represented by the vertical
arrow from User Needs/Wants domain to
Requirements Models of Abstraction in Figure 1.

As we move from requirements towards the
development of the solution for the user
requirements, a new form of abstraction takes place.
The new form of abstraction is necessitated due to the
fact that the solution world includes the computing
machines and other logical constructs that may not
exist in the original user requirements. One of the
first artifacts from the solution side is the software
architecture and high level design of the software
system. The inter-transformation of the requirements
models of abstraction to the design models of
abstraction is shown as the horizontal arrow in Figure
1. Note that the box labeled “Design Models of
Abstraction” is the result of two types of
transformations:

a) inter-transformation from the requirements
domain and

b) intra-transformation within the design
solution domain.

The “Implementation Models of Abstraction” box in
Figure 1 represents the packaging/loading models of
the processes, information and control of the
execution of the solution in the form of source code
to satisfy the functionalities and attributes described
in the requirements and design documents. Thus it is
a result of the inter-transformations from
requirements models of abstraction through the
design models of abstractions and the intra-
transformations from the actual software execution
domain. The “Implementation Code” box is the
specification of this abstraction. The execution of the
Implementation Code and the interactions with the
users form the “Executing Software System” box in
Figure 1. The employment of various abstractions
and the transformations of these abstract entities are
crucial to software engineering.

III. Measuring Abstraction

Abstraction, both as a verb and as a noun, is a crucial
element in software engineering. As a verb, we have

defined it as the activity of simplification, composed
of reduction of details and the generalization of
crucial and common attributes. Now, it is relevant to
ask how much abstraction would be appropriate so
that we can arrive at the “Implementation Code” and
the “Executing Software System” boxes in Figure 1.

Jackson [2] admonishes us that we need to be careful
with abstraction and the degree of abstraction
because so many seemingly good designs fall apart at
implementation time. His warning is well founded in
that many design abstractions, the noun, are often
missing some vital information for the detail coding
activities. In the past, we have utilized the technique
of decomposition to move from abstraction to details.
However, if our abstraction is generalizing too much
to not include the vital information, then Jackson’s
warning will turn into reality. The levels of
abstraction should be different for various software
artifacts and be dictated by the purpose of
abstraction. Wang [9] has expressed a similar
concern and defined a Hierarchical Abstraction
Model for software engineering; his hierarchical
model of abstraction describes the necessary levels of
preciseness in representing abstractions of different
objects. In terms of our Figure 1, Wang addressed the
issue of rigor of specifications of abstraction in the
requirement and design documents, not how much
should be included in the abstraction.

The how much, or the amount, of abstraction is a
reflection of the result of the simplification activity.
Measuring the amount of abstraction is gauging the
extent of reduction and generalization that took place.
For example, this may be possible in the
requirements domain. We may consider the set of the
original requirements statements of needs and wants
as X in the “User Needs/Wants” box in Figure 1.
Then, |X|, the cardinality of X is a count of the raw
requirement statements collected through some
solicitation process. These are the pre-analysis
requirements statements. We then designate Y as the
statements in the “Requirements Models of
Abstraction” box. The cardinality of Y, |Y|, is a count
of the statements that resulted from requirements
analysis, which include activities such as organizing,
grouping, prioritizing, etc. In other words, the post-
analysis of the solicited requirements is a form of
abstraction of the raw user needs and wants
requirement statements. Then the “difference”
between |X| and |Y| is:

 (Level-of-Abstraction)REQ. = |X| - |Y|.

468 469

(Level-of-Abstraction)REQ represents the “difference”
between pre-analysis and post analysis of
requirements, and it may be considered a
“conceptual” metric of abstraction for requirements.

Since simplification is a vital characteristic of
abstraction, we expect |Y| to be less than |X|. Thus we
will need to further refine this definition with the
constraint that if |Y| is not less than |X|, then no
abstraction activity really took place. We will also
take the subscript, REQ, off the terminology for the
general case. In general, let X be the statements in the
domain world, and let Y be the set of statements in
the abstraction, the noun, then

Level-of-Abstraction (LOA) = |X| - |Y|, if |X|>|Y|
 else
 = 0

Note that when the abstraction activity is carried to
its extreme, |Y| should just be 1. For example, all the
raw requirement statements of needs and wants are
abstracted into one abstract statement. Thus Level-of-
Abstraction is bounded by (|X| - 1) and 0.

IV. Requirements Abstraction Example:

In this section we will further explore the Level-of-
Abstraction measurement concept, using
requirements analysis as an example. Note that it is
very likely that X and Y are not expressed with the
same language. English sentences and some diagrams
may be the main ingredients of the wants and needs
expressed by the users and customers. The result of
requirements prioritization, categorization and
analysis is some form of abstraction, Y, which may
be expressed with a Use Case Diagram. The amount
of requirements abstraction defined as the
“difference” between pre and post analysis of
requirements is shown through an example of
functionally partitioning the requirements.

Suppose there are X = {x1, x2, ---, xz} raw
requirement statements. The set X may contain a
variety of statements, referring to functionality, data
and other attributes. A common type of abstraction
that may be employed is to categorize and group X
by functionality. Thus only a subset of X, X’, is
addressed. X’ is the subset of requirement statements
that addresses functionality needs. Let X’ = {xx1,
xx2, ---, xxn}, where |X’| ≤ |X|. The subset X’ is
analyzed and then partitioned into some set of
categories of functionalities. This partitioned set will
be called set Y. Y may look as follows.

 Y = {(xx1, xx2); (xx3, xx5, xx10); ----}

Every functionality xxi ϵ X’ is in one of the partitions
of Y and in only one of the partitions. Renaming the
partitioned set Y as follows would yield:
 Y = {y1, y2, ----, yk} where
 y1 = (xx1, xx2)
 y2 = (xx3, xx5, xx10)
 .
 .
The set Y may be represented by a Use Case diagram
where y1, y2, ---, yk are the named interaction
represented as “bubbles” in the Use Case diagram.
Clearly there is more than one way to partition X’;
thus there may be different Y’s. A use case diagram
with one “bubble” would be an extreme case as well
as a use case diagram with a bubble for each xxi. The
extreme points of |Y| = 1 or |Y| = |X’| would be very
rare.

Now consider a specific case where the domain set X
has 4 functional requirements x1, x2, x3, x4. Then
there are the following partitioning sets, P’s for
different functional abstractions, Y’s.

 P0 has Y01 = {(x1); (x2); (x3); (x4)} = X

 P1 has Y11 = {(x1); (x2); (x3,x4)},
 Y12 = {(x1); (x3); (x2,x4)},
 Y13 = {(x1); (x4); (x2,x3)},
 Y14 = {(x2); (x3); (x1,x4)},
 Y15 = {(x2); (x4); (x1,x3)} and
 Y16 = {(x3); (x4); (x1,x2)}

 P2 has Y21 = {(x1); (x2,x3,x4)},
 Y22 = {(x2); (x1,x3,x4)},
 Y23 = {(x3); (x1,x2,x4)}and
 Y24 = {(x4); (x1,x2,x3)}

 P3 has Y31= {(x1,x2); (x3,x4)},
 Y32= {(x1,x3); (x2,x4)}, and
 Y33= {(x1,x4); (x2,x3)}

 P4 has Y41 = {(x1,x2,x3,x4)}

At P0, there is only one abstraction, Y01, which is
the same as the original requirement set X. So Level-
of-Abstraction is |X| - |Y| = 0. There is no abstraction
at P0. At P1, any of the Y1x has a cardinality of 3. So
at P1, |X| - |Y| = 4 – 3 = 1. The Level of Abstraction
is 1. At P2, the Y2x’s are grouped differently and
each has a cardinality of 2. Thus, at P2, |X|-|Y| = 4-2
= 2. P3 partitioning has the functionalities grouped
differently, but each Y3x has a cardinality of 2, just

468 469

like those in P2. At P3, |X| - |Y| = 4 -2 = 2. Thus all
partitions in P2 and in P3 are at the same Level-of-
Abstraction, 2. Finally at P4, there is again only one
abstraction, Y41, which combined all four
functionalities into 1 category. Thus at P4, |X| - |Y| =
4 – 1 = 3. The Level-of- Abstraction is the highest
here.

From this example, one can easily see that abstraction
of functionalities into groups for a relatively small set
of four functional requirements has many choices. In
this case there are 15 choices and there are 4 different
Level-of-Abstraction, namely 0 through 3. Coming
up with the one “best” abstraction is not an easy task
even with this small example.

V. Some General Theorems

We have shown that for a |Y| = k, there may be
several different abstractions with that same
cardinality. That is, given an abstraction level j, there
may be more than one solution.

Theorem 1: For Level-of-Abstraction = |X| - |Y| = j,
there exists more than one abstraction or partitioned
set, Y, at that Level-of-Abstraction, unless j = 0 or
j = |X| -1.

Proof: Given |X| - |Y| = j, if j=0 then |X| - |Y| = 0 and
there is no abstraction. If |X| - 1 = j, then |Y| has only
1 category with all functionalities included, so |X| -
|Y| = |X| - 1, which is the highest level of abstraction.
From combinatorics, we know for any set with n>0
elements and r an integer such that 0 ≤ r ≤ n, then the
number of subsets that contain r elements of S is
 n!__ . Hence for all the values in between, there
r!(n-r)!
will be partitioned sets.

Note that the different Level-of-Abstractions as
shown in our simple example of P0 through P4 form
a partially ordered set. Next we introduce an Up and
a Down operator on Level-of-Abstraction. Given a
Level-of-Abstraction, Px, and a Level-of-Abstraction,
Py, then UP and Down operators are defined as
follows:
 UP (Px,Py) = Px if Py ≤ Px and
 = Py otherwise.
 Down(Px,Py) = Py if Py ≤ Px and
 = Px otherwise.

Theorem 2: Set of Level-of-Abstractions, with the
operators of Up and Down form a lattice structure.

Proof: The set of Level-of-Abstractions is a partially
ordered set, or a Poset. A lattice is a Poset in which
any two elements have a lowest upper bound (lub)
and a greatest lower bound (glb). The Up operator
provides us the glb and the Down operator provides
us the lub. Thus the set of Level-of Abstractions
forms a lattice.

VI. SUMMARY AND RESULTS

In this paper we explored the general notion of
abstraction as applied to software engineering. We
further proposed a “conceptual” metric for levels-of-
abstraction, LOA, which allows us to gauge the
amount of abstraction. Lastly, we showed some
characteristics of LOA. Our current research
direction is to analyze LOA further to help us pick
the “right” level of LOA for a specific domain.

 References
1. D. Garlan and M. Shaw, “An Introduction to
Software Architecture,” CMU-CS-94-166, Carnegie
Mellon University, Pittsburgh, PA, 1994.
2. D. Jackson, Software Abstractions Logic,
Language, and Analysis, MIT Press, 2006.
3. J. Kramer, “Is Abstraction the Key to
Computing,” Communications of the ACM, Vol. 50,
No 4, April 2007, pp 37-42.
4. J. Kramer and O. Hazzan, “Introduction to The
Role of Abstraction in Software Engineering,”
International Workshop on Role of Abstraction in
Software Engineering,” Shanghai, China, May, 2006.
5. D. E. Perry, “Large Abstractions for Software
Engineering,” 2nd International Workshop on Role of
Abstraction in Software Engineering, Leipzig,
Germany, May, 2008.
6. S. Rugaber, “Cataloging Design Abstractions,”
International Workshop on Role of Abstraction in
Software Engineering,” Shanghai, China, May, 2006.
7. F. Tsui, A. Gharaat, S. Duggins and E. Jung,
“Software Architecture: Functional Composition and
Decomposition Complexities,” Internal Research
Report, Software Engineering, Southern Polytechnic
State University, July 2010.
8. S. Wagner and F. Deissenboeck, “Abstractness,
Specificity, and Complexity in Software Design,” 2nd

International Workshop on Role of Abstraction in
Software Engineering, Leipzig, Germany, May,
2008.
9. Y. Wang, “A Hierarchical Abstraction Model for
Software Engineering,” 2nd International Workshop
on Role of Abstraction in Software Engineering,
Leipzig, Germany, May, 2008.

470 471

Reusing Functional Testing in order to Decrease

Performance and Stress Testing Costs

Ismayle de Sousa Santos

MDCP/UFC, Fortaleza, CE, Brazil

ismaylesantos@great.ufc.br

Alcemir Rodrigues Santos

DCC/UFMG, Belo Horizonte, MG

alcemir@dcc.ufmg.br

Pedro de Alcântara dos S. Neto

DIE/UFPI, Teresina, PI, Brazil

pasn@ufpi.edu.br

Abstract - This work presents an experimental study of an idea

related to the automatic generation of performance and stress

testing by reusing functional testing. The idea was implemented

in a tool named FERRARE GT. This tool is able to generate both

test scripts as well as the data required for their execution. In this

study we verified that the use of the method can generate benefits

related to cost reduction, from the reduction of test effort and, at

the same time, benefits related to test quality, from the

improvement of the test relevance for the software development.

Keywords - software testing; data generation; non-functional

requirements; experimental study.

I. INTRODUCTION

Testing is a critical element in the software quality control and
represents the final review of the analysis, design and
implementation. However, testing is usually not performed as it
should. A fundamental factor that contributes to this situation is
the activity cost, which can get as high as 50% of the total
project cost [2].

A test category performed by many organizations is
functional testing. It aims at verifying the software behavior
[6]. There are various other test objectives, as, for instance,
performance and stress testing. They are much less often
executed that the functional test and have different purposes.
The performance test aims at validating the performance
requirements, as, for instance, the response time in a specific
context, like the access of 100 users in a local network
environment. Stress testing is similar to performance testing,
however, the execution context is elevated to levels above the
average, verifying the system operation in such cases and
certifying that no unusual behavior occurs.

In general many organizations that develop Web systems
perform functional tests. However, few execute performance
and stress tests before launching the system, even though they
are just as important for the Web environment. It is
fundamental the development of mechanisms which motivates
the execution of such tests so needed by Web systems.

From this scenario, it was noticed that the creation of a
mechanism, which aids the development of performance and
stress testing, from any common artifact to the software
development, could result in the cost reduction. Because they
are so well known and have a big portion of the necessary
information, the functional test was chosen for the input of
such automation. From that it was developed a tool, named
FERRARE [8], with such an objective. The initial prototype

tool enabled the generation of performance and stress testing
scripts from functional testing scripts. However, limitations in
the tool, which prevented its use in an industrial environment,
were discovered.

This paper describes the extensions performed in
FERRARE to allow its use in an industrial environment related
to software development, as well as an experimental study
performed in order to evaluate the benefits related to
incorporate the tool in a software development environment.

There are related works that propose the generation of
performance tests based on models describing the system under
test [4,5,9]. By the other hand, Bertolini et al [1] propose four
black box test techniques in order to crash the system, by using
a special kind of functional tests. It is important to emphasize
that FERRARE does not use models. It generates performance
and stress tests scripts by reusing functional tests scripts.
Besides, FERRARE can infer the data related to execute a
functional test and generate suitable data to execute several
tests instances, isolating each one from the others.

This paper is organized as follows: Section II presents
FERRARE GT; Section III presents the experimental study;
Section IV presents a discussion about the idea and the study
results; Section V concludes the paper and presents directions
for future works.

II. FERRARE GT

FERRARE is a tool developed for the generation of
performance and stress testing scripts from functional testing
scripts. It is divided into two modules: Extractor and Generator.

FERRARE was conceived to work with any functional
testing tool and any performance and stress testing tool, as long
as the extractor and the generator for the desired tools are
created, as it is going to be discussed later on. Nowadays,
FERRARE works with the functional testing tools Selenium
IDE and Canoo Web Test, besides performance and stress
testing tools Apache JMeter and WebLoad. This means that it
generates performance and stress testing to be executed on
JMeter or the WebLoad, from functional testing created with
Selenium IDE or Canoo WebTest (input tools) [8]. A sketch of
the functioning of FERRARE can be seen in Figure 1.

The Extractor module is responsible for the extraction of
the information inside the functional test script. This included
the identification of the actions related to the test (test
procedure) and of the input data, expected outputs and other

470 471

test conditions (test case). The extraction generates an abstract
representation of the functional test, independent of
technology.

The Generator module is responsible for the generation of
performance testing based on the information supplied by the
Extractor. This generation involves the specification of
different parameters such as the quantity of concurrent users,
time limits and number of machines used for test execution.

Figure 1. FERRARE GT overview.

FERRARE generates performance and stress testing from
the creation of “copies” from functional testing, taking in
consideration the restrictions associated to the inputs used in
this test. If a functional test that performs a book register in an
application is used, FERRARE can generate 100 “copies” of
this test, in the format required by performance and stress
testing, respecting the characteristics of the fields, as an
obligatoriness, sizes and formats. It is important to emphasize
that the tool does not perform a simple “copy”, since several
other actions are also executed, in order to allow its concurrent
execution [8].

The initial version of FERRARE did not generate the
necessary data for the execution of performance and stress
testing. Because of that, its automation level was very limited.
This originated another project, with the goal of generating data
for performance and stress testing, from an analysis of the data
used for the execution of functional testing. Based on that,
another module was created for FERRARE, named GENESIS.
Its incorporation to the tool originated FERRARE GT [3].

GENESIS aims at generating data for performance and
stress testing, by reusing the data from the functional test that
serves as a basis for the generation of performance and stress
testing. The behavior of the tool is based on the replication of
the data derived from the functional test. The central idea
implemented is that the replication of data from functional
testing can work as a basis for the execution of various
concurrent functional testing, resulting in a performance or
stress testing.

It is important to emphasize that this approach eliminates
the need of having knowledge of all the contraints related to the
data model and the application business rules. Because the data
are replicated from an instance of the database able to execute a
functional test, the replicas should also keep the same feature.
This approach is innovative, because it reduces the complexity
for the data generation. The innovation is precisely in using a
functional test, and the state of the database before its
execution, for such replication.

III. EXPERIMENTAL STUDY

A. Goal Definition

An experimental study with the goal of evaluating the use of
FERRARE GT in a scenario of software development was
performed. The purpose of the study was to evaluate, regarding
effort and quality, from the point of view of the researcher, in
the context of students of Computer Science, the feasibility of
FERRARE GT in order to automate the data generation and
performance and stress tests development for a Web system.

The experiment was executed in a controlled environment
(in vitro) with the participation of students from Software
Engineering Class from the Computer Science Course from
UFPI (Federal University of Piauí).

The subjects had to create performance tests for a Web
system on book loaning, named in this work BibSystem. The
goal of this system is to allow students to perform book loans
available in the library. The system users can authenticate
themselves in the system, perform a loan, search for a book and
return it. The Login (authentication) function was explored in
the observation sections.

B. Planning

The experimental study was planned to be executed by
students that attended the classes of Software Engineering I and
II offered in the first semester of 2010. The Software
Engineering I class is offered in the fifth semester of the course
and the Software Engineering II class in the sixth, from a total
of eight semesters.

The subjects did not have any experience at all in the use of
functional testing tools neither in the use of performance and
stress testing tools. A verification form was applied to certify
this. Therefore, no planning at all was done regarding the type
of grouping based on the profile of the subjects [10].

For the execution of the experiment it was planned the use
of the tools Selenium (functional testing) and JMeter
(performance and stress testing). Both tools were selected
because of their big acceptance within the software
development industry.

The goal of the study was to evaluate if the reuse of
functional testing, for the generation of performance and stress
testing, from the support of FERRARE GT is more effective
than the development of the same tests in a direct way on
JMeter tool. However, generating performance testing without
the support of FERRARE GT does not imply only in creating

472 473

the test script for the selected tool (JMeter), as well as
generating the data required for its execution. This generation
is usually done using programs that execute data insertion
commands in databases. There are other alternatives, but this
was the one used for the study. It is important to emphasize that
FERRARE GT does not only support the creation of test
scripts, but also generates the data required for its execution.

As mentioned before, the use cases used in the study were
Login and Loan. Performance testing for the Login function
consisted of executing 100 concurrent authentications, making
use of different users and verifying if this happened in up to 5s.
Performance testing for Loan consisted of executing 100
different book loans, by different users and verifying if this
happened in up to 8s.

Because of that, the main question related with the study
was: does the use of FERRARE GT generate a reduction in the
required effort for the creation of the performance testing,
including the generation of the data necessary for the execution
of the tests, when compared with the creation of the same tests
using only JMeter? The null hypothesis, related to this question
is: there is no difference in terms of effort, measured in
minutes, to create tests and to generate data with or without the
support of the tool, that is, H0: TestEffort(FERRARE_GT) =
TestEffort(JMeter). The alternative hypothesis is that the effort
applied in the test, with the support of the method is smaller
than the effort applied without the use of the tool, that is,
H1:TestEffort(FERRARE_GT) < TestEffort(JMeter).

The experimental sketch used was planned taking in
consideration the possible threats to its validity. The Figure 2
summarizes the experimental sketch used. The highlighted
parts identify the activities whose time spent by the subjects
was registered. The other ones represent the training activities,
which respect the times showed in the picture. As it can be
visualized in the picture, all the participants had contact with
both tools, but in different moments and performing exactly the
same tasks. This allowed one group to act as a control of the
other. The experiment was divided in two phases. In the first
phase all the volunteers generated the data required to execute
the 100 book loans simultaneously in the BibSystem. This
included the generation of users, books and copies.

In the second phase, the subjects from the Group 1 (G1)
should create tests using JMeter and only later create the same
tests using FERRARE GT. The subjects from the Group 2 (G2)
should begin creating the tests with FERRARE GT and later
create tests with JMeter. The attribution to the groups was
planned to be random. The selection of the participants was
planned based on convenience; that is why the study is
considered a quasi-experiment [10].

It was planned that all the tests created by the subjects
would be verified by the paper authors, to certify their quality.
This means that the difference between them would be only the
way used to create them: either using FERRARE GT or JMeter
itself. Each submission of the test generated a verification to
certify its quality. If the test was not suitable, the registered
errors would be highlighted and the subject should proceed
with its correction.

The experimental study was planned to reduce threats
related to its Internal Validity and External Validity, which are
the most important ones related to the studies in the area of
Software Engineering [10].

The internal validity defines if the relationship observed
between the treatment and the result is causational and not an
influence of other factors which are not controlled. The
experimental design used reduces the risk of having a bias,
since it was planned that every subject would use both
treatments, but in different moments. It was also planned the
use of the treatments in an alternated order, to evaluate if the
execution order could influence the results.

Figure 2. Experimental study scheduling.

The chosen experimental design, where all the subjects
used both tools allowing one group to act as the control of the
other, validates the conclusion obtained, in the same time that it
reduces any threat related to the competitive behavior and to
the compensatory behavior [10].

The external validity defines the conditions which limit the
ability to generalize the results of an experiment for the
industrial practice. The subjects, students from the 5th and 6th
semesters of the course, find themselves in the final phase of
under graduation, having similar skills of a professional with
little experience. The performed trainings, along with the
fixation exercise contributed to a good formation of the
subjects in the used tools. The BibSystem, although small, had
the characteristics commonly existents in Web information
systems. Thus, it is believed that the conclusions obtained in
the study can be extended to other systems, with the usual size
and used by professionals with little experience, without losses
in the observed results.

C. Operation

Before the beginning of the study activities it was
performed a brief presentation related to the activities that
would be executed, but the subjects did not have knowledge of
the hypotheses that were being tested. It also guaranteed the
anonymity of the students explaining even how the data
collected would be used.

As mentioned before, the experiment was divided in two
phases. In the first phase, all the subjects had training in
software testing and in the use of Hibernate¹ and Java to
generate data in MySQL database. In the second phase, the
subjects had training in the tools that would be used and were
asked to create performance tests for the BibSystem.

During the first phase a general vision about software
testing was presented to the subjects. The training about tests
lasted around 2h and focused on presenting the relevance of the
tests, as well as the basic concepts related, the main techniques
and existing objectives.

472 473

Afterwards, everybody participated in a training about the
use of the Java language combined with the Hibernate
framework for the generation of data in a MySQL database.
The Java language was chosen because it is the one better
dominated by the subjects. The Hibernate framework was
selected because of the easiness it offers when working with
database in the Java language. The MySQL database was used
because of its broad use in the academic field and especially in
the field where the study took place.

After the training, all the subjects created programs in Java
that generated and stored in a MySQL database the required
data for the execution of 100 concurrent loans in the
BibSystem. It is emphasized that the generated data had to
follow the database structure and constraints. The individual
time spent by each subject in this activity was registered, since
it was executed automatically with the support of FERRARE
GT.

During the second phase, the study subjects had to create
and execute performance tests for the Loan function. Firstly a
training section was performed, lasting about 2 hours, about the
tool that would be used. After that the tests were created and
executed by the subjects. The Group 1 subjects began using
only JMeter in the creation of the tests and used the data
generated during the phase one to allow its execution.
Afterwards, they used FERRARE GT to create tests for the
same function. The Group 2 subjects executed the activities in
a reverse path, beginning with FERRARE GT and only later
doing the same activity using JMeter.

Twenty-one volunteers participated in the study, from
whom 15 concluded all the planned activities. Thus, only the
data from these 15 subjects were considered during the analysis
and interpretation. This happened because the tests generated
by some of them did not reach the quality limit specified.
Because of that, their results were not considered concluded.

D. Analysis and Interpretation

Figure 3 presents the data collected from the study. Figure 4
presents the data in the form of a bar chart. Analyzing such
data it is perceived that the subjects that used FERRARE GT
dedicated an effort considerably smaller for creating
performance tests.

The results certify that the idea proposed in FERRARE GT,
that reusing functional testing for automation of performance
testing is a good alternative. The effort for creating
performance testing, as well as the preparation of the
environment for its execution, mainly related to the generation
of data, can be considerably reduced. This was noted analyzing
all the subjects (that is, independent of group) as well as the
groups individually. In both cases the gain was expressive and
confirmed through student t test.

Group 1 subjects began the study using JMeter directly,
while Group 2 began through the use of FERRARE GT. It is
possible to notice that the time to generate a test with the use of
FERRARE GT by Group 2 was expressively bigger than the
time registered by Group 1 for the same task. This indicates
that the learning obtained by utilizing JMeter beforehand

favoured the use of FERRARE GT. This was expected, once
the tools are similar and have similar goals. The knowledge
gained with the use of one can influence the use of the other.

Figure 3. Study data summary.

Figure 4. Bar chart showing the study results.

Analyzing the threats to the study, it can be noticed that it
does not seem to have been any underlying factor that have
interfered in the study. The results reflect the use of treatments
and not uncontrolled factors.

Since the subjects had to automate tests for the same part of
the system, using both FERRARE GT and JMeter, the problem
of instrumentation was not noticed, since there is no difference
in the problem used in the study.

Nothing related to the study indicated that there were any
threats related to history, that is, it was not identified any
external effects that could influence directly in the results
differently from what was mentioned above. Relating to
maturing, it is believed that the subjects improved with the
experience, since they are students and are submitted to new
contents, but nothing that could influence directly the result of
the developed study.

IV. DISCUSSION

In this article, an experimental study to evaluate the impact
of the reuse of functional testing for the generation of
performance testing was presented. This was enabled by the
tool FERRARE GT, which implements such an idea. It was

474 475

possible to verify that this approach is very promising. The
effort to generate performance testing with support of the tool
FERRARE GT is smaller than the effort to generate the same
test without the support of the aforementioned tool.

Performance testing requires data for its execution. The
required effort for such preparation can be an inhibiting factor
in its use in the industrial environment. The example used in
this work illustrates this well: to test the performance of the
Loan function of the BibSystem it is necessary to have 100
users and 100 book copies available. Note that this is a fairly
simple example and even so it demands a considerable effort.
Any tool that helps reducing such effort is contributing to a
systematization of performance testing, which is still seldom
used by organizations.

The idea explored in this work was based on the reuse of
functional testing. Since functional testing indicates the
expected inputs and outputs to evaluate a behavior, we can
execute such instance various times concurrently to evaluate
the performance of this function. However, it is necessary to
create copies of the required data, so that each test uses its own
data and does not interfere in the execution of the other. The
study certified the viability of the proposal, having obtained
surprising results to the continuity of the work.

Reusing functional testing to generate performance and
stress testing can still bring indirect gains not measured in the
study: bigger diffusion of the use of functional testing, because
now they have a more important role in the development
process, and a bigger quality of the generated tests, since the
saved effort can be used in nobler activities.

V. CONCLUSION AND FUTURE WORKS

In this work an experiment performed in order to validate the
applicability of a tool for the generation of data and
performance and stress testing by reusing functional testing,
named FERRARE GT, was described. The basic idea is to
reuse the existing information from functional tests, in such a
way that both the performance and stress testing and the
required data for its execution are automatically generated.

Based on the study performed, it was noticed that the use of
FERRARE GT in an organization that already performs
functional testing can bring a reduction in the effort required to
create performance tests and to generate the required data for
its execution. This facilitates the systematic use of performance
and stress testing by organizations, since the required effort for
its use is reduced. Also, the relevance of the functional test
increases, what is benefic to the organization, which will be

able to give more importance to something that is already
considered fundamental by most industries.

As a future work it is intended to increase the experimental
study. Also, it is intended to use the tool developed in an
industrial environment. FERRARE GT also has many
possibilities of improvement, which will be able to allow its
use in a simpler and more effective way, raising the associated
gains.

VI. ACKNOWLEDGEMENTS

This work was supported by grants from UFPI and CNPq
(560128/2010-0). Infoway Technology provided some software
products for testing and IT professionals to discuss the
directions.

REFERENCES

[1] Bertolini, C., Peres, G., d'Amorim, M., Mota, A. An Empirical
Evaluation of Automated Black Box Testing Techniques for Crashing
GUIs. In Proceedings of the 2nd International Conference on Software
Testing Verification and Validation, p. 21-30, Los Alamitos, CA, USA,
2009.

[2] Binder, R. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 2000.

[3] Fé, I. S., Santos, I. S., Santos, A. R., Santos Neto, P. Geração de Dados
para Testes de Desempenho e Estresse a Partir de Testes Funcionais. In:
Anais do IX Simpósio Brasileiro de Qualidade de Software, p. 89-101,
Belém, PA, 2010.

[4] Garousi, V., Briand, L., Labiche, Y. Traffic-aware stress testing of
distributed systems based on UML models. In Proceedings of the 28th

International Conference on Software Engineering (ICSE), pages 391-
400, Shangai, China, 2006.

[5] Hartman, A., Nagin, K. The AGEDIS tools for model based testing. In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA 2004), Boston, Massachusetts, USA, July 2004.

[6] Myers, G. The Art of Software Testing. John Wiley & Sons, 2004, 2nd

edtion.

[7] Santos, I. S., Santos Neto, P., Moura, R. S., Soares, A. C. B.
Documentação Dirigida por Testes. In: IX Simpósio Brasileiro de
Qualidade de Software, Belém, PA. Anais do IX Simpósio Brasileiro de
Qualidade de Software, 2010. p. 25-40.

[8] Santos, I. S., Santos, A. R., Santos Neto, P. FERRARE GT: Automação
de Testes de Desempenho e Estresse via Testes Funcionais. In:
Congresso Brasileiro de Software: Teoria e Prática (CBSoft), 2010,
Salvador, BA. XVII Sessão de Ferramentas, 2010. v. 4. p. 49-55.

[9] Shams, M., Krishnamurthy, D., Far, B. A Model-Based Approach for
Testing the Performance of Web Applications. In: Proceedings of the
3rd International Workshop on Software Quality Assurance, p. 54–61,
Portland, Oregon, 2006.

[10] Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen,
A. Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, 2000.

474 475

Empirical Analysis for Investigating the Effect of
Control Flow Dependencies on Testability of Classes

 Mourad Badri and Fadel Toure
Software Engineering Research Laboratory

Department of Mathematics and Computer Science
University of Quebec at Trois-Rivières, Trois-Rivières, Quebec, Canada

{Mourad.Badri, Fadel.Toure}@uqtr.ca

Abstract ─ We present, in this paper, a new metric capturing in
an integrated way different attributes of object-oriented systems.
The metric uses basically control flow paths and probabilities. It
captures the interactions between classes and related control. The
study presented in this paper aims at exploring empirically the
relationship between the proposed metric and testability of
classes. We investigate testability from the perspective of unit
testing. We designed and conducted an empirical study using
data collected from two open source Java software systems for
which JUnit test cases exist. To capture testability of classes, we
used different metrics to quantify the corresponding JUnit test
cases. In order to evaluate the capability of the new metric to
predict testability of classes, we used statistical tests using
correlation. The achieved results provide evidence that there exist
a significant relationship between the proposed metric and
testability of classes.

Keywords: Software Testability, Testing Effort, Metrics, Control
Flow, Control Dependencies, Probabilities and Empirical Analysis.

I. INTRODUCTION
Software testing has an important effect on the quality of

the final product. Software testing is probably the most
complex task in the software development cycle. It’s also a
time and resources consuming process. The overall effort
spent on testing depends, in fact, on many different factors
including: human factors, process issues, testing techniques,
tools used, and characteristics of the software development
artifacts [3, 4, 9, 35, 36]. Testability is an important quality
characteristic of software. Software testability is related to
testing effort reduction and software quality [14]. It impacts
test costs and provides a means of making design decisions
[31]. Zhao [36] argues that testability expresses the affect of
software structural and semantic on the effectiveness of testing
following certain criterion, which decides the quality of
released software. Several software development and testing
experts pointed out, in fact, the importance of testability and
design for testability. Moreover, Baudry et al. [3] argue that
testability becomes crucial in the case of object-oriented
systems (OOS) where control flows are generally not
hierarchical, but diffuse and distributed over whole
architecture.

Metrics can be used to predict testability and better manage
the testing effort. Having quantitative data on the testability of
a software can, in fact, help software managers, developpers
and testers to [8, 15]: plan and monitor testing activities,

determine the critical parts of the code on which they have to
focus to ensure software quality, and in some cases use this
data to review the code. A large number of object-oriented
metrics (OOM) have been proposed in literature [17]. Some of
these metrics (such as coupling, complexity and size) have
already been used to measure testability of OOS [8]. However,
as stated by Gupta et al. [15], none of the OOM is alone
sufficient to give an overall reflexion of software testability.
Software testability is, in fact, affected by many different
factors.

We presented in a previous work [2] a new metric, called
Quality Assurance Indicator (Qi), capturing in an integrated
way different attributes of OOS such as complexity and
coupling (interactions between classes). The metric uses
control flow paths (capturing the distribution of the control
flow in a system) and probabilities. The Qi of a class Ci
includes different intrinsic characteristics of the class itself, as
well as the Qi of collaborating classes. The metric has,
however, no ambition to capture the overall quality of OOS.
Moreover, the objective is not to evaluate a design by giving
absolute values, but more relative values that may be used, for
example, for identifying the critical classes that will require a
high testing effort to ensure software quality. The metric has
been implemented for Java programs. We compared, in [2],
the Qi metric using the Principal Components Analysis (PCA)
method to some well-known OOM. The evaluated metrics
were grouped in five categories: coupling, cohesion,
inheritance, complexity and size. The objective was to find in
which proportions the Qi metric captures the information
provided by the selected OOM. The obtained results provided
evidence that the Qi metric captures, overall, more than 75 %
of the information provided by most of the evaluated metrics.
The purpose of the present paper is to explore empirically the
relationship between the Qi metric and testability of classes in
OOS in terms of the effort needed for testing. We investigate
testability from the perspective of unit testing, where units
consist of the classes of an OOS. We designed and conducted
an empirical study using data collected from two open source
Java software systems for which JUnit test cases exist. To
capture testability of classes, we used different metrics to
measure some characteristics of the corresponding JUnit test
cases. In order to evaluate the capability of the new metric to
predict testability of classes, we used statistical tests using
correlation.

476 477

 M ()
 {
 M1();
 If cond1 Then
 M2()
 Else M3();
 While cond2
 {
 M4();
 M5();
 }
 M6();
 }

M ()
{
 If cond0 Then
 S1;
 Else S2;
 S3;
 M1();
 If cond1 Then
 M2();
 Else M3();
 While cond2
 {
 M4();
 If cond3 Then
 S4;
 M5();

 }
 M6();
}

The remainder of the article is organized as follows:
Section 2 gives a survey on related work on software
testability. The proposed metric is presented in Section 3. In
Section 4 we define the used metrics to quantify JUnit test
classes, describe the experimental design and discuss the
statistical technique we used. Section 5 presents the used
systems. We also present and discuss in this section the
obtained results. Finally, Section 6 summarizes the
contributions of this work and outlines directions for further
research.

II. SOFTWARE TESTABILITY

IEEE [18] defines testability as the degree to which a
system or component facilitates the establishment of test
criteria and the performance of tests to determine whether
those criteria have been met. ISO [19] defines testability
(characteristic of maintainability) as attributes of software that
bear on the effort needed to validate the software product.
Fenton et al. [11] define testability as an external attribute.
Indeed, testability is not an intrinsic property of a software
artifact and cannot be measured simply such as size,
complexity or coupling. Testability measurement is, in fact,
influenced by various parameters as stated by Baudry et al. [3,
4]. Yeh et al. [35] argue also that diverse factors such as
control flow, data flow, complexity and size contribute to
testability. According to Zhao [36], testability is an elusive
concept, and it is difficult to get a clear view on all the
potential factors that can affect it. Freedman introduces
testability measures for software components based on two
factors: observability and controllability [12]. Voas defines
testability as the probability that a test case will fail if the
program has a fault [32]. Voas and Miller [33] propose a
testability metric based on the inputs and outputs domains of a
software component, and the PIE (Propagation, Infection and
Execution) technique to analyze software testability [34].
Binder [7] discusses software testability based on six factors:
representation, implementation, built-in text, test suite, test
support environment and software process capability.
Khoshgoftaar et al. address the relationship between static
software product measures and testability [23, 24]. McGregor
et al. [28] investigate testability of OOS and introduce the
visibility component measure (VC). Bertolino et al. [6]
investigate testability and its use in dependability assessment.
Le Traon et al. [25, 26, 27] propose testability measures for
data flow designs. Petrenko et al. [30] and Karoui et al. [21]
address testability in the context of communication software.
Sheppard et al. [31] focus on formal foundation of testability
metrics. Jungmayr [20] investigates testability measurement
based on static dependencies within OOS. Gao et al. [13]
consider testability from the perspective of component-based
software construction, and address component testability
issues by introducing a model for component testability
analysis [14]. Nguyen et al. [29] focus on testability analysis
based on data flow designs in the context of embedded
software. Baudry et al. address testability measurement (and
improvement) of OO designs [3, 4, 5]. Metrics can, in fact, be
used to locate parts of a program which contribute to a lack of

testability. Bruntink et al. [8, 9] investigate factors of OOS
testability and evaluate a set of well-known OOM with respect
to their capabilities to predict testability of classes of Java
software systems. Bruntink et al. investigate testability from
the perspective of unit testing. Khan et al. [22] focus also on
class level testability using OOM. Chowdhary [10] focuses on
why it is so difficult to practice testability in the real world.

III. QUALITY ASSURANCE INDICATOR
In this section, we give a summary of the definition of the

Quality Assurance Indicator (Qi) metric. The Qi metric is
based on control call graphs, which are a reduced form of
traditional control flow graphs. A control call graph is a
control flow graph from which the nodes representing
instructions, or basic blocs of sequential instructions, not
containing a call to a method are removed. The Qi metric is
normalized and gives values in the interval [0, 1]. A low value
of the Qi of a class reflects that the class (is a high-risk class
and) needs more testing effort to ensure its quality, while a
high value indicates that (the class is a low-risk class knowing
that) the testing effort invested effectively on the class is high
(proportional to its complexity). The Qi of a class depends on
the Qi of its collaborating classes (invoked classes).

 1.1 1.2 1.3

Figure 1 A method and its corresponding control call graph.

A. Control Call Graphs
Let us consider the example of method M given in Figure

1.1. The Si represent blocs of instructions that do not contain a
call to a method. The code of method M reduced to control
call flow is given in Figure 1.2. The instructions (blocs of
instructions) not containing a call to a method are removed
from the original code of method M. Figure 1.3 gives the
corresponding control call graph. Unlike traditional call
graphs, control call graphs are much more precise models.
They capture the structure of calls and related control.

B. Quality Assurance Indicator
We define the Qi of a method Mi as a kind of estimation of

the probability that the control flow will go through the
method without any failure. It may be considered as an
indicator of the risk associated to a method (and a class at a
high level). The Qi of a method Mi depends, in fact, on various
intrinsic characteristics of the method itself, such as its unit

476 477

testing coverage (testing effort actually invested on the
method) and its cyclomatic complexity, as well as on the Qi of
all the methods invoked by the method Mi. We assume, in fact,
that the quality of a method, particularly in terms of reliability,
depends also on the quality of the methods it collaborates with
to perform its task. In OOS, objects collaborate to achieve
their respective responsibilities. A method of poor quality
(lowly tested) can have (directly or indirectly) a negative
impact on the methods that use it. There is here a kind of
propagation, depending on the distribution of the control flow
in a system, that needs to be captured. It is not obvious,
particularly in the case of large and complex OOS, to identify
intuitively this type of interferences between classes. The Qi
of a method Mi is given by:

*

1

i

i i k

n
i

M M j M
j k

Qi Qi P C Qi

with : QiMi: quality assurance indicator of Mi, Qi*
Mi: intrinsic

quality assurance indicator of Mi, : probability of
execution of path Cj

i of Mi, QiMk: quality assurance indicator
of the methods included in the path , ni: number of linear
paths of the control call graph of Mi, and Card(σ)=mj : number
of the methods included in the path . By applying the
previous formula (1) to each method we obtain a system of N
equations (N is the number of methods in the program). The
obtained system is not linear and is composed of several
multivariate polynomials. We use an iterative method (method
of successive approximations) to solve it. The system is, in
fact, reduced to a fixed point problem. Furthermore, we define
the Qi of a class as the product of the Qi of its public methods.
The calculation of the Qi metric is entirely automated by an
Eclipse plug-in that we developed for Java software systems.

C. Assigning Probabilities
The control call graph of a method can be seen as a set of

paths that the control flow can pass through. Passing through a
particular path depends, in fact, on the states of the conditions
in the control structures. To capture this probabilistic
characteristic of the control flow, we assign a probability to
each path Ck of a control call graph as follows:

where Ai are the directed arcs composing the path Ck. By
supposing, to simplify analysis and calculations, that the
conditions in the control structures are independent, the P(Ai)
becomes the probability of an arc of being taken when exiting
a control structure. The P(Ck) are then reduced to a product of
the probabilities of the states of the conditions in the control
structures. To facilitate our experiments, we assigned
probabilities to the different control structures of a Java
program according to the rules given in TABLE I. These
values are assigned automatically during the static analysis of
the source code of a program when generating the Qi models.
As an alternative way, the probabilities values would also be
obtained by dynamic analysis, or assigned by programmers
(knowing the code). Dynamic analysis will be considered in a
future work.

TABLE I ASSIGNMENT RULES OF THE PROBABILITIES.

Nodes Probability Assignment Rule

(if, else) 0.5 for the exiting arc « condition = true »
0.5 for the exiting arc « condition=false »

while
0.75 for the exiting arc « condition = true »

0.25 for the exiting arc « condition =
false »

(do, while) 1 for the arc: (the internal instructions are
executed at least once)

(switch,case) 1/n for each arc of the n cases.

(?, :) 0.5 for the exiting arc « condition = true »
0.5 for the exiting arc « condition = false »

for 1 for the arc

(try, catch) 0.75 for the arc of the « try » bloc
0.25 for the arc of the « catch » bloc

Polymorphism 1/n for each of the eventual n calls.

D. Intrinsic Quality Assurance Indicator
The Intrinsic Quality Assurance Indicator of a method Mi,

noted Qi*
Mi, depends on its cyclomatic complexity as well as

on its unit testing coverage (as an indicator of the testing
effort). It is given by:

*

max

1
i

i
M

F
Qi

F
with: Fi = cci * (1 – tci), where : cci : cyclomatic complexity
of the method Mi, and tci : unit testing coverage of the method
Mi, .

max 1
max ii N

F F

Cyclomatic complexity can help software engineers
determining the inherent risk of a program. Several studies
provided empirical evidence that there is a significant
relationship between cyclomatic complexity and fault
proneness [1, 37]. Cyclomatic complexity is also recognized
as a good indicator of testability [8, 9]. The more the
cyclomatic complexity of a program is high, the more likely
its testing effort would be high. Testing activities will reduce
the risk of a complex program and achieve its quality.
Moreover, testing coverage provide objective measures on the
effectiveness of a testing process.

IV. EXPERIMENTAL DESIGN
The goal of this study is to explore empirically the

relationship between the Qi metric and testability of classes in
OOS. We evaluate the Qi metric at the class level, and limit
the testing effort to the unit testing of classes. For our
experiments, we selected from each of the used systems only
the classes for which JUnit test cases exist. In this section, we
present the metrics we used to quantify the testing effort
required for a class by evaluating the corresponding JUnit test
class, and describe the experimental design.

A. Metrics Related to Testability
To indicate the testing effort required for a software class

(noted Cs), we used various metrics to quantify the
corresponding JUnit test class (noted Ct). JUnit1 is a simple
framework for writing and running automated unit tests for

1 www.junit.org

478 479

Java Classes. Test cases in JUnit are written by testers in Java.
A typical usage of JUnit is to test each class Cs of the program
by means of a dedicated test class Ct. We used in our
experiments each pair <Cs, Ct> for classes for which test cases
exist. The objective is to use these pairs to evaluate the
relationship between the Qi metric and the measured
characteristics of the test classes Ct. To capture testability of
classes, we decided to measure for each test class Ct,
corresponding to a software class Cs, various characteristics.
We used the following suite of test case metrics:

TLOC: This metric gives the number of lines of code of the
test class Ct. This metric is used to indicate the size of the
test suite corresponding to a class Cs.
TAssert: This metric gives the number of invocations of
JUnit assert methods that occur in the code of a test class
Ct. The set of JUnit assert methods are, in fact, used by the
testers to compare the expected behaviour of the class under
test to its current behaviour. This metric is used to indicate
another perspective of the size of a test suite. It is directly
related to the construction of the test cases.
THEff: This measure is one of the Halstead Software
Science metrics [16]. This metric gives the effort necessary
to implement or understand a test class Ct. It is proportional
to the volume and to the difficulty level of the test class.
We assume that this will reflect also the difficulty of the
class under test and the effort required to construct the
corresponding test class.
The approach used in this paper is based on the work of

Bruntik et al. [8]. Two of the used test case metrics (TLOC
and TAssert) have, in fact, been introduced by Bruntink et al.
in [8, 9] to indicate the size of a test suite. Bruntink et al.
based the definition of these metrics on the work of Binder [7].
We assume, in this paper, that these metrics are indicators of
the testability of classes. These metrics reflect different source
code factors as stated by Bruntink et al. in [8, 9]: factors that
influence the number of test cases required to test the classes
of a system, and factors that influence the effort required to
develop each individual test case. These two categories have
been referred as test case generation factors and test case
construction factors. However, by analyzing the source code
of the JUnit test classes of the systems we selected for our
experiments, we feel that some characteristics of test classes
are not captured by these two metrics (like the set of local
variables or invoked methods). Since our work is exploratory
in nature, we decided to extend the two metrics TLOC and
TAssert by using the THEff metric to quantify the global effort
necessary to implement a test class. We used this suite of
metrics for characterizing the testing effort of classes. We
assume that the effort necessary to write a test class Ct
corresponding to a software class Cs is proportional to the
characteristics measured by the used suite of test case metrics.

B. Data Collection
We calculated the values of the Qi (and Qi*) metric for all

classes for which JUnit test cases exist. We used the Eclipse
plug-in we developed. For our experiments, we fixed the unit
testing coverage to 75% for each of the methods of the

analyzed systems. Furthermore, we evaluated other values of
testing coverage. The obtained results were substantially the
same (in a relative way). We also used the suite of test case
metrics to quantify, for each of the subject systems, the JUnit
test classes Ct that have been developed by the programmers
using the JUnit framework. The test case metrics have been
computed using the Borland Together tool.

C. Goal, Hypotheses and Statistical Analysis
We present, in this section, the methodology of the

empirical study we conducted in order to assess the
relationship between the Qi (and Qi*) metric and testability of
classes. We performed statistical tests using correlation. The
null and alternative hypotheses that our experiments have
tested were:
- H0: There is no significant correlation between the Qi

metric and testability.
- H1: There is a significant correlation between the Qi metric

and testability.

In this experiment, rejecting the null hypothesis indicates that
there is a statistically significant relationship between the Qi
metric and test case metrics (the chosen significance level is
α=0.05). For the analysis of the collected data, we preferred a
non-parametric measure of correlation in order to test the
correlation between the Qi (and Qi*) metric and the suite of
test case metrics. We used the Spearman’s correlation
coefficient. This technique, based on ranks of the
observations, is widely used for measuring the degree of linear
relationship between two variables (two sets of ranked data). It
measures how tightly the ranked data clusters around a straight
line. Spearman's correlation coefficient will take a value
between -1 and +1. A positive correlation is one in which the
ranks of both variables increase together. A negative
correlation is one in which the ranks of one variable increase
as the ranks of the other variable decrease. A correlation of +1
or -1 will arise if the relationship between the ranks is exactly
linear. A correlation close to zero means that there is no linear
relationship between the ranks. We used the XLSTAT
software to perform the statistical analysis.

V. EMPIRICAL STUDY

A. Selected Systems
The selected systems are : ANT (www.apache.org): a Java-
based build tool, with functionalities similar to the unix
"make" utility, and JFREECHART
(http://www.jfree.org/jfreechart): a free chart library for Java
platform.

TABLE II summarizes some characteristics of the
analyzed systems : number of software classes, number of
attributes, number of methods, number of lines of code,
average value of lines of code, average value of cyclomatic
complexity, percentage of tested classes (software classes for
which JUnit test cases have been developed), number of JUnit
test classes, and for software classes for which JUnit test
classes have been developed : total number of lines of code,
average value of lines of code and average value of
cyclomatic complexity.

478 479

TABLE II SOME CHARACTERISTICS OF THE USED SYSTEMS.

SOFTWARE CLASSES TESTED SOFTWARE CLASSES

SYSTEMS #Classes #Attributes #Methods LOC MLOC MWMPC %TestedClasses #TClasses LOC MLOC MWMPC

ANT 713 2491 5365 64062 89.85 17.1 16.1% 115 17655 153.52 30.37

JFC 496 1550 5763 68312 137.73 28.09 46.37% 230 53131 231 46.08

The first observations that we can already make are: only a
subset of software classes have been tested using JUnit, the
pourcentage of tested classes varies from one system to
another, and the software classes for which JUnit test cases
have been developped are in general large and complex
classes.

B. Results
For each pair <Cs, Ct> we analyzed the collected data set

by calculating the Spearman’s correlation coefficient rs for
each pair of metrics. TABLE III summarizes the results of the
correlation analysis. It shows, for each of the subject systems
and between each distinct pair of metrics the obtained values
for the Spearman’s correlation coefficient. We also calculated
the Spearman’s correlation coefficient rs for each pair of test
case metrics (TABLE IV). The obtained Spearman’s
correlation coefficients that are significant (at α=0.05) are set
in boldface in the two tables. This means that for the
corresponding pairs of metrics there exist a correlation at the
95 % confidence level.

TABLE III CORRELATION VALUES BETWEEN THE QI AND QI* METRICS
AND TEST CASE METRICS.

 ANT TLOC TAssert THEff JFC TLOC TAssert THEff
Qi -0.560 -0.326 -0.448 Qi -0.425 -0.365 -0.353

Qi* -0.586 -0.393 -0.523 Qi* -0.447 -0.458 -0.439

TABLE IV CORRELATION VALUES BETWEEN TEST CASE METRICS.

ANT TLOC TAssert THEff JFC TLOC TAssert THEff
TLOC 1 0.679 0.900 TLOC 1 0.848 0.922

TAssert 1 0.781 TAssert 1 0.896
THEff 1 THEff 1

The first global observation that we can make is that the
obtained results confirm that there is a significant relationship
between the Qi and Qi* metrics and the used test case metrics.
The obtained Spearman’s correlation coefficients between the
Qi and Qi* metrics and the test case metrics are all significant
(at α=0.05) for the two selected systems (for all the pairs of
metrics). We can reject the hypothesis H0 and accept the
hypothesis H1. Moreover, the measures have negative
correlation. As mentioned previously, a negative correlation
indicates that the ranks of one variable (Qi and Qi* values in
our case) decrease as the ranks of the other variable (test case
metric) increase. These results are plausible knowing that the
more classes (and methods) are complex, the more they are
difficult to test and their Qi (and Qi*) values decrease. The
second global observation that we can make is that the Qi*

metric is, overall, better correlated to the test case metrics than
the Qi metric. This may be explained by the fact that the
metric Qi* takes into account only the inherent characteristics
of methods (and classes) compared to the metric Qi which take

into account the dependencies between methods (and classes).
The other global observation that we can make is that the test
case metrics are also correlated between themselves (TABLE
IV).

C. Limitations
The study performed in this paper should be replicated

using many other systems in order to draw more general
conclusions about the relationship between the metrics Qi and
Qi* and testability. In fact, there are a number of limitations
that may affect the results of the study or limit their
interpretation and generalization. The obtained results are
based on the data set we collected from the analyzed systems.
To collect data we only used a subset of classes (and
corresponding JUnit test cases) from each of the subject
systems. From TABLE II we can see that for system ANT we
used only 115 software classes and corresponding JUnit test
cases, and for system JFREECHART we used 230 software
classes and corresponding JUnit test cases. In total, we
analyzed 345 software classes and corresponding JUnit test
classes. Even if we believe that the analyzed set of data is
enough large to allow obtaining significant results, the study
should be, however, replicated on a large number of OOS to
increase the generality of the results. Moreover, we can also
observe from TABLE II that the classes for which JUnit test
cases have been developed are relatively large and complex
classes. This is true for the two subject systems. This may
affect the results of our study in the sense that depending on
the methodology followed by the developers while developing
test classes and the criteria they used while selecting the
software classes for which they developed test classes
(randomly or depending on their size or complexity for
example, or on other criteria) the results may be different. It
would be interesting to replicate this study using systems for
which JUnit test cases have been developed for a maximum
number of classes. By analyzing the source code of the JUnit
test classes, we observed that, in many cases, they do not
cover all the methods of the corresponding software classes.
This may also affect the results of the study. It is also possible
that facts such as the development style used by the developers
for writing test cases might affect the results or produce
different results for specific applications.

VI. CONCLUSIONS AND FUTURE WORK
We presented, in this paper, a metric capturing in an

integrated way different attributes of OOS. The metric, called
Quality Assurance Indicator, uses control flow paths and
probabilities, and captures the collaboration between classes.
The paper investigated empirically the relationship between
the proposed metric and testability of classes. Testability has

480 481

been investigated from the perspective of unit testing. As a
first attempt, we designed and performed an empirical study
on two open source Java software systems, for which JUnit
test cases exist. We used three metrics for characterizing the
JUnit test classes. We performed statistical tests using
correlation. The achieved results support the idea that there is
a statistically and practically significant relationship between
the Qi and Qi* metrics and the used test case metrics.

The performed study should, however, be replicated using
many other systems in order to draw more general
conclusions. The findings in this paper should be viewed as
exploratory and indicative rather than conclusive. Moreover,
knowing that software testability is affected by many different
factors, it would be interesting to extend the used suite of test
case metrics to better reflect the testing effort. We hope,
however, this study will contribute to a better understanding
and characterizing of what contributes to testability of classes
in OOS. As future work, we plan: to extend the used test case
metrics to better reflect the testing effort, to extend the study
by using some well-known OOM, and to replicate the study on
other projects to be able to give generalized results.

ACKNOWLEDGEMENTS
This project was financially supported by NSERC

(National Sciences and Engineering Research Council of
Canada).

REFERENCES
[1] Aggarwal, K.K., Yogesh, S., Arvinder, K., and Ruchika, M.,

“Empirical analysis for investigating the effect of object-
oriented metrics on fault proneness”: A replicated case study,
Software Process: Improvement and Practice, 16 (1), 2009.

[2] Badri, M., Badri, L., Toure, F., “Empirical Analysis of Object-
Oriented Design Metrics : Towards a new metric using control
flow paths and probabilities”, JOT, vol. 8(6), 2009.

[3] Baudry, B., Le Traon, B., Sunyé, G., “Testability analysis of a
UML class diagram”, 9th International Software Metrics
Symposium (METRICS’03), IEEE Computer Society, 2003.

[4] B. Baudry, B., Le Traon, Y., Sunyé, G., Jézéquel, J.M.,
“Measuring and Improving Design Patterns Testability”,
Proceedings of the 9th International Software Metrics
Symposium (METRICS), IEEE Computer Society, 2003.

[5] Baudry, B., Le Traon, Y., Sunyé, G., “Improving the Testability
of UML Class Diagrams”, Proceedings of IWoTA (International
Workshop on Testability Analysis), Rennes, France, 2004.

[6] Bertolino, A., Strigini, L., “On the Use of Testability Measures
for Dependability Assessment”, IEEE Transactions on Software
Engineering, Vol. 22, NO. 2, February 1996.

[7] Binder, R.V., “Design for Testability in Object-Oriented
Systems”, Communications of the ACM, Vol. 37, 1994.

[8] Bruntink, M., Deursen, A.V., “Predicting Class Testability
using Object-Oriented Metrics”, 4th Int. Workshop on Source
Code Analysis and Manipulation (SCAM), IEEE, 2004.

[9] Bruntink, M., Deursen, A.V., “An empirical study into class
testability”, Journal of Systems and Software, 2006.

[10] Chowdhary, V., “Practicing Testability in the Real World”,
International Conference on Software Testing, Verification and
Validation, IEEE Computer Society Press, 2009.

[11] Fenton, N., Pfleeger, S.L., “Software Metrics: A Rigorous and
Practical Approach”, PWS Publishing Company, 1997.

[12] Freedman, R.S., “Testability of Software Components”, IEEE
Transactions on Software Engineering, Vol. 17(6), June 1991.

[13] Gao, J., Tsao, J., Wu, Y., “Testing and Quality Assurance for
Component-Based Software”, Artech House Publishers, 2003.

[14] Gao, J., Shih, M.C., “A Component Testability Model for
Verification and Measurement”, COMPSAC, IEEE, 2005.

[15] Gupta, V., Aggarwal, K.K., Singh, Y., “A Fuzzy Approach for
Integrated Measure of Object-Oriented Software Testability”,
Journal of Computer Science, Science Publications, 2005.

[16] Halstead, M. H., “Elements of Software Science”,
Elsevier/North-Holland, NY, 1977.

[17] Henderson-Sellers, B., “Object-Oriented Metrics Measures of
Complexity”, Prentice-Hall, 1996.

[18] IEEE, 1990. IEEE Standard Glossary of Software Engineering
Terminology, IEEE Computer Society Press, NY, 1990.

[19] ISO/IEC 9126: Software Engineering Product Quality, ISO
Press, 1991.

[20] Jungmayr, S., “Testability Measurement and Software
Dependencies”, Proceedings of the 12th International.
Workshop on Software Measurement, October 2002.

[21] Karoui, K., Dssouli, R., “Specification transformations and
design for testability”, Proc. of the IEEE Global
telecommunications Conference (GLOBECOM’96), 1996.

[22] Khan, R.A., Mustafa, K., “Metric Based Testability Model for
Object-Oriented Design (MTMOOD)”, ACM SIGSOFT
Software Engineering Notes, vol. 34, no. 2, March 2009.

[23] Khoshgoftaar, T.M., Szabo, R.M., “Detecting Program
Modules with Low Testability”, 11th ICSM, 1995.

[24] Khoshgoftaar, T.M., Allen, E.B., Xu, Z., “Predicting Testability
of Program Modules Using a Neural Network”, 3rd IEEE Symp.
on Application-Specific Systems and SE Technology, 2000.

[25] Le Traon, Y. and Robach, C., “Testability analysis of co-
designed systems”, Proc. of the 4th Asian Test Symposium,
ATS. IEEE Computer Society, Washington, DC, 1995.

[26] Le Traon, Y., Robach, C., “Testability Measurements for Data
Flow Design”, Proceedings of the Fourth International Software
Metrics Symposium, New Mexico, November 1997.

[27] Le Traon, Y., Ouabdessalam, F., Robach, C., “Analyzing
testability on data flow designs”, ISSRE’00, San Jose, 2000.

[28] McGregor, J., Srinivas, S., “A measure of testing effort, Proc.
of the Conference on Object-Oriented Technologies”, pages
129-142. USENIX Association, June1996.

[29] Nguyen, T.B., Delaunay, M., Robach, C., “Testability Analysis
Applied to Embedded Data-Flow Software”, Proc. of the 3rd

International Conference on Quality Software (QSIC’03), 2003.
[30] Petrenko, A., Dssouli, R., and Koenig, H., “On Evaluation of

Testability of Protocol Structures”, IFIP, Pau, France, 1993.
[31] Sheppard, J.W., Kaufman, M., “Formal Specification of

Testability Metrics” in IEEE P1522, IEEE AUTOTESTCON,
Pennsylvania, August 2001.

[32] Voas, J.M., PIE: “A dynamic failure-based technique”, IEEE
TSE, 18(8), August 1992.

[33] Voas, J., Miller, K.W., “Semantic metrics for software
testability”, Journal of Systems and Software, Vol. 20, 1993.

[34] Voas, J.M., Miller, K.W., “Software Testability: The New
Verification”, IEEE Software, 12(3), 1995.

[35] Yeh, P.L., Lin, J.C., “Software Testability Measurement
Derived From Data Flow Analysis”, 2nd Euromicro Conference
on Software Maintenance and Reengineering, Italy, 1998.

[36] Zhao, L., 2006. “A New Approach for Software Testability
Analysis”, 28th ICSE, May 2006.

[37] Zhou, Y., Leung, H., “Empirical analysis of object-oriented
design metrics for predicting high and low severity faults”,
IEEE Trans. on software engineering, vol. 32, no. 10, 2006.

480 481

482 483

482 483

484 485

484 485

A Study on Performance Inconsistency
between Estimation by Analogy and Linear Regression

Sousuke Amasaki
Okayama Prefectural University

111 Kuboki Soja, Okayama, Japan 719–1197
Email: amasaki@cse.oka-pu.ac.jp

Abstract

Background: Many comparative studies have been per-
formed on effort estimation models. Linear regression (LR)
and Estimation by Analogy (EbA) were often compared.
The past research revealed that those comparative stud-
ies reported inconsistent results among performance mea-
sures. However, those studies seemed not to reflect actual
or desirable study procedure. Aim: We aimed to examine
performance inconsistency in comparative study on LR and
EbA under more desirable procedure. Method: We care-
fully determined datasets and experiment procedure. LR
and EbA were then compared under appropriate condition.
Results: Performance measures showed statistically con-
sistent results in almost all datasets. Conclusion: Com-
parative study could show consistent results with suitable
experiment procedure.

1. Introduction

Software effort estimation is popular and important re-
search area. Model-based effort estimation has been very
studied in this area. Many software estimation models have
been proposed showing its superior predictive performance
to that of old or popular models.

Linear regression (LR) and Estimation by Analogy
(EbA) are the most popular methods among them [6] and
repeatedly compared. Comparative studies on them of-
ten reported inconsistent results regarding predictive perfor-
mance. Myrtveit et al. [10] revealed using simulation that
performance measures favored different models in a com-
parative study on LR and EbA. Mair et al. [7] revealed with
systematic review that predictive performance was incon-
sistent between and within the past comparative studies on
LR and EbA even if the same dataset and performance mea-
sures were used.

Revealed interesting knowledge, these studies seemed

not to reflect actual or desirable comparative study.
Myrtveit et al. compared 7 performance measures with
1000 simulated datasets. However, those datasets were gen-
erated using a single dataset. Furthermore, they selected
“best results” for EbA after performing evaluations on dif-
ferent parameter settings. Thus, their result was not gen-
eralized for usual comparative study. The past compara-
tive studies reviewed in [7] actually performed with a few
dataset or a few performance measures. It has been criti-
cized to insist validity of new proposed models by an ex-
periment with a few datasets. Performance evaluation with
only MMRE and PRED(25), for instance, was not enough
because MRE-based measures were biased and tend to pe-
nalize overestimation more seriously. Furthermore, in con-
trast to [10], they did not control potential sources of in-
consistency such as dataset, experiment procedure, and op-
tions like variable selection methods. In addition, clear
dataset selection criteria were rarely found. We believe that
controlled and recommended conditions were important for
comparative study to discuss sources of inconsistent results.

This paper thus conducted comparative study on LR and
EbA with not a few datasets and performance measures.
We carefully selected datasets suitable for experiment pro-
cedure and performance measures. As a result, we found
that performance measures could be consistent in almost all
datasets. This result can contribute for discussing and in-
vestigating sources of inconsistent results.

2. Experiment Settings

2.1. Performance Measures

This study used the same performance measures as [10]:
Mean MAE (MMAE), MMRE, Median MRE (MdMRE),
PRED(25), MMER, RSD, and LSD. MAE, MRE, and
MER-based measures are very popular ones. RSD and LSD

1

486 487

are defined as follows:

RSD =

√∑
(Acti−Esti

Sizei
)2

n− 1
,

LSD =

√∑
(ei − (− s2

2))
2

n− 1
.

Here, s2 is an estimator of the variance of the residual ei,
where ei is given by ei = lnActi − ln Esti.

2.2. Experiment Procedure

Cross-validation (CV) has been popular experiment pro-
cedure in comparative study. Two types of CV have been
often used: leave-one-out CV and K-fold CV. Leave-one-
out CV allows us use smaller datasets than K-fold CV. It
was also recommended because of its deterministic prop-
erty.

However, we adopted K-fold CV for two reasons related
to evaluation reliability. First, leave-one-out CV may lead
unreliable estimates because an estimate from it has high
variance [3]. Second, leave-one-out CV produces identical
values for average-based and median-based measures such
as MMRE and MdMRE. This is because a fold of leave-
one-out CV has only one project and performance measures
for a test subset are calculated from single estimate. In case
of K-fold CV, we can avoid this situation if a test subset has
more than 2 test cases.

Eventually we adopted 10 × 10-fold CV followed by
paired t-test with 10 degree-of-freedom in order to avoid
inflated Type I error [2]. Comparative studies often adopted
nonparametric test for the reason that distributions of a per-
formance measure were skewed. In fact, skewness was not a
problem because for most of the distributions one encoun-
ters in practice, the significant level of the t-test is almost
exact for sample sizes greater than 12 [4].

2.3. Outlier Elimination

We removed influential data points (outliers) by Cook’s
distance [9] in advance so that all projects had Cook’s dis-
tance lower than 3×4/N , where N is the number of projects
in a dataset. In contrast to [9], this study left projects with
distance higher than 4/N but smaller than 3× 4/N . This is
because decision of inclusion or exclusion for these projects
depends on model-based judgment and it was difficult when
two different models were compared.

3. Effort Estimation Models

3.1. Linear Regression

In many situations, a fitted regression model is likely to
be reliable when the number of predictors p is less than
N/10 or N/20. Following this rule, sample size N must
be N > 100p

9 in case of 10×10-fold CV. This is because
p < 1/10 · 9/10 ·N must hold.

Linear regression can utilize multiple predictors in or-
der to improve predictive performance. However, simple
models including only size-related metric as a predictor are
also popular because it is easy to construct and to be able to
avoid variations in an experiment. Myrtveit et al. revealed
inconsistent results in [10] even if simple models were used.
The size of dataset must be equal or more than 12 for simple
models because of p = 1. In order to include more datasets,
we determined to adopt simple models. This study adopted
the following popular formulation:

log(Effort) = β0 + β1 log(Size).

3.2. Estimation by Analogy

In EbA estimation process, similarity between a target
project and historical projects is calculated from recorded
metrics and then some projects similar to that target project
are selected. EbA estimates effort of that target project from
the similar projects.

EbA has several options for fitting to a specific dataset.
This study adopted the following options:

• Size-related metric for only predictor

• Euclidean-distance as similarity function

• Geometric mean as projection method

This EbA tried to estimate p50 Effort [5]. Geometric mean
is identical to median under log-normal distribution. It also
mitigates effect of extremely large effort under a distribu-
tion skewed right.

This study determined the number of similar projects k
before an experiment by 10-fold CV which minimizes an
average of MMREs. This was because EbA showed better
result than LR only with k minimizing MMRE [10] and thus
we expected to find inconsistency.

4. Datasets

4.1. Source

We performed comparative study with some datasets
listed in [8] and served on PROMISE repository [1] at Jan-
uary 2011. We used only public datasets because they are
freely available and replication can be open.

486 487

Table 1. Selected datasets descriptions
Name Sample Size Removed

COCOMO81 63 –
CSC 145 4

Desharnais 81 1
Heiat-Heiat 35 –

MERMAID2 30 –
Miyazaki94 48 1
Moser-etal 37 –

cocomonasa v1 60 –
Maxwell 62 –
NASA93 93 1

PROMISE repository site serves datasets as readable text
file which can include comments. We selected datasets from
this repository which contain a comment regarding informa-
tion of projects or a citation they were used.

Dataset listed in [8] were from three journals: Trans-
actions on Software Engineering, Information & Software
Technology, and Journal of Systems & Software. We se-
lected datasets freely available from original papers they
referenced. We also limited datasets to which were col-
lected in software development organizations.

Having removed duplicates between the two sources, we
identified 28 datasets as an initial set.

4.2. Dataset Selection

We selected datasets with the following conditions:

• effort or size-related metrics must be contained.

• at least 30 projects must be contained.

Effort estimation models usually estimate target effort at
least from size-related metrics such as KSLOC and Func-
tion Points (FP). We thus imposed the first condition.

Second condition was related to the limitation in subsec-
tion 2.2. This limitation imposed that the size of test subsets
must be more than 2. Supposing that test subsets of a dataset
have 3 or more projects, 1/10 · N ≥ 3, where N is size of
that dataset, must hold. Consequently a dataset must have
30 or more projects. Although performance measure based
on 3 results was still less precise and less fine-grained, it
was a reasonable criterion for dataset selection.

As a result, we specified 10 datasets. Table 1 shows their
descriptions. “Removed” indicates results of outlier elimi-
nation. The number of removed was small for all datasets
and thus it did not influence dataset selection results.

5. Results

Table 2 shows averages of performance evaluation re-
sults. At the next most right column, we counted per-

formance measures showing higher performance. Perfor-
mance measures showing the same values were ignored. We
found consistent results on Moser-etal, cocomonasa v1, and
Heiat-Heiat. However, we found inconsistent results on the
other datasets.

Table 3 shows p-values for performance measure com-
parisons. The most right column shows the number of per-
formance measures with statistical significance at α = 0.05.
We having used k based on MMREs for EbA, statistical
tests on MRE-based measures turned to be significant less
times than those on the others.

The most right column of Table 2 shows the number of
statistically higher performance measures. Considered sta-
tistical significance, we could found inconsistency results
only on MERMAID2. EbA was consistently preferable on
Maxwell and Heiat-Heiat. LR was consistently preferable
on the other datasets.

MRE-based and MER-based measures were inconsis-
tent on MERMAID2. Following definitions of MRE and
MER, LR might tend to overestimate and EbA might tend
to underestimate on MERMAID2. In contrast, we did not
find statistical inconsistency among performance measures
based on MRE. Thus, inconsistency could be explainable.

We think that our experiment procedure contributed to
consistency. This study adopted more reliable evaluation
procedure than that of [10] and performed under identical
conditions in contrast to [7]. Carefully selected datasets
suitable for experiment procedure was also effective. We
thus concluded that a large part of inconsistency in the past
study might be due to experiment procedure.

6. Conclusions

This study revealed that performance measures could be
consistent with appropriate experiment procedure. Out ex-
periment procedure reflect actual or desirable comparative
study style and thus it was useful and practical to adopt our
experiment procedure style for future comparative studies.

These results can be useful as a starting point for investi-
gating and discussing sources of inconsistency. Investigat-
ing multiple feature models, some datasets having no useful
feature will have to be dropped, though.

This study does not deny using datasets we dropped.
However, using the selected datasets would be more suit-
able and reliable in comparative study, at least with our ex-
periment procedure.

References

[1] G. Boetticher, T. Menzies, and T. Ostrand. PROMISE repos-
itory of empirical software engineering data. http://
promisedata.org/repository, West Virginia Uni-
versity, Department of Computer Science, 2007.

488 PB

Table 2. Performance Measure Results

Dataset Models MMAE MMRE MdMRE PRED MMER RSD LSD #val. #sig.
COCOMO81 LR 478 1.04 0.74 0.18 1.15 8.16 49.54 6 5

EbA 577 0.98 0.77 0.12 2.09 8.77 53.47 1 0
CSC LR 1117 0.63 0.40 0.29 0.54 4.90 16.24 4 2

EbA 1215 0.62 0.41 0.31 0.66 4.95 15.16 3 0
Desharnais LR 2017 0.58 0.35 0.38 0.45 8.72 43.48 5 5

EbA 2205 0.56 0.35 0.34 0.51 8.98 46.41 1 0
Heiat-Heiat LR 28 0.13 0.11 0.88 0.13 0.30 0.40 0 0

EbA 27 0.12 0.10 0.90 0.12 0.25 0.32 7 4
MERMAID2 LR 5399 1.07 0.79 0.16 0.98 28.36 670.95 3 1

EbA 5129 0.94 0.72 0.19 1.12 29.12 706.46 4 1
Miyazaki94 LR 21 0.40 0.32 0.39 0.38 0.41 0.49 4 1

EbA 23 0.40 0.32 0.44 0.46 0.42 0.51 1 0
Moser-etal LR 62 0.08 0.06 0.97 0.08 0.13 0.16 7 7

EbA 132 0.20 0.14 0.76 0.19 0.38 0.45 0 0
cocomonasa v1 LR 132 0.33 0.23 0.52 0.31 1.84 3.07 7 7

EbA 166 0.41 0.32 0.39 0.44 2.39 4.73 0 0
Maxwell LR 3800 0.55 0.48 0.21 0.58 8.56 46.15 2 0

EbA 3900 0.55 0.44 0.29 0.60 8.38 44.65 4 2
NASA93 LR 346 0.64 0.41 0.35 0.79 6.83 35.90 5 4

EbA 388 0.64 0.42 0.37 0.91 7.37 40.59 1 0

Table 3. Statistical Testing Results (p-value)

stat.sig
Dataset MMAE MMRE MdMRE PRED MMER RSD LSD (α = 0.05)

COCOMO81 0.00 0.13 0.53 0.00 0.00 0.00 0.00 5
CSC 0.00 0.40 0.08 0.17 0.00 0.82 0.47 2

Desharnais 0.00 0.11 1.00 0.01 0.00 0.03 0.01 5
Heiat-Heiat 0.31 0.02 0.03 0.24 0.08 0.01 0.01 4

MERMAID2 0.29 0.03 0.25 0.07 0.00 0.06 0.07 2
Miyazaki94 0.06 0.79 0.62 0.10 0.00 0.14 0.15 1
Moser-etal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7

cocomonasa v1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7
Maxwell 0.32 0.77 0.03 0.00 0.63 0.39 0.47 2
NASA93 0.01 0.83 0.36 0.18 0.00 0.00 0.00 4

[2] R. R. Bouckaert. Choosing between two learning algorithms
based on calibrated tests. In Proc. of 20th International Con-
ference on Machine Learning, pages 51–58, 2003.

[3] B. Efron. Estimating the error rate of a prediction rule: Im-
provement of cross-validation. Journal of the American Sta-
tistical Association, 78:316–330, 1983.

[4] P. I. Good and J. W. Hardin. Common Errors in Statistics
(and How to Avoid Them). Wiley Publications, 2006.

[5] M. Jørgensen. Practical guidelines for expert-judgment-
based software effort estimation. IEEE Softw., 22(3):57–63,
2005.

[6] M. Jørgensen and M. Shepperd. A systematic review of
software development cost estimation studies. IEEE Trans.

Softw. Eng., 33(1):33–53, 2007.
[7] C. Mair and M. Shepperd. The consistency of empiri-

cal comparisons of regression and analogy-based software
project cost prediction. In Proc. of ISESE 2005, 2005.

[8] C. Mair, M. Shepperd, and M. Jørgensen. An analysis
of data sets used to train and validate cost. In Proc. of
PROMISE’05, 2005.

[9] K. D. Maxwell. Applied Statistics for Software Managers.
Prentice Hall, Inc., 2002.

[10] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and
validity in comparative studies of software prediction mod-
els. IEEE Trans. Softw. Eng., 31(5):380–391, 2005.

PB 489

Recommending Component by Citation: A Semi-
supervised Approach for Determination

Sibo Cai, Yanzhen Zou , Lijie Wang, Bing Xie, Weizhong Shao
Software Institute, School of EECS, Peking University, Beijing, P.R. China

Key Laboratory of High Confidence Software Technologies,
Ministry of Education, Beijing, P.R. China

{caisb06, zouyz, wanglj07, xiebing}@sei.pku.edu.cn, wzshao@pku.edu.cn

Abstract—Reusing existing components can help developers
improve the development productivity as well as reduce the cost.
Reuse repositories in this scenario act as a fundamental facility
for acquiring needed components. While retrieving components
in reuse repositories, developers often face the problem of
choosing components from candidates that provide similar
functionalities. To address the problem, this paper proposes a
semi-supervised method to recommend developers components in
reuse repositories. Different from existing rating based
recommendation approaches that often suffer from the lack of
user ratings, our approach calculates the recommendation
probabilities of components based on their citations on the
Internet. The citations are acquired through the websites (called
host in this paper) that are associated with the components. Using
a random walk algorithm, the associations between components
and hosts are explored with recommendable components
identified. We implemented our approach in a prototyping
system based on which we conducted an experimental study to
evaluate our approach. The experimental results demonstrate
that our approach can accurately recommend components and
thus has the potential to assist developers in reuse.

Keywords-software reuse;component recommendation;reuse re-
pository

I. INTRODUCTION

It is widely believed that reusing existing components can
help developers create applications with less effect and
improved quality [1]. To find proper components, developers
need to retrieve reuse repositories according to their reuse plan
[2]. Generally, the component retrieval process can be divided
into two steps: Firstly, developers search reuse repositories to
find component candidates that provide needed functionalities.
Secondly, developers select components from candidates and
integrate them together to build the target system.

Selecting components from candidates is very crucial for
system integration. Before the adaption and integration of the
components, developers often have to prototype a testing
environment to validate the selected components to make sure
that the selected components could satisfy the detailed
requirements [3]. A casual selection of components may put
developers into the risk of wasting a lot of time and effort. The
situation becomes even worse if the components are not cost-
free.

Currently, most widely used mechanism to provide hints for
developers to make informed component selection decision in
real world reuse repositories, such as SourceForge [5] and
ComponentSource [6], is the user rating/review system. In such
systems, developers can share their experience of certain
component by simply giving a rating or a paragraph of remarks.
Then all the ratings are aggregated for providing decision
information to assist developers with components selection.
User rating/review systems can provide information to assist
developers in making selection decision; however, this kind of
mechanisms is always blamed for their limited ratings due to
the user motivation problem [7]. In most cases, developers
have to spend extra effort collecting related information or try
the retrieved candidates one by one to decide which component
to use. The retrieval process becomes inefficient.

To resolve the problem, we propose a novel component
recommendation method based on the citations of components
appearing on the Internet. The citations of components on the
Internet can be components for download (such as the
components in Download.com [21]), components at runtime
(like Java Applet [9]) or component-centric description or
discussion (such as the appearance in Ohloh [22]). No matter
what cases, components appearing on the Internet would relate
to certain hosts. In general, the more times a component
appears on the Internet, the more probable it should be
recommended to developers [8]. Furthermore, if a host is
known to involve amounts of recommended components,
components cited by this host are more likely to be
recommendable ones. Therefore, a component’s citation on the
Internet can be utilized for recommendation instead of user
ratings.

In this paper, we propose a semi-supervised approach for
component recommendation in reuse repositories based on
their citations on the Internet and implement the approach in a
prototyping system. In the approach, we obtain the hosts that
involve the components from the Internet and build the
associations between the components and the hosts. Through
exploring the associations with a random walk algorithm, we
work out the recommendation probability for each component.
We evaluate our approach through an experimental study based
on our implemented system and real world data. The results
show that our approach can accurately identify recommendable
components.

Corresponding Author

490 491

The rest of this paper is organized as follows: Section 2
describes our approach for recommending components and an
implemented prototyping system. Section 3 presents our
experimental study on the proposed approach with the results
analyzed. Section 4 presents some discussions about the
approach and the future work. Section 5 describes the related
works. Then in the last section, we conclude this paper.

II. OUR APPROACH

In this section, we will introduce our approach for
recommending components as well as an implementation of the
approach based on which we conducted the experimental study.
The approach consists of following steps.

Obtaining hosts associated with components. This step
aims to find hosts related to the components from the
Internet and build associations between them.

Setting up the association weight. The relevance degree
of components with their hosts is considered in our
approach. For each association, a weight denoting the
relevance degree is assigned for further computation.

Computing component recommendation probability.
This step computes the recommendation probability for
each component through exploring the associations
using a random walk algorithm and finally identifies
the recommendable components.

Details of these steps are described below.

A. Obtaining Hosts associated with Components
To obtain the hosts related to the components from the

Internet, we use the web search engine Google1 to accomplish
the hosts crawling task. We use Google to search the
components with component name as the query and extract
URLs from the returned result list. Since the most relevant
results are usually distributed at the top position, we only keep
the top 30 URLs for each component (returned list less than 30
URLs will all be kept). Then the hosts related to the component
are identified (we use the domain part of a URL to represent a
host. URLs with the same domain part will be merged).

However, the returned results by Google do not always
refer to the exact component if we directly use the component
name as the query. In order to obtain the hosts and build the
associations more accurately, some strategies are adopted to
refine the associations between the components and the hosts.
Firstly, Google in general will split the input keywords into
word segments, search each segment separately and at last
merge the results of each word segment to produce the final
results. Such manner, however, is intended to fetch web pages
that contains word segments of the query but in fact are
irrelevant to the components in our scenario. To solve the
problem, we validate the returned results by using full match of
the component name in both the title and the snippet. This can
be fulfilled by adding quotation mark to the component name
when searching components. Secondly, the Google web search
engine aims to obtain as diverse results as possible, but in our

1http://www.google.com/

scenario, the returned results by Google should be restricted in
the domain of “Software” or “Software Development”. For this
problem, we append the keyword “Software” to the query to
refine the returned results.

Formally, the associations between components and their
hosts can be described as a bipartite graph, G=<COMP, HOST,
EDGE>. The component set COMP and the host set HOST
constitute the partitions of the graph. Every association is
described as an edge (comp, host) EDGE where comp
COMP and host HOST. Fig. 2(a) gives an example of a
bipartite graph.

B. Setting up the Association Weight
In our approach, we consider the degree of components

associated with their hosts and a weight is assigned to each
association. The association weight between a component and a
host denotes the relevance degree of the component to the host.
In general, the more times a component appears on one host,
the more degree it is relevant to the host.

The association weight of a component related to a host is
firstly set as the number of URLs related to the component that
are merged into the host. Then, the weights of all associations
are normalized using (1) where Ncomp-host is the number of URLs
related to the component comp and merged into host. Since the
association is non-directional, the weight of a component
related to a host equals to the one in reverse order.

, :(,)

comp host
comp host host comp

c hc h c h EDGE

N
w w

N

C. Computing Component Recommendation Probability
The idea behind our component recommendation approach

is that the more hosts by which a component is cited, the more
probable a component is to be recommended. More importantly,
if a host is known to involve amounts of recommended
components, components appearing on the host are more likely
to be recommendable ones. To implement the idea, we assign
each component a recommendation probability (called
“component recommendation probability” in this paper), which
means the degree of the component to be recommended. We
also set a weight (called “host recommendation probability” in
this paper) to every host. The host recommendation probability
indicates the degree of a host involving recommended
components.

Let P(host) denotes the host recommendation probability of
host and P(comp) denotes the component recommendation
probability of comp. Clearly, a host that involves more
components with high component recommendation probability
will gain higher host recommendation probability. We use (2)
to calculate the host recommendation probability of host where
C(host) denotes the components cited by host.

: ()
() ()host compcomp comp C host

P host w P comp

490 491

On the other hand, a component that is involved by more
hosts with high host recommendation probability can also gain
higher component recommendation probability. Hence, we use
(3) to update the component recommendation probability of a
component where H(comp) denotes the hosts that involve comp.

: ()
() ()comp hosthost host H comp

P comp w P host

The starting point of the computation is a set of components
that are prejudged to be recommended ones and assigned high
recommendation probability. We call this group of components
“seeds”. To implement the computation, we propose a
propagation algorithm by adopting a random walk algorithm
with absorbing states [14]. The algorithm is presented in Fig. 1.

Figure 1. The propagation algorithm

The input of the algorithm contains the seed set S, COMP-
HOST bipartite graph G and two parameters and . The
transition probability denotes that both the components and
the hosts have the probability to transfer to the absorbing state

 [14]. This means that if a component or a host does not
keep acquiring the recommendation probability, its probability
will gradually decrease to 0 and thus be absorbed by . The
vanishing threshold is used as the threshold to distinguish
the recommendable components. The output of the algorithm is
the component recommendation probability P(comp) for each
component except the seeds.

Initially, the component recommendation probabilities of
the seeds are set to 1 (Line 1). Then the algorithm (Line 3 to
Line 10) iteratively calculates the probability for both the hosts
and the components. In each iteration the host recommendation
probability for each host is calculated using (2) and weakened
by (1) (Line 4). If the calculated probability is less than ,
the probability is set to 0. The calculation of the component
recommendation probability is similar to the one of host
recommendation probability. Note that besides the components,
we also use as a threshold to discard the probabilities of

hosts in Line 5. This is mainly for efficiency purpose [14]. The
iteration will continue until the recommendation probabilities
of both the components and the hosts are convergent.
Components with the recommendation probability greater than
0 then will be regarded as recommended ones.

To explain the propagation algorithm in a more concrete
way, an illustrated example is given in Fig. 2. In the example,
there are 5 components (indicated as squares) and 4 hosts
(indicated as circles) that have associations with the
components as shown in (a). Components C2 and C3 are seeds.
Suppose that all the associations have the same weight. Initially,
the component recommendation probabilities of C2 and C3 are
set to 1. In the first iteration, hosts that have associations with
C2 and C3 will gain host recommendation probability. Thus,
the host recommendation probabilities of H1, H3 and H4
(indicated as solid circles) are updated as shown in (b). Note
that the host recommendation probability of H3 will be larger
than those of H1 and H4 since H3 have associations with both
C2 and C3. The hosts will also backwards affect the
recommendation probabilities of the components except the
seeds. Therefore, the component recommendation probabilities
of C4 and C5 (indicated as solid squares) will be updated as
shown in (c). Similarly, the host recommendation probabilities
of all the 4 hosts (shown in (d)) and backwards the component
recommendation probabilities of C1, C4 and C5 will be
updated (shown in (e)) in the following iteration. The iteration
continues until the recommendation probabilities of both the
components and the hosts converge.

H4

H2
seeds

C1

C2

C3

C4
C5

H1

H3

(a)
H1

seeds

C1

C2

C3

C4
C5

H3

H4

H2

(b)

H1

H2seeds

C1

C2

C3

C4
C5

H3

H4

(c)

seeds

C1

C2

C3

C4
C5

H1

H3

H4

H2

(d)

seeds

C1

C2

C3

C4
C5

H1

H3

H4

H2

(e)

Figure 2. An illustrated example of the propagation algorithm

D. Implementation with a Prototyping Reuse Repository
We implement our approach with a prototyping reuse

repository that simply provides free-text based component
retrieval [10]. Note that although we use free-text approach to
acquire relevant components in the prototyping system, our
method for recommending components is not limited by the
component retrieval mechanisms. The architecture of the reuse
repository with our recommendation approach is presented in
Fig. 3. Components are stored in the reuse repository. The
retriever accepts queries of developers and retrieves relevant

Input: the seed set S, COMP-HOST bipartite graph G, the
vanishing threshold , the transition probability to
Output: P(comp), for every component except for the
seeds
1: for each comp in S do P(comp)=1
2: repeat
3: for each host in HOST do
4:

: ()
() (1) ()host compcomp comp C host

P host w P comp

5: if(()P host) then P(host)=0
6: end for
7: for each comp in COMP \ S do
8:

: ()
() (1) ()comp hosthost host H comp

P comp w P host
9: if(()P comp) then P(comp)=0
10: end for
11: until convergence

492 493

component candidates from the reuse repository for further
recommendation.

 The implementation of our approach is denoted in the dash
line rectangle in Fig. 3. The crawler obtains the hosts that have
association with the components in the reuse repository from
the Internet and stores the associations in the association
database. Based on the work done by the crawler, the analyzer
computes the recommendation probability for each component
utilizing the associations and produces the recommendable
components based on the retrieved candidates to developers.

Internet

Crawler

Retriever

Reuse
Repository

Analyzer
Query Candidates

Recommended
List

Developer

Association
Database

Associations

Figure 3. The architecture of the reuse repository with our remmendaiton
approach

III. EXPERIMETNAL STUDY

A. Experimental Organization
To evaluate our approach, we applied it to the data

collected from a real world reuse repository, i.e. SourceForge,
which not only provides software systems, but also many
reusable libraries that fuel the further development of new
applications. Particularly, we selected the category “Software
Development” as our evaluation base. Category “Software
Development” totally contains 35,602 software projects at the
time we carried out the evaluation. We acquired the project
information including project name, description, user positive
rating and negative rating etc. by implementing a web page
crawler. The 35,602 software projects constituted the reuse
repository in our approach. In our experiment, each software
project was viewed as a component.

Based on the built reuse repository, we used Google to
search for the hosts that involve the components in the reuse
repository and extracted associations between the components
and the hosts. In this study, we removed the SourceForge from
the host set to eliminate the impact of SourceForge since
SourceForge acts as the evaluation base of our experimental
study. Associations including SourceForge were also excluded.
Thus, we totally fetched 251,873 hosts as well as 937,016
associations between the component set and host set.

 We sorted the 35,602 projects according to the user ratings
provided in our crawled pages from SourceForge. After a
review of the sorted list, 100 projects were selected as seeds
(less than 0.3% of the component set). The 100 projects were

either famous software projects, or with high user positive
rating that are supposed to recommend to developers.

In the execution of the propagation algorithm, we also need
to set the parameters, i.e. and . In our experiment, was
set to an empirically small value 0.01 [14] while the selection
of somewhat depends on the application scenarios. To solve
the selection of , we used the seed set to tune it. We divided
the seed set into 2 parts. Four fifth of the seed set were still
used as seeds in the propagation algorithm while the remaining
one fifth were regarded as the test set to tune . The tuning
algorithm is shown in Fig. 4. After conducting the tuning
algorithm, we finally set to 5E-5.

Figure 4. The tuning algorithm for

B. Experimental Results
We evaluated the effectiveness of our approach by using

developer queries. In order to decide which queries to use, we
interviewed 7 graduate students in Peking University who have
more than 2 years of software development experience. Finally,
11 queries were identified. We then submitted the 11 queries to
our prototyping system to retrieve relevant components and
more importantly the recommended ones by our approach. To
validate the recommended components, we adopted the user
ratings provided by SourceForge. Components were regarded
as recommended ones if their number of positive ratings in
SourceForge is larger than the one of negative ratings.

TABLE I. RECOMMENDED COMPONENTS BY SOURCEFORGE COMPARED
TO THE ONES BY OUR APPROACH

Query Recommended Retrieved
XML Parser 3(5) 14

Data Encryption 1(1) 7
Logging 9(11) 12

Math 5(5) 12
Statistics 5(5) 7

Data Compression 1(1) 10
Email 1(1) 6

File Upload 2(4) 14
Configuration File 3(3) 11

Network Utility 1(1) 11
IO Utility 2(2) 14

To evaluate our approach, we identified the recommended
components by SourceForge from the retrieved ones for each
query and then found out whether our approach could produce
similar recommended list. The results are presented in TABLE
I. The queries are listed in the “Query” column. Column
“Retrieved” indicates the number of retrieved components
according to the query while the “Recommended” column

Step 1: Randomly select 80 seeds from the seed set.
Step 2: Conduct the propagation algorithm with the
parameter set to 0.01 and set to 0.
Step 3: Store the minimum value of the calculated
probabilities of the remaining 20 seeds.
Step 4: Repeat Step1, Step 2 and Step 3 in 5 runs and
set as the average of the stored minimum values.

492 493

represents the number of recommended components by our
approach contained in the recommended list of SourceForge.
The number of components recommended by SourceForge is
also indicated (in the bracket). Take query “XML Parser” as an
example, the number of retrieved components related to the
query is 14 and in the 5 recommended components of
SourceForge, our approach suggests 3 of the 5.

Through the comparison with recommended components
by SourceForge that are based on user ratings, we preliminarily
drew to the conclusion that our approach possesses the ability
to identify the recommended components suggested by
SourceForge. More queries should be performed to further
validate our approach; however, the selected queries to some
extent cover amply portion of fundamental software
development needs based on our interview with software
developers. In order to show the effectiveness of our approach
in a better fashion, seeds (if retrieved) were excluded in the
retrieval results.

We also evaluated the precision of the recommended
components by our approach. Precision here means the ratio of
actual recommended components compared to the ones
suggested by our approach. We compared the number of
recommended components by our approach to the ones
suggested by SourceForge. The 11 queries were still used.
TABLE II shows the comparison results. In the column
“Recommended”, the number of recommended components of
our approach is indicated in the bracket. In the recommended
list of our approach, the number of components that are also
suggested by SourceForge is indicated outside the bracket. In
half cases, our approach performs well and produces
recommended components similar to the ones by SourceForge,
such as “Logging”, “Statistics”. While in the other half, our
approach recommended more components than SourceForge
does, especially in the case “Network Utility”.

TABLE II. OUR RECOMMENDED COMPONENTS COMPARED TO THE ONES
BY SOURCEFORGE

Query Recommended Retrieved
XML Parser 3(7) 14

Data Encryption 1(3) 7
Logging 9(9) 12

Math 5(8) 12
Statistics 5(6) 7

Data Compression 1(3) 10
Email 1(5) 6

File Upload 2(7) 14
Configuration File 3(7) 11

Network Utility 1(8) 11
IO Utility 2(6) 14

To explore the reason of this phenomenon, we investigated
the recommended components by our approach while not
suggested by SourceForge. We found that almost all these
components received 0 positive rating and 0 negative rating in
SourceForge. According to the criteria of recommended
components, such components will be judged as not
recommended by SourceForge. “GSA Simple XML Parser2” is
one of the examples. However, through our investigation of

2 http://sourceforge.net/projects/gsa-simple-xml/

“GSA Simple XML Parser” by hand, we finally judged that
this component should also be recommended.

IV. DISCUSSION AND FUTURE WORK

A. Issues about the Association Refinement
In our approach, we refine the association between

components and hosts using the strategies described in section
2, but there are still some problems in building the associations.
The most extrusive case is that the name of a component is too
general. For example, an xml parser named “xml parser”. To
search such keywords in Google, the returned results are often
irrelevant to the component. Such cases will reduce the
effectiveness of our approach and provide problematic
recommended list to the developers. Nevertheless, we find that
such examples only occupy a very small fraction of the
components in real world reuse repositories since people who
develop components are mostly intended to pick up a more
meaningful name for their components while further
consideration should be taken to deal with such cases.

B. How to Obtain the Seed Set
In our approach, one of the inputs to calculate the

recommendation probabilities of the components is the seed set.
The effectiveness of our approach will be greatly reduced if the
seed set is hard to obtain. However, the seed set seems not so
difficult to identify in real world reuse repositories. Firstly, just
like our experimental study, components that have already
received high user positive ratings can be considered. Secondly,
famous software components are another option. Thirdly,
components that developed by famous companies or
organizations can also be taken into consideration.

Another issue about the seed set is how to construct a better
seed set. The selection of the seeds may influence the
performance of our approach since it is the starting point.
Selecting seeds as divergent as possible may be one of the
possible strategies that can be used to enhance the performance
of our approach. For instance, seeds can be selected
considering different application domains. Further study will be
carried out in our future work.

V. RELATED WORKS

Helping developers obtain appropriate components is
crucial for successful software reuse. In the literature, many
research works have been studied to facilitate the component
retrieval, such as 1) free text approaches [10]; 2) facet based
approaches [11]; 3) signature based approaches [12] and 4)
behavior based approaches [13]. Most of these research works
concentrate on obtaining relevant components while pay little
attention to providing information for developers choosing
components from candidates that provide similar functionalities.
As the size of reuse repositories becomes large, helping
developers make informed decision among functionally similar
components can accelerate the process of selection and this is
what our approach is trying to accomplish.

To recommend software components among candidates,
Inoue et al. proposed the component rank model based on
which they developed SPARS-J, a java class retrieval system

494 495

[4]. The component rank model analyzes the usage relation of
components so as to identify recommendable components that
are used more frequently. The work is based on the premise
that the component source code is acquirable but in many cases
(e.g. COTS) this is unrealistic. Ichii et al. proposed a software
component recommendation approach based on collaborative
filtering (CF) utilizing user browsing history [15]. However,
CF inborn suffers from the “Cold Start” problem. In real world
reuse repositories, such as SourceForge and ComponentSource,
user rating/review systems are usually used to recommend
software components while these systems are often blamed for
their shortage of ratings/reviews [7]. In our approach, we make
use of the associations between components and hosts obtained
from the Internet to avoid the above problems as well as
provide hints to help developers make selection decision.

There are also several pieces of work concerning
recommendation systems in the research area of software
engineering. CodeBroker [16] provides recommendation of
APIs for developers that may implement the needed
functionalities the moment developers write down comments or
the signature of methods. Strathcona [17] developed by Holmes
et al. recommends example code to developers by monitoring
the code under development. The recommendation is made
according to six structure-based heuristics. Li et al. proposed an
approach to recommend typical usage example of APIs by
adopting code clustering [18]. Kim et al. presented an approach
that searches code bases on the Internet and extract code
examples to insert into API documents to recommend
developers suitable examples while using certain APIs [19].
ParseWeb [20] is another useful tool to suggest call sequences
for developers when developers are using certain APIs.
Different from these approaches that recommend implemented
APIs or example code, our approach aims to help developers
make informed choice facing components that provide similar
functionalities.

VI. CONCLUSION

In this paper, we proposed a semi-supervised approach to
produce recommended components to the developers to assist
their selection of components in reuse repositories. The
approach utilizes the associations between the components and
the involved hosts. Through a selected group of components
that are supposed to be recommended and a propagation
algorithm, the recommendation probability for each component
is calculated. We also implemented a prototyping system and
conducted an experimental study on our approach using real
world data. The results show that our approach can accurately
recommend components to the developers comparing to the
data from SourceForge.

ACKNOWLEDGMENT

We would like to thank Jing Jin for the experimental data
collection. This research was sponsored by the National
Natural Science Foundation of China under Grant No.
60821003, the National Basic Research Program of China (973)
under Grant No. 2009CB320703 and the National High-Tech
Research and Development Plan of China under Grant
No.2007AA010301-01.

REFERENCES

[1] V. Basili, L. Briand, and W. Melo, “How reuse influences
productivity in object-oriented systems,” Communications of the
ACM 39(10), pp.104-116, 1996.

[2] H. Mili, A. Mili, S. Yacoub, and E. Addy, Reuse based software
engineering: techniques, organizations, and measurement. Wiley-
Interscience Press, Chichester, 2001.

[3] R. Land, A. Alvaro, and I. Crnkovic, “Towards efficient software
component evaluation: an examination of component selection and
certification,” In: 34th Euromicro Conference Software Engineering
and Advanced Applications, pp. 274-281, 2008.

[4] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S.
Kusumoto, “Ranking significance of software components based on
use relations,” IEEE Transactions on Software Engineering, 31(3),
pp. 213-225, 2005.

[5] SourceForge, 2010, http://sourceforge.net/
[6] ComponentSource, 2010, http://www.componentsource.com/
[7] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation

systems for online service provision,” Decision Support Systems
43(2), pp. 618-644, 2007.

[8] D. Weiss, "Measuring Success of Open Source Projects Using Web
Search engines," In: Proceedings of the First International
Conference on Open Source Systems, pp. 93-99, 2005.

[9] R.C. Seacord, S.A.Hissam, and K.C. Wallnau, “AGORA: a search
engine for software components,” IEEE Internet Computing 2(6), pp.
62-70, 1998.

[10] Y.S. Maarek, D.M. Berry, and G.E. Kaiser, “An information
retrieval approach for automatically constructing software libraries,”
IEEE Transactions on Software Engineering, 17(8), pp. 800-813,
1991.

[11] R. Prieto-Diaz, and P. Freeman, “Classifying software for reuse,”
IEEE Software 4(1), pp. 6-16, 1987.

[12] A. Zaremski, and J.M. Wing, “Specification matching of software
components,” ACM Transactions on Software Engineering and
Methodology 6(4), pp. 333-369, 1997.

[13] A. Podgurski, and L. Pierce, “Retrieving reusable software by
sampling behavior,” ACM Transactions on Software Engineering
and Methodology 2(3), pp. 286-303, 1993.

[14] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal, “Using the
wisdom of the crowds for keyword generation,” In: Proceedings of
the 17th international conference on World Wide Web, pp. 61-70,
2008.

[15] M. Ichii, Y. Hayase, R. Yokomori, T. Yamamoto, and K. Inoue,
“Software component recommendation using collaborative
filtering,” In: Proceedings of the 2009 ICSE Workshop on Search-
Driven Development-Users, Infrastructure, Tools and Evaluation, pp.
17-20, 2009.

[16] Y. Ye, and G. Fischer, “Supporting reuse by delivering task-relevant
and personalized information,” In: Proceedings of the 24th
International Conference on Software Engineering, pp.513-523,
2002.

[17] R. Holmes, R.J. Walker, and G.C. Murphy, “Approximate structural
context matching: an approach for recommending relevant
examples,” IEEE Trans. Softw. Eng., 32(1), pp. 952–970, 2006.

[18] Y. Li, L. Zhang, G. Li, B. Xie and J. Sun, “Recommending typical
usage examples for component retrieval in reuse repositories,” In:
Proceedings of the 10th international conference on Software Reuse:
High Confidence Software Reuse in Large Systems, pp. 76-87, 2008.

[19] J. Kim, S. Lee, and S. Hwang, “Towards an intelligent code search
engine,” In: Proceedings of the AAAI Conference on Artificial
Intelligence, 2010.

[20] S. Thummalapenta and T. Xie, “PARSEWeb: A programming
assistant for reusing open source code on the web,” In: Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering, pp. 204–213, 2007.

[21] Download.com, 2010, http://download.cnet.com/
[22] Ohloh, 2010, http://www.ohloh.net/

494 495

Testing Configurable Component-Based Software
- Configuration Test Modeling and Complexity Analysis

Jerry Gao , Jing Guan, Alex Ma, Chuanqi Tao Xiaoying Bai David C. Kung
San Jose State University, USA Tsinghua University, China University of Texas at Arlington, USA

Abstra t: As the advance of software component technology,
engineers encountered different issues and challenges in testing
and automation of configurable components and component-based
programs. One of them is how to validate configurable components
and programs to achieve adequate test criteria and support test
automation. This paper uses a test model, known as a semantic
tree, to assist engineers to model and analyze diverse composite
components and configurable software in terms of configurable
environments, organization structures and functions. Based on this
model, well-defined test criteria are presented to address the
adequate testing issues. In addition, the paper discusses two test
complexity evaluation methods for configurable components and
software. Furthermore, some case study results are reported to
demonstrate the testing complexity of diverse configurations.

KEYWORDS: test modeling and analysis, configurable software
testing, test complexity, test criteria, and configuration testing.

1. Introduction
In the last two decades, software component reuse has been a
popular concept and approach in software construction. To assure
software product quality, engineers need to assure the quality of
reused components and programs before deployment. Hence,
testing component-based systems has been a very hot research
subject in the past decade.

As the advance of component technology, the complexity of
components increased from functional component box to
frameworks/middleware and configurable/customizable
components. Software users (or clients) are allowed to configure,
select, and customize components and software based on their
functional requirements, desirable environments, and selected
organization structures. In the past two decades, many published
papers focus on software design, construction and management
issues concerning configurable components and programs in
production lines [2][4][5][6][7][8]. Although there are numerous
published papers discussing how to construct configurable
software and components in different aspects, only a few of them
focus on testing and automation of configurable components and
software [21-26].

In 2003, the authors have pointed that there is an emergent need in
testing configurable and customizable components [1][27]. In the
past decade, there are numerous published papers addressing issues
on testing components and component-based systems. However,
only a few of them addressed testing issues and challenges for
configurable components, frameworks, and configurable
component-based software [21-26]. From 2008 to 2009, we
collaborated with a software QA group in SUN Microsystems to
set up several test projects in the software testing class at San Jose
State University to validate the selected open-source components
and middleware developed by SUN Microsystems. Typical
examples are SocialSite, SailFin, and Glassfish, After went

through the projects, students not only found numerous bugs, but
also discovered some other problems in testing component-based
software with configurable features and structures. These issues
and challenges are summarized below.

How to identify and present diverse configurations in terms of
component/software composition structures, functions, and
environments?
How to define adequate test criteria and evaluate the test
coverage for configurable components and software?
How to analyze and measure the test complexity of
configurable components and software?

Today engineers lack well-defined test process, adequate test
models and criteria, as well as test automation solutions for
configurable components and systems. According to QA and test
engineers in the real world, there are the following needs.

Effective test models to assist test modeling and analysis of
components and systems with configurable structures and
features.
Well-defined test criteria and coverage analysis for
components with diverse configurations in environments,
functions, and structures.
Cost-effective solutions to evaluate configuration-oriented
test complexity and cost.
Test automation solution to support auto-testing of
configurable components and software.

This paper focuses on the first three needs. The paper uses a
model-based approach to address testing issues. A new model,
known as a semantic tree, is used to assist engineers to perform test
modeling and analysis for configurable component-based systems.
This model can be used to present diverse component
configurations statically or dynamically, including their
configurable environments, organizational structures, and
functions. Based on the given model, a set of configuration-based
test criteria is defined, and a test complexity evaluation method is
provided.

The paper has three primary contributions in software component
testing. Firstly, it uses a model-based approach to modeling,
presenting and analysis of diverse configurations in components.
Unlike the existing work, the proposed model allows engineers to
present and analyze both static and dynamic configurable
structures and features of component-based systems. Secondly, it
presents well-defined test criteria based on the proposed model to
address configuration-oriented test adequacy. Thirdly, it provides a
systematic method to evaluate test complexity of diverse
configurations in components and systems.

The paper is structured as follows. The next section discusses the
background and related work. Section 3 discusses the essential
issues in testing configurable components. Section 4 presents a test
model, known as a semantic tree, and related properties and

496 497

spanning trees to model the configurable structures for software
components. Section 5 discusses a set of test criteria for
configuration features in components and software. Finally,
Section 6 reports some case study results, and the conclusion
remarks and future work are given in Section 7.

2. Related Work

There are numerous published books and papers addressing
different topics and issues on component testing in the past decade.
- Component testing techniques - For example, the authors in

[13] presents flow-graph based test model and a technique to
support API-based component black-box testing by focusing
on a component’s accessible functional sequences. In
addition, the paper in [17] discusses testing of state-based
dynamic behaviors for a component.

- Design for component testability – Roy Freedman [10]
discusses how to measure component function testability. Gao
et al. in [11] proposed a component testability model to
evaluate software components from five different factors. In
addition, there are a number of papers discussing how to
design for component testability using different approaches.

Built-in-test components [9][20], where component tests
are coded inside components.
Framework-based testable components [14][15], where
test-driven handlers are built inside components based on
well-specified component APIs.
Systematic wrapping for testable components [19],
where test-oriented component wrappers are created to
support tests based on well-defined API artifacts.

- Component test adequacy and coverage – As pointed out in
[1][27], most existing test criteria and test methods can be
used in component testing to achieve function-oriented test
criteria and state-based test adequacy. However, there are
some open questions. One of them has been addressed by [12],
which is API-based access sequences and related test criteria.
The other open issues are relating to component reuse
contexts, component interactions, and configurations.

Based on our recent literature survey, there are only a few of
papers addressing testing issues and challenges in configurable
components. The existing work can be classified into three groups:

Testing configurable system constraints using combinatorial
interaction testing (CIT) [24, 25, 26] – CIT is a method to
sample configurations of a software system systematically for
testing. Many algorithms have been developed to create CIT
samples. A general constraint representation and the related
solving technique are presented in [26]. It focuses on this
problem by examining two highly configurable software
systems to quantify the nature of constraints in real systems.
CIT can provide an effective way to sample configurations for
testing. Cohen et al. in [25] focused on CIT-based test
coverage and fault coverage for crossing system configurable
parameters and their constraints. Based on CIT, Qu et al. in
[21] introduced an approach to regression testing of
configurable software using prioritization, which aims at
earlier detection of defects.
Regression testing of system with configurable features – For
instance, Robinson et al. proposed a firewall method for
regression testing of user-configurable software [22]. This
paper focused on user-centered tests for system configuration.

They constructed a firewall to identify the impacted area in
system based on setting changes and configurable element
changes respectively, then created or selected test cases to
cover the impacts. Some case studies are reported.
Component compatibility testing – Yoon et al. in [23]
presented some configuration space models, known as CDG
(component dependency graph) and ACDM (annotated
component dependency model), to present the relationships
among components, their versions, inter-component
dependency, and constraints. Moreover, they also provided
three test strategies based on the proposed models and
experimental results.

Unlike the existing research, this paper provides a configuration
model to present three-dimension configuration space for
components and systems, which includes configurable
environments, compositional architectures, and selective functions.
The model is known as a semantic tree model, which can be used
to present both static and dynamic configurations for component-
based software and its parts. Instead of focusing on configurable
system combinational constraints based on parameters, we focus
on diverse configurations in environments, architectural structures,
and selective functional features. We use a model-based approach
to address the testing issues in three-dimension configuration space
for component-based systems, including test modeling, test
adequacy, and test complexity analysis. Some case studies are
reported.

3. Testing Configurable Software

What is a configurable component? It refers to a compostable
component, which not only provides a specified contracted
interface, domain-specific service functions, and deployment
solution with necessary artifacts, but also is equipped with the
configuration capability that allows its users to make configuration
selections in its environments, functions, and structures statically
or dynamically. Similarly, configurable software is a program
supported with a capability that allows users to make various
configuration decisions statically or dynamically to generate
different deployment instances based on their desires. Component-
based software usually supports configurations in two different
ways: a) static configuration, in which decisions and selections are
made statically, and b) dynamic configuration, in which decisions
and selections are made during runtime. Based on our recent
experience, many modern frameworks and component-based
software allow users to make following types of configuration
decisions.

Environment configuration capability – which allows users to
configure and select different deployment environments.
Organization configuration capability – which allows users to
select different organization and composition structures based
on available components and building parts.
Function configuration capability – which allows user to
select different functional features based on their needs.

Figure 1 presents the configuration test space as a 3-dimension
space for configurable software and components, in which the X-
axis presents all possible environment configurations, the Y-axis
presents all of configurable structures/organizations, and the Z-axis
presents all of configurable functions.

496 497

Figure 1 Configuration Test Space for Configurable Software
3.1. A Test Process
Figure 2 shows a test process for a configurable software and its
components, which consists of the following steps.
1. Configuration environment check, in which different

environments are set-up to check product installation and
deployment. The focus of this step is to make sure that the
under-test component (framework or software) can be
operated properly under each specified configuration
environment.

2. Configurable structure/organization validation, in which
diverse configurable architectures (or organizations) are the
focuses. Its primary purpose is to assure that configurable
architectures can be structured successfully to support
functions.

3. Configuration function check, in which configuration
functions must be validated to achieve the selected test
criteria. The major focus here is to assure the quality of the
provided configuration service functions.

4. Configurable instance validation, in which each configured
component/software is deployed and validated under a
specific environment to assure its quality in a reuse context.

Figure 2 A Test Process for Configurable Software

3.2. Testing Myths
Since 2009, we used two software testing classes (collaborated
with Sun Microsystems) to test several open-source configurable
frameworks and platform servers (i.e. glassfish-v3) in San Jose
State University. Both of them support rich configuration functions
and environments. Here, we summarize our findings regarding to
problems and myths in testing configurable software (or
component) P below. Assume P’ is a configured instance of P.

Myth #1:
 If P1 has been tested in a deployment environment PE, then, there
is no need to validate another configured instance P2 of P on the

same deployment environment PE.
Realty:
We found that P2 may have problems to perform its quality

function services on PE, even though P1 functions well on the same
deployment environment PE.

Myth #2:
When Component A is a configurable part of a software P, if it has
been tested as a part of one instance of P, then there is no need to
test it again in another instance of P when it is included as its part.
Realty:
We found that as a configurable part, Component A may work well
in one deployed instance of P, but it may not work properly inside
another deployed instance of P, because both instances may
include component A with different composition structures (or
relations). This leads to two different reused contexts for
Component A. Therefore, it should be tested in both reused
contexts.

Myth #3:
When a function (F) is a configurable part of a configurable
component P, if it has be tested in one of its configured instance
P’, then there is no need to validate the function F again in
another configured instance P”.
Realty:
We found that a configurable function F in a configurable
component P may work well in one configured instance, but may
not work properly in another instance of component P although
both instances provide function F as one of their service functions.
This leads to two different reused contexts for Component A.
Therefore, it should be tested in both instances since they are
different reused contexts.

4. Test Modeling for Configurable Software

Although there are numerous useful models in software testing,
very few are suitable to model and present diverse configurations
and their mappings in the 3-dimension configuration space for
configurable component-based software. As shown in Figure 1, we
need a well-defined test model to assist engineers to analyze and
present each configurable structure (or compositional architecture)
(say CS-i) under a specified configurable environment (say CE-j)
as well as the corresponding configuration function (say CF-k), so
that model-based test criteria, test generation methods, test
complexity analysis techniques can be developed.

This section first discusses an updated test model to serve this
purpose. It is known as a semantic tree model, which has been
proposed as a test model to address problems and needs in
software installation testing [16]. Here, the semantics tree model is
used as a basis to model to address the needs in configuration
testing of the configurable component-based software in the 3-
dimension space.

4.1. Test Model – A Semantic Tree Model

Intuitively, a semantic tree is a special tree model for configurable
component-based software. Each tree can be used to model and
present the configuration elements and their relations in one of
three dimensions in the configuration space. The tree nodes present
configurable parts (or elements), for example, configurable

Configured Instance
Validation

Configuration Function
Check

Configuration
Environment Check

Component

Environment

Environment
Configuration

Model

Organization (or
Configuration) Model

Decision Table

State Model

Scenario Model

GUI-Based
Event Flow

Configurable Architecture
(or Organization) Validation

Configurable
Environment

Configurable
Structure/Organization

Configuration Function

CS-i

(CE-i, CS-j, 0)

CE-j

CF-k

Z

X

Y

(CS-i, CE-j, Cf-k)

498 499

components. The links present different semantic relations between
nodes. A semantic tree model can be formally defined as 3-tuple =
(N, E, R), where

N is a set of tree nodes. There are three types of nodes: a) a
single root node, b) intermediate nodes (or parent nodes), and
c) leaf nodes.
E is a set of links between nodes. Each link connects a parent
node and one of its child nodes in a tree. Each link show a
part of a semantic relation between a parent node and its child
nodes.
R is a set of relations, and each item in R has a semantic label
that presents a semantic relation between a parent node and its
child nodes. There are four types of semantic relations with
labels: EOR, AND, SELECT-1, and SELECT-M. Their
detailed semantics are given in Table 1. Figure 3 shows their
notations, where P-Node is a parent node, and C-nodes are its
child nodes.

To support the model-based analysis, we introduce a concept of
semantic spanning trees based on the semantic tree model.

Semantic Spanning Tree:
A semantic spanning tree GSPT is a sub-tree of a given semantic
tree GST. Unlike common spanning trees, a semantic spanning tree
GSPT for GST only can be derived based on the following
properties:
- For each parent node (Np) with an AND relation in GSPT, it

must include all of its child nodes and its links.
- For Np with an EOR relation in GSPT, it must include only one

of its child nodes and the corresponding link.
- For Np with a SELECT-1 relation in GSPT, it must include

only one of its child nodes and the corresponding link.
- For Np with a SELECT-M relation in GSPT, it must include

only M child nodes and the related links.

Figure 3 The Notation of Semantic Relations in a Semantic Tree
Table 1 Different Semantic Relations in a Semantic Tree Model

Relations Relation semantic descriptions (where P is a parent
node, and Ci is its child node)

EOR(P, <C1, C2>) EOR relation indicates that P-Node has two child
nodes C1 and C2. They only can be configured
exclusively.

AND(P, <C1,…,Cn>) AND relation indicates that P-Node must be
configured with all of its child nodes C1,…,, Cn.

SELECT-1(P,
<C1,…,Cn>)

SELECT-1 relation indicates that P-Node must be
configured with one of its selective child nodes
C1,…, and Cn.

SELECT-M(P,
<C1,…,Cn>)

SELECT-M relation indicates that P-Node must be
configured with M selective nodes from its child
nodes (C1,…, and Cn).

Figure 4. A Simple Semantic tree and Its Two Spanning Trees

Figure 5 A Sample Model for Component Environment
Configuration

As shown in Figure 4(a), a simple semantic tree example is
presented with one root node and three parent nodes (A, B, and C).
Each has one relation. One corresponding semantic spanning trees
are given in Figure 4(b). An algorithm is given in Figure 6 to find
out a semantic spanning tree for a given smantic tree model.

Figure 6. An Algorithm for Finding A Semantic Spanning Tree

 a) A Semantic Tree

A1 A2

Root

A
C

B

C4

Select-1

B1 B2

C1
C2 C3

AND

AND

EOR

B1

b) A Semantic Spanning Tree I Root

B

C

Select-1

C2

AND

A1

A

EOR

AND

B2

P-Node

Child Node

C-Node #1 C-Node #2

Parent
Node

EOR

P-Node

C-Node #1 C-Node #N

AND

SELECT-1

P-Node

C-Node#1 ….. C-Node #N

SELECT-M

C-Node #1 C-Node #N

P-Node

Semantic-Spanning-Tree(GST-Node, NSPT)
{
if GST -Node is a leaf node, then GST –Node NSPT; // add this leaf node into NSPT

return
else add GST -Node into NSPT

switch (GST -Node‟s relation) {
case “EOR‟: pick a GST-Node‟s child node (say Ci);

Ci NSPT // add into NSPT

Add GST-Node‟s link to Ci ESPT

Semantic-Spanning-Tree(Ci, NSPT);
break;

case “Select-1‟: pick a GST-Node‟s child node (say Ci)
Ci NSPT // add into NSPT

Add GST-Node‟s link to Ci ESPT

Semantic-Spanning-Tree(Ci, NSPT);
break;

case “AND‟: GST-Node‟s child nodes NSPT

Add all its links to its child nodes ESPT
Loop for each child node (say Ci) and do:
Semantic-Spanning-Tree(Ci, NSPT);
break;

default “NOT‟: pick a GST-Node‟s child node (say Ci)
Ci NSPT // add into NSPT

Add GST-Node‟s link to Ci E SPT

Semantic-Spanning-Tree(Ci, NSPT);
break;

 }
}

Home SP2

Windows 2000

Professional
Professional

SP2

Select-1

Windows XP

Professional
SP1

Professional SP4

Home SP1

Configured OS

EOR

EOR

498 499

4.2. Modeling for Configuration Testing in Configurable
Component-Based Software

Since 2009, we used two software testing classes and two master
project teams to apply the semantic tree model and spanning tree
concept onto one in-house-built component-based system and
several open-source configurable frameworks and platform servers
in San Jose State University. Here, we provide some examples to
demonstrate its effectiveness in modeling various environment
configurations, diverse configurable organizations, and
configuration functions.

4.2.1 Modeling Diverse Configurable Environments

All commercial software and components must be executed in a
certain operation environment Figure 5 shows a simple semantic
tree example which presents different configurable operating
system environments for software. In the real world, we can use
this model to consider all required configurable hardware and
software elements (or entities) in a product’s operation
environment. They include different configuration selections in
network protocols, device drivers, diverse operating systems and
their versions, multimedia and third-party dependent technologies.
As shown in [16], it is very important and necessary to have a
model like semantic tree to present diverse configurable
environments in software installation testing. Similarly, in a
component-based software production line, test engineers also
need a semantic tree model to perform test modeling and test
complexity of these diverse configuration environments. Since
each configurable environment usually requires a set of
environment-oriented test scripts to set up so that system function
and performance testing can be conducted properly.

4.2.2. Modeling Configurable Structures/Organizations

In a configurable component-based system, the program can be
configured by using selective components and parts to form
different organizational structures. In this case, software testing
must address and cover these diverse structures to make they are
adequately covered whenever they are required. In 2009, we have
used the semantic tree model to present the different configurable
organization structures for a configurable component-based
elevator simulation system, which is developed by SJSU students
using Java-based component technology. This system provides a
set of configurable components, including Floor Panel, Door, User
Panel, and Elevator Car components. A user interface is provided
to its customer to support a user to select and build diverse elevator
system instance based on their need. For example, a user can
configure a Door component with two models: a) Single-Door and
b) Double Door. Similarly, the user can configure other parts of an
elevator system. For example, Figure 7 shows the semantic tree
model for the Lift component (known as a ICar) of the elevator
system.

4.2.3. Modeling Diverse Configuration Functions
Today most configurable programs (or frameworks) provide rich
configuration service functions that allow users to make many
configuration decisions to configure different product instances.

All of them provide an Administration Console with a graphic user
interface to support user’s selections in setting diverse
configurations. To test the GUI-based configuration service
functions, we can apply many existing black-box test methods,
such as decision table, category-partition, and boundary value
analysis. However, based on our testing experience, students
entered the difficulty in dealing with the configuration-oriented test
coverage for the provided configuration service functions; because
these methods are not designed to easily address the diverse
configuration selections and decisions. They found that using the
semantic tree model is more effective to address and model the test
problems in software configuration functions in configurable
software. Due to the space limitation, we report the detailed
finding in our future publications.
4.3. Configuration Model Identification and Generation
It is important to have some systematic way to specify diverse
configurations to support test modeling, complexity and coverage
analysis. Although there are well-established software analysis and
design models, such as UML, they are not suitable to present the
diverse configurations in configurable software in terms of
environments, organizational structures, and configuration
functions. The proposed semantic tree model provides an effective
modeling tool to support engineers to perform software
configuration analysis and specification for configurable
component-based system in the 3-dimensional configuration space.
The first approach is a static specification-based approach, in
which engineers use the semantic tree model to specify and model
the configurations in three steps:
1. Identifying and modeling configuration environments.
2. Identifying and modeling configurable component-based

organizational structures (or architectures) based on the
customer needs.

3. Identifying and modeling configuration functions, including
their sectional options.

Clearly, when the given software supports complicated
configurations, this approach becomes tedious. Therefore, the
second approach is more dynamic and systematic one, in which
some built-in dynamic configuration discovery and tracking
capability will be provided in configurable software. With this
capability, dynamic configuration decisions in environments,
organization structures, and configuration functions can be tracked
and analyzed for the purpose of test modeling, test complexity
analysis, and test coverage measurement.

5. Configuration Test Criteria and Complexity
To adequately test configurable component-based software (P),
engineers must answer the following questions:

Have we adequately checked P under each configurable
environment?
Have we adequately tested P with each of configurable
organizational structures?
Have we adequately tested P for each of its provided
configuration service functions?

To answer these questions, engineers need well-defined test
criteria and an effective test coverage analysis solution. This
section defines the test criteria based on the semantic tree model
given in Section 3. In addition, two configuration test complexity
evaluation approaches are presented.

500 501

Figure 7. A Semantic Tree Model and Test Complexity for Configurable Organization Structures of the Elevator Car (ICar)

Figure 8. A Semantic Tree Model and Its Test Complexity of One Configuration Functions for the Elevator Car (ICar)
5.1. Test Criteria and Complexity for Configuration
Environments
When configurable software (say P) can be operated under
different configurable environments, it must be validated under
diverse configured environments to achieve certain environment
test criteria for vendors and customers. For example, if a customer
requires P to be functioned properly in a set of specified operation
environments, then P must be validated under these environments.
Let’s use the semantic tree model (GE) to present the diverse

configurable environments of software P. GSPE be the set of
semantic spanning trees of GE. Since each configured operation
environment for P can be modeled as a semantic spanning tree, we
can define the test criteria for configuration environments of P
below.

Test criterion for Single-Operation-Environment:
For any configured operation environment, this test criterion
can be achieved only when software P has been tested under
this configured environment.

Test criterion for All-Operation-Environment:
This criterion can be achieved only when software P has been
validated under each of the configurable environments.

Clearly, setting up these various configurable environments require
engineers efforts to prepare and execute the set-up scripts. Using
the semantic tree model GE for P, engineers can easily prepare the
environment set-up scripts based on its semantic spanning trees in
GSPE. Hence, the test environment complexity, represented as T-
complexityP(GE) of P can be computed below.
T-complexityP(GE) = No. of semantic spanning trees in GSPE (1)

This complexity formula enables to engineers to figure out the
required number of pre-test scripts for environment configuration
and set-up. This will be useful for test planning in test cost and
complexity analysis.

5.2. Test Criteria and Complexity for Configurable
Organization Structures
For a configurable component-based software P, each configurable
organizational structure directly corresponds to one of its semantic
spanning trees of GS, For a software vendor of P, it is very
important to validate its instances to cover its diverse
organizational structures.
Since each semantic spanning tree in GS represents one of its
configured organization structures, it is necessary for us to
understand and define the adequate test criteria for validating its
various organizational (compositional) structures. Here, we

AND

ANDAND AND

AND

AND

Door
Factory

iDoor

Door

EOR

Single Door Double Door

iDoor Panel

DoorPanel
Configuration

DoorPanel
Factory

Door
Configuration

DoorPanel

EOR

Door Panel #1
Door Panel#2

iUser Panel

UserPanel
Configuration

UserPanel
Factory

UserPanel

UserPanel
Queue

UserPanel
Queue Factory

UserPanel
Queue

Configuration

AND

iUserPanel Queue

EOR

UserPanel1 UserPanel2

iCar Controller

Car controller
Configuration

Car controller
Factory

Car
Controller

Car

Car
Configuration

Car Model

Car Factory

EOR

Model1 Model2

1*2*1=2

2

1*2*1=2

2

1*2*1=2

2

1

1

2

1*2*1=2

2*2*2*1*1*2=16 ICar

No.of cars Door Configuration

Single Double

EOR

User Panel Color

Blue Green Red Yellow

Door Panel
Display

5 2

4

5 x2x4x4x2=320

SELECT_1

1 2 3 … 5

SELECT_1

User Panel Pressed
Button Color

SELECT_1
EOR

Text Symbol

2

4

Blue Green Red Yellow

AND

Elevator Car
Configuration

500 501

provide test criteria for configurable organization structures of P
based on a semantic tree model. Let’s use GS = (NS, ES, RS) as a
test model to present its configurable organizations. GSPT = {GSPT-i
| i = 1,..n}, where GSPT-i is a semantic spanning tree of GS. Let Ts
be the test set for P.
Adequate test criterion for Single-Organization-Structure:

For a single organization structure modeled as a semantic
spanning GSPT-k of GS, this test criterion is achieved if and
only if TS of P has been exercised onto at least one deployed
instance Pi with GSPT-i as its organization structure.

Adequate test criterion for All-Organization-Structures:
This test criterion is achieved if and only if TS of P has been
exercised onto the deployed instances of P configured with
each spanning tree in GS,.

To support the evaluation of test complexity of diverse
configurable organization structures, we provide a hierarchical
computation method below. For any parent node NPi in NS of GS, its
organizational configuration complexity can be computed based on
its semantic relation with child nodes. Let T-complexity(NPi) be the
configuration complexity for its organization structures. It can be
computed below.

If the node NPi has the EOR semantic relation with its child
nodes, then its configuration complexity can be computed
below.
T-complexityC(NPi)

=T-complexityC(NC1)+T-complexityC(NC2) (2)
Where NC1 and NC2 are the two child nodes of NPi
If the node NPi has the AND semantic relation with its child
nodes, then its configuration complexity can be computed
below.
T-complexityC(NPi) = ∏ (T-complexityC(NCj)) (3)
Where j = 1, …, n, and NCj is a child node of NPi.
If the node NPi has the SELECT-1 semantic relation with its
child nodes, then its configuration complexity can be
computed below.
T-complexityC(NPi) = ∑ (T-complexityC(NCj)) (4)
Where j = 1, …, n, n is the number of its child nodes, and
NCj is a child node of NPi.
If the node NPi has the SELECT-M semantic relation with its
child nodes, then its configuration complexity can be
computed below.
T-complexityC(NPi)
= ∑(T-complexityC(NCj) * n!/(m!(n-m)!)) (5)

Where j = 1, …, M, NCj is one of M selected child nodes of
NPi.from its N child nodes.

Following these formula, engineers can easily implement an
automatic solution to compute the test complexity for diverse
configurable organization structures in any given configurable
component-based software. Figure 7 presents the detailed test
complexity of different configurable organization structures for
Elevator Controller (ICar), which is a composite component in the
elevator simulation system. For example, a Door component with
an EOR relation to its two child nodes (Single Door and Double
Door) has to be checked for two different settings. Hence, its test
complexity is 2. The iDoor component has a AND relation with its
three child nodes, including Door component. Its test complexity
for different compositions is 2 based on the formula in (3). The test
complexity for the Elevator Controller (ICar) is 16.
Similarly, the test complexity computation approach can be used
for a semantic tree model to present diverse configuration

functions in the elevator simulation system. Figure 8 shows the
detailed results of test complexity for testing function
configurations for the Elevator Controller (ICar) based on the same
approach. As shown in Figure 8, its test complexity is 320.

6. Case Study Results on Configuration Testing
In 2010, we used our students in software quality testing class
(CMPE287) to conduct a case study, where 10 student groups are
required to conduct a term-project to validate the given
component-based elevator systems. One of the tasks is to use the
semantic tree model to support configuration-based testing, so they
are able to understand the testing complexity and challenges in
testing configurable component-based software.
In this case study, we focus on the following items:
- Discover the semantic tree model for the selected

configurable software to see the effectiveness of the model in
presenting different configurations, including environments,
organization structures, and configuration functions.

- Identify, understand, and analyze the test complexity of
configuration-based testing in configurable component-based
systems.

Table 2. The Semantic Tree for Organization Structures and Its
Complexity
Semantic Tree
for Organization
Structures

of
Spanning
Trees

of
Nodes
/# of
Leaves

of
Links

Max
Height

of
EOR

of
AND

Elevator
Semantic Tree

64 54/36 53 4 6 12

ICar Semantic
Tree

16 33/22 32 3 4 7

Table 3. The Semantic Tree for Configuration Functions and Its
Complexity
Semantic Tree for
Configuration
Functions

of
Spanning
Trees

of
Nodes
/# of
Leaves

of
Links
/Max
Height

of
EOR

of
AND

of
SELEC
T-1

Elevator
Configuration

640*256 47/37 46/3 4 3 6

ICar
Configuration

320 23/17 22/2 2 1 3

As shown in Figure 7, the semantic tree model for ICar has 33
nodes. Among of them, there are 22 leaf nodes, and 10 parent
nodes. In addition, there are two different types of semantic
relations, including EOR and AND. And its test complexity of
various configurable organization structures is 16 since the
semantic tree has 16 different spanning trees. Table 2 shows the
detailed complexity of the semantic tree model of the Elevator
Simulation System. Its total test complexity is 64, which presents
the total number of different configured structures for the elevator
system. Hence, while validating this software, a vendor’s engineers
must test its deployed instances to cover its configurable
organization structures. In practice, they can achieve the defined
adequate test criteria (discussed in Section 5) in an incremental
approach. For example, whenever a customer is deployed one
instance, its configured system organization structure (or
component composition structure) will be recorded. This idea has
been implemented in one of our master project. For this system, we

502 503

found that we need to develop 64 scripts to set up and cover
different organization structures so that the deployed system
instance can be tested with certain adequate function test set using
the existing test methods. Table 3 shows the related semantic tree
model for configuration functions in the system based on the
provided system user interface and configuration service functions.
Clearly, its complexity is much higher due to more choices are
given in the semantic tree. This suggests the configuration testing
could be very complicated. More test automation research work for
configurable software testing is needed.

7. Conclusions and Future Work
Although there are numerous papers addressing how to construct
configurable software and components, only a few papers
discussed how to test configuration features and structures of
component-based software. This paper uses a model-based
approach to discussing the relating issues, challenges, and test
process. It applied a semantic tree model as a test model to present
and analyze the diverse configuration environments and
configurable structures in component-based systems. In addition, a
set of adequate test criteria configurations has been defined.
Furthermore, some case study results are reported demonstrate its
effectiveness and application in test modeling and test complexity
analysis. Currently, we are developing a test automation solution to
support automatic testing of configurable component-based
software. The future extension of this research is to study how to
use a model-based approach to addressing regression testing issues
and challenges in configurable features and services in SOA
applications.

Acknowledgement
This research project was funded by Sun Microsystems in 2009,
and Dr. Gao is supported by Tsinghua National Laboratory for
Information Science and Technology (TNLIST) in 2010.

References
[1] Jerry Gao, Jacob Tsao, and Ye Wu, Testing and Quality
Assurance of Component-Based Software, Artech House
Publishers, 2003.
[2] J. M. Nogiec, “A configurable component-based software
system for magnetic field measurements. IEEE Transactions on
Applied Superconductivity”, Volume 16, Issue 2, June 2006.
[3] Jonathan E. Cook, Jeffrey A. Dage, “Highly reliable upgrading
of components”, ICSE 1999.
[4] Roman Lysecky and Frank Vahid, “A configurable logic
architecture for dynamic hardware and software partitioning”,
Proceedings of the conference on Design, automation and test in
Europe - Volume 1, Feb. 2004.
[5] Hokkaido Hakodate, “Configuration and dynamic
reconfiguration of component-based applications with Microsoft
.NET”, Proceedings of The Sixth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, 2003.
[6] D.B. Stewart, R.A. Volpe, P.K. Khosla, “Design of
dynamically reconfigurable real-time software using port-based
objects. Software Engineering, IEEE Transactions on Volume 23,
Issue 12, Dec 1997.
[7] Thirunavukkarasu Sivaharan et al. “GREEN: A Configurable
and Re-configurable Publish-Subscribe Middleware for Pervasive
Computing”. On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE, Springer Berlin/ Heidelberg, 2005.

[8] L. F. Friedrich, et al., “A Survey of Configurable, Component-
Based Operating Systems for Embedded Applications”, IEEE
Micro, Vol. 21, No. 3, May/June 2001.
[9] Jonathan Vincent, et al., “Principles of Built-In-Test for Run-
Time-Testability in Component-Based Software Systems”,
Software Quality Control, Volume 10, Issue 2, 2002.
[10] R. S. Freedman, “Testability of Software Components”, IEEE
Transactions on Software Engineering, 17(6), June 1991.
[11] Jerry Gao and Ming-Chih Shih, “A Component Testability
Model for Verification and Measurement”, The Proceedings of
COMPSAC2005, Edinburgh, Scotland, July 25-28, 2005.
[12] Jerry Gao, Raquel Espinoza, and Jingsha He, “Testing
Coverage Analysis for Software Component Validation”,
Proceedings of COMPSAC2005, Edinburgh, Scotland, July 2005.
[13] S. H. Edwards, “Black-Box Testing Using Flowgraphs: An
Experimental Assessment of Effectiveness and Automation
Potential,” Journal of Software Testing, Verification, and
Reliability, Vol. 10, No.4, December 2000.
[14] Stephen H. Edward, “A Framework for Practical, Automated
Black-box Testing of Component-Based Software”, Journal of
Software Testing, Verification and Reliability, Vol. 11, No.2, June
2001.
[15] Jerry Gao, et al, “On Building Testable Software
Components", Proceeding of International Conference on COTS-
Based Software Systems, Orlando, Feb. 2002, Springer's Lecture
Note in Computer Science (LNCS).
[16] Jerry Gao, Karen Kwok, and Todd Fitch, “Model-Based Test
Complexity for Software Installation Testing”, The proceedings of
SEKE2008, San Francisco, July 2008.
[17] Leonardo Mariani, Mauro Pezze. “A technique for verifying
component-based software”, Proceedings of TACoS2004,
Electronic Notes in Theoretical Computer Science Volume 116,
19, January 2005, Elsevier B.V.
[18] Venkita Subramonian, et al. “The Design and Performance of
Configurable Component Middleware for Distributed Real-Time
and Embedded Systems”, The Proceedings of the 25th IEEE
International Real-Time Systems Symposium, 2004.
[19] Jerry Gao, et al, “Building Testable Software Components-
Approach and Its Experimental Results”, The proceedings of
SEKE2008, San Francisco, July 2008.
[20] Yves Le Traon, et al, “Self-testable components: from
pragmatic test to design-for-testability methodology”, The
Proceedings of TOOLS, Nancy, France, 1999.
[21] Xiao Qu, Myra B. Cohen, and Gregg Rothermel,
“Configuration-aware regression testing: an empirical study of
sampling and prioritization”, ISSTA 2008.
[22] B. Robinson and L.White, “Testing of User-Configurable
Software Systems Using Firewalls”, ISSRE 2008.
[23] Il-Chul Yoon, et al, “Effective and Scalable Software
Compatibility Testing”, ISSTA 2008.
[24] D. M. Cohen, et al, “The AETG System: An Approach to
Testing Based on Combinatorial Design,” IEEE Transactions on
Software Engineering, 1997.
[25] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across
configurations: implications for combinatorial testing”, SIGSOFT
Software Engineering Notes, 2006.
[26] M. B. Cohen, et al., “Interaction testing of highly-configurable
systems in the presence of constraints”, ISSTA 2007.
[27] E. J. Weyuker, “Testing Component-based Software: A
Cautionary Tale”, IEEE Software, 15(5): 54-59, 1998.

502 503

Data Uncertainty Model for Mashup
Xin Gao

School of Electronics Engineering and Computer Science
Peking University

Beijing, China
 gaoxin54@gmail.com

Wenhui Hu, Wei Ye, ZHANG Shi-kun
National Engineering Research Center for Software

Engineering
Key laboratory of High Confidence Software

Technologies (Ministry of Education)
Peking University

Beijing, China
 xiaodiahu@gmail.com

Abstract—Mashup is a new kind integration application and
users can compose related services as components to build new
application—the mashups. Now the services on the web have
different degrees of data uncertainty, including data error, stale
data, and improper data processing and so on. We provide a data
uncertainty model for mashup component which is assessed in
the space of the homogeneous components that have the same
functionality, and then we give the uncertainty computation
mechanism of mashups based on the data uncertainty of mashup
components and the computation sequence for different
composition relationships.

Keywords-component; mashup; data uncertainty

I. INTRODUCTION

In Web development, a Mashup is a Web application that
combines data from more than one source into a single
integrated tool. The term Mashup implies easy, fast integration,
frequently done by access to open API's and data sources to
produce results data owners had no idea could be produced[1].
And mashups are applications developed by integrating content
and functionality sourced from the Web. Mashups typically
integrate heterogeneous elements available on the Web, such as
RSS/Atom feeds, Web services, content scraped from third-
party websites, or widgets (such as Google Maps)[2]. Different
kinds of mashups reuse user interface (UI) components to build
the composite application’s UI, leverage and require external
computational services, or simply integrate multiple plain data
sources. So web environment has been required to provide data
services with high quality.

With more and more sources of web service, the number
and types of web service increase significantly. Now the
services that we can get from the Internet include maps, e-mail,
pictures, weather, traffic, search, etc. From the QWS Dataset
[3,4,5] and ProgrammableWeb [6], the statistics of web service
shows that there are a lot of choices in each type, and the
overall amount of web service increases all the time. So we
regard these services that share the same functionality as
homogeneous services. There are thousands of web services,
and also a large number of mashup services for the users,
which build a solid base for related applications. From the
point of view of the source of web service, it has changed from
the original single site to numerous web application’s open
APIs and service supporting architectures like SaaS, SOA, and

Cloud computing. So the users can access to the original stand-
alone local application in the form of service by the service
framework like Axis, and also can access to the core data and
applications through SaaS platforms and the OpenAPI of flickr,
Google and yahoo on the web.

So user can use the mashup tools to build the new
application, just so-called situational applications—that is,
applications where the developer is also the final user and that
serve a highly focused purpose. Situational applications
typically aim to answer a precise query over a limited but
heterogeneous data space. Their quality, therefore, depends
strongly on the information that different integrated
components can provide. As the promotion of mashup
applications, there is one issue that has taken more attentions
and is unavoidable: data uncertainty.

The uncertainty of the data source is very common on the
web. We can see the web as the largest database of human
society. This database is variable and uncertain because of
numerous sources, complex structure, frequent change and
dynamic transmission. The data uncertainty exists as
inconsistent data, fault data, data variance, service instability
and the impossible traceability of the change of data. We focus
on the variance of web data which can be caused by error data
source, unsuitable data process and stale data. So there are
always many alternate results for the same data. For example,
yahoo search service and Google search service have different
results for the same keyword by a compare web site [7]. So the
web can also be viewed as the largest uncertain database, and
uncertain homogeneous service is an important part. For
example, there are many services from travel sites which
provide hotel information of scenic spots. But because of
different information source and data update mechanism of
these web sites, there may be some differences of price and
room number among the services, and the uncertain data will
mislead the travelers. Now most of service selection methods
only focus on QoS strategy without considering the uncertainty
aspect, so it can’t meet the requirement of providing users with
reliable service in web environment. The mashup tools use
these uncertain services as mashup components to build
mashup applications, and it needs corresponding solutions for
the data uncertainty of mashup. So data uncertainty is crucial
for both components and composition in mashup. Assessing a
mashup’s data uncertainty requires understanding both

504 505

component data uncertainty and the effect that the composition
has on the final mashup’s overall data uncertainty.

In this paper, we introduce a data uncertainty model for
mashup components, analyze different types of composition in
mashup, and then define the calculation of data uncertainty for
mashups based on the relationships of mashup components in
the mashups. In the following parts of this paper, section 2
describes related work of mashup and data uncertainty. Section
3 describes the data uncertainty of mashup components,
including the model to describe uncertain mashup components
and the mechanism to access the data uncertainty of
components. Section 4 introduces the composition of mashup
components. Section 5 describes the data uncertainty of
mashups, including the model describing the mashups and the
mechanism to access the data uncertainty of mashups. Section
6 makes the conclusions and discusses the future work.

II. RELATED WORK

In traditional database applications, the existence and
accuracy of the data is deterministic. In recent years, as
technology advances, people deepen the understanding of data
acquisition and processing technology. Now uncertain data
problem has widely attracted public’s attention, and many
researchers have focused on uncertainty in data processing.
Literature [12] describes the background of uncertainty in the
application of the data, and summarizes the challenges of
uncertainty data management. Literature [13] gives an
overview of algorithms and application of uncertain data
management techniques. From the point of view of uncertain
systems, Purdue University's Orion project [10] tries to design
a general-purpose uncertain database system; the Trio project at
Stanford University [11] studies the lineage according to the
analysis of uncertainty. In the model aspect, the most
commonly used model is possible world model [8, 9], which
evolves a lot of database instances (called possible world
instances) from uncertain database. There are also some
researchers who focus on data integration, and literature [14]
designs data-integration system which handles uncertainty at
three levels: semantic mapping, uncertain data and uncertain
queries. So based on these progresses of data processing on
uncertain data, we can carry out the work to handle data
uncertainty of web service regarded as the data source.

Currently there are a number of Mashup tools. Damia[15] is
a Mashup tool provided by IBM, which allows the users to
assemble data feeds from Internet and enterprise data sources.
Yahoo Pipes [16] is a web-based tool provided by Yahoo. The
users can build mashup applications by aggregating and
manipulating data from web feeds, web pages, and other
services. A pipe is composed of one or more modules, each one
performing a single task like retrieving feeds from a web
source, filter, sort or merge feeds. Popfly[17] is a web-based
Mashup application by Microsoft. It allows the users to create a
Mashup combining data and media sources. The Mashup is
built by connecting blocks. Apatar[18] is a Mashup data
integration tool that helps users to integrate desktop data with
the web. Users install a visual job designer application to create
integration schemas called DataMaps. MashMaker[19] is a
web-based tool by Intel for editing, querying and manipulating
web data. So we can see that many mashup tools focus on the

integration of web data sources, and the mashups is the result
of data integration of web data from the data aspect.

There are only a few researches on the data uncertainty of
mashup application. The UQBE [20] is a mashup tool for non-
programmers that supports query-by-example (QBE) over a
schema made up by the user without knowing the schema of
the original sources. Based on automated schema matching
with uncertainty, the UQBE system returns the best confident
results. MashRank [21] is a mashup tool that treats ranking as a
first-class citizen in mashup construction, and allows for
rankjoining Web sources with uncertain information. Both
these two tools which consider the uncertainty problem just
study the data uncertainty of the ranking data and schema
matching, but don’t study the composition of uncertain data
and the data uncertainty of mashups. So the research on data
uncertainty in mashup is in the initial stage, and more and more
people will take attention to this topic.

III. DATA UNCERTAINTY OF MASHUP COMPONENTS

On the web, there are many alternates for each kind service
as the result shown in ProgrammableWeb, and we refer to them
as homogeneous services. And these services can be used as
the components of mashup, and data uncertainty of these
homogeneous services is just the main data uncertainty of
mashup components. We think that the data uncertainty of
mashup component is relative to their alternate components,
and the data uncertainty is considered in the space of all the
mashup components which share the same functionality. We
see these mashup components as the tuples in uncertain
database, each of which has its information and its confidence
possibility that reflects component’s uncertainty. We think that
the data uncertainty of component is caused by component’s
quality to provide data service and user’s distrust among all the
alternate choices. So we can get the information of the
confidence degree of the component based on user’s decision
when the users participate in the selection of homogeneous
components, which can give the uncertainty assessment of the
component. Based on the assessments, we can build uncertain
model for these homogeneous mashup components.

A. Uncertain component model
We consider the data uncertainty of mashup component

from two aspects: the ability to provide data service and user’s
confidence of component’s data. Before the data processing of
the data uncertainty of mashup components, we first need to
propose the syntax description of mashup component. Now
services for mashup are mainly described by the basic
information, such as service name, operation and
corresponding input / output, etc. At the same time, we should
also consider the quality of the component and the attributes
which can describe QoS (quality of component). Then we can
provide the components which meet user’s requirements based
on QoS and user decision. Therefore we need a unified
component description model with additional QoS information,
and the service model is extended to following model:

Definition 1: According to the consideration of QoS, a
component can be identified as a six-tuple set:

MC={ComponentName, Op, Input, Output, Profile, Qset}

504 505

Where ComponentName is the name of the component, Op
is the operation to get corresponding data, Input / Output is the
input and output of the operation, Profile describes component
auxiliary information. And Qset is a set of attributes which
represents the qualities of component to provide data service.

QoS attributes help determine which of the available
components is the best and meets users’ requirements. The
meanings of the attributes are as follows

a) Response Time Time taken to send a request and receive
a response

b) Availability Number of successful invocations/total
invocations

c) Throughput Total Number of invocations for a given
period of time

d) Reliability Ratio of the number of error messages to total
messages

e) Success ability Number of response / number of request
messages

f) Latency Time taken for the server to process request
Considering the problem of uncertain data management, we

apply probabilistic database model to create uncertain service
model. We wish to model probabilistic information using a
probability space whose possible outcomes are all the
conventional instances. The finiteness of D implies that there
are only finitely instances . By finite probability space we
define a probability space (D, P[]) in which D is finite. We
shall use the equivalent formulation of pairs (U, p), where U is
the finite subset of D and the probability assignment

 satisfies and .
Therefore, we use probabilistic model to map data uncertainty
by adding the probability attribute to the description of
components. This uncertain component model is as follows:

Definition 2: An uncertain component model can be
identified as a four-tuple set:

 MC={ComponentName, N, Qset, P}

Among them, ComponentName stands for the service; N is
a number which stands for the times that this service has been
chosen, and it is also the subjective information of user
decision in the model; the Qset is the same as definition 2; the
additional P represents the assessment of the credibility of each
component. So represents the domain of all the
homogeneous components, and represents the subset of ,
then satisfied:

 and

B. Uncertainty component Model Building
 From the definition of uncertain component model, we can

see that how to compute probability attribute is the core work,
and it relates to the problem of what is certainty and what is
uncertainty. In our view, the origin of certain in the web is
credibility assessment by users. Mashup component is a kind of
software application in web environment, and is a dynamic
changing data carrier for numerous users’ ideas and thoughts.

So for the component, the user is the root cause of its existence,
and the user's knowledge and sense of service determines the
credibility of the service. And from the further analysis, user
awareness of the component’s credibility comes from user's
intuitive understanding of component’s quality properties
which represent the objective uncertainty of component and
user’s requirements which represent the subjective uncertainty
of component. Therefore, the service's credibility can be
evaluated based on the combination of these two kinds
information of component. In order to support uncertain data
assessment of homogeneous components, we need to establish
the appropriate process to meet the requirements of component
registration and management, component accessing and
uncertainty modeling. Our approach sets the probability
attributes in uncertain service model as follow: we first
calculate the weight of each quality attribute according to
statistics on the user's selection through the neural network
approach; and then calculated quality of component; finally,
according to the quality of components we get the credibility of
uncertain component model which is the value of
corresponding probability property.

Set up a group of homogeneous components
, and users give the choice based on

personal feeling. Then we can use the number of choices of
homogeneous components from the user group to calculate the
services QoS attribute weights by neural network.

First, we need to collect and organize the user’s choice of
homogeneous components. Within a certain period of time the
user's choice is a collection of components, which can be
expressed as ,
where means that the component has been chosen

times. Use matrix to organize QoS attributes of selected
components as follow. It is the matrix in which each row
represents a single component metric, where each column
represents a single QoS attribute and the QoS attributes include
Response Time Availability Throughout Successability
Reliability and Latency.

QosM=

Then set , which is a 6*n matrix, as the input of
neural network algorithm unit which means that set every QoS
attribute as a node in the neural network and the corresponding
value of each component is an assignment of the node; set the
times of each component being selected in the form of

 , which is 1*n matrix, to be the
target; at last, construct the training sample. Through the
training of neural network, we can get the weight for each QoS
attribute. Then each QoS weight divides the max of them, and
we can get the set of relative weights

which are corresponding to the six attributes of QoS.
Regarding the evaluation mechanism of service credibility, we
view homogeneous components as an independent set and

506 507

compute relative quality of each component in the
corresponding homogeneous component set as follow:

Because response time and latency are smaller, the quality
of component’s data is better, so they are represented by their
complements. Thus quality of component is formed by these
relative qualities and the relative weights, just as follow:

When we get the relative quality , the degree of
credibility which is also the attribute of component can be
calculated by , in proportion to the overall relative qualities
of homogeneous components, just like:

IV. COMPOSITION IN MASHUP

Assessing each mashup component’s data uncertainty isn’t
enough: the final mashup application’s data uncertainty also
depends on how these components are interconnected. We can
assess the final applications’ overall data uncertainty by
aggregating the composing services’ data uncertainty.
Mashup’s data uncertainty isn’t simply an aggregation of
individual component’s data uncertainty. Instead, it depends on
how particular components combine into a composite logic,
layout, and hence user experience. By analyzing the most
popular mashups published on programmableweb.com, the
paper [2] identified the following typical roles:

1) Master. Even if a mashup integrates multiple
components in a single page, in most cases, one component is
more important than the others.

2) Slave. A slave component’s behavior depends on another
component: its state is mainly modified by events originating in
another (master) component.

3) Filter. Filter components let users specify conditions
over the content the other components show. They provide
(possibly hierarchical) access mechanisms that let users
incrementally select which content they want to see.

Based on these three roles, there are three basic patterns
that characterize most mashup applications (see Figure 3) and
highlight some mutual dependencies among the identified roles
that impact mashup’s data uncertainty.

1) The slave-slave pattern, in which the mashup integrates
several slave components the user can interact with in an iso-
lated fashion, without any propagation of data or events from
one component to another. At startup or during runtime, users
define filter conditions that steer all the slave components. The

effect is that of a rather static application with very simple
interaction facilities that lets users “query” the slave
components’ data set. Regarding the resulting mashup’s data
uncertainty, we assume that the filter doesn’t increase the
components’ data uncertainty.

2) The master-slave approach, the most widely used pattern
among today’s mashup applications. It features all three
component roles. A filter component lets users restrict the data
all the other components simultaneously show. Users employ
the master component to perform the main interactions with the
application, such as selecting related data items. The slave
component is automatically synchronized according to the
selections performed on the master component, thereby
visualizing the selected elements’ details. With the master-
slave pattern, the final application’s data uncertainty could
depend on the application’s composition logic. Provided that
master and slave are compatible in terms of data to be
visualized, their integration might increase the slave’s data
uncertainty.

3) The master-master pattern. This is the most complete
pattern, in which — in addition to suitable filter components —
all integrated components are masters. All components provide
interaction facilities that let users perform selections or that
provide inputs that propagate to all the other components that
synchronize accordingly. The master components therefore
also act as slaves. From a data uncertainty perspective, the
master-master pattern is similar to the master-slave pattern. If
the components have different underlying data sets, situations
could occur in which one component satisfies the user request,
while another component can’t, lowering the mashup’s overall
perceived data uncertainty.

We will give our data uncertainty computation mechanism
based on these three roles of mashup components and the three
mashup patterns. In this paper, we assume that the mashup
composition performs integration at the process and
presentation levels correctly. To characterize data uncertainty
in the context of mashups, we focus on the data level.

V. DATA UNCERTAINTY OF MASHUPS

A. Date Uncertainty in the data sets of mashups
Data integration in mashups corresponds to a global-as-

view (GAV) problem, in which the global schema is expressed
in terms of views over the integrated data sources. During
mashup development, the designer can inspect the attributes the
components expose, as specified in the component APIs, and
infer join attributes on which to base data integration.

Ideal data set(IDS)

Missing data

Situational
slave data set
(SDSS)

Slave data set (DSS) Master data set (DSM)
Unnecessary data

Situational master
data set (SDSM)

Real data set
(RDS)

Join among data sets

Figure 1. Data sets involved in data integration of mashup.

506 507

We can characterize data integration for mashups by
categorizing the data relationship between different data
sources as follows:

Mashup applications are developed to let users retrieve
and access a set of data that we call the ideal data set
(IDS); it is the final data view of mashup components.
Each component k has its own data set DSk. To fulfill
the mashup requirements, a smaller portion SDSk
DSk could be sufficient. SDSk is the corresponding
components’ situational data set.
The integration of all situational data sets SDSk gives
the real data set RDS IDS that the mashup provides.
RDS’s data uncertainty thus depends on the uncertainty
of the data individual components provide.
We can determine the mashup’s data uncertainty by
comparing its RDS with the corresponding IDS.

Now we analyze the corresponding data uncertainty for
RDS based on the forward work on data uncertainty of mashup
components and their composition relationships.

The data uncertainty of situational slave data set is the
same as the data uncertainty of slave component. And
we set it as P(S).
The data uncertainty of situational master data set is
the same as the data uncertainty of master component.
And we set it as P(M).
For the missing data is not the core data part of RDS
and always have no strong relations with the slave
component or the master component, now we don’t
consider its data uncertainty.

Then the data uncertainty of RDS is calculated based on the
type of Join relationship among data sets and the structure of
mashup components. We assume components are sourced from
the Web, we also assume they’re independent of each other.
Because our data uncertainty is computed for the data source
among the data space which is composed of the data sources
which belong to the same domain, like weather, news, sales
and so on, the data uncertainty of slave component and that of
master component are independent. So the data uncertainty of
join relationship between slave component and master
component is as follow:

)(*)()(SPMPMSP

We describe data uncertainty of data source with the
probability of the data source to be certain. So P(M) is not only
the probability of master component to be certain, but also the
data uncertainty of mater component; P(S) is the data
uncertainty of slave component; P(MS) is the data uncertainty
of the join data set between mater component and slave
component. is the probability that the slave
component is uncertain when the master component is certain.
And we will describe different ways to compute RDS‘s data
uncertainty for different composition situations in mashups.

B. Data uncertainty of RDS
In the Slave-slave pattern, every mashup component is

independent with each other, and the data uncertainty of
mashup components is the maximum data uncertainty of all the
slave components. Because we describe data uncertainty of

data source with the probability of the data source to be certain,
the data uncertainty of mashup components is described by
P({S1,S2,…,Sn}).

For the Master-slave pattern and Master-Master pattern, the
data uncertainty is mainly to compute the data uncertainty
between master component and slave component, because of
the data uncertainty between master component and master
component can be transformed to data uncertainty between
master component and slave component. In the situation of
Master-slave pattern, there are two sources of data uncertainty
which are the one that the mater component is uncertain and
the other one that the slave component is uncertain when the
master component is certain. So the data uncertainty between
master component and master component is as follow:

Where P(M_S) means data uncertainty between a master
component and a slave master component, means the
probability that master component is uncertain and
means the probability that the slave component is uncertain
when the master component is certain.

We can consider Master-Master pattern to be the
combination of two Master-slave patterns: a selection in one
master causes the other master to act as a slave and vice versa.

Where P(M_M) means data uncertainty between two
master components; means the probability that master
component is uncertain; means the probability
that one master component is uncertain when another master
component is certain.

In real mashups, we can analyze the mashups into the three
patterns, but we also need to set the data uncertainty
computation sequence for the mashups. For the computation
sequence, we have set three rules:

Master-Master pattern is computed prior to others.
Master-Slave pattern is computed prior to Slave-Slave
pattern.
The pairs of mashup components which have smaller
data uncertainty are computed prior.

MasterSlave Slave Master

Master Master Master

Master Master

Slave Slave

Slave Slave

Master Master

MasterSlaveMaster

(1)

(2)

(3) (4)

(5)

Figure 2. The situations of computation sequence

Based on master role and slave role of mashup components,
we categorize the computation sequence into five situations:

508 509

Situation 1: Slave-Slave-Master-Master
Because there are Master-Master pattern, we compute the

pair of Master-Master first. Then this pair play the master role
to the second slave component, we compute them as Master-
Slave pattern. At last, we compute the forward result and the
first slave component as Slave-Slave pattern. The computation
sequence is as follow:

P(slave-slave-Master-Master) = P(slave-(slave-(Master-
Master)))

Situation 2: Master1-Master2-Mater3
In this situation, we first find the master component which

has the lowest data uncertainty. If Master1 or Master3 has the
lowest data uncertainty, computation sequence is from the left
to the right or from the right to the left. If the middle one has
the lowest data uncertainty, then find the one between the other
two components which has lower data uncertainty and compute
this pair first.

Situation 3: Slave1-Master-Master-Slave2
This situation can also be seen as Slave1-Master-Slave2,

and the computation sequence depends on the data uncertainty
of Slave1 and Slave2. If the data uncertainty of Slave1 is higher
than the data uncertainty of Slave2, the computation sequence
is as follow:

P(Slave1-Master-Master-Slave2) = P(Slave1- ((Master-
Master)-Slave2))

where P(Slave1)<P(Slave2). The situation first executes
Master-Master computation and then executes Master -Slave
computation.

Situation 4: Master-slave-slave-Master
In this situation, the computation sequence first executes

Master-Slave computation and then executes Slave-Slave
computation.

P(Master-slave-slave-Master) = P((Master-slave)-(slave-
Master))

Situation 5: Master1-slave-Master2
In this situation, there are two Master components and we

assume that the data uncertainty of Master1 is higher than the
data uncertainty of Master2. If Master1 and Master2
communicate separately with different parts of Slave
component, we can transform the situation to Master1-slave1-
slave2-Master2 situation where slave1 and slave2 are different
parts of Slave component and P(slave1)=P(slave2)=P(Slave). If
the parts of Slave component that Master1 and Master2
communicate separately with have the common part, the
computation sequence is as follow:

P(Master1-slave-Master2) = P(Master1-(slave-Master2))

VI. CONCLUSION

In this paper, we study the data uncertainty of mashup from
two levels: mashup components and mashups. The data
uncertainty of mashup component is a relative value in the set
of all the homogeneous components. In the data level of
mashup application, mashups can be seen as the composition of
different data source with certain application relationships. So

we give the data uncertainty computation of mashups based on
these relationships and we show the computation sequence in
different composition situations. We will further our work for
the complex integration process in mashup application, analyze
how the change of data uncertainty in certain mashup
component affects the overall data uncertainty of mashups, and
study the composition of mashup applications based on data
uncertainty.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Granted No. 60903001

REFERENCES

[1] Mashup,
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid). 2008

[2] Cinzia Cappiello, Florian Daniel, Maristella Matera, Cesare Pautasso,
"Information Quality in Mashups," IEEE Internet Computing, vol. 14, no.
4, pp. 14-22, July/Aug. 2010

[3] Al-Masri,E.,and Mahmoud, Q. H., "Discovering the best web service",
WWW, ACM press, New York, pp. 1257-1258(2007)

[4] Al-Masri, E., and Mahmoud, Q. H., "QoS-based Discovery and Ranking
of Web Services", ICCCN, pp. 529-534 (2007)

[5] Al-Masri, E., and Mahmoud, Q.H., "Investigating Web Services on the
World Wide Web", WWW, ACM press, New York, pp. 795-804 (2008)

[6] Programmableweb, http://www.programmableweb.com
[7] Compare web site,

http://www.langreiter.com/exec/yahoo-vs-google.html
[8] Abitebouls, Kanellakis P, Grahne G, “On the representation and

querying of sets of possible worlds”, ACM SIGMOD Record, ACM
press, New York, pp. 34-48 (1987)

[9] Green TJ, Tannen V,”Models for incomplete and probabilistic
information”, IEEE Data Engineering Bulletin, pp.17-24 (2006)

[10] “ORION: A databasesystem for managing uncertain data”, in
http://orion.cs.purdue.edu

[11] J. Widom, “Trio: A system for integrated management of data, accuracy,
and lineage”, VLDB, VLDB Endowment, Korea, pp.1151-1154 (2006)

[12] Christopher, Dan Suciu,”Management of Data with Uncertainties”,
Proceedings of 16th ACM conference on Conference on information and
knowledge management, ACM, Lisbon, pp.3-8 (2007)

[13] C.C. Aggarwal and P.S.Yu, “A Survey of Uncertain Data Algorithms
and Applications”. IEEE Transactions on Knowledge and Data
Engineering, IEEE Educational Activities Department, Piscataway,
pp.609-623 (2009)

[14] LIU Xuan-Zhe, HUANG Gang, MEI Hong,” Consumer-Centric Service
Aggregation: Method and Its Supporting Framework”, Journal of
Software, Beijing, pp.1883−1895 (August 2007)

[15] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau,
Y.-H. Ng, D. Simmen, and A. Singh. Damia: a data mashup fabric for
intranet applications. In VLDB ’07, pages 1370–1373. VLDB
Endowment, 2007.

[16] Yahoo Pipes. http://pipes.yahoo.com
[17] Microsoft Popfly. http:// www.popfly.com
[18] Apatar, www.apatar.com/
[19] R. Ennals and M. N. Garofalakis. Mashmaker: mashups for the masses.

In SIGMOD, pages 1116–1118, 2007.
[20] Junichi Tatemura, Songting Chen, Fenglin Liao,UQBE: Uncertain Query

By Example for Web Service Mashup, SIGMOD’08, June, 2008,
Vancouver, BC, Canada.
Mohamed A. Soliman, Mina Saleeb, Ihab F. Ilyas.MashRank: Towards
Uncertainty-Aware and Rank-Aware Mashups, ICDE, 2010.

508 509

Presenting Software License Conflicts through
Argumentation

Thomas A. Alspaugh
Computer Science Dept.
Georgetown University
Washington, DC, USA

thomas.alspaugh@acm.org

Hazeline U. Asuncion
Computing and Software Systems
University of Washington, Bothell

Bothell, Washington, USA
hazeline@u.washington.edu

Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, California, USA
wscacchi@ics.uci.edu

Abstract—Heterogeneously-licensed systems pose new chal-
lenges to architects and designers seeking to develop systems
with appropriate intellectual property rights and obligations.
In the extreme case, license conflicts may prevent a system’s
legal use. Our previous work showed that rights, obligations,
and conflicts can be calculated. But architects benefit from fuller
information than simply (for example) a list of conflicts. In this
work we demonstrate an approach for presenting intellectual
property results in terms of arguments supporting them. The
network of argumentation provides not only an explanation of
each conclusion, but also a guide to the tradeoffs available
in choosing among design alternatives with different licensing
results. The approach has been integrated into the ArchStudio
software architecture environment. We present an illustrative
example of its use.

I. INTRODUCTION

An increasing number of development organizations are
adopting a strategy in which software-intensive systems are
composed of heterogeneously licensed (HtL) components, with
different components governed by different software licenses.
The components are either open source software (OSS) or
proprietary software with open application programming in-
terfaces (APIs), and are combined in an open architecture
(OA) in which components with comparable interfaces can
be substituted for each other [10]. Under this strategy the
development organization becomes an integrator of compo-
nents largely produced elsewhere, interconnected to achieve
the desired result.

The resulting OA systems can achieve reuse benefits such as
reduced costs, increased reliability, and potentially increased
agility in evolving to meet changing needs. But rather than a
single proprietary license as when acquired from a proprietary
vendor, or a single OSS license as in uniformly-licensed OSS
projects, the resulting system typically has no recognized
single software license. Instead it has, strictly speaking, a
virtual license [2] composed of each component’s rights and
obligations for that component under its governing license.
The rights available for the system as a whole are the in-
tersection of the rights sets for each component. In some
cases the licenses may produce conflicting obligations and
this intersection is empty, leaving a system that cannot legally
be used, distributed, or modified. An emerging challenge is
to realize the reuse benefits of HtL systems while managing

virtual licenses to ensure that the desired system rights are
available for an acceptable set of obligations.

In our previous work (summarized in Section IV) we
described and implemented a novel approach for calculating
conflicting obligations, unavailable rights, and virtual licenses
in an architectural design context. Calculation is necessary
because the number of entailments in a typical HtL system
is large, the system’s architecture is constantly evolving, its
design-, distribution-, and run-time architectures are often
distinct, component licenses evolve and components are reli-
censed, and the consequences of infringement can be substan-
tial. Therefore identifying conflicts and virtual licenses through
calculation is a substantial boon. But we soon realized that
explaining them was of even greater value.

We present an approach in which arguments are used to
explain the results of right and obligation calculations. The
calculations proceed by elaborating a directed acyclic graph
(dag) of inferences among rights to obligations for entities
in the system architecture. In this work we reimplemented
the software that performs the calculations so that the dag
is retained in its entirety as the primary calculation product,
containing within it the obligation conflicts, unavailable rights,
and virtual license for the system under analysis. Then an
explanation for a specific result corresponds to the traversal
of a path through the dag, starting at the result in question
and continuing until the question has been answered.

• Conflicting obligations: the traversal branches for each
obligation to show the desired rights, license provisions,
and architectural entities from which that obligation is
produced, and at the root of the traversal shows in what
ways the obligations conflict.

• Unavailable rights: for each such right, a traversal identi-
fies the exclusive copyright right that subsumes the right
in question, the architectural entity to which the right
pertains, and why no right in the entity’s license grants
the right in question.

• Virtual license: traversals show the chains of inference by
which each right and obligation is entailed by the system
architecture, the stated license for each component, and
the desired rights for the system as a whole.

The dag calculation algorithm follows the steps of legal

510 511

ClaimGrounds

WarrantBacking

Fig. 1. A claim, supported by grounds, their pertinence to the claim justified
by a warrant, whose validity is supported by backing (diagram after [14])

reasoning (formalized to support automation) by which an
informed analyst would reason out the results. Thus the traver-
sals follow inference paths that follow (in more detail) the
paths by which an analyst reasons out the same conclusions.

II. RELATED WORK

The most influential approach for structuring legal argu-
ments is that of Toulmin, who classified the parts of argu-
ments into claims, grounds, warrants, backing, qualifiers, and
rebuttals, in a recursive structure with a diagrammatic notation
outlined in Figure 1 [14]. His approach has spread beyond the
area of legal arguments and is used in general rhetoric and
computer science. Toulmin divides arguments into

1) claims asserted to be true;
2) for each claim whose truth is disputed, one or more

grounds supporting it;
3) if it is disputed whether a claim’s grounds suffice for it,

then a warrant stating why the grounds entail the claim;
4) if the warrant is disputed, then backing supporting it.

If a ground or backing is disputed, then it is made the
claim of a lower-level argument constructed in its support.
The recursion of arguments continues as long as grounds
or backings are in dispute, or until the original claim is
abandoned. (Qualifiers and rebuttals address the degree of
strength of arguments, and are not used in the present work.)

Hohfeld sought a theory by which to resolve the imprecise
terminology and ambiguous classifications he found in use for
legal relationships. In a seminal article published in 1913 and
cited to the present day, he set forth a system of eight jural
relations intended to express and classify all legal relationships
between people. The first four regulate ordinary actions and
are right (“may”), no-right (“cannot”), duty (“must”), and
privilege (“need not”). Each relation has an opposite relation
whose sense is its opposite, and a correlative relation whose
sense is its complement. We use Hohfeld’s first four jural
relations as the basis of our representation of the enactable,
testable provisions of software licenses (Section IV).

There has been much work on analysis of laws in AI over
the past few decades. A widely-cited example is Sergot et
al.’s re-expression of the British Nationality Act as a Prolog
program; the resulting program applied the Act to any person’s
situation and characteristics to determine nationality [12].

A number of researchers have used argumentation to guide
decision making, notably Haley et al. who propose an ap-
proach for using satisfaction arguments to evaluate and guide
evolution of security requirements [7]. Decision choices for
which no convincing argument is found are set aside in favor
of choices for which stronger arguments have been identified.

III. LICENSING BACKGROUND

A. Intellectual Property (IP)

An individual can own a tangible thing, and have property
rights in it such as the rights to use it, improve it, sell it
or give it away, or prevent others from doing so, subject to
some statutory restrictions. Similarly, an individual can own
intellectual property (IP) of various types, and have specific
property rights in the intangible intellectual property, such as
the rights to copy, use, change, distribute, or prevent others
from doing so, again subject to some statutory restrictions.

Software licenses are primarily concerned with copyrights
Copyright is defined by Title 17 of the U.S. Code and by
similar law in many other countries. It grants exclusive rights
to the author of an original work in any tangible means of
expression, namely the rights to

• reproduce the copyrighted work;
• distribute copies;
• prepare derivative works;
• distribute copies of derivative works; and
• (for certain kinds of work) perform or display it.

Because the rights are exclusive, an author can prevent others
from exercising them, except as allowed by “fair use”, or can
grant others any or all of the rights or any part of them; one
of the functions of a software license is to grant such rights,
and define the conditions under which they are granted.

B. Software Licenses

Traditional proprietary licenses allow a company to retain
control of software it produces, and restrict the access and
rights that outsiders can have. OSS licenses, on the other hand,
encourage sharing and reuse of software, and grant access and
as many rights as possible.

Academic OSS licenses such as the Berkeley Software
Distribution (BSD) license, the Apache Software License,
and perl’s Artistic License [1] grant nearly all rights and
impose few obligations. Typical academic license obligations
are simply to not remove the copyright and license notices.

Reciprocal OSS licenses impose an obligation that dis-
tributed modifications of reciprocally-licensed software be
freely licensed under the same license. Examples are the
Lesser General Public License (LGPL), Mozilla Public Li-
cense (MPL), and Common Public License [1].

Some reciprocal licenses additionally require that software
combined with the licensed software (for various definitions
of “combined”) also be freely licensed under the same license.
We term such licenses propagating; they are also known as
strong copyleft licenses. Examples are the General Public
License versions 2 and 3 (GPLv2, GPLv3) [1].

Some OSS is multiply-licensed, or distributed under two or
more licenses. The MySQL database software is distributed
either under GPLv2 for OSS projects or a proprietary license
for commercial projects. The Mozilla Disjunctive Tri-License
licenses the core Mozilla components under any of three
licenses (MPL, GPL, or LGPL).

510 511

C. Licenses and Software Architectures

Certain classes of architectural features affect the applica-
tion and propagation of license provisions. The most common
such features are listed below. A software architecture is
composed of components, each of which is a “locus of
computation and state” in a system, and connectors which link
them and mediate interactions between them.

Software source code components—These can be
• standalone programs,
• libraries, frameworks, or middleware,
• inter-application script code such as C shell scripts, or
• intra-application script code, to creating Rich Internet

Applications using domain-specific languages like XUL
for the Firefox Web browser [6] or “mashups”[9].

The distinguishing characteristic of a source code compo-
nent is that its source code is available and it can be modified
and rebuilt. Each may have its own explicit license, though
often script code connecting programs and data flows has no
stated license unless the script is substantial or proprietary.

Executable components—These components are in binary
form, with source code not available for access, review,
modification, or possible redistribution [11]. If proprietary,
they often cannot be redistributed, and so such components
will be present in the design- and run-time architectures but
not in the distribution-time architecture.

Software services—An appropriate software service can
replace a source code or executable component.

APIs—These are not and cannot be licensed, but connec-
tions through APIs can be used to limit the propagation of
some license obligations.

Software connectors—These are software elements pro-
viding a standard or reusable way of communication through
common interfaces, such as High Level Architecture, CORBA,
or Enterprise Java Beans. Connectors can also limit the prop-
agation of some license obligations.

Methods of composition—These include linking as part
of a configured subsystem, dynamic linking, and client-server
connections. Methods of composition affect license obliga-
tion propagation, with different methods affecting different
licenses. How and to what extent this occurs have not been
resolved in court or in practice [5], [13].

Configured system or subsystem architectures—These
are software systems used as atomic components of a larger
system. Their internal architecture may contain subcompo-
nents under several licenses, which may affect the rights and
obligations for the configured (sub)system and the overall
system containing it. To minimize license interaction, a con-
figured system or subsystem architecture may be surrounded
by what we term a license firewall [2], namely a layer of
dynamic links, client-server connections, license shims, or
other connectors that block the propagation of obligations.

D. Heuristics for Designing HtL Systems

HtL system designers have developed heuristics to guide
architectural design while avoiding some license conflicts.

is the opposite of

is the opposite of

is the correlative of is the correlative of

RIGHT "may"

DUTY "must" PRIVILEGE "need not"

NO-RIGHT "must not"

Fig. 2. Hohfeld’s four basic relations

ActionActor Modality Object License

License Right Obligation+ *

?
Tuple

Licensor

Licensee

Copyright Action

Must

May Must Not

Need Not

Fig. 3. Metamodel for software licenses

First, it is possible to use a reciprocally-licensed component
through a license firewall that limits the scope of reciprocal
obligations for specific licenses (depending on how the license
provisions are interpreted). Rather than connecting conflicting
components directly through static build-time links, the con-
nection is made through a dynamic link, client-server protocol,
license shim, or run-time plug-in.

A second approach used by a number of large organizations
is to avoid using any components with reciprocal licenses.

Even using design heuristics such as these, keeping track
of license rights and obligations across components that are
interconnected in complex OAs quickly becomes cumbersome.
Organizations wishing to follow a “best-of-breed” component
selection policy, without regard to component licenses, face
even steeper challenges. Automated support is needed to
manage this multi-component, multi-license complexity.

IV. LICENSE RIGHTS AND OBLIGATIONS

In our previous work [2] we developed an approach for
expressing software licenses that is more formal and less am-
biguous than natural language, and that allows us to calculate
rights and obligations for an HtL system and identify conflicts
arising from the rights and obligations of two or more com-
ponent’s licenses. Our approach is based on Hohfeld’s eight
fundamental jural relations [8], of which we use right (“may”),
duty (“must”), no-right (“must not”), and privilege (“need
not”) (Figure 2). Each relation has a correlative relation, which
in our context relates an obligation to its necessary right:

• if actor A must perform action X, then A requires the
correlative right to perform it, expressed as “A may X”;

• if actor A must not perform action X, then A requires the
correlative right to not perform it, “A need not X”.

We express rights and obligations as tuples (Figure 3):
<actor, modality, action, object, license>

The actor is either the “Licensee” or in a few cases “Licen-
sor” for all the enactable, testable provisions of the licenses

512 513

Licensee : may : distribute unmodied source for PROGRAM

Licensee : must : retain the GPL 2.0 copyright notice in the source

Licensee : must : retain the GPL 2.0 list of conditions in the source

Licensee : must : accompany the source with a copy of the GPL 2.0 license

Licensee : may : run PROGRAM

Fig. 4. Some tuples for the GPLv2 license

we have examined [3]. The modality is “may” or “need not”
for a right and “must” or “must not” for an obligation. The
action is a verb phrase acting on an object, describing what
may, need not, must, or must not be done. The object is a
module of the system or a related artifact such as a source file,
the original version, documentation, and so forth. Typically a
license right applies to any of a class of objects distributed
under the license, such as any binary file or any modified
source file; and the right’s obligations will apply to the same
object or a related object, such as the right’s object’s sources
or the right’s object’s originals. For this reason we term rights
and obligations as expressed in a license abstract, in contrast
to a concrete right or obligation for one specific entity. Some
actions are parameterized by a license as well.

Because copyright rights are exclusive to the copyright
holder and licensees, the actions in copyright rights are distin-
guished from other actions; rights with those actions are only
available through the object’s license. Rights formed from all
other actions are freely and immediately available, unless the
object’s license obligations restrict them.

A license is expressed as a set of rights, each right asso-
ciated with zero or more obligations that must be fulfilled be
granted it, and possibly a set of overall obligations that must be
fulfilled for the license as a whole. Figure 4 sketches two rights
from GPL version 2.0 (GPLv2), the first with no obligations
and the second with three corresponding obligations.

The details of the license specification approach are de-
scribed in our earlier work [2], [3].

V. APPLYING LICENSES TO SOFTWARE

A. Calculating the Inference Dag

In order to obtain a particular desired right r for a specific
module or other entity e, in other words a desired concrete
right, one of two cases must hold:

1) r is not subsumed by any of the five copyright rights,
and does not conflict with any general obligation of r’s
license L. In this case r is freely available.

2) r is subsumed by an abstract right R of the license, with
e likewise subsumed by R’s object. In this case all R’s
obligations O1, O2, . . . , On must be fulfilled, with their
objects replaced by whatever function of e they signify,
in order for r to be granted. These could be e itself, all
sources of e, the original version of e, and so forth. n
may be zero, in which case L immediately grants r.

Figure 5 illustrates one step of the application of a license
to obtain a desired concrete right r. In the license of r’s object

obligation

o

entity

e ′

concrete right

r ′

Key

Desired
concrete right

License of
concrete entity e

May be
same entity

(depends on license)

r

Subsuming
abstract right

R

Concrete
entity

e

Has
obligation

Correlates
with

Inference
ow

Applies
to

Subsumes
in parallel

′

obligation

O

Concrete
entity

e ′

Correlative
concrete right

r ′

Abstract
obligation

O

Concrete
obligation

o

1
2

1
2

1
2

1
2

Fig. 5. A step in a rights/obligations inference

e, we search for an abstract right R subsuming r. The figure
shows two obligations O1 and O2 of R, which we apply to
r’s object e in order to obtain r’s concrete obligations o1 and
o2. Depending on what kind of object O1 has, o1 could apply
to e itself, in which case e = e′1, or to an entity related to
e, or (if L is a propagating license) to another module linked
or otherwise connected to e. Finally, in order to fulfill o1 we
must have o1’s correlative right r′1. The same considerations
apply for O2, of course. The heavy arrow shows the flow
of inference from desired concrete right through to required
concrete obligations and correlative rights.

If r′1 (r′2) is immediately available, its branch of the infer-
ence is complete. If not, the process recurses from r′1 (r′2).

The license rights and obligations for an entire system are
calculated by repeating this process for every module of the
system. If all modules are under the same license, analogous
rights and obligations obtain for every module. If the system
is heterogeneously-licensed, however, the calculation is much
more varied, and if some of the modules are propagationally
licensed then a right for one of those modules can produce
obligations for other modules of the system. Such an architec-
ture can easily result in license conflicts, as for example when
a license propagates the obligation to be sublicensed under the
same license to a proprietary component whose license forbids
sublicensing. In such a case, the calculation will fail to produce
a simultaneously satisfiable collection of obligations, and no
rights will be available for the system as a whole.

Figure 6 shows in Toulmin form a portion of an example
inference that produces a conflict, involving a component e1
obtained under GPLv2 and modified, linked to a component
e2 obtained under the proprietary Corel Transactional License
(CTL) [1]. The architectural connection between e1 and e2
is one that is interpreted for this inference as propagating

512 513

Claim: There are
conicting obligations
for WordProcessor

Ground: (A) Licensee : must :
sublicense WordProcessor
under GPLv2

Ground: (A) Licensee : must not
: sublicense WordProcessor
under GPLv2

Warrant: "must" and "must not" conict

Ground: (B) Licensee : must : sublicense <RightsPatientStaticScope>
under {ThisLicense} (GPLv2 §2.2¶1.bs1)

Ground: <RightsPatientStaticScope> for GnomeEvolution contains
WordProcessor
(The scope in question highlighted in the architecture to illustrate this ground)

Ground: {ThisLicense} for GnomeEvolution is GPLv2

Warrant: Same licensee, modality, action, license, (A)
object instantiates (B) object → (A) instantiates (B)

Ground: (B) Licensee : must not : sublicense
<AnyUnderThisLicense> under {AnyLicense} (CTL §4¶1s1w15)

Ground: <AnyUnderThisLicense> for WordProcessor includes WordProcessor

Ground: {AnyLicense} includes GPLv2

Warrant: Same licensee, modality, action, (A) object subsumes
(B) object, (A) license subsumes (B) license → (B) instantiates (A)

Ground: WordProcessor is licensed under CTL

Ground: GnomeEvolution is licensed under GPLv2

Fig. 6. Toulmin-structured arguments supporting (and explaining) a typical
conflict between obligations for a GPLv2 and a proprietary component

GPLv2 obligations, such as a static link. The right to distribute
copies of the containing system is desired. In our prototype
implementation (Figure 8) these arguments are presented in
outline form, with the claim as the root of the outline and its
grounds and warrant as its subheads, to be expanded as desired
if further explanation is needed. A typical use would be:

1) Why does the WordProcessor component need to be
sublicensed under GPLv2?

2) It is in the static-linked scope of the GnomeEvolution
component; that component is annotated with the GPLv2
license; and GPLv2 obligates sublicensing under GPLv2
(GPLv2 §2.2¶1.bs1).

3) Why can’t the WordProcessor component be sublicensed
under GPLv2?

4) The WordProcessor component in the architecture has
been annotated with the CTL license, and CTL forbids
sublicensing under any license (CTL §4¶1s1w15).

B. Explanation by Argumentation

Figure 7 shows the two explanation flows for a conflict
between obligations. Each flow begins at the conflict and
explains how one half of the conflicting pair came to be. The
connection between the pair is straightforward, as they are
identical except for their modalities which are always “must”
for one and “must not” for the other.

The flow and the required explanations are analogous for
a right-obligation conflict, with the right and obligation again
identical except for their modalities, which are always oppo-
sites, either “may” and “must not” or “must” and “need not”.

Desired
right

Abstract
right

Concrete
obligation

Abstract
obligation

Concrete
entity

The explanation divides,
owing from each
conicting obligation
back to that obligation's
original desired right
and entity

Desired
right

Abstract
right

Concrete
obligation

Abstract
obligation

⋯

Concrete
entity

Concrete
entity

Fig. 7. Divided explanation flow for a conflict between two obligations

After examining the kinds of information that are available
in the vicinity of a problem (a conflict or unavailable right),
we realized the inferences leading up to it provide the clearest
insight into what the problem signifies and why it is present.

• The chains of inference leading up to the problem con-
stitute precisely the portion of the calculation relevant
to the problem. No other parts of the calculation—or
of the applications of license provisions, determined by
the architecture and its annotations, that the calculation
identifies—affect whether the problem is present or not.

• The inferences place the problem in the context of
licenses, components and their annotations, and architec-
tural configuration — the context in which a designer
using the tool is already working.

• Each chain of inference, followed in reverse, provides an
unfolding explanation for the problem’s presence, which
an analyst can explore as far as is helpful in providing
understanding and insight.

Each step of a chain of inference is a point at which it can
be broken—by replacing a component with one differently
licensed, replacing one or more connectors to firewall off a
propagating obligation, replacing a build-time component with
one provided by users at run time, or other design decisions.

C. Automation

The license metamodel, calculation, and an assortment of
license interpretations are implemented in a Java package. The

514 515

Fig. 8. Prototype explanation results for a CTL-GPL2.0 conflict: (at top) unavailable rights (partially collapsed), (middle) two conflicting obligations.

calculation builds the entire dag, which is then available for
presentation in whatever ways are desired. Each abstract right
and obligation in a license interpretation has its provenance
in the license or interpretation for use in explanations. The
package supports the addition and use of new interpretations.

The package is connected into the system design context
by its integration into an ArchStudio 4 plugin [4]. The plugin
maps features of software architectures onto the license archi-
tecture abstraction needed for the virtual license calculation
and displays results in the context of the architecture.

The argument grounds drawn from the texts of licenses are
implemented through URLs hyperlinking into our collection
of software licenses tagged for reference with §-¶-sentence-
word numbers [1]. Each URL cites the sentence or phrase
from which a right or obligation arises. Word-level ids allow
references to, for example, #S2.2p1.bs1w11 for the phrase
beginning at word 11 of that sentence.

VI. CONCLUSION

HtL system design and development provide important
benefits but impose new demands difficult to meet using
only manual methods and human insight. Our approach for
supporting HtL development and acquisition automates the
calculation of HtL system virtual licenses. We have integrated
it into a software architecture tool so it can be applied at
the point in the development process when the necessary
information is available and the relevant design decisions are
made. A key benefit it provides is the automated calculation
of license conflicts, desired but unavailable rights, and virtual
licenses. But explaining them is of even greater value.

We present a novel approach that presents each conflict in
the form of structured arguments showing why each conflict
exists and (by implication) points of attack for eliminating
it. These arguments provide an informative presentation that
brings together all the available information in a compact,
evocative form that is easier to interpret, act on, and verify.

ACKNOWLEDGMENTS

This research supported by grant #0808783 from the U.S.
National Science Foundation, and grant #N00244-10-1-0077
from the Acquisition Research Program at the Naval Postgrad-
uate School. No review, approval, or endorsement is implied.

The authors thank the anonymous reviewers of earlier
versions of this paper for their insightful suggestions.

REFERENCES

[1] T. A. Alspaugh. OSS (and other) licenses, §/¶/sentence/word-numbered.
http://www.thomasalspaugh.org/pub/osl-sps/.

[2] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Intellectual property
rights requirements for heterogeneously-licensed systems. In 17th Int.
Requirements Engineering Conference (RE’09), pages 24–33, 2009.

[3] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion. Software licenses in
context: The challenge of heterogeneously-licensed systems. Journal of
the Association for Information Systems, 11(11):730–755, Nov. 2010.

[4] E. Dashofy, H. Asuncion, S. Hendrickson, et al. Archstudio 4: An
architecture-based meta-modeling environment. In 28th Int. Conference
on Software Engineering, Companion Volume, pages 67–68, 2007.

[5] L. Determann. Dangerous liasons—software combinations as derivative
works? Berkeley Technology Law Journal, 21(4), 2006.

[6] K. Feldt. Programming Firefox: Building Rich Internet Applications
with XUL. O’Reilly Media, Inc., 2007.

[7] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh. Security
requirements engineering: A framework for representation and analysis.
IEEE Transactions on Software Engineering, 34(1):133–153, 2008.

[8] W. N. Hohfeld. Some fundamental legal conceptions as applied in
judicial reasoning. Yale Law Journal, 23(1):16–59, 1913.

[9] L. Nelson and E. F. Churchill. Repurposing: Techniques for reuse
and integration of interactive systems. In International Conference on
Information Reuse and Integration (IRI-08), page 490, 2006.

[10] P. Oreizy. Open Architecture Software: A Flexible Approach to Decen-
tralized Software Evolution. PhD thesis, Univ. of Calif., Irvine, 2000.

[11] L. Rosen. Open Source Licensing: Software Freedom and Intellectual
Property Law. Prentice Hall, 2005.

[12] M. J. Sergot, F. Sadri, et al. The British Nationality Act as a logic
program. Communications of the ACM, 29(5):370–386, May 1986.

[13] M. L. Stoltz. The penguin paradox: How the scope of derivative works in
copyright affects the effectiveness of the GNU GPL. Boston University
Law Review, 85(5):1439–1477, 2005.

[14] S. Toulmin, R. Rieke, and A. Janik. An introduction to reasoning.
Macmillan, 1984.

514 515

A Genetic Approach for Software Architecture
Recovery from Object-Oriented Code

Abdelhak-Djamel Seriai
LIRMM, University of Montpellier 2/CNRS

162 rue Ada
F-34392 Montpellier Cedex 5, France

seriai@lirmm.fr

Sylvain Chardigny
MGPS

Port-Saint-Louis,
France

chardigny.sylvain@gmail.com

Abstract— Software architecture is recognized as a critical
element in the successful development and evolution of software-
intensive systems. Despite the important role of architecture
representation and modeling many existing systems like legacy or
eroded ones do not have a reliable architecture representation. In
this paper we present an approach for architecture recovery
from object-oriented code. It’s based on a genetic algorithm
which uses a fitness function measuring the semantic-correctness
of software components. Following our model, architecture which
is a partition of classes is considered as a chromosome. A group
of classes is a gene. This algorithm gives satisfactory results in
terms of consistency and adequacy metrics.

Keywords- Component; software architecture; recovery;
component based; object oriented; reverse engineering

I. INTRODUCTION
Software architecture is recognized as a critical element in

the successful development and evolution of software-intensive
systems [5]. Software architecture expresses the overall
structure of a system in an abstract, structured manner. The
main goal of a software architectural representation of a system
is to identify the major components that constitute this system,
and the interactions between these components [1]. According
to Garlan [6], software architecture plays an important role in
at least six aspects of software development: understanding,
reuse, construction, evolution, analysis and management.
Despite the important role of architecture representation and
modeling, many existing systems do not have a reliable
architecture representation. Indeed these systems could have
been designed without an architecture design phase, as it is the
case of most legacy systems. For other systems, the available
representation can diverge from the system implementation.
This appears, first, during the implementation phase due to
gaps between the expected architecture and the implemented
one. These gaps become greater because of lack of
synchronization between software documentation and
implementation. Taking into account the previous
considerations, it is obvious that an approach of architecture
recovery allows architects and developers to take advantage of
all the benefits of having an architecture model available. In
this context, we propose an approach to extract a component-
based architecture from object-oriented systems. Our goal is to
decrease the need for human expertise which is expensive and
not always available. Our process aims at selecting among all

the architectures which can be abstracted from a system, the
best one according to the semantic-correctness of architecture.
Based on the norm ISO 9126 [10], we formulate these
characteristics as measurable properties and specify the
recovery process as a balancing problem of these ones. Based
on this formulation, we developed a recovery architecture
process exploiting a hierarchical clustering algorithm.
Nevertheless, the result of this process (i.e. architectures) was
not completely satisfactory. We studied the process on several
case studies (e.g. Jigsaw, ArgoUML, Eclipse, etc.). The results
were sometimes offset from the known architectures. This is
due to the nature of the clustering algorithm. In fact, this
heuristic algorithm is memory less. For some systems, this
feature may deter the clustering process from the best
architectures. It explores only a limited number of possible
ones. It is not a meta-heuristic and it does not use the space
exploration of all possible architectures. Thus, our objective in
this paper is to propose an alternative formulation of our
approach based on a genetic algorithm (GA). This choice is due
to the characteristics of this type of algorithm. A GA allows us
to consider architecture recovery as a metaheuristic
optimization problem. It aims to explore the solution space to
identify the best possible. GAs were introduced in the late
1960’s by John Holland [7]. They are based on the Darwinian
theory of evolution whereby species compete to survive and the
fittest get a higher chance to remain until the end and produce
progeny. The basic idea of a GA is to start from a set of initial
solutions, and to use biologically inspired evolution
mechanisms to derive new and possibly better solutions.

The remainder of this paper is structured as follows.
Section 2 presents principle of our architecture recovery
approach: semantic-correctness driven. The GA encoding of
the recovery process is presented in section 3. Case studies are
presented in section 4. They present the results of our approach
using GA and compare these results to the clustering-based
ones. Section 5 discusses related work. Conclusion and future
works are given in section 6.

II. SEMANTIC-CORRECTNESS DRIVEN ARCHITECTURE
RECOVERY : AN OVERVIEW

In our approach, recovering a component-based architecture of
an object oriented system consists of using its implementation
code in order to identify the architectural elements. As first
step toward this goal, we defined a mapping model of object

516 517

oriented concepts (i.e. classes, methods, interfaces, packages,
etc.) and architectural ones (i.e. components, connectors,
interfaces, etc.). It defines architecture as a partition of the
system classes. Each element of this partition represents a
component. These elements are named “shape” and include
classes which can belong to different object-oriented
packages. A shape is composed of two sets of classes: the
“shape interface” includes classes linked with others from the
outside of the shape, e.g. a method call to the outside; and the
“center” composed of the remainder classes of the shape. We
assimilate component to shape and component interfaces to
“shape interface”. Connectors are all links existing between
components. Consequently, the architecture configuration is
the set of shapes constituting a partition of the system classes.
As a result of these considerations, the search-space of
architecture recovery problem is composed of all architectures
which are partitions of the system classes. This means that, in
a system which contains n classes, the search-space contains O
(n!) potential architectures.
Thus to select the best architecture compared to its semantic
correctness, we propose to define fitness function measuring
this characteristic. An architecture is semantically correct if its
elements (components, connectors and configuration) are. We
limit ourselves here to study component semantic-correctness
and define function to measure it. This study is based on the
most commonly admitted definitions of software component
rather than architectural one. Indeed architectural component
constraints are included in the software component ones. In
addition these supplementary constraints make easier a
migration from an object-oriented system to a component-
based one.

A. Semantic characteristics of a software component
Szyperski defines in [17] a component as a unit of

composition with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by third
parties. In [9] Heinemann and Councill define a component as
a software element that conforms to a component model and
can be independently deployed and composed without
modification according to a composition standard. In [12] Luer
makes a distinction between component and deployable
component. He defines a component as a software element that
(a) encapsulates a reusable implementation of functionality, (b)
can be composed without modification, and (c) adheres to a
component model. A deployable component is (a)
prepackaged, (b) independently distributed, (c) easily installed
and uninstalled and (d) self-descriptive.

In combining and refining the common elements of these
definitions and others commonly accepted ones [11], we
propose the following definition of a component: A component
is a software element that (a) can be composed without
modification, (b) can be distributed in an autonomous way, (c)
encapsulates an implementation of functionality, and (d)
adheres to a component model. In our approach, the definition
of a component model is the Luer one [12]: a model component
is the combination of (a) a component standard that governs
how to construct individual components and (b) a composition

standard that governs how to organize a set of components into
an application and how those components globally
communicate and interact with each other. As compared to the
definitions of Luer and Heineman and Councill, we
intentionally do not include the criterion that a component must
adhere on a composition theory and the properties of
component self-descriptive, pre-packaged and easy to install
and uninstall. These are covered through the criterion that a
component must adhere to a component model and does not
need to be repeated. In conclusion, according to our software
component definition, we identify three semantic
characteristics of software components: composability,
autonomy and specificity. The specificity of a component
means that it must contain a limited number of functionalities.

B. Refinement model of the semantic correctness
In the previous section, we have identified three semantic

characteristics that we propose to evaluate. To do so, we adapt
the characteristic refinement model given by the norm ISO-
9126 [ISO]. According to this model, we can measure the
characteristic semantic correctness by refining it in the previous
three semantic characteristics which are consequently
considered as sub-characteristics.

1) From characteristic to properties
Based on the study of the semantic sub-characteristics, we
refine them into a set of component measurable properties.
Thus, a component is autonomous if it has no required
interface. Consequently, the property number of required
interfaces should give us a good measure of the component
autonomy. Then, a component can be composed by means of
its provided and required interfaces. However, a component
will be more easily composed with another if services, in each
interface, are cohesive. Thus, the property average of service
cohesion by component interface should be a correct measure
of the component composability. Finally, the evaluation of the
number of functionalities is based on the following statements.
Firstly a component which provides many interfaces may
provide various functionalities. Indeed each interface can offer
different services. Thus the higher the number of interfaces is,
the higher the number of functionalities can be. Secondly if
interfaces (resp. services in each interface) are cohesive (i.e.
share resources), they probably offer closely related
functionalities. Thirdly if the code of the component is closely
coupled (resp. cohesive), the different parts of the component
code use each other (resp. common resources). Consequently,
they probably work together in order to offer a small number
of functionalities. From these statements, we refine the
specificity sub characteristic to the following properties:
number of provided interfaces, average of service cohesion by
component interface, component interface cohesion and
component cohesion and coupling.

2) From properties to metrics
According to our object-component/architecture model,
component interfaces are assimilated to shape interface.
Therefore, the average of the interface-class cohesion gives a
correct measure of the average of service cohesion by
component interface. Secondly the component interface
cohesion, the internal component cohesion and the internal

516 517

component coupling can respectively be measured by the
properties interface class cohesion, shape class cohesion and
shape class coupling. Thirdly in order to link the number of
provided interfaces property to a shape property, we associate
a component provided interface to each shape-interface class
having public methods. Thanks to this choice, we can measure
the number of provided interfaces using the number of shape
interface classes having public methods. Finally, the number
of required interfaces can be evaluated by using coupling
between the component and the outside. This coupling is
linked to shape external coupling. Consequently, we can
measure this property using the property shape external
coupling. In order to measure these properties, we need to
define metrics. The properties shape class coupling and shape
external coupling require a coupling measurement. We define
the metric Coupl(E) which measures the coupling of a shape
E and CouplExt(E) which measures the coupling of E with
the rest of classes. They measure three types of dependencies
between objects: method calls, use of attributes and
parameters of another class. Moreover they are percentages
and are related through the equation: CouplExt(E) = 100 −
Coupl(E). Due to space limitations, we do not detail these
metrics. Shape properties average of interface-class cohesion,
interface-class cohesion, and shape-class cohesion require a
cohesion measurement. The metric “Loose Class Cohesion”
(LCC), proposed by Bieman and Kang [2], measures the
percentage of pair of methods which are directly or indirectly
connected. Two methods are connected if they use directly or
indirectly a common attribute. Two methods are indirectly
connected if a connected method chain connects them. This
metric satisfies all our needs for the cohesion measurement: it
reflects all sharing relations, i.e. sharing attributes in object
oriented system, and it is a percentage. Consequently, we use
this metric to compute the cohesion for these properties. The
refinement model is summarized in Fig.1.

Fig.1. Refinement model of the semantic-correctness

characteristic of component

3) Evaluation of the semantic correctness
According to our refinement model of semantic-correctness of
component, we define the functions Spe, A, C which measure
respectively specificity, autonomy and composability of this
component. In these functions nbPub(I) is the number of

interface classes having a public method and IiI is the shape
interface cardinality.

The evaluation of the semantic correctness characteristic is
based on the evaluation of each sub-characteristic. That is why
we define this function as a linear combination of each sub-
characteristic evaluation function (Spe, A, and C):

This form is linear because each of its parts must be
considered uniformly. The weight μi associated with each
function allows the software architect to modify, as needed,
the importance of each sub-characteristic.

III. GENETIC MODEL FOR ARCHITECTURE RECOVERED FROM
OBJECTI-ORIENTED CODE

GA starts derivations from an initial solution called the initial
population and then generates a sequence of populations. Each
derived population is obtained by “mutating” the previous one.
Elements of the obtained solutions are called chromosomes.
The fitness of each chromosome is measured by an objective
function called the fitness function. Each chromosome
(possible solution) consists of a set of genes. At each
generation, the process consists to apply some genetic
operators which are crossover, mutation and selection in order
to generate the next generation. On each chromosome, the
algorithm applies two operators: crossover and mutation. Each
operator is applied following a specific probability given as an
input parameter of the algorithm. During crossover, two
chromosomes are selected using a selection method that gives
priority to the fittest ones; they exchange some of their genes
giving birth to two other chromosomes. Each selected pair of
chromosomes produces a new pair of chromosomes that
constitute the next generation. Mutation consists of changing
randomly one or more genes in a chromosome. Finally a
selection is operated on chromosomes to choose the next
generation. This selection can increase or reduce or keep stable
the size of the population. The algorithm stops if a convergence
criterion is satisfied or if a fixed number of generations is
reached. The implementation of GA to recover architecture
requires specifying how solutions are encoded into
chromosomes, how the three genetic operators crossover,
mutation and selection are defined and which fitness function
and initial population to be used. As we have already defined
the function in the section II.B.3, we address the remaining
questions in the following sections.

A. Encoding architecture as chromosome
Our genetic model of architecture must adhere to our

object-component/architecture mapping model indicating that

518 519

an architecture is a partition of classes (cf. section II). This can
be translated following different possible formulations. One of
these formulations is to represent architecture as a
chromosome. Thus, in this model a chromosome is a partition
of classes. Another formulation is to model shape as
chromosome and architecture as the whole population. This
choice makes difficult to check partition property. Instead of
the basic idea of GA which aims to optimize one element in a
population, this model aims to optimize one population. We opt
for representing architecture as a chromosome. Therefore this
requires defining the genes which constitute the chromosomes.
Again several options are available. Thus a gene may represent
a class and the value of the gene may represent the shape which
contains this class. An alternative formulation would be to
represent a shape as a gene and then the value of the gene
would be a set of classes. We opt for the second formulation
because it makes easier to check the partition property. Indeed
the union of the gene values must be all the system classes and
each intersection of gene values must be empty.

B. Definition of the genetic operators
In order to apply GA we need to define the genetic

operators. These are the selection, the crossover and the
mutation operators. The process of evolution starts by selecting
several pair of chromosomes whose the number vary according
to a probability PC. Then the crossover is applied on each pair
to generate two new chromosomes. The mutation is applied to
each chromosome (new and old) with the probability PM. PC
and PM are given as given as parameters of GA. Finally some
chromosomes are selected for the next generation. We present
in the following each of these three operators.

1) Selection operator
There are two selection operators which are used in GA. The
first one selects the pair of chromosomes for the crossover and
the second selects the next generation among the
chromosomes. The selection of the chromosome pair is done
according to the roulette-wheel technique [7]. Each
chromosome is assigned a portion of the wheel that is
proportional to its fitness. A marble is thrown and the
chromosome where the marble halts is selected. The selection
of the chromosomes for the next generation is done according
to two criteria: the age of the chromosomes and their fitness.
The new chromosomes are automatically added to the next
generation. As we decided to keeps the population size
constant, the other chromosomes are selected among the old
chromosomes according to the fitness function.

2) Crossover operator
A standard way to perform the crossover operation on
chromosomes is to cut each of the two parent chromosomes
into two subsets of genes (shapes in our case). Two new
chromosomes are created by interleaving the subsets. If we
apply such operation, it is possible that the resulting
chromosomes can no longer represent well-defined partitions.
Two specific problems can occur. If the intersection of two
shapes is not empty, then the solution is inconsistent. The
second problem is when the solution is incomplete. This
occurs when the union of all the shapes does not contain all
the system classes. In both cases, the architecture represented

by the chromosome is not even a partition. Figure 2(a)
illustrates these two situations. To preserve the consistency
and the completeness of the offspring, we propose a crossover
operator based on the operator defined for grouping problems
[4]. To obtain an offspring, we select a random subset of
shapes from one parent and add it to the set of shapes of the
second parent. By keeping all the shapes of one of the parents,
completeness of the offspring is automatically ensured. To
guarantee consistency, we eliminate from the older shapes, the
classes contained in the added shapes. Figure 2(b) illustrates
the new crossover operator.

3) Mutation operator
Mutation is a random change in the genes that happens with a
small probability. In the case of our architecture recovery
model, the mutation operator randomly moves some classes
from one shape to another one. This mutation operator keeps
the partition property safe.

 Fig.2 (a) insufficient of Fig.2 (b) Crossover that
 the standard crossover preserves consistency and

 completeness

C. Choice of the initial population
 The initial population is the set of chromosomes which is
used at the start of the GA. The choice of this population is
often randomly made. Nevertheless better the initial
population is better the solutions is. We opt for an initial
population which represents partition obtained by the strongly-
connected components of the system classes. In this graph
whose vertices are the system classes, there is an arc between
two vertices A and B if the class A uses the class B, i.e. uses
an attribute, a parameter or a return variable whose type is B
and creates or uses an object whose type can be B. A Strongly-
connected component is a subset of the graph vertices where
any vertex can be reached from any other vertex by a path.
These strongly-connected components are a partition of the
graph vertices and consequently a partition of the system
classes. This partition is an approximation of the system
architecture. We use it as an initial chromosome for our GA.

IV. CASE STUDY
As case studies, we validate the genetic algorithm
implementation of our architecture recovery process on many
systems with different sizes: small systems whose number of
classes is less than 50 (e.g. JPhotoAlbum with 17 classes),

518 519

systems of medium size where the number of classes is
between 50 and 500 (e.g. Jigsaw with 300 classes) and larger
systems with more than 1,000 classes. (e.g. ArgoUML with
over than 1500 classes). In most cases, the results show that
the recovered architectures are closer to the known
architectures than those obtained by the clustering algorithm.
The difficulty was to choose the adequate parameters for GA.
Due to space limitation, we give below only the case study of
the Jigsaw system which is a Java based web server.

A. GA parameters
To execute the GA we have to determine some parameters.
These are the elements of the initial population, the rate of
crossover and mutation, the size of the initial population, and
the number of generation. We launch several tests in order to
analyze the impact of each parameter on the result. Firstly, we
choose to use an initial population based on randomize
partitions plus one partition calculated from the strongly-
connected components of the system classes. Secondly, the
tests realized show that the elements of the population become
similar all along the process. This is due to our crossover
operator. To avoid having only one element in the population
after some generation, we choose a great rate of mutation.
Indeed we choose to put the mutation and the crossover rate to
80 %. Nevertheless, this choice of rate is not enough to
palliate totally the activity of the crossover operator.
Consequently we choose a big initial population (i.e.100)
which reduces the risk to obtain a generation composed of
only one duplicated element. In order to keep a correct
execution time for the test, we choose to do 100 generations.

B. Results
Fig.3 presents the recovered and the known architectures of
Jigsaw. The comparison of these architectures shows that most
of components of the recovered architecture are the same or
sub-components of the known ones. Therefore the obtained
solution is relevant according to the known architecture of
Jigsaw. The recovered architecture has fitness function score
of 80.2 %. This shows the correlation between our fitness
function and the relevance of the recovered architecture
solution compared to the expected one.
We validate the consistency of our approach by measuring the
similarity of the recovered architectures of Jigsaw. We use the
similarity measure proposed by Mitchell [18]. For each link
between two classes it measures the number of solutions
(architectures) for which this link is included in a component.
To obtain the percentage of inclusion in a component, this
value is then divided by the number of compared solutions.
The different results are then aggregated at the levels: {[0, 0],
(0, 10], (10, 75), [75, 100] }. These levels correspond to a
similarity degree zero, low, medium and high.
Table 1 shows degree of similarity obtained over 99
executions of the recovery process. It shows that 81% of
classes are in the zero or high categories. This demonstrates
that the vast majority of classes are respectively always
separated or together. Only 6.4% of class relationships are in
the category medium. This shows that class neighborhoods are
stable. Changes are due to classes that are on the borders of

two components: the content of these classes is highly
dependent on two distinct components. Therefore a significant
portion of these class methods can be specified as connectors.

Zero (%)
S = 0%

Low (%)
0% < S<= 10%

Medium (%)
10% < S < 75%

High (%)
S<= 75%

22.9 12.6 6.4 58.1
TAB 1. A measure of degree of similarity of obtained solution
on Jigsaw

Fig.3 Recovered and known architectures of Jigsaw system

The result of clustering and genetic algorithms is significantly
different. This difference is due to the way how the process
explores the solution space. On the one hand, clustering
explores one solution per iteration. On the other hand, GA
explores several solutions (100 in our test) per iteration and
the number of genetic operations done by iteration is limited to
2 operations by element of the population. It is clear that GA
explores a bigger space than clustering algorithm. GA has a
better ratio between the execution time and the quality of the
resulting solution.

V. RELATED WORK
Various works are proposed in literature in order to recover
architecture from an object-oriented system [15]. We
distinguish these works according to two criteria: the input and
the technique. Firstly the inputs of the recovery approaches are
various. Most often it works from source code representations,
but it also considers other kinds of information which for most
of them are non-architectural. We can cite, for example,
human expertise, which is used in an interactive way in order
to guide the process [13], and physical organization, e.g. files,
folders and packages [8]. Some works use architectural input.
Medvidovic [13] uses styles in Focus in order to infer a
conceptual architecture. Finally most works are based on the
human expertise: some use the expertise of the architect which
uses the tools as an input whereas others use the expertise of
the one which proposed this approach. In our approach we use
architectural semantic in order to reduce this need of human
expertise. Secondly the techniques used to recover architecture

520 521

are various and can be classified according to their automation
level. Firstly some approaches are quasi manual. For example,
Focus [13] proposes a guideline to a hybrid process which
regroups classes and maps the extracted entities to conceptual
architecture obtained from an architectural style according to
the human expertise. Secondly most approaches propose semi-
automatic techniques. It automates repetitive aspects of the
recovery process but the reverse engineer steers the iterative
refinement or abstraction, leading to the identification of
architectural elements. Thus ManSART [8] tries to match
source code elements on the architectural styles and patterns
defined by reverse engineers. Our approach is quasi-automatic
too. The main difference with other quasi-automatic
approaches is that it refines the commonly used definitions of
components into semantic characteristics and refinement
models whereas others works use the expertise of the authors
in order to define rules driving the process. Some works aim to
find the best grouping of elements to subsystems, i.e., the best
clusters of an existing software system. Some of these works
use a genetic algorithm to compute the best partition [3, 14].
For example, in [14] the problem representation uses
chromosomes where each gene represents a class and contains
the number of the corresponding cluster. Among these
approaches of software clustering, the work of Mancoridis and
Mitchell [3] is close to our approach. They introduced the
concept of software modularization as a clustering problem for
which search is applicable. Their tool Bunch uses a variety of
search algorithms. Result is a graph of dependence between
modules. This is not an architectural view of the system.

VI. CONCLUSION
We presented in this paper an approach of architecture
recovery of object-oriented systems. Architecture recovery is
formulated as a search-based problem based on a genetic
algorithm (GA). To use genetic algorithms, we adapted our
object-component/architecture model to manipulate the
architectures (solutions) as chromosomes and group of classes
as genes. The properties of this algorithm make it particularly
efficient in cases where the computation time is less important
compared to the quality of the result. Case studies show that
fitness function score is proportional to the relevance of the
obtained architectures compared to the expected ones.
As a perspective of this work, we intend to define a method to
combine, for a given system, the results obtained by using the
genetic implementation of our architecture recovery process
with those obtained by the use of the implementation based on
simulated annealing [16]. Our goal is to get more relevant
architectures in all use cases.

REFERENCES

[1] Kaz1 : Bass, L., Clements, P., Kazman, R.: Software Architecture in

Practice,Addison-Wesley, 1998, ISBN 0-201-19930-0.J. Clerk Maxwell,
A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68–73

[2] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented
system,” in Proc. of the Symp. On Software reusability,SSR ’95, pp.
259–262, 1995.

[3] D. DOVAL, S. MANCORIDIS et B. S. MITCHELL. Automatic
clustering of software systems using a genetic algorithm. In STEP ’99 :
Proceedings of the Software Technology and Engineering Practice, page
73, Washington, DC, USA, 1999. IEEE Computer Society.

[4] Emanuel FALKENAUER. Genetic Algorithms and Grouping Problems.
John Wiley & Sons, Inc., New York, NY, USA, 1998.

[5] Garlan, D., Shaw, M.: "An Introduction to Software Architecture," In V.
Ambriola and G. Tortora (ed.), Advances in Software Engineering and
Knowledge Engineering, Series on Software Engineering and
Knowledge Engineering, Vol 2, World Scientific Publishing Company,
Singapore, pp. 1-39, 1993.

[6] Garlan. Software architecture: a roadmap. In ICSE – Future of SE Track,
pp. 91–101, 2000.

[7] Holland, J. Adaptation in Natural and Artificial Systems, Ann Arbor,
MI: The University of Michigan Press, 1975.

[8] D. R. Harris, H. B. Reubenstein, and A. S. Yeh, “Reverse engineering to
the architectural level,” in Proc. of ICSE, pp. 186–195, ACM, Inc., 1995.

[9] G. Heinemann and W. Councill, Component-based software
engineering. Addison-Wesley, 2001.

[10] ISO/IEC-9126-1 in Software engineering - Product quality - Part 1:
Quality Model, ISO-IEC, 2001.

[11] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse. Addison
Wesley/ACM Press, 1997.GP

[12] C. Luer and A. van der Hoek, “Composition environments for
deployable software components,” tech. rep., 2002.

[13] N. Medvidovic and V. Jakobac, “Using software evolution to focus
architectural recovery,” Automated Software Engineering, vol. 13, pp.
225–256, 2006.

[14] Olaf SENG, Markus BAUER, Matthias BIEHL et Gert PACHE. Search-
based improvement of subsystem decompositions. In GECCO ’05 :
Proceedings of the 2005 conference on Genetic and evolutionary
computation, pages 1045–1051, New York, NY, USA, 2005. ACM.

[15] D. Pollet, S. Ducasse, L. Poyet, I. Alloui, S. Cimpan, and H. Verjus,
“Towards a process-oriented software architecture reconstruction
taxonomy,” in Proc. of the CSMR, pp. 137–148, 2007.

[16] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, Dalila Tamzalit:
Search-Based Extraction of Component-Based Architecture from
Object-Oriented Systems. ECSA 2008: 322-325

[17] C. Szyperski, Component Software. ISBN: 0-201-17888-5, Addison-
Wesley, 1998.

[18] Brian S. Mitchell et Spiros Mancoridis. On the evaluation of the bunch
search-based software modularization algorithm. Soft Comput., 12(1)
:77–93, 2008.

520 521

An Ontology based Method for Building
Understandable Hierarchical Classification Structure

for Software Assets Browsing
Ge Li, Zhi Jin

Software Institute, EECS, Peking University, P.R.China
Key Laboratory of High Confidence Software Technologies,

Ministry of Education of P.R.China
{lige, zhijin}@sei.pku.edu.cn

Abstract—Software asset management (SAM) represents an
important role for software development and maintenance. Many
software companies have been using a SAM system to help to
control costs and optimize software investments across their
organization and throughout all stages of their life cycles. During
all the process in SAM, how to classify the software assets
reasonably and build a classification to help developers find their
desired software asset effectively is an import part. However, how
to build a reasonable classification is a dilemmatic problem for
SAM system managers. Because it is difficult for them to find a
Hierarchical Classification Structure (HCS) with good super-
ordinate and sub-ordinate word relationships, at the same time, it
is also difficult for them to build a Hierarchical Classification
Structure (HCS) using the words selected by themselves. In this
paper, we proposed an ontology based HCS modeling method for
SAM system managers. With this method, the managers can
build an understandable HCS for their users to support the
browsing of software assets. We also present a case study to
illustrate the availability of our method.

Keywords-software asset management; ontology; classification;
browsing-based restrieval;

I. INTRODUCTION

Software asset management (SAM) represents an important
role for software development and maintenance. Administered
through an ongoing plan, SAM makes it easier to identify what
you have, where it's running, and whether redundancy may
exist [1]. Many software companies have been using a SAM
system to help to control costs and optimize software
investments across their organization and throughout all stages
of their life cycles. A well-deployed SAM system can help
companies cut costs, improve security and compliance, and
anticipate future software needs. SAM system also helps
organizations accurately capture the costs and benefits
associated with IT projects that enable a competitive advantage.

During all the process in SAM, how to classify the software
assets reasonably and build a Hierarchical Classification
Structure (HCS) to help the developers to find their desired
software asset effectively by browsing–based retrieval is an
import part. Because, as we have known, the browsing–based
retrieval is more instructive for developers and easier for them
to find new assets, more and more developers prefer to find

their desired assets by browsing the assets library by following
a HCS.

However, how to build a reasonable HCS is a dilemmatic
problem for SAM system managers. Because, strictly speaking,
in a good HCS, the relationship between each super-ordinate
word and sub-ordinate word should be an “is-a-kind-of”
relation. However, it is usually very difficult for system
managers to find a strict taxonomy with only this kind of
relation to be used as a HCS directly. At the same time, it is
also very difficult for them to build a HCS from scratch using
the words selected by them, because they could not make sure
whether the relationship among all the selected words is
appropriate to be used in a HCS or not.

In this paper, we proposed an ontology based HCS
modeling method for SAM system managers. In our method,
an ontology is proposed for HCS building. This ontology
confined the kinds of relationship between each super-ordinate
word and sub-ordinate word in the HCS. Using the instances
defined according to this ontology the system managers can
build a HCS with controlled understandability (in another paper
[2], we gave a HCS generating algorithm to support building
the HCS automatically). For the relationships among the words
in HCS are defined apparently, the understandability of the
whole HCS can be controlled. Furthermore, it becomes easier
for the system managers to make it clear that which part of
HCS dragged down the understandability of the whole HCS,
and then it becomes easier for them to make some
improvements.

The rest of this paper is organized as follows: section
presents the motivation of our paper with a real using example;
section III discussed the different levels of understandability
and the corresponding relationships in HCS; Section IV
presented our ontology and the HCS building process; In
section V, we presented a case study to illustrate the
availability of our method; Section VII draws the conclusion
for our work.

II. MOTIVATION EXAMPLE

In SAM systems, the HCS usually help the developers to
find their desired software asset by browsing–based retrieval

522 523

Figure 1. Example of a HCS.

[3][4][5]. HCS is a hierarchical tree structure, in which each
node is labeled with a word and represents a set of assets based
which related to this word. Navigated by HCS, the browsing
retrieval process becomes a process to follow a route in the
HCS[6][7]. In a certain browsing-based retrieval step, the
developer is usually presented with a screen containing many
word-links (e.g. a hyper-link which is labeled by a word in
HCS). Each word-link represents a sub-node of a certain node
in the HCS. After an overview of the screen, the developer
selects a link that he or she thinks the desired assets should be
contained, and clicks on the link. This will result in a step of
retrieval, in which all the software assets that related to this
word are returned as retrieval results. Then the developer can
review all the returned assets to check whether there are the
desired assets among them or not. If he or she locates all the
desired assets, the retrieval process will end; if the returned
results are not so confined that the developer cannot find the
desired assets, he or she will continue the retrieval process. In
the next step, some further links, which represent the sub-nodes,
are displayed on the next screen. The developer will keep on
the same clicking, retrieving and reviewing until the set of
retrieved assets is so confined that the retriever can easily
determine whether or not the desired assets as are contained in
this retrieved asset set.

From the above analysis, we can see that during the
browsing-based retrieval process, developers usually using the
HCS to make it clear what assets are there in the SAM system.
In each retrieval step, when developer selects a word-link from
the screen, he or she always assumes that the word-link could
lead him or she to find the desired assets, in other words, the
desired assets should be “contained” in the link. For example,
for a sample HCS, as Figure 1 shows, that presents a
classification for the assets from the “Operating System” aspect
[8][9][10]. During the browsing process navigated by this HCS,
if a developer selects and clicks the link labeled by “Mobile
Operating System”, it shows that he or she considers the
desired assets are related to the word “Mobile Operating
System”, or the desired assets should be “contained” in the
assets set related to the word “Mobile Operating System”. If, in
the next step, the developer selects and clicks the link labeled

by “Android”, it also shows that he or she thinks the desired
assets should be contained in the assets set related to the word
“Android”. So, we can say that, in the corresponding retrieval
step, the developer holding an assumption: the assets set related
to the word “Mobile Operating System” should include the
assets set related to the word “Android”. In fact, this
assumption is very important. It just because of holding this
assumption, the developers could be navigated by the HCS to
find their desired assets.

However, what kinds of semantic relationships between
each super-ordinate word (e.g. “Mobile Operating System”)
and sub-ordinate word (e.g. “Android”) in the HCS could make
the retriever consider “the assets set related to the super-
ordinate word should include the assets set related to the word
sub-ordinate word? This is a dilemmatic problem for SAM
system managers.

Strictly speaking, the “is-a-kind-of” is a good candidate
kind of relationship for each super-ordinate and sub-ordinate
word pair in the HCS, just like the words defined in some
predefined taxonomy ontologies. For example, as Figure 1
shows “Android” is-a-kind-of “Mobile Operating System”, so,
by these two words developers could be navigated. However, it
is really very difficult for SAM system managers to find
practicable predefined taxonomy ontology to be used as a HCS.
Also, it is very difficult for system managers to build a HCS
using only “is-a-kind-of” relationship. For, different from
taxonomy ontology, HCS is a tool used to navigate the
discovery of the software assets, but not used to present
taxonomy knowledge.

 At the same time, it is also very difficult for system
managers to build a HCS from scratch using the words selected
by themselves, because, in the literature, there still no method
discuss about what kinds of relationships could make the
retriever consider “the assets set related to the super-ordinate
word should include the assets set related to the word sub-
ordinate word. So, how to modeling the word relationships in
HCS and how to build an understandable HCS is remained
quite a problem for SAM system.

522 523

III. OUR APPROACH

In this paper, we proposed an ontology based HCS
modeling method for SAM system managers. An upper level
ontology is proposed to confine the kinds of relationship
between each super-ordinate and sub-ordinate word pair in the
HCS. Using the instances defined according to this ontology,
the managers can build an understandable HCS for their users
to support the browsing of software assets. In this section, we
will discuss the different levels of understandability of HCS,
and then present the upper level ontology used to modeling the
HCS. From this section on, we will call the developers that are
retrieving the SAM system as retrievers.

A. Retriever Assumptions and Relationships Analysis
As we have discussed in section II, during the retrieving

process, the retrievers are always holding some assumption: the
assets set related to the super-ordinate word should include the
assets set related to the sub-ordinate word. And, because of
holding this assumption, the developers could be navigated by
the HCS to find their desired assets. In fact, besides of this
assumption, there are several other assumptions holding by the
developers during the retrieval process. According to the
degrees of strictness of this assumption, we classified them into
4 different levels, named Retriever Assumption 1-4

Retriever Assumption I: During the retrieving process, the
retrievers are always assuming that the assets set related to the
super-ordinate word should include all the assets related to the
sub-ordinate word.

In our method, in order to modeling the right semantic that
meets Retriever Assumption I. we defined three kinds of
relationships for each super-ordinate and sub ordinate word
pair:

IsaKindof: for word W1 and word W2, if the concept
represented by W1 is a specialization of concept represented by
W2, and the concept represented by W2 is a generalization of
concept represented by W1, then we have W1 is a kind of W2,
denoted as: W1 IsaKindof W2 .

For example, in Figure1, “Android” is a kind of “Mobile
Operating System”. According to the definition of IsaKindof
relationship, we have: “Android” IsaKindof “Mobile
Operating System”. During the retrieving process, if the
retrieval result had been confined to the assets set related to
“Mobile Operating System”, then the words “Android” means
the assets set that related to the “Android Mobile Operating
System”, this set is included in the set of assets related to the
super-ordinate word (“Mobile Operating System”), so we can
see, the semantic of “Android” IsaKindof “Mobile Operating
System” can meet the definition of Retriever Assumption I.

IsaPartof: for word W1 and word W2, if any instance of the
concept represented by W1 is a part of some instance of the
concept represented by W2, then we have W1 is a part of W2,
denoted as: W1 IsaPartof W2 .

For example, in Figure1, “File Management Subsystem” is
a part of “Desktop Operating System”. According to the
definition of IsaPartof relationship, we have: “File
Management Subsystem” IsaPartof “Desktop Operating
System”. During the retrieving process, if the retrieval result

had been confined to the assets set related to “Desktop
Operating System”, then the words “File Management
Subsystem” means the assets set that related to the “File
Management Subsystem in Desktop Operating System”, this
set is included in the assets set related to the super-ordinate
word (“Desktop Operating System”), so we can see, the
semantic of “File Management Subsystem” IsaPartof
“Desktop Operating System” can meet the definition of
Retriever Assumption I.

[Attribute]Is: for word W1, attribute A1 and word W2, if A1 is
an attribute of W1 (denoted as: W1.A1), and if the word W2 is a
kind of W1.A1, in other words, if W2 IsaKindof W1.A1 then we
have W1 [A1]Is W2.

For example, in Figure1, “Manufacturer” is an attribute of
“Workstation Operating System” (although the words
“Manufacturer” is not appeared in the HCS), and “IBM” is a
kind of “manufacturer” of “Workstation Operating System”.
According to the definition of [Attribute]Is relationship, we
have:“Workstation Operating System” [Manufacturer]is
“IBM”. Here the word “IBM” means the workstation operating
systems that were manufactured by IBM. During the retrieving
process, if the retrieval result have been confined to
“Workstation Operating System”, then the words “IBM” means
the assets set that related to the “Workstation Operating System
that manufactured by IBM”, this set is included in the assets set
related to the super-ordinate word (“Workstation Operating
System”), so we can see, the semantic of “Workstation
Operating System” [Manufacturer]Is “IBM” can meet the
definition of Retriever Assumption I.

So, the above three kinds of relationship (IsaKindof,
IsaPartof, [Attribute]Is) give the right semantic that meets
Retriever Assumption I. Based on Retriever Assumption I, we
defined the Retriever Assumption II and III:

Retriever Assumption II: During the retrieval process in one
aspect, the retrievers are always assuming that the desired
assets are only belonging to one subset. In other words, in each
retrieving step, when selecting the next work-link, the
retrievers are always assuming that, the desired assets are only
related to only one sub-ordinate word.

If there are two sub-ordinate words, and each of them looks
likely to be related to the desired assets, then the retriever will
be confused by which should be selected as the next one. For
example, in Figure1, if a retriever selected to search desired
assets from the “Operating System” aspect, and had selected
“Operating System” in the first step, and then faces with three
sub-ordinate words (“Mobile Operating System”, “Workstation
Operating System” and “Desktop Operating System”), and if
the assets he or she desired are likely to be included in any one
of them or any two of them, the retriever may be confused by
which one should be selected.

Therefore, we defined the forth kind of relationship which
used to modeling the right semantic that meets Retriever
Assumption II:

DisjointWith: for word W1 and word W2, if there hasn’t any
common instance for the concept represented by W1 and the
concept represented by W2, then we have W1 disjoint with W2,
denoted as: W1 DisjointWith W2 . To facilitate representation,

524 525

for a words set WS = {Wi, i {1,2,…,n}}, if for any two words
Wi and Wj in the set, we have Wi DisjointWith Wj, then we can
donate the relationship as: DisjointWith{Wi, i {1,2,…,n}} or
DisjointWith WS.

For example, for the words “Symbian”, “Android” and
“Windows Mobile” in Figure1, if there haven’t any common
instance for the concept represented by each of them.
According to the above definition, we have: DisjointWith
{“Symbian”,“Android”, “Windows Mobile”}. Which means
the assets sets related to word “Symbian”, “Android” and
“Windows Mobile” is isolated to each other; there isn’t any
intersection between each pair of them. In this case, during the
retrieving process, if a retriever selected to search from the
Operating System aspect, and confined the retrieval result to
the assets related to “Mobile Operating System”, he or she
could make a clear choice of which should be selected. So, we
can see that the semantic of DisjointWith {“Symbian”,
“Android”, “Windows Mobile”}. can help us to build HCS that
meets the definition of Retriever Assumption II.

Retriever Assumption III: During the retrieval process in one
aspect (e.g. the Operating System aspect), on each retrieving
step, if the current word-link include many sub-ordinate word-
links, the retrievers are always assuming that the desired assets
must related to at least one of them, but not exist as a isolated
leaf.

For example, in Figure1, if a retriever selected to search
desired assets from the “Operating System” aspect, and had
selected “Desktop Operating System” in the first step, and then
faces with three sub-ordinate words (“File Management
Subsystem”, “Memory Management Subsystem” and “Process
Management Subsystem”), the retriever may hold a assumption:
all the assets related to “Desktop Operating System” had been
divided into three subsets, which related to three sub-ordinate
words separately. And, no isolated outside of these three
subsets.

Therefore, we defined the fifth kind of relationship which
used to modeling the right semantic that meets Retriever
Assumption III:

CoveredBy: for word W1 and a words set WS = {Wi, i
{1,2,…,n}}, if any instance of the concept represented by W1
must belongs to at least one instances set of the concept
represented by some Wi in WS, then we have W1 is covered by
WS, denoted as: W1 CoveredBy WS .

For example, in Figure 1, if in the current SAM system, all
the assets related to “Desktop Operating System” are divided
into three subsets, and each subset related to three sub-ordinate
words (“File Management Subsystem”, “Memory Management
Subsystem” and “Process Management Subsystem”) separately,
And there isn’t any isolated asset outside of these three subsets.
Then we have: “Desktop Operating System” CoveredBy {“File
Management Subsystem”, “Memory Management Subsystem”,
“Process Management Subsystem”}.

Besides the three assumptions mentioned above, we
proposed a supplementary retriever assumption for retriever,
which could be referenced in HCS building:

Retriever Assumption IV: During the retrieval process in one
aspect (e.g. the Operating System aspect), in any consecutive
two-step retrieving, the retrievers may assume that the two
step’s retrieving are navigated by the same kind of
relationships.

For example, in Figure 1, if a retriever selected to search
desired assets from the “Operating System” aspect, and had
selected “Mobile Operating System”. For the relationship
between “Mobile Operating System” and “Operating System”
is IsaKindOf, so the retriever maybe assume that, the
relationship in the next step is as same as the relationship in the
last step.

We proposed 4 retriever assumptions above, as we can see
that, different retriever assumptions could be superimposed
together in one HCS. And, the more assumptions the HCS
meets, the more understandable it is. So, in order to help the
SAM system managers to build more understandable HCS,
based on the relationships we mentioned above, we proposed
an upper level ontology to guide the HCS modeling.

B. Upper Level Ontology for HCS Modeling
According to the above analysis, we proposed an upper

level ontology for HCS modeling.

Figure 2. Upper Level Ontology for HCS Modeling.

As Figure 2 shows, the upper level ontology consists of 4
elements: Words, Attributes, Relations and Axioms. In which:

Words represents a set of words that will be used in
HCS; there are 3 kinds of words (Super-ordinate word,
sub-ordinate word, co-ordinate word).

Attributes is a collection of some small attribute sets,
and each small set in the collection includes all the
attributes of one word;

Relations represents a set of relationships among
different kinds of words, only 5 kinds of relationships
(as mentioned in above) can be used in the instance

524 525

level ontology to represent the relationships between
each words pair ;

Beside the above 5 kinds of relationships, in order to
facilitate the representation of attribute, we defined
IsanAttributeOf as a supplementary relationship :
Wp IsanAttributeOf Wq: to represent that the word Wp is an
attribute of the word Wq.

e.g. “Manufacturer” IsanAttributeOf “Workstation
Operating System”;

Axioms represents a set of axioms; each of them is a
constraint on the words or relationships (e.g. about the
transferability, symmetry, etc). Each constraint can be
expressed in Prolog-like rule [11].

As an example, the following is an instance ontology for
the HCS in operating system aspect showed in Figure1:

TABLE I. AN INSTANCE ONTOLOGY FOR OPREATING SYSTEM ASPECT

Operating System = {Words; Attributes; Relations; Axioms}

Words = {
“Operating System”, “Mobile Operating System”, “Workstation
Operating System”, “Desktop Operating System”, “Symbian”,
“Android”, “Windows Mobile”, “SUN”, “IBM”, “SunOS”,
“Solaris”, “AIX”, “Operating System/2”, “Process Management
Subsystem”, “File Management Subsystem”, “Memory
Management Subsystem”, “NTFS system”, “Fat32 system”

}

Attributes ={
“Manufacturer” IsanAttributeOf “Workstation Operating System”;

}

Relations ={
“Mobile Operating System” IsaKindOf “Operating System”;
“Workstation Operating System” IsaKindOf “Operating System”;
“Desktop Operating System” IsaKindOf “Operating System”;
“Symbian” IsaKindOf “Mobile Operating System”;
“Android” IsaKindOf “Mobile Operating System”;
‘Windows Mobile” IsaKindOf “Mobile Operating System”;
“Mobile Operating System” CoveredBy {“Symbian”, “Android”,

“Windows Mobile”};
“DisjointWith {“Symbian”, “Android”, “Windows Mobile”};
“IBM” IsaKindOf “Manufacturer”;
“SUN” IsaKindOf “Manufacturer”;
“Workstation Operating System” [Manufacturer]Is “SUN”;
“Workstation Operating System [Manufacturer]Is “IBM”;
DisjointWith {“SUN”, “IBM”};
“SunOS” IsaKindOf “SUN”;
“Solaris” IsaKindOf “SUN”;
“AIX” IsaKindOf “IBM”;
“Operating System/2” IsaKindOf “IBM”;
“Process Management Subsystem” IsaPartOf “Desktop Operating

System”;
“File Management Subsystem” IsaPartOf “Desktop Operating

System”;
“Memory Management Subsystem” IsaPartOf “Desktop Operating

System”;
“Desktop Operating System” CoveredBy {“Process Management

Subsystem”, “File Management Subsystem”, “Memory
Management Subsystem”};

“NTFS sytem” IsaKindOf “File Management Subsystem”;

“Fat32 sytem” IsaKindOf “File Management Subsystem”
}

Axioms = {
wp IsaKindof wq wq IsaKindof wp

wp IsaPartof wq wq IsaPartof wp

wp [Attribute]Is wq wq [Attribute]Is wp

wp CoveredBy ws ws CoveredBy wp

wp DisjointWith wq wq DisjointWith wp

ar IsanAttributeof wp ^ wq IsaKindof wp ar IsanAttributeof wq

wq IsaKindof wp ^ wp [wp.ar]Is ws wq [wq.ar]Is ws

wq IsaKindof wp ^ wr IsaPartof wp wr IsaPartof wq

wq IsaKindof wp ^ wr IsaKindof wq wr IsaKindof wp

wq IsaPartof wp ^ wr IsaPartof wq wr IsaPartof wp

wp DisjointWith wq ^ wr IsaKindof wq wr DisjointWith wp

wp DisjointWith wq ^ wr IsaPartof wq wr DisjointWith wp

}

In practice, this ontology can be represented in any
ontology representation language, such as the RDF(S), the
DAML+OIL and so on.

Using the proposed upper level ontology can help the SAM
system managers to define the relationships among words
clearly. As we have discussed, in order to build more
understandable HCS, we should try to make every super-
ordinate and sub-ordinate word pair meets more retriever
assumptions. In the following section we will use a case study
to illustrate the using of the proposed ontology.

IV. CASE STUDY

This section uses a case study to illustrate the availability of
our ontology. In this case study, we will present how the HCS
in the Figure1 are built up step by step, in this process, as we
can see that, with more retriever assumption been met, the
understandability of the HCS will be improved step by step.

In the first step, we build a HCS that only meets retriever
assumption I. During the modeling of this HCS, we only used 3
kinds of relationships: IsaKindOf, IsaPartOf, [Manufacturer]Is.
We can see that, though the HCS is usable, and meets retriever
assumption I, it is still not easy to be understood, for the sub-
ordinate words of “Operating System” are so diversiform that
confusing the retrievers.

Figure 3. HCS Meet Retriever Assumption I

In the second step, we try to add the relationship of
DisjointWith to the model of HCS, and try to make the HCS to
meet retriever assumption II. As Figure 4 shows, the

526 PB

understandability is better than Figure 3, for in each retrieving
step, the retriever only need to select only one sub-ordinate
word-link, but do not need to make trade-offs among several
possible word-links, so it becomes more clear and straight for
retrievers.

Figure 4. HCS Meet Retriever Assumption II

In the third step, we try to add the relationship of
CoveredBy to the model of HCS, and try to make the HCS to
meet Retriever Assumption III, and the HCS becomes to as
Figure 1 shows. We can see that, the understandability is
better than Figure 4, for in each retrieving step, the retriever
only need to select the next sub-ordinate word-link, but do not
need to care about whether the desired asset is an isolated leaf,
and isn’t related to any sub-ordinate word-link.

However, for the HCS in Figure 1, there is still room for
improvement, because it doesn’t meet the Retriever
Assumption IV. In order to make the HCS to meet Retriever
Assumption IV, we could delete the words “IBM” and “Sun”
from the HCS, just as Figure 5 shows.

Figure 5. HCS Meet Retriever Assumption II

So, we can see that, different retriever assumptions could be
superimposed together, the more assumptions the HCS meets,
the more understandable it is. By using more kinds of
relationships, we can improve the understandability step by
step.

V. DISCUSSION AND CONCLUSION

Software asset management (SAM) represents an important
role for software development and maintenance. In SAM, how
to classify the software assets reasonably and build a
Hierarchical Classification Structure (HCS) and help the
developers to find their desired software asset effectively by
browsing–based retrieval is an import part. However, how to

build a reasonable HCS is a dilemmatic problem for SAM
system managers.

In this paper, we analyzed the different level of
understandability of HCS proposed 4 retriever assumptions,
and discussed the kinds of relationship between each super-
ordinate and sub-ordinate word in the HCS. We proposed an
ontology based HCS modeling method for SAM system
managers, which an ontology is proposed for HCS building.
This ontology confined the kinds of relationship between each
super-ordinate and sub-ordinate word in the HCS. Using the
instances defined according to this ontology, the system
managers can build a HCS with controlled understandability.
And, if more kinds of relationships are used in the modeling,
more assumptions in the HCS will be met, and more
understandable the HCS is. Also, this ontology can be
combined with the HCS generating method (we published in
2007[2]), to build a HCS automatically. Besides these, our
method make it easier for the system managers to make it clear
that which part of HCS dragged down the understandability of
the whole HCS, and then it becomes easier for them to make
some improvements.

VI. ACKNOWLEDGMENTS
This research was sponsored by the National Grand

Fundamental Research 973 Program of China under Grant No.
2011CB302704, and the National Natural Science Foundation
of China under Grant No. 60803010.
[1] http://www.microsoft.com/sam/en/us/overview.aspx
[2] Ge Li, Lu Zhang, Bing Xie, Weizhong Shao, Ontology Based

Classification Generating Method for Browsing-Based Component
Retrieval. 19th International Conference on Software Engineering and
Knowledge Engineering (SEKE), Boston, USA, July 9-11, 2007.

[3] Ge Li, Lu Zhang, Yan, Li, Bing Xie and Weizhong Shao, Shortening
Retrieval Sequences in Browsing-based Component Retrieval Using
Information Entropy, Journal of Systems and Software (JSS), Vol. 79,
No. 2, 2006, pp.216-230.

[4] M. Casanova Paez, R. Van Der Straeten, and V. Jonckers, “Supporting
evolution in component-based development using component libraries,”
in 7th European Conference Software Maintenance and Reengineering,
Benevento, Italy, 2003, pp. 123–132.

[5] Y. Ye and B. Reeves, “An active and intelligent agent for component
location,” in Software Symposium 2000 (SS2000). Kanazawa, Japan:
Software Engineer Association, 2000, pp. 67–74.

[6] Y. Ye and G. Fischer, “Context-aware browsing of large component
repositories,” in 16th International Conference of Automated Software
Engineering (ASE’01), Coronado Island, CA, 2001, pp. 99–106.

[7] B. Fischer, “Specification-based browsing of software component
libraries,” Journal of Automated Software Engineer, vol. 7, no. 2,
pp.179–200, 2000.

[8] C. G. Drummond, D. Lonescu, and R. Holte, “A learning agent that
assists the browsing of software libraries,” IEEE Transaction on
Software Engineering, vol. 26, no. 12, pp. 1179–1196, 2000.

[9] M. Hertzum and E. Frokjaer, “Browsing and querying in online
documentation: A study of user interfaces and the interaction process,”
ACM Transaction on Computer-Human Interaction, vol. 3, no. 2, pp.
136–161, 1996.

[10] C. Olston and E. H. Chi ScentTrails, “Integrating browsing and
searching on the web,” ACM Transaction on Computer-Human
Interaction, vol. 10, no. 3, pp. 117–197, 2003.

[11] I. Bratko, PROLOG Programming for Artificial Intelligence, third edtion
ed. Pearson Education Limited, 2000.

PB 527

Mapping Non-Functional Requirements to Cloud
Applications

David Villegas and S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University
Miami, Florida

{dvill013, sadjadi}@cs.fiu.edu

Abstract—Cloud computing represents a solution for appli-
cations with high scalability needs where usage patterns, and
therefore resource requirements, may fluctuate based on external
circumstances such as exposure or trending. However, in order
to take advantage of the cloud’s benefits, software engineers
need to be able to express the application’s needs in quantifi-
able terms. Additionally, cloud providers have to understand
such requirements and offer methods to acquire the necessary
infrastructure to fulfill the users’ expectations. In this paper, we
discuss the design and implementation of an Infrastructure as a
Service cloud manager such that non-functional requirements
determined during the requirements analysis phase can be
mapped to properties for a group of Virtual Appliances running
the application. The discussed management system ensures that
expected Quality of Service is maintained during execution and
can be considered during different development phases.

I. INTRODUCTION

The emergence of cloud computing responds to a increasing
trend in web application emergence and utilization. The wide
adoption of Internet has resulted in systems that need to
accomodate millions of users [1] and provide capabilities that
until now were only required by critical, high availability
or high throughput software. The practice of Software Engi-
neering provides methodologies to ensure such characteristics
are met, but it is necessary to review how they fit in this
new paradigm. In this paper, we explore the applicability of
traditional processes to the incipient field of cloud computing
from the perspective of our research in an Infrastructure as a
Service (IaaS) cloud manager.

Internet has resulted in rapid cycles of software devel-
opment, deployment and consumption by users. The rising
number of subscribers, better network connectivity and band-
width, and the growing connectedness between users have
created new dynamics where applications can be rapidly
discovered and consumed. However, the benefits produced by
these circumstances are hindered when expected requirements
are not met. Nowadays, cloud computing is often employed
as a solution to this problem. Capabilities such as pay-per-
use, scalability or elastic provisioning of resources can help
to overcome these new challenges. Nevertheless, application
developers need to recognize how to apply Software Engineer-
ing methods to the cloud in order to successfully map their
needs to fulfill service expectations.

There are two interrelated points that we believe have to
be considered to successfully make use of clouds to develop

applications that respond to the new demands generated in this
field. First, developers must understand which non-functional
requirements take renewed importance in cloud applications
so that they can be accounted for during the requirements
analysis phase. Second, cloud providers need to define better
guarantees for their services, so developers can design their
systems accordingly. We believe that providing a solution to
these problems will result in a more dependable use of clouds
to confront the new challenges of this era.

In this paper we consider the concept of Distributed En-
sembles of Virtual Appliances (DEVAs), introduced in [2], as
a model to represent complex systems with Quality of Service
(QoS) guarantees. We discuss how a software architecture
can be mapped to a DEVA, and how through the use of
performance modeling and prediction we can make certain
assurances about its behavior in the cloud in order to address
its non-functional requirements. We finally present a case
study were we demonstrate the feasibility of our approach
to model the expected number of requests per second and
response time of a web application hosted in the cloud.

II. BACKGROUND

We define a cloud application as any software that runs on a
distributed system that complies with the definition of a cloud.
Such systems ([3], [4]) possess certain common capabilities
such as on-demand provisioning, resource elasticity or pay-
per-use billing model. Therefore, cloud applications can be
deployed on remote resources with a minimal cost, and scaled
dynamically when user demand grows.

We consider three main actors in our scenario: application
users, application providers, and cloud providers. In this
proposed division, application providers also have the role of
cloud users, even though in certain cases it would be possible
that application and cloud providers are the same individual
or organization. The cloud is usually divided in Software,
Platform and Infrastructure as a Service [3] —SaaS, PaaS
and IaaS respectively. Application providers are in charge of
implementing the SaaS layer, while the PaaS and IaaS layers
are supplied by cloud providers.

A DEVA [2] is a group of Virtual Appliances and virtual
network devices, where individual and composite policies can
be defined for elements. Virtual Appliances [5] are Virtual

528 529

Fig. 1. General architecture

Machines with specific functions, usually containing a partic-
ular software and configuration; for simplicity, we’ll use the
more general term VM to refer to them. Figure 1 illustrates the
architecture of the DEVA Manager. A user sends a specifica-
tion for a list of VMs and their associated QoS requirements,
which may consist of CPU, memory and required software for
individual VMs, and network bandwidth and latency for the
network links. Then, the Manager instantiates the ensemble
across heterogeneous resources, which may be located in
different administrative domains. A group of agents monitors
each VM’s behavior and provides the requested QoS and
network isolation.

III. REQUIREMENT ANALYSIS AND ARCHITECTURAL
DESIGN

In Software Engineering, the requirements analysis phase
is in charge of determining the functional and non-functional
requirements of the system based on the client’s needs. In
particular, non-functional requirements [6] describe the char-
acteristics of the system not related to its functionality. These
requirements shape the architecture of the system during the
design phase.

In this paper we target a class of applications that are
specially suited to be hosted in the cloud and have a prevalent
set of non-functional requirements. Identifying them allows
developers to ensure that they are addressed during the require-
ment analysis phase, and establish a set of requisites that must
be met by cloud providers in order to quantify their service
and ascertain the application goals are met successfully. We
enumerate the most salient ones next.

Response time
This requirement describes how much time it takes from

the moment a user sends a request to the system, until a
complete response is provided. In web applications, this com-
prehends request transmission and processing, and response
transmission. The factors that account for it are resource ca-
pabilities —processing power, memory, disk, network latency
and bandwidth— and the load produced by other processes
running in the server or the number of concurrent requests.
For complex requests, this may also involve calls to external
systems, or to other subsystems, in which case the host’s
internal network characteristics and other resources’ load may
be taken into account.

Uptime

The total time the service is available. It may be expressed
as a percentage. When considering this requirement, it is
necessary to take into account the provider’s own uptime.
For example, if a provider has an uptime of 99.5%, it would
be impossible to deploy an application with a higher uptime.
Other factors involve the recoverability of the system (i.e.,
how much time it takes to restart the service after a failure
happens).

Requests per unit of time

This requirement describes the number of requests the
system can handle successfully per unit of time, and can also
be referred to as the system’s throughput. Resource allocation
and usage has an impact in this parameter. Additionally, the
number of requests can have an impact in the response time
requirement (i.e., a high number of requests will result in a
deterioration of the overall response time).

Fault tolerance

One of the system’s properties is how it can withstand
errors, either hardware or software-based. In the case of cloud,
non-software errors can be generated either at the physical or
the virtual machines hosting the service. While the first case is
usually out of the developer’s control, virtual machine faults
can be handled by different means, for example by spawning
new instances, or having backup VMs to respond to failures.

Security

Security is another requirement that can be applied to
the cloud provider or to the developed system. In the first
case, the application developer is under the provider’s security
measures such as physical infrastructure access policies or
network isolation mechanisms. Alternatively, security in the
instantiated VMs must be handled by the cloud user.

Operational cost

In traditional systems, hardware was determined based on
the application’s initial requirements. Changes in require-
ments would typically result in costly upgrades involving the
acquisition of new physical machines and installation and
configuration of the application to run on them. In cloud
systems, resources can be upgraded almost instantaneously,
meaning that cost can be considered a changing variable.
This allows defining tradeoffs to architectural (static) and
operational (dynamic) behavior.

During the requirements analysis, it is the job of the soft-
ware engineer to give appropriate values to each of the non-
functional requirements according to the user’s expectations.
Each of these parameters needs to be reflected in one or more
architectural decisions and tradeoffs.

528 529

IV. MAPPING REQUIREMENTS TO DEVAS

The original implementation of the DEVA Manager accepts
three types of parameters: nodes (VMs and virtual network
devices), edges between nodes, and element annotations. Basic
annotations describe node and edge characteristics such as
VM processor power or memory size, and link bandwidth and
latency, respectively.

An application developer could map the assigned non-
functional requirement values to any of the discussed DEVA
parameters in order to ensure the application’s operational
guarantees. For example, the number of desired requests per
second would influence the assigned latency for the links
between VMs; alternatively, the targeted response time could
translate to a minimum processing power for the VMs in the
ensemble.

However, this process is complicated and error-prone: the
relationship between non-functional requirements and low
level values is in many cases difficult to determine, and
many factors can take part in the fulfillment of one individual
parameter. Thus, we propose an extension to our system where
non-functional requirements can be directly mapped to the
execution platform, not only during the deployment phase, but
also along the whole design process.

Our proposed approach in this paper extends DEVA an-
notations with new high-level values that correspond to non-
functional requirements. An underlying application-dependent
model is in charge of translating high-level parameters to low-
level ones, and performing the required operations on the
appropriate elements. We describe our system design next, and
discuss its implementation.

Fig. 2. Extended architecture

A. Processing annotations for DEVAs
Once the user defines a set of nodes, edges and annotations,

a request is sent to the DEVA manager, which parses it
and assigns the virtual resources to physical hosts that can
comply with the requested QoS parameters. At each host, a
number of VMs and virtual network links are created so that
the ensemble appears as an isolated group of machines with
dedicated resources. Additionally, a set of DEVA Agents are
in charge of monitoring the infrastructure usage and ensuring
global and individual QoS.

Requirements in the request are realized in two phases:
first, the scheduling module of the manager chooses the target
resources so that the ensemble requirements can be met. This
implies selecting hosts with enough free memory and CPU for
the VMs and ensuring the underlying physical network will be
able to support the requested bandwidth and latency. Second,
control measures are applied to constraint resource usage so
that shared requests don’t interfere among them. VM resources
are adjusted by a Virtual Machine Monitor such as Xen or
VMWare running in the target host, while network resources
are controlled by a DEVA Agent. Agents apply shaping and
monitoring to manage network QoS.

In order to implement high-level annotations representing
non-functional requirements, we need to extend the DEVA
manager and agents so that the new parameters can be
translated into the existing ones. Figure 2 shows the system
architecture with the new components in a darker shade.

First, the manager needs to translate non-functional re-
quirements into values that can be considered as part of the
scheduling process. We provide a non-functional requirements
(NFR) Parser that is in charge of converting high-level values
to low-level ones. For this, a Static Application Model is
employed. Such model is dependent on the type of application,
and can be defined either theoretically or empirically. We
define a global annotation for the request, where the user can
specify the application type. The value of this annotation will
determine the model to use in the scheduler.

The Non-Functional Requirements Parser generates a set of
requirements for nodes and connections based on the translated
parameters, and these are fed to the scheduler, which takes
them into account to generate a list of physical machine
candidates. Each of the candidates is assigned a number of
VMs to host. Finally, the Infrastructure manager, implemented
in our system by OpenNebula [7], sends instantiation requests
to Hypervisors and the DEVA Agents in charge of the dynamic
behavior of the application.

After VMs are instantiated, DEVA Agents create a virtual
network in the hosting machines. In our proposed architecture,
we extend the system by adding three new components in
the agents: First, we define an additional monitoring module
with application dependent rules. While the basic component
reads values such as CPU, memory and bandwidth usage, new
values need to be contemplated in order to track non-functional
requirements compliance. Examples of this are requests per
second for a web server or database transactions for a database
server. The application-dependent monitoring module can be
extended based on different applications. All agents send the
monitored data to the DEVA Manager, where the data is
aggregated to determine high-level actions.

The second change in the DEVA Agents consists in an Ap-
plication Management module similar to the existing Network
Management component. While the later one is in charge of
determining low-level actions to maintain network QoS, the
new subsystem needs to consider high-level requirements and
send them as an input to the other module. The third modifi-
cation of the agent, the Dynamic Application Model, provides

530 531

the mapping based on a model of the application’s behavior.
Contrarily to the Non-Functional Requirements Parser and the
Static Application Model, the components in the agent can
also consider the runtime state of the application.

B. Model-based translation of non-functional requirements

There are two modules with the task of translating non-
functional —high level— to infrastructure or low-level re-
quirements. As stated in the last section, the first one con-
siders the static behavior of the application and provides the
necessary criteria to the scheduler, while the second one takes
into account the dynamic state of the application. There are
different approaches in the literature to modeling application
performance such as [8] or [9], which can be divided into
the categories of empirical, theoretical and on-line simulation
models.

The first category corresponds to those models created
from the application’s off-line execution. Requirements can
be inferred by observing the behavior of the system under
different conditions and creating a model that can be later used
to obtain approximate parameters to provide to the underlying
management system. These models are usually measured by
treating the application as a black-box (i.e., without employing
any knowledge of the internal implementation or design).

The second category consists of creating a mathematical
model to relate the application’s characteristics to its require-
ments. In this case, knowledge about the internal implemen-
tation is used to quantify the application’s behavior based on
available resources.

Finally, some models perform on-line (runtime) simulation
of the application in order to find its behavior for a certain
input. Simulations can be either event-based, for which an
abstract model is created to approximate the behavior under
certain conditions, or real-time, where a part or the whole
application is executed to predict how the real system would
behave.

Our system does not make any assumptions about the
models used to map non-functional requirements to low-level
ones. In fact, any of these could be employed either for the
static or the dynamic modules in the manager and the agents.
The basic prerequisite is that the used model understands
the application’s requirements and is able to determine a
set of values that can be expressed via DEVA annotations.
Some models may consider individual components of the
system separately, while others contemplate complex relations
between modules and how changes in one may affect others.

C. Non-functional requirements fulfillment

The modules added to the system allow the translation of
non-functional requirements to low-level ones by using an
application model. However, the DEVA Manager and agents
need to perform the appropriate actions in order to fulfill the
requested requirements. We classify these actions in two areas:
resource allocation, and resource control. These categories also
correspond to static and dynamic management, respectively.

The first type of actions is decided and enforced by the
DEVA Manager based on the initial ensemble request and the
model mapping. After parsing the user’s input, non-functional
requirements are translated into a set of low-level QoS values,
which can be in turn used by the scheduler component
to assign virtual elements to physical infrastructure. In our
implementation in [2], the scheduler executes a metaheuristic
algorithm to iteratively choose a near optimal placement of
the requested DEVA in the available resources. This mapping
would ensure that non-functional requirements are met by em-
ploying the appropriate infrastructure. Additionally, the DEVA
Manager sends a description of the requested network links
to each agent. Agents perform traffic isolation and shaping
operations on the physical links to multiplex their usage among
ensemble members, and when needed, create tunnels between
physical hosts in different domains to build a virtual overlay
network.

However, static allocation is not enough to respond to the
runtime behavior of the application. While some values can
be applied during the instantiation phase, most of the non-
functional requirements need to be considered in terms of the
application’s dynamic usage. The DEVA agent is in charge
of monitoring the system’s running state and execute the
appropriate control mechanisms. In many cases, these actions
have associated trade-offs which need to be considered. Ex-
amples of control mechanisms run by the agents are dynamic
bandwidth or CPU adjustment, provisioning of additional VM
instances or VM migration.

V. EXPERIMENTAL VALIDATION

In order to validate the proposed architecture, we have im-
plemented a prototype extending the original DEVA Manager
and agent. There are two main goals for this section:

1) Demonstrate the feasibility of translating high-level,
non-functional requirements into a deployed ensemble
of VMs.

2) Show how high-level QoS requirements are met during
a DEVA lifecycle.

The experiment includes provisioning a test application
through the DEVA Manager in order to determine how a set of
non-functional requirements defined through the requirements
analysis phase can be fulfilled during runtime. We have devel-
oped a three-tiered web application to illustrate the process.

A. The Chirper Application
In our test scenario, an fictitious company wants to develop

an internal messaging systems so that their employees can
communicate without having to use third party applications.
They decide to deploy this solution in their private cloud so
that they can take advantage of their in-house resources. The
application, which we call Chirper, stores profile information
for users, and enables them to post short messages to a
common virtual board and query others’ messages.

The application has two main components: the first one
is a web server running the CherryPy1 python web server;

1http://www.cherrypy.org

530 531

Fig. 3. Chirper class diagram

the second is a PostgreSQL2 database with the users and
messages information. The application will be accessed from
the company’s intranet.

As the first step, we perform the requirements elicitation
to come up with the different functional and non-functional
requirements. In this case, users need to be able to register
in the application through a form, and then query either a
specific user entries or last 50 messages in the database. We
focus on a subset of the typical non-functional requirements
explained in Section III: after exploring their users’ behavior,
our fictitious company estimates that the application should be
able to respond to a peak of 40 requests per second, and that
any request should be served in less than 500 milliseconds
through the internal network.

In the second step, we define the application’s architecture
and implement it. In our approach, we follow the Model-View-
Controller (MVC) architecture: a front-end interface where
the user can interact with the system, a controller to submit
and request data to the database, and the database layer itself.
Figure 3 shows a class diagram of the system. The application
receives requests through different URLs, which are mapped
by CherryPy to the appropriate functions in the Chirper-
Controller object. This class handles each request separately,
performing input validation, then retrieving the requested
information by calling the DBManager class, and finally
rendering the response through the PageRenderer instance. The
DBManager uses the SQLObject3 Object-Relational Mapping
(ORM) library to access the PostgreSQL database and perform
selection and insertion operations. Finally, the PageRenderer
class has methods to produce HTML code to return to the
user.

In order to simplify scalability and be able to assign physical
resources separately to each of the components, the web and
database servers are deployed as different Virtual Appliances.
Each of the VMs runs CentOS 5.3 and the software require-
ments needed by the application, which consist of Python 2.4
and CherryPy 3.2 for the Web appliance, and PostgreSQL 8.4
for the Database appliance. When the VMs are provisioned in
the cloud, the DEVA Manager is able to define the resource
allocation by sending commands to the VM Hypervisor and
the DEVA agents. There are three main parameters that can
be configurable once the VMs are instantiated in the infras-

2http://www.postgresql.org
3http://www.sqlobject.org

tructure: maximum CPU share assigned to a VM, amount of
memory, and bandwidth allocation between pairs of VMs.

B. Performance Modeling
Once the application complies with the specified functional

requirements, a model is created to account for the expected
performance. In this example, a simple black-box model is
defined by benchmarking the application externally. We deploy
both appliances in the private cloud, consisting of a cluster
of machines with Pentium 4 processors and 1 GB of memory
running the Xen 3.0 hypervisor, and a third VM to act as a user.
Physical machines are interconnected with 1 Gbps ethernet
links and a dedicated network switch.

Initially, each VM is assigned a quota of 100% of the
CPU, 1GB of disk, and 768 Mb of RAM. We run the
Apache Benchmark tool to send 1000 requests with a level of
concurrence of 10 to the service for each tested configuration.
CherryPy is set up to spawn 10 serving threads without
page caching mechanisms. We measure the request time and
number of requests served per second for the operation of
querying the last 50 messages in the database. We consider
CPU and bandwidth as the VMs’ configuration parameters.
Memory allocation was discarded since the application doesn’t
require a high amount of main memory and consequently
its performance doesn’t depend on this parameter (our tests
demonstrated 40 Mb were enough for the application to
function at maximum capacity).

In the first set of runs, we calculate the application’s behav-
ior depending on the CPU quota. After running the tests, we
determined that the Database appliance is not CPU bound, and
therefore, there is no difference in performance with different
values. Figure 4 shows the number of handled requests per
second and the milliseconds taken for each request when the
CPU allocation for the Web appliance is changed from 25% to
100% in intervals of 25%. As the figure shows, the number of
served requests per second is directly proportional to the CPU
allocation, while the time taken to respond to each request
decreases with a higher CPU quota.

As the second set of measurements, we explore the appli-
cation’s behavior in relation to the allocated bandwidth. There
are two links considered in this benchmark: the incoming
connection to the Web appliance, and the private connection
linking it to the database. Each of them can be constrained and
isolated independently by the DEVA agents in the hosting ma-
chines. By doing this, each DEVA can perform independently
of the rest, and network traffic from different applications is
separated so that different VMs can multiplex the physical
channel. We test the application with symmetric network
assignments —i.e. same incoming and outgoing rate— from
100 Kb/s to 500 Kb/s with increments of 100 Kb/s. Figure 5
shows the results in requests per seconds and milliseconds
per request for the incoming link (in) and the private one
connecting both VMs (priv).

As it can be observed, the number of served requests per
second depends on the available bandwidth, up to approxi-
mately 550 Kb/s for the incoming link (not shown in the graph)

532 533

 0

 10

 20

 30

 40

 50

 60

 70

 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

 120
R

eq
s/

se
c

M
S

ec
/re

q

CPU %

reqs/s
ms/req

Fig. 4. Application model according to Web Appliance CPU allocation

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500
 0

 20

 40

 60

 80

 100

 120

R
eq

s/
se

c

M
S

ec
/re

q

BW Kb/s

reqs/s (in)
ms/req (in)

reqs/s (priv)
reqs/s (priv)

Fig. 5. Application model according to Incoming and Private bandwidth
allocation

and 400 Kb/s for the private link. Lower bandwidth results in
reduced requests per second and higher response time.

C. Integrating the model with the DEVA manager
The final step consists of integrating the experimental

performance model into the DEVA manager and making the
appropriate changes so that user requests can specify high-
level requirements as parameters. We add the logic to translate
such submission into low level parameters by employing
the models and specifying an additional global parameter,
applicationType=’Chirper’ so that the DEVA Manager knows
which model to apply.

After that, we test the system by sending a request to
the DEVA Manager specifying the two described Virtual
Appliances and the desired non-functional requirements of
40 requests per second and 500 ms of maximum response
time. The manager identifies this request to instantiate the
Chirper application, and translates the requirements to 75%
of CPU for the Web appliance and 25% of CPU for the
Database appliance, 64 Mb or RAM for each VM, 500 Kb/s
for incoming bandwidth and 400 Kb/s for private bandwidth.
Finally, it decides that both VMs can be assigned to a single
physical machine and provisions them accordingly.

VI. CONCLUSIONS AND FUTURE WORK

As the cloud becomes more mainstream as a method to host
applications, developers will need to consider how different
providers —or in-house solutions— will be able to fulfill the
final users’ needs. Similarly, providers need to be able to
give reliable guarantees for the Quality of Service of software
deployed on their infrastruture. In this paper, we addressed
this problem from both the developer’s and cloud provider’s
perspectives. We showed how an example application with
concrete requirements can be developed and deployed in a
cloud manager that takes high-level non-functional require-
ments into consideration.

However, there are still many issues to address in order
to determine how software can be successfully deployed in

clouds: additional non-functional requirements such as fault-
tolerance, execution cost or security need to be considered,
and improved models that are able to predict applications’ per-
formance considering different parameters such as processor,
memory, network and disk usage have to be developed.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. OISE-0730065.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the clouds: A berkeley
view of cloud computing,” Feb 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[2] D. Villegas and S. Sadjadi, “DEVA: Distributed ensembles of virtual
appliances in the cloud,” in Proceedings of the 17th Euro-Par Conference
(Euro-Par 2011), 2011.

[3] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology
of cloud computing,” in Grid Computing Environments Workshop, 2008.
GCE ’08, 2008, pp. 1 –10.

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, pp. 7–18, 2010, 10.1007/s13174-010-0007-6.

[5] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow, M. S.
Lam, and M. Rosenblum, “Virtual appliances for deploying and maintain-
ing software,” in Proceedings of the 17th USENIX conference on System
administration. Berkeley, CA, USA: USENIX Association, 2003, pp.
181–194.

[6] L. Chung and J. do Prado Leite, “On non-functional requirements in
software engineering,” in Conceptual Modeling: Foundations and Appli-
cations, ser. Lecture Notes in Computer Science, A. Borgida, V. Chaudhri,
P. Giorgini, and E. Yu, Eds. Springer Berlin / Heidelberg, 2009, vol.
5600, pp. 363–379.

[7] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, pp. 14–22, 2009.

[8] C. Stewart and K. Shen, “Performance modeling and system management
for multi-component online services,” in Proceedings of the 2nd confer-
ence on Symposium on Networked Systems Design & Implementation -
Volume 2, ser. NSDI’05. Berkeley, CA, USA: USENIX Association,
2005, pp. 71–84.

[9] S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Du-
ran, and X. Collazo-Mojica, “A modeling approach for estimating exe-
cution time of long-running scientific applications,” in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on, 2008, pp. 1 –8.

532 533

Computational Reflection in order to support
Context-Awareness in a Robotics Framework

Sheila Mendez
R&D Manager

B2B E-Commerce
s.mendez@b2b2000.com

Francisco Ortin
Computer Science Department

University of Oviedo
ortin@lsi.uniovi.es

Miguel Garcia
Computer Science Department

University of Oviedo
be37378@uniovi.es

Vicente Garcı́a-Dı́az
Computer Science Department

University of Oviedo
garciavicente@uniovi.es

Abstract—The development of service robots has gained more
and more attention over the last years. Advanced robots have to
cope with many different emerging at runtime situations, while
executing complex tasks. They should be programmed as context-
aware systems, capable of adapting themselves to the execution
environment, including the computing, user and physical environ-
ment. Since computational reflection is a programming language
technique that offers a high level of runtime adaptability, we
have analyzed the suitability of this language feature to fulfill
the dynamism requirements of context-aware robotic systems. In
order to evaluate their appropriateness, we have implemented an
example scenario in a dynamic reflective language and compared
it with Java.

Index Terms—Computational reflection, context-awareness,
robotics framework, dynamic languages.

I. INTRODUCTION

Robotic systems which should be able to interact in every-
day life have to manage the high dynamism and complex-
ity of real-world environments. An important element to be
considered is the environment context, commonly referred to
as location, the identification of nearby people and objects,
plus changes to those objects [1]. Contexts are defined to
be the constantly changing execution environment, including
the computing, the user and the physical environment [2].
Therefore, context-aware software is software that must adapt
itself according to its location of use, the collection of nearby
people and objects, and changes to those objects over time
[1]. An advanced robotic platform should take into account the
context-awareness requirements of future robotic applications.

Dynamic languages have recently turned out to be suitable
for specific scenarios such as Web development, application
frameworks, game scripting, interactive programming, rapid
prototyping, dynamic aspect-oriented programming and any
kind of runtime adaptable or adaptive software. The main
benefit of these languages is the simplicity they offer to model
the dynamism that is sometimes required to build high context-
dependent software. Common features of dynamic languages
are meta-programming, reflection, mobility and dynamic re-
configuration and distribution. Computational reflection is one
of the most distinguishing features of these languages, defined
as the capability of a computational system to reason about
and act upon itself, adjusting itself to changing conditions
[3]. Due to the strong connection between context-awareness
and computational reflection, we present in this paper how
computational reflection can be used to facilitate the program-
ming of context-aware services in a robotic platform. In fact,
it has been previously stated that in order “to support context-

awareness in an open and much larger setting, a reflective, or
self-describing, context model is required” [4].

Dynamic languages have been previously used in different
robotics scenarios. An example is the SmartTCL language, an
extension of Lisp that was used to implement the sequencing
layer in a three layer robotic architecture [5]. The sequencing
layer is the place to store procedural knowledge on how to
configure skills to behaviors. Due to the dynamic features
of SmartTCL, the plans stored inside the task coordination
module can be modified easily at runtime.

The dynamic language Lua has also been used to implement
the behavior engine of the humanoid robot Nao [6]. The
formalism of hybrid state machines (HSM) was used to bridge
the gap between high-level strategic decision making and low-
level actuator control. The model of HSMs was extended with
dependencies and sub-skills to call the behaviors or skills
hierarchically. Lua turned out to be an expressive language
to implement these HSM-skills.

Other examples of existing robotics products that use dy-
namic languages to obtain a high level of adaptability are
UrbiScript, an orchestration language for robotics systems;
ROS (Robot Operating System), a set of libraries and tools to
help software developers create robot applications in Python;
and Pyro (Python Robotics) a programming environment
for exploring advanced topics in artificial intelligence and
robotics, facilitating the creation of interfaces for accessing
and controlling a wide variety of real and simulated robots.

II. THE TIC4BOT PROJECT

The work presented in this paper is part of the TIC4BOT
Project developed by the Treelogic Company, the Cartif Foun-
dation, and the University of Oviedo. The aim of the project
is to provide the necessary infrastructure to develop complex
services in the social robotics field, by raising the abstraction
level. The implementation was tested over a real robotic
platform (SCITOS-G5), though the system was designed with
total independence of the hardware. In order to get this
independence, the Player/Stage [7] system was used during
the development process. The SCITOS-G5 robot is controlled
by an embedded PC with an Intel Core 2 Duo processor, and
multiple small hardware units that monitor several functions
of the robot. The PC operating system is Fedora Core 8.

Figure 1 shows the system architecture, consisting of three
layers: primary modules, robotics framework and service mod-
ules.

534 535

Figure 1. Architecture of the TIC4BOT system.

A. Primary Modules

Primary modules are developed accessing the hardware
libraries in C and C++ and they implement primitives and
events. A primitive is defined as a low-level function that can
perform a simple task or a query over any sensor or actuator of
the robotic platform. An event is a notification that something
has happened.

In the framework, primitives are classified into namespaces.
Each namespace contains a set of primitives, with a one-to-one
correspondence with the primary functions.

B. The Framework

The framework provides a middle layer for the integration
of primary modules and service modules [8]. In order to obtain
platform independence and a higher level of abstraction, we
chose the Java programming language. Java raises the abstrac-
tion level, providing automatic memory allocation, garbage
collection and multi-threading. However, these benefits come
at the expense of lower runtime performance. This implies that
the robot hardware should have enough processing capabilities
to perform the required tasks. In the case of our project, the
SCITOS-G5 processor greatly suffices this requirement. The
main functionalities provided by the framework are:

• Dynamic runtime detection of primary modules, allowing
the addition of new primary modules at runtime. We
allow the implementation of these modules in both C and
C++, generating a Java proxy class at runtime for each
C/C++ module. Proxies are classes providing the access
to primary module functions. These Java proxies were
developed using the JNI (Java Native Interface) stan-
dard through SWIG (Simplified Wrapper and Interface
Generator) [9], that provides an automated connection of
programs written in C and C++ with a variety of high-
level programming languages.

Figure 2. Sample code of framework programming.

Figure 2 shows a sample code of the invocation of
a primitive. First, authentication over the framework
is performed and credentials for executing tasks are
obtained. Then, the Navigation namespace and its
goTo primitive are obtained. An Object array is created
containing the values of parameters for the invocation.
A list of InvocationElement is also created. The
InvocationElement type is provided by the framework
and it could contain a set of primitive elements that will
make up a complete task.

• Transparent publication of all the elements offered by the
primary modules. The framework provides the necessary
mechanisms to discover and invoke primitives at runtime.
It also provides event subscription management.
The next step of our sample code in Figure 2 is to
create a task with the InvocationElement list previ-
ously mentioned. In this sample code, the type of the
created task is DefaultTask. The task type indicates
the execution mode of the primitives within the task
(a DefaultTask indicates non-transactional behavior,
while a TransactionalTask indicates that the task
cannot be interrupted by any other task until it finalizes its
execution). Finally, a Runnable object is created as the
result of introducing the previously created task into the
framework execution engine. In this stage, the execution
mode is established to SYNCHRONOUS. Synchronous tasks
cannot be executed in parallel with other synchronous
ones, whereas asynchronous tasks can. The task is as-
signed the maximum priority execution level (MAX). The
Runnable object is then used to retrieve the result of the
primitives executed. The loop in the code waits until the
result of the primitive is ready.

• Execution engine for service modules, providing a pri-
oritization mechanism of tasks and different execu-
tion modes (transactional or non-transactional, and syn-

534 535

chronous or asynchronous), which can be combined in
each specific case.

• Remote hot reprogramming at runtime. This service en-
ables remote applications to send their Java source code
to the framework at runtime. This was developed through
Web Services, using standard technologies. We used the
W3C recommended WSDL (Web Services Description
Language) for describing Web Services, and the SOAP
(Simple Object Access Protocol) protocol to specify the
interchange of data with Web Services by means of XML
messages.

C. Service Modules

Service modules are complex modules that provide end-
user services by means of the composition of primary modules
functionalities. The access to primary modules is always per-
formed through the framework. Service modules insert sets of
tasks in the framework with a concrete priority and execution
mode. These modules can be added at runtime through the hot
reprogramming service.

III. COMPUTATIONAL REFLECTION

Reflection is “the capability of a computational system to
reason about and act upon itself, adjusting itself to changing
conditions” [3]. The computational domain of reflective lan-
guages includes their self-representation. Therefore, they can
offer their structure and semantics as computable data.

Since context-aware systems should dynamically adapt
to runtime changing environments, computational reflection
seems to be a suitable technique to face this kind of sce-
narios. We previously used computational reflection as a
suitable technique for adaptive systems such as persistence
management [10], dynamic aspect-oriented programming [11]
or heterogeneous device support [12].

One classification of reflection considers the observation and
modification issues of the system self-representation:

• Introspection: Self-representation of programs can be
dynamically consulted but not modified. The applications
can obtain information about runtime classes, objects,
methods, etc. This level of reflection is offered by lan-
guages such as Java or C#.

• Intercession: The ability of a program to modify its own
execution state, interpretation or meaning. Most dynamic
languages offer this feature.

Another classification can be established according to what
can be reflected:

• Structural Reflection: System structure can be accessed.
In case the system structure is modified, changes will be
reflected at runtime. An example of this kind of reflection
is the Python feature of adding fields and methods to both
objects and classes.

• Behavioral Reflection: This level of reflection implies
access to system semantics. In case the semantics is
modified, it involves a customization of the runtime
behavior of programs. As an example, Python offers
overriding the semantics of member lookup; if a class

has a __getattr__ method, it will be called whenever
a non-existing member is accessed.

Another feature that is commonly used together with com-
putational reflection is runtime generative programming [13].
It consists of the capability of programs to generate new (parts
of) programs. This feature is usually offered in conjunction
with reflection, because those new parts of generated programs
modify the structure or semantics of running applications.

IV. ADAPTIVE DYNAMIC PROGRAMMING LAYER

The adaptive dynamic programming layer is a new tier
over the framework that supports adaptive context-awareness
capabilities. This layer is designed to offer runtime adapta-
tion to dynamic environments. Context-aware scenarios often
involve the addition of new requirements at runtime, making
use of services offered by the framework that are consulted at
runtime.

Since dynamic languages offer a high degree of runtime
adaptability, we propose their use to provide a runtime adaptive
system that additionally provides a simplified way of context-
aware tasks. This enhances the framework services with dy-
namic languages features, obtaining an additional layer with
a higher degree of flexibility and adaptability.

Since the framework is developed in Java, an intercommu-
nication mechanism between Java and Python is required. The
standard Java Scripting API (JSR 223) [14] allows the use of
script engines from Java code. By using it, all the functionality
provided by the framework in Java will be accessible at the
adaptive dynamic layer using a dynamic language.

We selected the Python programming language to imple-
ment the adaptive dynamic programming layer because it is
a mature dynamic language that provides runtime structural
and behavioral reflection, dynamic generative programming, a
simple syntax, a substantial number of powerful libraries and
functions.

A. Framework Services

Although the framework provides useful features for many
use cases, the code for one single operation over the framework
may become verbose (as shown in Figure 2) due to the lack of
metaprogramming features in Java. It implies the codification
of several lines of code that performs non-functional actions,
entailing a less agile development of new services. One of the
main goals of the dynamic adaptive layer is to simplify the
programming over the framework.

In the adaptive dynamic programming layer, authorization
and synchronization data is stored along the entire programmer
session, and it is used in all the operations in a transparent way.
Furthermore, this data could be changed at any moment by the
programmer. Figure 3 shows how the authentication and task
priority assignments (and synchronization specification) are
performed in the adaptive layer. In addition to this, credentials
and synchronization data are stored in the adaptive layer
module. When an operation is executed over the framework,
this data is retrieved and used.

536 537

B. Primitive Management

In the case of primitives, the dynamic adaptive layer allows
the final programmers to write their code in a more natural and
compact way, facilitating its maintainability and legibility, and
without losing any functionality. This layer provides primary
module discovery at runtime, making it possible to act over
new services discovered at runtime, even if they were not
present at design time.

As it was explained in Section 2, primitives in the frame-
work are organized in namespaces. At runtime, when a pri-
mary module is discovered, its primitives and namespaces
objects are created. In the adaptive dynamic programming
layer, generative programming and structural reflection are
used to transparently create classes that wrap the framework
services. The resulting code is a Python class that has a one-to-
one equivalence for each namespace object in the framework.
For every object instance representing a Namespace with sets
of Primitive objects in Java, a class with the corresponding
methods is transparently created in Python. The purpose of this
generation is to provide a simple and natural way to invoke
those primitives discovered at runtime. Figure 3 shows the
Python source code that invokes the goTo primitive at the
adaptive programming layer. This code is equivalent to the
Java program in Figure 2, being much more compact and
legible.

Figure 3. Programming over the adaptive layer.

Code generation is implemented using the exec Python
function. This function receives a character string and evalu-
ates it at runtime. We evaluate strings that generate new classes
at runtime. The strings are parameterized with the name of a
namespace class using the % operator. Figure 4 shows the
skeleton string used to generate namespaces classes (we do
not show the code in the methods for the sake of brevity; it
can be consulted in [15]). Generated classes do not contain
primitive methods; they provide a mechanism to alter the
message passing mechanism through behavioral reflection.
Generated classes implement a dynamic lazy search for the
invoked method (primitive) using introspection. This search is
performed over the framework and it is completely transparent
to the final user.

As Figure 3 and its sequence diagram in Figure 5 show,
these generated classes make use of the two __call__ and
__getattr__ built in methods that offer behavioral reflection.
The goTo message is passed to the navigation object. Since
this member is not offered by the object, the __getattr__

method is called. This method stores the name of the requested
member (i.e., goTo) so it can be later used for searching and
invoking the corresponding primitive. Since the returned object

Figure 4. Sample code to be dynamically evaluated.

CRProgrammer

«python»
FrameworkLoader
/ ContextReaction

navigation

namespaceNavigation api

authenticate(user, password)

new Navigation() :navigation

goTo(x, y)

__getattr__("goTo")

self.item("goTo")

__call__(*args, **kwargs)

getPrimitiveByName("goTo")

:primitive

invoke(subject, self.namespace, primitive, args, self.object)

:result

:result

Figure 5. Access to primitive services.

(navigation) implements the __call__ method, it can be
called as it was a function. The __call__ method receives
as many parameters as the actual arguments of the call, in a
variable-length argument list. This method receives the x and
y parameters, and performs the search of the primitive that
fits this signature. Once found, the appropriate primitive of
the framework is invoked and the __call__ method returns
the result of calling the primitive.

Computational reflection and generative programming al-
lowed us to fulfill the adaptability requirements without need-
ing to specify all the classes and their methods at design time.
This also allows the development of context-aware emerging
at runtime scenarios. Furthermore, we can introduce complete
service modules on the framework at runtime, using its re-
programming feature. These service modules could introduce
new behavior patterns to undertake a specific goal.

We implemented a simple navigation prototype based on
fuzzy rules to show the simplicity and adaptiveness provided
by the dynamic programming layer. The main move function
is shown in Figure 6. This function provides the functionality
to make the robot advance a step, making use of fuzzy rules.

The rules have the following meaning, expressed with an
antecedent and a list of consequents: 1) if there is no obstacle
close, go to the target; 2) if the front-left side is freer than the
front-right side, turn left and continue until right sonar sensors
are free of obstacles; 3) if the front-right side is freer, turn right
and continue until left sonar sensors are free of obstacles. An
evaluateFuzzyRules function evaluates every rule premise
and executes the consequents of that rule whose antecedent
value is greater.

These three rules provide the logic of decision making for

536 537

Figure 6. Sample fuzzy rules.

the navigation algorithm to avoid obstacles while going toward
a specific point. Although this sample logic is very simple, it
can be improved by just adding more fuzzy rules describing
an optimized behavior of the robot.

Since Python supports first-class functions, fuzzy rules
were defined using functions that represent fuzzy operators,
predicates and actions. Fuzzy operators (e.g., fuzzyAnd and
fuzzyNot) can be implemented in Python as higher-order
functions, i.e., functions that take functions as parameters. The
source code is freely available at [15].

C. Event Management

The adaptive dynamic layer enables any single function to
subscribe to a concrete event, complementing the framework
services and primitive management provided by this layer. In
addition, new events can be discovered at runtime, so that
programmers can dynamically access new events published
dynamically.

Following with our example, let’s suppose that we have an
artificial vision primary module capable of detecting a person’s
face. At the moment the face is recognized, the artificial vision
primary module triggers an event with the data of the face
(e.g., the name of the recognized person). Figure 7 shows
an example subscription to a concrete event in the adaptive
dynamic programming layer:

• Authentication is performed in the first place. After-
wards, prioritization is established to the maximum, and
the asynchronous execution mode is chosen. With these
settings, the Greet task is executed in parallel with the
navigation task that is running in the framework. If the
robot is performing any other task at the moment the
event is triggered, like for example moving toward any
point, it will be able to look to the face detected and greet
at the same time, without having to stop its navigation.

• After this, the function that handles the event is defined.
This function instantiates a namespace of primitives
called Speech. This namespace performs tasks of voice
speech synthesis through the say primitive, which re-
ceives a text and reproduces it by simulating human voice,
greeting the recognized person.

• The last statement subscribes the previous function to the
face detection event. Therefore, when the event is thrown,
the handlerOfFaceDetectionEvent function will be
automatically called.

By applying generative programming and structural reflec-
tion, each event in the framework corresponds to a generated

Figure 7. Face detection event.

Python class. These classes implement the Observer interface
(from the Observer design pattern) provided by the framework.
When an instance of any of these event classes is created, a
subscriber for that event is also registered. The constructor of
this class receives a Python function as parameter. When the
framework notifies the occurrence of an event, the subscriber
delegates its management to that function.

Because of the dynamic discovery and event generation
code, it is possible to add new event types at runtime without
having to specify at design time all the events offered by the
framework. Furthermore, it allows performing simultaneous
tasks, making the most of the prioritization and synchroniza-
tion features provided by the framework.

D. Remote Reprogramming

The framework execution engine can be remotely repro-
grammed at runtime. This remote hot reprogramming allows
the introduction of new behavior guidelines at runtime, without
having to foresee them at design time, even parallelizing them
with other tasks that might be running.

We are interested in allowing the robot to react to the
environment context. As an example, we have included in our
example the scenario proposed by Pineau et al. [16], where
the robotic platform has the capability of assisting elderly
individuals with an automated reminder system. This system
can, for instance, remind to the patient that it is time to have
her medicine.

The framework exposes one Web Service for the addition
of new service modules from a remote system, which, after
authorization, can send the source code to the framework exe-
cution engine. The code received is added to the tasks queue,
being executed according to its priority and synchronization
settings. Making use of the remote reprogramming feature
offered by the framework, the Reminder module can be added
at runtime.

Figure 8 shows the source code we used to develop the
reminder scenario. The Navigation module shown in Section
IV-B is imported, authentication is performed, and the task
is set as transactional. This execution mode (transactional)
allows obtaining the execution control and avoids other tasks
to interrupt it, notwithstanding the parallel execution of other
asynchronous tasks (e.g., when the Reminder module is run-
ning, other asynchronous modules like the Greeting one could
be executed in parallel). The patientLocatorWS reference
points to a Web Service that provides the coordinates of
patients. Then, a getPosition function that retrieves the
coordinates of a patient passing her identification it is defined.
The main program contains a loop that iterates while the

538 539

Figure 8. Reminder module.

target is not reached, performing one more step through the
Navigation module.

The reprogramming process is initialized by the remote
system, which requests the framework for an authorization
credential. Then, the remote system would include its own
source code like the one in Figure 8. Once this code is
included in the execution engine, the Greet asynchronous
module shown in Section IV-C will be executed in parallel
(asynchronously). Thus, the robot would head the patient and,
if in its path it detects another person, it would say hello to her,
without having to interrupt its navigation—the Greet module
is asynchronous.

This hot reprogramming system capable of managing run-
time emerging primitives and events allows fulfilling the
dynamic adaptability requirements of context-aware systems,
not only discovering services at runtime, but also adding
new programs dynamically. Both computational reflection and
generative programming made it possible.

V. CONCLUSIONS

Computational reflection seems to be a suitable technique to
facilitate the implementation of context-aware scenarios in a
robotics framework. The use of a dynamic reflective language
allowed us to develop an adaptive dynamic programming layer,
which is aware of context environment changes at runtime.
This layer offers dynamic runtime discovery of new services
and provides transparent programmatic access.

The use of different levels of computational reflection
allowed us to achieve the desired degree of runtime flexibility.
First, introspection offered the dynamic discovery of services
published by the framework and even external devices. We
applied generative programming to generate code that wraps
these services in Python classes. Generated Python classes
were modified by means of structural reflection, adding new
attributes to classes and objects when needed. We modified
the semantics of the message passing mechanism (by means
of behavioral reflection) in order to implement a lazy method
search in the generated classes. This allowed us to implement
a dynamic adaptive layer, offering the existing services in
the current context without the need of specifying them at

design time. Additionally, the use of dynamic languages and
computational reflection involved a significant simplification
of the code to program the dynamic adaptive layer.

The source code of the whole example presented in this
paper is freely available at http://www.reflection.uniovi.es/
tic4bot. Although the robotics framework is not freely down-
loadable because it belongs to the TreeLogic Company, the
URL above provides a demonstrating video showing the exam-
ple presented in this paper running on the robotics framework.

ACKNOWLEDGMENTS

This work has been funded by the Spanish Ministry of
Industry, Tourism and Commerce (TSI-020100-2008-235). It
has also been funded by the Department of Science and
Technology (Spain) under the National Program for Research,
Development and Innovation; project TIN2008-00276.

REFERENCES

[1] B. N. Schilit and M. M. Theimer, “Disseminating active map information
to mobile hosts,” IEEE Network, vol. 8, no. 5, pp. 22–32, 1994.

[2] B. N. Schilit, N. I. Adams, and R. Want, “Context-aware computing
applications,” 1994, pp. 85–90.

[3] P. Maes, “Computational reflection,” Ph.D. dissertation, Vrije Univer-
siteit Brussel, 1987.

[4] H. Lei, “Context awareness: a practitioner’s perspective,” in UDM
’05: Proceedings of the International Workshop on Ubiquitous Data
Management. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 43–52.

[5] A. Steck and C. Schlegel, “SmartTCL: An execution language for
conditional reactive task execution in a three layer architecture for
service robots,” in Proceedings of the SIMPAR Workshop on Dynamic
Languages for Robotic Sensor Systems, Darmstadt, Germany, 2010.

[6] T. Niemueller, A. Ferrein, and G. Lakemeyer, “A Lua-based Behavior
Engine for Controlling the Humanoid Robot Nao,” in Proceedings of
RoboCup Symposium, Graz, Austria, 2009.

[7] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th International Conference on Advanced Robotics, 2003, pp.
317–323.

[8] V. Garcia-Diaz, S. Mendez, J. Barranquero, I. Gonzalez, M. A. Garcia,
and J. M. Cueva, “RIF: A reflective integrator framework,” in Proceed-
ings of International Conference on Artificial Intelligence (IC-AI’09),
2009.

[9] D. M. Beazley, “Swig: an easy to use tool for integrating scripting
languages with C and C++,” in TCLTK’96: Proceedings of the 4th
conference on USENIX Tcl/Tk Workshop, 1996. Berkeley, CA, USA:
USENIX Association, 1996, pp. 15–15.

[10] F. Ortin, B. Lopez, and J. Perez-Schofield, “Separating adaptable per-
sistence attributes through computational reflection,” Software, IEEE,
vol. 21, no. 6, pp. 41–49, 2004.

[11] F. Ortin and J. M. Cueva, “Dynamic adaptation of application aspects,”
Journal of Systems and Software, vol. 71, no. 3, pp. 229–243, May 2004.

[12] F. Ortin and D. Diez, “Designing an adaptable heterogeneous abstract
machine by means of reflection,” Information and Software Technology,
vol. 47, no. 2, pp. 81–94, Feb. 2005.

[13] C. Krzysztof and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[14] M. Grogan. (2006, December) JSR 223. scripting for the Java Platform.
Sun Microsystems. [Online]. Available: http://www.jcp.org/en/jsr/detail?
id=223

[15] S. Mendez and F. Ortin, “Tic4bot, context-aware robotic platform,”
2011. [Online]. Available: http://www.reflection.uniovi.es/tic4bot/

[16] J. Pineau, M. Montemerlo, M. Pollack, and N. Roy, “Towards robotic
assistants in nursing homes: Challenges and results,” Robotics and
Autonomous Systems, vol. 42, pp. 271–281, 2003.

538 539

A Survey of Software Engineering for Self-
Organization Systems

Yi Guo, Xinjun Mao, Cuiyun Hu, Junwen Yin, Jiang Cao
Dep. of Computer Science and Technology
National University of Defense Technology

Changsha, China
atsm@tom.com, mao.xinjun@gmail.com, hcy56316@163.com

Abstract—Self-organization systems are rapidly emerging as a
powerful paradigm for tacking complexity, improving reliability
and optimizing performance in several literatures and are widely
applied in a number of domains. Obviously, to develop such
complex systems need specified technologies as well as systematic
approaches, and they should be developed in an engineering way.
We argue software engineering for self-organization systems
should consider the specific complexity properties of self-
organization and should seek effective approaches to model,
design, and deploy such systems. This paper aims to survey the
state-of-the-art of the researches on software engineering for self-
organization systems from theory, technology and tool viewpoints,
investigate the potential issues and challenges in current
researches, and suggest future research directions.

Keywords- Self-Organization systems, Software Engineering

I. INTRODUCTION

As self-organization is a powerful approach to dealing with
complexity, it is widely used in several domains to improve the
reliability and performance of systems. However, developing
self-organization systems in a repeated and effective way is
still a great challenge in the literature of software engineering
and knowledge engineering. Recently, many researchers have
paid attentions to the software engineering for self-organization
systems and a lot of relevant research works have been
conducted. This paper aims to survey the state-of-the-art of the
researches on software engineering for self-organization
systems, investigate the potential issues and challenges in
current researches, and suggest future research directions.
Section 2 gives a survey of the researches on self-organization
software engineering. Section 3 discusses the potential issues
and challenges in existing researches and suggests some future
directions. Finally, conclusions are made in section 4.

II. SURVEYS OF THE STATE-OF-THE-ART OF SOFTWARE
ENGINEERING FOR SELF-ORGANIZATION SYSTEMS

We catalogue current works as three dimensions: theory,
technology and tool.

A. Theory Aspect
In theory aspect, researchers concern the questions like how

to abstract and represent the system in accurate? What
mechanisms can be identified and should be utilized to
implement self-organization systems?

1) Abstraction and Model
There are three kinds of self-organization abstraction

methods for investigating self-organization: differential
equations, cellular automata, and agent. These methods are
typical based on different metaphors and abstractions.

Differential equation depicts self-organization from
dynamic property aspect. Some researchers make use of
systems of differential equations to model the self-organized
emergence of synchronization with coupled oscillators ranging
from fireflies to neurons [1][2]. Although differential equation
has range of applicability, it is limited to describe pattern
formation, oscillations and other simple collective phenomena.
It does not allow enough flexibility for diversity of components
and assumes a uniform spatial interaction, neglecting more
realistic types of connectivity in real-world systems.

Cellular automata abstraction is a simulation method and
has been successfully used for model many real physical self-
organization systems from predator-prey systems to chemical
spiral waves, to hydrodynamics [3][4]. Such abstraction
assumes the world is a discrete grid and each site in the grid
can be found in one of a set of possible discrete states. Cellular
automata allows for locality, i.e. sites in the grid interact
directly only with neighboring sites, thus there is no action at a
distance and all signals must propagate along path of connected
neighbors. On the other hand, cellular automata is readily
exhibit interesting behaviors such as forming a range of
patterns similar to differential equations and also far more
complex dynamics such as moving patterns[29]. A
fundamental requirement for cellular automata to exhibit
interesting behaviors is synchronous updating. There are simple
algorithms which do allow collections of objects to synchronize,
so it may be possible to engineer a system to fit the cellular
automata.

Agent-based abstraction is a natural metaphor if
components in a self-organization system can vary dramatic
from one another and display a range of behaviors and
strategies like decision making. In contrast with Cellular
Automata, agents do not need to assume an underlying
topology, specifying or restricting which components can
interact with, and they can come together and interact with
each other in complex and dynamic ways. These characteristics
are important if we want to model interactions among humans
with complex decision making abilities. Many researchers use
Multi-Agent Systems (MAS) as a basic abstraction to model

540 541

self-organization systems. [5]-[11]show different models based
on MAS. Agent-based approaches are extremely flexible to
model the interactions among collection of autonomous agents.
They can model phenomena in social systems as well as bio-
systems. However, a major drawback of agent based modeling
is the lack of rigorousness. Because of the complexity of the
model specifications, it is difficult to assess the robustness of
observed phenomena to change in the specifications and the
accuracy by which the model describes the real systems.

2) Self-Organization Mechanism
Self-organization mechanism guides the behaviors of

individuals, it determines how the individuals in the system act
and interact, as well as restrict the emergent result of the self-
organization system. As bio-systems and human societies
exhibit self-organization properties, current mechanisms are
almost inspired by bio-system or human society. [30] discusses
mechanisms which are inspired from bio-systems and gives
some application examples.[12]surveys mechanisms from
human societies. Besides, some researchers discuss the
engineering principles for special mechanisms, for example
[31] discusses the engineering principles from stigmergy.
These mechanisms provide good inspirations for implementing
of self-organization.

B. Technology Aspect
In most of researches on self-organization systems, agents

often as the individual metaphor are represented and designed.
However, as argued in [13], most current approaches disregard
the macro-scale issues and focus on development of micro-
scale MAS. Researchers need to find new technologies and
methodologies for engineering self-organization systems.

1) Methodology

The methodologies for self-organization systems often take
agent as the entity of system. These methodologies care about
how to construct a self-organization system? What principles
and processes are needed in the development process? From
life cycle aspect, these researches concern about different
phases of software life cycle, e.g. [17][19][15]concern all of the
phases in life cycle from requirement analyzing phase to testing
phase. [19]proposes a domain-independent methodology for
designing and controlling self-organization systems. The
iterative and incremental methodology includes five steps:
Representation, Modeling, Simulation, Application and
Evaluation, which are interrelated, and in each step,
corresponding development actions are also proposed. [18]
And [20]are engaged in design phased and [20]also considers
implementation phase. At the design phase, [18] proposes a
design guide for swarming systems engineering consisting of
ten design principles, in [20] the requirements related to the
properties of components as well as the rules that guide their
behavior and how the development process has to be carried
out are identified. During the implementation phase, the run-
time infrastructure, components, policies, and metadata are
developed.

In modeling languages aspect, there are still no effective
modeling languages to support the modeling of self-
organization systems. The reason is that the macro properties of
self-organization systems are often novel for the individuals, so

representing of the relationship between macro properties and
individual behaviors is difficult. Some researchers try to solve
this problem, for example [14] [16], however the results are
limited.

2) Implementation Technology

Autonomy of entities and emergence also bring challenges
to the implementation of self-organization systems. How to
realize this kind of agents is an important problem.

Middleware

Middleware in self-organization systems is used for
supporting implementation of the agent which is adaptive and
uncoupled interaction mechanisms as well as context
awareness. Many self-organization mechanisms are such
mechanism e.g. stigmergy, schooling. The representative work
is TOTA [26]. It is a spatially distributed tuples. Agents can
inject these tuples in the network, to make available some kind
of contextual information and to interact with other agents.
Tuples are propagated by the middleware, on the basis of
application specific patterns. Agents can locally sense these
fields and rely on them for both acquiring contextual
information and carrying on distributed self-organization
coordination activities. The similar works include Anthill
[25]and MMASS [33].

Architecture

In agent architecture aspect, researchers referred to some
theories that make agents easy to realize self-organization. For
example [34] refers to AMAS theory (Adaptive Multi-Agent
Systems) proposes a three level architecture. When agent aware
the changes of its environment, higher level can choose the best
state from self-organization of lower level. [35] proposes an
observer/controller architecture which refers to Cybernetics. In
system architecture aspect, researchers provide conceptual
framework which can guides the interplay of application
dependent component functionalities and their coordination
and therefore prepares a constructive approach to the utilization
of self-organization, for example SodekoVS project [22]. [36]
considers either agent architecture or system architecture.

Design pattern

Software reuse in self-organization applications is also
attracted the interest of some researchers, who want to design
some general self-organization design patterns from some self-
organization mechanisms and expect to apply them in different
applications. For example [28] distinguishes five patterns from
a lot of self-organization applications. These patterns are
described in a format description and a catalogue of these
patterns by the name of “Problem/Solution” is proposed with
the aim of helping engineers find the applicable patterns or
mechanisms for their developing systems. Such researches
offer some design patterns for self-organization applications,
but they lack a strict representation, all of these patterns were
represented by nature language.

3) Testing technology

540 541

Self-organization systems will only be acceptable in large
scale applications if they can guarantee that they will
accomplish exactly what they were designed for. Therefore, we
need a practical and efficient method to anticipate and verify
this emergent behavior. However, because of the autonomy of
entities and macroscopic emergence, self-organization-based
testing technology is still very few. [37]presents a method to
verify self-organizing multi-agent systems using an autonomic
computing approach and based on online planners and self-
configuration.

C. Tool Aspect
There are only a few works in tools aspect. They can be

classified in three aspects: 1) Self-organization MAS
development tools. The tools have a database which stores the
behaviors of agents, and these behaviors are refined from self-
organization mechanisms. Behaviors are chosen by policy and
are loaded into the behaviors of agents when the system is
running. 2) Self-organization MAS simulation platform.
Designers can model their designed mechanism by such tools
to simulate the real running of systems and observe the running
result.3) Self-organization system running environment. These
environments are distributed implementation of self-
organization systems that provide low-level functions such as
communication, security, resource management and
mechanism scheduling. Table 1 illustrates these tools.

TABLE I. SELF-ORGANIZATION DEVELOPMENT TOOLS

Tools Modeling Implemen-
tation

Simulation Running
environment

VAstido[21]

Netlog[23]

MASON[24]

Anthill[25]

DIET[27]

III. CHALLENGES AND DIRECTIONS

C1: Effective and enabling mechanism of self-organization
An important challenge in engineering is to research how

we can translate the insights of self-organization we have got
into decentralized software mechanisms that allow controlling
distributed complex system efficiently. The development of
such mechanisms, for example reusable frameworks can be a
huge support for software engineers to construct self-
organization systems. Designers can select the mechanisms
which can achieve the expected global coherent behavior, and
realize these mechanisms into design of systems easily. We
need to propose a framework of self-organization mechanisms
which needs to meet two requirements. Firstly, the framework
needs to have a standardized format and sufficient capability to
express different mechanisms. Secondly, the mechanisms
represented by this framework are easy to be translated to the
decentralized algorithm for different applications.

C2: Breakthrough of modeling technology
A great challenge for modeling this kind of system during

the development process is how to model the macro properties
of system as well as the behaviors of individuals in the system.

Current modeling technologies just care about the microscope
individuals. We first need a general modeling language with
formal or semi-formal semantics to either represent the
behaviors of individual or the system macro properties. The
modeling language should have a multi-level expressional
capability to represent the self-organization system from
different aspects, and effectively support represent the
characteristics of this kind of systems like dynamic,
autonomous, and local interactions etc. In addition, a challenge
consists in current research works is that models of the self-
organization systems are always from different abstract levels
and different viewpoints, as a result, these models are inter-
correlative. Some technical methods like strategy, tools which
can support the consistency checking for these multi levels
models are needed.

C3: Change in the development process

Current methodologies for engineering of self-organization
systems often adopt the traditional development process like
RUP [17]. However, Self-organization system is a kind of
complex systems, the autonomy of entities and emergence of
system make the traditional process models can not effectively
support the development of such system, traditional top-down
approach is hard to analyze the emergence of system macro
properties which can not be refined to the behaviors of
individuals. We need to find some innovative and effective
process models to construct self-organization systems, for
example bottom-up process. In this process, emergence of
system macro properties is not acquired from refining of
requirements, but from the designing of individual agents and
their interactions. This approach is an Ad hoc manner which
always needs a lot of experiments and experience of designers.

C4: Software quality assurance technology
Software quality is very important for software engineering.

An effective means of achieving quality assurance is a major
pre-condition for large-scale application of self-organization
systems. However, software quality assurance technologies for
self-organization are still lacking. We need some methods to
assure the software quality of self-organization systems. For
example, testing technologies for individual of self-
organization system, it is need to study the agent software
testing technologies in different phrase of life cycle and
overcome the challenges of complexity of self-organization.

C5: Effective Tools and Platforms support
Although some tools for self-organization systems have

been proposed [32], they still have some drawbacks. E.g., some
important development processes like software testing are also
short of supported by tools. Effective tools can great improve
the development efficiency and quality. In self-organization
system field, future work should encourage the development
and refinement of development tools from two aspects. 1) With
respect to the software life cycle, development technologies for
different phrases of life cycle need to be implemented, which is
the foundations of effective tools. The appearance of tools
depends on the maturity of corresponding technologies. 2)
Current tools need to be improved from many aspects:
reliability, friendly, simplicity, and integration.

542 543

IV. CONCLUSION

In this paper, we analyzed the complexities of self-
organization systems and the challenges that the complexities
bring to software engineering. We also have surveyed the state-
of-the-art in software engineering for self-organization systems,
focusing on three core areas of theory, technology and tool.
Based on this we have identified some key areas where we feel
the state-of-the-art is lacking, and could be improved. For each
of these key topics we have discussed ways for meeting the
challenges, and suggested some possible directions for the
future research.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation
of China under Grant No. 61070034 and 90818028, 973
Programme of China under granted No. 2011CB302601.

REFERNCES
[1] R.E.Mirollo and S.H. Strogatz. Synchronzation of Pulse-Coupled

Biological Oscillators. SIAM Journal on Applied Mathematics, 50(6),
pp.1645-1662, 1990.

[2] A. Pikovsy, M. Rosenblum, and J. Kurths. Synchronization: A Universal
Concept in Nonlinear Sciences. Cambridge University Press, Cambridge,
England, 2003.

[3] B.Chopard and M.Droz. Cellular Automata Modeling of Physical
Systems. Cambridge University Press, Cambridge, England, 1998.

[4] L.B.Kier, P.G.Seybold, and C-K. Cheng. Modeling Chemical Systems
Using Cellular Automata. Springer Netherlands, 2005.

[5] Candelaria S, Juan P. An Adaptive Agent Model for Self-Organizing
MAS. Proc. The 7th International joint Conference on Autonomous
Agents and Multiagent Systems. pp.1639-1642, 2008.

[6] Vincent, H., Abder, K., Sebastian, R., An adaptative agent Architecture
for Holonic Multi-Agent Systems. ACM Transactions on Autonomous
and Adaptive Systems. Vol.3(1),article 2, 2008.

[7] Schillo, M., Fischer, K., Fley, B., Florian, M., Hillebrandt, F., Spresny,
D.: FORM-A Sociologically Founded Framework for Designing Self-
Organization of Multiagent Systems. LNCS ,vol.2934 ,pp.156-175, 2004.

[8] Sansores, C., Pavon, J.: An Adaptive Agent Model for Self-Organizing
MAS. International.Proceedings of te 7th International Join Conference
on Autonomous Agents and Multi Agent Systems, pp.1639-1642. 2008.

[9] Lieru, M., Este R.: The Holonic enterprise and Theory of Emergence.
International Journal Cybernetics and Human Knowing, vol.11,pp. 79-
99 , 2004.

[10] Perozo, N., Aguilar, J., Teran, O.: Proposal for a Multiagent Architecture
for Self-Organizing systems. LNCS, Vol. 5075, pp. 434-439, 2008.

[11] Parunak, H.V.D., Brueckner, S.A., Matthews, R.: Pheromone Learning
for Self-Organizing Agents. IEEE Transactions on Systems Man and
Cybernetics Part A Systems and Humans,Vol, 35,pp.316-326, 2005.

[12] Hassas, S., Giovanna, D.M., Karageorgos, A., Castelfranchi, C.: On
Self-Organising Mechanisms from Social, Business and Economic
Domains. Informatica, Vol30(5),pp. 63-71, 2006.

[13] F. Zambonelli and A. Omicini. Challenges and research directions in
Agent-Oriented Software Engineering. Autonomous Agents and Multi-
Agent Systems, Vol. 9(3). pp. 253-283, 2004.

[14] M.A.de C. Gatti, C.J.P. de Lucena, P.S. C. Alencar, and D. Cowan. Self-
Organization and Emergent Behavior in Multi Agents Systems: A Bio-
inspired Method and Representation Model. unpublished

[15] M Morandini, F Migeon, M P Gleizes, C Maurel, L Penserini, and A
Perini. A Goal-Oriented Approach for Medelling Self-Organising
MAS.LNCS 5881, pp.33-48, 2009.

[16] L Gardelli, M Virol, A Omicini. On the Role of Simulations in
Engineering Self-Organizing MAS: The Case of na Intrusion Detction
System in TuCSoN. LNCS 3910. pp.156-166, 2006.

[17] T D wolf, T Holvoet. Towards a Full Life-cycle Methodology for
Engineering Decentralised Multi-Agent Systems. Proc. The fourth
International Workshop on Agent-Oriented Methdologies, 2005.

[18] H V D Parunak, S Brueckner. Engineering Swarming Systems.
Methodologies and Software Engineering for Agent systems.
Kluwer ,pp.341-376, 2004.

[19] C Gershenson. Design and Control of Self-Organizing Systems. PhD
thesis, Faculty of Science and Center Leo Apostel for Interdisciplinary
Studies, vrije Univ., Brussels, Belgium, 2007.

[20] G.D.M.Serugendo, J S Fitzgerald, A Romanovsky. MetaSelf: An
Architecture and a Development Method for Dependable Self-* Systems.
In Proceedings of SAC’ 2010. pp. 457-461. 2010.

[21] M. Wang, L. Qiu, F. Lin, Z. Shi. A Multi-agent System Development
Tool Support for Self-Organization. International Journal of Computer
Science and Network Security, Vol. 6(9), pp.32-40,2006.

[22] J.Sudeikat, L.Braubach,A.Pokahr, W. renz and W.Lamersdorf.
Systematically Engineering Self-Organizing Systems. The SodekoVS
Approach. Electronic Communications of the EAAST Vol 17, 2009.

[23] U Wilensy, M Resnick. Thinking in Levels: A Dynamic Systems
Approach to Making Sense of the World. Journal of Science Education
and Technology. Vol. 8(1), pp. 3-18, 1999.

[24] S.Luke, C.C.Revilla, L.Panait, and K.Sullivan. MASON: A New Multi-
Agent Simulation Toolkit. Proceedings of the 2004 Swarmest Workshop,
2004.

[25] O Babaoglu, H Meling, and A Montresor. Anthill: A Framework for the
Development of Agent-Based Peer-to-Peer Systems.In Proceedings of
the 22nd International Conference on Distributed Computing Systems.
pp.15-20,2002.

[26] M Mamei, F Zambonelli. Self-Organization in Multi Agent Systems: A
Middleware Approach. Engineering Self-organising Systems. LNCS
2997, pp.233-248,2004.

[27] P Marrow, M Koubarakis. Self-Organising Applications Using
Lightweight Agents. LNCS 3910,pp. 120-129, 2006,

[28] Wolf, T. D.. A Catalogue of Decentralized Coordination Mechanisms
for Designing Self-Organizing Emergent Applications. Department of
Computer Science.K.U.Leuver, Belgium. Report. 2006.

[29] M.Gardner. Mathematical Games: The Fantastic Combinations of John
Conway’s New Solitaire Game “life”. Scientific American, vol,223,pp.
120-123, 1970.

[30] Camazine, S., Deneubourg, J., Frank, R.N., Sneyd, J., Theraulaz, G.,
Bonabeau, E.. Self-Organization in Biological Systems. Princeton
University Press, USA.2001.

[31] H.V.D.Oarunak. “Go to the Ant”: Engineering Principles From Natural
Multi-Agent Systems. ANNALS OF OPERATIONS RESEARCH.
Vol.75(0), pp. 69-101, 1997

[32] C.Bernon, V.Camps, M.P.Gleizes, and G.Picard. Tools for Self-
Organizing Applications Engineering. Engineering Self-organising
Systems, LNCS 2997, pp. 283-298, 2004.

[33] S. Bandini, S. Manzoni, C. Simone. Space Abstractions for Situated
Multiagent Systems. 1st International Joint Conference on Autonomous
Agents and Multiagent Systems, ACM Press, pp. 1183-1190, 2002.

[34] G. Picard and M.P.Gleizes. An Agent Architecture to Design Self-
Organizing Collectives: Principles and Application. LNAI 2623.
Adaptive Agents and MAS. pp.141-158, 2003.

[35] H. Schmeck, C.M.S.Cakar, M.Mnif, U.Richter. Adaptivity and Self-
Organization in Organic Computing Systems. ACM Trans. On
Autonomous and Adaptive Systems. Vol 5(3), 2010.

[36] N.Perozo, J Aguilar, and O. Teran. Proposal for a Multiagent
Architecture for Self-Organizing Systems LNCS 5075, ISI
workshop,pp.434-439, 2008.

[37] Bruno de C.B.A., Maira A. De C.Gatti, Carlos J.P. de Lucena. Towards
Verifying and Optimizing Self-Organizing Systems through an
Autonomic Convergence Method. Unpublished.

542 543

Self-Management of External Device Failures in Embedded Software Systems

Michael E. Shin
Department of Computer Science

 Texas Tech University
Box 43104, Lubbock, TX 79409

1-806-742-3527
Michael.Shin@ttu.edu

Poonam Mane
Department of Computer Science

Texas Tech University
Box 43104, Lubbock, TX 79409

1-806-742-3527
Poonam.Mane@gmail.edu

Abstract

Embedded software systems interact with several external
devices that may come across faults or failures. Most of the
approaches have focused on software and hardware systems, but
relatively less attention has been given to self-management of
faults or failures of external devices in embedded software
systems. It is necessary to develop an approach such that faults
or failures of external devices in embedded software systems are
detected and self-managed.

This paper describes an approach to establishing a
framework for detecting and self-managing the failures of
external devices for embedded software systems. Failed external
devices are identified based on external device types, being self-
managed in different ways. The proposed approach in this paper
is applied to the use case modeling of an elevator system case
study.

1. Introduction

Embedded software systems need to be more reliable against
faults or unanticipated events so that the systems become more
resilient to the system failures. Embedded software systems may
still contain software faults in terms of specifications, semantics,
logics, resources, and synchronizations even though the systems
are verified and validated during development. Embedded
software systems are running on hardware, which may fail due
to hardware failures like aging, on-board circuit issues,
peripheral or accessory maintenance. Previous approaches
[Cheng06, IBM06, Roy07] have focused on failures in software
and computer hardware [Coyle04, Pinheiro07, Wikipedia10].

However, not much attention has been given to faults or
failures of external devices in embedded software systems, such
as elevator systems and robotic systems. An elevator system
should control several external devices such as direction lamps,
elevator buttons, door, and motor. These external devices can
run into some faults or malfunctions, which may lead the
systems to failures. The software for embedded systems may not
work correctly even though these external devices have minor
faults or malfunctions.

This paper describes an approach to establishing a
framework for detecting failures in the external devices of
embedded software systems and for self-managing the detected
failures. This paper develops the detection framework based on
the external device types in embedded systems. There are
unique communication patterns between embedded software
systems and their external devices. These patterns are used to
devise failure or fault detection mechanisms. Further, the self-

managing framework is developed for handling external device
failures from the software perspectives. The self-management is
carried out by means of self-healing, self-configuration or
adaptation, and self-reporting. The proposed approach in this
paper has been applied to the use case modeling of an elevator
system.

This paper is organized as follows. Section 2 describes
classification of external devices. Section 3 describes the
devised framework for fault detection, followed by self-
management of external device failures in section 4. Section 5
describes the use case modeling for detecting and self-managing
failed external devices. This paper is concluded in section 6.

2. Classification of External Devices

There are different external devices in software systems,
which can be classified into several types [Gomaa00]. A type of
external devices has the unique communication pattern between
the devices and the system. This uniqueness of communication
styles is used to develop a framework for detecting faults or
failures in external devices. Each device type is categorized by
means of device characteristics, such as input/output,
periodic/non-periodic, asynchronous, or active/passive.

Input/output devices: An input or output device can
provide input to or receive output from the system
respectively. Some devices have only one role of either
input or output, or both input and output. For example, an
elevator button is an input device and an elevator lamp is
an output device in an elevator system.
Periodic/non-periodic devices: A periodic device interacts
with the system periodically, whereas a non-periodic
device interacts with the system as needed. For example, a
brake is a non-periodic device, and an engine is a periodic
device in a cruise control system.
Asynchronous devices: An asynchronous device generates
an interrupt to send a message to the system, which then
reads a message from the device. Examples of this type are
elevator buttons in an elevator system and cruise control
buttons in an cruise control system.
Active/Passive devices: An active device cannot generate
an interrupt to be sent to the system, but it may send
directly a message to the system. A passive device cannot
generate an interrupt for communication with the system
and cannot send a message to the system. The motor and
the elevator door in an elevator system are passive.

3. Detection for External Device Failures

544 545

3.1 Failure Detection of Asynchronous Input Devices

An asynchronous input device generates an interrupt and
delivers it to the device interface whenever it meets some event
interesting to the interface. When the interface receives an
interrupt from an asynchronous input device, it may need to
read a message from the device. An asynchronous input device
is characterized as input, asynchronous, and non-periodic. An
asynchronous device may not generate any interrupt if it fails. In
that case, the interface cannot detect the failures of the
asynchronous input device. Examples of this type of
asynchronous external devices are floor buttons and elevator
buttons in the elevator system.

However, there are some exceptional asynchronous input
devices whose failures may be detected under some conditions.
An arrival sensor in the elevator system is an example of the
asynchronous input device whose failures are detected using
other devices in the system. Figure 1 shows the communication
between the arrival sensor and the elevator control. An arrival
sensor is installed at each floor, sensing the arrival of the
elevator at the floor. As an elevator reaches a specific floor, the
arrival sensor sends an interrupt to the arrival sensor interface,
which notifies the elevator controller of the message arrival. The
elevator controller checks if the elevator should stop at the floor
or not. When an elevator is going up, the i-th floor arrival sensor
may be presumed that it fails if the elevator controller receives
an arrival message from the (i+1)th arrival sensor without a
message from i-th arrival sensor. Similarly, this can be applied
when the elevator is going down.

«state dependent
control»

:ElevatorControl

«input device
interface»

:ArrivalSensorInterfaceArrival
Sensor

A1: arrival
sensor input

A2: approaching
floor (floor#)

Fig. 1 Communication Diagram for Arrival sensor and Elevator
Control Objects

3.2 Failure Detection of Periodic Input Device

A periodic input device delivers inputs to the system
periodically, but it is not an active object. A periodic input
device is characterized as input, periodic, and passive. A system
polls a periodic input device to get an input from the device on a
regular basis. When the system polls the device, the device is
presumed that it fails if the system cannot read an input from the
device upon each poll.

The engine in a cruise control system is the example of this
type of device. The engine is polled by the engine interface to
read an input at periodic intervals. When the engine does not
return its input to the interface, it may meet a failure. Figure 2
shows the engine failure detection in the cruise control system.
Also failures of an engine can be detected in another way. If the
system does not receive the normal heat temperature values
from the heat sensor for a certain period of time, the system
detects the failure of engine.

3.3 Failure Detection of Periodic Output Device

A periodic output device receives output from the system
periodically and handles the output. A periodic output device is
passive, thus it just waits for an output from the system. Failures
of a periodic output device may not be detected by the system.
This is because the device may not respond to the system when
an output is arrived. But failures of periodic output devices may
be detected by users. Examples of such devices are a mileage
display, a trip average display and a maintenance display in a
cruise control system, and a microwave display in a microwave
system (Fig. 3). These displays show some information to users
in which the information is changing. Users can detect the
failures of these displays when the information is not changing.

Some periodic output devices can be monitored by polling
the devices. Such an example is the throttle in the cruise control
system. The throttle is classified as a periodic output device
whose failures may not be detected. But a throttle is a polled
device whose failure is detected when the throttle position
sensor does not return any value to the system within a defined
period of time.

«input device»
:Engine

«input device
interface»

:EngineInterface

E1*: read

E2*: engine
input

Fig. 2 Engine sensor failure detection

«external output
device»
:Display

«output device
interface»

:DisplayInterface

M1*: display
cooking time

Fig. 3 Microwave display failure detection

3.4 Failure Detection of Passive Output Device

The system sends an output to a passive output device as
needed, which handles the output. A passive output device is
checked for the status by the system after an output is sent to the
device. A passive output device is characterized as output,
passive, and non-periodic. The motor, elevator lamp, and
elevator door in the elevator system are examples of passive
output devices.

The status of the motor (Fig. 4) in the elevator system is
determined by checking the rotation/motion sensor after an
output, such as motor start or stop, is being delivered to the
motor. When the rotation/motion sensor does not return a valid
response to the elevator system within a defined period of time,
it leads to a conclusion that the motor has failed. Similarly, the
elevator direction lamp is monitored by the voltage sensor, and
the elevator door’s failures are detected by the rotation sensor
status.

«external output
device»
:Motor

«output device
interface»

:MotorInterface

B1*: check

B2*: status

A1: motor command

Fig. 4 Elevator motor failure detection

544 545

4. Self-management of External Device
Failures

4.1 Self-healing

Failures detected in external devices may be resolved by
retrying the communication with the devices. Similar to
software, an external device may meet a failure attributed to
some minor mechanical error or instant error. For failures of a
periodic input device, the system reads an input from the
devices again. For instance, an engine interface retries to read an
input from an engine if there is no response from the engine. A
passive output device interface retries to send an output to the
device, and polls the status of the device again. For example, the
motor in the elevator system may be retried if it meets some
failures.

Failed external devices can be reinitialized by calling the
initialize() operation, which initializes the devices and its related
variables. A device interface object has the initialize() operation
that is called at initialization time. However, the system calls the
initialize() operation if it meets failures in the devices, and the
system retries to communicate with the failed devices.

The system controller switches failed external device to
another device if a secondary device is available. The secondary
device has the same functionality as the primary device. The
switch between a primary device and a secondary device is
carried by the device interface, but the system does not require
reconfiguration of software components constituting the system.
An external device may not have its secondary device if the
device is not critical to the system or if the secondary device is
not cost-effective.

The self-healing approach can be applied to the external
devices that are non-time critical. A failure of external devices
can be categorized with response time, such as time critical or
non-time critical. A time critical device’s failure is intolerant if
the device does not work on time. A time critical device does
not have enough time to self-repair the failures. A failure of
time critical device may shut down the entire system. The brake
or engine in a cruise control system is an example of the time
critical device. A non-time critical device is not a time bound
device whose failure may be fixed by self-repair. A floor button
in an elevator system is an example of non-time critical device.

The self-healing approach for external devices has some
limitations that may not fix failures attributed to real mechanical
problems. An external device with a mechanical problem needs
to be replaced physically by hardware engineers if the
secondary device is not installed with the primary device. For
example, an elevator direction lamp may be burn out due to the
life time, and the motor of an elevator may meet a mechanical
problem that cannot be fixed by retrying or initializing it.

4.2 Self-configuration or adaptation

Failure analysis enables us to analyze the impact and the
consequences of the failed device in the embedded system. The
failures can be classified as tolerable, serious and catastrophic.
A failure of external devices that does not disrupt the normal
functioning of the system is termed as a tolerable failure. An
example is a failure of a direction lamp of an elevator. Even
though a direction lamp fails, the elevator works fully without

degrading its services to passengers. A serious failure in the
external devices degrades the functions of a running system, but
it may not necessarily bring the system to a total failure. For
example, an elevator button’s failure makes some passengers
not reach to a specific floor, but the elevator still works.
Another example is a failure of arrival sensor at a specific floor
in an elevator. A catastrophic failure is irrecoverable, and it
brings the entire system to a sudden halt. The examples are
failures of the motor in an elevator system, and failures of the
brake in a cruise control system.

The embedded software may need to be reconfigured or
adapted against tolerable or serious failures of external devices
so that the system prevents from the ripple effect in terms of the
failures – worse performance or additional failures. When a
device meets either a tolerable or serious failure that cannot be
self-repaired, the system should not communicate with the
device in order to send an output to or read some input from the
device. This communication can make the device interface meet
the same failure, and try to self-repair it using retry or re-
initialization. Even the same failure may be notified to the
system controller, which already knows the device status. For
example, an elevator system should not send an “on or off”
message to an elevator direction lamp if this lamp is already
detected to be failed. Otherwise, the elevator direction lamp will
try to self-repair the same failure again and the system’s
performance will be getting worse.

A failure of external device may bring another failure to the
system if the system is not adapted against the failed device.
Suppose that multiple elevators are operating in a building and
an arrival sensor for a specific floor of an elevator fails. The
scheduler of the elevator system should not patch the elevator to
the floor with a failed arrival sensor. The elevator cannot stop at
the floor due to the failure of arrival sensor. If the elevator is
patched to the floor, the elevator may continue to go up or down
repeatedly to reach the floor.

4.3 Self-reporting

The embedded software systems can be divided as
unmanned control or manned control systems. The elevator
system is an example of unmanned control system, whereas the
microwave and the cruise control systems are manned control
systems. This criteria is made based on to whom the non-self
managed failures should be reported. In the case of the
unmanned control systems, the maintenance centers are notified
while the users are notified in the manned control systems.
When a device failure is detected, the failure can be either
detected by the device interfaces, or users. If a catastrophic
device in the unmanned control system fails and there is no way
to self-manage, the system should stop and report to appropriate
person or maintenance center.

5. Detection and Self-management in Use
case Modeling

The proposed approach for detection and self-management of
failed external devices is applied to the use case modeling for
the elevator system, cruise control system and microwave
system [Mane10]. The following is the Stop Elevator at Floor
use case [Gomaa00] in the elevator system, which is extended to

546 547

detect and self-manage failed external devices – arrival sensor,
motor, floor direction lamp, and elevator door.

Name: Stop Elevator at Floor Use Case
Actors: Arrival sensor
Precondition: Elevator is moving.
Description:
As the elevator moves between floors, the arrival sensor detects
that the elevator is approaching a floor and notifies the system.
The system checks whether the elevator should stop at this floor.
If so, the system commands the motor to stop and turns on the
floor direction lamp. When the elevator has stopped, the system
commands the elevator door to open.
Alternative for Application:

The elevator is not required to stop at this floor and so
continues past the floor.

Postcondition: Elevator has stopped at floor with door open.
Detection and Self-management of External Device Failures:

Arrival sensor (asynchronous input device). Detection - the
system may not detect the failure, but it may detect it using
neighbor sensor input.
Self-management - if an arrival sensor fails and the
elevator needs to stop at the floor, the system stops the
elevator at the next (up or down) floor to drop passengers.
The system self-reports this failure to the maintenance
center if the arrival sensor does not send the signal to the
system continuously.
Motor (passive output device). Detection - if the motor
does not return the status within a defined time or return an
abnormal door sensor value, the system detects the failure
of motor. Self-management – the system reinitializes the
motor and commands it to start moving the elevator. If the
motor is still not moving the elevator and the elevator is
located at a floor, the system commands the elevator door
to open so that passengers can go out of the elevator. The
motor is a critical device, so the system self-reports this
failure to the maintenance center. The system does not
allocate this failed elevator to user requests.
Floor direction lamp and Elevator door (passive output
devices). Detection - if the floor direction lamp (elevator
door) does not return the normal value, the system detects
the failure of the floor direction lamp. Self-management –
the system reinitializes the floor direction lamp (elevator
door) and goes to the next use case description step
because it is not critical device. Since it is a non-critical,
tolerable failure, the system reconfigures the failed floor
direction (elevator door) lamp interface so that the system
does not send messages to the failed device. The system
self-reports this failure to the maintenance center.

The use cases for the elevator system with detection and
self-management of failed external devices are implemented to
validate the proposed detection and self-managing framework.
This implementation is to develop a simulator for the elevator
system in which the external devices are implemented as
software objects rather real devices. The software architecture
for self-managing external devices of the elevator system is
designed as a layered architecture structured with the service
layer and self-management layers [Mane10]. The service layer
has application objects for the elevator system, whereas the self-

management layer has objects – detection, planning, and
execution modules - related to detection and self-management of
device failures.

6. Conclusions

This paper has described an approach to establishing a
framework for detection and self-management of failed external
devices in embedded software systems. This paper has
developed the detection framework based on the external device
types in embedded software systems. The communication
patterns between external devices and the system are used to
detect failure or fault of external devices. The self-managing
framework handles external device failures from the software
perspectives. The proposed approach in this paper has been
applied to the use case modeling of the elevator system.

This paper can have further research. This research has been
applied to three embedded software systems - elevator system,
cruise control system and microwave system. This research may
need to other embedded software systems so that we enable to
identify more device types. Also this paper does not include the
relationship between an external device and its sensor. An
external device may have its sensor that is used to monitor the
device. When an external device fails, the failure may be in the
device or its sensor. This relationship needs to be addressed in
our future research.

References

[Cheng06] Cheng, S. W., Garlan, D., and Schmerl, B.,
“Architecture-based self-adaptation in the presence of multiple
objectives,” 2006 international workshop on Self-adaptation and
self-managing systems, Shanghai, China, 2006.
[Coyle04] Coyle, E. A., Maguire, L. P., and McGinnity, T. M.,
“Self-repair of embedded systems,” Engineering Applications of
Artificial Intelligence, Vol. 17, Issue 1, 2004, pp 1-9.
[Finne08] Finne, N., Eriksson, J., Dunkels, A., and Voigt, T.,
“Experiences from two sensor network deployments: self-
monitoring and self-configuration keys to success,” 6th
international conference on Wired/wireless internet
communications, Tampere, Finland, 2008.
[Gomaa00] Gomaa, H., “Designing Concurrent, Distributed, and
Real-Time Applications with UML,” Addison-Wesley, 2000.
[IBM06] IBM, “An architectural blueprint for autonomic
computing,” White Paper. June 2006.
[Mane10] Mane P., “Self-Management of External Device
Failures in Embedded Software Systems,” Master Thesis,
CS/Texas Tech University, 2010.
[Pinheiro07] Pinheiro, E., Weber, W.-D., and Barroso, L. A.,
“Failure trends in a large disk drive population,” 5th USENIX
conference on File and Storage Technologies, San Jose, CA,
2007.
[Roy07] Roy, P. V., “Self Management and the Future of
Software Design,” Electronic Notes in Theoretical Computer
Science, 1822007, June, 2007, pp 201-217.
[Wikipedia10] Wikipedia, “Self-Monitoring, Analysis, and
Reporting Technology (S.M.A.R.T),” Free encyclopedia, 2010.

546 547

Towards Modeling and Validating Analysis Processes for Software Adaptation

Xiangping Chen
National Engineering Research Center

of Digital Life,
Institute of Advanced Technology, Sun

Yat-sen University,
Guangzhou, 510006, China

Key Laboratory of High Confidence
Software Technologies (Peking

University), Ministry of Education,
Beijing, 100871, China

Chenxp8@mail.sysu.edu.cn

Gang Huang
Key Laboratory of High Confidence
Software Technologies, Ministry of

Education,
School of Electronics Engineering and

Computer Science,
Peking University,

Beijing, 100871, China
Huanggang@sei.pku.edu.cn

Lingshuang Shao
Computer School of Wuhan University,

Wuhan, 430072, China
shaolsh@gmail.com

Abstract— With the complexity and the dynamic analysis
requirements during software adaptation for software in the
open and dynamic environment, the software analysis requires
integrating multiple analysis methods and controlling the
execution of analysis methods in specific sequence. As a result,
the analysis process is hard to be communicated to its
designers, implementers and users without an explicit model.
In addition, if dependent methods are not included or
encounter runtime failure, the data dependency and control
dependency between analysis methods may cause correctness
problem. In this paper, we proposed a domain-specific
language for modeling the analysis process using subset of
notations from BPMN. In order to cope with the dependency
problem in model and implementation level, the dependency
relationships are divided into static dependency and dynamic
dependency. Dependency identification and matching
algorithm is provided to assure the static dependency in the
analysis process model. For the dynamic dependency, we
provide a service to detect the analysis failure caused by
dynamic dependency. We model and validate two analysis
processes supporting software adaptation with performance
and reliability concerns, and apply the analysis processes in
analyzing a running system ECPerf.

Keywords- software analysis; analysis process, process
validation, analysis process modeling

I. INTRODUCTION

Analysis is the process of breaking a complex topic or
substance into smaller parts to gain a better understanding of
it. Software analysis technology is widely used during
software lifecycle, and generates descriptive, predictive or
prescriptive analysis results regarding to the system
consistency, correctness, quality attributes and so on.

More and more software systems are running in the
internet which is open and dynamic. In order to provide
continues and high quality services in the internet, software
may change the structure or behavior according to the
changing user requirements and environment [1]. The
increasing complexity of the software system brings
challenges to the software analysis.

Software analyses play an important role during software
adaptation. A general adaptation process contains four stages:
monitoring, analysis, planning and execution. In the

monitoring stage, the system model generated by monitoring
system is usually low-level model containing raw data of
different system aspects. These models are hard to be used
without a transformation to high-level model or domain-
specific model. In the analysis and planning stages, the
system designer usually employs analysis methods to acquire
status of the system, possible adaptation strategies and
change impact, so as to gain a better understanding for
decision making. For the information of different kinds:
descriptive, predictive or prescriptive, usually more than one
method are needed. Even in the execution stage, analyses of
platform specific features and execution strategies are
usually required for assurance of adaptation correctness.

During the software adaptation, multiple analysis
methods are used and carried out in specific sequence. For
example, an analysis method for adaptation planning may be
used after the analysis methods for system quality attributes.
In addition, the analysis results may affect the choice of
analysis methods afterward. For example, the quality
attributes acquired in the analysis stage may affect the choice
of adaptation planning methods. If there is security problem,
the designer may choose to analyze the possibility of adding
fault-tolerant ability. If the system’s performance is too low
to fulfill stakeholders’ requirement, the designer may choose
to see possible reconfiguration with higher performance.

The analysis requirements for software adaptation bring
new challenges. First, the analysis process is complex that it
contains several related analysis methods. The set of analysis
methods is chosen according to the system status and these
methods should be carried out in specific sequence. The
analysis process is repeatedly executed by hand. As a result,
the execution process is error prone and hard for reuse.
Second, the assurance of the analysis process correctness is
hard because of complex relationships between analysis
methods. There are two kinds of dependency relationship:
the data dependency and control dependency. Data
dependency means that an analysis method’s input relies on
the output of another analysis method. Control dependency
happens when an analysis method’s output decides whether
another analysis method is executed. Thus, if an analysis
method relies on the analysis result produced by an analysis
method which is not included in the process, or the relied
analysis method encounters runtime failure and can not

548 549

provide proper result for other analysis methods, the analysis
process could not generate correct results or even could not
finish execution.

Recent works on the integration of analysis methods have
proposed methods and framework to ease the integration of
analysis methods. These works focus on extracting proper
model for analysis, controlling external analysis tool to carry
out analysis task, and synthesizing analysis results back to
the core model. Among these works, ADD [7] provides
guidelines and standard interface for integration of analysis
input, execution and output; XTEAM [5] and KAMI [3]
focus on providing facilities for input adaptation and tool
execution; our ongoing work focus on the integration on the
synthesis of analysis results. However, these works assume
that the analysis methods can be integrated independently
and used together to finish an analysis process. The
relationships between analysis methods during an analysis
process are not considered.

In this paper, we propose a process based method to
model and validate analysis process. We propose a domain-
specific language for modeling the analysis process based on
notations from BPMN. The modeling language considers the
sequence relationship and dependency relationship between
analysis methods in the process. In order to cope with the
dependency problem in model and implementation level, the
dependency relationships are divided into static dependency
and dynamic dependency. Based on the analysis process
model, dependency identification and matching are provided
to assure the correctness of analysis execution. To ensure the
static dependency could be guaranteed, the require input of
each analysis method is evaluated. For the dynamic
dependency, we provide a service to detect the analysis
failure caused by dynamic dependency which is expressed
by the elements with runtime data dependency definition,
and this detection service is added to the process.

The remainder of the paper is organized as follows:
Section 2 illustrates the modeling and validation requirement
of analysis process. Section 3 and 4 introduce the modeling
and validation method for analysis process. Going back to
our example, Section 5 presents the use of our method to
model and validate analysis process for software adaptation.
Finally Section 6 discusses some related works before
Section 7 concludes our work.

II. ILLUSTRATIVE EXAMPLE

In this section, we will introduce an analysis process
including three analysis methods to show the modeling and
validation requirement.

This example is a software adaptation analysis process,
which first appeared in the work on performance adaptation
[9]. The process includes three analysis methods for
monitoring, analyzing and planning respectively: behavior
model generation method COMPAS (Component
Performance Assurance Solutions) [2], performance related
pattern detection method [9], pattern-based reconfiguration
method [9]. The user first uses the COMPAS analysis
method to generate the behavior model based on runtime
information contained in a software model from the
monitoring stage. Then, the user uses an analysis method to

detect Fine-grained Remote Calls structure in the software
model. If instance of the bad structure pattern is found, the
user will execute pattern based reconfiguration method to
generate an adaptation plan. If bad structure does not exist in
the software model, the analysis process is finished without
planning.

In the example, the pattern detection method relies on the
behavior model generated from the COMPAS method.
Whether the planning method will be executed is decided by
the result of pattern based detection method. The data
dependency and control dependency may cause problem in
design time and runtime. At design time, if the user first
chooses the pattern based detection method instead of the
COMPAS method, the detection method could not be
executed without behavior model. We add the COMPAS
method in the analysis process to solve the static dependency
problem. However, dynamic dependencies may happen. For
example, the COMPAS analyzer will not generate any result
when it encounters runtime error. In this situation, all the
analysis methods and control switchers rely on it will be
affected. The analysis process will stop executing, or
generates fault results or useless results.

Besides modeling the analysis process, we need to
validate the process in order to correctly analyze the system.

III. MODELING ANALYSIS PROCESS

Our approach starts from the modeling of analysis
process. The activities in the process are all of the type
analysis method. An analysis process can be viewed as a
group of analysis methods.

 In order to simplify the analysis process modeling, we
build our modeling method based on existing works on the
integration of analysis methods. The integration of the
analysis methods can be divided into three aspects: the
integration of the input, the integration of the execution and
the integration of the output. We assume that the analysis
methods are already integrated that its input is provided by
the software model through input adaptation; its tool is
integrated and can be invocated; the analysis results are
synthesized back into the software model.

Data proceeding and control logic are two important
consideration in the molding of analysis process.

From the data level, all the analysis methods in an
analysis process have the same analysis object: the software
system. The analyzed system is usually abstracted and saved
as model. The analysis results are the features of software
system and can be modeled as elements or attributes of
elements in the software model. As a result, the data flow in
the analysis process includes the core software model and the
analysis results. The analysis methods are organized as a star
configuration.

In order to simplify the data processing modeling, we use
our former work [11] on the integration of analysis results to
update the core software model. Based on the framework, the
software model is updating during the analysis execution.
After an analysis method is executed, the software model
will be extended with its results. For each analysis method,
its required input can be provided by the software model and
the analysis results produced of the analysis method executed

548 549

before. As a result, the analysis result integration framework
maintains the models and manages the data processing in the
analysis process. Based on the integration framework,
modelers do not need to model the data processing in the
analysis process; they can concentrate on modeling the
control logic of analysis process.

The complex control logic of a process can be described
using three kinds of structure: sequence structure, decision
structure and repetition structure. However, an analysis
method is seldom repeatedly executed during an analysis
process. Because analysis is a way to generate software
features from the software model, the analysis behavior does
not affect the model. For a specific analysis method and a
software model, the analysis result is the same if the analysis
method is executed repeatedly. Thus, repetition structure is
not needed in analysis process. It should be noted that an
analysis method may be carried out more than once during
an analysis process. This is because an analysis method can
be applied to analyze different part of software model
especially analysis results generated by other analysis
methods.

Besides the sequence structure and decision structure,
parallel structure is supported in the analysis process
modeling for performance consideration. Because analysis
methods are usually provided and implemented by different
vendors, their analyzers may be running in different nodes. If
some of the analysis tasks are time consuming and can be
carried out by the analyzers in different node, the designer
can model these analysis methods in a parallel structure.

We use a subset of notation of BPMN to model the
analysis process. The modeling element types are listed in
table 1. The start event and end event are used in the
beginning and ending of the analysis process. Inter Event is
only used to show possible exception in the process. A Task
is mapped to an integrated analysis method which is the only
kind of atomic activity in the analysis process. AND
Gateway is used to describe the set of analysis methods
which should be carried out in parallel. XOR Gateway and
Sequence Flow are used to describe the sequence structure
and decision structure.
Table 1 modeling elements

Element Description
Start Event The Start Event indicates where a particular

process will start.
Inter Event Intermediate Events occur between a Start Event

and an End Event and will affect the flow of the
process.

End Event The End Event indicates where a process will end.
Task A task is an atomic activity within the process. It

represents work to be performed. A task will be
activated when one of its incoming sequence
flows is triggered and will trigger all its outgoing
sequence flows when it is finished.

AND
Gateway

An AND Gateway will trigger all outgoing flows,
when all incoming flows are triggered.

XOR
Gateway

An XOR Gateway will trigger one of its outgoing
flows when one of its incoming flows is triggered.

Sub-process Sub-processes are used to support hierarchy. A

Sub-process contains its own Start and End Event.
Sequence
Flow

The Sequence Flow shows the order in which
activities will be performed in a Process.

 Our analysis process modeling language uses the
notation of BPMN. Designer can use the BPMN
visualization modeling tool and implementation generation
tool to model the analysis process and get the executable
process described using BPEL regarding semantic mapping
between BPMN and BPEL.

IV. VALIDATING ANALYSIS PROCESS

There are two kinds of dependency: data dependency and
control dependency. To ensure the static dependency could
be guaranteed, the dependency occurs during the analysis
process is detected and the depended analysis method is
automatically added to the process. For the dynamic
dependency, we provide a service to detect the analysis
failure caused by dynamic dependency which is expressed
by the elements with runtime data dependency definition,
and this detection service is added to the process afterwards

A. Dependency Definition
In order to validate the dependency relationship, we

extend the integration definition in the analysis result
integration framework. Fig 1 shows the extended meta-
model, the integration model is extended with the element
Relied Element. Analysis method integrator can specify the
relied elements and their validation rules. The default
validation rule for a relied element is that it should not be
null. For the Gateway element in the analysis process, the
switcher usually relies on some elements for decision
making. The process modeler can define an integration
model for a Gateway element. The integration model only
includes a list of relied elements. We detect static
dependency problem and validate the required input model at
runtime based on the integration models of analysis methods
and Gateway elements in the process.

Fig 1. Extended Meta-model of Integration Definition

B. Static Dependency Detection
There are two kinds of dependency relationship between

analysis methods: data dependency and control dependency.
An analysis process is incorrect if there is any analysis
method or control switcher who relies on one or more
analysis methods which could not generate needed analysis

550 551

result for this method or control switcher. The dependency
problem may occur when (1) the relied analysis method is
not included in the analysis process; (2) the relied analysis
method is included in the analysis process, but could be
executed after the analysis method or control switcher in
some situation; (3) the relied analysis method is included in
the analysis process and could be executed before the
analysis method or control switcher in any situation, but the
analysis method has dependency problem.

For an analysis method 0am in the process model, it
does not have dependency problem if

(1) All the analysis methods which 0am relies on are
included in the process model.

(2) All the process instances will carry out 0am ’s

dependent analysis methods before 0am
Because analysis methods do not affect each other

directly even if they are in the same analysis process. Their
dependency relationships are built based on the relationship
between their input and output. entam0_dependAR is the set of

analysis results which analysis method 0am relies on;

ableam0_dependAM is the set of analysis methods whose results

can be used by analysis method 0am ; ableam0_dependAR is the
set of analysis results produced by all the analysis methods
in bleam0_depedaAM . An analysis process do not have static
dependency problem when all the analysis methods in the
process rely on the analysis results which can be generated
before its execution in any process instances. The constraint
can be expressed in OCL as below:

taskP

CoreModelforalltaskP

.}AR

)(AR|am{.

entam0_depend

ableam0_depend0

For an analysis method 0am in the analysis process, its
dependent analysis results are defined by the integrator. We
developed an algorithm to find out the dependable analysis
methods, the union of all the results produced by the
dependable analysis methods is ableam0_dependAR .

Input: process model P, analysis method 0am , the
starting point and ending point in the process model P

startpoint and endpoint ;

Variables: dependableAM , dep_tempAM and tempAM are

sets of analysis methods, tempSF is a set of sequence flow,

and checkpoint is a reference to an element in the process,

starte and ende are the start event and the end event of
process P;
FindAMDepedent (P, 0am , startpoint , endpoint)

Initialization: dependableAM , startpocheckpoint int ,

outgoingcheckpoint.SFtemp ;

1. if checkpoint = startpo int and 1.sizeAM temp ,

then ()firstAMcheckpoint temp

outgoingcheckpointM .A temp

2. if checkpoint = endpo int goto (9)

3. if checkpoint = 0am , goto (8)
4. if checkpoint is of the type Task and

1.sizeAM temp , then

checkpointdependabledependable AMAM ,

()firstAMcheckpoint temp ,

outgoingcheckpo .intSFtemp ;

5. if checkpoint is of the type Gateway, then

for am in tempAM
 dep_tempAM = FindAMDepedent(P, 0am , am,

jointpointcheckpoint.)

 If dep_tempAM , then

dependabledependable AMAM dep_tempAM
Goto (9);

 endfor
 jointpointcheckpointcheckpo .int

 if checkpoint is of the type AND Gateway and

tempAM , then
 goto(6)
6. dep_tempAM

for am in tempAM
if am is of the type XOR Gateway, then

jointpointam.AMAM dep_tempdep_temp

 if am jointpointcheckpoint. and am is of the
type Task

 outgoingam.AMAM dep_tempdep_temp

 amdependabledependable AMAM
endfor

 if dep_tempAM , then

 dep_tempAMtempAM
 goto (6)

7. goto (1)
8. return dependableAM
9. return

550 551

Using this algorithm, a process can be validated. If for
each analysis method in the process, its relied input can be
provided by the core model and the analysis results of its
dependable analysis methods, this analysis process do not
have static dependency problem.

C. Runtime Validation of Required Input Model
During the execution of an analysis process, runtime

exception may affect the analysis execution and produce
meaningless analysis results. The runtime exception may be
caused by missing input from the core software model,
exceptions from analysis tool execution, and so on. The fault
or meaningless analysis results may affect other analysis
methods which rely on these results. Thus, if this kind of
fault can be detected at runtime, the process can be stopped
so as to save time and avoid the misleading analysis results.

The runtime validation is the process to make sure that
the input constraints are not violated. The validation is based
on the dependency definition. The validation objects are the
elements specified as relied elements in the integration
model. There is a default rule that the required input element
should not be null. This rule can be described using OCL:

false()
.

inedoclIsUndef
entreliedElemnmodelintegratio

Besides this rule, analysis method integrator can define
rules as constraints for the reliedElement.

The runtime validation of required input model can be
abstracted as a special analysis method in the analysis
process. Its analysis result is used to decide whether the
process will continue or not. For each analysis methods or
switchers with relied elements, we add a runtime validation
method before it. We develop and integrate the validate tool
in the integration framework. Then, the analysis process can
detect validation of constraints at runtime.

V. CASE STUDY

In this chapter, we use our approach to model and
validate the analysis process for the adaptation of a
component-based system, the ECPerf system [6]. The
ECPerf system is provided by Sun Microsystems, which has
been adopted as a standard benchmark application for JEE
systems. It is an online “Just-in-Time” manufacturing
system. We used the SM@RT [10] monitoring platform to
extract data from the running ECPerf system and to
visualize the corresponding software model. We used the
analysis method integration framework [11] to integrate the
related analysis methods. For space limit, we focus on the
modeling and validation of analysis process, detail of
analysis methods integration is not included in this paper.

A. Peformance Adaption
In section2, we introduce an analysis process for

performance adaptation. For a maintainer who is not
familiar with the analysis methods, he does not know that
the pattern detection method relies on the behavior model
which is not provided by the monitoring system. He my
model an analysis process containing two steps: detect

performance related bad pattern, and reconfigure the
software if bad structure exists, as shown in Fig 2.

Fig 2 Analysis Process for Performance Adaptation

 We use our static dependency detection algorithm to
validate this analysis process. Because pattern detection
method is the first method in the process, it can only rely on
the core software model. In the integration definition of
pattern detection method, two relied elements are defined:
software configuration element Config and the behavior
model element SequenceDialog. The configuration model is
included in the software model. However, the software
model only contains a list of invocation records. The
software model does not contain any element of the type
SequenceDialog. There is static dependency problem in the
process. If an analysis method COMPAS is added before the
pattern detection method, as shown in Fig 3, it can generate
behavior model based on the invocation record in the core
model. This analysis process does not have dependency
problem and can be used for performance adaptation.

Fig 3 Analysis Process for Performance Adaptation

B. Fault-torelant Style based Software Reconfiguration
Reliability is one of the most important quality attributes

for online services. Because reliability is important, the
maintainer chooses two reliability analysis methods SBAR
[12] and ABRAM [14] to analyze the runtime software
model. If the value of any reliability result is less than 90%,
the maintainer will choose a planning method ASPIRE [13]
to generate adaptation plan, and then use the SBAR and
ABRAM method again to analyze the planning result to
make sure that the reliability will be improved. During the
analysis process, the maintainer may stop analyzing if the
system reliability is acceptable. We use our modeling
language to describe this analysis process, as shown in Fig 4.

Fig 4 Analysis Process of Style-based Software Adaptation

In this example, the SBAR method and ABRAM method
is used twice with different input. The XOR Gateway before

552 553

ASPIRE method relies on the reliability analysis results:
SBARresult and ABRAMresult. The constraints for these two
elements are the same that the value of the element should be
in the range of 0 to 1. A validation analyzer is added before
the gateway in the analysis process. This analyzer will check
both the SBARresult and ABRAMresult when the SBAR and
ABRAM method finishes execution.

When we apply this analysis process in analyzing the
software model of ECPerf system, the process always
stopped and through an exception before the XOR gateway.
Because we re-implement ABRAM analyzer using the
model transformation language ATL with too many nested
statements, the analyzer will be short of memory when
analyzing software models with more than 10 components.
When analyzing the ECPerf software model, the ABRAM
analyzer cannot return the result ABRAMresult until timeout.
As a result, the runtime validation carried out before the
XOR gateway will find that the required input ABRAMresult
violates its constraint. The runtime validation is also helpful
for us to detect improper usage of analysis method.

VI. RELATED WORK

The works on the Enterprise Application Integration
(EAI) can be applied to integrate analysis tools. However,
EAI most focuses on the translation the outputs of some
application into inputs for other application, and the
invocation of application interfaces [15]. The relationships
between integrated analysis methods are not considered.

Many approaches and frameworks have been developed
for complex analysis of software models. Some approaches
are proposed to facilitate the use of multiple analysis
methods during software design. ADD [7] and FADF [6]
provide standard interfaces for integration of analysis
methods. These works notice the requirement for the analysis
process, but do not provide support for process modeling. In
addition, these works simplify the relationship between
analysis methods as data exchanging and leave the user to
guarantee the process correctness.

Several research projects propose frameworks [3, 4, 5, 6]
to simplify the integration of existing model-based analysis
methods. XTEAM [5] is a framework focusing on solving
the mismatch between SA model and required input of
analysis methods. KAMI [3] is a framework for run-time
model adaptation. These frameworks provide facilities to
simplify the development of model interpreters and model
updaters, respectively. DUALLY [4] is an automated
framework that allows architectural languages and tools
interoperability. It provides the infrastructure for (semi)
automatic generation of the weaving model to integrate
analysis abilities provided by ADLs. However, these
frameworks assume that analysis methods are independent
and do not consider dependencies of the analysis methods.
Our framework focuses on the modeling and validation of
analysis process, and is build based on some of these works.

VII. CONCLUSION

This paper introduces an approach to model and validate
the analysis process for software adaptation. We believe that
an explicit model for analysis process can enhance the reuse

of analysis process and save effect for analysis execution.
Considering the dependency relationship in analysis methods,
our method provide an algorithm to detect static dependency
problem in the analysis process model and an analysis
method to validate required input model at runtime, so as to
avoid correctness problem caused by dependency .

VIII. ACKNOWLEDGMENTS
This effort is sponsored by the Joint Funds of NSFC-

Guangdong under Grant No. U0835004, the National Natural
Science Foundation of China under Grant No. 60873060,
60933003, and 61003072.

REFERENCES

[1] Oreizy P, Gorlick MM, Taylor RN. An Architecture-based Approach
to Self-Adaptive Software. IEEE Intelligent Systems.1999, 14(3): 54-
62.

[2] Parsons T. Automatic Detection of Performance Design and
Deployment Anti-patterns in Component Based Enterprise Systems.
Ph.D. Thesis. 2007: University College Dublin.

[3] Epifani I, Ghezzi C, Mirandola R and Tamburrelli G. Model
evolution by run-time parameter adaptation. Proceedings of the 2009
IEEE 31st International Conference on Software Engineering. IEEE
Computer Society Washington, DC, USA, 2009:111-121

[4] Malavolta I, Muccini H, Pelliccione P, Tamburri DA. Providing
architectural languages and tools interoperability through model
transformation technologies. IEEE Transactions on Software
Engineering. 2009, 36(1): 119-140.

[5] Edwards G. and Medvidovic N. A methodology and framework for
creating domain-specific development infrastructures. Proceedings of
the 23rd IEEE ACM International Conference on Automated
Software Engineering. 2008: 168-177

[6] Dai L and Cooper K. Modeling and Analysis of Non-functional
Requirements as Aspects in a UML Based Software Architecture
Design. Proc. 6th Int'l Conf. on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing and 1st
ACIS Int'l Workshop on Self-Assembling Wireless Network
(SNPD/SAWN'05), 2005.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 2nd ed. Addison-Wesley, 2003.

[8] ECperf Home Page. ECperf
http://www.spec.org/jAppServer2001/docs/DesignDocument.html#S1

[9] Ling Lan, Gang Huang, Weihu Wang, Hong Mei. A Middleware-
based Approach to Model Refactoring at Runtime. 14th Asia-Pacific
Software Engineering Conference (APSEC'07), 2007: pp.246-253,

[10] Gang Huang, Hui Song, Hong Mei. SM@RT: Applying Architecture-
Based Runtime Management into Internetware Systems. International
Journal of Software and Informatics, 2009, 3(4):439-464

[11] Xiangping Chen,Gang Huang,Franck Chauvel,Yanchun Sun,Hong
Mei. Integrating MOF-Compliant Analysis Results. International
Journal of Software and Informatics, 2010,4(4):383~400

[12] Yacoub S, Cukic B, Ammar H. Scenario-Based Reliability Analysis
of Component-Based Software. Proceedings of the 10th International
Symposium on Software Reliability Engineering. 1999.

[13] Li JG, Chen XP, Huang G, Mei, H and Chauvel, F. Selecting Fault
Tolerant Styles for Third-Party Components with Model Checking
Support. Proceedings of the 12th International Symposium on
Component-Based Software Engineering. 2009: 69-86

[14] Wang WL, Wu Y, Chen MH. An Architecture-based Software
Reliability Model. Proceedings of the 1999 Pacific Rim International
Symposium on Dependable Computing. 1999, 143-150.

[15] Mickael Clavreul, Olivier Barais, Jean M. Jézéquel. Integrating
Legacy Systems with MDE.Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (2010) 69-78.

552 553

A Reflective Model for Architecting Feedback Control Systems

Filip Křikava
Université Nice Sophia Antipolis

I3S - CNRS UMR 6070, Sophia Antipolis, France
filip.krikava@i3s.unice.fr

Philippe Collet
Université Nice Sophia Antipolis

I3S - CNRS UMR 6070, Sophia Antipolis, France
philippe.collet@unice.fr

Abstract—Autonomic Computing aims at realizing comput-
ing systems that are able to adapt themselves, but the engineer-
ing of such systems in the large is rather a challenging task. It is
hard to find an appropriate model that controls the adaptation
itself and several loops are likely to be coordinated to avoid
unexpected and harmful behaviors. This paper presents an
approach and a runtime support to architecture self-adaptive
systems, in which each part of the feedback control loop
is uniformly and explicitly designed as a first-class adaptive
element. Making these elements explicit allows the architect
to reason about system modeling and to reuse them. Code
generation from the architecture model avoids painful details
of low-level system implementation.

Keywords-Autonomic Computing, Model-Driven Engineer-
ing, Software Architecture

I. INTRODUCTION

The 24/7 deployment of distributed systems is dramati-
cally increasing the complexity and maintenance costs of
software systems. The ability to adapt then becomes crucial
for such systems. Autonomic computing is a promising
way to organize self-adaptive systems. This approach aims
at realizing computing applications that can dynamically
adjust themselves to accommodate changing environments
and user needs with minimal or no human intervention [1].
The engineering of such systems in the large is rather a
challenging task. It is hard to find an appropriate model that
controls the adaptation itself [2]. Its implementation being
generally integrated in a feedback control loop, developing
several adaptive behaviors necessitates to reason on them,
at least to obtain an appropriate coordination between them.
Moreover, engineering in the large obviously needs some
reuse capabilities on loops or more likely, on elements
composing the loops [3].

Following the general principle that control loops should
be made explicit [4], [5], we present in this paper an
approach for engineering self-adaptive systems with an
explicit architectural model and its runtime support. In the
proposed architecture each part of the feedback control loop
is uniformly and explicitly designed as a first-class adaptive
element. Making these elements explicit allows the architect
to reason about system modeling, while capturing different
patterns of interactions and controls (coordination of loops,
adaptive monitoring, etc.). By applying a model-driven ap-
proach with a framework based on standardized interfaces,

loops and loop elements are then likely to be more easily
reused. Moreover code generation from the architecture
avoids painful details of low-level system implementation.

The remainder of this paper is organized as follows.
Section II introduces some background on autonomic control
loops and discusses requirements. Our approach is described
in Section III, giving details of its principles and archi-
tectural model. Section IV illustrates our proposal on an
overload scenario of an extensively used distributed batch
computing system. The runtime support is also presented,
and first experimental results are evaluated. Some related
work are discussed in Section V. Finally, we conclude and
briefly present future work in Section VI.

II. ENGINEERING SELF-ADAPTIVE SYSTEMS

Self-adaptive systems are characterized by runtime de-
cisions to control their structure or their behavior and
making these decisions autonomously (i.e. without or with
minimal interference) while reasoning about their contexts
and environments [5]. Self-adaptive software is generally
organized around closed feedback loops aiming at adjusting
itself during its operation. The Autonomic Computing refers
to self-managing characteristics of computing resources that
manage themselves given some high-level objectives by
adjusting their operation in the face of changing environment
and user needs [1].

Making autonomic computing a reality necessitates to
put together and evolve results from several research dis-
ciplines, from Artificial Intelligence (planning, decision the-
ory, machine learning, agents, etc) to Control Theory and
engineering [6], [3]. Moreover numerous challenges are
directly related to the software engineering of feedback
control loops, to ease the application of other disciplines.
Loops have been originally designed following the sense-
plan-act control decomposition, or refined to make four steps
appear, i.e. collect, analyze, decide, act. When engineering
such loops, it has been first shown that it is hard to find an
appropriate model that controls it [2]. Besides, building the
software artifacts around this control model is far from being
trivial, as monitoring data must be consistently collected and
actions on the adapted systems well coordinated. Finally,
overlapping in all concerns of a loop may appear when

554 555

several feedback loops need to be deployed, leading to
unexpected and potentially harmful behaviors.

Previous work tackle these challenges. IBM proposed a
form of standardized approach for the feedback loops with
the Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K)
architecture [1], [7]. This makes explicit the behavior of
autonomic managers which activity follows the M-A-P-E
decomposition using some shared Knowledge (indicators,
policies, plans...). Several systems and frameworks have
been developed according to this principle [8], [9], [10]1,
generally aiming at providing an architecture to organize the
self-adaptive part. For example, Garlan et al. [9] proposed
two-layers framework with an external fixed control loop
that can be customized. The controlled and control system
are clearly separated and a mapping allows data to be
transmitted between them. The control loop is then made
explicit but several feedback behaviors cannot be separately
designed.

Recently, it has been advocated that control loops and
their elements must be explicit to facilitate reasoning about
them as well as their reuse [4], [5]. Even if recent work
made some advances, with hierarchical MAPE-K coordi-
nation [11] or component-based analysis architecture [12],
there is, to the best of our knowledge, still the need for an ar-
chitecture that would provide the right abstractions for rapid
prototyping, but yet remain flexible enough to cope with
the diversity and dynamic aspects found in current systems.
In our vision, such architecture should support i) several
kinds of loop element grouping and loop architectures, so
that different forms of coordination between loops can be
designed together with some sharing between monitoring
elements or effectors on the controlled system; ii) adaptive
capabilities over the controlled system but also on the control
system, so that the architecture would capture adaptations
over the monitoring, parameterizations on the models used
by the controllers, etc. Moreover, the architecture should be
versatile enough to capture the relevant parts of the feedback
systems while being as abstracted from technological details
as possible. In reusing some generative approach, this would
foster reuse while avoiding painful details of low-level
system implementation for most parts.

III. APPROACH

In this section we present the main principles of the pro-
posed approach, together with the model for the architecture.

A. Principles

In our approach, we focus on an externalized self-
adaptation that is based on a closed loop feedback control.
We express an architecture of such a self-adaptive system
in a technologically agnostic model that is centered around
the notion of a feedback loop and where each of the loop’s

1See [5] and [6] for surveys.

Effector

Datatype

Sensor

OperationSet

**

* *- dataLinks

- datatype - operationSet

*

- datatype - operationSet

NamedElement
- elementName : string

AdaptiveElement
- properties: Property[]
- implementation: Implementation

Collector

- active : boolean

Filter

DataLink

- mode : DataLinkMode

Link
- remote : boolean
- multiplication : Multiplication
- lterExpression : string

ControlLink
- mode : ControlLinkMode

Controller

- dataLinks

- controlLinks

- effectors- sensors

Figure 1: Architectural model.

elements is made explicit [4]. Four main elements represent
the main responsibilities in the feedback control. The target
system and its context observability is captured in sensor
elements, the decision making process is represented by con-
troller elements and the actual system adaptation is carried
out by the effector. We also explicitly model the data and
control flow in the architecture via links that represent the
dependencies between the components. Figure 1 presents the
resulting architectural model. In the following paragraphs,
we detail the different modelling capabilities of our proposal
to design the different elements of a loop.

One of the main originality of the model is that it supports
reflective self-adaptation. In the model, each element inherits
from adaptive element, which itself can provide its own
sensors and effectors. This feature allows elements to be
introspected (meta-data, state) and modified in the very same
way as the target controlled system is. One can hierarchically
compose not only control on the top of controllers, but
also on the top of sensors, effectors and links. The added
adaptation then becomes self-adaptable as well, and in an
uniform way. This notably distinguishes the model from
other model-driven proposals [15]. In this paper, we do not
deal with the distribution of loops and loop elements, but
in that case, as links can be themselves adaptive, remoting
issues like the inevitable delays and network failures could
be addressed with our architectural model.

Besides, by using a model to express the adaptation con-
cerns it allows us to support different degrees of separation
in respect to the target system. From being completely
external, running aside the target system in its own runtime
platform, to be completely integrated inside the system using
aspect-oriented techniques or direct source code generation.
The model is technologically agnostic thus it only captures

554 555

the semantic of the adaptation: the definition of the com-
ponents and with relevant inputs and outputs for data and
control flow respectively.

B. System Observation

The monitoring part of the model (left part in fig. 1)
is responsible for supplying information about the system
into controllers so they can reason about the state of the
system and its environment in order to take the appropriate
decisions. This information is provided by hierarchically
organized sensors elements in a form of a directed acyclic
graphs with data links connecting them together. There are
different types of sensors: collectors and filters.

Collector: The leaf nodes in the hierarchy are called
collectors. A collector provides data of a defined datatype
that are directly gathered from an external entity like various
operating system resources, services calls, user preferences,
etc. Essentially, it can operate in two modes: active or
passive. An active collector is responsible for updating
itself. This is used in cases where the update is based on
some external notifications like a file change, new socket
connection, etc. A passive collector, on the other hand, waits
until it is explicitly requested by an associated link to provide
data.

Filter: The other nodes in the graph, which are not
leaves, are filters. These sensors are used to aggregate or
in some other way process data that are coming from
one or more connected sensors. They can be real data
filters, stabilization mechanisms, converters, rules inference
engines, etc. A typical example of a filter is a noise filter
that is used to stabilize the context information that comes
from other sensors. Since each filter is therewith an adaptive
element, its parameters can be advertised using specific
sensors and effectors, thus providing a uniform means to
adjust them at runtime.

Each of the data links connects a producing node (a
sensor) with consuming node (a filter or a controller) and
can be configured before and at runtime to be operating in
different modes. With periodic notification or observation
(,) a link requests, at a fixed rate, the producer to
get data and forwards it to the consumer. With reactive
notification () a link is explicitly requested by a producer
to forward given data to the connected consumer. Reactive
observation () is the opposite of the notification, a link
is explicitly requested by a consumer to get data from the
connected producer.

When all elements of the monitoring part are connected,
the model can easily be checked against the well-formedness
of the resulting data flow (non-interrupting, correct typing).
As the model relies on strong typing, the controller (through
its data link) and its sensors must have compatible data
types in order to be connected. The resulting data flow
itself logically originates in collectors and terminates in
controllers, however, the actual data transfer that triggers

the adaptation is driven by either active collectors or the
periodic links. These are the only entities in the system that
are actively running, the rest of the system is event based.

The links themselves supports adaptation so that their
transmission properties, such as the notification or observing
periods, are advertised and can be used by other loops. For
example it can be used to model some adaptive monitoring
or to handle timeouts on remote links.

C. Decision Making

The decision making part is in the model represented
by the controller element. Essentially, the idea behind the
decision making is to choose an appropriate action among
the set of all permissible actions based on the observed state
of the subjected system. There are many different kinds
of controllers that can be used for the decision making
process. A good overview of the some strategies is given in
[13], but different kinds of controllers can be designed, for
example supporting a decomposition between the analysis
and planning phases, like in the MAPE-K decomposition [1].
In this paper we are not concerned by the actual design of the
adaptation behavior itself, but rather we focus on supporting
the architecture of the system as a whole.

D. System Alteration

The actual system modification is carried out by effectors
that are orchestrated by controllers based on the actual
decisions. An effector encapsulates a set of operations and
provides them to the controlling elements via control links.
An operation is a named action that can take an arbitrary
number of arguments. Similarly to the data links, control
links also use strong typing.

IV. ILLUSTRATION

In this section we illustrate our approach with a simpli-
fied feedback based overload control system in the high-
throughput computing domain.

A. Scenario Overview

We consider an environment made for executing compute-
intensive scientific workflows [14] with the Condor infras-
tructure [16]. Condor is a well established distributed batch
computing system that has been used extensively in both
academia and industry. We use a typical Condor deployment
with one scheduler, a schedd agent, that is responsible for
managing user submitted jobs and mapping them onto a
set of resources where the actual execution is performed.
Condor default support for executing workflow is provided
by DAGMan (Directed Acyclic Graph Manager) execution
engine, which acts as job meta-scheduler on the top of
Condor batch system. Each workflow execution starts a
new instance of the DAGMan that carries out the actual
submission of the tasks into the schedd agent.

556 557

Since especially scientific workflows tend to be rather
large, containing many computer-intensive tasks, the sched-
uler can easily become overloaded, as the more tasks it
has to handle the more resources it uses. The default
behavior of the schedd is to accept all valid submission
requests regardless the current state of the system. There
are configuration options for both schedd and DAGMan,
but they are static and do not take into account the current
state of the system nor the number and nature of workflow
executions varying over time.

B. Overload Control

In order to maintain a certain utilization of the system and
prevent its overload, we design a basic controller that will be
integrated in our illustrative self-adaptive architecture. The
control maintains a certain number N∗ of jobs in the queue.
There is a configuration option in DAGMan that controls
the number of seconds it waits before submitting a task. By
making this option reread at before each submission we can
impose an adjustable delay d for each client. We denote m
the number of clients representing the DAGMan instances
at some sample time t. Each client is submitting at rate
λi =

1
d therefore the total arrival rate at t is λ = ∑m

i=1
1
d = m

d .
The control optimizes the utilization of the queue ρ = λ

μ
depending on the number of jobs N in the queue where μ
is service rate. We use three cases for the state of N: if
N = N∗ then the buffer is ideally filled so we only maintain
the λ = μ; if it is less, we linearly increase the arrival rate
and when it is more we vigorously decrease it all the way to
0 shall N = Nc. The Nc > N∗ denotes some critical number
of jobs in the queue that must not be reached.

ρ(N)=

⎧⎪⎨
⎪⎩

ρ0 +
N(1−ρ0)

N∗ for 0 < N < N∗,ρ0 > 1
1 for N = N∗

α(N −Nc)
p for N > N∗, where α = 1

(N∗−Nc)p

From the utilization and total arrival rate we can derive
the target delay d:

ρ(N) =
λ
μ

=
m
d
μ

d =
m

ρ(N)μ

The ρ0 denotes the maximum growth rate allowed in the
system.

C. Architecture

In figure 2 we present the resulting architecture using a
graphical domain specific language. To increase readability,
the names of the implementation classes have been added
to the model while removing the names of links.

The first controller (1) is responsible for the submis-
sion rate control elaborated above. It thus requires three
inputs: the current number of jobs N provided by the
queueStats collector and further stabilized by a moving
average filter, an information about the current service rate

μ that is coming from the serviceRate collector also
stabilized, and the number of clients m is obtained from the
dagmanCounter collector. The control output is linked to
the dagmanDelayFile effector which simply writes the
given delay to the appropriate file to make it available to the
running DAGMans. The queueStats collector internally
executes the condor_q command and parses its output.
However, the more jobs are queued the longer it takes to
execute and the more system resources it uses. In order to
control it, we make this monitoring part self-adaptive as well
by adding the controller (2) that adapts the trigger period
of the link towards the controller (1) based on the average
time that it takes to execute. Using again the self-adaptive
capabilities of each adaptive element, we make the properties
of the model in controller (1) i.e. the target number of jobs in
the queue N∗ and the critical number of jobs Nc, changeable
over time. In our simplified case, it is only dependent on the
system memory. The controller (3), running at a slower pace,
is responsible for controlling these properties.

Finally, in Condor there is a condor_master daemon
responsible for keeping all the rest of the Condor daemons
running. If it crashes, the pool looses its managing authority
and has to be restarted. In our model, this can be done
easily by adding a controller that gets its input from a
process heartbeat sensor and start the process if it is not
running anymore. Similarly to the master daemon, it uses an
exponential back off delay before each attempt. While not
being coordinated with other loops in this simplified version,
several behaviors are currently added and coordinated with
our approach. They can then be used to provide high-
level indicators or notifications to system administrators. The
overall system shows some relevant capabilities of our model
to explicitly design various feedback control loops and
self-adaptive behaviors on loop elements themselves. Some
potentially reusable parts are also shown, with monitoring
filters or loop patterns (adaptive monitoring, parameteriza-
tion of the controller).

D. Implementation

Our current runtime support is based on the Equinox
OSGi framework2. In this runtime each instance of an
element from the model, including links, is registered as an
OSGi service. For each dependency a proxy is generated.
Upon request, it consults the OSGi service registry to
locate the concrete instances. This allows us to employ the
whiteboard pattern [17] for handling the data and control
flow in the system. For example, instead of registering a
listener for each reactive link to the respective elements, the
link itself is registered as an OSGi service with appropriate
service properties, so that the proxy can discover it and call
when a notification or observation is needed.

2http://www.eclipse.org/equinox/

556 557

control linkdata linkprovides
id

effector controller

queueStats
: CQueueStats

sysMem
: SystemStats

3

4

dagmanDelay
: FileModier

condorMaster
 : ProcessHeartBeat

queueStatsAvg
: MovingAverage

condorRestart
: ProcessLauncher

execTime
: PropertyGetter

serviceRate
: CServiceRate

1

2

sysMemAvg
: MovingAverage

triggerTime
: PropertySetter

execTimeAvg
: MovingAverage

targetNumOfJobs
: PropertySetter

Periodic
notication

Reactive
notication

submissionRateCntrl
: SubmissionRateCntrl

maxQueueSizeCntrl
: MaxQueueSizeCntrl

cqTriggerRateCntrl
: CQTriggerRateCntrl

serviceRateAvg
: MovingAverage

condorMasterWatchDogCntrl
: ProcessWatchDogCntrl

criticalNumOfJobs
: PropertySetter

dagmanCounter
: ProcessCounter

μ N∗

Nc

N

m
d

active collector

passive collector

lter

Figure 2: Architecture of the WMS overload scenario. The names of the links are omitted. Each element also contains its
corresponding implementation type. In case of controller (1) also the individual inputs and outputs are marked.

In order to turning the architecture into a running sys-
tem, we first need to formally describe the model of the
architecture from the fig. 2. We use a Domain Specific
Language (not shown in this paper) that defines both the
type model and the concrete instances together with values
for all required properties and parameters needed at runtime.
Additionally we need to provide an implementation for all
the custom sensors, controllers and effectors (see elements
marked bold in the figure 2). The rest are general reusable
elements provided by our framework for the runtime support.

Listing 1 shows an excerpt of a custom controller. This
generated Java class skeleton is used as a delegate for the
DelegatingController provided by the framework.
This controller is responsible for handling the observation
and notification of the data and control links and providing
all the necessary inputs for the annotated control method of
the delegate.
p u b l i c c l a s s S u b m i s s i o n R a t e C o n t r o l l e r {
. . .

@ControlMethod
p u b l i c vo id c o n t r o l (

@DataInput (” q u e u e S t a t s ”) i n t q u e u e S t a t s ,
@DataInput (” s e r v i c e R a t e ”) f l o a t s e r v i c e R a t e ,
@DataInput (” dagmanCounter ”) i n t dagmanCounter ,
@Contro lOutput (” w r i t e r ”) F i l e M a n i p u l a t i o n w r i t e r) {

. . .
}

@ P r o v i d e d E f f e c t o r (” ta rge tNumOfJobs ”)
p u b l i c vo id se tTarge tNumOfJobs (i n t t a rge tNumOfJobs) {

. . .
}

@ P r o v i d e d E f f e c t o r (” c r i t i c a l N u m O f J o b s ”)
p u b l i c vo id s e t C r i t i c a l N u m O f J o b s (i n t c r i t i c a l N u m O f J o b s) {
. . .
}
. . .

}
Listing 1: Excerpt of controller (1) implementation

Once we have the model in the DSL and an implementa-
tion of all the elements, we transform it into an OSGi bundle.
The generated resulting bundle contains the implementation
classes with their resources and an activator that is responsi-
ble for instantiating and registering the individual elements
as OSGi services as well as resolving their dependencies by
creating necessary proxies and managing their life-cycles.

This bundle together with the other bundles from the
framework can be installed and started by the Equinox
container.

Since Condor DAGMan only evaluates its configuration
options when it starts, we made a small modification that
refreshed the delay time before every submission.

E. Experimental Results

To evaluate the capacity of the resulting architecture, we
set up two Condor deployments, with and without the main
feedback control loops. For both runs we used 20 clients

558 559

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10:30 10:40 10:50 11:00 11:10 11:20
 0

 200

 400

 600

 800

 1000

N
um

be
r o

f j
ob

s
(N

)

M
B

time

idle jobs
average idle jobs
finished jobs
system swap used
system mem used

(a) controlled

 0

 2000

 4000

 6000

 8000

 10000

 12000

14:00 14:10 14:20 14:30 14:40 14:50
 0

 200

 400

 600

 800

 1000

N
um

be
r o

f j
ob

s
(N

)

M
B

time

idle jobs
average idle jobs
finished jobs
system swap used
system mem used

(b) uncontrolled

Figure 3: System behavior with and without control

together submitting a wide workflow of 1000 tasks each with
different running time. We initialized the overload control
model with N∗ = 1000,Nc = 1500, p = 5,ρ0 = 10. Results
are show in figure 3a and figure 3b presenting the system
behavior with and without control respectively.

In the feedback controlled system, the amount of idle
jobs were for most of the run slightly (6.9%) above the
N∗, on average by 69 jobs (116 max). The average load
on the host with control was 0.6 in comparison to 3.37
in the system without any control. As shown in figure 3b,
major problems arose when the system started running out
of memory and started swapping. After that, it spent most of
the time waiting for I/O (on average 51.29% of CPU time
were iowait comparing to 15.6% in case of the managed
system). The gaps in figure 3b were caused by timeouts
when condor_q tried to get the queue information from the
schedd agent during the period the system was too stressed
(corresponding to load > 9).

Finally, one of the important differences is in the amount
of work done during the observed period. Because of the
resource waste caused by the overload, the unmanaged
system executed only 560 tasks while the controlled version
did 1620 tasks. This demonstrates the basic capability of the

feedback system generated from our architectural model to
regulate the load on this example.

V. RELATED WORK

In addition to the previous work on architecting loops
evoked in Section II, some recent works attempt to propose
an explicit fine-grain modelling of feedback control loops. In
FORMS [18], the focus is more in characterizing the kinds
of autonomic architecture with appropriate metamodels so
that they can be compared. Similarly, in [12] Hebig et
al. provides an UML profile to explicitly architect several
coordinated control loops with component diagrams. Never-
theless the loop elements are not adaptive and there is no
link to any runtime support.

Regarding control, in [13] Litoiu et al. describe a hierar-
chical framework that accommodates scopes and timescales
of control actions, and different control algorithms. Their
architecture considers three main types of controller reflect-
ing the three different stages that they focus on: tuning,
load balancing and provisioning. While being similar, our
architecture is more general but provides less fine-tuned
building blocks to control the behavioral models used inside
controllers. A lot of research efforts [2], [20], [21] has been
put into tackling the problem of overload control of dynamic
distributed systems. The major focus has been in designing
a scalable and robust adaptive algorithm. In contrast, our
main focus is complementary, dealing with the surrounding
architecture in order to provide an appropriate supporting
environment for the researchers to focus on the adaptation
design.

VI. CONCLUSION

In this paper, we have presented an approach to support
the architectural design of control loop elements and their
connection links. The approach relies on an architectural
model that makes control loops and their elements explicit.
Moreover each element (sensor, controller, effector, links
between them) is uniformly designed as a first-class adaptive
element. The proposed model does not help in designing
the behavior inside the controllers, but rather in architecting
all the surrounding elements. Software architects can thus
capture different patterns of interactions and controls (coor-
dination of loops, adaptive monitoring, etc.) while reasoning
about complex self-adaptive systems. The presented model
is also technology agnostic and we provided a default
implementation using an OSGi runtime support and a DSL
to define architectures from which main parts of the final
code are generated.

We also illustrated the architectural model on a overload
problem arising in the Condor distributed batch computing
system, showing both the capabilities of the model and
the efficiency of the resulting code at runtime. The results
are obviously only partial and we plan to conduct larger
experiments on different and more complex scenarios, both

558 559

on Condor and on the gLite grid middleware 3. This should
enable us to identify some bottlenecks on both the architec-
ture and the runtime platform.

Regarding the architectural model, ongoing work consists
in turning it into a fully recursive model, so that composition
of adaptive elements is supported and larger models can
be more easily expressed and managed. Another way to
simplify resulting architectures and to improve scalability
of the approach is to support inlining of the elements in
case there is no direct interaction. Besides, we are currently
developing the parts of the runtime support to deal with
distribution of the loop elements and making remote links
between them self-adaptive.

ACKNOWLEDGMENTS

The authors would like to thank the Condor team from
the University of Wisconsin-Madison for all their support,
as well as Mireille Blay-Fornarino and the reviewers for
valuable comments on the model.

The work reported in this paper is partly funded by the
ANR SALTY project4 under contract ANR-09-SEGI-012.

REFERENCES

[1] J. Kephart and D. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, Jan. 2004.

[2] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback
control of computing systems. Wiley Online Library, 2004.

[3] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, and
Others, “Software Engineering for Self-Adaptive Systems: A
Research Roadmap,” Software Engineering for Self-Adaptive
Systems, pp. 1–26, 2009.

[4] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control
in adaptive systems,” Proceedings of the 2nd international
workshop on Ultra-large-scale software-intensive systems -
ULSSIS ’08, pp. 23–26, 2008.

[5] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and M. Shaw,
“Engineering Self-Adaptive Systems Through Feedback
Loops,” Software Engineering for Self-Adaptive Systems, pp.
48–70, 2009.

[6] M. Salehie and L. Tahvildari, “Self-adaptive software:
Landscape and research challenges,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 4, no. 2, pp.
1–42, 2009.

[7] A. Computing, “An Architectural Blueprint for Autonomic
Computing, 4. edt,” IBM Autonomic Computing White Paper,
vol. 36, 2006.

[8] G. Kaiser, J. Parekh, P. Gross, and G. Valetto, “Kinesthetics
eXtreme : An External Infrastructure for Monitoring Dis-
tributed Legacy Systems,” in Proceedings of the Autonomic
Computing Workshop, 5. International Workshop on Active
Middleware Services, Seattle, 2003, pp. 4–13.

3http://glite.cern.ch/
4https://salty.unice.fr

[9] D. Garlan, B. Schmerl, and P. Steenkiste, “Rainbow:
architecture-based self-adaptation with reusable infrastruc-
ture,” International Conference on Autonomic Computing,
2004. Proceedings., pp. 276–277, 2004.

[10] H. Liu, M. Parashar, and S. Hariri, “A component
based programming framework for autonomic applications,”
in Proc. of 1st International Conference on Autonomic
Computing, vol. 9984357, no. 82. Citeseer, 2004, pp.
10–17.

[11] H. Muller, H. Kienle, and U. Stege, “Autonomic Computing
Now You See It, Now You Don’t,” Software Engineering,
pp. 32–54, 2009.

[12] R. Hebig, H. Giese, and B. Becker, “Making Control
Loops Explicit When Architecting Self-Adaptive Systems,”
Proceeding of the Second International Workshop on
Self-Organizing Architectures - SOAR ’10, p. 21, 2010.

[13] M. Litoiu, M. Woodside, and T. Zheng, “Hierarchical
Model-Based Autonomic Control of Software Systems,”
Proceedings of the 2005 Workshop on Design and Evolution
of Autonomic Application Software - DEAS ’05, p. 1, 2005.

[14] A. Barker and J. Van Hemert, “Scientific workflow: A
survey and research directions,” in Proceedings of the 7th
international conference on Parallel processing and applied
mathematics. Springer-Verlag, 2007, pp. 746–753.

[15] L. Broto, D. Hagimont, E. Annoni, B. Combemale, and J.-P.
Bahsoun. Towards a model driven autonomic management
system. In Fifth International Conference on Information
Technology: New Generations, pages 63–69, 2008.

[16] D. Thain, T. Tannenbaum, and M. Livny, “Distributed
computing in practice: The Condor experience,” Concurrency
and Computation Practice and Experience, vol. 17, no. 2-4,
pp. 323–356, 2005.

[17] OSGi Alliance, “Listeners Considered Harmful : The
“Whiteboard ” Pattern,” Technal Whitepaper, 2004. http:
//www.osgi.org/wiki/uploads/Links/whiteboard.pdf

[18] D. Weyns, S. Malek, and J. Andersson, “FORMS: a formal
reference model for self-adaptation,” in ICAC 2010, 2010,
pp. 205–214.

[19] R. Nzekwa, R. Rouvoy, and L. Seinturier, “Modelling Feed-
back Control Loops for Self-Adaptive Systems,” Electronic
Communications of the EASST Volume 28 (2010), vol. 28,
2010.

[20] N. Bartolini, G. Bongiovanni, and S. Silvestri, “Self-*
overload control for distributed web systems,” The IEEE
Proceedings of the, no. November 2008, pp. 50–59, Jun.
2008.

[21] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus, “Using control theory to achieve service level
objectives in performance management,” Real-Time Systems,
vol. 23, 2002, pp. 127–141.

560 561

A Metamodel for Distributed Ensembles of Virtual
Appliances

Xabriel J. Collazo-Mojica and S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

Email: {xcoll001, sadjadi}@cs.fiu.edu

Abstract—We present our work on modeling distributed en-
sembles of virtual appliances (DEVAs) on Infrastructure as a
Service (IaaS) clouds. Designing solutions on IaaS providers
require a good understanding of the underlying details such
as the software installation or the network configuration. We
propose the use of DEVAs, a modeling approach built on top
of the notion of virtual appliances, that allows easy-to-compose
and ready-to-use cloud application architectures that are IaaS-
agnostic, and that abstract away unnecessary details for web
application developers. In this paper, we extend the definition
of a DEVA from previous work by presenting an underlying
metamodel and how that metamodel can be transformed to
an actual deployment. We also present a case study where we
model a web application architecture and we discuss how we can
instantiate it in an IaaS cloud. We argue that the DEVA modeling
approach is suitable for typical cloud use cases.

Index Terms—virtual appliance, non-functional requirements,
cloud computing architectures.

I. INTRODUCTION

In this paper, we extend our work on modeling groups of
interdependent virtual machines in the cloud. Designing these
compositions require a good understanding of the underly-
ing details such as the software installation or the network
configuration. They are typically deployed in a cloud layer
called Infrastructure as a Service (IaaS). Each IaaS provider
has its own API to configure the virtual machines and its
connections, requiring users to learn the details of yet another
API. Similarly, manually installing software stacks in these
virtual machines is a tedious task. In [1], we presented a
visual modeling approach to make these architectures easy-to-
compose and ready-to-use. We call these models distributed
ensembles of virtual appliances (DEVAs)1. We now extend our
work by presenting an underlying meta-model for DEVAs.

Sapuntzakis et al. presented in 2003 the idea of a virtual
appliance, effectively treating full stacks of software appli-
cations and OS as updatable image files [2]. These virtual
appliance files could then be cloned in bare metal computers,
or instantiated in virtual machines. Still, when the time comes
to compose multi appliance systems with interdependencies,
Sapuntzaki’s implementation relied on defaults from software

1Note that in [1] we called our models virtual environments instead of
DEVAs. We have desisted of the previous name as it is already used in other
CS areas.

vendors for most of the configurations. This may not be
the case for web applications (e.g., when trying to configure
interdependencies between a database server and its clients).
Similarly, the configuration of the network connection between
appliances had to be done by hand. Various recent attempts at
automatically configuring virtual appliances and their network
dependencies have been presented [3], [4], [5], but they all rely
on having experts on appliance configurations, or on specific
IaaS providers.

In [1], we proposed that with proper modeling of these kind
of scenarios, the configuration problems could be abstracted
away. By designing DEVAs, non-expert users can easily archi-
tect interdependent virtual appliances. DEVA models include
quality of service (QoS) constraints, which can account for the
non-functional requirements of the modeled architecture. In
this paper, we extend our modeling approach by 1) presenting
an underlying meta-model, and 2) how a model generated from
the meta-model can be instantiated to an actual deployment.

The main technical challenge for this work was to come
up with a meta-model with sufficient details to be able to
instantiate DEVAs on the spectrum of current IaaS providers.
To demonstrate our modeling approach, we present a case
study where we model a web application architecture and
discuss how we can instantiate it in a current IaaS provider.

We argue that the DEVA modeling approach is suitable for
typical cloud use cases, and that having a model of a cloud
architecture can simplify co-allocations and migrations across-
different IaaS providers. In Section II, we present background
information on the methodology used and on our previous
work. In Section III, we present our metamodeling framework.
In Section IV-A, we discuss a system that can transform DEVA
models into instances, and in Section IV-B, we present a
simple case study. In Section V, we discuss related work, and
finally, in Section VI, we enumerate some concluding remarks.

II. BACKGROUND

In this section, we present background information on
model-driven engineering, the methodology used for this work,
and present details on previous work including the definition
of DEVAs.

560 561

A. Model-Driven Engineering

MDE is a methodology that aims to effectively apply
models to software development. Instead of looking at models
as simple diagrams, MDE captures the problem domain in
a modeling language. This language can later be used to
generate solutions that can be automatically generated. MDE
has many goals, including accelerated development, automated
transformations, and platform independence [6].

In this work, we utilize the MDE methodology to present a
modeling approach that simplifies cloud architecture design, as
well as to achieve platform independence from IaaS providers.
In addition, we use MDE’s metamodeling approach as pre-
sented in [6] to realize an abstract syntax definition for our
models. Static semantics are presented in Object Constraint
Language (OCL) notation [7].

B. Distributed Ensembles of Virtual Appliances

A distributed ensemble of virtual appliances is a model of a
logical architecture of interdependent virtual appliances. From
the point of view of users of DEVAs, these models should
present the following properties:

1) Easy to understand: Views for the design, deployment,
change management, and monitoring of these architec-
tures should only present what is strictly necessary to
realize them. Advanced options should be available but
normally hidden.

2) Self-configurable: Once the user has specified a descrip-
tion of the architecture needed, our solution should be
able to instantiate the model and configure all the details
automatically by following the constraints and policies
specified.

3) Present deployment choices: Modeling should be ab-
stract enough to allow for an implementation to present
deployment choices. Given the heterogeneity of current
IaaS APIs, this is one of the main challenges of our
approach.

C. Visual Concrete Syntax for DEVAs

Research has shown the benefits of visual aids when de-
signing system architectures, claiming a gain of over 60% in
comprehension [8]. Since our target users are web developers,
which may not be experts on architectures for the cloud, a
graphical representation is desirable. We model virtual appli-
ances with boxes with service endpoints. The boxes represent
all the necessary software, the OS and the configuration nec-
essary to support the services provided or consumed. Figure
1 presents an example of a DEVA composed of two virtual
appliances. The box entitled ‘RoR Node’ is a representation
of an appliance provisioned with the Ruby on Rails web
framework (and all other needed software). Similarly, the box
entitled ‘MySQL DB’ is an appliance provisioned with a
MySQL database. These appliances have been interconnected
with a ‘db’ link by joining the corresponding endpoints. This
connection assumes that any interdependent configuration will
be resolved by our solution. For example, to be able to provide
the db service, a username and password must be agreed by

Fig. 1. An example of a simple DEVA as presented in [1].

the db provider and db consumers. In our approach, there is
no need to configure IP addresses, ports or configuration files.

III. A METAMODELING FRAMEWORK FOR DEVAS

In [1], we investigated the first property of our model by
presenting an uncomplicated visual concrete syntax to design
DEVAs. In this paper, we investigate the second property. We
realized that for our solution to be able to model arbitrarily
complex cloud architectures, we needed a formal definition
of our modeling approach. The third property, to be able to
present deployment choices, remains as future work.

Having an underlying metamodeling framework for DEVAs
facilitates the steps necessary to go from a model to an instance
in a similar way that the Meta-Object Facility (MOF) defines
the UML language. Figure 2 presents an overview of the
framework. Note that to keep our modeling as simple as
possible, we do not currently use the MOF, or UML Profiles
to define our framework.

At the top of the figure, we have the DEVA Meta-
metamodel. This level defines what the valid constructs are for
our modeling approach. Based on this constructs, we propose
two different DEVA metamodels with the main difference
being that one allows the instantiation of resource-independent
(RI-DEVA) models, and the other allows resource-dependent
(RD-DEVA) models. Resources in this paper mean compu-
tational resources as we would typically obtain from a IaaS
provider, such as CPU allocations, RAM memory, and network
connection speed and IP addresses.

We make this resource dependency distinction for two main
reasons. First, to present the user with a simple designing
tool that separates the concern of modeling a DEVA, and the
concern of modeling the resources needed to run such DEVA.
By having a RI-DEVA, a user can let our framework allo-
cate the required resources based on the specified high-level
policies and constraints. We can achieve this by transforming
an RI-DEVA to a RD-DEVA using model to model (M2M)
transformations [6].

Second, the resource performance from IaaS providers has
been shown to have high variability [9]. Similarly, different
IaaS providers have different metrics for specifying available
resources. Thus, we believe it is desirable to model application
architectures by quantifiable SLA constraints (i.e., “able to do
100 transactions per second”), rather than subjective resource

562 563

DEVA Meta-metamodel

RI-DEVA
metamodel

RD DEVA
metamodel

RI-DEVA
model

RD-DEVA
model

<<instanceof>> <<instanceof>>

transformation

transformation

<<instanceof>>

Fig. 2. Metamodeling Framework for DEVAs.

metrics (i.e., “having an equivalent of a 1GHz CPU with
256MB RAM”) as IaaS providers currently offer [10]. Our
main concern is to allow developers to specify RI-DEVAs that
are transformed to RD-DEVAs by our system.

A. DEVA Meta-metamodel

Our proposed DEVA meta-metamodel abstract syntax is
presented on Figure 3(a), and the static semantics on Figure
3(b). At this level, we can construct simple graphs, with Nodes
and Edges. This metamodel is a simple extension of a graph
which allows Annotations against Nodes. These Annotations
can be either Policies or Constraints. Each of the Nodes can
have a list of Attributes, or a list of Enumerations, but not both.
Edges have a source Node and a sink Node, which cannot be
the same Node. An attribute is composed by a name and a
type. Enumerations have names and literal values. With these
basic constructs, we can generate the metamodels for both
RI-DEVAs and RD-DEVAs, which we describe below.

B. RI-DEVA Metamodel

Our proposed RI-DEVA meta-model abstract syntax is
presented in Figure 4(a), and the static semantics in Figure
4(b). An RI-DEVA is a named composition of zero or more
global Policies and one or more virtual Appliances. In this
context, Policies refer to high-level guidelines that a DEVA
instance will try to meet. An example of a policy is to
be able to instantiate a RI-DEVA with the least amount of
resources possible (i.e. ‘asCheapAsPossible’ in our PolicyType
enumeration). This means that economy will have a bigger
weight whenever we try to realize this RI-DEVA. A RI-DEVA
could include policies that are contradicting. In such cases,
they would be accommodated in an arbitrary order.

At least one virtual appliance is necessary to convey a RI-
DEVA. Note again that our Appliance definition is isolated
completely from resource usage. These Appliances are repre-
sented by a name, a specific operating system, and a list of
one or more services.

Each service is identified by a name, a version number, a
list of the services it depends on (if any), and a set of zero

Edge
+sourceCardinality : string
+sinkCardinality : string
+isContainment : bool

Node

Annotation

Policy Constraint

Attributes
+name : string
+type

Enumeration
+name : string
+value : string

+source1

+sink 1

1

+attributes

*

1
+enumerations

*

: Type

(a) Abstract syntax for DEVA meta-metamodel.

context Node
inv: self.attributes.size == 0 or

self.enumerations.size == 0

context Edge
inv: self.source != self.sink

(b) Static semantics for DEVA meta-metamodel.

Fig. 3. Meta-metamodel for DEVAs.

or more endpoints. These endpoints are key to our approach,
as can be seen in Figure 1. They allow to specify service
production or consumption at the service level, rather than
specifying network level details. This approach implicitly gen-
erates meta-data about the architecture that allows for easier
appliance provisioning, as all the connection and service-to-
service dependencies are known a priori.

Endpoints are represented by a name, a type, and an
integer that specifies how many connections are allowed. A
connection is composed of a source endpoint linked to a
sink endpoint; sink and source cannot be the same endpoint.
Connections should have valid type matches at each endpoint.
Going back to Figure 1, a database-consumer can only be
connected to a database-provider, and the provider endpoint
can specify a maximum number of consumer connections. For
this, we include a function isV alidConn : EndpointType×
EndpointType → bool which determines Connection validity
based on Endpoint type and their allowedConn property.
Endpoints also specify if they can be left unused, or if a
connection is necessary.

Each connection can have zero or more Constraints. These
Constraints specify QoS non-functional requirements for the
service-to-service connections. For example, in the case of a
database connection, a constraint “at least 50 transactions per
second” could be applied. Again, this meta-data could be used
in the model transformation to try to guarantee the constrained
connection performance.

562 563

Policy
+type : PolicyType

Constraint
+type : ConstraintType
+value : int

DEVA
+name : string

Appliance
+name : string
+os : OS

+isValidConn() : bool

Connection

Service
+name : string
+version : string

Endpoint
+name : string
+type : EndpointType
+allowedConn : int
+isOptional : bool

«enumeration»
OS

+Ubuntu 10.04 LTS
+Ubuntu 10.04 LTS 32Bits
+CentOS 5.5
+CentOS 5.5 32bits
+...

«enumeration»
ConstraintType

+minThroughputInMbps
+minTransactionsPerSecond
+...

«enumeration»
EndpointType

+database-consumer
+database-provider
+http-consumer
+http-provider
+log-text-provider
+log-text-consumer
+...

«enumeration»
PolicyType

+asCheapAsPossible
+doNotAllowApplianceMerge
+...

1

+policies

* 1

+appliances1..*

+constraints

1*

1

+services

1..*

1

+dependsOn

*

1

+sourceEndpoint

1

1

+sinkEndpoint 1

1

+endpoints*

(a) Abstract syntax for RI-DEVAs.

context Connection
inv: sourceEndpoint != sinkEndpoint and isValidConn()

context Service
inv: self.dependsOn->forAll(dep: Service | dep != self)

context Constraint
inv: self.value >= 0

context Endpoint
inv: self.allowedConn > 0

(b) Static semantics for RI-DEVAs.

Fig. 4. Meta-metamodel for RI-DEVAs.

C. RD-DEVA Metamodel

Figure 5(a) presents a partial abstract syntax for RD-
DEVAs, and Figure 5(b) the static semantics. These models
have a similar metamodel as RI-DEVAs. The main difference
is that we do not have policies nor constraints; rather, we have
IaaS resources mapped to each Appliance. These Appliances
must be mapped to 3 or more resources, and there should be
at least one resource of CPU, RAM, and NIC, respectively.

In this paper, we focus on how to construct RI-DEVAs
and how to transform them to RD-DEVAs. Work on directly
modeling RD-DEVAs is presented elsewhere [11].

IV. TRANSFORMING DEVAS

A. A model to instance reference system

Figure 6 presents an overview of a system that can transform
DEVA models into instances. As input, the system would have
a RI-DEVA model. This model would be received by a Model
to Model (M2M) transformation engine aware of the metamod-
els for RI- and RD-DEVAs. The transformation between these
models can be done in various ways. The task is to translate

quantifiable constraints and policies to available resources in
an IaaS cloud. This could be realized by having a mapping
Instantiate : ConstraintType × Constraint.value −→<
RCPU , RRAM , RNIC > applied to all of the services in a
specific virtual appliance, where < RCPU , RRAM , RNIC >
is a tuple representing the allocated resources in a specific
IaaS cloud. This mapping could be implemented by using
resource usage predictions based on empirical data in a black
box manner, as in previous work where we model resources
used by specific software [12], or in a white box approach
as presented in [13]. The results of the mapping can then be
aggregated to have the total needed resources for an Appliance.

Once we have a RD-DEVA, we need to have a DEVA model
to instance (M2I) transformation engine that is aware of the
IaaS resources. Again, we have various choices. Either the
engine could be an IaaS provider which is aware of DEVAs, as
in [11], or the engine could be a middleware which translates
RD-DEVA models to IaaS API calls. To resolve interdepen-
dencies and to provision the appliances with the necessary
software, this middleware would generate configuration scripts

564 565

Appliance
+name : string
+os : OS

Resource
+provider : Provider

1

+resources3..*

CPU
+speed : int

RAM
+size : int

NIC
+speed : int
+ip : string

«enumeration»
Provider

+AmazonEC2
+GoGrid
+RackspaceCloudServers
+...

(a) Partial abstract syntax for RD-DEVAs.

context Appliance
inv: self.resources->

exists(c | c.oclIsKindOf(CPU))
inv: self.resources->

exists(r | r.oclIsKindOf(RAM))
inv: self.resources->

exists(n | n.oclIsKindOf(NIC))
(b) Partial static semantics for RD-DEVAs.

Fig. 5. Partial metamodel for RD-DEVAs. All other entities are as in RI-
DEVAs if we eliminate the Policies and Constraints.

which would then be run on the instantiated Virtual Machines
(VM) on top of the IaaS provider. Note that in our approach,
a different M2I engine would be needed for each target IaaS
provider. Nonetheless, some work from this engine can be
modularized. For example, to make the software provisioning
process repeatable, a software installation utility like Chef
could be used [14].

B. A Simple Case Study

Because of space constraints, we present a simple case study
of our approach based on Figure 1. A small composition like
this can be instantiated as follows. First the user would define
this RI-DEVA by using our prototype DEVA designer. We
chose to have a web-based designer for DEVAs to provide a
cross-platform solution. The model would then be sent to the
M2M engine. Note that we can always compare the DEVA
being designed against the metamodel to find discrepancies,
and acknowledge the designer accordingly.

Since the model in Figure 1 does not present any specific
Constraints, our system would choose the simplest transfor-
mation, which could be a direct mapping to, say, two Virtual
Machines in Amazon EC2 of the type “small instance”. A
small instance in Amazon EC2 provides one CPU allocation,
with 1.7GB of RAM, and a basic network connection with
two IPs, one public and one private [10]. This would be the
transformation to an RD-DEVA.

Now that we have an RD-DEVA, we can send the model
to the M2I engine. On this engine, we can instantiate the
architecture by making the IaaS-specific API calls necessary
to launch 2 VMs, and then provisioning the software of each

virtual appliance. After this, we would need to resolve the
interdependencies (such as username and password for the
database) by running configuration scripts on the instantiated
VMs. Note that the meta-data of the Connections could be
used in this step. For example, on Amazon EC2, the private
IP could be used to make the DB connection, instead of using
the public one. Similarly, we also know that there is only
one connection possible to the database server. Therefore, the
instance could be configured to reject any connection other
than to the DB port.

V. RELATED WORK

We have identified the need for better abstractions from
the current IaaS implementations provided by vendors such as
Amazon [10] or GoGrid [15]. Thus, we propose a modeling
approach that is abstract enough to allow these interdependent
systems to be easy-to-design, fast-to-deploy, and that limits
the effects of IaaS vendor lock-in. We do not currently use a
standardized IT information model, such as DMTF’s Common
Information Model [16], as current IaaS providers do not
support them.

Commercial applications implementing a similar modeling
approach are available [17], [18]. They only offer closed-
source implementations and only work on their proprietary
cloud platforms. IBM has worked on a similar project, but
their implementation assumes that users are experts in the
domains of virtual image provisioning, image composition,
and composition deployment [3]. While they target enterprise
customers, we target non-expert cloud users.

Platform as a Service (PaaS) providers, such as Google
AppEngine [19], abstract away the underpinnings of a fully
working web application. Of course, this means that the
user has to learn the vendor’s API, and that migrating the
application to other PaaS provider implies changing most of
the implementation. Our work envisions models that once
specified do not need to be changed because of a vendor
switch.

Recently, Amazon started to offer a service called CloudFor-
mation. Customers can now specify groups of virtual machines
with provisioning scripts that provide repeatable architecture
instantiation. Compared to our solution, Amazon’s offering
only work on their IaaS service and of course the details
of their API need to be well known. Nonetheless, this is a
welcomed addition to their cloud offering, and validates the
current and future importance of easier-to-compose solutions
for the cloud.

VI. CONCLUDING REMARKS

In this paper, we presented a modeling approach for DEVAs.
First, we defined a metamodeling framework to be able to
formulate two metamodels, one for RI-DEVAs, and the other
for RD-DEVAs. We argued that RI-DEVAs are more desirable
for describing cloud architectures, and that an automatic trans-
formation between these two metamodels allows developers to
specify DEVAs with quantifiable QoS constraints rather than

564 565

RD-DEVA
model

RI-DEVA Model

DEVA M2M
transformation engine

RI-DEVA
metamodel

RD-DEVA
metamodel

DEVA M2I
transformation engine

IaaS
Resources

DEVA Instance

Fig. 6. Transforming DEVA models to DEVA instances.

by subjective performance metrics provided by current IaaS
providers.

We then presented the details of our framework, by describ-
ing RI-DEVAs and RD-DEVAs with their abstract syntax and
static semantics. We also described our key modeling abstrac-
tion, which consist of making service-to-service connections
between Appliances, so that the architecture developer does
not have to specify network level details. This abstraction aids
in two ways: network level details may not be the developer’s
expertise area, and also its configuration can vary between
different IaaS APIs.

We also presented how a system could implement our
modeling approach, by describing the various stages needed
to transform a RI-DEVA modeled by a developer to an actual
instance in an IaaS Provider. Finally, a simple case study of
how a typical web architecture could be modeled with our
approach was discussed.

Designing solutions on top of IaaS providers is a growing
problem domain in the cloud. A modeling approach such as
the one presented can potentially make these architectures
easy-to-compose and ready-to-use. We are in the process of
prototyping a system that follows the details presented in
Section IV. We are also investigating how to expand our
approach to monitor and autonomically enforce Constraints
and Policies of instantiated DEVAs.

ACKNOWLEDGMENT

We appreciate the discussions held with David Villegas.
This work was supported in part by a GAANN Fellowship
from the US Department of Education under P200A090061
and in part by the National Science Foundation under Grant
No. OISE-0730065.

REFERENCES

[1] X. J. Collazo-Mojica, S. M. Sadjadi, F. Kon, and D. D. Silva, “Virtual
environments: Easy modeling of interdependent virtual appliances in the
cloud,” SPLASH 2010 Workshop on Flexible Modeling Tools, Aug 2010.

[2] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow,
M. S. Lam, and M. Rosenblum, “Virtual appliances for deploying and
maintaining software,” LISA ’03: Proceedings of the 17th USENIX Large
Installation Systems Administration Conference, pp. 181–194, Aug 2003.

[3] A. Konstantinou, T. Eilam, M. Kalantar, A. Totok, W. Arnold, and
E. Snible, “An architecture for virtual solution composition and de-
ployment in infrastructure clouds,” VTDC ’09: Proceedings of the 3rd
international workshop on Virtualization technologies in distributed
computing, Jun 2009.

[4] T. Chen, Y. Wang, Y. Ren, C. Luo, D. Qian, and Z. Luan, “R-ECS:
reliable elastic computing services for building virtual computing envi-
ronment,” ICIS ’09: Proceedings of the 2nd International Conference
on Interaction Sciences: Information Technology, Culture and Human,
Nov 2009.

[5] K. Keahey and T. Freeman, “Contextualization: Providing one-click
virtual clusters,” IEEE Fourth International Conference on eScience,
pp. 301–308, 2008.

[6] T. Stahl and M. Voelter, Model-Driven Software Development: Technol-
ogy, Engineering, Management. John Wiley & Sons, 2006.

[7] “Object Constraint Language,” March 2011. [Online]. Available:
http://www.omg.org/spec/OCL/2.2/

[8] J. Knodel, D. Muthig, and M. Naab, “Understanding software architec-
tures by visualization–an experiment with graphical elements,” WCRE
’06: 13th Working Conference on Reverse Engineering, pp. 39–50, 2006.

[9] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, A Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing, ser. Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering.
Springer Berlin Heidelberg, 2010, vol. 34, pp. 115–131.

[10] “Amazon Elastic Compute Cloud,” March 2011. [Online]. Available:
http://aws.amazon.com/ec2/

[11] D. Villegas and S. M. Sadjadi, “DEVA: Distributed ensembles of virtual
appliances in the cloud,” Florida International University - School of
Computer and Information Sciences, Tech. Rep. FIU-SCIS-2011-03-22,
March 2011.

[12] S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado,
H. Duran, and X. Collazo-Mojica, “A modeling approach for estimating
execution time of long-running scientific applications,” in Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, 2008, pp. 1 –8.

[13] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-
driven workload modeling for the cloud,” Data Engineering Workshops
(ICDEW), 2010 IEEE 26th International Conference on, pp. 87 – 92,
2010.

[14] “Chef Systems Integration Framework,” March 2011. [Online].
Available: http://wiki.opscode.com/display/chef/Home

[15] “GoGrid Cloud Hosting,” March 2011. [Online]. Available: http:
//www.gogrid.com/cloud-hosting/cloud-servers.php

[16] “DMTF’s Common Information Model,” May 2011. [Online]. Available:
http://www.dmtf.org/standards/cim

[17] “3Tera Inc.” March 2011. [Online]. Available: http://www.3tera.com/
[18] “Elastra Corporation,” March 2011. [Online]. Available: http://www.

elastra.com/
[19] “Google App Engine,” March 2011. [Online]. Available: http:

//code.google.com/appengine/

566 567

Towards Automated Conformance Checking of ebBP-ST Choreographies and
Corresponding WS-BPEL Based Orchestrations

Matthias Geiger, Andreas Schönberger and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg
Feldkirchenstr. 21, 96052 Bamberg, Germany

E-mail: {matthias.geiger | andreas.schoenberger | guido.wirtz}
@uni-bamberg.de

Abstract

Web Services technologies are a natural candidate
for Business-to-Business integration (B2Bi). For cross-
organizational processes, the concepts of “choreography”
and “orchestration” are important. The term choreogra-
phy denotes a model of a global view over message ex-
change scenarios, whereas the term orchestration focuses
on models of the local implementation. While WS-BPEL is
already kind of a de-facto standard in the field of orches-
tration languages, there does not exist a standard chore-
ography language. We propose the usage of ebXML BPSS
(ebBP) in order to provide choreography modeling at the
business level. A frequent problem is to ensure and en-
force the consistency and conformance of choreography and
orchestration models which is often referred to as “con-
formance checking”. In this paper we examine a way to
check the conformance between ebBP-ST (a subset of ebBP)
choreographies and corresponding WS-BPEL based imple-
mentations. To achieve this check well-known and approved
model checking methods and tools are used: First ebBP-ST
choreographies are directly transformed into the process al-
gebra CCS. Second, the low level WS-BPEL processes are
analyzed for code blocks that implement choreography ele-
ments and the sequence of these code blocks is then mapped
to CCS, too. Afterwards these formalized representations
will be checked for bisimulation equivalence in order to
reveal inconsistencies between the choreography and their
implementations.

Keywords: SOA, choreography, orchestration, confor-
mance checking

1. Introduction

In the domain of Business-2-Business integration (B2Bi)
Web Services technologies provide a suitable solution for

integrating the cross-organizational business processes. As
in B2Bi scenarios a global coordinator cannot be assumed,
the distinction between choreographies and orchestrations
is important: Choreographies define a process from a global
perspective which may be seen as a communication con-
tract between the integration partners involved. Orchestra-
tions describe the local, executable implementation for each
of the partners. In the B2Bi domain the ebXML Business
Process Specification Schema (ebXML BPSS or ebBP; [8])
is a suitable choice for choreography modeling as it pro-
vides several features that are well-suited for the business
domain. One core concept of ebBP is the usage of so-called
Business Transactions (BTs) to model the exchange of a
single business document from a sending to a receiving role
- optionally followed by a response document and so-called
Business Signals which notify the senders about the pro-
cessing status of the exchanged documents. More complex
scenarios composed of more document exchanges may be
modeled as Business Collaborations (BCs). Within BCs,
Business Transaction Activities (BTAs) are used to require
the execution of BTs and to map BC roles to the roles of the
previously defined BTs. The control flow and the ordering
between BTAs is modeled in BCs using basic control flow
constructs like Transitions, Decisions, Forks and Joins.

In [9], an ebBP dialect called ebBP-ST is presented to
introduce explicitly modeled Shared States (STs) into ebBP
choreographies which leads to clearer models in complex
scenarios by providing control flow synchronization points.

In order to execute the choreography models defined in
ebBP-ST, they have to be transformed into executable or-
chestrations. In the area of Web Services technologies the
Web Services Business Process Execution Language (WS-
BPEL; [7]) is the de-facto standard for realizing orchestra-
tions which is also used in [9] to implement ebBP-ST chore-
ographies.

For enabling executable orchestrations the integration ar-
chitecture depicted in figure 1 is assumed between two part-
ners A and B. These partners use backend components to

566 567

encapsulate business logic and control processes to enforce
the correct sequence of message exchanges as defined in
ebBP-ST choreographies. In this paper, we investigate au-
tomated conformance checking of WS-BPEL based control
process implementations and ebBP-ST choreography defi-
nitions.

Figure 1. Integration Architecture (adapted
from [9])

The paper proceeds as follows: First, in Sec. 2 a use case
which serves as a running example is introduced. In section
3, the approach of checking ebBT-ST choreographies and
WS-BPEL orchestrations is presented by clarifying which
process models are supported, choosing a suitable confor-
mance notion, introducing algorithms to transform ebBP-
ST resp. WS-BPEL to the process algebra CCS [5], and
describing the actual conformance check. The paper con-
cludes with a discussion of related work and an outlook on
ongoing research.

2. Use Case

Throughout the paper an excerpt of a purchasing use case
between two partners shall be used to clarify the proposed
approach. A visual representation of this ebBP-ST chore-
ography is given in Fig. 2. The use case consists of three
different STs and BTAs: The process starts with the ST
“initPurchase” in which the BTA “requestQuote” has to be
performed. This BTA defines the exchange of a business
document containing a quote request. In the subsequent de-
cision it is checked whether the request could be success-
fully transfered to the receiver (“BusinessSuccess”) or not
(“TechnicalFailure”). In case of a “TechnicalFailure”, the
current ST “initPurchase” is not left and the BTA has to be
repeated. Otherwise, if the result is “BusinessSuccess” the
process enters the new ST “receivedQuote”.

When a quote has been received successfully it may be
accepted by a corresponding BTA “acceptQuote” which
leads to another ST “concludedContract” in case this BTA
finished with a “BusinessSuccess”, otherwise the BTA shall
be repeated. The other option in ST “receivedQuote”
is to request another quote by performing the BTA “re-
questQuote” again. The decision afterwards evaluates
whether the BTA has been executed successfully or not.
Here in both cases the process will be resumed in ST “re-
ceivedQuote”. The difference between both paths is that the
ST shall not be left in case the BTA finished with a “Tech-
nicalFailure”, i.e., the timer defined for the BTA shall not

be reset, but shall be reentered with resetting the timer in
case of a “BusinessSuccess”. Note that this fact is not re-
spected in the visualization of the use case in Fig. 2. The
last aspect to consider is that a ST may be left by a timeout
event. Here, a timeout occuring in ST “initPurchase” and
“receivedQuote” will terminate the process in the end state
“TechnicalFailure”. The further progress of the purchase
scenario, e.g., shipment and billing is left out here.

Figure 2. ebBP Structure of the Use Case

3. Conformance Checking ebBP and WS-
BPEL

Figure 3 gives a brief overview of the proposed confor-
mance checking approach: First, the given ebBP-ST chore-
ography model and the corresponding WS-BPEL orchestra-
tions which should be checked have to be transformed into a
common formal representation. The process algebra CCS is
appropriate for the scope of our analysis. After transform-
ing ebBP resp. WS-BPEL into CCS models, the orches-
tration CCS models can be checked for conformance to the
choreography model successively. As conformance is seen
as a binary decision in our work, the conformance check re-
turns whether the checked orchestration model conforms to
the choreography specification or not.

3.1. Supported Process Definitions

Before describing the approach of checking the confor-
mance between ebBP and WS-BPEL it has to be clarified
which kind of processes are supported. As mentioned in the
previous section, ebBP-ST models are used to model ebBP

568 569

Figure 3. Proposed Approach (Overview)

choreographies. Our approach supports arbitrary ebBP-ST
models which are valid regarding the formal definitions and
rules for well-formedness in [9]: ebBP-ST models may be
formalized as a 5-tuple (R,N,G, φ, θ) where R is a set of
participants, N is a set of allowed ebBP nodes, G is a set
of guards, φ is a function that assigns timeouts to each ST
and θ is a transition relation which defines all allowed tran-
sitions. The set of nodes N = {s0} ∪ ST ∪ SBTA ∪
DEC ∪ T contains the ebBP concepts of a starting node,
shared states, business transaction activities, decisions and
end states which are used to model choreographies. Some
important restrictions of ebBP-ST models are that only bi-
nary collaborations are supported, ebBP Forks and Joins are
not allowed and STs may not overlap. The introduced use
case is an example of a rather simple, well-formed model
which uses all main aspects of ebBP-ST.

While a formal model of ebBP-ST and its semantics, is
given in [9], such a formalization is not provided for the cor-
responding WS-BPEL implementations. There exist vari-
ous formalisms for WS-BPEL (see [10]) but all of them are
intended to directly formalize low level WS-BPEL language
constructs, which would create much too detailed models
for our use cases as we are only interested in a formal rep-
resentation of the control flow between WS-BPEL patterns
that realize ebBP choreography concepts. For this purpose
the ebBP formalization is adapted to the WS-BPEL realiza-
tions: With respect to the set of nodes N it is obvious that
all of these aspects have to be represented in WS-BPEL.
Concepts such as BTAs may not be directly mapped to WS-
BPEL but need to be expressed by more complex combi-
nations of various elements. Possible WS-BPEL patterns
to implement a given ebBP-ST choreography are also intro-
duced in [9].

3.2. Conformance Notion - Why Bisimulation?

Conformance checking is not a new problem in the field
of Web Services technologies, in fact, conformance check-
ing techniques have been proposed for various combina-
tions of choreography and orchestration languages. But as
the notion of conformance is highly dependent on the con-
text there does not exist a commonly accepted definition

of the term conformance. A straightforward informal def-
inition is: An orchestration should be declared as conform
to a choreography if all orchestration executions do not vi-
olate the predefined protocol. As conformance checking
problems are a specialization of the widely researched pro-
cess equivalence problem, solutions from this domain can
be used in order to specify the conformance notion more
precisely. When looking at the message level, it is widely
accepted that so-called trace equivalence which only ana-
lyzes the flow of exchanged messages is too weak to check
conformance (e.g., [4]). Bisimulation equivalence [6], as
another classical process equivalence notion, frequently is
regarded as too strict for conformance checks. In most of
the related work, the conformance notion distinguishes be-
tween incoming and outgoing message flows. An orches-
tration has to respect all incoming messages in order to be
conform to the choreography. In case of outgoing commu-
nication, at least one (of possibly more) alternatives has to
be implemented in the orchestration. An example is the
ST “receivedQuote” in our use case, as two different BTAs
(“acceptQuote” and “requestQuote”) may be initiated by
the potential customer here. The customer does not have
to implement the possibility of performing the BTA “re-
questQuote” which means that he always performs “accep-
tQuote” and therefore all quotes have to be accepted (or the
process is left by a timeout). Conversely the seller has to im-
plement both execution possibilities as from his viewpoint
it is not clear which BTA may be performed next.

However, for our conformance checking scenarios this
conformance notion is not suitable as it cannot be applied
to our integration architecture: We differentiate between the
actual orchestration implementations in the so-called con-
trol processes and the existing backend systems that encap-
sulate business logic. Regarding the incoming information
the already proposed conformance condition is not critical:
The control processes must be able to react to all possible
incoming events as they do not know how the partner will
react. But the less strict requirements for outgoing informa-
tion are only possible if the orchestration is directly decid-
ing which steps should be performed next. In our architec-
ture (cf. Fig. 1), the control processes delegate this decision
to the backend systems which trigger the subsequent pro-
cess flow. So, the control processes must be able to react
to all possible backend decisions and must also be able to
produce all allowed outgoing communication specified in
the choreography. Therefore the conformance requires the
rather strict notion of weak bisimulation equivalence.

The formal model used to perform conformance checks
is the process algebra Calculus of Communicating Systems
(CCS) developed by Milner [5]. For our purposes, the main
aspects of CCS are sufficient to express our integration
models: Processes (starting with a capital letter) are
defined by an assignment. Linking to processes is done by

568 569

using the name of a predefined process in a process body.
Sequences are built using the “.” operator and choices
may be created with the operator “+”. Therefore, e.g., “P1
= action1.((action2.P2)+(action3.P3))”
defines the process P1 in which after performing action
“action1” either “action2” is performed followed by
the execution of the process “P2” or “P3” is performed
after “action3”.

3.3. ebBP-ST to CCS Transformation

The basic principle of transforming an ebBP-ST chore-
ography model into a CCS representation is to define a CCS
process for each ST and each end state used in the choreog-
raphy whereas timeout events, the execution of BTAs and
their evaluation in decisions will be represented by CCS ac-
tions. Algorithm 1 shows the concrete steps needed in order
to transform ebBP-ST choreographies to CCS.

As shown in line 1-3, for each end state t ∈ T a process
is defined using the prefix “END ” followed by the name
of the state. The process body simply contains a single
action named by the corresponding end state in order to
distinguish different end states and the CCS empty element
“0”. The actual creation of the process is performed
by the method CreateProcess(processName,
processBody) which creates a CCS process with the
name processName containing the processBody .

In comparison to this, the transformation rules for STs
are much more complex: As described before and in [9]
a timer should be started when entering a ST. But it also
should be possible to reenter an already visited ST without
resetting this timer. In order to describe this behavioral dif-
ference, two different CCS processes for each shared state
are created. An outer process definition “ST STname”
simply performs a start timer action and then links to
an inner process definition (named “INNER ST STname”)
which contains the actual control flow logic (stored in vari-
able processBody) of a shared state (ll. 28/29, Alg. 1).

BTAs, Decisions and Timeouts are realized in CCS
using actions. Therefore each possible BTA in each
ST followed by the decision evaluation is added to
the ST process body (Alg. 1, line 20) using the
method AddBTA(processBody, btaToAdd) which
combines the allowed BTAs with the “+” operator. BTAs
are simply mapped by a single CCS action named like the
BTA sequentially followed by the decision. The different
decision branches are realized using the CCS choice oper-
ator (“+”): First, each guard is translated to a CCS action
followed by a link to the CCS process of the subsequent ST
and afterwards all of these constructs are combined using
the AddDec method. A flag f indicates whether a timeout
should be reset or not: If f == {tt} (l.10) the outer pro-
cess definition will be used, otherwise it will be linked to

the inner process definition of the subsequent ST.
Applying the algorithm to our use case will clar-

ify the output of the algorithm which is presented in
listing 1: Line 1 shows the outer process definition
“ST receivedQuote”, the following lines 2-11 describe
the actual control flow logic: The two BTAs allowed and
the timeout event are combined as a CCS choice. The
execution of a BTA is represented by a CCS action (e.g.,
“bta requestQuote” in line 7). The decision after
this BTA evaluates whether the BTA has been a “Busi-
nessSuccess” (BS) or a “TechnicalFailure”. If the BTA
was successful the ST “receivedQuote” should be reen-
tered and the timer should be reset. Therefore the ref-
erenced CCS process is “ST receivedQuote” (line 9
in List. 1). As the timer should not be reset in case
of a “TechnicalFailure”, the internal process definition
“INNER ST receivedQuote” is referenced in line 8.

The other STs in the use case are transformed in the same
way.

Listing 1. CCS Representation of the Use
Case (Excerpt)

1 ST_receivedQuote = start_timer.INNER_ST_receivedQuote
2 INNER_ST_receivedQuote =
3 (bta_acceptQuote.(
4 (dec_acceptQuote_TF.INNER_ST_receivedQuote)+
5 (dec_acceptQuote_BS.ST_concludedContract)
6)
7)+(bta_requestQuote.(
8 (dec_requestQuote_TF.INNER_ST_receivedQuote)+
9 (dec_requestQuote_BS.ST_receivedQuote)

10)
11)+(timeout.END_TechnicalFailure)

3.4. WS-BPEL to CCS Transformation

The aim of transforming WS-BPEL to CCS is to check
whether the WS-BPEL implementations conform to the
predefined ebBP-ST choreography models. As mentioned
before, we are not interested in low-level formal models but
in a representation which allows for this check. For exam-
ple, there is no need to model the concrete implementation
of a BTA including all WS-BPEL sequences, scopes, in-
vokes, etc. in CCS because for our purposes it is only rele-
vant whether a BTA may be performed in a ST or not. So,
the most important task for transforming WS-BPEL to CCS
is to detect the used patterns which express the different
concepts of ebBP and afterwards transforming the sequence
of patterns into CCS. When looking at an ebBP decision, a
possible WS-BPEL implementation pattern may send the
previously exchanged Business Document to the backend
systems (invoke statement) which analyze the outcome and
the result is stored in a variable (assign). Afterwards in a

570 571

Algorithm 1: ebBP to CCS Transformation
Input: A valid ebBP-ST choreography (R, ({s0} ∪ ST ∪ SBTA ∪DEC ∪ T), G, φ, θ) to be transformed
Output: A CCS representation of this choreography
Algorithm:

1 foreach t in T do
2 CreateProcess(“END ” + t.name, “end ”+t.name+“.0”)
3 end

4 foreach st in ST do
5 processBody = “ ”;
6 foreach (st, {tt}, bta) in θ do
7 decisions = “ ”;
8 foreach (bta, {tt}, dec) in θ do
9 foreach (dec, g, f, nextST) in θ do

10 if (f == {tt}) then
11 AddDec(decisions, “(dec ”+dec.name+“ ”+g.name+“.ST ”+nextST.name+“)”)
12 else
13 AddDec(decisions, “(dec ”+dec.name+“ ”+g.name+“.INNER ST ”+nextST.name+“)”)
14 end
15 end
16 foreach (dec, g, t) in θ do
17 AddDec(decisions, “(dec ”+dec.name+“ ”+g.name+“.END .”+t.name+“)”)
18 end
19 end
20 AddBTA(processBody, “(bta ”+bta.name+“.(”+decision+“))”)
21 end
22 if ∃(st, gto, nextST) in θ then
23 processBody += “+(timeout.ST ”+nextST.name+“)”
24 end
25 if ∃(st, gto, t) in θ then
26 processBody += “+(timeout.END ”+t.name+“)”
27 end
28 CreateProcess(“ST ”+st.name, “start timer.INNER ST”+st.name))
29 CreateProcess(“INNER ST ”+st.name, processBody)
30 end
31 CreateProcess(“Start”, “ST ”+firstST.name)

series of if statements it is checked which result has been
evaluated and the switch to the next state is initiated.

After all such patterns and their ordering have been iden-
tified, the transformation to CCS is similar as for ebBP-ST.
In case of the decision example, each decision branch is
transformed to a CCS sequence, containing an action in-
dicating the decision, followed by a reference to the CCS
process of the next state.

3.5. Checking the Conformance

After transforming the ebBP-ST choreography model
and the two corresponding WS-BPEL orchestrations to
CCS, the actual conformance checks can be performed.

Therefore each CCS orchestration model has to be checked
against the choreography representation for bisimulation
equivalence. The result of each bisimulation equivalence
check is (see Fig. 3) the binary answer whether an orches-
tration is conform to the choreography definition or not.

An advantage of this checking approach is that the two
different implementations may be analyzed independently,
i.e., it is not necessary to analyze the implementation of a
partner who possibly does not want to publish his internal
orchestration models.

Note that CCS is supported by various model checking
tools (e.g. the Edinburgh Concurrency Workbench (CWB)1)

1available at: http://homepages.inf.ed.ac.uk/perdita/
cwb/

570 571

and therefore the check can be automatically executed using
such a tool. Using the proposed CWB model checker we are
able to prove the conformance of the WS-BPEL implemen-
tations as well as to detect various intentionally produced
faults in orchestrations.

4. Related Work

Conformance checking problems have been investigated
for various choreography and orchestration languages:

For example the work of Baldoni et al. (i.a.,[1]) is rather
generic and uses automata representations to model chore-
ographies and orchestrations. Martens ([4]) discusses rather
extensively suitable conformance notions for conformance
checking problems and proposes a formalization of abstract
and executable WS-BPEL processes using Petri Nets. A
proposal for the Web Services Choreography Description
Language (WS-CDL) has been developed by Foster et al.
([3]) who use Finite State Processes (FSP) to represent WS-
CDL and WS-BPEL. The actual check is based on trace
equivalence. The only work that we are aware of which is
dealing with conformance checking ebBP and WS-BPEL
is [12] which uses the process algebra Communicating Se-
quential Processes (CSP) to perform so-called traces refine-
ment to check the conformance. The common problem of
all these approaches is that they do not use the strict confor-
mance notion we propose in this work. As we have shown
above the proposed weaker notions are suitable for the con-
texts considered in the various papers, but it is not appropri-
ate for the integration scenario we assume.

Another approach which uses a stricter conformance no-
tion when checking WS-CDL choreographies is presented
in [11]: The authors derive a new formalism called piX-
Model to formally represent WS-CDL choreographies. The
piX-Model is based on the well-known π-calculus and open
bisimulation is used as conformance notion.

Apart from conformance checking there exist various ap-
proaches to formalize WS-BPEL (see [10] for an overview).
A WS-BPEL formalization using CCS is presented in [2].
Generally these formalizations are not perfectly suitable for
our approach because they provide direct mappings for ba-
sic WS-BPEL constructs while we concentrate on those pat-
terns that realize ebBP concepts.

5. Conclusion and Future Work

In this paper, we have introduced an approach for check-
ing the conformance between ebBT-ST choreographies and
corresponding WS-BPEL based orchestrations. The key el-
ements of this approach are the proposed transformation al-
gorithms to CCS which allow for a common representation
of ebBP-ST and WS-BPEL in order to perform the actual

conformance check by a bisimulation equivalence check.
Preliminary results show the general applicability and cor-
rectness of our approach.

Ongoing research now concentrates on relaxing the re-
quirements concerning the structure of the WS-BPEL pro-
cesses by using existing WS-BPEL semantics. Furthermore
we are working on better usability, such as integrating the
proposed tool chain to improve the work flow and direct
highlighting of detected conformance issues in the original
ebBP-ST and WS-BPEL definitions.

References

[1] M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti,
and M. P. Singh. Choice, interoperability, and conformance
in interaction protocols and service choreographies. In 8th
Int. Joint Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Budapest, Hungary, May, 2009, pages
843–850. IFAAMAS, 2009.

[2] J. Cámara, C. Canal, J. Cubo, and A. Vallecillo. Formaliz-
ing wsbpel business processes using process algebra. Electr.
Notes Theor. Comput. Sci., 154(1):159–173, 2006.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer. WS-
Engineer: A Model-Based Approach to Engineering Web
Service Compositions and Choreography. In Test and Anal-
ysis of Web Services, pages 87–119. Springer, 2007.

[4] A. Martens. Consistency between Executable and Abstract
Processes. In 2005 IEEE Int. Conf. on e-Technology, e-
Commerce, and e-Services (EEE 2005), Hong Kong, China,
pages 60–67. IEEE Computer Society, 2005.

[5] R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 1980.

[6] R. Milner. Communication and concurrency. Prentice Hall,
Harlow, 1989.

[7] OASIS. Web Services Business Process Execution Lan-
guage Version 2.0 (WSBPEL), 2.0 edition, April 2007.

[8] OASIS. ebXML Business Process Specification Schema
Technical Specification, v2.0.4 edition, Oktober 2006.

[9] A. Schönberger, C. Pflügler, and G. Wirtz. Translating
shared state based ebXML BPSS models to WS-BPEL.
Int. Journal of Business Intelligence and Data Mining,
5(4):398–442, 2010.

[10] F. van Breugel and M. Koshkina. Models and Ver-
ification of BPEL. Unpublished Draft, Available
at: http://www.cse.yorku.ca/˜franck/
research/drafts/tutorial.pdf, September
2006.

[11] G. van Seghbroeck, B. Volckaert, F. D. Turck, B. Dhoedt,
and P. Demeester. Web service choreography conformance
verification through the pix-model. Int. J. Cooperative Inf.
Syst., 19(1-2):1–30, 2010.

[12] W. L. Yeung. A Formal Basis for Cross-Checking ebXML
BPSS Choreography and Web Service Orchestration. In
APSCC ’08: Proc. of the 2008 IEEE Asia-Pacific Services
Computing Conf., pages 524–529, Washington, DC, USA,
2008.

572 573

Proactive Problem Management and Event
Correlation

Werner Zirkel
Siemens AG
Healthcare IT

Henkestr. 127, 91052 Erlangen, Germany
werner.zirkel@siemens.com

Guido Wirtz
University of Bamberg

Distributed and Mobile Systems Group
Feldkirchenstr. 21, 96047 Bamberg, Germany

guido.wirtz@uni bamberg.de

Abstract

In the service business, event correlation systems are used to
predict and avoid system failures. Strategically, this may
contribute to higher system availability and better service
activity planning. Companies that want to benefit from this
competitive advantage often meet two fundamental problems:
the complexity of service monitoring increases with the
number of correlation patterns. At the same time, the cost
transparency for the whole process is lost. This paper shows
on a business process level why these problems arise and how
they can be avoided.

Keywords: Service Management, Event Management,
 Event Correlation, Predictive Maintenance

I. INTRODUCTION

Manufacturers of hardware systems are often faced with
enormous cost pressure. In some industrial sectors, the profit
achieved by selling the hardware device itself becomes very
limited. In this case, a value-adding service organization may
help to differentiate from others. An important efficiency
criterion of a service organization is the degree of automation
in the case of a system failure. In this context, a change is
happening in many industrial domains: reactive service or
"waiting for the failure" is no longer seen as an adequate
support by customers. By using event correlation systems, it is
possible to make predictive statements about imminent system
failures. By predictability, failures can be prevented
(predictive/preventive maintenance). This may contribute to
higher customer satisfaction. At the same time, additional
customer-specific contract options may be set up, such as an
agreement of a guaranteed system availability level. The
possibility to plan service activities may increase, which
implies a positive impact on personnel costs and material costs.
At best, predictable system failures can be handled within the
standard planning processes. However, the use of complex
failure patterns/correlations may cause high development costs.
This challenge can be faced on a technical level by
automization for example by using data mining systems and
machine learning methods [1]. In the long run the uncontrolled
creation of a huge set of failure patterns may cause problems
by increasing complexity of configuration, deployment and

execution. With increasing handling, the pattern efficiency
control gets harder. Thus, many companies are faced with the
question: how do we have to structure our operational service
processes to handle these problems?

II. SERVICE MANAGEMENT

It is possible to investigate a service management system from
two different views. On the one hand, the system consists of
business management targets. The "top-down" view which is
deduced from the business core tasks and the definition
resulting from the value-adding business processes is called
business service management [2]. On the other hand, there
exists a "bottom-up" IT-view on a service management
system. From this perspective, the formal goal of a service
management system is providing the right services for the
business. Those services may be combined in IT Service Level
Agreements. On a process level, adequate IT processes have to
be defined. To certify an efficient service organization, the
regulation ISO/IEC-20000 was created. It is divided in two
parts. While part 1 defines service management basics, the
second part proposes structures which should be used in
service management organizations [2]. The requirements
which are derived from ISO 20000 can be implemented using
the IT Infrastructure Library (ITIL). Both methods are based
on the British standard BS15000 and for this reason, most ISO
20000 definitions may be found in the ITIL framework, too.
ITIL was created by the English Office of Governance
Commerce (OGC) as a collection of "good practices" to ensure
an efficient IT structure. This definition implies that its basics
are not derived scientifically. In fact, ITIL proposes one way
how to structure service processes. There exist similar
approaches like COBIT [3], MOF [4] eTOM [5]. The basic
idea is to create an IT organization which acts as a uniform
interface between customers and the company sectors IT
development and operation. Therefore, ITIL defines a generic
process model, which includes the major service processes.
ITIL is structured in a lifecycle model in the core sectors
service strategy, service design, service transition and service
operation [6]. Additionally, the idea of continual service
improvement was introduced in the actual ITIL version V3.
Service Strategy includes processes for strategic planning of
an efficient IT organization. In detail, this sector consists of

572 573

the processes financial planning, portfolio planning and
demand management. Service design and service transition
primarily handle the development and roll-out of new services.
On the design level, service managers arrange Service Level
Agreements (SLAs) with customers. To keep these
agreements, capacity, security and suppliers has to be
managed. New IT services are brought into the field by
transition processes like application development, change
management, release and deployment and testing. Service
operation deals with services which are already used. ITIL
defines event management, incident management, problem
management, request management and access management. In
the following, this paper takes a closer look of what events,
incidents and problems may look like and how they fit
together.

A. Event Management
An event is a change of state of an object which has

significance for the service. Event management is the activity
of observing objects, identifying such events and categorizing
them [10]. Usually, an event management process is used to
implement a remote monitoring service, which could be
reactive and/or proactive. The architecture of event
management platforms is usually based on the manager-agent-
model [7]. A manager takes the role of a central
distributor/collector's node. On each connected device
("managed node"), a software agent is installed. The agents
receive tasks and send information on the device status and the
workflow to the manager. Historically, the idea of event
management can be tracked to the first approaches of remote
monitoring of network devices [8]. Over time, the networks
sector became bigger and more complex. Also, the remote
monitoring service was expanded. To structure the growing
complexity, literature differentiates between the management
levels component management, system management,
application and enterprise management [9]. Component
management refers mainly to the handling of network
components, i.e. routers or switches. System management
focuses on more complex nodes with a set of several sub-
components. System management organizes single distributed
functions. Thus from an outside view the systems behave like
one (virtual) system [9]. For service, the component set is
considered as an integrated system where a single failure may
no longer depend on one single component, but also on a
complex connection between several components. If the
component set is based on software functions, the level
application management may be separated [9].

The event management definition assumes that events are
created in a continual process. Event management agents have
to read these events (event detection) and to filter and
categorize in simple groups. For example, ITIL suggest errors,
warnings and informational events. In many cases, the total
amount of events is rather big; therefore, a manual analysis by
humans is usually not possible or (economically) not
reasonable because of complexity. For this reason, event
correlation systems are used.

Event correlation systems use logical, temporal and
statistical functions to model semantic connections between

events. By aggregating a set of events, one new event may be
created containing a better information quality. This reduces
the effort for (human) analysts. The reference process defines a
trigger mechanism to escalate critical events. The alarm is
handled in the incident management process. Before the event
is being discarded, the service organization may start an event
review to assure the correctness and the efficiency of
correlation patterns. The following figure shows the activities
of the ITIL reference process event management.

Figure 1. event management activities, according to [6]

B. Incident Management
An incident is an unplanned failure or quality reduction of a

service. Incidents are handled in a incident management
process. They may be identified in several ways, i.e. by
customer information, a service engineer's report or via the
event management process. According to ITIL, incidents may
be handled by a service desk. This function acts as a single
point of contact to the customer. Usually, the incident
management uses a ticketing system. One important task is the
categorization by impact and urgency. Urgent incidents with
high impact are marked as "major incidents". In this context,
the roles first, second and third level support are proposed: if a
ticket cannot be solved quickly by a first level diagnosis, it may
be escalated to a second level, where better a qualified service
team will try to solve the problem. If the second level fails, the
problem may be forwarded to a third level expert team. The
incident management is usually controlled to ensure that all
SLA requirements are kept in time. The following figure shows
the activities of the ITIL reference process incident
management.

Figure 2. incident management activities, according to [6]

C. Problem Management
A problem defines an unwanted situation which is

considered as trigger for one or more (active or potential)
incidents. A problem causes at least one incident. If the root
cause of a problem is known, the problem is called known
error [11]. The focus of incident management is primarily set
on the elimination of actual failure symptoms. Instead, problem
management is focussed on finding a final solution which
removes the root cause of all problem-related incidents. In
comparison to incident management, it does not depend on a
rigid, customer-specific time plan. The problem management
process structure resembles to incident management. Once a
problem was defined, categorized and prioritized, a
workaround may be defined which tells the incident
management team how to act on upcoming incidents.

Identify applicable sponsor/s here (sponsors).

574 575

Additionally, the problem is stored in the known error
database. The problem is closed when a final solution is
provided as a result of a request for change. Problem
management can be handled in a reactive and a proactive way.
Reactive problem management starts after a set of incidents
occurred. A proactive problem investigation uses operative
service data sources and generates analyses and reports to
minimize the impact of potential future problems. Beside the
incident records, event management may be an important
source and tool for proactive problem management. If a
problem is detected early, a workaround may be defined. This
workaround could i.e. be an event pattern, which indicates an
upcoming incident based on that specific problem. By this
means, an incident may be prevented or its impact may be
minimized. The following figure shows the activities of the
ITIL reference process problem management.

Figure 3. problem management process, according to [6]

The ITIL framework is originally meant to be an IT service
approach. However, incident management and problem
management are generic processes. Moreover, event
management is usually done as a remote service, which is a
distinct IT product. Thus, the ITIL framework is also
applicable outside of the plain IT business.

III. CASE STUDY - MEDICAL DEVICE SERVICE

To give an idea to how the processes of event management,
incident management and problem management can be linked
together, we present a case study which focuses on a sample of
the actual structure of a service organization which sells
medical devices and associated remote services. The case study
focuses on the three service operation processes described
above.

 The service organization is a provider of various products
in the field of medical technology. The product range includes
imaging systems from different modalities, such as nuclear
medicine, computed tomography, magnetic resonance imaging,
angiography and ultrasound. In most cases, the systems are
complex and service-intensive objects. The healthcare service
organization structure implements the service operation
processes event management, incident management and
problem management.

A. Event Management
The organization uses a management platform (Common

Platform Remote Service Platform cRSP) to provide a set of IT
services, such as software distribution, inventory management
and event monitoring. The event monitoring service
implements the event management process and includes among
other components the software as HP OpenView Operations
(HP OVO). HP OVO provides an event agent which reads
events from different data sources and filters them by special
rules (policies). For event correlation, HP OVO provides three
mechanisms. On the one hand policies can be used to generate

simple event correlations. Additionally, the Event Correlation
Services (ECS) Composer and Event Correlation Services
(ECS) Designer may be used to perform complex correlations.
ECS Designer correlations are known as circuits. In
comparison to ECS Designer, ECS Composer offers limited
functionality for event correlation [12]. The HP OVO Event
Agent is able to send alerts/messages to a back-end HP OVO
Event Management Server. There, the alerts can be monitored
by device experts in a Regional Support Center (RSC) using
HP OVO Java Console.

B. Incident Management
Incidents may be created based on a customer notification.

In this case, the service organization acts reactive, since such
measures can be initiated only after the perception of the issue
by the customer. Reactive messages are processed by a service
desk team called Uptime Service Center (USC). To perform a
classification, the current situation is pre-clarified by device
experts or solved via cRSP remote access. If it is not possible
to solve the problem in a given time frame, the Regional
Support Center (RSC) and Headquarter Support Center (HSC)
are being involved as second and third level support. If
necessary, a service technician is being sent. Incidents are
solved and completed by the USC. The service organization
acts proactively if incidents are reported before they are found
by the customer. Proactive tickets can be generated using event
correlation patterns. The RSC provides a monitoring team that
checks the incoming messages and evaluates them. If onsite
actions are necessary, the RSC forwards this information to the
USC which dispatches a service engineer. Proactive tickets are
closed by the RSC. Alarms, which indicate an upcoming
system failure with high confidence, will automatically
generate a new incident.

C. Problem Management
The service organization offers a variety of different products.
To analyze the associated problems, domain knowledge is
necessary. Therefore, the function-oriented organization
structure is replaced by an object-oriented modality
organization. In order to present a consistent case study, we
refer to one of the modalities.
To investigate the root causes of frequently recurring
incidents, information from the operative business processes is
obtained from a data warehouse system. In addition, workflow
data from the devices and from spare part logistics are
included. Personnel and material expenses are compared with
respect to various temporal, geographic, systems and
customer-specific characteristics. There exists a set of criteria
to decide whether to open a problem ticket or not, including
equipment availability, degree of market introduction, effort
and cost criteria. When a new problem ticket is being opened,
an activity plan is being developed, resulting in a final
problem solution. In many cases, additional organizational
units are being involved, such as the product development.
The problem management is organizationally separated from
the incident management and is therefore not subject to
downtime-based time-limits. However, there may exist strict
time limits in the problem management, especially when a
product when new products are introduced to the market.

574 575

IV. A PROPOSOAL FOR INTEGRATING EVENT
CORRELATION SYSTEMS INTO PROACTIVE PROBLEM
MANAGEMENT

ITIL does not make an explicit statement on how the
interaction of event management, incident management and
problem management has to be organized, as this depends
substantially on internal structure of each service organization
and on external conditions. If the organization's processes are
not coupled properly, two problems in the event management
process may arise.

• Complexity problem

The more correlation patterns are generated, the higher is
the cost handling, maintaining, improving them. This increases
the total costs of the event management process. The more
correlation patterns exist, the more messages are generated on
the management server. This makes the monitoring task more
difficult and therefore, the system may come to a point where
an appropriate in-time reaction is no longer possible.

• Transparency problem - missing business case

Another problem arises when correlation patterns are
created which cannot be associated with a particular issue.
Such correlations may support the incident management in a
short-term manner. However, it may become hardly possible to
set up a cost and efficiency controlling mechanism. Thus, the
added value of the monitoring service can hardly be calculated
and the event management is in a permanent need for
justification.

A. Problem identification and categorization
The goal of the following approach is trying to prevent the

emergence of these problems or at least minimize their impact
by integrating incident management, problem management and
event management. The approach should be perceived as a
best-practice-proposal for one possible connection of the three
processes and does not exclude other solutions or existing
approaches. The basic idea is to introduce proactive problem
management based on event correlations. In particular, major
incidents (system failures) shall be avoided which lead to high
service costs. First, a problem ticket has to be opened, based on
existing, historical data. As a basis for an analysis, the number
of incidents within a specific time frame may be used. The
incidents should be grouped by their associated material data.
To identify material defects as root causes for this group of
incidents it is reasonable to include the spare part consumption
data in this analysis. By doing so, a filter mechanism may be
created which groups only homogenous material problems.
This approach presumes that incidents have been created and
categorized properly. Similarly, the spare parts consumption
has to be recorded. Defective parts need to be investigated in
case of service in order to determine the underlying material
defect. Wherever it is possible, new incidents are assigned to
previously identified problems. With this connection, patterns
may be identified easier; moreover, the information can be used
in a problem management controlling.

Figure 4. Pattern identification based on material problem

B. Problemprioritization
By referring a problem ticket to a material defect, an

individual cost analysis can be done for each pattern. Therefore
the mean emergency extra charge of service organization has to
be identified. Extra costs for device failures include for
example additonal personnel costs, emergency spare part
logistics costs, the cost of consequential damages or penalties
for not reaching a certain service level. By linking the extra
charges costs for one failure with historical incident data, the
potential savings may be extrapolated (assuming an equal
number of service calls in period t and t +1).

• Potential savings = number of incidents (based on the
same defect) * mean emergency extra charges

Since the approach relates to imminent device failures, the
number of incidents may also be used for the calculation of
additional usage time (uptime). By preventing a system failure
the customer saves the time for the restoration of service,
therefore, the incidents of a period may be set in a relation to
the average time to resolve an incident (Mean Time to Restore
Service, MTRS), which is basically:

• Potential additional uptime = Number of incidents
(based on the same defect) * mean time to restore service

Based on this cost analysis, the problem tickets may be
prioritized. Assuming that the number of material defects in t1
is equal to the number of material defects in the incidents of the
period t0, the incidents of t0 are analyzed. The ranking may
relate to the quality improvement (the increase of potential
savings). If product quality is used instead, the potential uptime
may be used as decision criterion. If both goals are important to
the service management, a pareto-optimized decision may be
used. The following table shows an example.

Figure 5. Problem ranking based on potential cost savings from a previous
period.

The transparency provides several advantages. The
prevention of failures and the uptime potential may contribute
to higher customer satisfaction. The improvement in quality of
service enables the organization to create new service level
agreements, based on a guaranteed uptime level. Therefore it is
necessary to prevent a majority of the defects with high uptime
potential through proactive correlations. At the same time,
unprofitable correlation patterns are excluded already in the
planning phase. The effort for pattern creation can be set into

576 577

relation to the potential cost savings, so the event management
process may be perceived as a value-adding service.

C. Problem diagnosis and workaround
By referring a problem ticket to a (hardware-based) material
defect patterns may be identified and future system failures
may be predicted. In this sense, a pattern is part of the
proactive service strategy. For problem management, the
pattern serves as a workaround to an impending major
incident. It is therefore not to be regarded as a solution to the
problem because the actual cause of the incident is not
affected. By defining a pattern as workaround, its usage is
limited in time. The solution of the problem itself- and the
replacement of the work-around - is the improvement of the
material or the introduction of an improved component
version. To use these workarounds, patterns have to be
identified first. As we have already shown in [13], the pattern
identification process may be standardized and supported by
data mining tools. A prerequisite is that a certain material
defect shows up in the same manner in the event data. The
data analysis bases on the deviation between failure data
compared to normal operation data of the device. Besides
counting single events, those events that occur exclusively or
more frequent in the case of failure are connected to sequences
("semantic blocks") and used as part of an event correlation.
Additionally, sensor data may be used. If an abnormal
situation has been detected, the event correlation system raises
an alert. Further follow-up actions, such as automatic incident
generation can be performed. The activities incident logging,
categorization, ranking and initial diagnosis can be automated
in many cases, because it the expected failure is already
known (by pattern definition). Since the event correlation
indicates a specific defect, it is possible to start product-
specific actions, such as staff planning spare parts ordering.

D. Problem solution
The actual problem solving addresses the cause of the defect
and is not part of the incident and event management process.
The problem ticket is closed if the solution was rolled out to
all service objects. With the closure of the problem tickets, the
event correlation is obsolete as a workaround and can be
removed from the event correlation system. The efficiency of
event correlations can be controlled. As a prerequisite, the
incident tickets have to be linked to the corresponding
problems.

• Event correlation efficiency = number of incidents
proactively processed / number of total incidents (related to
the incidents that have been associated with this problem in

context)

 By using temporary event correlations and controlling
mechanisms it is possible to prevent a steady increase of the
total correlation set. Thus, a lack of transparency and
complexity can be avoided.

V. CASE STUDY - USING PROBLEM-BASED EVENT
CORRELATIONS IN MEDICAL DEVICE SERVICE

In the service organization, event correlation patterns are
defined by the serviceability group. The pattern development is
mostly based on product specifications that are given by
product development. For example, error messages for certain
components are defined by external suppliers and integrated
into event correlation in the form of simple correlation rules.
Other correlations are based on empirical knowledge. For that,
single incidents are analyzed. Error messages that may be
associated with the incidents are summarized in event
correlations. The service organization is using some statistical
methods to assess the performance of new event correlations
before they are used. In a few cases, event correlations are
generated based on problem tickets. On the whole, the
organization produces a growing number of event correlation
patterns. Without a consistent efficiency controlling
mechanism, this leads to growing complexity of the correlation
set. From a cost perspective, there may occur the risk that the
event management process is questioned, if the overall process
costs get to high. By introducing the problem-based event
management approach, this risk could be reduced. By reducing
the number of patterns, the costs for implementation,
distribution and operation may be kept as low as possible. This
effect may be intensified by a better efficiency controlling. By
bringing the data from actually performed service calls together
with the number of associated alert messages, a sensitivity and
specificity rate of each individual pattern can be determined.
The problem-impact may serve as a basis for the importance of
event correlation.

Example: within the period 2008 - 2009 a part of the
organization reported 119 incidents. These incidents are caused
by one specific device problem. Assuming that a correlation
pattern would have detected 70% of these incidents
proactively, 83 cases would have been predictable. For this
specific problem type, three important cost drivers were
identified, that is cost of emergency orders, personnel costs and
costs for operations with multiple onsite presence.If the pattern
would have been used in the given time period, this would have
led to cost savings of approximately 24,500 €. It is possible to
extrapolate this potential for worldwide use, assuming a
constant or increasing incident frequency in the future. This
calculation is the basic motivation for the development of an
event correlation. Besides the cost analysis, the device
downtime has to be considered. For this purpose, the mean
time to restart (mean time to recover) is calculated for this use
case and multiplied by the total number of failures. If the
solution of a problem requires onsite technical service and / or
material usage, the problem is often a medium or long term
issue, because the changes have to be rolled out to all devices
in the field. Therefore, the product support team may set a
workaround (a correlation pattern) which is available faster.
The involved incident teams USC, RSC and HSC take
advantage of such patterns in several ways. First, proactive
alerts may lead to higher device availability, so unplanned
service activities may be reduced, which improves the planning
and dispatch of service engineers. The organization may
provide detailed handling options, because they know which
defect is about to occur. Depending on the classification

576 577

precision of the pattern, the incident management process
activities identification, logging, categorization, ranking, first
diagnosis and escalation may be automated, as the figure
below shows. The diagnosis itself tries to confirm the pattern-
based failure expectation and follows the given handling
options.

Figure 6. Proposed process structure. Evt. correlation as workaround

The introduction of problem-based event correlations may
have a positive impact on a number of service-relevant
indicators. By partial automation of incident management, the
cost of troubleshooting for proactively detected incidents
(Mean Time To Repair, MTTR). By clear description of the
fault service calls can be reduced, fixed by the First Visit Rate
(FVFR), or the relative number of successful one-off
operations can be measured. In the best case, and the index Site
Visit Avoidance (SVA) will be positively impacted by an
increase of cRSP Remote Access operations. From the
perspective of the customer results from the use of proactive
correlations increased system availability, which prevented on
the basis of the problem based on the downtime incidents
(Mean Time to Restore Service MTTRS) can be calculated.
The introduction of problem-based event correlation may have
a positive impact on a number of service-relevant indicators.
By (partial) automization of incident management activities,
the cost of troubleshooting my be reduced, which could be
measured by the performance indicator Mean Time To Repair,
MTTR. A clear description of the failure may help to reduce
multiple onsite visits, which can be expressed by the
performance indicator First Visit Rate (FVFR). In the best case,
the performance indicator Site Visit Avoidance (SVA) will be
positively impacted, with a parallel increase of remote access
operations. From the perspective of a customer, proactive
actions increase the device availability, which may be
expressed by the performance indicator (Mean Time to Restore
Service MTTRS).

IV. CONCLUSION

Based on the ITIL v3 framework, the service operation
processes incident management, problem management and
event management were described. The presentation of a
medical device service organization was used as an example
how these processes may be implemented outside of the "IT
world". Based on the reference processes, we presented an
integrated process model for problem-based event correlation.
The goal of this approach is to avoid the complexity and
transparency problem. These problems are a logical
consequence when using a "classical" approach, based on
single incidents and product development knowledge.
However, the problem-based approach implies that historical
device data is available. So, it has to be complemented by a
correlation strategy for first-time defects/new devices. Also, the
approach focuses on hardware defects, where defects can be
tracked down to exactly one device failure. This prerequisite
may not be given for software failures [14]. By applying the
approach to the case study service organization, we showed a
possibility how to implement the model and what benefits
would arise from its introduction. As a conclusion, we
presented key performance indicators which could be used to
prove the efficiency of problem-based event correlations.

REFERENCES

[1] Flatin/Jakobson/Lewis: Event Correlation in Integrated Management:
Lessons Learned and Outlook, 2007, in:Journal of Network and Systems
Management,Vol. 17, No. 4
[2] Wischki: ITIL V2, ITIL V3 und ISO/IEC 20000,1.Aufl.,Hanser
Fachbuchverlag,Munich, 2009
[3] Control Objectives for Information and Related Technology;
http://www.isaca.org/cobit; last access:04.05.2010
[4] Microsoft Operations Framework 4.0; http://technet.microsoft.com/en-
us/library/cc506049.aspx; last access:04.05.2010
[5] Hanemann: Refining ITIL/eTOM Processes for Automation in Service
Fault Management, 2007 in:Proceeding of the 2nd IFIP/IEEE International
Workshop on Business–Driven IT Management
[6] itSMF: IT Service Management basierend auf ITIL v3: Das
Taschenbuch,2. Aufl.,Van Haren,Zaltbommel, 2008
[7] ISO/IEC 10040 : 1998 E - Information technology-Open Systems
Interconnection-Systems management Overview, ISO, Geneva, 1998
[8] Hegering/Abeck/Neumair: Integriertes Management vernetzter Systeme:
Konzepte, Architekturen und deren betrieblicher Einsatz,dpunkt,Heidelberg,
1999
[9] Hegering/Abeck: Integriertes Netz- und Systemmanagement, Addison
Wesley Verlag,Bonn,1993
[10] ITL 2010 :ITIL Glossary, http://www.itil.org/en/glossar/
glossarkomplett.php?filter=E, last access:15.03.2010
[11]Ebel: ITIL V3 Basis-Zertifizierung: Grundlagenwissen und
Zertifizierungsvorbereitung für die ITIL Foundation-Prüfung, Addison
Wesley Verlag,Munich,2008
[12] ECS Designer,HP(2010), http://www.openview.hp.com/products/ecs/ds/
ecs_ds.pdf, last access:15.03.2010
[13] Zirkel/Wirtz: A Process for Identifying Predictive Correlation Patterns in
Service Management Systems, Proc. 7th International IEEE Conference on
Service Systems and Service Management (ICSSSM 2010) , Tokyo, 2010
[14] Hanemann: Automated IT Service Fault Diagnosis Based on Event
Correlation Techniques, Dissertation, LMU Munich, Fakultät für Mathematik,
Informatik und Statistik, Munich, 2007

578 579

A Regression Test Technique for Analyzing the
Functionalities of Service Composition

Huiqun Yu1,2, Dongmei Liu1, Guisheng Fan1, Liqiong Chen3

1 Department of Computer Science and Engineering
East China University of Science and Technology, Shanghai 200237, China

2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
3 Department of Computer Science and Information Engineering

Shanghai Institute of Technology, Shanghai 200235, China

Abstract—Regression testing is a hot research area for Web
service composition, which has direct impact on QoS of appli-
cations. This paper proposes an aspect-oriented regression test
technique for analyzing functionalities of service composition.
An extended version of Petri net is proposed as the underlying
formalism. Services and components are modeled by Petri nets,
service evolution is specified as crosscutting concerns, and in
turn woven into the testing model of service composition by
following weaving rules. A regression testing algorithm of service
composition is designed. Theories of Petri nets help prove the
effectiveness of the testing method. A case study shows that
the approach simplifies the process of testing, and improves its
efficiency as well.

Index Terms—Service composition; regression test; aspect
orientation; Petri net; formal method

I. INTRODUCTION

Service oriented computing (SOC) is a paradigm for build-
ing applications by selecting and composing software re-
sources or services available on the Internet[1]. Web services
are considered an implementation of SOC that facilitates
the integration of heterogeneous applications. Web service
testing is important because it helps evaluate various quality
attributes, and prevent late detection of errors. However, some
specific requirements need to be carefully considered: (1)
The relationship between the service providers and requesters
is highly unstable. Therefore, the testing method must be
dynamically adjusted to different services and users according
to the actual environment; (2) Web service testing is based
on its interface, so the system must have sufficient flexibility
to dynamically weave the test modules. In addition, service
composition involves a variety of standard protocols, which
brings new challenges to system testing.

Several techniques have been developed to test Web ser-
vices, which includes unit testing, integration testing, black
box testing and white box testing [2,4]. In [2], the BPEL spec-
ification is transformed into an intermediate format model that
is based on timed automata. A test generation framework for
BPEL composition is proposed in [3], where BPEL semantics
was defined by Web service automata. Many works in Web
service testing are in code level. However, the source code
of a service is usually inaccessible, which limits applicabil-
ity of those techniques. A large number of coverage-based

test case reduction techniques have been proposed by using
statement-coverage, branch-coverage, or define-use association
criterion[5,6] . Meanwhile, model-based testing is also getting
more and more attention both in industry and academia as
a test prioritization approach[7−9]. However, these techniques
prioritize test cases by means of code coverage achieved, such
as the number of statements or branches covered by individual
test cases. However, the internal logic and states of a service
are encapsulated by the service boundary, which cannot be
realized effectively in service-oriented testing.

Aspect-oriented programming (AOP)[10] is a software engi-
neering approach to separation of concerns, which is capable
of capturing dynamics of system evolution. Moreover, formal
methods can be used to enhance AOP with a solid foundation.
This paper proposes an approach to testing the functionalities
of service composition, and proposes a composition Net(CN)
by extending the formalism of Petri net[11]. Different com-
ponents of service composition are modeled by CN. AOP is
used to abstract the evolution process of service composition
as the crosscutting concerns, and weaves into the testing model
of service composition. Based on this, the regression testing
algorithm is given, the operation semantics and related theories
of Petri nets help prove its effectiveness. A case study shows
that the approach can effectively simplify the testing process
and improve efficiency of testing.

II. SERVICE COMPOSITION MODELING

A. Aspect-oriented service model

An application system is composed of a number of indepen-
dent components, and each component can be implemented by
a bunch of available services. To capture dynamic evolution of
service application, we take service composition as the core
concern, while its evolution as crosscutting concerns.

Before formally defining the model, we first introduce some
notations. C, WS, TC are the sets of finite components, avail-
able services, and test suites before the evolution respectively.
RL : C × C → {>,+, �, n} is the relation function between
components, where >, +, �, n represent the sequence, choice,
parallel and loop relationship. TW : C → WS∗ is the avail-
able service of component. TW (Ci) = WSi ={WSi,1, WSi,1,
. . ., WSi,m} is the available services of component Ci, WSi,j

578 579

is the jth available service of component Ci; RO = {It0, Bi0}
describes the interface and component binding before the
evolution; RN = {Itn, Bin} is the evolution interface and
binding; TR : TC → WS ∧ C is the action set of test case.

Definition 1 (Base Net): A 7-tuple Σ = (N , IO, D, AT ,
AF , λ, M0) is called Base Net (BN) model if:

(1) N = (P, T, F) is a Petri net, where P, T, F represent
the place, transition, arc, and they are disjoint;

(2) IO ⊂ P is a special place, which is called the interface
of Σ and denoted by dotted circle;

(3) D is the non-empty finite individual set, fD, fS is the
predicate set and symbol set;

(4) AT : T → fD, for t ∈ T , the free variable in AT (t)
must be in the directed arc with one end of the arc is t;

(5) AF : F → fS , if (p, t) ∈ F or (t, p) ∈ F , then AF (p, t)
or AF (t, p) is the n-symbol set, the default value is empty;

(6) λ : T → N∗ is the priority of transition, the default value
is 0, the smaller of λi, the greater of transition’s priority.

(7) M0 : P → fS is the initial marking of Σ.
For ∀x ∈ (P ∪ T), we denote the pre-set of x as •x =

{y|y ∈ (P ∩ T)∧(y, x) ∈ F} and the post-set of x as x• =
{y|y ∈ (P ∩ T)∧(x, y) ∈ F}.

Definition 2 (Composition Net): A 6-tuple Ω =
(Σ, Γ, T I, TA, PI, PA) is called Composition Net (CN),
where:

(1) Σ is a BN model for the basic structure of Ω;
(2) Γ = {Γi|i ∈ N∗} is a finite set of pages, each page is

a BN or CN model, and it is disjoint between pages;
(3) TI ⊂ T, PI ⊂ P are sets of substituted node and

interface node;
(4) TA : TI → Γ is the page allocation function, which

allocates page to the substituted node;
(5) PA is used to map the interface node of substituted

node into the input and output interface of the page.
The individual set D is mainly used to describe the resource

of service composition. We abstract the element as the indi-
vidual di=(it, i, RWi), where it ∈ {w, c, d} represents the
described object of individual, w, c, d represent the service,
component and data packet, i represents the position of
individual. For example, service WSi,j in the service set WS,
when it is equal to w, RWi is used to describe the interface
of service; when it is equal to c, RWi is used to describe the
binding of component; when it is equal to d, RWi presents the
content of data packet. k#(di) represents the kth element in
the individual di. In addition, we denote Ni•x as the element
x in net Ni.

The mapping CutN :{Ni•xj , . . . Nf•xk} is called a
pointcut of the model, where CutN is the name of pointcut,
Ni•xj , . . . Nf•xk are joinpoints of the pointcut.

Definition 3 (Aspect): A pair asp=(CutN , AD) is called an
aspect, where CutN , AD represent the pointcut, and advice
respectively. An advice consists of rules for service integration,
and the main part of a rule is an introduction net that models
the implementation logic for that pointcut.

Let Ω be a CN model, M is a marking of Ω. For transition
ti ∈ T , if ∀p ∈• ti, there is M(P) �= ∅, and AT (ti) is true

Fig. 1. BN model of component

under marking M , then transition t is enable under marking
M , denoted by M [t >. All the enabled transitions under
marking M are denoted by set ET (M).

The transition t is effective under marking M if and only
if transition ti is enable and there doesn’t exist transition in
ET (M) whose priority is greater than ti. All the effective
enabling transitions under marking M are denoted by FT (M).
The model Ω will reach new state M � by effectively firing
all transitions in FT (M), denoted by M [ti > M �, M � is
a reachable state of M . The computation of M � is: ∀pj ∈•

ti ∪ t•i : M
′
(Pj) = M(Pj) − W (Pj , ti) + W (ti, Pj).

If there exists a firing sequence t1, t2, . . . , tk and a marking
sequence M1,M2, . . . , Mk such that M [t1 > M1[t2 >
M2 . . .Mk−1[tk > Mk, then Mk is called a reachable state
of M . All the possibly reachable states of M are denoted by
R(M).

B. The Modeling Method

a) Modeling composition net: The BN model of compo-
nent Ci is shown in Fig.1, where the place pI

i and pO
o represent

the input and output interface, pI
in and pi

ou represent the input
and output interface in the top model. The process is: (1) if
component Ci has got the input parameters pI

i , then firing
transition tin to select an individual x from the library of avail-
able service pw to complete its function; (2) if the component
couldn’t get the binding service, then calling transition tst to
randomly select an available service to complete its function;
(3) if the service has completed the function, then calling the
termination transition te to output the results ϕ to place pe

and pO
o .

The composition net is constructed by the following steps.
(1) Constructing the BN model of all components in compo-

sition process by using the construction method of component.
(2) Introducing transition ts and place ps to describe the

beginning operation and position, and doing the initialing
operation for the system; transition te and place pe are used to
describe the termination operation and position, and merging
the output of component based on their relationships.

(3) Modeling the basic relationships between components.
(4) Setting the initial marking M0(ps) = ϕ
We obtain CN model of service composition based on the

above steps, which is shown in Fig.2, the substituted node Ti

is mapped into the page of component Ci.
b) Modeling aspect: From the principles of AOP , we

can get that advice net is included in the introduction, there-
fore, we only give the model of introduction in the process of

580 581

Fig. 2. Composition net Ω of service composition

Fig. 3. Advices of crosscutting concern

modeling crosscutting concern.
• Interface aspect conic = {pic, ADic}

The pointcut of interface is defined as: pic : {CN1•pw,
CN2•pw, . . ., CN|C|•pw}, the advice is shown in Fig.3(a). pic

is used to describe the change process of service’s interface.
Place pcw is used to save the evolution records of service. pI

ic

is used to store the current invoked service. When the interface
of available service WSi,j has modified, then calling transition
tic to update the interface information of place pic, and the
result is stored in place pcw. The weaving rules of conic are:
for each connection point, the system will insert the point into
the after set of advice and its associated subnet. The priority
of weaving transitions is set to 3.

• Binding aspect conbc = {pbc, ADbc}
The pointcut of interface is defined as: pbc : {CN1•pb,

CN2•pb, . . ., CN|C|•pb}, the advice is shown in Fig.3(b).
Pointcut pbc is used to describe the change process of compo-
nent’s banding. Place P I

ic is used to save the current binding
service. When the binding of component has changed, then
calling transition tbc to update the binding information of place
pbc. The weaving rules of conbc are: for each connection point,
the system will insert the corresponding point on CNi into
the after set of advice and its associated subnet, the priority
of weaving transitions is set to 2.

• Evolution notify aspect connc= {{pnc1, pnc2}, ADnc}
The pointcut is defined as: pnc1 : {P 1

bc, P
2
bc, . . . , P

|C|
bc },

pnc2 : {P 1
ic, P

2
ic, . . . , P

|C|
ic }, the advice is shown in Fig.3(c)-

Fig.3(d). Pointcut pct1, pct2 are used to notify the evolution
of system to all components. Place pbc, pic are used to save
the current binding and the evolution data of interface. The
weaving rules of connc are: The system will firstly weave the
evolution advice concern, then weaving the evolution concern
in the current evolved component. In order to handle the notify
of evolution timely, the priority of weaving transitions is set

Fig. 4. Testing aspect of component

to 1.
According to the above model, the steps of aspect weaving

are:
(1) Adding all the advices in the set con to Ω, thus forming

a new composition net;
(2) Adding the corresponding elements according to the

weaving rules and merging the same element;
(3) Weaving aspects in decreasing priority order when more

than one aspect is applied to the same pointcut.
The model got by weaving the above concerns into the

composition net is called the test model Ωt. If M(pe) = ϕ,
then M is called a normal termination marking. The testing
aspect CAi of component Ci is constructed according to the
weaving rules of concern, which is shown in Fig.4.

III. REGRESSION TESTING TECHNIQUES

Regression testing of basic service is to ensure that its func-
tion and interface information can still meet the requirements
after the evolution. When service provider does regression
testing for basic services, the system selects the required
testing path and test cases. In contrast, the service consumers
can generally select and modify the test case according to the
change of interface, and getting the results to complete the
test based on the invoked services. When the original binding
service is replaced by another service, it is necessary to re-
run the test cases of all paths that called the replaced service,
thus to verify whether the system can operate normally and
the results are correct.

We first reduce the size of regression test by applying the
following selection strategy.

(1) Initialing the regression set CTC = ∅, the component
need to be tested is DC = ∅, the available service need to be
tested is DWS = ∅;

(2) Computing DC: a. ∀Ci ∈ C, if the binding of Ci has
changed, then DC = DC∪Ci; b. ∀Ci ∈ DC, ∀Cj ∈ C−DC,
RL(Ci, Cj) =>, then DC = DC ∪ Cj ;

(3)Computing DWS: ∀WSi,j ∈ WS, if the interface of
service WSi,j has changed, then DWS = DWS ∪ WSi,j ;

(4) Constructing the test suite of regression test: ∀tck ∈ TC,
if TR(tck) ∩ (DC ∪ DWS) �= ∅, then CTC = CTC ∪ tck;

580 581

(5) Filtering the test suite of regression test: tck ∈ CTC, if
there exists tcf ∈ CTC, which makes TR(tck) ⊆ TR(tcf),
then CTC = CTC − tck.

According to the different types of evolution, the paths
of regression testing p consist of two parts: the path set pi

affected by interface change and the path set pb affected by
binding change. The algorithm is shown in Algorithm 1. Let
the path set of composition net Ω be path(Ω).

(1) Computing the set pi: The system will compare the
number of parameters in the interface, the definition of data
type of each parameter in the interface, then do regression test
in case any change occurs.

(2) Computing the set pb: According to the relationship
between the components, if the binding of component Ci has
changed, then the associated components of Ci should be re-
tested to ensure that the binding is effective.

Algorithm 1 Regression test path generating
Require: Composition net Ω� and its path set path(Ω);
Ensure: The path set needed to test by regression testing;

1: Analysis(Ω) //Computing the evolution service and com-
ponent

2: {EC=EWS=φ;
3: For k=0,i≤| C |, k++ do
4: { if ∃d ∈ M0(pbc)∧ 2#(d) = k then EC = EC ∪ {Ck}
5: For i=1,j<| WSk) |, i++ do //Verifying the evolution

of available service
6: { If ∃d ∈ M0(pic) ∧ 2#(d) = (k, i), then EWC =

EWC ∪ {WSk,i};}
7: Foreach Ck ∈ C − EC do
8: Foreach Ci ∈ EC do
9: If RL(Ck, Ci) =>, then EC = EC ∪ {Ck}; }}

10: Compute pa(EC, EWS, path(Ω))//Computing the paths
of regression testing;

11: { Npath = φ;
12: Foreach δ ∈ path(Ω) do
13: {If ∃Ci ∈ EC ∧ CAi•tin ∈ δ then Npath =

Npath ∪ δ;}
14: { If ∃WSi,j ∈ EWS ∧ 2#Mδ(CAi•pac = (k, i),

then Npath = Npath ∪ δ;}}

We will analyze the effectiveness of algorithm based on
the state space of model, that is, (1) If the binding of
component changes, then the related paths will be tested; (2)
If the bindings of the afterward component of component Ci

changes, then the related paths of component Ci will be tested;
(3) If the interfaces of service changes and the service has been
called, then the related paths of service will be tested.

Theorem: In the test model Ωt, let the path set of compo-
sition net Ω be path(Ω), Npath is the corresponding path set
of regression test, ∀δ ∈ path(Ωt), there are:

(1) ∀Ci ∈ C, if Ci ∈ Bin, then CAi•te ∈ δ → δ ∈ Npath;
(2) ∀Ci ∈ C, if Cj ∈ c,RL(Cj , Ci) =>, then CAi•te ∈

δ → δ ∈ Npath;
(3) ∀WSi,j ∈ WS, if WSi,j ∈ Itn ∧ 2#Mδ(CAi•pac) =

(k, i) → δ ∈ Npath;

TABLE I
EVOLUTION INFO OF EXPORT SERVICE

Proof: let the marking included in δ be the set R(δ), ∀Ci ∈
C, because Ci ∈ Bin, according to the modeling process of
aspect, ∃d ∈ M0(pbc) which makes 2#d = (k, i); and because
p•bc = tctb, P

i
in ∈ t•ctb, therefore, it exists M ∈ R(δ), which

makes d ∈ M(CAi•pI
in); Because CAi•pI

in
•={CAi•tin,

CAi•tst}, (CAi•t•in)•=(CAi•t•in)•= CAi•te; and because
CAi•te ∈ δ, according to Algorithm 1, we can get δ ∈ Npath.

Similarly, proposition (2) and (3) can be proved. Theorem 1
says that the regression path set can describe the evolution of
the interface and the binding of service composition according
to Algorithm 1.

IV. A CASE STUDY

This section presents a simple case study of Export Service
System. The business process includes looking up the rele-
vant information and selecting the destination (C1) according
to the requirements, and packaging services (C2) responses
for processing and packaging export products. The system
will implement the operation of export transport ordering
(C3) and insurance processing (C4) in parallel, while Export
transport ordering include water transport ordering(C5) and
airport ordering (C6). All the information is confirmed by
exporter and will be sent to the regulatory authorities (C7)
for checking. Finally, financial services (C8) is used to check
the related instruments of product. The composition process
can be represented by expression C1 > C2 > (C3 � C4 � (
C5 + C6)) > C7 > C8, the specific available service and
test cases are shown in Table I. Let the binding service
set of each component be: WS1,1, WS2,3, WS3,1, WS4,3,
WS5,3, WS6,4, WS7,2, WS8,3. The binding evolution of
Export Service be {WS2,2, WS5,2}, that is, the binding of
component C2, C5 have changed. The changing interface of
available service be: WS1,1 : {2, {{Int, String}}}, WS3,3 :
{1, {{String}}}, WS4,2 : {2, {{Int, String}}}, WS6,4 :
{2, {{Int, String}}}, WS8,1 : {2, {{Double, Boolean}}}.

We can weave the evolution concerns into the composition
net Ω, which is shown in Fig.6. the model mainly describes
the composition process of Export Service. According to the
construction method of state space, the reachable states of
composition net and aspect are 216 and 312 respectively.
CAi•tbc ∈ δ(M, Me), that is, the binding evolution of
component C2 has been tested, in the similar way, we can get
the evolution of all services have been tested before the end
of service composition. We can compute the paths in Export

582 PB

Service(component and service), which are < C1, C2, C3, C4,
C5, C7, C8 >, < C1, C2, C3, C4, C6, C7, C8 >, followed by
regression testing paths and services WS1,1, WS6,4.

Fig. 5. Model of Export Service

In order to effectively estimate the proposed approach, we
conduct an experiment. The system randomly generates 8000
services as service resource and 260 test cases. And each
service contains the historical and the actual testing info. A
test case can be used to test available service for several times,
the testing results of each time may be different. The purpose
of Experiment is to analyze the necessity of using AOP for
regression test. The steps are:

(1) Taking 30 test cases and 1120 available services as the
resource of 5 Export Service, and supposing component in
each Export Service contain 10, 20, 30, 40 and 50 available
services;

(2) Constructing the composition net, testing model of
Export Service, and then computing the size of its state space.

Fig. 6. The experiment result

The results of Experiment is shown in Fig.6. The result
of Step(1) says that the state space of base net will not
change with the number of service resource increasing, for
example, the reachable states of base net of 5 Export Service
is 24. The reason is: base net is mainly used to describe
the implementation process of service composition, which is

unrelated with the test case and service resource. Therefore,
the state space of base net is unrelated with the test suite and
the set of available service. The result of Step(2) means: (1)
The state space of test model will not strictly decrease with
the available services increasing, when the evolution is more
complex, the state space of test model will be relatively large.

V. CONCLUSION

This paper proposes a regression test technique for ana-
lyzing the functionalities of service composition. Services and
components are modeled by Petri nets, while service evolution
is specified as crosscutting concerns, and in turn woven into
the testing model of service composition by weaving rules. The
benefits of this work include formal reasoning correctness of
service composition, flexibility of composition process, and
efficiency of regression testing. In the future, we plan to
investigate more concerns such as performance and security
and develop the related tools.

ACKNOWLEDGMENT

This work was partially supported by the NSF of China un-
der grants No. 60773094 and 60903020, Shanghai Shuguang
Program under Grant No. 07SG32, the National Key Technol-
ogy R&D Program of China under Grant No.2009BAH46B03.

REFERENCES

[1] Q. Yu, X. M.Liu, B. Athman, M. Brahim. Deploying and managing Web
services: issues, solutions, and directions. The International Journal on
Very Large Data Bases. 2008, 17(3): 537-572.

[2] M. Lallali, F. Zaidi, A. Cavalli, et al. Automatic timed test case generation
for Web services composition. Proceedings of the Sixth European Confer-
ence on Web Services(ECOWS’08). IEEE Computer Society, 2008:53-62.

[3] Y. Zheng, J. Zhou, P. Krause. An automatic test case generation
framework for Web services. Journal of Software, 2007, 2(3):64-77.

[4] S. Noikajana, T. Suwannasart. An improved test case generation method
for Web service testing from WSDL-S and OCL with pair-wise testing
technique. Proceedings of the 2009 33rd Annual IEEE International Com-
puter Software and Applications Conference. IEEE Computer Society,
2009:115-123.

[5] S. G. Elbaum, A. G. Malishevsky, G. Rothermel. Test case prioritization:
a family of empirical studies. IEEE Transactions on Software Engineer-
ing, 2002, 28 (2): 159-182.

[6] D. Jeffrey, N. Gupta. Test suite reduction with selective redundancy.
In Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM’05), IEEE Computer Society, 2005:549C558.

[7] C. R.Panigrahi, R. Mall. Model-based regression test case prioritization.
ACM SIGSOFT Software Engineering Notes, 2010, 35(6):1-7.

[8] B. Korel, G. Koutsogiannakis, L. H. Tahat. Model-based test prioritization
heuristic methods and their evaluation. Proceedings of the 3rd interna-
tional workshop on Advances in model-based testing. ACM New York,
NY, 2007:34-43.

[9] B. Athira, P. Samuel. Web services regression test case prioritization.
Processing of the 2010 International Conference on Computer Informa-
tion Systems and Industrial Management Applications (CISIM). IEEE
Computer Society, 2010:438-443.

[10] G. Kiczales, J. Lamping, A. Mendhekar, et al. Aspect-oriented pro-
gramming. Proceedings of the European Conference on Object-Oriented
Programming, LNCS 1241. Springer-Verlag, 1997:220-242.

[11] M. TADAO. Petri nets: properties, analysis and application. Proceedings
of the IEEE. 1989, 77(4): 540-581.

[12] G. Fan, H. Yu, L. Chen, et al. An aspect oriented approach to construct-
ing secure service composition. The 2010 Asia Pacific Software Engineer-
ing Conference (APSEC2010), IEEE Computer Society, 2010:176-185.

PB 583

A view towards Organizational Learning: An

empirical study on Scrum implementation

Viviane Santos and Alfredo Goldman

Institute of Mathematics and Statistics

University of São Paulo

São Paulo, Brazil

{vsantos, gold}@ime.usp.br

Ana Carolina M. Shinoda and André L. Fischer

Faculty of Economics and Management

University of São Paulo

São Paulo, Brazil

{carol.shinoda, afischer}@usp.br

Abstract—Scrum is one of the agile methods gaining more

relevance among academics and practitioners. It is mainly

applied in the context of software development, which is a

knowledge-intensive activity and depends on learning to evolve.

Therefore, it becomes crucial to understand the question: Does

Scrum implementation trigger a process of Organizational

Learning? If ‘Yes’, how does the OL occur? This relation has

never been established in previous studies. The answer to these

questions was based on a qualitative research, involving key

members from UOL - the most important Brazilian company

regarding content and services on the Internet, key members

from an academic project and an expert in agile methods

implementation. Among the main findings, we highlight that the

process of Organizational Learning could be verified through the

individual members’ learning and through the changes within the

organization in management, people, process and technology.

Beyond the relation established between Organizational Learning

and Scrum implementation, this study contributes to academic

and practical fields by the identification of changes occurred in

type of knowledge valued, physical structure, promotion criteria,

and individual dependence decrease when implementing Scrum.

It is perceived that knowledge management, as a way of

perpetuating the learning in the organization is still a challenge

for agile software organizations.

Keywords- Organizational Learning; Agile Software

Development; Scrum implementation.

I. INTRODUCTION

Agile methods have been in evidence lately. Among these,
one of the most popular agile methods is Scrum [1], which is
focused on project management and holds ceremonies and
roles that follow the agile values and principles formalized by
the Agile Manifesto [2]. Its reputation is due to the increasing
chances of project success, when applied properly [3].

Software development is a knowledge-intensive activity
[4]. Given that, learning is crucial for organizations in this area.
As more software development organizations are adopting
Scrum, it becomes relevant to understand whether it contributes
or not to the process of Organizational Learning (OL).

Every organization learns, as it is a basic requirement for its
sustainable existence; and its learning is acquired through their
individual members. Yet, OL is a more complex phenomenon
than the simple sum of individual’s learning [5, 6, 7, 8].

The definition of OL is not consensual and it involves
multiple aspects. In this study, we take Nicolini and Meznar’s
definition that relates learning to change: OL corresponds to
investigating why and how the organization changes [9]. Fiol
and Lyles [7] associate change with behavior development and
learning with cognitive development. Based on that, they add
that not all changes imply on learning and that might be
learning without any accompanying change in the behavior.
Therefore, in this study we will consider cognitive
developments and changes in behavior accompanied by
cognitive development as learning.

Through a wide search on the topic, including several
electronic databases pointed hereafter, the relation between
Scrum implementation and the OL process has never been fully
established in literature. However, it is quite relevant to study
this relation since learning is decisive for software development
organizations. For this reason, this research aims to perform an
empirical study to understand whether the Scrum
implementation triggers OL and, if positive, how it occurs.
This study represents an innovative focus on Agile Software
Development (ASD) field.

Cognitive and behavioral changes were verified through the
analysis of whether the perceived individual learning of the
organizational members increased with the Scrum
implementation (as it is the first step for OL to happen). And
also through the modifications in four aspects: management,
people, process and technology. These aspects were pointed
out by Nerur, Mahapatra and Mangalaraj [10] as the key issues
in migrating to agile. Since they clearly relate them to
organizational change, we used these key issues to guide our
study. We complement their findings, as contributions for
academy and practice, providing other identified changes, such
as in types of knowledge valued, physical structure, promotion
criteria and in individual dependence decrease.

This research consists of a qualitative analysis involving
three lectures on the theme of Scrum implementation and six
interviews with actively involved people on its implementation.

The structure of the paper is as follows. In Section II, we
review the literature related to OL and ASD implementation. In
Section III, the research methodology is described. In Section
IV, we present the data analysis. In Section V, we discuss the
findings. Finally, in Section VI, the conclusions are presented.

584 585

II. LITERATURE REVIEW

After searching within several electronic databases, such as
ACM Digital Library, Compendex, EBSCO, Elsevier
ScienceDirect, Google Scholar, IEEExplore, ISI Web of
Science, JSTOR, SpringerLink, and Wiley Online Library, no
specific study was identified exploring the relation between the
Scrum implementation and the OL process.

However, there are few relevant previous studies relating
ASD to OL concepts, such as Argyris double-loop learning [11,
12], maintenance of corporate experience repositories as a way
to guarantee continuous learning [13], and March’s
exploitation-exploration balance [14] [15]. We also found
studies outlining the importance of OL in Scrum/Agile
adoption, but they stress the need to support the process itself
to improve long-term learning [16, 17, 18, 19, 20, 21, 22].
Likewise, one study relates Scrum adoption as organizational
becoming [23]. Also, two studies relating software process
improvement to organizational change were identified [24, 25].
Besides, studies point out the need for future research on OL in
ASD [21, 26, 27].

Despite the wide acceptance of OL and its importance to
strategic performance, there is no theory or model largely
accepted [7], and the concept is still evolving [8].

We use the definition of Nicolini and Meznar [9] that
relates learning to change. They state that OL rely on exploring
why and how the organization changes. Other authors support
this view. Antonello [8], in a literature review about OL, stated
that the literature promotes a strong relation between learning
and change, and some authors contend they are synonyms. As
stated by Fiol and Lyles [7], OL is the process of improving
actions through better knowledge and understanding. The
authors differentiate organizational learning (cognitive
development) and change (behavior development). Therefore,
changes in the organization can be considered learning as long
as they are accompanied by cognitive development.

There is a consensus that OL is first acquired by the
organization individual members, but OL is not the simple sum
of each member’s learning [5, 6, 7, 8]. It means that the first
step onto OL comprehension is the understanding of its
individual’s learning. As the synergy of the shared
understandings and consensus increase within groups through
knowledge propagation and socialization, the organization
starts to adjust its behavior as a response to performance
problems [5].

Past studies in ASD acknowledge that there is learning at
individual and group levels [1, 21, 28, 29], however none has
actually described the OL process in ASD.

For a deep comprehension of OL, there are other aspects to
be analyzed such as changes in management, people, processes
and technology. Specifically in the software development area,
it is important to take into account Nerur, Mahapatra and
Mangalaraj [10] study where they detail key issues (Table I)
that an organization may have to face when migrating to agile.

TABLE I. KEY ISSUES IN MIGRATING TO AGILE

Management and Organizational: Organizational Culture, Management

Style, Organizational Form, Management of Software Development

Knowledge and Reward System.

People: Working effectively on a team, High level of competence and

Customer relationships (commitment, knowledge, proximity, trust, respect)

Process: Change from process-centric to a feature-driven/people centric

approach, Short iterative, test-driven development that emphasizes

adaptability, Managing large/scalable projects and Selecting an appropriate

agile method

Technology (tools and technique): Appropriateness of existing technology

and tools and New skill sets (refactoring, configuration management, J-units)

These issues can be seen as causes and consequences of
migrating to agile because at the same time that they represent
assumptions or enablers for the implementation to happen, they
are also affected when the implementation takes place.

Chang and Thong [30] have provided a critical review of
the literature on the acceptance of agile methods. They found
only eight case studies discussing the acceptance of agile
methods. Only two of them were specifically about Scrum
implementation [31, 32]. Table II depicts those main factors.

TABLE II. AGILE METHODOLOGIES ACCEPTANCE ADAPTED FROM [30]

Factors for agile methodologies acceptance Method studied

Negotiation skills Scrum

External support, Career consequences,

Micromanagement, Resistance due to past experience

Scrum, XP

Compatibility with agile methods Scrum, Agile

Individual ability / competence/ motivation / Experience

in software development

Scrum, Agile,

XP

Teamwork, Management support, Communication,

Project type, Team size, Organizational culture and form,

Management style, Management of software development

knowledge, Reward system, Customer relationship,

Existing technology and tools, Training

Agile

After the Scrum implementation, several challenges related
to Knowledge Management (KM) need to be faced to
perpetuate and leverage the learning in the organizations. Levy
and Hazzan [4] highlight how the agile approach initiates a
culture change that is in line with the one needed for a KM
initiative. They describe KM enablers that are embedded in the
agile approaches. For Chang and Thong [30], KM is critical for
ASD, but it has to be conducted in a different way, since agile
methods are more people-oriented and deal mostly with tacit
knowledge.

An important aspect related to OL observed in previous
studies is the lack of KM practices integrated to the Scrum
management process [4], even though the practices encourage
the knowledge exchange among individuals in a team. In
summary, the process of OL that started with Scrum
implementation must be supported by KM practices in order to
perpetuate the learning in the organization.

584 585

III. RESEARCH METHODOLOGY

This empirical study is a qualitative research [33], since it
aims to discover and understand the complexity and interaction
of factors related to the phenomenon in study. As Seaman [34]
state, the main advantage of using qualitative methods is that
they force researchers to deepen the complexity of the problem,
rather than generalize it. Thus, the results are richer and more
informative. On the other hand, they are more difficult and
stressful than a quantitative analysis.

A. Research Question

This research can be classified as exploratory [35], since
the goal is to examine a topic or research problem scarcely
studied, for which we have many questions not addressed
before [36]. We aim to answer the following research question:

• Does the Scrum implementation trigger a process of
OL? If ‘Yes’, how does the OL occur?

B. Data Collection

Semi-structured questionnaires with open questions were
held to allow improvisation and to invite a broad range of
answers and issues from the phenomenon in study.

The questionnaires were constructed from the literature, in
order to answer the research question, considering the
necessary assumptions for Scrum implementation to happen
and their perceived changes after the implementation (in areas
related to Management, People, Process and Technology).
There were also questions regarding the challenges related to
KM (what is being applied to perpetuate the learning initiated
with Scrum implementation). The questions were adapted to
each interview. All interviews were recorded and transcribed.

C. Data Analysis Method

The analysis of the collected data was made inspired by
open coding in grounded theory [37]. Interesting expressions
were categorized to describe the phenomenon in study.

D. Data Sources

The empirical study considers the qualitative analysis of
three lectures on the theme and six interviews involving three
different data sources to provide data triangulation:

• Two key members from Universo Online (UOL), the
most important Brazilian company regarding content
and services on the Internet
(http://sobreuol.noticias.uol.com.br/index_en.jhtm).
The expansion of services offered to the web market
has demanded changes in company’s process, which
has led to the Scrum implementation in some of the
software development areas. We attended lectures of
both professionals, which are actively involved on
Scrum implementation, and we conducted two group
interviews with them to investigate the OL process at
the organizational level.

• Three members from the Workbench Project (WP), an
academic project that applies Scrum method

(http://www.groupwareworkbench.org.br/gt). This
project is an initiative of the Institute of Mathematics
and Statistics from University of São Paulo to develop
components aimed at social interaction and collective
intelligence for building collaborative applications on
Web 2.0. We interviewed individually the Scrum
Master, the technical leader and one of the developers
to analyze the learning at individual and group level.

• Specialist in implementing agile methods, including
Scrum, Heitor Roriz, from Massimus Consulting
(http://massimus.com/) conducted a lecture and was
also interviewed by the authors to deepen the
understanding of the relationship between Scrum
implementation and OL. Given his experience in
several software development organizations, his point
of view was important to triangulate data and to
perceive if the results verified at WP and UOL could
be found in other organizations or if they were
restricted to their context.

IV. DATA ANALYSIS

Data analysis was performed by coding interesting
expressions detected by the authors, considering their expertise
on the research topic. This section presents them in detail.

The qualitative analysis highlighted the importance of what
we have called “assumptions”, factors that contribute to the
acceptance of the Scrum implementation. They are endorsed by
the literature. Also, it raised the changes identified in the study,
representing evidences of learning that have occurred.

A. Assumptions for the Implementation

It is important to understand the assumptions adopted for
the Scrum implementation as they allow the organization to
benefit from the subsequent organizational learning generated.
The assumptions identified are detailed as follows.

1) Understanding of the Scrum method: An understanding

of the Scrum method is important once many organizations

have lack of knowledge of the practices required to use Scrum

effectively. As well, many organizations confuse some of

their practices with other methods. The specialist interviewed

supported this point by stating that “It happens that some

companies say that they are using Scrum, when they are not

actually doing so. An example is when they use Kanban –

which belongs to Lean – thinking it is Scrum”. This way, it is

important to achieve a broad understanding and a full

implementation of the Scrum method to perceive its benefits.

2) Make sense in the context: It is crucial that the

implementation makes sense for the organization. In the case

studied, some factors contributed to this aspect: team

dissatisfaction and overload with the previous method, the

need to have a fast method to keep up with the organization’s

startups, competitors already using Scrum as well as some of

the team members getting in contact with Scrum by external

conferences, academic influence and books. One of the

interviewees from UOL argued that “if everybody were

586 587

comfortable with the process… ‘oh, it is ok, it works’… or

‘leave it like this’, it wouldn’t have changed”;

3) Top management support: To change the work method,

it is necessary to convince the top management that it is worth.

An interviewee reported the need to also line up the Scrum

implementation with the business expectations and adapt the

technical to management vision to support top management

convincement: “the development area had to ‘speak the

language’ of the top management to be able to convince them.

It was of no use to talk about the method. We needed to focus

on the benefits it might bring: reductions in time, cost…”;

4) Shared vision establishment: In a change process, it is

important to establish a shared vision of the future. It implies

expectations alignment and also changes understanding.

Metaphors may help in this task as it was used at UOL, as

reported in the lectures: “We were changing the airplane’s

wing during the flight… so it would not be an overnight

change as it is difficult to do such thing”. Another statement

related to the expectation alignment was: “we made clear for

the development team as well as for the top management that

Scrum was not the solution for all the problems”;

5) Team’s competency and commitment: It was also

pointed out to have a competent and committed team. As an

interviewee from UOL stated: “You need competent people,

with a strong knowledge base, committed to the job… this is

the base… without it… it is an assumption”;

6) Non hierarchical culture: Not all organizations can

implement Scrum. It was reinforced by the specialist

interviewed as well as at WP and UOL. A WP member

summed up this need by saying that “the culture cannot be the

‘I impose and you obey’”.

B. Changes and Learning

According to Nicolini and Meznar [1], in order to
understand the phenomenon of OL, it is important to analyze
the changes that occurred in the organization. Fiol and Lyles
[7] add that change can be considered learning since it is
accompanied by cognitive development. Given the basis
provided by these authors, cognitive developments of the
members and changes in behavior accompanied by cognitive
development were considered learning.

Through the data analysis and consensus among the
researchers, subcategories were created below within the
categories proposed by Nerur, Mahapatra and Mangalaraj [10].

1) Management and Organizational

a) Types of knowledge: The organization undergoes

significant changes in the types of knowledge. Individual tacit

knowledge increases due to a higher communication and

teamwork. Many interviewees state that the individuals end up

increasing their knowledge because of the higher interaction

with other team members. A Workbench project member

endorsed it by saying: “I saw that other people’s level was

above mine and it forced me to learn (…) not because

somebody told me to, but for self motivation. The

organizational tacit knowledge also increases by the

reinforcement of shared culture and process. However, we

identified a more unexpected change in the explicit

knowledge. Despite the decrease in the documentation related

in all the interviews, it was possible to conclude that the

explicit knowledge increases with Scrum implementation. It

happens because the documentation that used to be generated

rapidly became outdated and, therefore, people did not access

them: “in the past, people used to write a lot, but anybody

read that”. Knowledge is related to action [38], so a document

that is not accessed and does not lead to any action, cannot be

considered knowledge, but information instead. As the

documents generated when working with Scrum contain only

the essential knowledge, it is therefore accessed and turned

into action: “today, everything that is critical is documented”

as well as “what is updated is what you have the obligation to

update in order to make it work”.

b) Hierarchical structure: This indirect change happened

because as the development teams must work together and sit

near each other, these individuals tend to become part of the

same functional area. This is confirmed by an interviewee

from UOL: “the hierarchical structure changed […] some

departments disappeared, some remained but changed their

way of working”. The change in the way of working refers to

the team members that respond to a different area becoming

really part of the team, even working in the same space/room.

c) Physical structure: As the team members sit close to

each other when working with Scrum, the physical structure in

the development area has changed. It was seen as a very

important change, as now the cross-functional team work for

the same product: “it used to be resource competition among

the areas”.

d) Promotion criteria: The change in the type of

knowledge already presented, alongside with the transparency

increase by Scrum implementation may improve the

promotion criteria: “the promotion criteria became more

legitimate, more the essence of the person’s value and not the

circumstance”.

2) People

a) Values and behavior: As Scrum is usually

implemented along with agile principles, there are joint

reflexes in changes of team values and behaviors. This is one

of the main changes pointed out by all the interviewees. One

of the interviewees from UOL commented about the changes

he observes in the team: “just the fact that everybody is in a

smaller team […], the daily exposition by the daily Scrum, the

task visibility on the board, everybody talking about what they

are doing, the deadline commitment… and even when a new

member comes to the team, somebody just go there to help

him… it is very good for the team”. Some of the several

aspects related to this topic and indicated during the research

were: increase of communication and transparency in the

relationships, less imposition by managers, bigger sense of

commitment, responsibility, organization and freedom of

expression (questionings, opinions etc), better understanding

of the work processes, commitment to the final product and

objectivity during the meetings. The specialist in Scrum

586 587

implementation supported theses changes as he observes in

several organizations: “the characteristic of every team when

you implement Scrum: feeling of responsibility…. Everybody

say that. The feeling of organization […] you know what you

are doing. Then you compromise”.

b) Individual dependence: An interesting impact of

Scrum can be the reduction of the individual dependence for

the organization. It happens because the knowledge is largely

widespread through several members, reducing the need for

one specific individual: “knowledge is spread […]there were

component owners previously[…] today it doesn’t exist

anymore. Now the team takes everything. When we started

with Scrum, we had to make an effort to stop that. So I would

say that the dependence has decreased”. However, the human

dependence as a whole remains strong, only the individual one

decreases: “[the dependence is] less from the individual.

People dependence still exists because software is a human

activity”. It was pointed out by the interviewees from UOL

that “dependence” must not be misunderstood: it does not

mean that the organization has started to diminish the

importance of each person, but quite the opposite. It was only

the negative part of the dependence that has decreased (for

example: a person who is not delivering a good job but cannot

be fired because he/she is the only one who has a specific

knowledge in the organization).

c) Roles: Scrum proposes different roles in the

organization: Scrum Master and Product Owner as well as a

different role for the team, demanding an active participation

in the decision taking. The team becomes self-organized and

the leadership operates as a coach more than a manager. One

of the interviewees from UOL commented about his team

active participation in the process: “there isn’t that attitude

anymore of ‘I have finished so I move the task ahead’”.

d) Particular language development: Another change

was the development of a particular language by the team. It is

partly because of the shared work and values. It was

commented that the team starts to say things such as “that is a

sprint thing”, that has no meaning for a person of the

organization outside the development team.

3) Process

a) Delivery model: The delivery model proposed by

Scrum – iterative and incremental – differs from the traditional

long term ones. It changes the way of thinking the job by the

team members. An interviewee from UOL stated that “We

didn’t have a culture of delivering in pieces […] and the

thought of maximizing value at each delivery”.

b) Tests: In order to cope with the new way of working,

developers build the software and test it at the same time. It

may represent an overlap with the tester role. However this is

faced as a positive aspect: “there is an overlap with the tester

role, because the developer ends up implementing tests

alongside with the development, but this is seen as a positive

thing because it improves the test estimates”.

4) Technology

a) Tools: While Scrum does not strictly recommend the

use of tools, developers use them for purposes of facilitating

project management and improving their source-code. A WP

member said: “Virtual tools help us seeing the progress of the

project […] also, they force us to improve our work […] you

realize that people are afraid of generating bad code”.

V. DISCUSSION OF THE FINDINGS

Our research question was: Does Scrum implementation
trigger a process of OL? If ‘Yes’, how does the OL occur? We
verified that the answer to the first question is positive as an
increase in individual’s learning was identified – the starting
point for OL – and several changes involving intellectual
growth and improved actions could be seen in the organization
that took place with the Scrum implementation. As our
definition of OL involves the understanding of how
organizations change, these changes are the basis to verify if a
process of learning has occurred.

The study innovates by focusing on the relation between
Scrum implementation and OL, never explored in previous
studies. Besides, it contributes to the understanding of the
issues in migrating to Scrum. It could be added in the study of
Nerur, Mahapatra and Mangalaraj [10] the possible change
with the physical structure of the organization, not only in the
organizational form in the sense of hierarchy. Moreover, the
promotion criteria is another point that may undergo change as
Scrum increases transparency and disseminates knowledge
within the team, making a contribution to a more fair criteria
for promotions.

A very interesting finding is related to the change in types
of knowledge in the organization. Nerur, Mahapatra and
Mangalaraj [10] pointed out the shift in the balance of power
from management to development teams that may occur as the
majority of knowledge in agile development is tacit and resides
in the heads of team members. However, we have concluded
that explicit knowledge also increases with Scrum
implementation (but not as much as tacit knowledge). This is
based on the fact that the documentation developed in
traditional methods could not be considered knowledge as it
was hardly used because it rapidly became outdated.

Another interesting finding in the study is related to the
organization’s decrease in individual dependence. As the
knowledge becomes more diffuse among team members, the
organization becomes less dependent on individuals. Although
it was noticed that people become more valued, the harmful
dependence of a single individual is reduced.

Then, when Scrum implementation is overcome, a further
challenge raises: how to manage the organizational knowledge
in this context? In this study, some initiatives being established
were identified, but the interviewees confirmed that this is a
very important aspect to be dealt with in the near future.

VI. CONCLUSIONS AND FURTHER WORK

The findings of the present study may be useful in several
ways. First, it shows that Scrum implementation triggers a
process of OL, a crucial process for software development

588 589

organizations. Besides, it clarifies some of the changes that an
organization may undergo when implementing Scrum.

This qualitative study presents some limitations that reflect
in threats to validity of the results. It is not yet possible to
generalize the findings, since the sample is not extensive, but
adequate to the research goals. Only one organization was
studied and yet few people were interviewed. Moreover,
although the people interviewed are considered key, we cannot
guarantee that their views are consistent with other team
members and the organization respectively.

Future studies may complement the identified factors in
different organizations to increase the power of generalizing
the results. Moreover, there is an opportunity for further
research on how to manage knowledge in organizations that
have already implemented Scrum [29].

ACKNOWLEDGMENT

We are grateful to UOL, Heitor Roriz and WP team for all
the collaboration with this study. We thank Ana Paula O.
Santos for indicating and introducing us to the WP team. This
work was financially supported by CAPES, CNPq-Brazil and
Fapesp.

REFERENCES

[1] K. Schwaber, Agile project management with Scrum. ISBN 0-7356-
1993-X. Microsoft Press, 2005.

[2] Manifesto for Agile Software Development,
http://www.agilemanifesto.org/ (2001)

[3] T. Dybå, T. Dingsøyr, and N. B. Moe, Agile Software Development -
Current Research and Future Directions. Springer, 1st edition, 2010.

[4] M. Levy, O. Hazzan, “Knowledge management in practice: the case of
agile software development,” Proc. Cooperative and Human Aspects on
Software Engineering (CHASE). ICSE Workshop. Vancouver. 2009.

[5] D. H. Kim, "The Link between Individual and Organizational Learning",
in the Sloan Management Review, pp. 37-50, Fall, 1993.

[6] C. Argyris and D. A. Schon, “Organizational Learning: A Theory of
Action Perspective”. Addison-Wesley, MA, USA, 1978.

[7] C. M. Fiol and M. A. Lyles, “Organizational Learning,” in the Academy
of Management Review, vol. 10, number 4, pp. 803–814. October, 1985.

[8] C. S. Antonello, “A metamorfose da aprendizagem organizacional: uma
revisão crítica”, in Os Novos Horizontes da Gestão: Aprendizagem
Organizacional e Competências, pp. 12-33, 2004.

[9] D. Nicolini, M. B. Meznar, "The social construction of organizational
learning: conceptual and practical issues in the field", in Human
Relations (HR), v. 48, pp. 727-46, 1995.

[10] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrating to
agile methodologies,” Communications ACM, vol. 48, no. 5, May 2005,
pp. 72-78. DOI=10.1145/1060710.1060712.

[11] O. Kettunen. Agile Product Development and Strategic Agility in
Technology Firms. Master thesis, Helsinki University of Technology
2010.

[12] A. Boden, B. Nett and V. Wulf. Operational and strategic learning in
global software development. IEE, (27) 58-65, Nov/Dec, 2010.

[13] M. Nick, K. Althoff and C. Tautz. Systematic Maintenance of corporate
experience repositories. Computional Intelligence, v. 17, n.2, 2001.

[14] K. Lyytinen, G. M. Rose, Information system development agility as
organizational learning. In European Journal of Information Systems,
vol. 15, pp. 183–199. 2006.

[15] W. Keplinger, Agility in information systems development:
characterisation, motivation and conceptualisation. In iSChannel - The

Information Systems Student Journal, vol. 2, pp. 25-28. September,
2007.

[16] J. Srinivasan, K. Lundqvist, Using Agile Methods in Software Product
Development: A Case Study. In Proceedings of the Sixth International
Conference on Information Technology: New Generations. pp. 1415-
1420. 2009.

[17] T. E. Fægri, Improving General Knowledge in Agile Software
Organizations - Experiences with job rotation in customer support. In
Proceedings of the Agile Conference, pp. 49-56. Chicago, IL. August,
2009.

[18] M. R. J. Qureshi, M. Kashif, Seamless Long Term Learning in Agile
Teams for Sustainable Leadership. In Proceedings of the 5th IEEE
International Conference on Emerging Technologies, pp. 389-394. 2009.

[19] O. Salo, P. Abrahamsson, An Iterative Improvement Process for Agile
Software Development Research Section. In Softw. Process Improve.
Pract., vol. 12, pp. 81–100. Wiley InterScience. 2007.

[20] M. Pikkarainen, O. Salo, J. Still, Deploying Agile Practices in
Organizations: A Case Study. In Proceedings of the EuroSPI, LNCS
3792, pp. 16 – 27. Springer-Verlag Berlin Heidelberg. 2005.

[21] T. Chau, F. Maurer, Knowledge Sharing in Agile Software Teams. In
Logic versus Approximation, LNCS 3075, pp. 173-183. Springer-Verlag
Berlin Heidelberg. 2004.

[22] T. Chau, F. Maurer, Tool Support for Inter-team Learning in Agile
Software Organizations. In Advances in Learning Software
Organizations. LNCS 3096, pp. 98-109. Springer-Verlag Berlin
Heidelberg. 2004.

[23] J. Mateos-Garcia, J. Sapsed, Adopting Agile and Scrum Practices as
Organizational Becoming. In Proceedings of the British Academy of
Management Annual Conference, pp. 9-11. Harrogate, UK. Sep., 2008.

[24] G. Baxter, I. Sommerville, Socio-technical systems: From design
methods to systems engineering. In Interacting with Computers, vol. 23,
pp. 4–17. Elsevier. 2011.

[25] S. D. Müller, L. Mathiassen, H. H. Balshøj, Software Process
Improvement as organizational change: A metaphorical analysis of the
literature. The Journal of Systems and Software, vol. 83, pp. 2128–2146.
Elsevier. 2010.

[26] K. Conboy, Agility from First Principles: Reconstructing the Concept of
Agility in Information Systems Development. In Information Systems
Research, vol. 20, no. 3, pp. 329–354. September, 2009.

[27] A. Y. Cabral, M. B. Ribeiro, A. P. Lemke. M. T. Silva, M. Cristal and C.
Franco, A case study of knowledge management usage in agile software
projects. International Conference on Enterprise Information Systems
(ICEIS), pp. 627-638, Milan, 2009.

[28] T. Dybå, T. Dingsøyr, Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50:833–
859, August 2008.

[29] B. R. Staats, D. J. Brunner, D. M. Upton, "Lean principles, learning, and
knowledge work: Evidence from a software services provider", in
Journal of Operations Management, doi:10.1016/j.jom.2010.11.005,
2011.

[30] F. K. Y. Chang and J. Y. L. Thong, “Acceptance of agile methodologies:
A critical review and conceptual framework,” in Decision Support
Systems, vol. 46, no. 4, Mar. 2009, pp. 803-814,
doi:10.1016/j.dss.2008.11.009.

[31] M. Cohn and D. Ford, “Introducing an agile process to an organization,”
Computer, 36(6)74-78, June 2003.

[32] B. Schatz and I. Abdelshafi, “Primavera Gets Agile: A Successful
Transition to Agile Development,” IEEE, 22(3)36-42, May/June, 2005.

[33] A. Strauss, Qualitative analysis for social scientists. New York,
Cambridge University Press, 1987.

[34] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software
Engineering,” IEEE Transactions on Software Engineering, vol. 25, no.
4, July/August 1999.

[35] R. K. Yin, Case Study Research: Design and Methods Applied Social
Research Methods. Sage Publications, Inc., 4th edition, 2008.

[36] T. Diefenbach, "Are case studies more than sophisticated storytelling?:
Methodological problems of qualitative empirical research mainly based

588 589

on semi-structured interviews", Quality & Quantity, vol. 43, no. 6, pp.
875-894, DOI: 10.1007/s11135-008-9164-0. 2009.

[37] J. Corbin, A. Strauss, Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage Publications, Inc,
3rd edition, 2007.

[38] I. Nonaka, H. Takeuchi, “The knowledge-creating company: how
Japanese companies create the dynamics of innovation”, Oxford
University Press, 1995.

590 591

Current State of Reference Architectures in the
Context of Agile Methodologies
Vinícius Augusto Tagliatti Zani, Daniel Feitosa, Elisa Yumi Nakagawa

Dept. of Computer Systems
University of São Paulo - USP

PO Box 668, 13560-970, São Carlos, SP, Brazil
{vinicius, feitosa, elisa}@icmc.usp.br

Abstract—Software architectures and reference architec-
tures have been playing a significant role in determining the
success of software systems. In particular, reference architec-
tures have emerged, achieving well-recognized understanding
of specific domains, promoting reuse of design expertise and
facilitating the development of systems. In another perspective,
agile methodologies have been widely adopted as a promising
iterative, incremental and collaborative software development
process, including by the software industry. Considering the
relevance of reference architectures, initiatives of agile method-
ologies exploring these architectures are also found. However,
there is a lack of a panorama about the uses, impacts and
perspectives of such architectures in the agile context. The
main objective of this paper is present an detailed view about
how reference architectures have been used in the context of
agile methodologies. For this, we applied Systematic Review,
a technique to systematically explore, organize, summarize,
and assess all contributions of a specific research area. As
main result, we have observed that reference architecture
and agile methodology should be more investigated together.
Furthermore, we intend to contribute to open perspectives of
new and important research lines.

I. INTRODUCTION

Software architectures have received increasing attention
as an important subfield of Software Engineering [1]. Soft-
ware architectures play a major role in determining system
quality, since they form the backbone to any successful
software-intensive system [2]. Motivated by these consid-
erations, software architecture research area has grown up
and, as known, it has accumulated important knowledge
that has certainly contributed to the software development.
In this context, reference architectures have emerged as a
special type of architecture that provides major guidelines
for the specification of concrete architectures of systems of
a given domain [3]. They can therefore promote reuse of
design expertise by achieving solid, well-recognized under-
standing of a specific domain. Considering their relevance,
reference architectures for different domains have been
proposed and successful used [4]–[7].

In another perspective, aiming at organizing the software
development activities, different software processes has
been proposed. At one extreme, there are industry-tested

processes for software system development and for effec-
tive project management, such as RUP1 (Rational Unified
Process); at the other extreme, there are agile methodologies
(also called agile methods or agile processes), such as XP2

(eXtreme Programming) and Scrum3, that have also at-
tracted the attention of software industry, since by adopting
these methodologies, industry has speed up the time-to-
market of their products [8]. In general, agile methodology
aims at achieving that by simplifying the release scopes and
thus it generates less effort on complexity, management and
keep the customer constantly satisfied and present during
the software development [9].

It is worth highlighting that the agile methodology princi-
ples seem to contrast with the use of reference architectures
in agile methodologies. However, considering the relevance
of reference architectures, there are initiatives exploring
reference architectures together with such methodologies
[10]. Nevertheless, the extent of these researches are not
broad enough to comprise how reference architecture has
been explored within agile methodologies. In other words,
there is a lack of an detailed panorama about why, how,
when and which agile methodologies have currently been
adopted reference architectures.

The main objective of this paper is present an detailed
view about uses of reference architectures in agile method-
ologies. For this, we conducted the systematic review [11],
a technique that comes from Evidence Based Software
Engineering (EBSE) and makes possible to explore, orga-
nize, summarize, and assess all contributions of the current
state of a research area. As results of our systematic
review, we can point out benefits that can be gained by
exploring reference architectures within the context of agile
methodologies. However, we have observed that reference
architecture and agile methodology should be more inves-
tigated together, aiming at exploring their advantages in a
coordinated manner. Moreover, we intend that this work

1http://www-01.ibm.com/software/awdtools/rup/
2http://www.extremeprogramming.org/
3http://www.scrumalliance.org/

590 591

could identify interesting and important perspectives for
future research.

This paper is organized as follows. In Section II back-
ground on reference architecture, agile methodology and
systematic review are presented. In Section III we present
the conducted systematic review. In Section IV we discuss
about achieved results. Finally, in Section V we summarize
our contributions and discuss perspectives for further work.

II. BACKGROUND

During the 90s, the concept of reference architecture
emerged [12] and since there it has more and more at-
tracted attention of both academy and industry. Reference
architecture is a special type of architecture that captures
the essence of the architectures of a collection of systems
of a given domain. The purpose of a reference architecture
is to provide guidance for the development of architectures
for new systems or extended systems and product families.
In other words, they can be seen as a knowledge repository
of a given domain. Therefore, as already stated previously
by Basili et al. [12], when correctly implemented, refer-
ence architectures can yield to several benefits, including:
productivity gains, accelerate the time-to-market, increase
the overall product quality, streamline the software develop-
ment, lower the production costs and the maintenance effort.
It is worth highlighting that the increase of productivity,
acceleration of time-to-market and the arise of quality are
benefits shared with agile methodologies [8].

The first association of software process with the word
agile was used in 1998 [13], although many claim that the
agile methodologies themselves existed long before they
were formalized. Later in 2001, a group of practitioners
of those methodologies gathered and summarized their
experience in what was named The Agile Manifesto4. In
short, its main principles are [9]: individuals and inter-
actions over processes and tools; working software over
comprehensive documentation; customer collaboration over
contract negotiation; and responding to change over fol-
lowing a plan. However, it is not possible to exactly define
agile methodologies, since specific practices vary with the
methodologies. In spite of that, short time boxed iterations
with adaptive, evolutionary refinement of plans and goals
is a basic practice that these methodologies share [9]. Even
apparently against the agile methodology principles, the use
of reference architectures in agile methodologies seems to
be interesting, aiming at exploring advantages of both in a
more effective software development.

In another perspective, it is noticed that when a research
area is mature, there is almost always an increase in the
number of reports and results made available. During the
study of a new knowledge area, researchers usually conduct

4http://agilemanifesto.org

a bibliographical review (almost always an informal review)
to identify publications related to a specific subject. How-
ever, this kind of review do not use a systematic approach
and do not offer any support to avoid bias during the
selection of the publications that will be analyzed. Thus, it
is important to have mechanisms to summarize and provide
an overview about an area or topic of interest. For this
EBSE has investigated and proposed the use of system-
atic review technique [11]. In this context, an individual
evidence (for instance, a case study or an experimental
study divulged in a publication/paper) which contributes to
a systematic review is called primary study, while the result
of a systematic review is a secondary study. Systematic
review aims at providing an overview of a research area
to assess the quantity, quality and type of primary studies
existing on a topic of interest. In short, systematic review is
conducted by planning, conduction of search and screening
of primary studies using inclusion and exclusion criteria
[11]. Besides that, systematic review also conducts data
extraction and quantitative and qualitative analysis through
the of the primary studies. Thus, systematic review has been
increasingly conducted in Software Architecture area [14],
[15] and seems also to be interesting in our work.

III. CONDUCTED SYSTEMATIC REVIEW

The main objective of our systematic review was to
possibly identify all primary studies that explore reference
architectures in the context of agile methodologies. This
systematic review was conducted from October/2010 to
January/2011 and involved three people (one researcher in
software engineering, one specialist in systematic review
and one graduate student). In order to conduct the system-
atic review, we have used the process presented in Figure
1. In short, it is composed by three steps: (i) Planning of
the systematic review; (ii) Conduction of the search and
data extraction; (iii) Reporting of results of the qualitative
and quantitative analysis. These steps are explained in
more details during presentation of our systematic review.
Following, we detail each step.

Fig. 1. Systematic review process (Adapted from [11])

A. Step 1: Planning

In this phase, we established the systematic review plan.
For this, we specified: (i) research questions; (ii) search
strategy; (iii) inclusion and exclusion criteria; (iv) data
extraction and synthesis methods.

1) Research Questions: These questions are structured
corresponding to the objective that is intended with

592 593

the systematic review and drive the review for further
steps. Considering that our objective is the iden-
tification of the detailed view involving reference
architectures and agile methodologies, the following
research questions (RQ) were established:

RQ1: What is the current state of the adoption of
reference architectures in agile methodolo-
gies?

RQ2: What are the benefits and limitations pro-
vided by the adoption of reference architec-
tures in agile methodologies?

RQ3: Which are the agile methodologies that have
adopted reference architectures?

2) Search Strategy: In order to establish the search
strategy, considering the research questions, we iden-
tified initially the main keywords, as illustrated in
Table I. We considered possibly all terms and their
synonymous in order to cover the range of published
studies. It is worth highlighting that the keywords
chosen must be simple enough to bring many results
and, at the same time, rigorous enough to cover only
the desired research topic.

TABLE I
KEYWORDS SEPARATED BY AREA

Area Keyword
Reference
Architec-
ture

“Reference Architecture”, “Reference Model”

Agile
Method-
ologies

“Agile Methodology”, “Scrum”, “Extreme Program-
ming”, “Agile Unified Process”, “Feature Driven Devel-
opment”, “Agile Modeling”, “Rapid Application Devel-
opment”, “Lean Software Development”

The search string is then built based on the keywords
and using boolean connectors (such as AND/OR). The
search string used in our systematic review was:
("Reference Architecture" OR
"Reference Model")
AND
("Agile Methodology" OR
"Scrum" OR "Extreme Programming" OR
"Agile Unified Process" OR
"Feature Driven Development" OR
"Agile Modeling" OR
"Rapid Application Development" OR
"Lean Software Development")

In addition to the research questions and search
strategy, we selected larger publications databases
as sources of primary studies: IEEE Xplore5, ACM
Digital Library6, Springer Link7, Scirus8, Web of
Science9, ScienceDirect10, and SCOPUS11. Those

5http://www.ieeexplore.ieee.org
6http://www.portal.acm.org
7http://www.springer.com/lncs
8http://www.scirus.com/
9http://www.isiknowledge.com
10http://www.sciencedirect.com
11http://www.scopus.com

sources are cited in [16] as trusted and efficient to
the Software Engineering context. Furthermore, we
decided that only papers written in English would be
considered, since English is more widely adopted to
write scientific papers.

3) Inclusion and exclusion criteria: The selected pri-
mary studies need to be assessed for their relevance,
enabling the inclusion of studies that provide evidence
for research questions as well as the exclusion of
studies that do not. This is achieved by the definition
of the Inclusion Criteria (IC) and Exclusion Criteria
(EC). Thus, the inclusion criteria of our systematic
review were:

IC1: The study involves software development us-
ing reference architectures and agile method-
ologies;

IC2: The study presents benefits and limitations
by exploring reference architectures in the
context of agile methodologies; and

IC3: The study presents which agile methodolo-
gies have explored the use of reference ar-
chitectures.

The exclusion criteria established were:
EC1: The study does not address the use of refer-

ence architecture in agile methodologies;
EC2: The study presents an abstract and/or an

introductory section that seem related to ref-
erence architecture and agile methodology;
however, the rest of the text is not in fact
related to;

EC3: The study does not present any abstract or it
is not available for further reading;

EC4: The study is written in a different language
than English;

EC5: The study is directly related to another pri-
mary study of the same author; and

EC6: The study consists of a compilation of work,
for instance, from a conference or workshop.

4) Data extraction and synthesis methods: In order
to extract data, we plan to analyze each research
question. This analysis must synthesize results aim-
ing at facilitating to obtain conclusions. During the
extraction process, the data of each primary study
will be independently extracted by two reviewers. If
disagreement occurs, discussion will be conducted.

B. Step 2: Conduction

In this step, we conducted the search of primary studies
and obtained them according to previously established plan.
This was achieved by performing a search in the selected
databases using the previously established search string.
In order to enable the correct results to be delivered, the

592 593

search string were adjusted for each specific database and
its mechanisms. As a result, a total of 351 primary studies
were found; also, 85 studies were duplicated, and thus we
analyzed in fact 266 studies. Domain experts pointed out
two other studies, which we also included in our analysis,
expanding the number of studies to 268.

To support the organization and manipulation of the
primary studies, we used JabRef12, an open source reference
manager system. It made possible to store information on
the primary studies (including, for instance, title, authors
and abstract), as well as the inclusion/exclusion criteria
applied to select the primary studies.

Following, the inclusion/exclusion criteria were then ap-
plied to select the relevant primary studies. Table II sum-
marizes the number of primary studies obtained in each
database and those selected after applying the selection
criteria. From a total of 353 primary studies previously
identified, only six studies (i.e. 1.70 %) were selected as
relevant. It is observed that Scirus was the most effective
source, because although it returned the smallest result set
(two studies), one was relevant for our systematic review. In
Table III we presents the six selected primary studies (S1
to S6). From a total of six included primary studies, one
was published in 2003, another in 2006 and four in 2008.
This does not indicate statistically a trend, but a growth
in the interest for that research area. It is important to
note that only studies published until December/2010 were
considered in our systematic review.

TABLE II
PARTIAL AND TOTAL AMOUNT OF PRIMARY STUDIES INCLUDED AND

EXCLUDED

Source Included Excluded Total
Found

ACM Digital Library 0 5 5
IEEE Xplore 1 96 97
Scirus 1 2 3
Springer Link 1 103 104
ISI Web of Knowledge 0 3 3
ScienceDirect 0 132 132
Scopus 1 6 7
Domain Experts 2 0 2
Total 6 347 353

C. Step 3: Reporting

In this step, a qualitative and descriptive analysis was
conducted on each selected primary study, enabling us to
achieve more accurate conclusions. Linden et al. [17] (study
S1) presented a case study using a reference architecture to-
gether with XP methodology in order to develop a software
system for the medical area as a distributed, component-
based and standard-based system with a multi-tier archi-
tecture. For this, a reference architecture, more specifically

12http://jabref.sourceforge.net/

the Reference Model for Open Distributed Processing (RM-
ODP)13, was used. According to Linden et al. [17], this
architecture made possible the use of software components;
component reuse and refactoring saved development time
and cost, at the same time assuring the software quality.
This study does not explicitly address the benefits or
disadvantages of using reference architecture together with
XP; however, besides advantages provided by XP, such as
possibility of managing volatility in requirements and TDD
(Testing-Drive Development), the adoption of reference
architecture has contributed in a positive way. Since this
system is based on a reference architecture, according to
the authors, it could be ported to another domain without
much effort.

Other two studies – S3 [20] and S5 [19] – adopted
agile methodologies in the context of Software Product
Line (SPL) [22], that has the reference architecture (also
referred as product line architecture) as one of the main
basis elements to the software development. Specifically,
Kakarontzas et al. [20] adopted an agile practice — the TDD
— as a complementary activity to the software development
using SPL. As main result, TDD made easier the evolution
of the software components of a product line and enabled
better reuse decisions. In spite of SPL presents sometimes
a more rigid process, TDD can work harmoniously in this
context [20]. Another work was conducted by Hanssen and
Fægri [19] that presented a case study in the context of the
software industry where they integrated SPL and practices
from agile methodologies. This case study observed that
SPL and its reference architecture creates a controlled envi-
ronment and solid planning while agile practice exploits the
creativity potential of the developers and constant releases.
In other words, SPL is more responsible for the long-term
strategy planning, while agile practice enables the short-
term dynamism. In the same perspective of SPL, Carbon
et al. [18] (study S2) combined practices of agile method-
ologies and Product Line Engineering (PLE). In particular,
Carbon et al. proposed an iterative process inserting agile
practices within a reuse-centric environment of PuLSE-I,
an application engineering process that is a part of PuLSE
(Product Line System and Software Engineering), a process
for PLE [23]. Its objective is to establish a reference archi-
tecture that is flexible in respect to a class of anticipated
changes, at the same time that agile practices accelerate
the application engineering process and the maintenance
of the reference architecture. As main conclusions, they
pointed out that for projects in which changes happen
with frequency and can be predicted with certain accuracy,
flexible up-front design pays off in the long run, despite
being more time consuming at first. On the other hand,
for projects which will last for an unknown period and

13http://www.rm-odp.net/

594 595

TABLE III
SELECTED PRIMARY STUDIES

Study Authors Title Publication
Year

Source(Database) IC

S1 Linden, H. van der, Boers, G., Tange
H., Talmon, J. and Hasman, A. [17]

PropeR: a multi disciplinary EPR system 2003 ScienceDirect IC1,
IC2

S2 Carbon, R., Lidvall, M., Muthig, D.
and Costa, P. [18]

Integrating Product Line Engineering and Agile
Methods: Flexible Design Up-front vs. Incremental
Design

2006 Domain Expert IC1,
IC2,
IC3

S3 Hanssen, G. K. and Fægri, Tor E.
[19]

Process fusion: An industrial case study on agile
software product line engineering

2008 ScienceDirect IC2,
IC3

S4 Fernándes, J.D., Martínez-Prieto,
M.A., De La Fuente, P., Vegas, J.,
Adiego, J. [10]

Agile DL: Building a DELOS-Conformed Digital
Library Using Agile Software Development

2008 Scopus IC1

S5 Kakarontzas, G., Stamelos, I. and
Katsaros, P. [20]

Product Line Variability with Elastic Components
and Test-Driven Development

2008 IEEE Xplore IC1

S6 Hadar, E. and Silberman, G. M. [21] Agile architecture methodology: long term strategy
interleaved with short term tactics

2008 Domain Expert IC1,
IC2

for which changes can not be anticipated, it seems better
to use incremental approaches. Moreover, it was identified
that there are several potential benefits of the adoption
of both PLE and agile methodologies, such as increase
of agility of a product line organization, error reduction,
and increased time-to-market. Nevertheless, this work stated
also that more researches are needed on the combination of
those approaches.

Fernándes et al. [10] (study S4) described a development
team that used Scrum to implement a digital library system
using a reference architecture of that domain. As main
benefits, this study pointed out reduction in the development
effort and less misunderstandings during the software devel-
opment. The nature of Scrum allowed the delivery of several
intermediate versions of the software. Scrum enabled the
creativity in a controlled environment and constant feedback
on the deliveries, where the reference architecture dictated
the horizon.

Hadar et al. [21] (study S6) introduced the CA Agile
Architecture (C3A) method, which aims at providing a
view for both long-term strategic architectural evolution
and short-term agile incremental development. The method
proposes a reference architecture documentation granularity,
with a set of one-page architecture component contracts,
where each of them has a responsible which keeps the
contract updated. The evolution of the reference architecture
together with its implementation is modeled into a cyclic
process, composed by evaluation and evolution. Thus, it is
possible to have agile software development at the same
time that the reference architecture is built and maintained.

Following the description of each primary study, we
discuss each research question established previously:

RQ1: This question is related to the current state of the
adoption of reference architectures in agile methodologies.
We can observe that although agile methodologies have
been increasingly adopted in the software industry [8], their
adoption together with reference architectures has not been

sufficiently explored as a research line up to this date;
RQ2: It refers to benefits and limitations provided by the

adoption of reference architectures in agile methodologies.
The most of the studies have pointed out on benefits of
the adoption of reference architecture together with agile
methodologies than limitations. Amongst the benefits, the
most cited are the reduction of the overall error rate in the
projects and also the reduction of the delivery time. On the
other hand, there is a lack of more detailed analysis about
the negative impacts of reference architecture in the context
of agile methodologies; and

RQ3: It refers to agile methodologies that have adopted
reference architectures. We have observed that Scrum and
XP have been used in projects involving reference archi-
tectures. It is worth highlighting that those methodologies
have been pointed out as one of the most used in the
software industry and, according to [8], Scrum has been
used in 10.9% and XP in 2.9% of the all companies.
Thus, more case studies involving Scrum, XP and reference
architecture could be interesting. Furthermore, some agile
practices, such as TDD, have also been explored together
with reference architectures.

IV. DISCUSSION

In spite of considerable relevance of reference architec-
ture in the software development, as well as also positive
impacts of agile methodologies in the software develop-
ment, including in the software industry, exploring reference
architecture and agile methodologies in the coordinated
manner seems to be interesting. However, our systematic
review found only six works in the published literature. This
works are in general recent and are important initiatives in
this direction.

Regarding research questions established for our system-
atic review, it is observed that all of them were answered.
This suggests that, the general, knowledge about reference
architectures in agile methodologies has been mapped. We

594 595

believe that results presented in this work are representative
of the whole software engineering domain, since systematic
review has provided mechanism to achieve it.

We have also observed that the included primary studies
have been published in different vehicles (four in conference
proceedings and two in journals, including of different
subjects, such as related to medical area). In other words,
they are not concentrated, for instance, in only software
architecture or agile methodology conferences. In this per-
spective, the conduction of a systematic review seems to be
an adequate choice, aiming at finding possibly all primary
studies in this context.

In spite of the achieved results, our systematic review
could be conducted again, aiming at inserting also primary
studies published until now. For this the systematic review
protocol has been established and divulged. Besides that,
relevant primary studies written in other languages can have
been ignored, since we considered only paper in English.
Although the databases used in our systematic review are
usually considered efficient sources to Software Engineering
area, other databases, such as Compendex14 and Google
Scholar15, could be included.

Considering knowledge arisen from this work, it is pos-
sible to identify interesting and new research lines, such
as (i) conduction of qualitative and quantitative analysis
regarding, for instance, cost/effort reduction and software
quality improvement, of using reference architecture in spe-
cific methodologies, such XP and Scrum; and (ii) exploring
reference architectures in other agile methodologies.

V. CONCLUSIONS

The main contribution of this work is to present an
encompassed view about the adoption of reference architec-
tures together with agile methodologies. For this, we applied
systematically a set of steps provided by systematic review.
As main result, we can conclude that more attention should
be given for that topic, since both reference architecture and
agile methodology have contributed with considerable ad-
vantages to software development. Furthermore, we intend
that this view opens perspectives of new and important re-
search lines, contributing to a more effective and successful
software development.

Acknowledgments: This work is supported by Brazilian fund-
ing agencies: FAPESP, CNPq and Capes. The authors would like
also to thank the anonymous reviewers for their valious comments
and suggestions, which certainly contributed to improve this paper.

REFERENCES

[1] P. Kruchten, H. Obbink, and J. Stafford, “The past, present, and future
for software architecture,” IEEE Software, vol. 23, no. 2, pp. 22–30,
2006.

[2] M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE Software, vol. 23, no. 2, pp. 31–39, Mar/Apr 2006.

14http://www.engineeringvillage.com
15http://www.scholar.google.com

[3] S. Angelov, J. J. Trienekens, and P. Grefen, “Towards a method for
the evaluation of reference architectures: Experiences from a case,”
in ECSA’08, Paphos, Cyprus, 2008, pp. 225–240.

[4] U. Eklund, Örjan Askerdal, J. Granholm, A. Alminger, and J. Ax-
elsson, “Experience of introducing reference architectures in the
development of automotive electronic systems,” SIGSOFT Softw.
Eng. Notes, vol. 30, no. 4, pp. 1–6, 2005.

[5] A. Grosskurth and M. W. Godfrey, “A reference architecture for web
browsers,” in ICSM’05, Budapest, Hungary, 2005, pp. 661–664.

[6] E. Y. Nakagawa, F. Ferrari, M. M. F. Sasaki, and J. C. Maldonado,
“An aspect-oriented reference architecture for software engineering
environments,” Journal of Systems and Software, pp. 1–35, 2011.

[7] National Instruments, “Reference architecture for mobile robotics,”
[On-line], World Wide Web, 2011, available in http://zone.ni.com/
devzone/cda/tut/p/id/10820 (Access 01/10/2011).

[8] D. West and T. Grant, Agile Development: Mainstream
Adoption Has Changed Agility, 2010. [Online]. Available: http:
//www.forrester.com/rb/Research/agile_development_mainstream_
adoption_has_changed_agility/q/id/56100/t/2(Access02/10/2011)

[9] C. Larman, Agile and Iterative Development: A Manager’s Guide.
Pearson Education, 2003.

[10] J. Fernández, M. Martínez-Prieto, P. De La Fuente, J. Vegas, and
J. Adiego, “Agile DL: Building a DELOS-conformed digital library
using agile software development,” in ECDL’08, Aarhus, Denmark,
2008, pp. 398–399.

[11] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering,” Keele Univ. and
Durham Univ., Tech. Rep. EBSE 2007-001, 2007.

[12] V. R. Basili, G. Caldiera, and G. Cantone, “A reference architecture
for the component factory,” ACM Trans. Softw. Eng. Methodol.,
vol. 1, no. 1, pp. 53–80, January 1992.

[13] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Inf. Softw. Technol., vol. 50, no.
9-10, pp. 833–859, August 2008.

[14] R. Farenhorst and R. C. Boer, Software Architecture Knowledge
Management. Springer, 2009, ch. Knowledge Management in
Software Architecture: State of the Art, pp. 21–38.

[15] L. B. R. Oliveira, K. Felizardo, D. Feitosa, and E. Y. Nakagawa,
“Reference models and reference architectures based on service-
oriented architecture: A systematic review,” in ECSA’2010, Kopen-
hagen, Denmark, 2010, pp. 360–367.

[16] T. Dybå, T. Dingsoyr, and G. K. Hanssen, “Applying systematic
reviews to diverse study types: An experience report,” in ESEM’07,
Los Alamitos, CA, USA, 2007, pp. 225–234.

[17] H. van der Linden, G. Boers, H. Tange, J. Talmon, and A. Hasman,
“PropeR: a multi disciplinary EPR system,” Int. Journal of Medical
Informatics, vol. 70, no. 2-3, pp. 149 – 160, 2003.

[18] R. Carbon, M. Lidvall, D. Muthig, and P. Costa, “Integrating product
line engineering and agile methods: Flexible design up-front vs.
incremental design,” in APLE’06, 2006, pp. 1–8.

[19] G. K. Hanssen and T. E. Fægri, “Process fusion: An industrial case
study on agile software product line engineering,” Journal of Systems
and Software, vol. 81, no. 6, pp. 843–854, 2008.

[20] G. Kakarontzas, I. Stamelos, and P. Katsaros, “Product line variability
with elastic components and test-driven development,” in CIMCA’08,
Vienna, Austria, Dec. 2008, pp. 146 –151.

[21] E. Hadar and G. M. Silberman, “Agile architecture methodology:
long term strategy interleaved with short term tactics,” in OOPSLA’08
at 23rd ACM SIGPLAN, 2008, pp. 641–652.

[22] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA: Addison-Wesley, 2001.

[23] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud, “PuLSE: A methodology to develop
software product lines,” in SSR’99, Los Angeles, USA, May 1999,
pp. 223–234.

596 597

Neglecting Agile Principles and Practices:

A Case Study

Patrícia Vilain

Departament de Informatics and Statistics (INE)

Federal University of Santa Catarina

Florianópolis, Brazil

vilain@inf.ufsc.br

Alexandre Jonatan B. Martins

NATTEX Sistemas

Florianópolis, Brazil

alexandre@nattex.com.br

Abstract—Agile processes are expected to follow a set of well

known agile principles and practices. This paper analyses the

utilization of an agile process in a project that imposes certain

difficulties in meeting such principles and practices in their

totality, particularly those that refer to daily face-to-face

communication among team members and frequent delivery of

new versions of the product in short periods of time within a

predictable schedule. A process based on Scrum was adapted to

be utilized in a project which had its members distributed in

different locations and that required the utilization of emergent

technologies not familiar to the developers.

Keywords-Agile principles; agile methods; agile practices;

Scrum

I. INTRODUCTION

Since the appearance of agile methods [1], several software
development companies that refused to adopt traditional
software processes (e.g. the Unified Process [2]), started to
adopt agile methods. Such methods value “individuals and
interactions over processes and tools” and “working software
over comprehensive documentation”. What can be observed in
practice is that the development of low complexity
applications, when performed by small teams, does not require
a bureaucratic software process, which explains why agile
methods seem like a good fit in those situations.

Agile methods are defined according to agile principles [1].
The processes described by such methods include the so called
agile practices, that is, practices that help developers follow
those principles accordingly. Some of these principles are
focused on having people working together and meeting in a
daily basis. In the agile method Scrum [3], for example, these
principles are followed by the practice of daily meetings. Other
agile principles state that working software must be delivered
frequently, preferably in short periods of time within a
predictable schedule. That can be accomplished in Scrum by
simple practices such as having Sprints restricted to a specific
duration. However, constraints eventually imposed to the
development process may prevent the team from adopting even
simple practices such as daily meetings or time-boxed Sprints.

This paper analyses the utilization of an agile process in a
project (case study) that imposes certain difficulties in meeting
agile principles and practices in their totality, particularly the

ones mentioned above. The case study in question refers to the
development of a web application for storing and managing
electronic documents. One of the difficulties faced in this
project was that the development team, though small, did not
work every day at the same place, which prevented the
adoption of daily meetings. Another difficulty was that the
application being developed, though of relatively low
complexity, involved the use of emerging technologies that the
development team was not familiar with. This generated certain
uncertainty around iteration planning in the sense that iterations
might not be set to a fixed duration or offer the guarantee to
produce working software at the end, thus neglecting the agile
principles and practices already mentioned. This process
utilized in the referred project was based in Scrum, adapted
with practices that try to compensate for the difficulties in
following agile principles and practices in their totality.

The paper is organized as follows. In Section 2, agile
principles are revisited, along with the agile practices proposed
in Scrum. Section 3 briefly describes the case study. Section 4
presents the constraints imposed to following all agile
principles and practices for the case study, along with
adaptations made to compensate for those constraints. Section
5 presents the process utilized in the case study in more detail.
Section 6 contains a discussion about the adaptations necessary
to the agile process. Section 7 concludes the paper.

II. AGILE METHODS AND SCRUM

Agile methods are software development methods which
apply the iterative and evolutionary development, employ
adaptive planning, promote incremental delivery, and include
other values and practices that encourage agility. They are best
suited for projects characterized by changing, speed and
turbulence.

In beginning of 2001, a group of agile methods followers
created the agile manifesto containing agile principles that all
agile methods should follow [1]. These principles are
reproduced below:

“1. Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

596 597

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the shorter
timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them
the environment and support they need, and trust them to get
the job done.

6. The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

9. Continuous attention to technical excellence and good
design enhances agility.

10. Simplicity--the art of maximizing the amount of work
not done--is essential.

11. The best architectures, requirements, and designs
emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.”

A development method is considered agile if it provides
agile practices that follow the principles listed above. Among
the most common agile methods are: Scrum, XP, DSDM,
Lean, Crystal, FDD and ASD [4]. The agile method Scrum is
detailed next for being the basis of the agile process utilized in
this work.

A. Scrum

The method Scrum was created by Ken Schwaber and Jeff
Sutherland in the 90’s and its purpose is to manage the system
development process [3]. As it is generally devoted to process
management, practices related to more specific software
development activities such as requirements gathering,
software design and programming are not detailed in Scrum.
As observed in [5], those practices are usually borrowed from
XP, and are out of the scope of this paper.

Scrum defines the following agile practices:

• Scrum Master. The person who is responsible for
ensuring that Scrum values, practices, and rules are
enacted and enforced.

• Product backlog. A repository containing all system
requirements (features, functions, technologies,
enhancements, and bug fixes). These requirements are
organized in a priority list.

• Scrum Team. A group of people that will develop a set
of items from the Product Backlog during an iteration
(Sprint). It is recommended to include seven people,

plus or minus two, but teams with 3 people are also
allowed.

• Daily Scrum Meetings. 15-minute meetings that
promote the face-to-face communication among Scrum
Team members. During this meeting, members of the
team are supposed to explain what they have
accomplished since their last meeting, what they intend
to do before the next meeting, and what difficulties
they are facing.

• Sprint. This refers to one development iteration. The
development must be divided into fixed sprints that
take, each one, 30 days. Once project members have
developed more experience with Scrum, adjustments
can be made to the duration of the sprints.

• Sprint Planning Meeting. This is the meeting to plan
the next sprint. At this meeting, the Scrum Team
decides what functionalities and technologies will be
developed during the sprint.

• Sprint Review Meeting. 4-hour meeting that happens in
the last day of the sprint. This is the meeting for the
team to present and review the product increment
developed during the sprint. It must be coordinated by
the Scrum Master.

• Sprint Backlog. A repository containing those
requirements selected from the Product Backlog to be
developed during the next sprint.

Fig. 1 briefly shows the Scrum process. Initially, all
functionalities, features, and technologies are included as items
in the Product Backlog. During the project, instead of being
static, the Product Backlog evolves along with the product. In
each sprint, the Scrum Team selects as many items from the
Product Backlog as they think they can develop during the
iteration, and these items are included in the Sprint Backlog as
a list of tasks. Throughout the entire sprint, a short meeting
conducted by the Scrum Master, called Daily Scrum Meeting,
happens to review the progress and identify impediments. At
the end of each sprint, an increment of the product including
new functionalities is delivered; members of Scrum Team all
gather for a meeting, the Sprint Review Meeting, where that
product increment is inspected. Finally, the Product Backlog is
reorganized and prioritized, and the items with higher priority
are selected for the next sprint.

Figure 1. Scrum Process (http://www.scrumalliance.org/learn_about_scrum)

598 599

Scrum members can play the following roles:

• Scrum Master: the person responsible for the success
of the project. As already mentioned, it is the Scrum
Master who has to ensure that the values, practices and
rules of Scrum are performed and enforced
accordingly;

• Product Owner: the one person who is responsible for
managing and controlling the product backlog;

• Team Members: those responsible for achieving the
target goal set for a sprint.

III. CASE STUDY

The case study utilized in this paper refers to the
development of a web application for storing and managing
electronic documents. It consists essentially of a web-based
user interface to a core document service already implemented.
That core service was made available to team members as an
API for the Java language. A non-functional requirement was
that the implementation of such a web application should rely
on the latest version of the JSF framework (i.e. Java Server
Faces version 2.0) that had been recently released.

The team was composed by four people. All of project
members had significant experience with Java. The Scrum
Master had good experience in project management and could
spend four hours a week in this project. The Product Owner
also played the role of a team member (i.e. developer). This
person had developed the code of the document service back
end to be utilized in this project, thus having good knowledge
about the application domain, which is why was assigned the
role of Product Owner. This person could spend ten hours a
week in this project: four hours as Product Owner, and six
hours as a development team member. The remaining two
people were regular team members and they were considered
beginners in regard to the technology utilized in the
implementation, particularly the JSF-2 framework. They could
dedicate twenty hours a week to this project.

The entire project should not exceed four months due to
budget restrictions, which is why adopting some sort of agile
process was considered imperative by all project members.

IV. CONSTRAINTS TO THE AGILE PROCESS

The development process utilized in the case study had to
be defined with the following constraints in mind:

• Distributed Team. Team members would not be
working at the same place every day and face-to-face
meetings could be held only once a week.

• New Development Technologies. Team members were
not very familiar with some of the development
technology utilized in the project.

It is important to note that, although all the participants did
not work at the same place, they were all in the same city. In
fact, they could meet once a week. They could also schedule
sporadic face-to-face meetings in case some crucial issue had

to be addressed. Therefore, this project did not have most of the
difficulties commonly found in distributed agile development
such as culture, time zone, communication, customer
collaboration, trusting, training and technical
issues [6].

The process utilized in the case study was based on Scrum.
However, some of its practices had to be modified in order to
cope with the constraints mentioned above. Therefore, the
following decisions regarding the adaptations necessary to the
process were made:

• Utilize a web-based tool to support the process. As
project members would be working at different places
in the same city, they decided to utilize a web-based
tool to support the process, not only to allow all
members to monitor the execution of sprints, but also
to serve as a means of communication between them.
In addition to providing support for managing the
Product Backlog and monitoring the development of
sprints, the tool in question should have some sort of
wiki or blog associated with Product Backlog items
(stories and their tasks) with the capability of notifying
(preferably through e-mail) those involved about new
entries in the wiki.

• Eliminate daily meetings. Despite daily meetings being
one of the most important practices of Scrum [3], it
was necessary to remove them from the software
process because project members were unable to meet
daily. The possibility of having daily meetings through
video web-conferencing was considered, but there was
the additional difficulty of team members having
disparate working hours on certain days of the week.
So, they decided to adopt only weekly meetings for
monitoring the sprints. It would be up to the Scrum
Master and other project members to monitor and
update the entries in the wiki daily in order to identify
and resolve any issues that might come up during the
development of sprints.

• Permit sprints with extendable length. Most of the
programming to be carried out in sprints was expect to
utilize a new technology not yet dominated by
developers. Initially, the sprints had their duration set
to two weeks. However, some of the first sprints
showed a delay between 10% and 25% compared to
the estimated time. Project members realized that the
main reason for the error in estimating sprints was the
difficulty in predicting the time developers needed for
learning the new technology. In a situation like that, it
is recommended that the Scrum Master speak with
people who understand the technology [3]. However,
no one with that knowledge was available to contribute
to the project. It was then decided that the Scrum
Master would have the power to increase the duration
of the sprints by 25% in case the delay had been caused
by the lack of experience with the technology involved.
Therefore, instead of being sent back to the product
backlog in order to be incorporated into a new sprint
(as recommended in [3]), the tasks that could not be
completed by the end of a given sprint would remain in

598 599

that same sprint, which would have its length increased
by up to 25% (the exact percentage should be set by
the Scrum Master during the weekly meeting). The
idea behind that decision was to prevent a newly
created sprint from causing team members to lose their
focus on the issues related to learning the new
technology, and also to save the team from
unnecessary frustration resulting from a significant
number of sprints not being completed.

These adaptations introduced into the process were shown
to be adequate to the project in question and to the profile of
the project team. Table 1 summarizes the agile principles and
practices that had to be neglected due to such adaptations and
why they were considered necessary.

TABLE I. AGILE PRINCIPLES AND PRACTICES NEGLECTED

Principles/Practices Constraint Adaptation

Agile Principle:

The most efficient

and effective method

of conveying inform-

ation to and within a

development team is

face-to-face conver-

sation.

Scrum Practice:

Daily Scrum Meeting

Team mem-

bers do not

work at the

same time or

place and are

not capable of

meeting every

day

Longer weekly

meetings to monitor

the sprint

Web based tool to

support the process

and communication

between all project

members

Agile Principle:

Business people and

developers must

work together daily

throughout the pro-

ject

Project Own-

ers are not

available for

meeting with

the develop-

ment team

every day

Web based tool to

support the process

and communication

between all project

members

Scrum Practice:

Time Boxed Sprints

It is not always

possible to

make a precise

estimate of the

time taken by

sprints because

of new techno-

logies involved

Extendable Sprint

that can last up to

25% beyond its

initially estimated

length (according to

the judgment of the

Product Owner at the

Sprint Meeting)

V. DEFINING A NEW AGILE PROCESS

The agile process that resulted from the modifications
mentioned above is generically described by the steps below.
Note that the roles played by project team members are the
same ones defined in Scrum: Scrum Master, Product Owner
and Team Member.

A. Definition of the Product Backlog

This step aims to define an overview of the application, and
it consists of a list with an initial description of the stories and a
list of non-functional requirements. The stories are included in
the Product Backlog, just like in Scrum, with the exception
that, in this case, it assumes the utilization of a workgroup tool
(preferably web-based) that provides support to creating and
managing the backlog and monitoring the development
process. As new stories are identified, they are included into
the Product Backlog.

B. Sprint Planning

The duration of each sprint should be 1 to 3 weeks. The
sprints can have their time length increased by 25% in case of
error in the estimate due to the lack of experience with new
technologies. Sprints of 4 weeks are not permitted because a
25% increase would result in a sprint of five weeks,
inconsistent with the recommendations of Scrum.

The stories of the Product Backlog that will be part of the
sprint should be selected according to the time estimated for its
development, following the method Planning Poker [7] with
the participation of all project members. However, considering
that team members may not be familiar with the technology to
be utilized in application development, or difficulties imposed
by the distance between team members, it is acceptable to have
only the Scrum Master and Product Owner participate in
Planning Poker time estimations.

After stories have been allocated to the Spring Backlog, it is
necessary to verify that the description of each selected story is
detailed enough to be understood by team members. If
necessary, the description of the story should be more detailed.
These details could include the sketch of a screen layout, an
operating example, or even part of the programming code. This
is important to avoid fundamental questions about the story
descriptions that would normally be resolved during the daily
meetings.

Once reviewed, each story is divided into tasks. The tasks,
in turn, may also be detailed, and each task is assigned an
estimate of effort and time for execution. It is not required that
a story is sub-divided into tasks, but it may be necessary to
define a task within the story if the tool utilized to support the
process requires it.

Finally, tasks are distributed to developers. This distribution
is so that developers can benefit from the knowledge acquired
in previous tasks regarding the technology (or component)
necessary to perform those tasks.

C. Daily Notification Monitoring

As this process does not include the daily meetings
originally proposed in Scrum, it is necessary to monitor
notifications triggered by the Scrum Master or other team
members. This assumes that the Scrum Master and team
members are not always at the same place, and the execution of
this step requires the utilization of a workgroup tool that allows
team members to submit their questions and complaints to the
Scrum Master.

600 601

D. Sprint Design and Coding

This step is devoted to applying any design techniques
considered appropriate for a given project, such as sequence
diagrams and design patterns, and writing the corresponding
implementation code to be compiled and run in the target
platform.

E. Weekly Meeting

Participants must schedule a weekly meeting to be held by
all project members. Whenever possible, members should meet
in person, otherwise through video conference. If the meeting
is held at the end of the sprint (Sprint Meeting), it may last up
to three hours. In such a Sprint meeting, the Scrum Master can
evaluate how the stories that were not completed will be
handled and whether or not the sprint will have its duration
augmented. If it is just a regular meeting to monitor the sprint,
the Sprint Backlog must be partially reviewed and discussed,
and it can last no longer than 2 hours.

F. Code Delivery

After each sprint, the code must be made available to both
the Product Owner and the Scrum Master so they can verify the
functionality implemented in that sprint.

VI. DISCUSSION

The development of an application that utilizes emerging
technologies not well known by the developers brought up
some important aspects related to utilizing agile methods for
that task, which are discussed next.

When a new technology is being utilized, the time spent to
learn this technology has to be computed in the time allocated
for the development of the stories selected in a sprint.
However, it is often quite difficult to determine the time
required to learn that technology, which normally leads to
errors in estimation. One solution to avoid that problem is to
allocate a period of training for developers prior to
development. However, this can cause an unnecessary delay to
the start of the project as developers can be more efficient to
learn about the new technology while they are trying to address
specific issues related to the tasks of each sprint. For this
reason, the process described here assumed that the time
required to learning that technology should be estimated as part
of each sprint.

Another solution to the problem of incorrectly estimating
the time allocated to each sprint would be to assign the stories
and respective unfinished tasks back to the Product Backlog, as
suggested originally in Scrum [3]. This solution was not
adopted here to prevent team members from being held
responsible for unfinished sprints. Project team members found
better to allow the length of the sprint to be increased in up to
25%, provided that the delay was related to technologies that
developers were not familiar with.

It is important to point out that as developers become
familiar with new technology, it is no longer considered new
and therefore the time that was once required for learning that
technology can no longer be included in the sprint time
estimation.

In the case study described earlier, the time originally
allocated for development was 3 months (13 weeks), divided in
8 sprints. As a considerable number of sprints have had their
duration time increased, the development ended up taking 16
weeks to complete. Fig. 2 presents a graphic showing the
estimated time and the actual time spent in each sprint. Note
that this project involved the development of a graphical user
interface (UI). Some agile processes suggest that the design of
all UI must be done prior to regular iterations [8] and some
suggest that UI design is performed in parallel to product
development [9]. Since the project in question could not count
on a UI specialist in usability, as suggested by [10], and
considering that the UI was relatively simple, it was up to the
Product Owner to sketch some of the UI screens, which were
utilized to complement the description of the stories.

1

2

3

4

5

6

7

8

0 0,5 1 1,5 2 2,5

Estimated Time Actual Time

Time Spent (in weeks)

S
p

ri
n
t

Figure 2. Duration of each Sprint

Another point of discussion is the amount of description
included in each story and task. As suggested in [11], the
stories can be detailed to make them more understandable for
the developers. Usually, this description should be concise.
However, when developers have no prior knowledge of a
technology being utilized or lack a complete understanding of
application requirements, detailing the stories and tasks
increases their productivity in development. That also helps in
situations where project members are physically apart.

As suggested in [12], it is important to modify or replace a
practice, rather than simply delete it. Regarding daily meetings,
an agile practice defined in Scrum, it seems possible to replace
them by electronic communication without large apparent
losses, provided that an appropriate tool is utilized. When there
is no possibility of having daily meetings, the communication
through a tool seems to be the best option to keep track of
problems that are occurring daily as opposed to address these
problems only after the weekly meeting.

600 601

A common practice of Scrum is to use a task board. Since
the development team was not working at the same place, the
use of a task board to record tasks not started, in progress and
completed seemed useless. However, that was compensated by
the web tool selected, which allowed to have tasks assigned to
each team member and keep track of the status of each task
(not started, in progress and completed).

VII. CONCLUSIONS

This paper presented the development of an application
using an agile process. This process was based on the agile
method Scrum, but it was adapted according to some
development and project team constraints. Although neglecting
some of the most known agile principles and practices, the
resulting process was successfully applied to a software project
without affecting the agility of its development.

The agile process defined in this work neglects two agile
principles defined in the Agile Manifesto [1], particularly those
that say that development teams must work together daily and
that information should circulate among team members in face
to face conversation. However, it was possible to observe that
agile processes can also be applied to projects that do not allow
such agile principles and practices to be completely followed,
provided these are compensated by appropriate practices or
tools. In the case study presented here the daily meeting
practice had to be replaced by a weekly meeting. The lack of a
daily face to face communication was compensated by the
adoption of a web based tool that notifies project members
about questions or issues faced throughout the sprint.

One important adaptation incorporated to the development
process described here was to allow extendable sprints. Instead
of having time-boxed sprints, the time allocated for each sprint
could increase by 25% provided that the delay was caused by

errors in estimating the time required for the developers to
become familiar with the new technologies utilized in
development.

REFERENCES

[1] Agile Manifesto, “Manifesto for Agile Software Development”,

http://www.agilemanifesto.org/, March 2011.

[2] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley, p. 463, 1999.

[3] K. Schwaber, M. Beedle, Agile Software Development with SCRUM.
Prentice Hall, p.158, 2002.

[4] J. Highsmith, Agile Software Development Ecosystems, Addison
Wesley, p.404, 2002.

[5] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New
Directions on Agile Methods: A Comparative Analysis”. 25th
International Conference on Software Engineering (ICSE'03), 2003.

[6] M. Kajko-Mattsson, G. Azizyan, M.K. Magarian, “Classes of
Distributed Agile Development Problems”, Agile 2010, pp. 51-58, 2010.

[7] Planning Poker, “Play. Estimate.Plan.”, http://www.planningpoker.com/,
March 2011.

[8] J. Ungar, “The Design Studio: Interface Design for Agile Teams”, Agile
2008, pp. 519-524, 2008.

[9] J. Ferreira, J. Noble, R. Biddle, “Agile Development Iterations and UI
Design”, Agile 2007, pp. 50-58, 2007.

[10] M. Singh, “U-Scrum: An Agile Methodology for Promoting Usability”,
Agile 2008, pp. 555-560, 2008.

[11] J. Sutherland, A. Viktorov, J. Blount, N. Puntikov, “Distributed Scrum:
Agile Project Management with Outsourced Development Teams”, 40th
Annual Hawaii International Conference on System Sciences
(HICSS'07), pp.274, 2007.

[12] S. V. Shrivastava, H. Date, “Distributed Agile Software Development: A
Review”, Journal of Computer Science and Engineering, vol. 1, pp. 10-
17, May 2010.

602 603

Simulations of Risks for Monitoring and Prevention
MariaGrazia Fugini,

Filippo Ramoni
Politecnico di Milano, Dip. di
Elettronica e Informazione,

Piazza L. Da Vinci, 32, 20126 Milan,
Italy

fugini@elet.polimi.it,
filippo.ramoni@yahoo.it

Ronald Israels
Quint Wellington Redwood, De

Oude Molen 1, 1184 VW Amstelveen,
The Netherlands

r.israels@quintgroup.com

Ovidiu Constantin
Oracle Italia, Viale Fulvio Testi, 136,

Cinisello Balsamo, Milan, Italy
ovidiu.constantin@oracle.com

Claudia Raibulet
Università degli Studi di Milano-

Bicocca,
Dipartimento di Informatica,

Sistemistica e Comunicazione,
Viale Sarca, 336, U14, 20126, Milan,

Italy
raibulet@disco.unimib.it

Abstract—This paper deals with a tool developed to support
training and education in the field of security and safety in work
areas, plants, or industrial environments. The tool comprises the
dashboards enabling administrators and users to simulate risks
and accidents to be ready for interventions in case of occurrence.
Based on a computational model of risks, able to identify the
causes and the signs which precede accidents, to enact prevention
mechanisms, and to execute repair actions in order to avoid
accidents, this paper presents a Risk Simulation Management
(RSM) system and its functioning on some examples.

Keywords-risk; simulation of risks; preventive strategies.

I. INTRODUCTION

Most accidents in work areas (e.g., plants or construction)
are announced by events signalling risky situations, which may
be identified and managed through preventive strategies before
they evolve into actual accidents. In other cases, an accident
determines an emergency situation that should be addressed
through corrective strategies. The advances available in IT,
service-based software, telecommunications and sensors
networks, and safety garments may be exploited successfully in
the identification of the risky situation which usually precedes
and announces accidents, and their proper and timely
management in order to avoid accidents or limit their damages.

In this paper, we describe our approach to risks in work
areas and a prototype aimed at promoting education and risk-
awareness through the simulation of risks. The idea behind our
prototype is that risks are explicitly modelled, computed, and
managed. To achieve this objective, we propose a prototype
based on a risk computational model which identifies the
environmental entities meaningful for the representation and
computation of risks.

The contribution of this paper consists in the explicit
modelling and computation of risks and their management
functions. We define thresholds to identify operating modes
(e.g., normal, risky and emergency), and propose a
probabilistic computational model to handle risks in work
areas and to put in places preventive strategies. When the
situation is beyond the emergency threshold, a deterministic
approach is applied and the system provides corrective
strategies to handle the emergency. Software and hardware

components for risk detection (e.g., sensors and detection
devices) are simulated, so that we are able to embed simulated
features of the available advances in areas such as location-
awareness through antennas or tagging through RFID
technologies. A risk is treated in a person-centred way, in that
we handle a risk only when it occurs to persons during their
interaction with tools, during the movement of machineries, or
in relation to their protection from risky events. Currently, we
deal with single risks only. The issues concerning compositions
of risks are part of future developments.

The paper focuses on the architecture for implementing a
Risk Simulation Management (RSM) system and introduces a
scenario to train people to work in a risky environment by
using our RSM. In particular, in previous work [9] we have
explored how technologies can provide information about the
individual who wears the computer sensors and services and
the world which this individual interacts with. We also assume
a Gaussian distribution for each risk source [14].

This paper is organized as follows. Section II introduces the
risk management and assesment issues. Section III presents our
approach to risk modeling. Section IV describes the simulation
prototype. Section V addresses related work. Section VI
contains conclusions and further work.

II. RISK MANAGEMENT AND ASSESSMENT ISSUES

The purpose of risk management is to obtain a balance
between success, challenge, and failure. Risk management is
aiming to foresee risks and prevent failures. But as the risk has
its price, the prevention is not costless. For this reason, the
central element of an enhanced risk management method is to
make risks and the mitigating actions financially opportune.
This makes it possible to establish the wanted balance.

A risk is the product of the possible effect of a threat and
the chance that this threat occurs. In this paper we present our
approach to risk identification and management based on the
Monitoring, Analyzing, Planning, Executing (MAPE) loop [6].

The main elements in risk management are to identify and
classify threats and to define the mitigating actions. For the
identification of threats, there are two basic methods. The first
is by brainstorming and collecting possible hazards to the
desired situation (can be a steady state or project). A more

602 603

systematic method is to use predefined lists of hazards. Those
lists are industry related e.g., banking and insurance, chemical
industry, ICT [8], aerospace and circumstance related e.g., ICT
outsourcing in banking and insurance [1], projects (e.g., the
Prince2 project management method).

In Figure 1, the overall model for risk management with all
affecting factors is shown. We see that a risk has an interaction
with Actors, is of different Types, has various Effects and
receives different Responses. Such modeling framework
tackles risks from all viewpoints: technical, organizational,
operational/tactical/strategic, and human-related issues.

For the classification of a risk effect, the simplest approach
is to evaluate the effort in financial terms. Every ultimate effect
of a threat is that it costs money to remove this effect.
However, there are more possibilities to classify the effects of a
risk. In the banking and insurance industry these are
‘reputation’ and the ‘license to operate’. In other industries
(like healthcare and the chemical industry) the amount of
human damage will be a more important class of effects. In the
end it helps to align all the classes to make it possible to count
the balance between risk and remedy.

Figure 1. Comprehensive Risk Management Model

The mitigating actions consist out of three classes which are
prevention (making the hazard cannot occur and/or the effect of
the hazard minimal), monitoring (checking if the hazard does
not occur) and correction (minimizing and removing damages
when the threat takes place). Simulation is an example of a
preventive risk management method. It makes it possible to
check the completeness of mitigating actions and to train how
to monitor and to act when a threat takes place.

III. RISK MODELING

Our approach to risk modelling and simulation starts with
the technical points of the Risk Model in Figure 1. Using the
MAPE loop, we observe an environment, detect the anomalies
by analyzing the data collected through monitoring, decide if a
risky situation occurred and if intervention/change is needed
(and of what type), and put in place (execute) the planned
modifications in the environment. Such a loop implements a
self-healing [6] RSM able to detect and manage risky situations
through preventive and/or emergencies through corrective

actions. Specific preventive actions are put in place when the
risk is between the Risk Threshold and the Emergency
Threshold. Since some monitored parameters (e.g., the
temperature) can reveal arising risks, the idea of preventive
actions is that parameters can be evaluated using a probabilistic
approach that computes the probability for the out-of-range
parameter to evolve into a dangerous situation. Preventive
actions are then suggested by the system to take the abnormal
parameter back to normal values before the risk evolves
further. Such actions range from checking a source of gas loss
to sending preventive alarms to persons thorough their PDAs.
Beyond the Emergency Threshold, there is an emergency and
we move to a deterministic approach, using off-the-shelf, real-
time corrective actions that patch the situation immediately.

A risk (or risky situation) occurs when one or more
parameters through which the environment is monitored are out
of their ordinary operation range. The causes (or sources of
risks) may be various: loss of substances, machinery
movements, or the interaction between the workers and tools.
The computation of the risk (or emergency level) is supported
by the pre-computed risk map related to the environment. The
risk map is determined considering the location of risk sources
and protection elements (including emergency exits).

The remaining of this section introduces the environment
model and the risk computation through an example.
A. Entities Modeling

The overall modelling at the basis of Risk Simulation is
centred on the Environment, the Persons, the Tools and the
Machineries. These elements are both subject to risks and
generate risk. Informative Devices (e.g. sensors) and Protection
Elements (e.g., security garments) allow risks to be identified,
avoided and/or faced. An entity can be either static (its location
is fixed within the work area: a tool for example) or mobile (its
location changes along time: persons or machineries).

A plant is a ComplexEnvironment, which may include open
and closed areas. The topology of a plant is defined by the
physical location of each area, its dimension attribute, and the
proximity relationship. Each area has at least one access point
(for entrance and exit), which may be used as emergency exit.
We indicate the plant elements which may either be the source
of risks or influence the computation of risks and their level,
namely: access points (in/out openings); location of water and
gas pipes and electrical wires; and windows, doors, emergency
exits, and other unprotected open spaces.

A person represents a worker in the environment with an
associated profile, containing: (1) skills: related to ability in use
of tools and machineries; (2) experience: related to knowledge
of security procedures and work organization; and (3) roles:
worker, team head, visitor, administrator.

Persons use tools (e.g., hammers, saws, drills, diggers) or
machineries (e.g., trucks). Both tools and machineries are
characterized by the functionalities they offer and their
fabrication date (an indicator of the risk in using them).

Informative devices model the technological elements
needed for surveillance of the environments. They collect
information from the environment and convey it to the RSM
and receive information from a surveillance centre, allowing
persons to be notified about the current situation in the area.

604 605

Protection elements are entities whose role is to prevent
risks/emergencies by providing protection to persons, tools,
and machineries. They are of three types (see Figure 2): (1)
person protection garments: objects providing physical
protection to persons (i.e. helmet, boots, jacket); (2)
environment protection kits, which help persons to protect the
environment in case of difficulty, or to escape quickly if
necessary (e.g., fire protection kits and evacuation kits); and (3)
instrument protection kits, which provide physical protection to
devices, tools, and machineries.
B. Risk Computation

Suppose the environment structure is composed of five
areas (see Figure 3). For each area, a risk map is defined.
Assume that area A has a gas pipe loosing gas slowly and a
team is present with tools and one machine (e.g., a truck).

Figure 3. Map of a Work Environment

The Risk Map of Area A is defined as follows.
RiskMap (A) {
 Fixed_Part = {Access Point (Xap,Yap), Window (Xw,Yw),

 GasPipe(Xgp,Ygp), DetectionDevice},
Dynamic_Part = {Team [(person,role)], [Tools], Moving Machine,

Activity}
 }

where X and Y are coordinates of access points, windows,
gas pipe and informative devices. The fixed part describes the
area structure while the dynamic part describes who is in the
area doing which activity and is computed through functions

illustrated in what follows. Detectors signal a situation of
increasing gas saturation and a risk event is reported. The risk
in Area A is computed by the function:

Evaluation_Value=REF(Risk Map, parameters)
where REF denotes a Risk Evaluation Function, the Risk

Map is as given above and parameters identifies all elements
monitored in the environment not included in the Risk Map
which are meaningful to determine the risk (e.g., gas).
Evaluation_Value is a value expressing the risk for each
parameter. If the value is beyond a given value (fixed for that
particular parameter), a potential risk is signalled.

The RSM contains the definitions of the REFs which may
be set through a dashboard: the system administrator sets an
evaluation function for each parameter, which associates an
evaluation to each value detected by the informative devices.

Each person has an associated Personal Risk Level (PRL)
which has to be combined with the Risk Map of the area. The
PRL depends on the: (1) physical location in the environment,
(2) role of the person; (3) tools and machineries used; (4)
physical state of the person.

Formally:
PRL=f (location, role, tools and machinery)

Role, tools, and machinery are evaluated using an
opportune evaluation function, while the location is evaluated
using the risk map; f is a suitable evaluation function. A
possible choice is given by the following function (where eval
stands for evaluation), namely:

PRL= (eval(location), eval (role), eval (tool,FabricationDate),
eval(machinery,FabricationDate))

Each person has also an associated Personal Protection
Level (PPL) dependent on the: (1) role and experience; (2)
protection garment, that protect persons; and (3) device (e.g., a
PDA) enabling a person to communicate with other persons.

Figure 2. Modeling Entities for Risk Simulation

604 605

Formally, we have:
PPL=f (role, experience, protection, device)

Role, experience, protection garment and device are
evaluated using an opportune evaluation function; f is a
suitable evaluation function. A possible choice for f is:

PPL = (eval (role), eval(experience), eval(protection),
eval(device))

where eval is a function defined to evaluate the various
components of the PPL. PRL and PPL are continuously
computed for each person, using the evaluation functions onto
the values measured from the environment. Using the
environmental risk map, the risk related to the location of
workers can be retrieved, and using the information on
tools/machinery used and protection garment the risk level of
the worker is computed. When a person moves around the
environment, his PRL is compared instantaneously with the
PPL, defining the Personal Risk Index (PRI) as follows:

PRI=PRL-PPL
This is an indicator of the existing risk for the person at a

given moment determined as a statistic measure computed
without considering how the person influences the
environment, but rather how the environment creates risky
situation for a person. If the computed PRI exceeds the risk
threshold, the RSM tries to reduce the PRI by choosing the
best strategy. Risk Facing Rules are defined as sets of
strategies to face a risk (gas leak in our example). A Strategy
is an ordered list of actions to be executed in the indicated
sequence to mitigate the risk or to handle the emergency. A
simple Risk Facing Rule putting in or two strategies for “gas
leakage” risk are reported in Table 1. In order to choose the
most appropriate Risk Facing Rule and strategy, the root
causes of the high value of PRI have to be identified. By
knowing the f() used to compute the PRL, the inverse function
f -1 (PRL, Parameter) returns the main parameter causing the
risky situation. Based on this information, the suitable
preventive strategy can be chosen.

Here, the Risk Facing Rule has two alternative strategies:
Strat1 is a “softer” preventive strategy, where actions allow a
team to plan their leaving from the dangerous area, while
Strat2 is a preventive strategy whose set of actions implies
evacuation. Strategies contain actions made of a message part
(denoted under the to part) directed to a tool, a team and even
to a single person, such as Team Leader in Strat1 and Worker
n. 7 in Strat2. For instance, in Table 1, Worker 7 might have
special health requirements and hence is directly notified,
while in Strat1 both the Team leader and the specific Team
(Team A) are specified as targets of the alarms.

TABLE I. RULES AND STRATEGIES FOR A GAS LEAKAGE RISK

IV. THE SIMULATOR

The RSM prototype is composed of the following elements
[15]. The Data Collector receives the current values of the
monitored parameters related to the environment from the
informative devices (e.g., sensors, RFID, antennas), which are
located in the environment to monitor its status and to generate
alarms. Data can arrive also from users. The Data Collector
forwards these data to the Environment Data Manager, which
stores them in the Environment Database. The System
Database contains data regarding the observed system (e.g.,
topology, user profiles workers) which do not change
frequently over time. The main task of the Data Analyzer
Manager is to check the current values of parameters (i.e., if
they are out of the admitted range). When it detects parameters
beyond of a given threshold, it notifies the Risk &
Emergencies Manager, which is composed of a Risk Detector,
an Emergency Detector and a Strategy Manager. While the
first two identify the current risk/emergency based on the
parameters values received from the Data Analyzer module,
the Strategy Manager identifies the appropriate strategy to be
put in place to address the current situation, based on a set of
risk facing rules available in the Risk & Emergency Database
containing the description of all the risks/emergencies which
can be addressed by the system. Once the strategy has been
identified, the Risk & Emergencies Manager contacts the
Execution Manager to apply the strategies. The messages to be
sent to the environment elements (persons, informative
devices or protection elements) are managed by the
Communication Manager, which chooses the appropriate
format for the messages (e.g., sound, alarm, sms). A Business
Intelligence Module analyzes the risks and emergencies (e.g.,
the frequency of their occurrence, reaction time, number of
involved persons) to improve the future results of the RSM.

Figure 4. RSM Prototype Architecture (taken from [16])

The aim of our simulation is: (1) to make available to the
RSM the data that would be collected by sensors and devices
(sensor networks, RFIDs, antennas, tags), (2) to simulate the
sensor communication techniques, and (3) to simulate the risk
reaction process in terms of alarms, actions, and strategies.

To wrap the environment in a simulation, each entity of the
environment has a corresponding simulated element, so that a

Strategy Action
To Message

Strat1 Gas Sensor 1 Check gas concentration level
Team leader Send sms
Team A Recover work tools
Team A,
Team leader

Leave area A and go in area B

Strat2 Gas Sensor 1 Check gas concentration level
Sound alarm 1 Activate
Worker 7 Group people in area D

606 607

1:1 correspondence exists between the object instantiated in
the simulation and the physical object/person to be controlled.
The simulation is centred around the user’s (Worker) actions,
to focus on the Human-Environment interactions. One basic
case is the Simulation of Worker’s Actions. These actions are
described in external XML files containing the sequence of
actions and their duration. The actions currently implemented
in the prototype concern movement actions (goto), use of tools
(e.g., usehammer), use of transport means (e.g., ontruck,
offtruck), and health-related actions (e.g., faint). An action has
a duration, a maximal execution time to be completed, and an
attribute denoting the number of times it has to be repeated.

Our simulator models the behaviour of environment
elements which provoke risk events. A selected set of
resources have been implemented: (1) Gas Pipe: in one use
case of our simulation, one pipe breaks due to hammer misuse;
this is modelled as a buffer filled one unit at a time
corresponding to each hammer blow; and (2) Gas: this is
simulated through a linear function that augments the radius of
a circle centred in the pipe breakpoint, and covering an area
equal to that of the area interested by the expanding gas.

The simulator shows the communication and protocols of
instruments and devices in order to provide data from sensors
and tags to the RSM. Such communication occurs as the value
change of some variables: each simulated object that transmits
data has and associated modelled object. To modify these
parameters (e.g., a value read by a sensor) the sensor uses the
reference to the object of System and that, via suitable
methods, modifies the values of the attributes. Some simulated
objects have no reference to objects of the environment. For
example, a gas pipe in the simulation is used only to model the
interactions with other elements of the RSM to show what
occurs in the environment, but is not an active technological
component and has no direct link to the RSM. Such object has
a software component counterpart in the RSM, necessary for
the localization services, in case, for instance, during a gas
leak, the identification of the leak source is needed.

A screenshot of our prototype shows a sample Risk Map
(see Figure 5): the third box of the first row reports the risk

map of the working area showed in the second box. On the
upper side of the room, an emergency exit is located, while on
the right side a source of risk - a gas pipe - is located. The gas
pipe creates a risk zone, identified by a red and yellow area,
while the emergency exit decreases the risk in its vicinity. The
workers present in the area also contribute to the risk map. The
current prototype implements a set of simple prevention and
correction strategies and allows one to modify the description
of the environment by allowing the upload of a Risk Map
definition in an external XML file.

V. RELATED WORK

Risks in work environments are usually addressed
technically through sensors, ad-hoc devices (wearable devices
[9]) and suitable software for empowering the individuals’
lives. A general approach to risk management has to consider
also social, knowledge management, and decision-making
approaches. In [12], emphasis is on key decision structuring
steps and analytical tools to help ensure the systematic
treatment of fact-based and value-based risk knowledge
claims. The introduction of intelligent capabilities in work
protective equipment through ICT technologies is one of the
priorities of several international safety and health
organizations [22]. The overall problem of risks and safety,
with particular attention to the way of communicating risks to
people and companies is discussed in [20]. From the technical
perspective, sensors and sensor networks [3], [4], [13], [18]
are popular in the development of software for various
application domains (i.e., scientific contexts [21], habitat
monitoring [2], structural health monitoring [7], augmented
reality [17]). [11] considers that sensors provide some of the
basic input data for risk management of natural and man-made
hazards. A current problem pointed out in the literature [11] is
achieving interoperability between different sensor networks.
In practice, each remote data source may use distinct
encodings, formats and even communication protocols [5]
leading to a lack of standardization and interoperability
problems when multiple sensor networks are combined. From
the software viewpoint, interesting approaches are service-
oriented [3], [4] due to their modularity, standardization

Figure 5. Risk Map of a Work Area

606 607

possibilities, support to self-healing approaches and
adaptation. In [19], environmental risk assessment and
decision-making strategies use comparative risk assessment
and multi-criteria decision analysis for the incorporation of
project stakeholders' opinions in the ranking of alternatives.

The European Commission (EC) has funded a number of
Integrated Projects concerned with the accessibility of data
and services for risk management (e.g., ORCHESTRA,
http://www.eu-orchestra.org/ and SANY, http://sany-ip.eu/).

VI. CONCLUSIONS AND FURTHER WORK

This paper has presented an approach to simulate the
monitoring and prevention of risks in work areas. The
definition of risk is related to the characteristics of the
environment, the persons working in it, the work machineries
and the tools used in the environment and of the work actions
performed by the persons inside this environment. Design
problems arise when an attempt is made to identify the
relations among these entities in order to identify the risk. We
have therefore introduced a model relating people, tools,
machinery moving in a space, and elements and locations
which are potential risky elements. We have described risk
sources generating and subjected to risk and ways to prevent,
monitor and correct risky situations. Technology devices are
modelled in that they offer a protection (e.g., sensors,
antennas, RFID, alarms) as well as protection garments
(helmets, protection shoes and so on), which embed no IT
elements but are a must for accessing the work areas. Finally
the behaviour of persons must be modelled. This is one the
hardest modelling tasks, since it implies the determination of
what a worker can do at each moment, the teams he is
participating in (more than one at a time, in general), and other
run-time aspects. There are further approaches we plan to
consider in the next future such as the PDCA (Plan-Do-Check-
Act) or Deming cycle [10]. Risk management starts with
analysis of the actual plans, in- and external rules and threats.
For serious risks (relative high chance and large effects)
responses (mitigating actions) are planned. Responses must be
controlled and further, the actual risk determined. Our current
work regards the implementation of a full- fledged simulator
endowed with the administrator’s dashboard of the RSM. We
are also working on refinement of the choice of suitable risk
evaluation functions related to the personal risk in real
environments, and on criteria for the selection of best
strategies to face risk and the evaluation of a strategy
application in terms of risk mitigation.

ACKNOWLEDGMENT

This research has been partially financed by the Italian
TEKNE Project. We thank G. Tomasino for implementation of
the simulator.

REFERENCES

[1] Basel Committee, On Banking Supervision, Outsourcing in Financial
Services, http://www.bis.org/bcbs/

[2] Bitsch Link, J. Á., Bretgeld, T., Goliath, A., and Wehrle, K. RatMote: A
Sensor Platform for Animal Habitat Monitoring. In Proceedings of the
9th ACM/IEEE international Conference on Information Processing in
Sensor Networks, ACM, pp. 432-433 (2010)

[3] Botts, M., Percivall, G., Reed, C., and Davidson, J. Sensor Web
Enablement: Overview and High Level Architecture, OGC® Sensor

Web Enablement: Overview and High Level Architecture. In GeoSensor
Networks, Lecture Notes in Computer Science Publisher Springer
Berlin, Heidelberg, Vol. 4540/2008, pp. 175-190 (2008)

[4] Chen N., Di L., Yu G. and Min M., A Flexible Geospatial Sensor
Observation Service for Diverse Sensor Data-based on Web Service.
ISPRS Journal of Photogrammetry and Remote Sensing Vol. 64,
pp.234–242 (2009)

[5] Chen C. and Helal S. Sifting Through the Jungle of Sensor Standards.
Pervasive Computing Vol. 7, Issue 4, pp. 84–88 (2008)

[6] Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., and Magee, J.
Software Engineering for Self-Adaptive Systems. LNCS 5525, Springer
(2009)

[7] Chintalapudi K., Paek J., Gnawali O., Fu T. S., Dantu K., Caffrey J.,
Govindan R., Johnson E., and Masri S. Structural Damage Detection and
Localization using NETSHM. In Proceedings of the 5th Intl. Conf. on
Information Processing in Sensor Networks (2006)

[8] COBIT, Enterprise Risk,
http://www.cioindex.com/it_governance/articleid/975/cobit-as-a-risk-
management-framework.aspx.

[9] Conti, G.M., Rizzo, F., Fugini, M.G., Raibulet, C., Ubezio, L. Wearable
Services in Risk Management. In IEEE/WIC/ACM International Joint
Conferences on Web Intelligence and Intelligent Agent Technologies,
Web2Touch Workshop, pp. 563-566, IEEE Press, Milan, Italy (2009)

[10] Deming, W.E. Out of the Crisis, MIT Center for Advanced Engineering
Study, MIT Press (1986)

[11] Douglas J, Usländer T, Schimak G, Esteban J F, and Denzer R.,. An
Open Distributed Architecture for Sensor Networks for Risk
Management, Sensors 8, pp. 1755-1773 (2008)

[12] Failing, L., Gregory, R., Harstone, M. Integrating Science and Local
Knowledge in Environmental Risk Management: A Decision-Focused
Approach. In Ecological Economics, Vol. 64, Issue 1, pp. 47-60 (2007)

[13] Franceschini, F., Galetto, M., Maisano, D., Mastrogiacomo, L. A
Review of Localization Algorithms for Distributed Wireless Sensor
Networks in Manufacturing, International Journal of Computer
Integrated Manufacturing, Vol. 22, Issue 7, July, pp. 698-716 (2009)

[14] Fugini, M.G., Raibulet, C., Ubezio, L. A Web-Service Architectural
Perspective on Risk Management in Work Environments. In
Proceedings of the 2010 Workshop Living Experience through the Web
(Web2Touch), in conjunction with NOTERE’2010, pp. 327-332, IEEE
Press, Tozeur, Tunisia (2010)

[15] Fugini, M.G., Raibulet, C., Ramoni, F. A Prototype for Risk Prevention
and Management in Working Environments. In Information Technology
and Innovation Trends in Organizations, to appear in LNCS, (2011)

[16] Fugini, M.G., Raibulet, C. A Self-Healing Approach to Risk
Management in Work Environments, ERCIM News 84, 38-39 (2011)

[17] Kealy A, and Scott-Young S. A Technology Fusion Approach for
Augmented Reality Applications. Transactions in GIS 10, pp. 279–300
(2006)

[18] Laguna, M. A., Finat, J., and González, J. A. Mobile Health Monitoring
and Smart Sensors: a Product Line Approach. In Proceedings of the
2009 Euro American Conference on Telematics and information
Systems: New Opportunities To increase Digital Citizenship, Prague,
Czech Republic, ACM Press, New York, 1-8 (2009)

[19] Linkov I., Satterstrom F.K., Kiker G., Batchelor C., Bridges T.,
Ferguson E. From Comparative Risk Assessment to Multi-Criteria
Decision Analysis and Adaptive Management: Recent Developments
and Applications, Environment International, Vol. 32, Issue 8,
Environmental Risk Management - the State of the Art, pp. 1072-1093
(2006)

[20] Lundgren, R., E., and McMakin, A.H. Risk Communication. A
Handbook for Communicating Environmental, Safety, and Health Risks,
4th Edition, Wiley Publ. (2009)

[21] Martinez K., Hart J. K., and Ong R. Environmental sensor networks.
IEEE Computer Vol. 37, Issue 8, pp. 50–6 (2004)

[22] Rubio, J., Padillo, I., Espina, J., Verástegui, J., López-de-Ipiña, J. RFID
in Workplace Safety Solutions. In Proceedings RFID Systech 2010,
European Workshop on Smart Objects: Systems, Technologies and
Applications, Ciudad, Spain, (2010)

608 609

Flexible Support for Adaptable
Software and Systems Engineering Processes

Richard Mordinyi, Thomas Moser and Stefan Biffl
Christian Doppler Laboratory “Software Engineering

Integration for Flexible Automation Systems”
Vienna University of Technology

Vienna, Austria
{firstname.lastname}@tuwien.ac.at

Deepak Dhungana
Siemens AG

Vienna, Austria
deepak.dhungana@siemens.com

Abstract—Typical complex software and systems engineering
projects involve a set of different engineering disciplines and
therefore heavily rely on systems integration approaches. Ser-
vice-oriented architecture and Enterprise Service Bus provide a
valuable basis for systems integration; however often depend on
tedious manual work or invasive and therefore inflexible adapta-
tions in case of even minimal changes to engineering processes or
engineering tools. In this paper we describe the Engineering Ser-
vice Bus (EngSB), an integration platform which not only inte-
grates tools and systems, but also provides a bridge between en-
gineering processes and existing engineering tools. We evaluate
the EngSB by implementing a standard software engineering
process for multi-engineering environments. Major results were
that the EngSB allows for non-invasive and flexible integration of
well-established tools in multi-engineering environments, while
enabling the integration to take place on the level of engineering
processes.

Keywords-(software+) engineering, non-invasive integration,
component-based architectures.

I. INTRODUCTION

Todays real-world and large-scale software and systems
engineering projects such as the engineering of water power
plants or steel mills typically involve a wide range of different
engineering disciplines such as mechanical engineering, elec-
trical engineering and software engineering [1]. Each of the
disciplines already provides its specific engineering tools and
engineering systems to manage specific engineering processes.
Each of these processes heavily relies on different technical
platforms and heterogeneous data models. Well-established
software engineering methods and approaches (e.g., iterative
development processes, issue tracking systems etc.) could pro-
vide additional value for building and managing such informa-
tion systems engineering projects, but require careful integra-
tion and seamless collaboration with other engineering fields to
achieve industrial acceptance. Therefore, this kind of coopera-
tion can be considered as "(software+) engineering" [2].

There is already individual tool-support available for each
engineering process step, but the integration of those tools to
form a single integration solution heavily relies on manual
work and invasive changes to tools, and thus does not provide
an automated and non-invasive solution including support for

the integration of entire engineering processes. Furthermore,
current rigid integration solutions introduce complete tool sets
supporting the whole engineering process, but are inflexible
regarding even minimal changes in standard engineering
processes or tool sets. However, typical real-life engineering
processes very often comprise specific and highly specialized
tools and also often alter existing standard engineering
processes according to their needs. Therefore, large-scale engi-
neering projects seek for a flexible framework that facilitates a
non-invasive support of multi-disciplinary engineering
processes in case of tool exchangeability, as well as reusability
and adaptation of process descriptions without changing exist-
ing tools.

In this paper, we describe in detail the Engineering Service
Bus (EngSB) integration platform we have successfully used in
several industrial projects for the integration of heterogeneous
automation systems engineering tools. The EngSB is an inte-
gration platform based on the ESB and not only integrates dif-
ferent tools and systems, but also provides a bridge between
engineering processes and existing engineering tools [1, 3]. The
so-called engineering workflow is used as basis for the non-
invasive engineering tool integration and to automate the inte-
gration; this workflow is directly related to the original engi-
neering process and represents the implementation of the engi-
neering process in the EngSB platform. The EngSB addresses
requirements such as the capability to integrate a mix of user-
centered tools and backend systems, mobile work stations that
may go offline, and flexible and efficient configuration of new
project environments and SE processes.

In this work we focus on the application of the EngSB to
multi-engineering environments and describe the detailed ar-
chitecture of the relevant EngSB integration platform compo-
nents. Furthermore, we discuss the EngSB concept as a tech-
nical platform for the integration of different engineering tools
and for bridging engineering processes and engineering tools.
Additionally, we evaluate the EngSB by applying it to a stan-
dard software engineering process for the information systems
engineering domain, the Continuous Integration and Test
(CI&T) process [4], and comparing the results to other related
approaches, like with the general Application lifecycle man-
agement (ALM) approach and as a specific implementation of

608 609

the process with Hudson1. The specific configuration of the
EngSB with respect to the given process results in the concrete
OpenCIT2 (a continuous integration and test server) implemen-
tation.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes related work on aspects of technical integra-
tion and related implementations of research groups or indus-
trial projects. Section 3 describes the use case scenario. Section
4 details the EngSB implementation, which is evaluated and
discussed in section 5. Finally, section 6 concludes the paper,
and identifies further work.

II. RELATED WORK

This section summarizes related work on current methods,
concepts and approaches to integrate distributed environments,
architecture concepts for tool integration, and integration
framework specifications.

A. Tool Integration in Distributed Environments
The most common integration patterns have been summa-

rized in [5] whereas messaging pattern results in a huge number
of middleware frameworks available [6], mostly with the En-
terprise Service Bus (ESB) concept [7]. The ESB has been suc-
cessfully applied as agile integration platform for back-end
services in distributed heterogeneous business software envi-
ronments [7]. Key strengths of the ESB [8] are providing dis-
tributed integration and separating the description of the busi-
ness logic from the integration logic in contrast to design pat-
terns such as client-server architecture [9] or Messaging. Nev-
ertheless it has to be taken into consideration that too much
abstraction does not help software engineers integrate their
environments [10, 11] as the reusability of the different com-
ponents is limited. ESBs provide components which can be
reused to integrate different functionality or protocols, but only
little research is done regarding tool and process abstraction,
requiring system integrators to start again nearly from the
scratch for each new project.

The ESB is also used as the underlying infrastructure for
Service-oriented Architectures (SOA) [11] which intend to
support service composition and application evolution [12]
aiming at higher reusability, shorter time to market and lower
costs. Although the concepts are well adapted [11, 13], the
large number of different standards, specifications, technolo-
gies and high requirements in analyzing the organization make
SOA hard to understand and complex to implement. Addition-
ally, SOA itself does not provide any concepts for business
process event handling. SOA notifications are basically imple-
mented by defining services which directly call other services.
This requires rewriting the service, notifying the system, for
each logical change. With the help of service orchestration the
logic can be extracted from the services themselves into a meta
layer. However, this only moves the problem into a higher level
of abstraction as the meta-layer has to be rewritten every time
an additional service has to be notified.

1 http://hudson-ci.org
2 http://opencit.openengsb.org

B. Integration Environments
In general, analyzing the different concepts for integration

developed over time, three approaches were able to become de-
facto standards for integration in software engineering:

Script based integration approaches describe the build
process of software only. Modern approaches like Maven [14]
also integrate test-, deployment-, announcement- and documen-
tation environments to cover the complexities of current soft-
ware engineering projects. Although Maven is one of the most
used build systems for software development in the Java world,
its reusability and flexibility is limited: first, the Maven
workflow is hard coded into its core. It can be extended by
attending plug-ins to the different lifecycle goals, but it cannot
be changed completely and adapted for other uses.

Another approach of tool integration is to focus on the de-
veloper within its Integrated Development Environment
(IDE) [15] like in Eclipse3 or Microsoft Visual Studio4. They
provide integration modules like Mylyn which supports a com-
plete, task centered integration of issues retrieved from a wide
range of different issue trackers. Although an IDE brings the
entire engineering environment to the developer the logic and
process models have to be implemented with each environ-
ment. Furthermore, they do not support automation of complex
processes over multiple, different IDEs.

Application lifecycle management (ALM) based integra-
tion approaches usually comprise source control system and
integration workflows, deployment, monitoring, project man-
agement and testing, while at the same time covering the entire
project lifecycle [16]. An ALM is the Eclipse Application Life-
cycle Framework (ALF) [17] which handles integration chal-
lenges by introducing a central negotiator that manages interac-
tions between applications. By using an intermediate commu-
nication format the event manager prevents to integrate appli-
cations several times with several other applications. It allows a
single integration on the central node, which carries out com-
munication with other ALM applications through orchestration
of their corresponding web services. However, ALF is no long-
er supported by the Eclipse Foundation [18].

III. USE CASE

This section presents a (software+) engineering industrial
use case from signal engineering that has been retrieved from
an industrial partner developing, creating, and maintaining hy-
dro power plants. The standard mo del of the Continuous Inte-
gration and Test (CI&T) process known from software engi-
neering consists of a set of activities: checking out source code
artifacts from a source code management system, building the
system, running tests, performing analyses regarding the out-
come of these tests, and finally reporting test results to interest-
ed roles. The CI&T use case shows a key feature of an iterative
software development process: if parts of a system or engineer-
ing model get changed, the system has to be rebuilt and tested
in order to identify defects early and to provide fast feedback
on the implementation progress to the project manager and the
owners of the changed system parts.

3 http://www.eclipse.org/
4 http://msdn.microsoft.com/en-us/vstudio/default.aspx

610 611

Figure 1: Overview End-to-End Analysis [19, 20].

In distributed multi-engineering environments (see Figure
1), typically a set of different tools and data models are used
along the engineering chain. In difference to single system
models, where changes of model values have direct impacts on
other model elements, model value changes in cross-domain
modeling require additional transformation and checks before
the actual impact of a value change can be estimated or meas-
ured. To cooperate, the engineers have to exchange relevant
parts of the data structures in their tools with each other with
the goal of a consistent overall view on certain aspects in the
project, e.g., when producing a specification for a subcontrac-
tor. This requires exhaustive communication between engineers
to keep models consistent and thus introduces a variety of error
sources as well. Currently, every role uses organization-, do-
main-, and tool-specific data formats and terms, thus the data
exchange also takes considerable expert knowledge on the re-
ceiving end to make sense of the incoming data, typically as
large PDF document or tool-specific import file. Applying the
automated continuous integration and testing process in such an
environment increased consistency and minimize the number
of potential error sources.

IV. ENGSB IMPLEMENTATION

This section gives a description of the components (Figure
2) of the Engineering Service Bus (EngSB) architecture:

Core Components. The concept of Core Components con-
tains additional developed components providing services
which could not be provided by external tools or which are not
usable from external tools as required. The two most important
components for the architectural need of the EngSB are the
registry and the workflow component. Since different projects
may be running in parallel on the EngSB, each project requires
carrying a context which contains at least the project identifier
allowing the registry to map onto endpoints for each accessed
tool. The workflow component is responsible for engineering
rule, process and event management in the EngSB. The Drools5

business logic integration platform builds the backbone for the
workflow management system since it provides a consistent
solution for BPM, knowledge and event management. It in-
cludes Drools Expert as rule engine, Drools Fusion for com-
plex event processing, Drools Flow for business process man-
agement and finally Drools Guvnor as a centralized knowledge
repository to manage processes and rules centralized. The im-

5 http://www.jboss.org/drools/

portant part of the workflow component is its indirection layer
between engineering rules and processes and the EngSB Tool
Domains.

Figure 2: Components of the Engineering Service Bus.

Tool Domains. Although each tool provider gives a person-
al touch to its product their design is driven by a specific pur-
pose. For example, there are many different issue tracker avail-
able, each having its own advantages and disadvantages, but all
of them can create issues, assign and delete them. Tool Do-
mains [3] are based on this idea and distill the common func-
tionality for such a group of tools into one Tool Domain inter-
face. They can contain code, workflows, additional logic and
data, but they are useless without a concrete implementation.

Bridge. JBI does not allow components that are not dep-
loyed in the JBI infrastructure to directly interact with services.
This means that tools deployed to the EngSB can directly
access neither external components nor the other way round.
The bridge provides a connection between these two worlds.

Client Tools. Client Tools in the EngSB concept are tools
which do not provide any services, but consume services pro-
vided by Tool Domains and Core Components instead.

Domain Tools. Domain Tools, compared to Client Tools,
denote the other extreme of only providing services. Classical-
ly, single purpose server tools, like issue tracker or chat server,
match the category of Domain Tools best.

Domain and Client Tool Connectors. Although most
(back-end) tools provide interfaces to integrate and automate
them in distributed environments, they do not directly fit the
needs of the EngSB. Instead, they have to be wrapped up to
allow external, distributed tools to access them via the EngSB.
These required bridges are called Tool Connectors. Tool Con-
nectors wrap tools as Domain Tool Connectors to provide their
services to accommodate the relevant Tool Domain with the
expected interface. As Client Tool Connectors they provide a
Client Tool with an access to the EngSB services. Tools can be
integrated with more than one connector to act in many differ-
ent domains.

V. EVALUATION AND DISCUSSION

In this section we evaluate the capabilities of the EngSB re-
lated to flexibility and non-invasive support for integrating
software engineering processes by reporting on conducted fea-
sibility studies. The evaluation is based on the OpenCIT
framework by applying the standard software engineering

610 611

CI&T process (see left hand side of Figure 3) to multi-
engineering environments.

With respect to the CI&T process, the right hand side of
Figure 3, shows OpenCIT integrating common tools via five
different domains, namely Source Code Management, Build,
Test, Analysis and Notification. For each of these domains, a
concrete tool instance from each used engineering environment
(e.g., electrical engineering and software engineering) is con-
nected using a tool connector. In addition, the core Engineering
Workflow Rules component is used to configure the defined
CI&T process as a workflow on the EngSB and to orchestrate
the specific runtime events of the individual tools accordingly.

Figure 3. Overview CI&T and OpenCIT.

The evaluation has been conducted with two different tools
in two phases. First, we compare OpenCIT with a highly popu-
lar CI&T tool suite (Hudson) to demonstrate how EngSB can
address standard software engineering integration problems.
Second, we compare EngSB with a general purpose integration
framework (Eclipse ALF), which is a set of tools designed to
support an enterprise application from its initial inception
through its deployment and system optimization. The high lev-
el goal is to analyze the effort of adopting a new CI&T tool
suite, from the viewpoint of software administrators, building
tool connectors and defining/customizing the process.

Phase 1. In order to compare the effort required for inte-
grating new tools to the frameworks, we compared the effort
required for developing a connector and the mechanisms avail-
able for extending the core in Hudson and EngSB. We examine
initial adoption effort and the possibility to make changes to
standard CI&T workflow. Hudson provides extension points,
where new plugins can be added to extend the application log-
ic. This mechanism is used to integrating new tools to the
framework. EngSB provides interfaces, which can also be ex-
tended. The extensions provide the functionality via JMS, or
REST, or Web Services, allowing programming language in-
dependent integration facilities. As Hudson is meant for use in
software engineering, event processing is specialized and hard-
coded and may be customized only via tools integrated using
extensions points. Workflows are hardcoded, which means that
the core has to be extended for this purpose. In EngSB events

can be designed for domains but also completely independent,
which allows one to decide how tight the tools should be inte-
grated to the workflows. Workflows are basically defined in
drools.

Phase 2. We investigated the key characteristics of Eclipse
ALF, a system that allows reusable process definition and
adaption regardless of low-level technical details. We analyzed
the flexibility regarding event processing, effort needed to
modify workflows, and tool exchangeability capabilities. In
Eclipse ALF events are SOAP messages which are defined in
the core. New tools may react to the SOAP messages to
achieve workflow modifications. In EngSB events can be de-
signed for domains but also completely independent, which
allows one to decide how tight the tools should be integrated to
the workflows. In Eclipse ALF workflows are defined in BPEL
leading to a heavy-weight solution which has to be defined
programmatically and cannot be modified or extended at run-
time. In EngSB workflows are defined in Drools. While in Ec-
lipse ALF exchanging tools requires redefinition of the
processes and event handling, EngSB supports tools to be free-
ly exchangeable, as the workflow is defined on the level of tool
domains.

While CI&T suites such as Hudson enable the integration
of software engineering tools, there is no CI&T suite available
for enabling CI&T processes for multi-engineering environ-
ments such as the scenario presented in Figure 1. As shown in
the right hand side of Figure 3, OpenCIT can be used for mi-
grating the CI&T process, which originally comes from the
software engineering domain, to multi-engineering environ-
ments. This we define as (software+) engineering, as software
engineering provides additional value to systems engineering.
The tool domain concept of the EngSB allows for a non-
invasive exchange of single tool instances, since tool domains
define and provide the domain-specific functionality usually
provided by single engineering tools. Therefore, OpenCIT has
no restrictions regarding the tool sets to be used, but relies on
the tool domain concept of the EngSB to specify and integrate
already existing tool functionalities.

In order to enable the CI&T process for multi-engineering
environments, the standard CI&T process is adapted as shown
in the right hand side of Figure 3. In comparison to the standard
software engineering CI&T process, the multi-engineering
CI&T implementation of OpenCIT allows the definition of
multiple tool domains (often from different engineering discip-
lines) to define the same CI&T process step (e.g., the build
process step). When this process step is executed, OpenCIT
triggers the functionalities of all tool domains that are linked to
this specific process step. Furthermore, different strategies can
be implemented related to the order of the triggering, e.g., the
workflow engine of the EngSB can be used to implement and
enforce project-specific reporting strategies regarding the out-
come of a specific process step (e.g., a build failure notifica-
tion). The tool domain concept of the EngSB can additionally
be used to simulate engineering tool instances on the level of
an engineering process. This feature can be used to test engi-
neering process (e.g., whether they work as planned), without
the need to have individual tool instances available and con-
nected to the EngSB.

612 613

Additionally, EngSB showed more flexibility regarding the
continued use of favored tools by engineers, whereas standard
tool suites allows the integration of some standard software
engineering tools, which may or may not be used by the engi-
neers in a certain organizational setting. The possibility to use
known tools (thorough the possibility of integrating arbitrary
tools) results in minimal training effort for project participants,
since the used engineering tools are already familiar to them.

VI. CONCLUSION

Today’s large-scale information systems engineering
projects typically involve a range of different engineering dis-
ciplines with their specific engineering tools. However, for
building and organizing information systems engineering
projects to manage specific engineering processes a coopera-
tion of each discipline is required to form an integrated engi-
neering system. Although, there is already individual tool-
support available for each engineering process step, the integra-
tion of those tools to form a single integration solution heavily
relies on manual work and invasive changes to tools. However,
typical real-life engineering processes very often comprise spe-
cific and highly specialized tools and also often alter existing
standard engineering processes according to their needs. In this
paper, we presented the Engineering Service Bus (EngSB) as
an integration platform based on the ESB that does not only
integrate different tools and systems, but also provides a bridge
between engineering processes and existing engineering tools.
We demonstrated the use of the EngSB to migrate a standard
software engineering process - Continuous Integration and Test
(CI&T) – to multi-engineering environments and compared it
with popular tools, like Hudson or Eclipse ALF. The compari-
son showed that OpenCIT, the multi-engineering environment
integration of CI&T using the EngSB, can replace an integra-
tion framework like Hudson for projects involving multiple
engineering disciplines. Adaptations to the standard workflow
are more flexible in the case of EngSB because it allows arbi-
trary extensions through flexible event handling and exchan-
geability of tools. Mutual restrictions between tools and
processes can be minimized through the use of workflow rules
that are formulated on the level of tool domains. Furthermore,
we compared EngSB with Eclipse ALF to demonstrate the
EngSB provides higher abstraction level for tool integration,
which makes it easier to adopt For future work we intend to
perform empirical evaluations in case studies and implementa-
tions as well as creating domain-specific process definition
tools to support non-experts in defining information systems
engineering processes to be deployed in the EngSB.

ACKNOWLEDGMENTS

This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria. We are
thankful to Alexander Schatten and Andreas Pieber for their
valuable input in several discussions.

REFERENCES

[1] Biffl, S., and Schatten, A.: ‘A Platform for Service-Oriented Integration
of Software Engineering Environments’. Proc. Eight Conf. on New
Trends in Software Methodologies, Tools and Techniques, 2009

[2] Biffl, S., Pieber, A., and Schatten, A.: ‘Service-Oriented Integration of
Heterogeneous Software Engineering Environments’, TechnicalReport
QSE, ISIS, Vienna University of Technology, 2009

[3] Biffl, S., Schatten, A., and Zoitl, A.: ‘Integration of Heterogeneous En-
gineering Environments for the Automation Systems Lifecycle’, Proc.
IEEE Industrial Informatics (IndIn) Conference 2009

[4] Duvall, P., Matyas, S., and Glover, A.: ‘Continuous Integration: Improv-
ing Software Quality and Reducing Risk’ (Addison-Wesley, 2007. 2007)

[5] Hohpe, G., and Woolf, B.: ‘Enterprise Integration Patterns : designing,
building, and deploying messaging solutions’ (Addison-Wesly) 2004

[6] Du, Y., Peng, W., and Zhou, L.: ‘Enterprise Application Integration: An
Overview’. In Proc. of the 2008 Int. Symposium on intelligent informa-
tion Technology Application Workshops, Washington, DC, USA2008
pp. Pages

[7] Chappell, D.: ‘Enterprise Service Bus’ (O'Reilly Media, Inc.), 2004

[8] Chappell, D.: ‘ESB Myth Busters: 10 Enterprise Service Bus Myths
Debunked’, (Last visited February 22, 2010, online: http://soa.sys-
con.com/node/48035)

[9] Berson, A.: ‘Client/server architecture (2nd ed.)’ (McGraw-Hill, Inc.),
1996

[10] Woolf, B.: ‘ESB-oriented architecture: The wrong approach to adopting
SOA’, (Last visited February 22, 2010, online:
http://www.ibm.com/developerworks/webservices/library/ws-soa-
esbarch/)

[11] Engels, G., and Assmann, M.: ‘Service-Oriented Enterprise Architec-
tures: Evolution of Concepts and Methods’. Proc. of the 2008 12th Int.
IEEE Enterprise Distributed Object Computing Conference, Washing-
ton, DC, USA, 2008

[12] Yin, J., Chen, H., Deng, S., Wu, Z., and Pu, C.: ‘A Dependable ESB
Framework for Service Integration’, IEEE Internet Computing, 2009, 13,
(2), pp. 26--34

[13] Mike, P.P., and Willem-Jan, H.: ‘Service oriented architectures: ap-
proaches, technologies and research issues’, The VLDB Journal, 2007,
16, (3), pp. 389-415

[14] Sonatype: ‘Maven: the definitive guide, 1st edition’ (O'Reilly & Asso-
ciates, Inc., 2008. 2008)

[15] Cheng, L.-T., de Souza, C.R.B., Hupfer, S., Patterson, J., and Ross, S.:
‘Building Collaboration into IDEs’, Queue, 2004, 1, (9), pp. 40--50

[16] Chappell, D.: ‘What is Application Lifecycle Management?’ (Last vi-
sited March 22, 2011, online:
http://www.davidchappell.com/WhatIsALM--Chappell.pdf)

[17] Buss, T., and Caroll, B.: ‘ALF Architecture - Draft: A Platform for ALM
Tools Integration’, 2005

[18] Manchester, P.: ‘Eclipse kills open-source SOA projects’, (Last visited
February 26, 2010, online:
http://www.theregister.co.uk/2008/11/07/eclipse_kills_soa_projects/)

[19] Biffl, S., Moser, T., and Winkler, D.: ‘Risk Assessment In Multi-
Disciplinary (Software+) Engineering Projects’, Int. Journal of Software
Engineering and Knowledge Engineering, Special Issue: Software Risk
Assessment, 2011, 21, (2), pp. 1-25

[20] Moser, T.: ‘Semantic Integration of Engineering Environments Using an
Engineering Knowledge Base’. PhD thesis, Vienna University of Tech-
nology, 2009

612 613

Automated Detection of Likely Design Flaws in
Layered Architectures

Aditya Budi, Lucia, David Lo, Lingxiao Jiang, and Shaowei Wang
School of Information Systems, Singapore Management University

{adityabudi,lucia.2009,davidlo,lxjiang,shaoweiwang.2010}@smu.edu.sg

Abstract

Layered architecture prescribes a good principle for sep-
arating concerns to make systems more maintainable. One
example of such layered architectures is the separation of
classes into three groups: Boundary, Control, and Entity,
which are referred to as the three analysis class stereo-
types in UML. Classes of different stereotypes are inter-
acting with one another, when properly designed, the over-
all interaction would be maintainable, flexible, and robust.
On the other hand, poor design would result in less main-
tainable system that is prone to errors. In many software
projects, the stereotypes of classes are often missing, thus
detection of design flaws becomes non-trivial. In this paper,
we provide a framework that automatically labels classes
as Boundary, Control, or Entity, and detects design flaws of
the rules associated with each stereotype. Our evaluation
with programs developed by both novice and expert devel-
opers show that our technique is able to detect many design
flaws accurately.

1 Introduction
Layered architecture is a recommended industry prac-

tice as it promotes separation of various concerns into lay-
ers [17]. By using this architecture, when requirements
change, most of the changes could be localized to a limited
number of classes in a particular layer. Thus, no changes
would be needed for classes in unrelated layers as long
as the interfaces between the layers remain the same. As
software evolves over time, layered architectures are more
likely to have better reusability, improve comprehension
and traceability, and ease maintenance and evolution tasks
than single-tier architectures.

One commonly used layered architecture is the separa-
tion of classes into three stereotypes, namely: Boundary,
Control, and Entity, following the Unified Modeling Lan-
guage (UML) and its suggested objectory process [15, 14].
Boundary classes are responsible to interface with external
systems or users. Control classes are responsible to real-

ize particular functionalities or use cases by coordinating
the activities of various other classes. Entity classes are re-
sponsible to model various domain concepts and store and
manage system data.

Class stereotypes are not just symbols; they come with
design rules governing their behaviors and responsibilities.
If the nature of a class is not apparent to developers or its
behaviors do not match its stereotype label, developers are
prone to make mistakes, violating the rules, especially as the
code evolves over time. There are two common rule vari-
ants: robustness rules [15], and well-formedness rules [14].

Unfortunately, many software projects, during develop-
ment or maintenance, have little documentation. Many de-
sign documents, including those specifying stereotype la-
bels of the classes in a program, are often missing. Such
information is often not obvious in the source code either
due to poor variable and class names, code changes, etc.
Also, keeping design documents and stereotypes up-to-date
manually could be time-consuming and error-prone.

To address the above issues, we propose a framework
that can automatically reverse engineer class stereotypes
and detect violations of design rules associated with them.

We empirically evaluated our proposed system on a num-
ber of student projects and a real software system. Our pre-
liminary experiments are promising. Compared with man-
ually stereotyped labels, our approach achieves on average
77% of accuracy. Design defects resulted from violations
of robustness and well-formedness rules could be detected
with up to 75% precision and 79% recall.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 presents the concept of
class stereotypes and their associated design rules. Sec-
tion 4 describes our design flaw detection framework. Sec-
tion 5 presents evaluation results. We discuss limitations
and applicability in Section 6 and conclude in Section 7.

2 Related Work
There are a number of studies on the characteristics of

class stereotypes [2, 8, 1, 12]. Andriyevska et al. study the
effect of stereotypes on program comprehension [1]. Kuz-

614 615

niarz et al. also study the effects of stereotypes on program
comprehension but focus on user-defined stereotypes rather
than the standard three (i.e., Boundary Control, and En-
tity) [12]. Atkinson et al. propose different de facto ways
in which stereotypes are used [2]. Gogolla and Henderson-
Sellers analyze the part of the UML metamodel that deals
with stereotypes and provide recommendations for improv-
ing the definitions and uses of stereotypes [8]. Dragan et
al. investigated an automated way to infer class and method
stereotypes [6, 7]. To the best of our knowledge, we are
the first to propose an automated way to automatically de-
tect likely violations of design rules governing stereotypes
based on automatically identified stereotype labels.

Various studies also address the problem of detecting and
correcting design flaws and code smells [9, 11, 19, 13, 18].
Guéhéneuc et al. [9] find code segments that do not con-
form to a particular design pattern and transform them ac-
cordingly. Khomh et al. use Bayesian Belief Networks to
detect code and design smell [11]. Vaucher et al. study god
classes and propose an approach to distinguish good god
classes from bad ones [19]. Moha et al. extract concepts
from text descriptions and establish formal specifications of
code smells so that they can detect code smells automati-
cally [13]. Trifu and Reupke also detect structural flaws in
object oriented programs and use optimization-based tech-
niques to automatically restructure programs [18]. Our
work in this paper focuses on detecting class stereotypes
and checking violations of design rules involving stereo-
types, which enriches the type of design information and
defects detected by past studies and helps users to reverse
engineer their designs.

3 Design Rules of Class Stereotypes

This paper provides a mechanism to identify class stereo-
types automatically and detect design flaws in programs.
The class stereotypes and design rules associated with the
stereotypes are described in the following subsections.

3.1 Class Stereotypes

Identifying class stereotypesis an important step for de-
signing, analyzing, understanding, and maintaining a soft-
ware system. In particular, this paper focuses on automated
identification of three class stereotypes, i.e., Entity, Con-
trol, and Boundary, which was introduced as an extension
to the standard UML [14, 3]. The UML extension describes
the responsibilities of classes belonging to each stereotype.
It promotes separation of different concerns into different
class stereotypes, and thus software changes related to one
concern would only affect one particular stereotype involv-
ing a limited number of classes [17].

Classes with the Entity stereotype store and manage in-
formation in a system. In this paper, we further distinguish
Regular Entity from a special kind of entity called –Data

Manager, which is used to persist to storage systems (e.g.,
databases, file systems, etc). As an example, Course is a
possible entity class in a University Management System
(UMS) and CourseStore is a possible data manager class
that stores and retrieves course data from databases.

Classes with the Boundary stereotype serve as an inter-
face between a system and external systems interacting with
it. External systems, represented as Actors, could be other
computing systems or the users of the system. These inter-
face classes would be the ones affected if the behavior of
external systems change. In a typical UMS, CourseMan-
agementUI is a possible boundary class.

Classes with the Control stereotype act as a glue among
entity and boundary classes, and control the activities of
other classes for particular tasks. For example, CourseReg-
istration class is a possible control class that interacts with
a user interface class and related entity classes, e.g. Course.

3.2 Design Rules

Class stereotypes, based on their supposed responsibili-
ties and the principle of separation of concern, should fol-
low certain design rules, such as, an Entity class cannot
call a Boundary class directly. Regulating the interactions
among different classes of various stereotypes can help to
ensure the understandability and maintainability of a soft-
ware system.

Our work provides an automated mechanism for check-
ing compliance of design rules governing the interactions
among class stereotypes. In particular, we instantiate
the checking against two sets of rules which reflect vari-
ous architectural styles, namely robustness rules and well-
formedness rules. Our checking mechanism is designed to
be flexible enough to take various rules for checking.

3.2.1 Robustness Rules
Robustness analysis, as described in Rosenberg and Scott’s
UML book [15], provides a set of rules that indicate all
valid and invalid interactions among different class stereo-
types. The rules are paraphrased as follows, where Ac-
tors represent users of a system which could be humans or
classes/objects outside the system under analysis:

R1 Actors can only call boundary objects.
R2 Boundary objects can only call controllers or actors.
R3 Entity objects can only call controllers.
R4 Controllers can call entities, other controllers, and

boundaries, but not actors.

3.2.2 Well-Formedness Rules
The well-formedness rules are defined in the UML exten-
sion [14], and rephrased as follows: 1

1The complete set of rules in the UML extension also allows the subscriber-
publisher style of interaction. This paper considers only interactions via direct calls
and thus omits a part of the rules governing subscribe-publish interactions.

614 615

Callee
Caller Actor Entity Control Boundary
Actor R1 W1
Entity W3 R3

Control R4 W4 R4 W4 R4 W4
Boundary R2 W2 W2 R2 W2 W2

Table 1. Robustness and Well-Formedness Rules.

W1 Actors can only call boundary objects.
W2 Boundary objects can call entities, controllers, other

boundaries, and actors.
W3 Entity objects can only call other entities.
W4 Controllers can call entities, other controllers, and

boundaries, but not actors.
The two sets of rules can also be represented as a matrix

shown in Table 1. Each entry indicates a rule that validates
the corresponding caller-callee relation. Unmarked entries
signify bad caller-callee relations that violate the rules.

4 Design Flaw Detection Framework

Our framework are shown as a flowchart in Figure 1. We
use a classification framework that has two phases, namely
training and violation detection. In the training phase, we
build a statistical model using a machine learning technique
that can discriminate the class stereotypes based on a set
of classes with given stereotypes, i.e., training data labeled
with Regular Entity, Data Manager, Control, and Bound-
ary stereotypes. In the violation detection phase, given a
class or a program containing more than one class with no
stereotype labels (i.e., test data), we first predict the corre-
sponding stereotype for each class based on the model. We
then detect design defects by using the inferred stereotypes
verified against either robustness or well-formedness rules.

Extraction of
Basic Information

Extraction of
Basic

Feature
Construction

Model Learning

Training Data

Feature
Construction

Training Phase Violation Detection

Violation
Detection

Stereotype
Assignment

Stereotypes

Test Data

Violations Model

Figure 1. Design Flaw Detection Framework

There are five processes in the framework: extraction
of basic information, feature construction, model learning,
stereotype assignment, and violation detection. The follow-
ing paragraphs describe these processes in more detail.

Extraction of Basic Information. In this process, we ex-
tract information about the classes in each Java program
from its source code. The basic information we extract

Feature Description
Size Number of instructions that a class has
NOM Number of methods that a class has
ASize Average size of all the methods in a class
Fan-out Number of other classes that a class calls
Fan-in Number of other classes that call a class
GetCnt Number of getters method in a class
SetCnt Number of setters method in a class
CRUD Number of methods performing create, read, update, or delete to data

sources in a class

Table 2. Features Used in Our Statistical Model.

includes all the methods in each class, all the instructions
contained in each method, the call-relations among classes
(represented as call graphs), and the classes that contain op-
erations related to I/O or database operations. We built our
information extractor upon WALA [20].

Feature Construction. Based on the basic information, we
form features that could help in differentiating the training
classes belonging to each of the four given stereotypes. In
this work, we compute the set of features shown in Table 2
for each class. Instead of using absolute values for the fea-
tures, we normalize their values to be in the [0, 10] range.

Model Learning. In this process, we take the training
data with its features and learn a model that could dis-
criminate the four stereotype labels: Regular Entity, Data
Manager, Boundary, and Controller. We use Support Vec-
tor Machine (SVM) [5] for this task since it is a well-
known machine learning technique that has been shown to
have good accuracies in many application domains. Regu-
lar SVMs learn models that only discriminate between two
labels. We use an SVM extension handling multiple class
labels [4]. Implementation-wise, we use the publicly avail-
able SVMmulticlass [16].

Stereotype Assignment. We use the model learned in the
training phase and the features extracted from the test data
to assign stereotype labels to each class in the test data. We
use the classification capability of SVMmulticlass.

Procedure Violation Checking
Inputs:

R : A set of rules (e.g., robustness, well-formedness)
C : A set of classes
L: The corresponding stereotypes for the classes

Output: V : A set of violations against R
Method:
1: Let V = {}
2: Let RMap = Process R and represent it as a pair

�Caller , {Callee}�, where {Callee}
is the set of stereotypes that can be called
by the stereotype Caller as expressed in R.

3: For each class c in C
4: Let Caller = c’s stereotype
5: Let {Callee} = Caller ’s information in RMap
6: Let C ′ = All other classes that are called by c
7: For each class c′ in C ′

8: If c′’s stereotype /∈ {Callee}
9: V ← V + {c′} // A violation is found

10: OUTPUT V

Figure 2. Violation Detection

Violation Detection. After the stereotypes are inferred, we
can check for violations against a set of class design rules by

616 617

leveraging the caller-callee relations extracted from code,
and the inferred stereotypes. In this paper, we consider ro-
bustness rules [15] and well-formedness rules [14]. For a
set of rules, the automated rule checker performs the steps
shown in Figure 2 to search for violations. At line 1, we ini-
tialize the output set. At line 2, we represent a set of rules
as a set of pairs of valid interactions from a stereotype (i.e.,
classes with this stereotype) to other stereotypes. At line 3-
10, we visit each class and for each, we extract its stereotype
(line 4), other valid stereotypes that it could call (line 5), and
the set of other classes called by it (line 6). At line 7-8, we
check if any of the called classes has a stereotype that vio-
late the rule (i.e., not in the set {Callee}). If this is the case,
we record this violation at line 9. We finally report all vio-
lations found (line 10). For example, for the robustness rule
R3, given a class with stereotype Entity, any call from the
class to other Entity or Boundary classes will be reported as
a violation. As another example, for the well-formedness
rule W4, any call originated from a Control class is valid.

5 Empirical Evaluation

In this section, we describe our dataset and evaluate the
accuracies of our approach in inferring stereotypes and de-
tecting design flaws.

5.1 Dataset

We perform our evaluation on 15 Java projects devel-
oped by students of an object-oriented application devel-
opment (OOAD) course. The projects are all about a sin-
gle player hunting game. The number of Java classes per
project ranges from 36 to 67 with an average of 45. Each
project has 3431 to 9220 lines of code (including comments
and blank lines), with an average of 5168. We also per-
form experiment using a real open source software namely
OpenHospital, which is a hospital management system. The
system consists of 233 classes, with 59,087 lines of code.

For each project, we manually labeled the classes with
either Boundary, Control, (Regular) Entity, and Data Man-
ager. The manual labels provide us valid classes stereotypes
for the training phase and an oracle to measure the accuracy
of our approach in the testing phase.

5.2 Accuracy of Stereotype Inference

We employ ten-fold cross validation to evaluate our ap-
proach. It divides all data points (i.e. classes in a project)
into ten disjoint subsets of (approximately) equal size. To
obtain a representative training data, the classes of the same
stereotype are distributed over the subsets. Then, one sub-
set is used as test data, while the others are used as training
data. This process is repeated ten times (iterations); each
iteration uses a different subset as test data.

We evaluate the accuracy of a trained model in inferring
stereotypes as a ratio of number of correctly inferred class

Real Vs. Inferred Label Number and Proportion of Predicted Classes
Boundary Control Entity Data Man.

Boundary 81.35% 9.84% 1.04% 7.77%
Control 10.37% 58.54% 23.78% 7.32%
Entity 3.21% 2.88% 92.31% 1.60%
Data Manager 18.33% 6.11% 12.22% 63.30%

Table 3. Confusion Matrix of the Stereotypes Inferred

1 public class InventoryController{
2 private TrapDataManager trapDM;
3 private BaitDataManager baitDM;
4 private PlayerDataManager playerDM;
5 public InventoryController(){
6 { trapDM = TrapDataManager.getInstance();
7 baitDM = BaitDataManager.getInstance();
8 playerDM = PlayerDataManager.getInstance(); }
9 public void setTrap(Player p, int trapID)

10 { trapDM.setTrap(p, trapID); }
11 public ArrayList<Trap> retrieveAllTraps(String username)
12 { return trapDM.retrieveAllTraps(username); }
13 public void setBait(Player p, int baitID)
14 { baitDM.setBait(p, baitID); }
15 public ArrayList<Bait> retrieveAllBaits(String username)
16 { return baitDM.retrieveAllBaits(username); }
17 public ArrayList<InventoryItem> retrieveAllInventory(String username)
18 { return playerDM.retrieveAllPlayerInventory(username); }
19 public void readPlayerChoice(Player p, String choice)
20 { …
21 if (tOrBChoice == 'T')
22 { InventoryUI inventoryUI = new InventoryUI(); …}
23 else if (tOrBChoice == 'C'){
24 { InventoryUI inventoryUI = new InventoryUI(); …}
25 else{ InventoryUI inventoryUI = new InventoryUI();
26 System.out.println("Please enter a VALID item ID > "); }}
27 public String getBaitInUse()
28 return baitDM.getBaitInUse(); } }

Figure 3. Example of a Wrongly Labeled Control Class

stereotypes with number of classes in test data. We compute
the accuracy for each iteration for each project and average
them as the accuracy of each project. The accuracy of our
approach is then computed by taking the average of the ac-
curacies of all projects, which is 77%.

We draw a confusion matrix to evaluate the accuracy
of each stereotype prediction produced by the trained
model [10]. A confusion matrix is a table with rows cor-
responding to real labels and columns corresponding to in-
ferred labels. A cell (X,Y) in the matrix corresponds to the
number of test data points with real label X that are assigned
label Y by a classifier/model. Table 3 shows the accuracy
of the inferred stereotypes in percentages.

Considering the diagonal entries of the matrix, we no-
tice that boundary and entity classes can be detected with
very good accuracies of more than 80%. However, it is
less accurate when assigning labels to control classes. Con-
trol classes are often confused with entity classes. Upon
inspection, we find that many students implement their con-
trol classes poorly. For example, consider the control class
named InventoryController in Figure 3. It is assigned an
entity stereotype by our approach. This is the case, as all of

616 617

the methods in this class except readPlayerChoice method
perform either get data operation (e.g., retrieveAllTraps) or
set data operation (e.g., setTrap). The control class simply
delegates the execution of these operations to the respective
data manager classes.

5.3 Accuracy of Design Flaw Detection

After the labels are inferred, we can detect design flaws
as violations of the robustness and well-formedness rules.
In this subsection, we show sample detected violations and
analyze the quality of our violation detection mechanism.

Sample Violations. Figure 4 shows an example where vio-
lations occur in a Boundary, a Control, and an Entity.

According to the robustness rule R2, a boundary can only
call controllers or actors. We detected a violation of R2 in
Code-1: the boundary class named RegistrationPage
calls an entity class named RegistrationManager
(lines 8 and 13). Note that this is not a violation when we
check it against the well-formedness rule W2.

Both robustness and well-formedness rules allow a con-
troller to interact with any class but not actors. In Code-2,
we detect a violation of the rules: the controller class named
SendingController calls System.out.println
(lines 6, 8, and 12) to display a message directly to a user
(i.e., an actor) and uses Scanner(System.in) (line 16)
to elicit inputs directly from the user.2

Robustness and well-formedness rules deal differently
with entity classes. The robustness rule R3 allows an en-
tity to call only controllers, while the well-formedness rule
W3 allows an entity to call only entities. Code-3 of Fig-
ure 4 shows that an entity class named Player violates
both of the rules: Player uses another entity Inventory
(line 4) and thus violates R3; It also uses a controller
StarbugsController (line 8) and thus violates W3.
In addition, this class interacts with an actor directly via
System.out.println (line 15), violating R3 and W3.

Quality of Detected Violations. With correct stereotype la-
bels, our checking mechanism will detect all violations per-
fectly (i.e., no false positives or negatives) as both robust-
ness and well-formedness rules are well specified. How-
ever, since stereotypes inferred by our approach could be
wrong, we may detect wrong violations (false positives) or
miss some violations (false negatives).

To measure false positives and negatives, we can simply
compare the violations detected with inferred labels against
those detected with correct labels: The size of the intersec-
tion of the two sets relative to the sizes of the two sets are
indicative of false positive rates and negative rates, which
can be measured by the notion of precision and recall. Pre-
cision is the ratio of inferred violations that are true and
recall is the ratio of true violations that are inferred.

2We have (manually) predefined a list of classes and functions that send or receive
messages to users which are treated as actors‘.

Class & Type Class Only
Evaluation Rob. Well. Rob. Well.
Precision 61.2% 74.6% 68.6% 69.9%
Recall 68.7% 61.8% 78.8% 59.8%

Table 4. Precision and Recall of Detected Anomalies for Robustness
Analysis (Rob.) and Well-Formedness Analysis (Well.)

Precision =
�{Inferred V iolations} ∩ {True V iolations}�

�{Inferred V iolations}� .

Recall =
�{Inferred V iolations} ∩ {True V iolations}�

�{True V iolations}� .

When comparing violations during the intersection op-
eration, we consider two equivalence criteria. One criterion
considers two violations are matched only if both the vio-
lating class (i.e., the class where the violation occurs) and
the type of the violation are matched (Class & Type). The
other considers only the violating class (Class Only).

The total numbers of true violations of robustness and
well-formedness rules are 244 and 138 respectively. The
total numbers of inferred robustness and well-formedness
violations are 255 and 112 respectively. The overall preci-
sion and recall of our approach is shown in Table 4. The
precision and recall values are aggregated averages across
many model building and testing iterations. We calculate
them using the two equivalence criteria.

Table 4 shows that violating classes (Class Only) can
be detected with precision and recall of 68.7% and 78.8%
(robustness), and 69.9% and 59.8% (well-formedness).
When considering both violating classes and violation types
(Class & Type), the precision and recall are reduced by
7.5% and 10.1% (robustness), and increased by 4.7% and
2% (well-formedness), due to some violations are detected
with correct violating classes but wrong violation types.

6 Discussion
Effects of Features Used. We used eight code features in
our experiments. It would be interesting to consider other
features, such as code complexity metrics, which might help
to improve the accuracy of the stereotype inference further.
The confusion matrix shown in Section 5.2 particularly sug-
gests more features related to controllers should be used to
reduce the number of confusion occurrences.

Effects of Dataset Investigated. We perform experiments
on software systems written by novice programmers and
one real medium-sized software system. These systems are
chosen based on the availability of the class labels. None
of the processes in our framework is expensive: basic in-
formation extraction, feature construction, model learning,
and stereotype assignment make use of an inexpensive static
analysis technique and a scalable classification engine, i.e.,
SVM. We believe the framework is able to process larger
programs. We plan to analyze larger systems in the future.

Effects of Design Rules Checked. We detected violations
against only robustness and well-formedness rules. There

618 PB

Figure 4. Violations in Boundary, Controller, and Entity Stereotypes

are other design rules, for example, some design rules re-
lax the robustness rules by allowing direct interactions be-
tween Entity objects. Our approach can be easily extended
to handle such variants. However, if the design rules in-
volve constraints such as conditional call-relations, our vi-
olation checking mechanism would then need further im-
provements, such as, taking control-flow conditions embed-
ded in inter-procedural call graphs into consideration.

Threats to Validity. To reduce the threats to construct va-
lidity, we used standard evaluation metrics, namely accu-
racy, precision, and recall, which are commonly used in
data mining and information retrieval tasks. However, it
remains a question what is the effect of inaccuracies on pro-
gram comprehension. To answer this question, a user study
would be needed and is left as future work. To reduce the
threats to internal validity and selection bias, the 15 projects
used in the experiment are chosen randomly from a pool of
93 student projects. However, as aforementioned, there are
still threats to external validity on the generalizability of our
results. We plan to evaluate our framework on various types
of software systems of various sizes to alleviate the threats.

7 Conclusion & Future Work
In this paper, we present a framework that detects likely

design flaws in layered object-oriented architecture with
classes belonging to various stereotypes, which should fol-
low certain design rules. Also, to accommodate to sys-
tems without sufficient stereotype annotations, our frame-
work learns a statistical model to distinguish various class
stereotypes available from a training set. This model in turn
is used to give labels to unannotated classes. Likely de-
sign flaws are later detected by finding violations of well-
known design rules. We have evaluated our approach on
Java projects developed by novice and expert developers.
The results show that our approach can identify class stereo-
types with 77% accuracy on average and can detect vio-
lations of the design rules associated with each stereotype
with up to 75% accuracy and up to 79% recall.

In the future, we plan to further investigate more useful
features for the inference of class stereotypes and more soft-
ware systems. We believe our framework is general and can
be adapted for reverse engineering other kinds of domain-
specific stereotypes.
Acknowledgement. We would like to thank Yeow-Leong
Lee for providing some stereotype labels.

References
[1] O. Andriyevska, N. Dragan, B. Simoes, and J. Maletic. Evaluating uml class

diagram layout based on architectural importance. In VISSOFT, 2005.
[2] C. Atkinson, T. Kuhne, and B. Henderson-Sellers. Systematic stereotype us-

age. Software and Systems Modelling, 2:153–163, 2003.
[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language

User Guide. Addison-Wesley, 1999.
[4] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. JMLR, 2002.
[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines: And Other Kernel-Based Learning Methods. Cambridge, 2000.
[6] N. Dragan, M. Collard, and J. Maletic. Reverse engineering method stereo-

types. In ICSM, 2006.
[7] N. Dragan, M. Collard, and J. Maletic. Automatic identification of class

stereotypes. In ICSM, 2010.
[8] M. Gogolla and B. Henderson-Sellers. Analysis of uml stereotypes in the uml

metamodel. In UML, 2002.
[9] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and constraints

to automate the detection and correction of inter-class design defects. In
TOOLS USA, 2001.

[10] J. Han and K. Micheline. Data Mining Concepts and Techniques. Morgan
Kaufmann, 2006.

[11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. A bayesian ap-
proach for the detection of code and design smells. In QSIC, 2009.

[12] L. Kuzniarz, M. Staron, and C. Wohlin. An empirical study on using stereo-
types to improve understanding of UML models. In IWPC, 2004.

[13] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. DECOR: A
method for the specification and detection of code and design smells. IEEE
TSE, 36:20–36, 2010.

[14] Rational Software et al. UML Extension for Objectory Process for Software
Engineering ver. 1.1, 1997.

[15] D. Rosenberg and K. Scott. Use case driven object modeling with UML: a
practical approach. Addison-Wesley, 1999.

[16] http://svmlight.joachims.org/svm_multiclass.html.
[17] P. Tarr, H. Ossher, W. Harrison, and S. S. Jr. N degrees of separation: Multi-

dimensional separation of concerns. In ICSE, 1999.
[18] A. Trifu and U. Reupke. Towards automated restructuring of object oriented

systems. In CSMR, 2007.
[19] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc. Tracking design

smells: Lessons from a study of god classes. In WCRE, 2009.
[20] http://wala.sourceforge.net.

PB 619

Exploiting Computational Redundancy for Efficient
Recovery from Soft Errors in Sensor Nodes

Aly Farahat
Department of Computer Science

Michigan Technological University
Houghton MI 49931, U.S.A.

Email: anfaraha@mtu.edu

Ali Ebnenasir
Department of Computer Science

Michigan Technological University
Houghton MI 49931, U.S.A.
Email: aebnenas@mtu.edu

Abstract—Most existing techniques for the design and imple-
mentation of fault tolerance use resource redundancy. As such,
due to scarcity of resources, it is difficult to directly apply them
for adding fault tolerance to sensor nodes in Wireless Sensor
Networks (WSNs). Thus, it is desirable to develop techniques
that implement fault tolerance under the constraints of memory
and processing power of sensor nodes. We present a novel method
for designing recovery from transient faults that cause non-
deterministic bit-flips in the task queue of the scheduler of
TinyOS, which is the operating system of choice for sensor nodes.
Specifically, our approach exploits computational redundancy for
the design of recovery instead of using resource redundancy. The
presented fault-tolerant task queue recovers from bit-flips with
significantly lower space/time overhead compared with the Error
Correction Codes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are increasingly used
in mission-critical applications (e.g., body sensor networks,
habitat monitoring, flood forecasting, etc.), where they have to
be deployed in harsh environments (e.g., volcano, forest, battle
field, etc.). On one hand, WSNs must exhibit a high degree
of service dependability due to application requirements, and
on the other hand, unexpected environmental events, i.e.,
faults, may negatively affect their quality of service. For
example, transient faults may cause non-deterministic bit-flips
in the main memory of sensor nodes (a.k.a. motes), thereby
perturbing the state of the running program to an arbitrary state
in its state space. Since the quality of the service provided by
the entire sensor network heavily relies on the dependability
of the controlling software of motes, fault tolerance techniques
should be applied to improve the dependability of motes.
Nonetheless, due to their limited computational (e.g., memory
and processing power) and energy resources, it is impractical
to apply the traditional fault tolerance methods (e.g., Error
Correction Code (ECC) [9]) to motes. This paper proposes a
novel method that exploits computational redundancy for the
addition of recovery to transient bit-flips in the task queue of
TinyOS [14].1

Most existing techniques [12], [4], [10], [1], [13] present
solutions for the design of fault-tolerant protocols for WSNs
rather than focusing on the fault tolerance of individual sen-
sor nodes. For instance, techniques for reliable transmission

1TinyOS is the operating system of choice for sensor nodes in WSNs.

are mostly based on redundant and/or multi-path retrans-
mission [10]. Several methods exist for (i) designing self-
stabilizing WSN communication protocols [1] that ensure a
correct synchronization among sensor nodes starting from an
arbitrary non-synchronized state, and (ii) providing recovery
for data dissemination in WSNs [13]. ECC methods (e.g.,
Hamming code [9]) often require extensive memory redun-
dancy for storing extra parity bits in code words. Moreover,
decoding/coding algorithms in these methods are computation-
ally expensive.

We propose a novel approach that enables space/time-
efficient recovery to transient Bit-Flips (BFs) in motes. The
proposed approach is based on the detection of the violations
of invariance conditions that must always be true and dynamic
corrections of such violations. Specifically, we focus on the
task queue of the TinyOS as it is one of the most critical
components of the kernel of TinyOS and its structure is heavily
sensitive to BFs. We first define conditions under which the
task queue has a valid structure, called the structural invariant.
Then, before and after the addition/removal of a task to/from
the task queue, we check whether the structural invariant
holds. In case of the violation of the invariant, we identify
different failure scenarios created due to the occurrence of
BFs and systematically correct them, thereby recovering to
the structural invariant. The proposed approach enables the
detection and correction of multiple BFs in a single-byte
variable in a space/time-efficient fashion. Compared with the
Hamming Code (HC) [9], our approach needs at least 20%
less memory and performs at least twice as fast as HC. The
time complexity of our approach is linear in the size of the
task queue. We also note that HC cannot correct multiple BFs
whereas our approach enables the correction of multiple BFs
as long as they occur in the same variable. Furthermore, for
some special cases, the proposed approach corrects BFs in
multiple variables as well.
Organization. Section II illustrates the structure of the TinyOS
task queue. Then, Section III presents our approach for the de-
tection and correction of transient bit flips in the TinyOS task
queue. We also demonstrate the superiority of the space/time
efficiency of the proposed approach compared with the ECC
methods. Section IV makes concluding remarks and outlines
future research directions.

620 621

II. STRUCTURAL INVARIANCE OF TINYOS TASK QUEUE

In this section, we define what constitutes a valid structure
of TinyOS’s task queue. In Tiny OS version 2.x, the task queue
is a linked list of task identifiers implemented as a statically al-
located array of 256 entries (see Figure 1). Figure 2 illustrates
the implementation of the task queue in nesC [8], which is a
component-based variant of the C programming language used
for application development on TinyOS. Each identifier (ID) is
an integer between 0 and 255 inclusive. The set of variables of
interest are m_head, m_tail and m_next[256]. m_head
holds the index of the oldest ID in the queue, and m_tail
holds the ID of the most recent task inserted in the queue.
Every value in m_next is an ID for the next task to be
executed and an index (i.e., pointer) to the successor entry
in m_next. A distinguished task has the identifier NO_TASK
= 255. NO_TASK is the value of m_next[m_tail] and it is
the successor of all non requesting identifiers. For example, as
depicted in Figure 1, a queue state s1 consists of m_head=12,
m_next[12]=3, m_next[3]=255, m_tail=3, and ∀j :
(j �= 12) : m_next[j]=255.

Fig. 1. Example states of the task queue.

The state s1 represents a task queue having only two
pending tasks of identifiers 12 and 3 respectively. The effect
of popTask() on s1 is a transition to state s2 (see Fig-
ures 2 and 1). In state s2, m_head=3, m_next[3]=255,
m_tail=3, and ∀j : (0 ≤ j ≤ 255) : m_next[j]=255.
The effect of pushTask(5) on s1 is a transition to state s3

(see Figures 2 and 1), where m_head=12, m_next[12]=3,
m_next[3]=5, m_next[5]=255, m_tail=5, and ∀j :
(j �= 12) ∧ (j �= 3) ∧ (0 ≤ j ≤ 255): m_next[j]=255.
Structural Invariant. A valid state of the task queue is a state
where the queue has a linear structure with its head (m_head)
pointing to its beginning and its tail (m_tail) pointing to the
most recently added identifier to the task queue. Each element
of m_next with a non-255 ID is reachable from the head.
Each entry of m_next that is not in the queue holds the value
of NO_TASK, and m_next[m_tail] is equal to NO_TASK.
Moreover, the task IDs belong to the interval 0 ≤ ID ≤ 255.
Figure 3-(a) illustrates a sample valid state of the task queue.
Furthermore, any operation performed on the queue should
remove an element from the head (i.e., popTask()), add an
element to the tail pushTask() or leave the structure of the
queue and the task IDs unchanged.

inline uint8_t popTask()
{
if(m_head != NO_TASK) {
uint8_t id = m_head;
m_head = m_next[m_head];
if(m_head == NO_TASK) m_tail = NO_TASK;
m_next[id] = NO_TASK;
return id; }

else return NO_TASK;
}

bool isWaiting(uint8_t id)
{ return (m_next[id] != NO_TASK) || (m_tail == id); }

bool pushTask(uint8_t id) {
if(!isWaiting(id)) {
if(m_head == NO_TASK) { m_head = id; m_tail = id; }
else { m_next[m_tail] = id; m_tail = id; }
return TRUE;

} else return FALSE; }

Fig. 2. Excerpt of the Tiny OS Scheduler.

Fig. 3. Valid and invalid task queue structures.

Transient faults. Transient faults may toggle multiple bits in
a single variable; i.e., m_head, m_tail or a memory cell
of m_next[]. The case of multi-variable corruption is the
subject of our current investigation. Bit-flips may perturb a
task ID and the structure of the task queue to an invalid state.
For example, Figure 3 demonstrates how resetting the most
significant bit of m_next[126] could change its content
from 255 to 127, thereby pointing to m_next[127] instead
of pointing to NO_TASK.

III. ADDITION OF RECOVERY

Section III-A analyzes the memory and time requirements
of correcting BFs with the Hamming code. Section III-B
illustrates how our approach enables recovery from BFs by
detecting invalid queue structures and correcting them.

A. Correcting Bit-Flips with ECC
One approach for recovery from transient faults that cause

bit-flips is to use error detection and correction codes such
as the Hamming Code (HC) [9]. However, due to high
memory/CPU cost of the encoding/decoding algorithms these
approaches seem impractical in the context of WSNs. For
example, there are two ways to deal with bit-flips in the task
queue using HC; consider either individual memory cells of
the m_next[] array as separate data words, or the entire 256
bytes of the task queue as one data word.

620 621

In the first case, each cell of the m_next[] array should
be encoded before storing a value and it should be decoded
before reading its contents. To encode 8 bits of data with HC,
we need 4 extra parity bits, which results in a code word with
12 bits in the following format: p1p2d1p3d2d3d4p4d5d6d7d8,
where dj denotes data bits for 1 ≤ j ≤ 8, and pi represents
the parity bits for 1 ≤ i ≤ 4. The encoding algorithm of HC
determines the 12-bit code word by multiplying a 12×8 matrix
by a vector made of the data bits. Such a matrix multiplication
takes 96 multiplications and 84 additions; i.e., totally 180 basic
operations in addition to one read and write operation on
each memory cell, where a basic operation includes arithmetic
and logical operations as well as comparisons and load/store.
The decoding algorithm also multiplies a 4× 12 matrix by a
vector containing the 12-bit code word, which results in a 4-
bit syndrome vector representing the position of the corrupted
bit. (Thus, each decoding takes 48 multiplications and 44
additions, totally 92 basic operations.) Notice that for each
byte allocated in m_next[] 4 extra bits should be considered
for parity. That is, 256/2 = 128 extra bytes should be
allotted along with the 256 bytes allocated for m_next[].
Besides, every time a task ID is stored/retrieved to/from a
memory cell in m_next[], the encoding/decoding algorithm
must be executed. That is, for one round of detection and
correction, 256× (180+92) = 69632 basic operations should
be performed.

In the second case, the queue comprises a bit pattern with
256 × 8 = 2024 bits, for which 1 + log 2024 = 12 parity
bits are needed in HC. Thus, the size of the code word
is equal to 2024 + 12 = 2036 bits. The encoding takes
2024× 2036 = 4120864 multiplications and 2023 × 2036 =
4118828 additions; i.e., totally 8239692 basic operations. For
decoding, we will need 12×2036multiplications and 12×2035
additions resulting in 48852 basic operations. This analysis
clearly illustrates the impracticality of using HC on sensor
nodes with a small memory and a limited processing power.
While other ECC methods (e.g., , Forward Error Correction
(FEC) [3] and Reed-Solomon (RS) [15]) can correct cases
where multiple variables are corrupted, they are even more
expensive than HC in terms of either space or time. For
example, the RS method needs t bits for the correction of
�t/2� bits and O(t2) is its time complexity.

B. Adding Recovery to Task Queue
This section illustrates how we enable recovery to a valid

queue structure from transient BFs. Figure 4 depicts a state
machine that demonstrates the impact of transient faults and
how recovery should be achieved. Since the task queue is a
centralized program running on a single CPU, we can benefit
from a high atomicity model in which a set of instructions
can be performed atomically. In fact, the nesC language
provides atomic blocks that capture a sequence of statements
that are supposed to be executed without interruption. The
essence of the addition of recovery in high atomicity [6]
is based on detecting the violation of the invariant due to
the occurrence of faults, and providing recovery from every

invalid state to the invariant. Thus, we present the function
DetectCorrect() (see Figure 5) that we add to the
Tiny OS scheduler to enable the detection and correction of
BFs before and after any push/pop operations on the task
queue. The function DetectCorrect() should be invoked
in an atomic block (i.e., atomic{DetectCorrect()})
to ensure that detection and correction are not interrupted
during execution. Depending on the harshness of the environ-
ment where the motes are deployed, the period of invoking
DetectCorrect() could be changed by the developers;
i.e., DetectCorrect() can be invoked in an adaptive
fashion by the scheduler of TinyOS in order to enable a
tradeoff between the degree of dependability and the energy
cost of providing recovery. Next, we explain different parts of
DetectCorrect() to illustrate how detection and correc-
tion are achieved.

Fig. 4. Adding recovery to the task queue.

Data structures. To detect and correct corruptions of the
task queue, DetectCorrect() gathers some information
about the structure of the queue and stores them in these data
structures (see Figure 5):

DetectCorrect(int q_size) {
uint8_t previous;
uint8_t current=m_head;
uint8_t Index=0;
uint8_t dangleElem=0;
uint8_t non255 =0; // Number of non-255 elements
uint8_t qLength =0; // Number of elements in the queue
uint8_t cyclePoint =0; // The corrupted element that

// points back and creates a cycle

component visited = new BitVectorC(256);
visited.clearAll();
component pointedTo = new BitVectorC(256);
pointedTo.clearAll();
component pointsToNoTask = new BitVectorC(256);
pointsToNoTask.clearAll();

bool cyclic = FALSE;
bool pointedByHead = FALSE;

Fig. 5. Data structures.
(1) previous, current, dangleElem and

cyclePoint are pointers that are used during the traversal
of the queue; (2) non255 keeps the number of memory
cells in m_next that contain non-255 values; (3) qLength
stores the number of non-255 elements reachable from the
head of the queue (m_head); (4) the visited bit vector
allocates one bit corresponding to each element of m_next
illustrating whether or not it has been visited previously in a
queue traversal for cycle detection; (5) the pointedTo bit
vector keeps a bit for each element of m_next demonstrating
whether or not that element is being pointed to by some other
element; (6) the pointsToNoTask bit vector allocates
a bit corresponding to each memory cell of m_next that

622 623

contains NO_TASK; (7) the cyclic flag is set if a cycle
is detected in the structure of the task queue, and (8) the
pointedByHead flag is true if and only if there is an
element in the queue that is pointed by both m_head and
another element in the queue. We use the pointedByHead
flag in detecting/correcting the corruption of m_head.
Notice that, we allocate 96 bytes for the bit vectors and 7
bytes for other variables (i.e., 103 bytes totally) capturing
local variables; i.e., when DetectCorrect() returns this
memory is released.
Initialization. In this step, we first count the total number
of elements in m_next that contain non-255 values. Then,
we initialize the pointedTo and pointsToNoTask bit
vectors. This step incurs 256 × 15 = 3840 basic operations
on our solution.
// Count the number of non-255 elements in array m_next
for(Index=0; Index<NO_TASK; ++Index)

if (m_next[Index] != NO_TASK) non255++;
// Determine the elements that are being pointed to
for(Index=0; Index<NO_TASK; ++Index)

pointedTo.set(m_next[Index]);
// Determine the elements that point to NO_TASK
for(Index=0; Index<NO_TASK; ++Index)

if(m_next[Index] == NO_TASK) pointsToNoTask.set(Index);

Detection and correction of m_head. Since the traversal of
the queue for subsequent processing is performed using the
m_head pointer, we first ensure that m_head is corrected.
If m_head points to NO_TASK (see Figure 6), then we
set m_head to the index of the element to which no other
element points, and exit (because, by assumption, our focus is
on single-variable corruption). Otherwise, we detect whether
m_head points to another non-255 element in the queue.
(Please see Figure 7 and the first for-loop in the else part of
Figure 6.) If so, then we set m_head to the index of the non-
255 element to which no other element points. (See the second
for-loop in the else part of Figure 6.) Figure 7 illustrates a case
where the value of m_head has been corrupted from 12 to 4.

if (m_head == NO_TASK) {
for(Index=0; Index<NO_TASK; ++Index)
if(!pointedTo.get(Index) && m_next[Index] != NO_TASK) {

m_head = Index; return; } }
else {

for(Index=0; Index<NO_TASK; ++Index)
if(pointedTo.get(Index) && Index == m_head) {

pointedByHead = TRUE; break; }
if (pointedByHead)
for(Index=0; Index<NO_TASK; ++Index)
if(!pointedTo.get(Index) && m_next[Index] != NO_TASK) {

m_head = Index; return; }
}

Fig. 6. Detect and correct m_head.

The time complexity (and energy consumption) of this step
is proportional to the maximum number of basic operations.
If m_head = NO_TASK, the for-loop in the if part of
Figure 6 will be executed, which has one comparison and one
increment for the loop counter in each iteration. Moreover,
the if-statement inside the for-loop performs two
load operations, one comparison and two logical operations
per iteration. Thus, in the worst case, we have 7 basic
operations in each iteration of this for-loop, which results
in 256×7 = 1792 basic operations if m_head = NO_TASK.

A similar reasoning illustrates that, in the worst case, we
perform 256 × 15 = 3840 basic operations if m_head �=
NO_TASK. Therefore, since either the if part or the else
part is executed in Figure 6, the correction of m_head takes
at most 3840 basic operations.

Fig. 7. Corruption of m_head.

Detection and correction of cyclic structures. The
do-while loop in the below code uses the visited bit
pattern to determine whether there is a cycle in the queue.
This loop also stores the number of elements in the queue
that are reachable from m_head in the qLength variable.
// Detect cycles
do {

if(!visited.get(current)) visited.set(current);
else { cyclic = TRUE;

cyclePoint = previous; break; }
previous=current;
current=m_next[previous];
qLength++;

} while(current != NO_TASK && m_tail!=previous);

// Correct cycles
if (cyclic && (cyclePoint == m_tail)) {

m_next[cyclePoint] = NO_TASK; return; }
if (cyclic && cyclePoint != m_tail)

for(Index=0; Index<NO_TASK; ++Index)
if(!pointedTo.get(Index) &&

(m_next[Index] != NO_TASK) && (Index != m_head)) {
m_next[cyclePoint] = Index; return; }

A cycle could be formed in two ways: either the tail points
back to some element including itself (see Figure 8-(a)), or
another element points back to some element including itself
(see Figure 8-(b)). If a cycle is detected, then the cyclic flag
is set and the index of the element pointing back is stored in
cyclePoint. In case cyclePoint is equal to m_tail,
then that means the tail of the queue is pointing back to some
element instead of pointing to NO_TASK. Otherwise, to fix
the cycle, we set the contents of m_next[cyclePoint] to
the index of the element that has become dangled due to the
cycle creation; i.e., the element to which no element points,
does not point to NO_TASK, and is not equal to m_head. This
correction will take at most 256×26 = 6656 basic operations.
Detection and correction of queue size and non-255 ele-
ments. To detect discrepancies in the size of the task queue, we
add a new variable q_size to the TinyOS scheduler to store
the size of the queue outside the DetectCorrect function.
Nonetheless, q_size could be perturbed by transient faults.
The first if statement in Figure 9 corrects q_size.
Notice that DetectCorrect can simultaneously correct
q_size and m_head, which is a special case of correcting
MBFs in multiple variables. Moreover, faults may change the
value of an array element from 255 to some other value. This
means that that element points to some queue element. Such
a link is not part of the task queue and should be eliminated.

622 623

Fig. 8. Cyclic corruption of the task queue.

To this end, we assign 255 to an element to which no other
element points, points to a non-255 element and is not equal
to m_head. The for-loop in the second if statement
could take at most 256× 11 = 2816 basic operations.

if (qLength == non255) {
if (q_size != qLength) { q_size = qLength; return; }

else return; // Task queue is NOT corrupted.
}

if (non255 > q_size) // some 255 element has become non255
for(Index=0; Index<NO_TASK; ++Index)

if (!pointedTo.get(Index) &&
(m_next[Index] != NO_TASK) && (Index != m_head)) {

m_next[Index] = NO_TASK; return; }

Fig. 9. Detect and correct queue size.

Detection and correction of m_tail. To detect and correct
the corruptions of m_tail, we set m_tail to the index
of the first element whose contents point to NO_TASK (see
below). For example, in Figure 10, m_tail is set to 17. The
for-loop in the below code performs at most 2560 basic
operations.

for(Index=0; Index<NO_TASK; ++Index) {
if ((!pointsToNoTask.get(Index)) &&

(m_next[m_next[Index]] == NO_TASK) &&
(m_tail != m_next[Index])) {

m_tail = m_next[Index]; return; } }

Fig. 10. Corruption of m_tail.

Detection and correction of corrupted acyclic structures.
If faults corrupt a non-255 element so it points to one of its
successors, then a structure similar to Figure 11 could be cre-
ated. In this example, the contents of m_next[4] is changed
from 18 to 25 and m_next[18] becomes unreachable from
head; i.e., a dangling element. One way to detect this case
is to simply compare qLength with the number of non-255
elements; if qLength �= non255, then either this case has

occurred or the corruption of m_head. Nonetheless, if the
code of the DetectCorrect() routine reaches this point,
then it means that m_head has the correct value.

Fig. 11. Corrupted acyclic structure.

The identification of the corrupted element in Figure
11 is not straightforward. Our strategy is to determine the in-
dex of the element in the queue that is pointed by two internal
elements of the queue (see m_next[25] in Figure 11). Such
an element must be in the fragment of the queue that starts
with the dangling element. Thus, we first find the index of the
dangling element by the first for-loop in Figure 12. If there
is such a dangling element, then we reset the pointedTo
bit vector. Then, in the first do-while in Figure 12, we
start setting the bits of pointedTo corresponding to the
fragment of the queue that starts with the dangling element.
In the second do-while, we search the first fragment of
the queue (starting from m_head) for the element that points
to an element whose corresponding bit is already set in the
pointedTo vector. Once we find such an element, we set its
content to the index of the dangling element, and the queue is
corrected. This step includes 27×256 = 6912 basic operations
in the worst case.

dangleElem = NO_TASK;
for(Index=0; Index<NO_TASK; ++Index)

if(!pointedTo.get(Index) &&
m_next[Index] != NO_TASK &&
Index != m_head) {

dangleElem = Index; break; }

if (dangleElem == NO_TASK) return;

pointedTo.clearAll();
current = dangleElem;

do {
pointedTo.set(m_next[current]);
previous=current;
current=m_next[previous];
} while(current != NO_TASK && m_tail!=previous);

current = m_head;

do {
if (pointedTo.get(m_next[current]) {

m_next[current] = dangleElem; return; }
previous=current;
current=m_next[previous];
} while(current != NO_TASK && m_tail!=previous);

}

Fig. 12. Detect and correct acyclic structures.

Time complexity of DetectCorrect(). Since the code
of DetectCorrect() does not include nested for-loops,
its time complexity is linear in the size of the task queue.
Figure 13 presents a comparison of the time/space cost of the
proposed method of this paper with two scenarios of using

624 625

the Hamming code for correction of BFs: HC1 represents
the case where each element of m_next is encoded with
HC, and HC2 denotes the case where the entire m_next
is encoded as a single word. Notice that, our approach out-
performs HC1 in terms of both time and space efficiency,
respectively by a factor of 20% and 60%. More importantly,
the required memory (i.e., 103 bytes) is temporary; i.e., when
DetectCorrect() returns this memory is released. The
HC2 method seems impractical due to expensive computing
requirements.

Approach Memory Cost # of Operations

Hamming Code for each element of m next (HC1) 128 Bytes � 70000

Hamming Code for the entire m next (HC2) 12 bits � 4.17 million

Proposed Method 103 Bytes 28000

Fig. 13. Space/Time cost of correction of BFs.

Scope of correction. The scope of correction in these three
methods is different. Figure 14 demonstrates that our approach
can correct multiple bit-flips in a single variable, which cannot
be achieved by HC1 and HC2. However, HC1 can correct
single bit-flips in multiple variables, which we do not currently
have a solution for it.

Approach Corrects SBFs Corrects MBFs Corrects SBFs Corrects MBFs

in a Variable in Multi Vars in Multi Vars

HC1 Yes No Yes No

HC2 Yes No No No

Proposed Method Yes Yes No No

Fig. 14. Scope of correction for Single Bit-Flips (SBFs) and Multiple
Bit-Flips (MBFs).

Fault tolerance of DetectCorrect(). In case transient
faults perturb the local variables and/or the control flow
of DetectCorrect(), the current round of execution of
DetectCorrect() may not recover the structure of the
task queue. However, since DetectCorrect() is exe-
cuted repeatedly and transient faults eventually stop occurring,
DetectCorrect() will eventually provide recovery.

IV. CONCLUSIONS AND FUTURE WORK

We presented a novel method for the detection and correc-
tion of transient Bit-Flip (BF) in the task queue of the TinyOS,
which is the operating system of choice for sensor nodes.
Since motes have limited computational and energy resources,
instead of using resource redundancy, the proposed approach
exploits computational redundancy to efficiently recover from
transient BFs that corrupt the contents and the structure of
the task queue. The essence of our approach is based on
the detection of invalid structures of the queue that might
be created due to transient faults. Upon reaching an invalid
structure, we analyze the structure of the task queue to
determine which failure scenario has occurred and recover
to a valid state. Using this method, we can correct Multiple
BFs (MBFs) in single-byte variables. We illustrate that the
proposed approach can provide a better time/space efficiency
with respect to Error Correction Codes such as the Hamming
code [9] (see Figures 13 and 14).

Several techniques exist for designing fault-tolerant data
structures. Aumann et al. [2] present alternative implemen-
tations for pointer-based data structures by adding redundant
links. Finocchi et al. [7] provide resilient search trees through
periodic checkpoints. Jørgensen et al. [11] devise a method
that ensures the resilience of priority queues by storing point-
ers in resilient memory locations. By contrast, our approach
continuously monitors a structural invariance and provides
recovery if the invariant is violated.

Future/ongoing work focuses on techniques for the correc-
tion of MBFs in multiple variables. Moreover, we would like
to leverage our previous work [5] on automated addition of
fault tolerance for the addition of recovery to data structures.
Specifically, our previous work models a state as a unique
valuation of variables of primitive types (e.g., Boolean and
integer). Nonetheless, we need to create richer models that
capture the topological state of complex data structures. We
will also work on models where ECC methods and our
approach are used in a hybrid fashion.

REFERENCES

[1] M. Arumugam and S. Kulkarni. Self-stabilizing deterministic TDMA
for sensor networks. Distributed Computing and Internet Technology,
pages 69–81, 2005.

[2] Y. Aumann and M. Bender. Fault tolerant data structures. In focs, page
580. Published by the IEEE Computer Society, 1996.

[3] G. C. Clark and J. B. Cain. Error-Correction Coding for Digital
Communications. Springer, 1981.

[4] T. Clouqueur, P. Ramanathan, K. Saluja, and K. Wang. Value-fusion
versus decision-fusion for fault-tolerance in collaborative target detection
in sensor networks. In Proceedings of Fourth International Conference
on Information Fusion. Citeseer, 2001.

[5] A. Ebnenasir. Automatic synthesis of fault-tolerance. PhD thesis,
Michigan State University, 2005.

[6] A. Ebnenasir and A. Farahat. A lightweight method for automated
design of convergence. In To appear in the proceedigns of 25th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2011.

[7] I. Finocchi, F. Grandoni, and G. Italiano. Resilient search trees.
In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 547–553. Society for Industrial and Applied
Mathematics, 2007.

[8] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, page 11. ACM,
2003.

[9] R. W. Hamming. Coding and Information Theory. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1986.

[10] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In Proceedings
of the 5th annual ACM/IEEE international conference on Mobile com-
puting and networking, pages 174–185. ACM, 1999.

[11] A. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient to
memory faults. Algorithms and Data Structures, pages 127–138, 2007.

[12] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. Fault
tolerance techniques for wireless ad hoc sensor networks. sensors, pages
1491–1496, 2002.

[13] S. Kulkarni and M. Arumugam. Infuse: A TDMA based data dissemina-
tion protocol for sensor networks. International Journal of Distributed
Sensor Networks, 2(1):55–78, 2006.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An operating system
for sensor networks. Ambient Intelligence, pages 115–148, 2005.

[15] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, 1960.

624 625

A Web Service Reliability Model Based on Birth-Death Process

Chunli Xie1,2,3, Bixin Li1,2, Xifeng Wang1,2,4

1School of Computer Science and Engineering, Southeast University, Nanjing, China
2Key Lab of Computer Network and Information Integration(Southeast University),Ministry of Education

3School of Computer Science and Technology, Xuzhou Normal University, Xuzhou, China
4 School of Computer Science, Anhui University of Technology, Ma’anshan, China

{xiechunti@xznu.edu.cn,bx.li@seu.edu.cn}

Abstract

Fault tolerance by redundancy is a key technique for
improving web services reliability. But, the reliability and
fault tolerance are not well supported by Service-oriented
architecture (SOA) conceptual model.Most of the existing
analytical models to predict the reliability of web services
assume their structures are static which do not conform
to reality and the estimated reliability precision is lower.
In this paper, first, an extended SOA model is proposed
for improving the reliability of web services. Then, a
reliability model is presented to evaluate the reliability of
web services based on the birth-death process. Last, the
reliability of web services is evaluated using simulation
approach and a case study is designed, implemented and
analyzed to support our model. The results of experiment
show the feasibility, validity of our reliability model.

Keywords-Web Service Reliability; Birth-Death Process;
SOA Conceptual Model

I. Introduction

Fault tolerance is considered to be an effective way
to improve system reliability. In traditional software de-
velopment, fault tolerance is expensive and only some
crucial module can be designed by redundancy. However,
at the present time, there are many function-equivalent

This work is supported partially by the National Natural Science
Foundation of China under Grant No. 60773105 and no. 60973149,
and partially supported by Doctoral Fund of Ministry of Education
of China under Grant No. 20100092110022, and partially by National
High Technology Research and Development Program under Grant
No.2008AA01Z113, and partially by the National Nature Science Foun-
dation of Xuzhou Normal University under Grant No.10XLA12,and par-
tially by Young Teachers Foundation of Anhui University of Technology
under Grant No.QZ201015

Correspondence to: bx.li@seu.edu.cn

web services in the Internet which are often provided by
different service providers. So, it is practicable to upgrade
the reliability of web services by redundancy.

Web services reliability is more hard to predict than
general software system. There are several fault-tolerant
reliability analysis approaches which have been proposed
in [1][2][3][4] and etc, most of their reliability models
are based on architecture, mainly considering the static
structure and transition probability, without taking into
account their dynamic change with time, so the precision
is not higher. In fact, the reliabilities of services are
influenced by many factors in the Internet environment and
a failure can occur at any arbitrary time. The reliability of
a service is not a constant but a function of time[5]. Fault
tolerance is not well supported by SOA conceptual model,
hence, in this paper, we extend the SOA conceptual model
by redundancy, propose a fault-tolerant conceptual model
and present a reliability model for estimating fault-tolerant
web services based on birth-death process.

The rest sections of the paper are organized as fol-
lows: Section II describes a fault-tolerant reliability model.
Section III describes the reliability prediction algorithm.
Section IV does some experiments to verify our model.
Section V discusses the conclusion and our future works.

II. Fault-Tolerant Reliability Model

A. Extended SOA Conceptual Model

The ESOACM (extended SOA conceptual model) is
shown in Figure 1. The web services manager is respon-
sible for all web services. Web services are defined as
𝑊𝑊𝑊𝑊 = {𝑊𝑊𝑆 𝑊𝑊1𝑆 𝑊𝑊2𝑆 . . . 𝑆 𝑊𝑊𝑛𝑛}, 𝑊𝑊 is the primary service and
𝑊𝑊1𝑆 . . . 𝑆 𝑊𝑊𝑛𝑛 is the backup of S. The web service manager
will choose the best service as the primary service. When
service requesters send a request for 𝑊𝑊𝑊𝑊, the UDDI

626 627

Fig. 1. Extended SOA Conceptual Model

registry will transmit the request to web service manager to
look up which service 𝑆𝑆𝑖𝑖 is available in sequence. First, it
check 𝑆𝑆, if 𝑆𝑆 is available, the service manager will return
its address to the UDDI registry, then the UDDI registry
will return its address to the service requesters. When 𝑆𝑆
fails, the service manager will substitute backup service
𝑆𝑆1 for 𝑆𝑆 and notify service provider to repair it and so on.

B. Reliability Model

Now, we discuss how to estimate the reliability of web
service in the extended SOA conceptual model. In the
extended model, when a service fails, the next backup
will replace it. The number of failed web services can
be counted by a stochastic process. Stochastic process
{𝑋𝑋(𝑡𝑡), 𝑡𝑡 ≥ 0} denotes the number of failed web service
which have occurred by time 𝑡𝑡 and the state space is
{0, 1, 2, .., 𝑛𝑛}. The stochastic process can be described by
a birth-death process which satisfies some properties:

∙ Failed, repaired probability for service 𝑖𝑖 in an interval
(𝑡𝑡, 𝑡𝑡+Δ𝑡𝑡) is 𝜆𝜆𝑖𝑖Δ𝑡𝑡, 𝜇𝜇𝑖𝑖Δ𝑡𝑡.

∙ Probability of two failures occurred at the same time
is zero.

∙ State can only be transferred between two adjacent
state.

State i means the number of failed web services is i and
so on. When the process is in state n, the system means
failure and no service is available. When a web service
occurs failure, the system will go to the next state and
when is repaired, it will go back to the previous state. The
failure and repair rate of the web service 𝑆𝑆𝑖𝑖 is denoted by
𝜆𝜆𝑖𝑖(𝑡𝑡),𝜇𝜇𝑖𝑖. If failure rate of a web service is a constant, then
𝜆𝜆𝑖𝑖(𝑡𝑡) = 𝜆𝜆𝑖𝑖. The state transition diagram of our stochastic
failure model is shown in figure 2.

III. Reliability Prediction Algorithm

In this section, we discuss how to design algorithm.
The failure behavior of web services can be denoted by

Fig. 2. State Transition Diagram

TABLE I. Notations of our algorithm
Notations Explanation
𝑟𝑟𝑖𝑖 reliability of service i;
𝑅𝑅 reliability of the Redundant web services;
𝜆𝜆𝑖𝑖 failure rate of web service i;
𝜇𝜇𝑖𝑖 repair rate of web service i ;
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 a variable of [0, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡];
𝑑𝑑𝑡𝑡 time step;
𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓 failed flag of the process.
𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡 𝑐𝑐𝑡𝑡𝑓𝑓𝑐𝑐𝑡𝑡 total number of faults;
𝑟𝑟𝑓𝑓𝑐𝑐 𝑐𝑐𝑡𝑡𝑓𝑓𝑐𝑐𝑡𝑡 total number of runs;
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 the total execution time during a run;

reliability, failure rate. First, we define some notations
which are shown in table I.

A. Reliability

Algorithm 1 simulates how to calculate the reliability if
the failure behavior is denoted by reliability. It accepts as
input the reliability of every service, the number of services
including the primary and back-up services and returns
the reliability of web services with fault tolerance. The
𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑡𝑡 represents the total run times. For each run, if
𝑟𝑟𝑖𝑖 < 𝑥𝑥 𝑥𝑥𝑛𝑛𝑥𝑥 𝑖𝑖 < 𝑛𝑛, the procedure will check next service.
The service is failed if and only if 𝑟𝑟𝑖𝑖 < 𝑥𝑥 and the state is
𝑛𝑛. The variable 𝑓𝑓𝑥𝑥𝑟𝑟𝑓𝑓𝑡𝑡 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑡𝑡 records the number of faults.
This procedure repeats 𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑡𝑡 times and the reliability
can be computed just like in algorithm 1.

Algorithm 1 Getreliability1(𝑟𝑟, 𝑛𝑛)
1: Initialize some variables 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐;
2: while 𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐 do
3: for 𝑖𝑖 = 1 to 𝑟𝑟 do
4: Generate a random number 𝑥𝑥 in the range of [0𝑐 1];
5: if 𝑟𝑟𝑖𝑖 < 𝑥𝑥 then
6: if arrive the state n then
7: the model failed and increase 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐 by 1;
8: else
9: transferred to next state;

10: end if
11: end if
12: increase 𝑟𝑟𝑟𝑟𝑟𝑟 by 1;
13: end for
14: 𝑅𝑅 = 1− 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐;
15: end while
16: return 𝑅𝑅;

626 627

B. Constant Failure Rate

When failure behavior is denoted by constant failure
rate. The stochastic failure procedure is described by a
pure-birth process. Algorithm 2 simulates how to calculate
the reliability of our model. For each time step 𝑑𝑑𝑑𝑑, we
compare 𝜆𝜆𝑖𝑖 ∗𝑑𝑑𝑑𝑑 with a floating random number 𝑥𝑥 between
0 and 1. If 𝜆𝜆𝑖𝑖 ∗ 𝑑𝑑𝑑𝑑 𝑑 𝑥𝑥, we say the 𝑖𝑖𝑑𝑑𝑖 service fails
and turn to check the (𝑖𝑖 + 1)𝑑𝑑𝑖 service by the same
way until the 𝑛𝑛𝑑𝑑𝑖 service. Simulate the above procedure
𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑑𝑑 times to obtain the reliability of web services
with fault tolerance which can be computed by the expres-
sion 𝑅𝑅 = 1 − 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑑𝑑 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑑𝑑𝑐𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑑𝑑. The 𝑑𝑑𝑐𝑐𝑑𝑑𝑓𝑓𝑓𝑓 𝑑𝑑𝑖𝑖𝑡𝑡𝑡𝑡
can be varied and the reliability with time can be computed
just like in algorithm 2. From these, we can analysis the
change trend of reliability with time.

Algorithm 2 GetReliability2(𝜆𝜆𝜆 𝑛𝑛)
1: initialize 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐;
2: for all 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 in a range do
3: for 𝑟𝑟𝑟𝑟𝑟𝑟 = 1 𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐 do
4: 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 0𝑐 𝑡𝑡 = 1𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑡𝑡;
5: while 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑟𝑟𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑡𝑡 do
6: 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡+ 𝑐𝑐𝑐𝑐;
7: generate a random number 𝑥𝑥 in range of [0𝑐 1];
8: if 𝜆𝜆𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐 𝑑 𝑥𝑥 then
9: if arrive the state n then

10: 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡] + +;
11: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑟𝑟𝑟𝑟𝑡𝑡;
12: else
13: transferred to next state;
14: end if
15: end if
16: end while
17: end for
18: 𝑅𝑅(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡) =
19: 1− 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡)/𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐;
20: end for
21: return array 𝑅𝑅;

C. Constant Failure Rate and Repair Rate

When failure behavior is denoted by failure rate 𝜆𝜆𝑖𝑖

and repair rate 𝜇𝜇𝑖𝑖, the procedure is a birth-death process.
We presume the repaired time follows an exponential
distribution with a parameter 𝜇𝜇𝑖𝑖. The simulation procedure
is shown in Algorithm 3. Firstly, sample a time 𝑑𝑑 from ex-
ponential distribution with parameter (𝜆𝜆𝑖𝑖 + 𝜇𝜇𝑖𝑖); Secondly,
the transition probability from state 𝑖𝑖 to state 𝑖𝑖 + 1 and
to 𝑖𝑖 − 1 is 𝑝𝑝𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑐(𝜆𝜆𝑖𝑖 + 𝜇𝜇𝑖𝑖) and 1 − 𝑝𝑝𝑖𝑖. Generate a
random number 𝑥𝑥 from {0𝜆 1} with probability 𝑝𝑝𝑖𝑖, the state
is transferred to 𝑖𝑖+1 when 𝑥𝑥 is 1 and to state 𝑖𝑖− 1 when
𝑥𝑥 is 0. Repeat the above procedure for 𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑑𝑑 times
and reliability can be computed just like in algorithm 3.

Algorithm 3 GetReliability3(𝜆𝜆𝜆 𝜇𝜇𝜆 𝑛𝑛)
1: initialize 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and array 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐;
2: for all 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 in a range do
3: for 𝑟𝑟𝑟𝑟𝑟𝑟 = 1 𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐 do
4: 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 0𝑐 𝑡𝑡 = 1𝑐 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑡𝑡;
5: while 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑟𝑟𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is false do
6: sample time 𝑐𝑐 from an exponential distribution with

a parameter (𝜆𝜆𝑖𝑖 + 𝜇𝜇𝑖𝑖−1);
7: generate a random number 𝑥𝑥 from {0𝑐 1} with prob-

ability 𝑝𝑝𝑖𝑖;
8: if 𝑥𝑥 is 1 then
9: the state is transferred to i+1;

10: else
11: the state is transferred to i-1;
12: end if
13: 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡+ 𝑐𝑐
14: if arrive the state n then
15: 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡] + +;
16: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑟𝑟𝑟𝑟𝑡𝑡;
17: end if
18: end while
19: end for
20: 𝑅𝑅(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡) =
21: 1− 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡)/𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐;
22: end for
23: return array 𝑅𝑅;

D. Parameter Estimation

We discuss how to estimate the parameters in our algo-
rithm. The reliability,failure rate and repair rate presented
by service provider are not enough to be convincing. So,
we reform it by collecting failure and repair information
to improve accuracy. In our ESOACM, the server manager
use log file to record services behavior information. For
parameter reliability 𝑟𝑟𝑖𝑖, we assume that:

1) an initial value 𝑟𝑟𝑖𝑖𝑖1 presented by service provider ;
2) service invoked times 𝑛𝑛 and failure occurred times

𝑓𝑓 in an interval (0𝜆 𝑑𝑑);
3) tested times 𝑁𝑁 provided by service provider;
4) reliability estimated from log files 𝑟𝑟𝑖𝑖𝑖2.

then the revised reliability is calculated by

𝑟𝑟𝑖𝑖 =
𝑁𝑁

𝑁𝑁 + 𝑛𝑛
𝑟𝑟𝑖𝑖𝑖1 +

𝑛𝑛

𝑁𝑁 + 𝑛𝑛
𝑟𝑟𝑖𝑖𝑖2 (1)

where 𝑟𝑟𝑖𝑖𝑖2 = 1 − 𝑓𝑓
𝑛𝑛 . When the service is never called,

the invoked times 𝑛𝑛 = 0, the reliability 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖1. If the
service provider doesn’t present the initial reliability 𝑟𝑟𝑖𝑖𝑖1,
the reliability 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖2. So, the revised reliability rep-
resents the static reliability information and the dynamic
reliability information. Similar methods can be used for
the estimation of 𝜆𝜆𝑖𝑖 and 𝜇𝜇𝑖𝑖 which can be expressed by

𝜆𝜆𝑖𝑖 =
𝑁𝑁

𝑁𝑁 + 𝑛𝑛
𝜆𝜆𝑖𝑖𝑖1 +

𝑛𝑛

𝑁𝑁 + 𝑛𝑛
𝜆𝜆𝑖𝑖𝑖2. (2)

628 629

where 𝜆𝜆2 = 𝑓𝑓
𝑡𝑡 . and

𝜇𝜇 =
𝑀𝑀

𝑀𝑀 + 𝑘𝑘
𝜇𝜇𝑖𝑖𝑖1 +

𝑘𝑘

𝑀𝑀 + 𝑘𝑘
𝜇𝜇𝑖𝑖𝑖2 (3)

where 𝜇𝜇𝑖𝑖𝑖2 = 𝑘𝑘
𝑀𝑀 and 𝑘𝑘 is the repaired times in an interval

(0, 𝑡𝑡), 𝑀𝑀 is total repaired times.

IV. Experiments

A. Experiment 1

For algorithm III-A, we set the reliability of ser-
vices 𝑟𝑟 = [0.5, 0.5, 0.6, 0.3, 0.6], 𝑛𝑛 = 5. The run times
𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑡𝑡 varies from 100 to 1000 step by 100. Here,we
set the time spent on a run is one time unit. So, the
number of total run is identify to the times of total run. The
results of our experiment are shown in Table II. Column
’Exp1’ is the reliability obtained from algorithm III-A
and column ’Zheng’ is reliability according to Zheng’s[3]
method. From the table, we can discover that the reliability
is very close to Zheng’s result.

TABLE II. Results of Experiment 1
Run times Exp1 Zheng Run times Exp1 Zheng

100 0.970 0.972 600 0.973 0.972
200 0.980 0.972 700 0.970 0.972
300 0.973 0.972 800 0.979 0.972
400 0.967 0.972 900 0.970 0.972
500 0.970 0.972 1000 0.967 0.972

B. Experiment 2

For algorithm III-B, we randomly set failure rate 𝜆𝜆 =
[0.0025, 0.003, 0.02, 0.02, 0.02], 𝑛𝑛 = 5. The 𝑟𝑟𝑟𝑟𝑛𝑛 𝑐𝑐𝑐𝑐𝑟𝑟𝑛𝑛𝑡𝑡 is
set to 1000 at every specified 𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. We also present
the reliability of web services without redundancy. The
reliability of single service is calculated by expression 𝑟𝑟𝑖𝑖 =
𝑡𝑡−𝜆𝜆𝑖𝑖𝑡𝑡𝑖𝑖 , 𝑡𝑡 = 1, 2, . . . , 𝑛𝑛 𝜆𝜆𝑖𝑖 is the failure rate of service 𝑡𝑡
and the 𝑡𝑡𝑖𝑖 is the execution time spent in service 𝑡𝑡 during
a run[6]. The reliability with fault-tolerant and the max
reliability of single services(MRSS) without fault-tolerant
is shown in table III. From the table we can say that the
reliability of services by redundancy is higher than a single
service and the reliability will approach to zero with the
time increased.

C. Experiment 3

To verify the validity of our model and to analyze
simply in math, for algorithm III-C, we consider two ser-
vices with same failure rate and repair rate, the parameter

TABLE III. Results of Experiment 2
Run times Exp2 MRSS Run times Exp2 MRSS

100 0.997 0.779 600 0.654 0.223
200 0.972 0.607 700 0.539 0.174
300 0.918 0.472 800 0.456 0.135
400 0.814 0.3678 900 0.402 0.105
500 0.743 0.287 1000 0.307 0.082

𝜆𝜆 = [0.003, 0.003], 𝜇𝜇 = [0.5, 0.5]. The results obtained
from our experiment and from the system of differential
equations(SDE) of stochastic process are shown in table
IV. From the table, we can say that the results of two
methods are very close.

TABLE IV. Results of Experiment 3
Run times Exp3 SDE Run times Exp3 SDE

100 0.996 0.998 600 0.992 0.989
200 0.995 0.997 700 0.992 0.989
300 0.996 0.995 800 0.990 0.986
400 0.990 0.993 900 0.991 0.984
500 0.989 0.991 1000 0.986 0.982

V. Conclusions

An extended SOA conceptual model for reliability
enhancement by redundancy is presented in this paper
and a birth-death process to estimate the reliability of our
model is proposed. The birth-death process model is more
precision because the information from service provider
and log files are both considered. But, there are some
details that we have not taken into account. So, our future
work will consider other factors that cause composite
services failure based on other architecture.

References

[1] Pat.P.W.Chan and M. R. Lyu, “Reliable web services: Methodology,
experiment and modeling,” in International Conference on Web
Services(ICWS), 2007.

[2] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, “Fault tolerant web
services,” J. Syst. Archit., vol. 53, no. 1, pp. 21–38, 2007.

[3] Z. Zheng and M. R. Lyu, “Ws-dream: A distributed reliability as-
sessment mechanism for web services,” in International Conference
on Dependable Systems and Networks, 2008, pp. 392–397.

[4] H. Yu, G. Fan, L. Chen, and D. Liu, “A fault-tolerant strategy
for improving the reliability of service composition,” in The 10th
International Conference on Quality Software (QSIC), 2010, pp. 312–
317.

[5] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of
service-oriented systems,” in ICSE ’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, 2010,
pp. 35–44.

[6] T. K. Gokhale S.S., “Analytical models for architecture-based soft-
ware reliability prediction: A unification framework,” IEEE Trans-
actions on Reliability, vol. 55, no. 4, pp. 578–590, 2006.

628 629

Architecture-based Reliability Analysis With Uncertain Parameters

Derek Doran, Matthew Tran, Lance Fiondella, and Swapna S. Gokhale
Dept. of Computer Science & Engineering

University of Connecticut, Storrs, CT, 06269
{derek.doran,lfiondella,matthew.tran,ssg}@engr.uconn.edu

Abstract

Architecture-based reliability analysis has gained promi-
nence in the recent years as a way to predict the reliabil-
ity of a software application during the design phase, be-
fore an investment is made in any implementation. To ap-
ply this analysis, the parameters comprising the architec-
tural model must be estimated using the limited data and
knowledge available during the design phase. These esti-
mates, as a result, are inherently uncertain. Contemporary
approaches, however, do not consider these uncertainties,
and hence, may produce inaccurate reliability results. This
paper presents a Bayesian approach to systematically con-
sider parametric uncertainties in architecture-based analy-
sis. The novelty of this approach lies in determining credible
intervals for the model parameters as a function of their pos-
terior distributions. By leveraging these intervals, we illus-
trate how to: (i) quantify the impact of uncertainty in a spe-
cific parameter on the system reliability estimate; (ii) eval-
uate when a sufficient amount of data has been collected to
reduce the uncertainty to an acceptable level; and (iii) as-
sess the impact of prior knowledge regarding the parameters
in improving the system reliability estimate.

1 Introduction

Architecture-based analysis [8, 9] is a powerful approach
to assess the reliability of a software application1 earlier in
its lifecycle, and to offer guidance for cost-effective reliabil-
ity improvement. Such guidance often consists of identify-
ing critical components from the perspective of application
reliability, so that additional resources can be allocated to
these components to improve their reliability. Architecture-
based analysis is thus especially useful in the context of
modern, complex software systems which are composed
from a variety of components; picked off-the-shelf, built
contractually, and developed in-house [13].

In the architecture-based approach, application reliabil-
ity is expressed in terms of the failure characteristics of the

1The terms application, software, and system are used interchangeably
throughout this paper.

components and the application architecture. The param-
eters comprising the architectural model thus include the
transition probabilities among the components and the relia-
bilities of the components comprising the application. Thus,
the number of parameters (transition probabilities and com-
ponent reliabilities) that need to be estimated increases with
the size of the application. Additionally, these parameters
must be estimated based on the limited data or scant knowl-
edge that may be available earlier in the lifecycle before the
application is implemented and can be tested extensively.
Because of such limited available information, architecture-
based analysis must be performed with uncertain parame-
ters. These parametric uncertainties then propagate to the
system-level reliability results, which include the reliability
estimate and the ranks of the components based on their crit-
icality. Most of the contemporary architecture-based analy-
sis approaches, however, do not consider these parametric
uncertainties [2]. Thus, in the best case, the system relia-
bility estimate that these approaches produce underestimate
the true reliability, which may result in dedicating more than
necessary resources for the system to reach its reliability tar-
get. In the worst case, however, the system will be deployed
with an optimistic expectation of its reliability [3]. To avoid
the pitfalls associated with over and under-estimation, it is
necessary to systematically and quantitatively incorporate
the impact of uncertain parameters into architecture-based
reliability analysis.

In this paper, we present a Bayesian approach to incor-
porate parametric uncertainties into architecture-based soft-
ware reliability analysis. The proposed approach constructs
joint credible intervals using the posterior distributions of
the model parameters as a function of limited information.
We illustrate how these credible intervals could be used to
explore the influence of uncertain parameters on application
reliability. We also demonstrate how the Bayesian approach
could be used to quantify the impact of additional data or
prior knowledge in reducing the uncertainty in the system-
level reliability results.

The paper is organized as follows: Section 2 presents the
Bayesian approach. Section 3 illustrates the approach. Sec-
tion 4 summarizes related research. Section 5 offers con-
cluding remarks and directions for future research.

1

630 631

2 Bayesian analysis methodology

In this section, we introduce a preliminary model for
architecture-based reliability analysis that ignores uncertain-
ties in the model parameters. We then describe how this pre-
liminary model can be extended to incorporate parametric
uncertainties using the Bayesian approach.

2.1 Preliminary model

We consider a terminating application with n compo-
nents. We assume that the transfer of control between com-
ponents is independent and that the failure of a single com-
ponent causes the entire application to fail. The architec-
ture of the application is represented as a probabilistic con-
trol flow graph. This graph is mapped to a discrete time
Markov chain (DTMC) which is represented by an n × n
matrix P. The (i, j)th element of P is the expected value
of the random variable Pi,j , denoted pi,j , and represents the
expected probability that control is transferred from com-
ponent i to component j. Thus, there exists a one-to-one
mapping between the application components and the states
of the DTMC. Without loss of generality, we assume that
the application starts execution with component one and ter-
minates after component n executes, so the nth row of P
contains all zeros.

We let Ri denote the expected reliability of component i.
Component reliability is binary, that is, when control tran-
sitions to component i, the probability that it executes suc-
cessfully is represented by the random variable Λi whose
expected value is Ri. If a component does not execute suc-
cessfully, the entire system fails. The expected application
reliability can be computed using the following algorithm:

1. Define D as a diagonal matrix where Di,i = Ri

2. Let Q = D × P

3. Solve S =
∑∞

k=0 Qk = (I − Q)−1

4. System reliability is given as S1,n · Rn

The matrix Q is a sub-stochastic matrix where qi,j is the
transition probability among components i and j, weighted
by the reliability of component i. This captures the notion
that a transition from component i to component j occurs
conditional to the successful execution of component i, else
component i fails causing the application to fail. Using S to
obtain the expected number of times the application reaches
the end state n starting from state 1, the system reliability is
thus given by S1,n · Rn.

2.2 Incorporating parametric uncertainties

In this section, we discuss our approach to incorporate
parametric uncertainties into the preliminary model pre-
sented above. Towards this end, we use Bayesian techniques

to construct credible intervals for each parameter, such that
the true value of the parameter lies within that credible in-
terval at a specified confidence level. The credible interval
will provide the range over which each parameter must be
varied in order to systematically explore the impact of its
uncertainty on the application-level reliability results.

2.2.1 Posterior distribution

The parameters of the architecture-based model include the
intercomponent transition probabilities, and the component
reliabilities. To construct a credible interval for each pa-
rameter, it is first necessary to determine its posterior distri-
bution. A point estimate for the expectation of Λi is given
by Ri = xi/ni, where xi is the number of successful execu-
tions of the component across ni trials. Each xi then follows
a Binomial distribution:

Bin(xi, Ri) =
(

ni

xi

)
Rxi

i (1 − Ri)ni−xi .

We can define a posterior distribution G(Λi|xi) of the
random variable representing component reliability, incor-
porating any prior knowledge we have about this distribution
with additional data we have obtained since then, as follows.
Let g(Λi) be the prior distribution of Λi, incorporating any
a priori knowledge about Λi, and f(xi|Λi) be the likelihood
function that provides the probability of observing xi given
Λi. From Bayes theorem [1], it follows that:

G(Λi|X) =
g(Λi)f(X|Λi)∫ 1

0
g(Λi)f(X|Ri)dΛi

.

Since the expected value of Λi is used as the parameter
of a Binomial distribution, we know that Λi has a prior and
a posterior that follows a Beta distribution, given as:

Beta(Λi|ai, bi) =
Γ(ai + bi)
Γ(ai)Γ(bi)

Λai−1
i (1 − Λi)bi−1.

The parameters of the posterior can be expressed in terms of
the parameters of the prior. If g(Λi) ∼ Beta(Λi|α, γ), then
G(Λi|xi) ∼ Beta(α + xi, γ + (ni − xi)) [4].

Next, we determine the posterior distribution for each
random variable Pi,j representing the transition probabili-
ties in the architecture. The expectation pi,j of this random
variable represents the average probability of transitioning
from component i to component j. This average transition
probability can be estimated as pi,j = xi,j/ni where xi,j is
the number of times control is transferred from component
i to component j and ni =

∑
j xi,j is the total number of

times control is transferred out of component i. The number
of times control is transferred to various components from
component i thus follows a Multinomial distribution [12]:

Multinomial(Xi, ki) =
(

ki

xi,1xi,2...xi,k

)
p

xi,1
i,1 p

xi,2
i,2 ...p

xi,k

i,k

630 631

Figure 1. Architecture of the ESA application

where ki is the number downstream components that con-
trol can be transferred to, Xi = (xi,1, xi,2, ...xi,ki), and∑ki

j=1 xi,j = ni. Let Pi = (Pi,1,Pi,2, ...Pi,ki) be the vector
whose elements are the random variables that represent the
transition probabilities associated with state i. These ran-
dom variables have an expectation of pi,1, p1,2, ..., pi,ki . It
is important to note that ki ≤ n, that is, the number of down-
stream components that component i can transfer control to,
in general, may be less than the total number of components
in the application. When the draws from the Multinomial
distribution are independent, the posterior and prior distri-
bution for Pi follows a Dirichlet distribution, given by:

Dir(Pi|Ψi) =
Γ(ψi,1 + ψi,2 + ... + ψi,ki)
Γ(ψi,1)Γ(ψi,2)...Γ(ψi,ki)

ki∏
j=1

p
ψi,j−1
i,j .

Here, Ψi = (ψi,1, ψi,2, ..., ψi,ki), ψi,j > 0 ∀j is the set
of parameters representing the number of times each tran-
sition was followed, pi,j ≥ 0, and

∑ki

j=1 pi,j = 1. Since
the marginals of the Dir(Pi|Ψi) are Beta(ψi,j , ψ − ψi,j)
distributed, where ψ =

∑ki

j=1 ψi,j , it follows that the prior
and posterior of each Pi,j are Beta distributed. Letting∑ki

j=1 xi,j = ni, if g(Pi,j) ∼ Beta(α, γ), then its poste-
rior follows a Beta(α+xi,j , γ +ni −xi,j) distribution [4].

2.2.2 Bayesian credible intervals

With the posterior distribution derived for each model pa-
rameter, a Bayesian credible interval can be established that
provides a confidence level within which the true value of
the parameter lies. For model parameter πi (either a compo-
nent reliability or a transition probability) that has a pos-
terior distribution G(πi|X), the bounds of the (1 − α)%
Bayesian credible interval is the value yi for which:

∫ yi

0

G(πi|X)dπi = �

where � = α/2 defines the lower and � = 1 − α/2 defines
the upper bound of the interval. These bounds for all the pa-

Param. Estimate True Value % Difference
R1 0.932 0.840 9.87%
R2 0.800 0.830 3.75%
R3 0.933 0.950 1.82%
p1,2 0.818 0.800 2.20%
p1,4 0.182 0.200 9.89%
p2,1 0.250 0.200 20.00%
p2,3 0.417 0.500 19.90%
p2,4 0.333 0.300 10.0%
p3,4 1.000 1.000 0.000%

App. Reliability 0.7200 0.6756 6.57%

Table 1. Parameter estimates based on limited
data

rameters can be computed using the inverse CDF function of
the Beta distribution because the posterior of all the model
parameters follows this distribution. This inverse CDF is
available in software packages such as MATLAB and Ex-
cel [11].

3 Illustrations

This section illustrates the Bayesian approach to incorpo-
rate parametric uncertainties using an application from the
European Space Agency (ESA) to configure an array of an-
tennas. The architecture of the ESA application, along with
the true intercomponent transition probabilities, are shown
in Figure 1. The application consists of four components:
the Parser component, the Computational component,
the Formatting component, and the End component, as-
signed as components 1, 2, 3, and 4, respectively. For the
sake of illustration, we set the reliability of the Parser
to 0.84, the Computational component to 0.83, and the
Formatting component to 0.95, resulting in a true system
reliability of 0.6756. Based on these true values, in this
section, we first illustrate the impact of uncertain parame-
ters on the system-level reliability results. Subsequently, we
illustrate how the Bayesian approach can be used to sys-
tematically assess the impact of parametric uncertainties on
system reliability and to provide guidance on reducing the
uncertainty in system-level reliability.

3.1 Reliability estimation

To demonstrate how limited data leads to parametric un-
certainties, we simulated the operation of the ESA applica-
tion 50 times. During these 50 runs, we recorded the num-
ber of times control transfers among a pair of components,
the number of times control transfers out of each compo-
nent, and the number of failures of each component. Based
on these observations, we estimate the component reliabili-
ties and intercomponent transition probabilities. These esti-
mates, along with their true values, are recorded in Table 1.

632 633

Parameter IP (Rank), Est. IP (Rank), Actual
Parser .0626 (2) .1484 (1)

Computational .1701 (1) .1201 (2)
Formatting .0200 (3) .0157 (3)

Table 2. Component ranks with and without
uncertainty

These estimates of the model parameters lead to a system re-
liability estimate of 0.7200, which is off by 6.17% from its
true value. Comparing the reliability estimate obtained from
limited data with its true value highlights how the uncertain-
ties in the parameters can propagate to system reliability.

3.2 Component ranks

The architecture-based approach allows us to rank the
application components according to their importance mea-
sures [3] or significance from the point of view of system
reliability. In this section, we demonstrate how uncertain-
ties in the parameter estimates can lead to incorrect ranks.
For the sake of illustration, we rank each component i based
on its Improvement Potential (IP) measure [3], which is de-
fined as the difference between the system reliability esti-
mate when Ri is 1 and the estimate when Ri is assigned
its true or estimated value. This expresses the maximum
gain in system reliability that can be attained by devoting
resources toward perfecting component i. Table 2 shows the
IP of each component when using its true and estimated val-
ues. While the true IP ranking reveals the Parser as having
the highest improvement potential, using estimated param-
eters causes the Computational component to be ranked
higher than the Parser. Parametric uncertainties can thus
result in a mis-allocation of resources towards prioritizing
the Computational component, when in reality improve-
ments to the Parser component will deliver the largest gain
in application reliability.

In order to alleviate the impact of making such wrong de-
cisions, it is necessary to perform a sensitivity analysis for
each component across a range of parameter values, and use
the insights gained from that analysis to evaluate the valid-
ity of the component ranks. The more sensitive the system-
level reliability is to the reliability of component i, it is more
likely that its estimated component rank is incorrect.

3.3 Sensitivity analysis

In order to explore the sensitivity of the reliability esti-
mate to the individual model parameters, we present a study
where we set a single model parameter to each bound of its
95% credible interval and then estimate the application re-
liability. The reliability value evaluated at each bound rep-
resents the 95% credible interval for system reliability with
respect to the uncertainty in that single parameter. We de-
fine the reliability uncertainty (RU) metric as the effect of a

Param Credible Interval RU Value Rank
R1 (0.8380 , 0.9724) 0.1212 7
R2 (0.6609 , 0.8905) 0.1846 4
R3 (0.6977 , 0.9845) 0.0860 8
p1,2 (0.6960 , 0.8977) 0.1587 6
p1,4 (0.1023 , 0.3040) 0.2218 3
p2,1 (0.1295 , 0.4259) 0.1619 5
p2,3 (0.2595 , 0.5923) 0.2237 2
p2,4 (0.1920 , 0.5116) 0.2301 1
p3,4 (1.0000 , 1.0000) 0.0000 9

Table 3. Credible intervals of the parameters
and their impact on application reliability

parameter’s uncertainty on application reliability. This met-
ric is given as the size of the credible interval of the ap-
plication reliability, found by computing the system relia-
bility at the two extreme values of the parameter’s credible
interval. If the RU for a parameter is very small, we will
have a high level of certainty in the reliability estimate, but
as RU increases we can only be certain that the system re-
liability estimate is off by an increasingly higher percent-
age. The study makes a worse-case assessment by assum-
ing no prior knowledge about any of the parameters, and
hence, uses the uniform priors [4] g(Λi) ∼ Beta(1, 1) and
g(Pi) ∼ Dir(1, 1, ...1) for all of the parameters.

Table 3 presents the credible interval for each parameter
and its resulting RU. The table illustrates how uncertainties
in the parameters reduce the confidence in the application
reliability. For example, when parameter p2,3 is off by ap-
proximately by 20%, there is a 95% chance that it causes
an uncertainty of up to 24% in the application reliability.
Similarly, uncertainty in the parameters p2,4, p2,3, and R2

results in up to 25.57% uncertainty in the application reli-
ability. Furthermore, R2 has the highest RU value among
all components, and corresponds to the component that was
incorrectly ranked as having the highest IP. This illustrates
how sensitivity analysis can be used to decide on the accu-
racy of the derived importance ranks of the components.

We also observe that the level of uncertainty in a param-
eter seems unrelated to the resulting degree of uncertainty
in the application-level reliability. For example, parame-
ter p1,4 has the smallest non-zero credible interval among
all the transition probabilities, but is ranked as having the
3rd most significant impact on the system reliability. This
means that the level of uncertainty in a parameter is not the
only factor that determines its impact on the level of un-
certainty in the application reliability. Another factor may
include the frequency with which a transition is taken or
a component is executed during a typical run of the ap-
plication. This frequency indicates the significance of a
given transition or a component to the application reliabil-
ity. Although these significant transitions and components
will have smaller credible intervals (because these will be

632 633

estimated using a larger number of observations), the uncer-
tainties in them will still have a disproportionate influence
on the uncertainty in application-level reliability.

3.4 Reducing parametric uncertainties

The previous sections highlighted the impact of paramet-
ric uncertainties on the system-level reliability results. The
uncertainties in the parameters arise because of the limited
data used in the estimation process. Thus, to reduce these
uncertainties, it is necessary to either use a large amount of
data or to incorporate prior knowledge while estimating the
parameters. In the following illustrations, we show the im-
pact of either approach on reducing the uncertainty.

3.4.1 Increasing data

Increasing the amount of data used in the estimation process
can improve the estimates of the parameters. In the limit,
however, for these parameters to approach their true values,
an infinite amount of data is required. This is not feasible,
and hence, a trade-off between the level of uncertainty that
can be tolerated and the amount of data used in the estima-
tion process must be reached.

In Figure 2, the level of uncertainty in the application reli-
ability versus the number of simulation trials used to collect
data for parameter estimation is plotted. The figure shows
that the degree of uncertainty in system reliability decreases
at an exponential rate as the number of simulation runs in-
creases. In this illustration, all of the data used to estimate
the parameters is collected from the simulation. In prac-
tice, however, this data may come from a variety of sources.
Thus, the figure more generally illustrates that devoting a
small cost towards improving our pre-existing knowledge
can lead to a measurable increase in the accuracy of the sys-
tem reliability estimate. Devoting too much cost towards
gathering this knowledge, however, may be wasteful be-
cause the level of uncertainty in the system reliability will
not appreciably decrease beyond a certain threshold.

3.4.2 Incorporating prior knowledge

An alternative way to reduce uncertainty is to incorporate
prior knowledge in the parameter estimation process. We
illustrate this by introducing a non-uniform prior for the re-
liability of the Parser component. This non-uniform prior
may be derived based on: (i) how this component operated
in a different system; (ii) data provided by the manufacturer;
or (iii) our prior experience in its use. We say that the Parser
component is being reused from a previous system, where it
exhibited a reliability of 0.9 across 50 uses.

Figure 3 shows the shape of the resulting prior distri-
bution, the posterior distribution derived with a uniform
prior, and the posterior distribution that incorporates this
non-uniform prior for the Parser component. Under a uni-
form prior, the posterior distribution has a wide body whose

0 10 20 30 40 50 60 70 80 90
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of Simulation Runs

U
nc

er
ta

in
ty

 in
 A

pp
lic

at
io

n
R

el
ia

bi
lit

y

Figure 2. Relationship between reliability un-
certainty and available data

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

R1

Prior
Posterior | Prior
Posterior | Uniform Prior

Figure 3. Prior and posterior distributions for
the reliability of the Parser component

mean value is below its true reliability. The prior distribu-
tion, however, overstates the true reliability of the compo-
nent and exhibits a similarly wide body as the posterior un-
der the uniform prior.

In incorporating this prior knowledge, we get a new pos-
terior distribution with a mean value of 0.9099. This mean is
closer to the true component reliability of 0.84 when com-
pared to the estimate found under a uniform prior (0.932).
This new component reliability estimate results in a new
system reliability estimate of 0.6998, which is inaccurate
by only 3.52%, compared to 6.57% in the case of using a
uniform prior for the Parser reliability. Furthermore, the
sharper peak of this new posterior reduces the size of the
95% credible interval for the component from 0.1212 to
0.1051, resulting in a reduction in the impact of its uncer-
tainty on the application reliability from 0.1846 to 0.0947.

634 635

4 Related research

In this section, we summarize and compare our work to
related efforts. Goseva et al. [6] model component reliabil-
ities and transitions with Binomial and Multinomial distri-
butions respectively. However, they only estimate the model
parameters based on the Beta and Dirichlet distributions. A
more recent study [5] applies their Bayesian approach to an
empirical case study of the GCC compiler. Uncertainty anal-
ysis based on perturbation theory has also been proposed in
the context of architecture-based analysis [10, 7].

Unlike previous approaches, this research employs
Bayesian techniques to compute credible intervals for all the
model parameters and proposes an approach to quantify the
impact of uncertainty in the parameters on the uncertainty in
the system reliability. This approach thus provides a practi-
cal tool for test planners who must identify where to target
limited resources to improve the confidence in the reliability
of their software application.

5 Conclusions and future research

This paper introduced a Bayesian approach to incorpo-
rate parametric uncertainties in the assessment of software
application reliability based on its architecture. We illus-
trated how the approach could be used to systematically as-
sess the impact of uncertainties in the parameters on system-
level reliability in a systematic, quantitative manner. The
case study suggests that there exist additional factors be-
sides uncertainty in the parameter itself that can affect its
impact on system-level reliability. We also explored how
the level of uncertainty in the application reliability reduces
as a function of increasing data or prior knowledge used in
the estimation process.

Our future research seeks to extend the uncertainty quan-
tification procedures to importance assessment and opti-
mization. In addition, understanding how uncertainty across
multiple model parameters affects the uncertainty in the ap-
plication reliability needs to be investigated.

Acknowledgements

This research was supported by a CAREER award from NSF
(#CNS-0643971).

References

[1] W. M. Bolstad. Introduction to Bayesian Statistics.
John Wiley & Sons, Inc., 2nd edition, 2007.

[2] R. Cheung. A User-Oriented Software Reliability
Model. IEEE Trans. Software Eng., 6(2):118–125,
March 1980.

[3] L. Fiondella and S. Gokhale. Importance Measures for
Modular Software with Uncertain Parameters. Soft-
ware Testing, Verification, and Reliability, 20(1):63–
85, 2010.

[4] A. Gelman. Bayesian Data Analysis. Taylor & Francis,
2003.

[5] K. Goševa-Popstojanova, M. Hamill, and X. Wang.
Adequacy, Accuracy, Scalability, and Uncertainty
of Architecture-based Software Reliability: Lessons
Learned from Large Empirical Case Studies. In Proc.
Intl. Symposium on Software Reliability Engineering,
pages 197–203, Raleigh, NC, November 2006.

[6] K. Goševa-Popstojanova and S. Kamavaram. Assess-
ing Uncertainty in Reliability of Component-Based
Software Systems. In Proc. of Intl. Symposium on Soft-
ware Reliability Engineering, pages 307–320, Denver,
CO, nov 2003.

[7] K. Goševa-Popstojanova and S. Kamavaram. Software
Reliability Estimation under Uncertainty: Generaliza-
tion of the Method of Moments. In HASE’04, pages
209–218, Tampa, FL, mar 2004.

[8] K. Goševa-Popstojanova and K. Trivedi. Architecture
Based Approach to Quantitative Assessment of Soft-
ware Systems. Performance Evaluation, 45(2-3):179–
204, June 2001.

[9] S. Gokhale and K. Trivedi. Analytical Models for
Architecture-Based Software Reliability Prediction: A
Unification Framework. IEEE Trans. Rel., 55(4):578–
590, December 2006.

[10] S. Kamavaram and K. Goševa-Popstojanova. Sensi-
tivity of Software Usage to Changes in the Operational
Profile. In NASA/IEEE Software Engineering Work-
shop, pages 157–164, Greenbelt, MD, dec 2003.

[11] S. Karris. Numerical Analysis: Using MATLAB and
Excel. Orchard Publications, 3rd edition, 2007.

[12] K. S. Trivedi. Probability and Statistics with Relia-
bility, Queueing, and Computer Science Applications.
John Wiley & Sons, Inc., 2nd edition, 2002.

[13] S. Wadekar and S. Gokhale. Exploring Cost and Re-
liability Tradeoffs in Architectual Alternatives Using
a Genetic Algorithm. In Proc. of Intl. Symposium
on Software Reliability Engineering (ISSRE 99), pages
104–113, Boca Raton, FL, nov 1999.

634 635

Architecture-based Reliability Analysis of Concurrent

Software Applications using Stochastic Reward Nets

Rehab El Kharboutly

Mathematics and Computer Science

Eastern Connecticut State University

Willimantic, CT 06226

elkharboutlyr@easternct.edu

Swapna S. Gokhale

Dept. of Computer Science and Engineering

University of Connecticut,

Storrs, CT 06269

ssg@engr.uconn.edu

Abstract—Architecture-based reliability analysis of software

applications has been the focus of several recent research

efforts, as these applications continue to grow in size and

complexity. Prevalent research in the area of architecture-

based analysis predominantly focuses on sequential

applications; with a few exceptions that address concurrency.

Concurrency, however, is very common in modern software

applications that are developed using the object-oriented or the

component-based software development paradigms. Reliability

analysis considering concurrency within the context of the

application architecture is thus necessary for modern software

applications. Our preliminary approach to analyze the

reliability of a concurrent software application suffers from

state-space explosion; due to which it cannot be applied to

practical software applications. In this paper, we offer a

methodology based on the Stochastic Reward Net (SRN)

modeling paradigm to alleviate the model specification

challenge associated with the state-space explosion issue. Our

method uses SRNs to intuitively and concisely specify the

architecture of a concurrent software application. We

demonstrate how the expressive power of SRNs can be used to

specify execution constraints, further reducing the state space.

Finally, we illustrate how SRN-based specification can

facilitate sensitivity analysis through an example.

I. INTRODUCTION

Software applications provide a number of critical
functions in many domains including telecommunications,
healthcare, and finance. Ensuring that these applications
meet or exceed their reliability requirements is therefore
necessary for their widespread adoption. As the size and
complexity of software applications continues to grow,
analytical evaluation of their reliability is becoming an
important part of the application design process. Analytical
methods incorporate the application architecture in order to
identify those application components that are critical from
the perspective of its reliability. Identifying such critical
components in the early phases can guide the allocation of
resources to these components, so that the application
reliability can be improved in a cost-effective manner.

Prevalent research in the area of architecture-based
software reliability analysis [1-5] has predominantly focused
on sequential applications, where control resides in one
component at a time. The assumption of sequential
execution was valid for applications that were developed
using the procedural programming paradigm. Many modern
software applications, however, are built using the object-

oriented and component-based software development
paradigms, and concurrent execution of components is very
common in these applications [6]. Reliability analysis of a
software application considering concurrency within the
context of the application architecture is thus essential for
contemporary, concurrent software applications.

In this paper, we present an efficient approach for
architecture-based reliability analysis of a software
application considering concurrent component execution.
We build upon our preliminary Markov model to represent
component-level concurrency in the application architecture
[7, 8]. A major shortcoming of this preliminary approach is
state-space explosion; where the number of states in the
model grows exponentially as a function of the number of
components in the application. State-space explosion poses
two challenges in applying this approach to large, practical
applications. First, the process of specifying large models
necessary to represent applications with even a moderate
number of components is cumbersome and error prone.
Second, the solution of these large models can be
computationally intractable. These specification and
solution challenges intrinsic to the preliminary approach
must be mitigated in order to apply this approach to
practical applications.

This paper addresses the specification challenge through
the use of Stochastic Reward Nets (SRNs) [9]. We choose
SRNs to concisely represent the architecture of a concurrent
software application for several reasons. First, SRNs offer
an intuitive way to represent concurrent behavior.
Additionally, they provide a high-level interface for
automatically generating the underlying Markov model.
Finally, SRNs provide powerful support for modeling
execution constraints within the architecture, and such
constraints may further reduce the state space of the Markov
model, thereby indirectly alleviating the model solution
challenge. We illustrate how the SRN-based specification of
a concurrent application can facilitate sensitivity analysis
and identification of bottlenecks.

This paper is organized as follows: Section 2 presents an
overview of our preliminary model. Section 3 describes how
large models can be specified using SRNs. Section 4
illustrates the use of SRNs to represent constraints. Section
5 summarizes related research. Section 6 offers concluding
remarks and directions for future research.

636 637

II. PRELIMINARY MODEL

In this section, we present our preliminary model, and
discuss the associated state-space explosion issue. We
consider a continuously running application [8] which runs
forever unless it fails or is stopped on purpose. We assume
that at any given time the application state may be
represented by the list of components under execution. The
application state thus evolves as components begin and
suspend execution, and this evolution can be represented
using a state-space model.

We illustrate the architectural representation using an
example of application consisting of three components. Let
Ci denote component i. Figure 1 shows the complete state-
space model of the application architecture. If exactly one
application component is executing, then the application
could be in states <C1>, <C2> or <C3>. In state <C1>,
either C2 and C3 can begin execution, or C1 can terminate.
If C2 begins, then the application transitions to state
<C1,C2>, if C3 begins then the application transitions to
state <C1,C3>, and if C1 terminates then the application
transitions to state <SUSP>, where all the components are
in a suspended state. Depending upon which component
begins execution from the state <SUSP>, the application
transitions back to either state <C1>, <C2> or <C3>. The
states and state transitions starting from states <C2> and
<C3> to <SUSP> can be generated using similar reasoning.

Figure 1 State-space model of the architecture

Next, we describe how expressions for the application
reliability can be obtained based on the above representation
of the architecture. For this purpose, we let k denote the
number of states in which at least one component is
executing. We exclude the <SUSP> state in the count, since
in this state no component is active, due to which, we
assume that the application cannot fail. We let n denote the
total number of components. We assume that component Ci
fails according to an exponential distribution with failure
rate i. We let j denote the steady-state probability of state
j. j is obtained by mapping the state-space representation
of the architecture to a Continuous Time Markov Chain
(CTMC) model and solving the CTMC model using the
numerical methods built into tools such as MATLAB [10].

We assume that a component failure causes the
application to fail and is the result of an internal error. As a
result, component failure will depend on its total execution

time, cumulative over cycles or service requests, which is
obtained as follows. For a given execution time t, the
average execution time in state j denoted tj is t j. The
execution time of each active component in the state is tj/cj,
where cj is the number of active components in state j. Thus,
the cumulative execution time spent in a component, as a
function of the total execution time is given by:

 ,

1

()
k

i j i j

j j

t
t I

c
ω π

=

= (1)

where , 1.0,1 ,1i jI i n j k= ≤ ≤ ≤ ≤ , if component j is

active in state i and 0 otherwise.

Ri, the expected reliability of component i, is given by:

 Ri = e
−λi π j

t

c j

I i , j

j=1

k

 (2)

Based on Equation (2), the expected application
reliability, denoted R(t), is given by:

R(t) = Ri

i=1

n

∏ = e
−λ iω i (t) = e

− λi

i=1

n

π j

t

ci

I i , j

j=1

k

i=1

n

∏ (3)

Figure 1 shows that an application, where its three
components can execute simultaneously, has 8 states in the
state-space representation of its architecture. Extending the
reasoning, an application with n components will have 2

n

states in its representation. Thus, the state-space
representation will grow exponentially as a function of n,
making it infeasible to both specify and solve the model.

III. SRN SPECIFICATION

The previous section highlights how the representation
of the architecture results in state-space explosion. State-
space explosion raises model specification and solution
challenges, which must be mitigated in order to apply this
model to real-life applications. In this paper, we assume that
a tolerance strategy [8] exists, that is, the large model can
be solved using the built-in capabilities in many tools.
Matlab for example, can solve the model for an application
with 15 components with a state space of 2

15
 x 2

15
. To

represent this model, however, a user has to manually create
a 2

15
 x 2

15 matrix and set the values of 163,840 (2
15

.15)
transitions, which is time consuming and error prone.
Therefore, we demonstrate how the model can be specified
using a high-level specification mechanism of Stochastic
Reward Nets (SRNs). In this section, we first provide an
overview of SRNs, and then illustrate how SRNs can
intuitively represent the architecture.

a. Overview of SRNs

Stochastic Reward Nets (SRNs) are a descendant of Petri
Nets (PNs) in which a reward function could be associated
with the markings [6]. PNs have been further extended to

636 637

Generalized stochastic Petri nets (GSPNs) by allowing
transitions to have zero and exponentially distributed firing
times [11]. SRNs are considered to be a superset of GSPNs
[6]. SRNs are a richer modeling paradigm due to additional
constructs such as guard functions, marking-dependent arc
multiplicities and reward rates at the net level. We choose
SRNs because of: (i) their expressive power which allows
intuitive specification of real-life constrains; and (ii) the
ability to solve a SRN model using numerical techniques
incorporated in the Stochastic Petri Net Package (SPNP) [9].

A SRN is a directed graph, which contains two types of
nodes: places and transitions. A directed arc connecting a
place (transition) to a transition (place) is called an input
(output) arc. Arcs are associated with a positive integer
called multiplicity. Places can contain tokens that move from
one place to another through transitions. A transition is
enabled when each of the places connected to it by its input
arc has at least the number of tokens equal to the
multiplicity of those arcs. When an enabled transition fires,
a number of tokens equal to the input arc multiplicity is
removed from each of the corresponding input places, and a
number of tokens equal to the output arc multiplicity is
deposited in each of the corresponding output places. A
SRN may also include an inhibitor arc, which can also have
a multiplicity associated with it. An inhibitor arc inhibits the
transition it is connected to if the place it is connected to at
its other end has a number of tokens equal to at least its
multiplicity. The state of a SRN with P places, represented
by a vector (m1,m2, · · · ,mp), is called as a marking of the
SRN, where mi is the number of tokens in place i. The finite
set of all possible markings is called the reachability set.
The markings of a SRN and transition rates among them are
equivalent to the corresponding states and state transitions
of a continuous time Markov chain (CTMC) [9].

To extend the power of specification, a SRN may also
specify enabling (or guard) functions for each transition.
SRNs substantially extend the modeling power of
Generalized Stochastic Petri Nets (GSPNs) [15], which are
an extension of Petri nets [24]. SRNs represent a powerful
modeling technique with concise specification and form
closer to designer’s intuition. This makes it easier to transfer
the results obtained from solving the model and interpret
them in terms of the entities in the system being modeled.

b. SRN model

We describe the process of specifying the architecture of
a concurrent application using SRNs using the three-
component example. We represent the working and idle
states of each component using places and the sojourn time
in each state using transitions. Thus, places Ci_wrk, and
Ci_idl, represent the idle and working states of component
Ci. Transitions Tiwak and Tislp, represent the transitions
from working to idle and from idle to working states for Ci.
Tokens (or a lack thereof) in each place represent the state
of the system. In this problem, each component has only one
token, which can either be in the place Ci_wrk or Ci_idl
indicating that the component could either be in the working
or in the idle states but not both. Figure 2 shows the SRN

model of the architecture. The notation representing the
component parameters is in Table 1.

Figure 2 SRN model of three-component concurrent application

TABLE 1 EXECUTION AND FAILURE RATES OF COMPONENTS

Comp # Transition rates (/min) Failure rate

(i) Working to Idle

(ρρρρi)

Idle to

Working (γγγγi)

C1 0.3 0.5 0.0001

C2 0.5 0.1 0.0001

C3 0.2 0.4 0.0001

The reachability set, which is the state space of the
underlying CTMC, is automatically generated from the SRN
model using SPNP and is shown in Table 2. The second
column shows the active components in each marking. The
Markov chain corresponding to the reachability set is shown
in Figure 3. SPNP also computes the steady-state
probabilities as shown in Table 4.

TABLE 2 REACHABILITY SET GENERATED FROM THE SRN MODEL

 Active

comp.

C1_

idl

C1_

wrk

C3_

wrk

C2_

wrk

C3_

idl

C2_

idl

M0 All idle 1 0 0 0 1 1

M1 C1 0 1 0 0 1 1

M2 C2 1 0 0 1 1 0

M3 C3 1 0 1 0 0 1

M4 C1,C2 0 1 0 1 1 0

M5 C1,C3 0 1 1 0 0 1

M6 C2,C3 1 0 1 1 0 0

M7 C1,C2,C3 0 1 1 1 0 0

Figure 3 Markov chain generated from the SRN specification

638 639

TABLE 3 STEADY STATE PROBABILITIES

State Steady

Probability

State Steady

Probability

M0 0.1042 M4 0.03472

M1 0.1736 M5 0.347

M2 0.0208 M6 0.0417

M3 0.2083 M7 0.0594

We assume that the execution time of the application is
100 minutes. Using the failure rates of the components from
Table 1, along with the steady-state probabilities from Table
4, the system reliability is computed to be 0.964. This
indicates that the execution is successful in 96% of the runs.

c. Sensitivity anlaysis

In addition to reliability estimation, at design time, it is
also useful to assess the sensitivity of the application
reliability with respect to component parameters. Such
sensitivity analysis can identify critical components, and
these components can then be allocated additional resources
to improve their reliability. Compared to our preliminary
approach, the SRN model has fewer parameters; and these
are defined at the level of components, rather than at the
level of the architectural states. Therefore, the SRN model
facilitates sensitivity analysis in a concise and intuitive
manner. In this section, we demonstrate how the SRN model
could be used for sensitivity analysis.

The reliability of a component is a function of its
expected execution time, which in turn is a function of its
transition rates from the working to the idle, and from the
idle to the working states. Therefore, to assess the relative
impacts of the components on the application reliability, we
vary their transition rates out of the working states by ±20%
in steps of 5% around the initial values, one at a time, while
holding all the other parameters constant. We solve the SRN
model for each transition rate, and use the resulting steady
state probabilities to compute the application reliability.

Figure 4 Application reliability as a function of component parameters

Figure 4 shows the application reliability as a function of
the expected execution times of the components. The figure
indicates that C3 has the strongest impact on the application
reliability, followed by C1. C2 has the least impact. This can
be explained by considering the initial values of the
transition rates listed in Table 1. The table suggests that the

transition rate from the working to the idle state is higher in
the case of C1 than in the case of C3. However, the
transition rate from the idle to the working state is lower for
C3 than that of C1. These transition rates suggest that C1 and
C3 will have comparable execution times, making it difficult
to determine intuitively which one of these will have a
higher impact on the application reliability. Our quantitative
sensitivity analysis, however, definitively ranks C3 over C1,
providing solid guidance on devoting resources to reducing
the expected execution time of C3 in order to improve its
reliability. Finally, C2 transitions from the working to the
idle states comparatively frequently, and spends a
significant portion of the time in the idle state, due to which
it is expected to have the least impact on the application
reliability. Our analysis results confirm this intuition.

IV. MODELING EXECUTION CONSTRAINTS

SRNs provide powerful constructs such as inhibitor arcs
and guard functions to represent execution constraints. Such
constraints may also reduce the state space, and hence,
alleviate the model solution challenge. We illustrate the
modeling and expressive power of SRNs using an
application with four components C1, C2, C3, C4, with the
following constraints: i) C1 can only execute with C2; and
(ii) C3 cannot execute when C4 is executing.

Similar to the previous example, the behavior of each
component is represented using places and transitions. All
constraints on the execution of the components are
represented using inhibitor arcs. The inhibitor arcs from
place C2_idl to T1wak and from place C1_wrk to T2slp
represent the first constraint. T1wak is disabled as long as
there is a token in place C2_idl (indicating that C2 is idle)
and C2 cannot be idle as long as there is a token in place
C1_wrk (indicating that C1 is working). The second
constraint is satisfied through the use of two more inhibitor
arcs: from place C4_wrk to the T3wak transition and from
C3_wrk to T4wak. The first inhibitor arc causes T3wak to be
disabled if there is a token in place C4_wrk indicating that
C4 is working. Meanwhile C4 cannot run if C3 is working.
The resulting reachability graph has fewer states, from a
maximum of 16 to 8. The state space, automatically
generated using SPNP, is shown graphically in Figure 6.

Figure 5 SRN model with execution constraints

V. RELATED RESEARCH

Prevalent research in the area of architecture-based
reliability analysis is predominantly focused on sequential
applications [1]. A few efforts that consider concurrent
applications map the application architecture to a state-space
model. Wang et al. [12] presented an approach similar to
ours to assess the reliability of an application which follows

638 639

the parallel/pipe filter architecture style. Kanoun et al. [13]
present a hierarchical approach for a continuously running
application. Rodrigues et al. [14] develop a composite
solution approach for a terminating application. The analysis
methodology described in this paper provides a hierarchical
approach for a concurrent, terminating application. Due to
its hierarchical nature, the methodology facilitates different
types of analyses, which is a significant advantage of this
research over the work described by Rodriguez et al.[14].
The work closest to ours is by Pettit and Gomaa [15] where
a methodology for translating concurrent UML software
architectures into an underlying Colored Petri Net (CPN)
model is presented. Their work, however, focuses on the
performance aspects, unlike ours which focuses on the
reliability characteristics.

Figure 6 State-space model of architecture with constraints

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we present an efficient approach to analyze
the reliability of a software application considering
concurrent component execution within the context of its
architecture. We demonstrate how Stochastic Reward Nets
(SRNs) can be used to effectively and intuitively specify
architectural models of large applications, making it
possible to apply the approach in practice. We also describe
how the expressive power of SRNs could be used to
represent constraints on the execution of the application.
Through an example, we present how the SRN specification
can be used to facilitate sensitivity analysis and
identification of bottlenecks. Our future work consists of
extending the SRN-based approach to model terminating,
concurrent software applications

VII. ACKNOWLEGMENTS

The research at the Univ. of Connecticut was supported
in part by a CAREER award from the National Science
Foundation (NSF) (#CNS-0643971).

VIII. REFERENCES

[1] K. Goseva-Popstojanova and K.S.

Trivedi,“Architecture–based approach to reliability

assessment of software systems,” Performance

Evaluation, vol. 45(2-3): 578 - 590. 2001.

[2] K. Goseva-Popstojanova, M. Hamill, and R.

Perugupalli. “Large empirical case study of

architecture-based software reliability.” in IEEE

Intl. Symposium on Software Reliability

Engineering, pp. 43– 52, Chicago, IL, Nov 2005.

[3] S. Gokhale,“Software reliability analysis

incorporating second order architectural statistics,”

Intl. Journal of Reliability, Quality and Safety

Engineering, vol. 12(3): 267-290. 2005.

[4] S. Gokhale and K.S. Trivedi,“Analytical models

for architecture–based software reliability

prediction: A unification framework,” IEEE Trans.

on Reliability, vol. 55(4): 578-590. 2006.

[5] P. Popic, et al. “Error propagation in the reliability

analysis of component based systems.” in Intl.

Symposium on Software Reliability Engineering

(ISSRE), pp.53-62, Chicago, IL, Nov, 2005.

[6] A. Puliafito, M. Telek, and K.S. Trivedi. “The

evolution of stochastic Petri nets.” in World

Congress on Systems Simulation, pp.3-15,

Singapore, September 1997.

[7] R. El Kharboutly, S. Gokhale, and R.

Ammar,“Architecture- based software reliability

analysis incorporating concurrency,” The

International Journal of Reliability, Quality and

Safety Engineering, vol. 14(5): 479-499. 2006.

[8] R. El Kharboutly, R. Ammar, and S.

Gokhale,“UML-based methodology for reliability

analysis of concurrent software applications,” The

International Journal of Computers and Their

applications, vol. 14 (4): 250-259. 2007.

[9] C. Hirel, B. Tuffin, and K.S. Trivedi, SPNP:

Stochastic Petri Nets. Version 6.0, in Lecture Notes

in Computer Science 1786. 2000. p. 354-357.

[10] MATLAB version 2.1. 2005, The MathWorks Inc.:

Natick, Massachusetts.

[11] G. Ciardo, J. Muppala, and K.S. Trivedi. “SPNP:

Stochastic Petri Net Package.” in International

Workshop on Petri Nets and Perfomance Models,

pp.142- 151, Kyoto, Japan, December 1989.

[12] W. Wang, Y. Wu, and M.H. Chen. “An

architecture-based software reliability model.” in

Pacific Rim Dependability Symposium, Hong

Kong, December 1999.

[13] J.-C. Laprie and K. Kanoun, Software reliability

and system reliability. M. R. Lyu (editor)

Handbook of Software Reliability Engineering.

1997, New York, NY: MCGraw Hill. 27-69.

[14] G. Rodrigues, D. Rosenblum, and S. Uchitel.

“Using Scenarios to predict the reliability of

concurrent component-Based software systems.” in

FASE 2005, M. Cerioli (Eds.), pp.111- 127,

Springer Verlag, Heidelberg, April 4-8.

[15] R.G. Pettit IV and H. Gomaa. “Improving the

reliability of concurrent object-oriented software

designs.” in the Ninth IEEE International

Workshop on Object-Oriented Real-Time

Dependable Systems (WORDS’03), pp.262 - 269,

Oct 2003.

640 641

Ensuring Continuous Data Accuracy in AISEMA
Systems

Irina Diana Coman, Alberto Sillitti, Giancarlo Succi
Center for Applied Software Engineering

Free University of Bolzano
Bolzano, Italy

{IrinaDiana.Coman, Alberto.Sillitti, Giancarlo.Succi}@unibz.it

Abstract — Automated In-process Software Engineering
Measurement and Analysis (AISEMA) systems are powerful tools
to monitor and improve the software development process.
However, to be useful, it is required that such tools never stop
working. Therefore, they need the support of advanced
monitoring systems able to detect and locate malfunctions and
inform automatically human operators providing all the
information required to solve the problem. This paper describe
the approach and the tools developed to support a specific
AISEMA system developed to support both managers and
developers in implementing continuous process improvement
initiatives.

AISEMA; development process; monitoring.

I. INTRODUCTION

The success of software measurement programs is strongly
dependant on the automation of the related data collection
(Pfleeger, 1993; Daskalantonakis, 1992; Offen and Jeffery,
1997; Hall and Fenton, 1997; Iversen and Mathiassen, 2000).
Manual data collection suffers of several limitations including:
it is time consuming, tedious, error prone, and often biased or
delayed (Johnson and Disney, 1999). Semi-automated data
collection is better (tools such as LEAP (Moore, 1999)) but
there are still context switching problem (Johnson et al., 2003)
with a negative impact on the performance of the developers
since it requires to switch continuously between working
activities and data collection.

A new generation of tools (such as PROM (Sillitti et al.,
2003) and Hackystat (Johnson et al., 2003)) has been
developed to overcome such limitations providing a fully
automated, non-invasive data collection. Such tools allow data
collected from on-going projects to be used for improvement of
the same project, therefore they are also called Automated In-
process Software Engineering Measurement and Analysis
(AISEMA) systems.

AISEMA systems aim at automatically collecting the data,
but also at providing tailored analyses for decision support.
They reduce the cost of data collection, as they run in the
background and let people focus on their work without any
additional workload or distractions. They can collect a large
variety of data. Based on these data, they propose: support for
process management (Remencius et al., 2009; Danovaro et al.,

2008), assessment of low-level processes (Coman and Sillitti,
2009), etc.

Ensuring continuous data accuracy is one of the main
challenges during the usage of an AISEMA system (Coman et
al., 2009). The changes in the environment (such as software
updates, software crashes, hardware failures, changes in
security policies, etc.) affected sometimes the accuracy of data,
mainly by disabling some of the data collection components,
hindering data transfer or causing data loss. Not all such events
are avoidable. Consequently, small amounts of data might be
lost from time to time. However, it is very important to limit as
much as possible these missing data and to have detailed
information on the cause why they are missing and on their
type. Such information helps to assess whether the missing data
invalidate or not a specific analysis, thus ensuring reliable
results of data analyses.

In most of the cases, existing systems have already error
prevention mechanisms located at each of theirs components.
This is the case of the PROM system (Sillitti et al., 2003). Such
mechanisms ensure a good functioning of the components.
However, they cannot prevent, for instance, a silent disable of
the components as result of repeated crashes of the host system.
Moreover, in some cases, the disabling of the components is
perfectly acceptable (for instance, when a developer chooses
not to collect some specific data). Thus, to assess whether the
disabled status of a component represents a failure of the
system or not, additional context information is needed.

In PROM, as the components interact with the server over
the network medium, the correct functioning of the system as a
whole does not depend only on the correct functioning of each
individual component. Because the client components are not
aware of their broader context (and are not meant to be aware),
there is a need for a separate component that monitors the
functioning of the system as a whole. Such component should
identify potential problems and use local information from
specific components to localize the actual cause of the problem.
Additionally, such component should log the occurrence of the
problem and, if the solution is known, to proceed with solving
the problem. If the solution is unknown, the component should
notify the maintainers of the system.

The initial solution used during most of the case-study was
to have a human performing such monitoring. However, this is

640 641

extremely time consuming and costly. Moreover, ideally, the
monitoring should be continuous and thus requires an
automated solution. The solution developed was to enhance the
existing AISEMA system with characteristics of autonomic
computing (Horn, 2001; Kephart and Chess, 2003) such as self-
monitoring and self-healing. This paper presents in detail the
concrete approach and its implementation. It is organized as
follows: Section 2 presents the related work; Section 3
introduces our approach; Section 4 describes the proposed
implementation; Section 5 summarizes the results obtained;
finally, Section 6 draws the conclusions and presents future
work.

II. RELATED WORK

The initial manifesto of autonomic computing (Horn, 2001)
proposed it as the single approach able to mitigate the effects of
an increasingly acute software complexity crisis. The manifesto
pointed out that the complexity of the IT infrastructure grows
constantly and threatens to get beyond human ability to manage
it. Continuously increasing number of connections,
dependencies and interactions between software components
make the maintenance and management of the software
systems increasingly complex, up to the point of surpassing
human ability of managing these tasks. Thus, the only solution
resides in building software systems that are able to configure
and manage themselves, adapting to changing environments
and adjusting their behavior for most efficient use of their
resources to solve the required tasks.

Autonomic computing identifies four key aspects that self-
managing software should possess: self-configuration, self-
optimization, self-healing, and self-protection. Of these four,
the self-healing is the main aspect that AISEMA systems
should have to ensure continuous data accuracy.

Self-healing is defined as the capability of a software
system to automatically detect, diagnose, and repair localized
problems resulting from bugs or failures in software and
hardware (Kephart and Chess, 2003). Koopman (2003)
proposes a taxonomy that identifies four main aspects of a self-
healing strategy: fault model, system response, system
completeness, and design context.

The fault model (also called a fault hypothesis) identifies
the faults that the system should be able to tolerate. The system
response represents the strategy of the system to detect and
treat faults. The system completeness and design context
include the factors that influence the scope of self-healing
capabilities.

Each of these aspects can be further described by a set of
properties. Table I gives an overview of the characteristics of
our approach (PROM) in terms of the aspects and properties
defined in the taxonomy of Koopman.

TABLE I. CHARACTERISTICS OF THE APPROACH IN TERMS OF A
TAXONOMY FOR SELF-HEALING PROBLEM SPACES

Aspect Property PROM

Fault model
Fault duration Permanent
Fault
manifestation Corrupted or missing data

Aspect Property PROM

Fault source Changes in the environment, non-
malicious

Granularity Component
Fault profile
expectations Expected and likely faults

System
response

Fault detection
Anomaly detection via supervisory
checks and nonintrusive testing of
results

Degradation Degraded performance

Fault response Reactive

Recovery Warm or cold component reboot,
recovery of corrupted settings

Time constants Valid data occur much more often
than anomalies

Assurance “Good enough” data quality

System
completeness

Architecture
completeness Closed, complete system

Designer
Knowledge Complete

System Self-
knowledge

Partial knowledge on component
presence

System evolution Upgrades and extensions

Design
context

Abstraction level Software component within
distributed system

Component
homogeneity

Heterogeneous components and
resources

Behavioral
predetermination

Predetermined data type

User involvement Fully automatic

System linearity N/A

System scope Multiple computers and users on
Internet or closed network system

Shehory (2006) identifies three main types of problems
that self-healing approaches usually address: concurrency
problems, functional problems, and performance problems. The
approach proposed here addresses functional problems.

There are already many projects exploring various self-
healing strategies (Hoover et al., 2001; Raz et al., 2002a;
Shelton et al., 2003; Shehory, 2006; Mikic-Rakic et al., 2002).
The proposed approaches focus on reconfigurable architecture
(Shehory, 2006; Mikic-Rakic et al., 2002), graceful
degradation (Shelton et al., 2003), optimized usage of
resources (Hoover et al., 2001), or inferring specifications from
underspecified components (Raz et al., 2002a). Most of the
proposed approaches focus on distributed systems and address
software failures in one or more of the components. By
contrast, the approach proposed here focuses on failures due to
environment factors such as disable of components or loss of
connectivity. The proposed approach makes also use of the
specificities of the domain, namely the characteristics of the
automatically collected data.

Among the existing self-healing approaches, one that is
very similar to the approach presented here is that of Raz et al.
(2002a). They focus also on detecting failures by searching for
semantic anomalies in the data. In their case, the data are
dynamic data feeds that change outside user control and are
usually under-specified. Their approach has two phases: setup

642 643

and usage. During setup, the approach aims at inferring
invariants from data presented as input. These invariants are
used during the usage phase to detect anomalies in the data.
During the setup phase, human intervention is required to find
a training set size, establish parameter values, select attributes
to take into account, and select from the proposed invariants.
During the usage phase, human intervention is also desired to
eliminate from the results the false positives (normal data
falsely declared as anomalous).

Similarly to the approach of Raz et al., the approach
proposed here also detects failures by searching for anomalies
in the data. However, the domain is very different and it allows
to take one step further by taking action to correct faults based
on the detected anomalies.

By contrast to the approach of Raz et al., the specifications
of the data are very well known as the data come from the
components of the system itself. Thus, data invariants can be
defined by the administrators of the system, together with the
possible causes and steps to take for restoring proper
functioning. Moreover, the definition of data invariants can
also take advantage of overlapping data coming from different
sources. Once the invariants have been defined, the system can
perform fully automatically the cycle of fault detection, cause
identification, and fault resolution. Human intervention might
be required again only in cases when none of the proposed
solutions solve the problem.

Another contribution of the approach proposed here is a
model for defining data invariants together with potential
causes of violation and actions to take for resolution of the
violation. The model also allows the combination of basic
invariants to easily specify more complex ones while hiding the
complexity of the definition. While the current implementation
expects predefined data invariants, the approach can be easily
extended with automated inference of data invariants.

III. THE APPROACH

The main goal is to ensure continuous high accuracy of
automatically collected data. The approach proposed here is to
perform regularly a set of checks on the collected data to detect
anomalies and then to take action to prevent further anomalous
data. Anomalies in the data indicate a problem in the
functioning of the system. When anomalous data are detected,
the system investigates several possible causes to localize the
actual problem. To do so, it performs a set of tests regarding
the status of the network and of the components installed on the
client machine from which data originated. After identifying
the cause(s), the system proceeds to heal itself. Depending on
the actual cause, the actions taken can consist in warm or cold
reboot of components on the client machine, restoring
corrupted files or notifying the user that user action is needed.
Moreover, the system logs all checks and tests performed and
their results to provide a complete view on the status of the data
at any given time.

An anomaly is defined as a violation of one or more data
invariants. A data invariant expresses a condition that all
accurate data should satisfy. The definition of data invariants is
based on domain knowledge. As the collected data are well

defined and the system specifications are known, the easiest
approach is to use such knowledge for data invariant definition.

Thus, simple data invariants can define the domain of
values for each type of data collected (for instance, the time
spent in some activity should be positive, and below 24 hours
during a single day), the required fields (according to the
known data structure), or the frequency with which they are
collected (according to the specifications of the system).

The above type of invariants describes mainly the structural
properties of data, rather than the semantic ones. The violation
of such an invariant can help identify severe problems (such as
no network connection or hardware failure) but do not reveal
more subtle issues (such as data from one component with
legal but incorrect values). Additional data invariants that
define relations in the data can help detect also semantic
anomalies. Such invariants are usually called adaptive
invariants to distinguish them from invariants that impose
certain specific values rather than relations.

The automatically collected data come from various
components. As such, the data usually overlap to some degree.
Data invariants that make use of these overlaps are used to
identify anomalies in data coming from one component.
Moreover, as different data represent different views on the
same artifact, there are some relations in the data that should be
respected. Such relations that should hold at any time are
usually called adaptive invariants. The violation of an adaptive
invariant means that the data are not semantically consistent.

A. The Data Invariant Model
The definition of an invariant contains the data property or

the data relation that has to be ensured, a description of the
problem to be reported if the invariant is violated, and a list of
the potential causes of the identified problem. The actual
computation of a data invariant can be a direct check of a data
property, or it can build on the results obtained on checking
several other data invariants. This gives particular strength to
the model as it allows the definition of extremely complex
invariants while making their definition easy by hiding their
computational complexity from the user.

The self-healing ability requires not only that anomalous
data are detected, but also that the cause of anomaly is
removed. There is not a one-to-one relation between anomalies
and causes. The violation of a data invariant can be due to one
or more of the causes listed for that invariant, or even to a new
cause, not yet identified. Thus, each cause is defined together
with a set of tests that should fail only when the cause is
present. Such tests usually concern local conditions on the
machine which generated anomalous data. However, the only
limits to what such tests check depend only on the possibility
of actually performing the test.

The various tests associated with a potential cause is useful
not only to identify the presence of a cause, but also to
distinguish between malign and benign manifestations of the
same cause. The benign manifestation of a cause means a false-
positive in the sense that the violation of the adaptive invariant
is not due to a problem in the functioning of the system, but
rather to special circumstances (for instance no upload of data

642 643

due to user being on a sick leave). The malign manifestation of
a cause represents a real failure of the system, one of its
components or the network medium.

 Finally, each test has to define also a list of actions to take
if the test fails. Such actions should remove the cause of
anomalous data and should restore the proper functioning of
the system.

Thus, an invariant’s definition should contain such
information as shown in Table II. Table III shows an example
of a simple data invariant and Table IV provides an example of
the definition of one of the possible causes of violation of such
an invariant.

TABLE II. STRUCTURE OF A DATA INVARIANT

Field Meaning Intended
user

Name Short, descriptive name for the data
invariant. Helps in reports for
administrators.

Human

Description A more detailed description of the
invariant and, if needed, the reasons
justifying it.

Human

Computation The actual function or formula that
returns true is the invariant is
satisfied and false if it is violated.

System

Problem reported
if the invariant is
violated

A description of the problem
identified by a violation of the
invariant.

Human

List of possible
cause(s)

A list with the possible causes of
the invariant’s violation

System

TABLE III. EXAMPLE OF A DATA INVARIANT'S DEFINITION

Name Data upload

Description For each user, there should be at least one upload of
data each day.

Computation AnyUploadCheck (method)

Problem NO uploads during the day.

Possible causes

1. AISEMA system inactive on user’s machine.
2. Transfer scheduler NOT running.
3. Corrupted configuration of connection on user’s

machine.
4. Server component down.
5. Server unreachable from client machine.

TABLE IV. EXAMPLE OF A POSSIBLE CAUSE'S DEFINITION

Cause Test Type Action to take if test fails

AISEMA
system
inactive
on user’s
machine

Check flag of
system activity to be
set to active.

Benign Just annotate that the user
has deactivated the system
on his/her machine.

Check that data are
collected on user’s
machine (there are
files stored).

Malign Warm reboot of the client
components.

IV. IMPLEMENTATION

The approach is implemented in two components: PROM
Data Inspector (server-side component) and PROM Console
(client-side component). Both components are written in Java.
PROM Data Inspector implements the actual problem detection
and takes steps to solve the identified issues. PROM Console

provides additional information on the status of the clients
when needed and it propagates to the client the actions
recommended by PROM Data Inspector to solve the identified
problems. Figure 1 shows the relations between the existing
architecture of PROM and these two components.

Figure 1. PROM Architecture and the relationship with PROM Data Inspector
and PROM Console

The definitions of data invariants are stored in the PROM
database. At present, the implementation of the formula of the
invariant is in a separate module of the Data Inspector.
However, PROM Data Inspector can be easily extended to use
formulas implemented in external modules. This makes the
actual structure of the data storage transparent to the Data
Inspector, ensuring that the self-healing mechanism is
independent from the way in which data are stored.

Data invariants can be of two types: basic and summary
invariants. The basic invariants have a simple, single data
property to check. They are usually meant for testing fixed data
invariants rather than adaptive invariants that require more
complex checks of data relations. For such checks, the
summary invariants are more appropriate. A summary invariant
has a computation formula that usually involves other basic
invariants. This allows to check for complex data relations.
Moreover, if desired, several distinct invariants can be defined
to allow a more precise identification of the actual cause of
violation.

PROM Data Inspector runs at regular intervals, loads the
invariants from the database and performs a check of all
defined data invariants. For any invariant that is violated, the
component goes through the list of possible causes and runs the
associated tests. For every failed test, the corresponding action
is taken and its result is stored. If the execution of the action
fails, an error notification is sent to the administrators of the
system. After successful execution of an action, the system
performs again the test that had previously failed. However, the
system has to wait until the next round of overall check of data
invariants to be sure that it solved the problem that was actually
causing anomalous data. Thus, the overall algorithm has the
following steps:

1. Check all data invariants and store results.

644 645

2. For each data invariant that was violated:

a. For each possible cause:

i. Perform all associated tests

1. If a test fails, run the
corresponding action;

2. If the action completed
successfully, perform again
the test;

3. If the action could not be
run or the test failed again
after action has been taken
report to the administrators.

b. If all tests of all possible causes passed from
the first run (i.e., no cause has been identified
as responsible for the observed violation),
notify the administrators.

The PROM Data Inspector stores all the results of the check
of invariants in the database for future reference, together with
a timestamp. Optionally, it can also generate a report and send
it by email to the administrators. The detailed results of the
checks performed can be used for having a clear view on the
status of the data at any given time. The Data Inspector ensures
the compatibility with the graphical interface PEM (PROM
Experience Manager), so that the status and results of all tests
can be displayed in a chart allowing for fast identification of
days and users with problematic data.

The PROM Console resides on the client machine and
communicates with the Data Inspector on the server. It gathers
information about the local context, such as the PROM
components installed, the state of their configuration files and
the data that are collected. It sends such data to the Data
Inspector which uses them to perform the tests for cause
identification. Upon request from the Data Inspector, PROM
Console notifies the user that some specific action needs to be
taken, or it implements directly non-invasive actions such as
restoring of corrupted configuration files.

V. RESULTS

PROM Data Inspector and PROM Console were in usage
during the last 2 months of data collection in the an experiment
in a company (Coman et al., 2009). In a first step, Data
Inspector represented mainly an automation of the data checks
that were previously performed manually. However, it soon
became obvious that it can also perform more complex checks
that are very tedious to be performed manually. Thus, the
summary invariants were introduced, allowing the combination
of many basic invariants.

The initial reports of the PROM Data Inspector were just
listing all the tests performed together with the results obtained.
However, such reports were hard to read without knowing the
inner functioning of Data Inspector. The current version
addressed this problem by providing at the beginning
summaries of the identified problems, together with the
possible causes. This new form of reports proved to be

understandable also by people that were not directly involved
in the definition of data invariants or in the development of the
Data Inspector. Figure 2 shows an example of the contents of a
report generated for a single user showing an identified
problem and listing the possible causes. In the report, each test
represents in fact a data invariant. This change of name makes
the report more intuitive to people and does not require users to
know what a data invariant is.

Figure 2. Example of PROM Data Inspector report showing a detected data
anomaly

VI. CONCLUSIONS AND FUTURE WORK

This paper reported on the first step towards transforming
AISEMA systems into autonomous systems, by ensuring self-
healing capabilities. The proposed approach is to detect data
anomalies and to trace them back to the software or hardware
failure that caused them. The data anomalies are modeled as
violations of data invariants. The data invariants are based on
the knowledge of the system and of the data collected. They
can be very simple (e.g., time recorded should always be
positive) or more complex, combining several basic invariants
for testing of relations into the data.

To solve the issues that cause data anomalies, each data
invariant contains also a list of possible causes. Each cause has
a list of tests that help identify the exact problem and whether it
is benign (not a failure but special circumstances) or malign (a
failure that has to be solved). For each test there is also a list of
actions to be taken when the test fails. This model ensures
flexibility (new invariants can be added at any time), simplicity
(the complexity of invariants can be hidden from the user by
building on underlying levels of invariants), and traceability of
issues that affected the collected data (all actions are clearly
defined and the results are always stored).

The current implementation uses only user-defined
invariants. As future work, it would be valuable to explore the
possibilities of automatically extracting invariants from
previously collected data. Techniques such as the one used in
Daikon (Ernst et al., 2001) or Mean (Raz et al., 2002b) have
already been applied to automated detection of data invariants
in online data feeds. However, applying such techniques is not

644 645

straight forward, as the characteristics of the AISEMA data are
quite different from those of online data feeds (i.e., most of the
data are not normally distributed, the volume of data is bigger,
complex relations between various types of data have to be
taken into account).

To preserve the character of self-healing of the proposed
approach, an automated detection of data invariants should also
be complemented by an automated detection of possible causes
and of appropriate measures to be taken for each identified
cause. However, this is still an open issue.

REFERENCES

[1] Coman, I., and Sillitti, A. Automated Segmentation of Development
Sessions into Task-related Subsections, International Journal of
Computers and Applications, ACTA Press, 31(3), 2009.

[2] Coman, I., Sillitti, A., and Succi, G. A Case-study on Using an
Automated In-process Software Engineering Measurement and Analysis
System in an Industrial Environment, ICSE 2009, Vancouver, BC,
Canada, 16 - 24 May 2009.

[3] Danovaro, E., Remencius, T., Sillitti, A., and Succi, G. PEM:
Experience Management Tool for Software Companies, 22nd Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA
2008), Nashville, TN, USA, 19 - 23 October 2008.

[4] Daskalantonakis, M., A Practical View of Software Measurement and
Implementation Experiences Within Motorola, IEEE Transactions on
Software Engineering, Vol. 18, 1992.

[5] Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D., Dynamically
Discovering Likely Program Invariants to Support Program Evolution,
IEEE TSE, 27(2), 2001.

[6] Hall, T., and Fenton, N. Implementing Effective Software Metrics
Programs, IEEE Software, March/April 1997.

[7] Hoover, C. L., Hansen, J., Koopman, P., and Tamboli, S., The Amaranth
Framework: policy-based quality of service management for high-
assurance computing, Intl. Journal of Reliability, Quality and Safety
Engineering, 8(4), 2001.

[8] Horn, P., Autonomic Computing: IBM's Perspective on the State of
Information Technology, IBM Corporation, available at
http://www.research.ibm.com/autonomic/manifesto/autonomic_computin
g.pdf, 2001.

[9] Iversen, J., and Mathiassen, L., Lessons from Implementing a Software
Metrics Program. Hawaii Intl. Conf. on System Sciences, 2000.

[10] Johnson, P. M., and Disney, A., A Critical Analysis of PSP Data
Quality: Results from a Case Study. Journal of Empirical Software
Engineering, 4(4), 1999.

[11] Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J.,
Zhen, S., and Doane, W. E. J., Beyond the Personal Software Process:
Metrics Collection and Analysis for the Differently Disciplined. ICSE,
2003.

[12] Kephart, J. O., and Chess, D. M., The Vision of Autonomic Computing,
IEEE Computer, 36 (1), 2003.

[13] Koopman, P., Elements of the Self-Healing System Problem Space, ICSE
WADS, 2003.

[14] Mikic-Rakic, M., Mehta, N., and Medvidovic, N., Architectural Style
Requirements for Self-Healing Systems, Intl. Workshop on Self-healing
Systems, ACM Press, 2002.

[15] Moore, C. A., Project LEAP: Personal Process Improvement for the
Differently Disciplined, ICSE, 1999.

[16] Offen, R. J., and Jeffery, R., Establishing Software Measurement
Programs, IEEE Software, March/April 1997.

[17] Pfleeger, S. L., Lessons Learned in Building a Corporate Metrics
Program, IEEE Software, May/June 1993.

[18] Raz, O., Koopman, P., and Shaw, M., Enabling Automatic Adaptation in
Systems with Under-Specified Elements, Intl. Workshop on Self-Healing
Systems, 2002.

[19] Raz, O., Koopman, P., and Shaw, M., Semantic Anomaly Detection in
Online Data Sources, ICSE 2002.

[20] Remencius, T., Sillitti, A., and Succi, G. Using Metrics Visualization
and Sharing Tool to Drive Agile-Related Practices”, 10th International
Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP 2009), Pula, Italy, 25 - 29 May 2009.

[21] Shehory, O. A Self-healing Approach to Designing and Deploying
Complex, Distributed and Concurrent Software Systems, Intl. Workshop
on Programming Multi-Agent Systems, ProMAS, 2006.

[22] Shelton, C., Koopman, P., and Nace, W., A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems, Intl. Workshop on Object-Oriented Real-Time
Dependable Systems, 2003.

[23] Sillitti, A., Janes, A. Succi, G., and Vernazza, T., Collecting, Integrating
and Analyzing Software Metrics and Personal Software Process Data
EUROMICRO, 2003.

646 647

Specification and Implementation of SPEM4MDE, a
metamodel for MDE software processes

Samba Diaw, Redouane Lbath, Bernard Coulette
University of Toulouse,

Laboratory of IRIT
Toulouse, France

{diaw, lbath, coulette}@irit.fr

Abstract— It is widely accepted that MDE is a novel and
important approach for building complex systems. This fact
forces many organizations to transform their software
development processes into model-driven ones. While model-
driven development processes – called MDE processes – have
started to appear, a tool-supported Process Modeling Language
(PML) for describing, enacting and evolving such processes is
still lacking. In this article, we propose a PML that combines
SPEM 2.0, UML 2.2 and MOF 2.0 QVT concepts. We extend
these concepts for the MDE domain and define the behavior of
MDE process models in terms of UML state-machines. The result
is a language that can be used to define a MDE process, and
thanks to its behavioral semantics, to guide the execution of
projects based on such a process. To evaluate and validate our
approach, we have developed a prototype under the TOPCASED
environment.

Keywords: Model-Driven Engineering (MDE), Model-Driven
Architecture (MDA), Model Transformations, Process Modeling
Language (PML), Model-Driven Development (MDD), MDE
Software Process, TOPCASED environment

I. INTRODUCTION

MDE (Model-Driven Engineering) ([1], [2], [21]) is a
recent software engineering discipline that advocates the use of
models within the software development rather than code. The
term MDE was proposed first by Kent in [19] and is derived
from the OMG’s Model Driven Architecture (MDA) initiative
[3], [15]. MDE aims at improving significantly the
development of complex software systems by providing the
means to switch from one abstraction level to another or from
one modeling space to another [2], [21]. The finality is to
describe both the problem and its solution by using models, and
by clearly establishing a methodology to show how to switch
from a problem to its solution by using model transformations
[2]. MDE is then a form of generative engineering in the sense
that the whole or part of an application is generated from
models. In this new perspective, models take an important
place among software development artifacts and must be
formal in order to be understood or transformed by tools. In
[5], Kleppe and al. define a model-driven software
development as “a process of developing software using
different models on different levels of abstraction with
(automated) transformations between these models”.
Therefore, the model-driven software development process [7],
[25], [26], [28] called MDE software process may be seen

as a transformation chain, each transformation consuming one
or several source models and producing one or several target
models. The description of a software process is called process
model. It can be expressed through any specific language or
notation which is called Process Modeling Language (PML). A
process model can be enacted when a development team
follows the process model during the development life cycle.
One of the major advantages of software process modeling is to
help developers using a unified and consistent terminology in
order to communicate around the process. Software process
modeling should also make possible understanding, reuse,
evolution, management, and standardization of processes [27].

Our general research goal is to propose a tool-supported
PML to model and enact MDE software processes. However,
as stated in related work (section V), there is no PML meeting
this goal so far.

The work presented in this paper focuses on modeling and
enactment of MDE software processes. More precisely, our
goal is to specify and implement a metamodel called
SPEM4MDE [22] which is a generic and flexible language that
combines SPEM 2.0 [12], UML 2.2 [13] and MOF 2.0 QVT
[14] concepts. A first version of the SPEM4MDE metamodel
was described in [22]. Since this first work, we have been
enriching our metamodel by taking into account the QVT
standard for transformations execution and the UML 2.2
BehaviorStateMachines package for describing MDE processes
behavior. In addition, we have developed a prototype called
SPEM4MDE-PSEE which is a CASE tool supporting MDE
process models edition and enactment.

The paper is organized as follows: section II introduces the
motivation and objectives of this work. Section III presents the
specification of the SPEM4MDE metamodel. Section IV
presents the validation of SPEM4MDE through a prototype and
a MDE process example which we modeled and enacted using
this prototype. Section V discusses related works, while section
VI concludes and introduces perspectives.

II. MOTIVATION AND OBJECTIVES

With the emergence of MDE, many organizations have
been starting to transform their traditional software
development processes into model-driven processes [28]. The
underlying objective is to reduce time of development, and to
increase software productivity and quality. As established in

646 647

[27] for traditional software development, the specification of
MDE processes should guide developers in the elaboration and
the transformation of models.

Our main objective is to provide the MDE community with
a metamodel to define and enact MDE software processes. As
defined in [5], a MDE process is a process of developing
software using different models and transformations between
these models.

 The concepts of SPEM 2.0 are quite generic since they are
supposed to be able to describe any kind of software (and even
system) process including MDE ones. However, SPEM 2.0
concepts are not able to capture the exact nature of most
activities and artifacts of a model-driven development. Indeed,
most of model-driven development activities are model
transformations, and most of model-driven development
artifacts are models.

We claim that reification of MDE concepts allows process
designers to explicitly describe specific aspects of MDE
development. For instance, to make it possible to check the
conformance relationship, it is important to specify models and
metamodels as input/output parameters of transformations. So
we advocate promoting MDE concepts as first-class citizens in
MDE process technology.

Therefore, we have decided to extend the SPEM 2.0
metamodel for MDE domain. In addition, SPEM 2.0 does not
fulfill executability. To overcome this limitation, we reuse the
UML state-machines for describing behavior of MDE
processes. We also allow the specification of transformations’
behavior with QVT in order to benefit from existing tools that
implement this standard.

III. SPECIFICATION OF THE SPEM4MDE METAMODEL

SPEM4MDE is formally specified as a metamodel that
reuses subsets of the concepts defined by the OMG’s standards
SPEM 2.0 [12], UML 2.2 [13], and QVT [14]. A first version
of SPEM4MDE was published in [22]. Since this publication,
we have reorganized and enriched the metamodel, and
developed an operational prototype for MDE process modeling
and enactment. More precisely, the metamodel has been
enriched by adding a new package for describing model
relationships and traceability at enactment time, and integrating
the QVT concepts in the behavioral package. In the following,
we describe the new version of SPEM4MDE. The prototype is
presented in section IV.

As shown by Fig. 1, SPEM4MDE is structured in the form
of three packages: MDE Process Structure, Model
Relationship, and MDE Process Behavior.

The MDE Process Structure package outlines concepts that
describe SPEM activities and transformations. It merges the
SPEM 2.0 Process structure package in order to describe a
transformation as a specialization of SPEM Activity. The SPEM
2.0 Process structure package describes a process in terms of
breakdown elements, which are activities, input and output
products, and roles that perform activities.

The Model Relationship package describes relationships
between models. It imports some concepts from MDE Process
Structure.

The MDE Process Behavior package reuses the UML 2.2
BehaviorStateMachines package and merges the MDE Process
Structure package in order to describe the behavior of MDE
process elements by means of UML state-machines. In
addition, it merges the QVTBase package in order to describe
the execution semantics of transformations. The QVTBase
package contains a set of basic concepts that describe
transformations, their rules, and their input and output models.

Figure 1. SPEM4MDE packages hierarchy

A. MDE Process Structure Package
Fig. 2 shows the MDE Process Structure package. The

objective of this package is to describe the structure of a MDE
process that encompasses traditional activities (e.g. edit a
model) and model transformations. Activities are described by
their input and output products, roles that perform activities,
and constraints that specify their precondition, invariant, and
postcondition. InitialActivity is a pseudo-activity that starts the
process while FinalActivity is a pseudo-activity that stops the
process.

A Model is a description of (part of) a system written in a
well-defined language (i.e. a model must conform to a
metamodel) [5]. The rules WF01, WF02, and WF03 described
below, introduce restriction between a model and its
compliance model. A model at the M1 level should conform
only to a metamodel (i.e. a model at the M2 level); a
metamodel should conform only to a meta-metamodel (i.e. a
model at the M3 level); and a meta-metamodel should conform
only to itself. A model may not have a level (e.g. UML
Infrastructure has not a fixed level).

A TransformationDefinition is considered as a particular
SPEM Activity. It is described by its informal rules, its input
and output models, and its source and target metamodels.
Informal rules describe relationships between constructs of a
source metamodel and constructs of a target metamodel. A
TransformationDefinition is endogenous (i.e. its source
metamodel and its target metamodel are identical) or
exogenous (i.e. its source metamodel and its target metamodel
are different). As a SPEM Activity, a TransformationDefinition
is performed by roles, specified by RoleUse via
ProcessPerformer. However, since a transformation in

648 649

SPEM4MDE is to be executed automatically, a
TransformationDefinition should have only one
ProcessPerformer linked to only one RoleUse.

The following constraint rules are used to define the static
semantics of the MDE Process Structure package. Due to space
limitation, the OCL expression is shown for only the first three
rules.

[WF01]: A Model at the M1 level must conform to a
Metamodel (i.e. a model at the M2 level).

Context Model inv: (self.level=#M1 and
self.complianceModel notEmpty()) implies
(self.complianceModel.level= #M2)

[WF02]: A Metamodel must conform to a Meta-
Metamodel (i.e. a model at the M3 level)

Context Model inv: (self.level=#M2 and
self.complianceModel notEmpty()) implies
(self.complianceModel.level= #M3)

[WF03]: A Meta-Metamodel must conform to itself.

Context Model inv: (self.level=#M3 and
self.complianceModel notEmpty()) implies
(self.complianceModel=self)

 [WF04]: Input and output models of a
TransformationDefinition should have the same level;
source and target metamodels of a
TransformationDefinition should have the same level;
source and target meta-metamodels of a
TransformationDefinition should have the same level.

[WF05]: An Activity may be decomposed only into
Activities or Transformations.

Figure 2. MDE Process Structure Package

B. Model Relationship Package
Fig. 3 shows the Model Relationship package. The

objective of this package is to describe common relationships
between models, which are composition, and refinement. A
model may be decomposed into other models (e.g.
decomposition of UML metamodel into Class Diagram
metamodel, Use case metamodel, etc). A model may be the
refinement of another model (e.g. PIM to PSM in MDA
approach). The concept Trace represents a set of trace elements
that together describe traceability links between source and
target model elements in a TransformationDefinition.

Figure 3. Model Relationship Package

C. MDE Process Behavior Package
To allow computer-assisted enactment of MDE processes,

it is necessary to be able to model their behavior. The goal of
the MDE Process Behavior package is to provide concepts for
implementing transformations defined in MDE Process
structure and concepts for defining behavioral models of MDE
process elements. Fig. 4 shows the MDE Process behavior
package.

The concept TransformationImpl describes the
implementation of a transformation in a formalism which is
either rule-based, program-based, or template-based. A
TransformationImpl is executed by a required MDE tool.
HumanActor specifies a person who plays his assigned roles
within the process.

Transformation with QVT meaning is a rule-based
transformation that extends TransformationImpl. To help
transformation designers describe transformations with rules,
we advocate the use of QVT.

The following constraint rules define the static semantics of
the MDE Process Behavior package. The OCL expression is
given for only the first rule.

 [WF01]: Input models of TransformationImpl must
conform to the source metamodels of its associated
transformation specification.

Context TransformationImpl inv:
(self.parameters select(i|i.direction=ParameterKind.in)
collect(t|t.model.complianceModel))=

648 649

(self.specification.parameters select(m|m.direction=
ModelParameterKind.source) collect (t| t.type))

[WF02]: Output models of TransformationImpl must
conform to the target metamodels of its associated
transformation specification.

Figure 4. MDE Process Behavior Package

The behavior of a BreakdownElement may be described by
a UML state-machine. The property state in
BreakdownElement defines the state of each MDE process
element at enactment time.

To illustrate the use of UML state-machines in MDE
Process Behavior package, Fig. 5 shows a default behavior of
any transformation. This behavior may be reused or adapted
when defining a MDE process. We distinguish between three
composite states: Not-Running, Running, and Finished. After
the process has been instantiated, the transformation is in the
state Executable. The transition from the state Executable to the
state Startable occurs when the function Startable () returns
true (i.e. precondition and precedence constraints are fulfilled).
The transformation switches from the state Startable to the
state Executing when the required MDE tool is running. A
transition to the state Inconsistent occurs when the invariant
associated to the transformation is no longer fulfilled. From
Executing state, the transition to the state Terminated is
triggered when the execution process of the transformation is
finished. From Executing state, the transition to the state
Aborted happens when the developer cancels the
transformation execution. From the state Inconsistent, there are
four options: reconcile the transformation with the MDE
process and then it switches to the state Executing, cancel the
transformation execution and then it switches to the state
Aborted, finish the transformation execution and then it
switches to the state Invalidated, or restart the required MDE

tool and then the transformation switches to the state
Executable. From the state Terminated, if the transformation is
validated (i.e. its target models are validated and its
postcondition is fulfilled), the transformation switches to the
state Validated, otherwise it switches to the state Invalidated.
From the state Invalidated the user may restart the required
MDE tool and then the transformation switches again to the
state Executable.

Figure 5. Default Behavior of a Transformation

IV. VALIDATION

A. The prototype SPEM4MDE-PSEE
To validate the specification of the SPEM4MDE

metamodel, and allow users to define and enact SPEM4MDE
process models, we have developed a prototype SPEM4MDE-
PSEE under the TOPCASED environment [18]. As shown by
Fig. 6, SPEM4MDE-PSEE is divided into two components:
SPEM4MDE Process Editor, and SPEM4MDE Process
Enactment Engine.

Figure 6. Architecture of SPEM4MDE-PSEE

SPEM4MDE Process Editor allows process designers to
describe, and modify MDE process models. Describing a MDE
process model includes describing its structure and its
behavior. Transformation rules in a MDE process are described
by transformation designers. Once the MDE process model is
described, the process designer may check it with respect to the

650 651

constraints defined in the SPEM4MDE metamodel, or to
additional constraints. There are two ways for checking MDE
process models: checking on demand (i.e. when the user
triggers himself the checking process) or checking during
edition (i.e. checking is done automatically by the tool).
Outcomes of process editing are stored in a repository called
MDE Process Repository. This editing component may also be
used by a project manager for adapting a MDE process model
to a given project.

SPEM4MDE Process Enactment Engine allows developers
to enact a project-specific process model by allowing them at
each time to execute enactment operators and to know the sate
of any MDE process element. It is integrated with other
eclipse-based tools (ATL, Smart QVT, etc.) in order to execute
transformations. Developers can then keep track of what is the
current state of each element of the MDE project, what has
been done before and what is left. Outcomes are models, code,
documentation, etc. and are stored in a MDE Project
Repository

B. Case Study: A process for developing web systems
In this section we illustrate our approach with a MDE

process example: UWE (UML-Based Web Engineering) [8],
[9]. We first give an overview of the UWE process. Then, we
show the description of an extract of UWE with the
SPEM4MDE Process Editor. Afterwards, we show the
adaptation of another extract of UWE to a very simple MDE
development project: a music portal web application. Finally,
we show how to use SPEM4MDE Process Enactment Engine
when enacting the adapted process model.

1) The UWE Process
The objective of the UWE process is to give to web

developers a systematic and semi-automatic support of web
systems development based on models and their
transformations. The process covers the whole development
life cycle of web systems from the requirements specification
to code generation. It is a model-driven development process
following the MDA approach. It consists of a set of models and
model transformations, specified by metamodels and model
transformation languages. The metamodels are the Web
Requirements Engineering metamodel (WebRE) [23], the
UWE metamodel [9], and the metamodel of the Web Software
Architecture approach (WebSA) [8] that contain respectively
elements for modeling requirements, structure and behavior,
and the architecture of Web systems. The UWE metamodel
includes the Content Metamodel, the Navigation Metamodel,
and the Presentation Metamodel. The UWE process starts with
the definition of a requirements model that is a computational
independent (CIM) business model. Two sets of platform
independent design models (PIM) are derived from these
requirements: functional models which represent the different
concerns of the Web system (content, navigation, business
logic, presentation, and adaptation); and architectural models
which represent the architectural features of the Web system.
Functional models are afterwards integrated mainly for the
purpose of verification into a big picture model. A merge of
this big picture model with the architectural models results in
an integrated model covering functional and architectural
aspects. Finally, platform specific models (PSM) are derived

from the integrated model from which programming code can
be generated. The transformation of requirements model into
functional models is a composite transformation, each sub-
transformation dealing with a separate concern of Web
engineering.

2) Describing UWE’s Functional Models Transformation
with SPEM4MDE-PSEE

To illustrate the use of the SPEM4MDE Process Editor,
Fig. 7 gives an extract of the UWE process model, related to
the “requirements model to functional models” transformation.
It comes as a set of six sub-transformations: “Req 2 Content”,
“Content 2 Navigation”, “Req 2 Navigation”, “Navigation
Refinement”, “Navigation 2 Presentation”, and “Style
Adjustment”. These transformations are ordered as depicted by
the links «finishToStart». Source and target metamodels of
each transformation are depicted by the links «source» and
«target», respectively. Input and output models of each
transformation are depicted by the links «in» and «out»,
respectively. However, for readability of Fig. 7, we only give
input and output models of the first two transformations. For
instance, “Content 2 Navigation” has the “Content Model” as
an input model, “Content Metamodel” as a source metamodel,
“Navigation Model” as an output model, and “Navigation
Metamodel” as a target metamodel. “Navigation Model” is
conformed to “Navigation Metamodel”, while “Content
Model” is conformed to “Content Metamodel”. It should not
start before “Req 2 Content” is finished, and must be finished
before “Req 2 Navigation” can start. For more details about the
UWE process, the reader is referred to [8].

Figure 7. Functional Model Transformations within UWE Process

650 651

3) Adapting the UWE Process to a Project Example
Before a process model can be enacted for a given

development project, it has to be adapted to the project by the
means of SPEM4MDE Process Editor. This adaptation consists
in specializing it into a project-specific process model, where
each transformation is linked to its implementation and
assigned resources (human actors, tools, workspaces, and used
artifacts), and each activity is associated with its resources.

To illustrate how the UWE process model may be adapted
with SPEM4MDE, let us consider a simple project example: a
web portal application for vending musical albums, and an
extract of the process, limited to the “Content 2 Navigation”
transformation (shown in Fig. 7). The adaptation of this extract
is depicted by Fig. 8. It consists first in specifying the
implementation of the transformation (“Content 2 Navigation
Impl”), and assigning its resources: a human performer (Bob)
who plays the Web Developer role, an input model (“Music
Portal Content Model”), an output model (“Music Portal
Navigation Model”), and a tool (Smart QVT) for executing the
transformation implementation (rules describing the
transformation – not shown in the Fig. – are implemented in
QVT). The project-specific UWE process model is linked with
the UWE process model through stereotyped associations:
«implements» for the transformation implementation,
«conformsTo» for the input/output models, and «plays» for the
human actor. Moreover, the state of “Content 2 Navigation
Impl” is set to Executable (see Fig. 5). The adaptation of the
other UWE’s transformations is done similarly. At this stage,
input and output models specify rather references than concrete
models, which will be produced once the transformations are
performed.

Figure 8. Adaptation of the “Content 2 Navigation” Transformation

4) UWE Process Enactment
Process enactment is based on the behavioral model

described by state machines (as discussed in section III (sub-
section C)). The SPEM4MDE Process Enactment Engine
offers to developers entries of menu (i.e. enactment operators)
that show for each process element the set of all operations
specified by the corresponding state machine. Moreover, it also
shows whether these operations are eligible or not. Once an
operation is executed by developers, the state of the related
process element is updated according to its corresponding state

machine, and attached actions (with UML state-machines
meaning) are executed, if any. As stated in the precedent
section, a process enactment can start only once the process
model is adapted to a given project.

To illustrate the enactment of the UWE process, let us
consider the extract of the adapted UWE process shown by Fig.
8. Let us suppose that the process is at the stage where the
implementation of the “Req 2 Content” transformation (shown
in Fig. 7) has been performed, producing the “Content Model”
(shown by Fig. 9 below) which is linked to “Content 2
Navigation Impl” as an input model.

As shown by Fig. 9, an artist produces albums, each album
having one or more songs. A session may be associated to the
application’s current user. A credit card is used for buying
albums, but may have an owner different from the user.

Figure 9. Source Model of “Content 2 Navigation Impl”

Fig. 10 shows the contextual menu displayed by the
SPEM4MDE Process Enactment Engine for “Content 2
Navigation Impl”. It indicates all possible operations described
by the behavioral model of a transformation (see Fig. 5), and
whether each operation is eligible (green mark) or not (red
cross).

Initially, “Content 2 Navigation Impl” is in the state
“Executable”. It has switched to the state “Startable”, because
the “Req 2 Content” transformation is already performed (i.e.
precedence of “Content 2 Navigation” is fulfilled), and the
“Content Model” is created and validated (i.e. precondition
“Content 2 Navigation Impl” is fulfilled). Since the current
state is “Startable”, then the operation “run” is eligible. If a
non-eligible operation is clicked on, a message displays (not
shown in the Fig.) what conditions should be fulfilled in order
to make it eligible.

Figure 10. Contextual Menu of “Content 2 Navigation Impl “

652 653

When the operation “run” is executed, “Content 2
Navigation Impl” switches to the state “Executing”, its
contextual menu is updated consequently (see Fig. 11 below).
Moreover, the attached action (i.e. launching the associated
tool (Smart QVT)) is performed.

Figure 11. Displayed message (left) and the updated menu (right) after
triggering the run action

If the “finish From Executing” operation is performed, the
current state switches to the state “Terminated”, meaning that
the output model (i.e. the “Music Portal Navigation Model”
shown in Fig. 12) is created. At this stage, if this model is
validated, “Content 2 Navigation Impl” switches to the state
“Validated”, otherwise it switches to the state “Invalidated”.
As shown by Fig. 12, the “Music Portal Navigation Model”
describes the output model of “Content 2 Navigation Impl”.
From the home page, a user may register, recharge his account,
or search an album. The result of the search is a list of albums.
From this list, the user can view the details of each album and
afterwards download it, and may then recharge its account.
Before registering, recharging, or downloading an album, the
user should log in.

Figure 12. Target Model of “Content 2 Navigation Impl”

V. RELATED WORKS

Works related to our domain of interest mainly focus on
transformations and MDE processes modeling. In the
transformation area, we distinguish between model-to-code and
model-to-model transformation approaches. In general, model-
to-code can be viewed as a special case of model-to-model
transformation; we only need to provide a metamodel for the
target programming language. Among model-to-model
transformation approaches, we distinguish between rule-based,
graph-based, program-based and template-based approaches.
Model transformation is the central topic of MDE and is
essential to define a MDE process. The first MDE process

came with the OMG’s MDA initiative [3], [15] which depicted
a general purpose process that can be applied to any application
domain. Then, starting from the MDA approach, other MDE
processes dedicated to middleware service [16], web
applications [8], e-learning [17], models composition [20],
embedded-systems [10], and a version of the Open Unified
Process for MDD [24] have been proposed. However, there is a
lack of consistent terminology since there is no unified
language to specify MDE processes: each one adopts ad hoc
notations and different concepts are used to define the activities
and artifacts for software development life cycle.

Many languages and formalisms have been proposed for
modeling software processes ([6], [12], and [29]), however
only a few of them take into account explicitly MDE concepts
[4], [11]. The SPEM 2.0 standard [12] describes a process in
terms of activities, input and output products, and roles that
perform activities, but fails on describing MDE concepts in a
process. Moreover, SPEM does not address the process
enactment in its last version. Nevertheless, it clearly suggests
two possible ways of enacting SPEM 2.0 process models:
mapping the SPEM 2.0 process models into project plans or
linking SPEM 2.0 process elements with external behavior
formalisms. To overcome the limitations of SPEM regarding
enactment, several approaches based on state-machines
(eSPEM [29], xSPEM [30], etc.), Petri nets (e.g. Porres’
approach [4]), and on workflow (XPDL, BPEL [31],
BPEL4PEOPLE, etc.) have been proposed.

The QVT standard [14] is suitable for defining model
mappings and executable model transformations, but fails on
describing process design aspects.

In [4], an approach that is targeted towards the development
of software and systems using MDE methods is presented. The
dynamics of this approach is based on Petri Nets. This
approach can be integrated with existing approaches for
software process modeling, but the metamodel contains only
one concept (transformation Tool) that is related to MDE.

In [11], an approach to MDA process specification, based
on the SPEM 2 standard concepts, is proposed. This approach
is supported by a tool called Transforms which can be used to
instantiate a MDA process for a given domain. Developers can
describe steps and associate artifacts to perform MDA
modeling and transformations chain. This approach has
however some limitations, since it is tightly coupled with MDA
concepts. Furthermore, it does not separate the specification of
a transformation from its implementation.

VI. CONCLUSION

So far, MDE concepts are not explicitly supported by
existing PML (Process Modeling Language). Reification
allows promoting MDE concepts as first-class citizens.

In this paper, we have presented the specification and the
implementation of SPEM4MDE, which is a metamodel
dedicated to MDE software process modeling and enactment.
SPEM4MDE extends SPEM 2.0 by adding concepts and
semantics relating to MDE. It also reuses the QVT standard,
and UML state-machines for defining the execution behavior
of transformations and the behavior of MDE processes. In

652 653

addition, SPEM4MDE offers a set of behavioral MDE process
models that process designers may reuse or adapt for a
particular process. A prototype called SPEM4MDE-PSEE has
been implemented under the TOPCASED environment. It
helps process designers describe structural and behavioral
aspects of SPEM4MDE process models and ensure that such
process models are well-formed. SPEM4MDE-PSEE aims also
at guiding the execution of projects based on a MDE process.
Furthermore, when enacting a MDE process model which is
specific to a project, developers can keep track of what is the
current state of each element of such a MDE process model,
what has been done before and what is left. To demonstrate the
capabilities of our prototype, we have used an extract of the
UWE process. The structure of this extract and the behavior of
transformations that are involved in this extract have been
modeled under SPEM4MDE Process Editor. SPEM4MDE
Process Enactment Engine transforms the behavioral model of
one transformation in UWE process as entries of menu
representing operations that may be triggered at enactment
time. Thanks to this menu, developers may know at any time,
operations that are eligible or not.

Two important perspectives of this work are under
consideration. Firstly, we intend to implement traceability of
model transformations. The underlying objective is to replay
easily a transformation when change occurs on its input
models. Secondly, we envisage extending the SPEM4MDE
metamodel for handling model-based collaborative
development processes. For instance, the extension of
SPEM4MDE for collaborative MDE processes will permit to
coordinate developers’ activities who work on the same model.

REFERENCES

[1] J. Bézivin, and E. Breton, “Applying the basic principles of model-
engineering to the field of process engineering”. European Journal for
the Informatics Professional. 5, 27-33 (2004

[2] R. France, and B.Rumpe, “Model-driven development of complex
software: A Research Roadmap”. In: Proc. of the International
Conference on Software Engineering (ICSE), pp. 37-54. IEEE Press,
Minneapolis, Minnesota, USA (2007)

[3] J. Bézivin, and O. Gerbé, “Towards a precise definition of the
OMG/MDA Framework”. In: Proceedings of the 16th IEEE
international conference on Automated Software Engineering (ASE), pp.
273. IEEE Press, San Diego, (USA) (2001)

[4] O. Porres, and M. C. Valiente, “Process definition and project tracking
in model-driven engineering”. In: Münch, J., Vierimaa, M. (eds.)
PROFES 2006. LNCS, vol. 4034, pp. 127-141. Springer, Amsterdam
(2006

[5] A. Kleppe, J. Warmer., and W. Bast, “MDA explained the model-driven
architecture: practice and promise”, Addison-Wesley (2003)

[6] R. Bendraou, M.P. Gervais, and X. Blanc, “UML4SPM: a UML 2.0-
based metamodel for software process modeling”. In: Briand, L.,
Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 17-38.
Springer, Montego Bay, Jamaica (2005)

[7] F. Fondement, and R. Silaghi, “Defining model-driven engineering
processes”. In: 3rd UML Workshop in Software Model Engineering
(WiSME), Springer, Lisbonne (2004)

[8] N. Koch, “Transformations techniques in the model-driven development
process of UWE”. In: 6th International Conference on Web Engineering
(ICWE), Volume 155 Article N° 3. ACM, California (2006)

[9] C. Kroiß, and N. Koch, “UWE metamodel and profile: user guide and
reference”. LMU, Technical Report (2008).

[10] A. Garcia, B. Combemale, X. Crégut, J.N. Guyot, and B. Libert,
“TopProcess: A process model-driven approach applied in Topcased for
embedded real-time software”. In: European Congress on Embedded
Real-Time Software (ERTS), Société des Ingénieurs de l’Automobile,
Toulouse (2008)

[11] R.S.P.Maciel, B.C Silva, A.P.F. Magalhães, and N.S Rosa, “An
approach to model-driven development process specification”. In: 11th
International Conference on Enterprise Information Systems (ICEIS),
pp. 27-32. INSTICC Press, Milan (2009)

[12] SPEM 2.0, http://www.omg.org/spec/SPEM/2.0
[13] UML version 2.2, http://www.omg.org/spec/UML/2.2/
[14] MOF 2.0 QVT 1.0, http://www.omg.org/spec/QVT/1.0/
[15] MDA at, http://www.omg.org/mda/executive_overview.htm
[16] R. S. P.Maciel, B. C. Silva, , and L. A. Mascarenhas, “An edoc-based

approach for specific middleware services development”. In: 4th
Workshop on MBD of Computer Based System, pp.135-143. IEEE
Press, Postdam (2006)

[17] H. Wang, and D. Zhang, “MDA-based development of E-Learning
system”. In: 27th International Computer Software and Applications
Conference (COMPSAC), pp. 684-689. IEEE Press, Texas (2003)

[18] TOPCASED, www.topcased.org
[19] S. Kent, “Model-driven engineering”. In: Grieskamp, W., Santen, T.,

Stoddart, B. (eds.) IFM 2002. LNCS, vol. 2335, pp. 286-298. Springer,
Turku, Finland (2002)

[20] A. Anwar, S. Ebersold, B. Coulette, M. Nassar, and A. Kriouile, “A
QVT-based approach for model composition - application to the VUML
profile”. In: 10th International Conference on Enterprise Information
Systems (ICEIS), pp. 360-367. INSTICC Press, Barcelona (2008)

[21] S. Diaw, R. Lbath, and B. Coulette, « State of the art of sofware
development based on model transformations ». Technique et Science
Informatiques 29, N° 4-5, 505-536 (2010).

[22] S. Diaw, R. Lbath, V. Thai Le, and B. Coulette, B., “SPEM4MDE: a
metamodel for MDE software processes modeling and enactment”. In:
3rd Workshop on Model-Driven Tool & Process Integration -
Associated to EC-MFA, pp. 109-121. Fraunhofer, Paris (2010).

[23] M. J.Escalona, and N. Koch, “Metamodeling the requirements of web
system”. In: 2nd International Conference on Web Information System
and Technologies (WEBIST), pp. 310-317. INSTICC Press, Setúbal,
Potugal (2006)

[24] OPEN UP at: http://www.eclipse.org/epf/openup_component/mdd.php
[25] E. Rios, T. Bozheva, A. Bediaga, and N. Guilloreau, “MDD maturity

model: a roadmap for introducing model-driven development”. In
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp.
78-89. Springer, Bilbao (2006)

[26] T. Stahl, and M. Volter, “The Model-driven software development
Technology, Engineering, Management”, Translation copyright by John
Wiley & Sons, Ltd (2006)

[27] W. Humphrey, and M. Kelner, “Software modeling: principles of entity
process models”. SEI - Carnegie Mellon University. Pittsburgh,
Pennsylvania, (1989).

[28] X. Larrucea, A. B. García Díez, and J. X. Mansell, “Practical model-
driven development process”. In: Second European Workshop on Model
Driven Architecture (MDA) with a emphasis on Methodologies and
Transformations, pp. 99-108. Computing Laboratory, University of
Kent, Canterbury, UK (2004)

[29] R. Elner, S. Al-Hilank, A. Bediaga, J. Drexler, M. Jung, D. Kips, and M.
Philippssen, “eSPEM – A spem extension for enactable behavior
modeling”. In: Kuhne, T., Seloc, B., Gervais, M.P., Terrier, F. (eds.)
ECMFA 2010. LNCS, vol. 6138, pp. 116-131. Springer, Paris (2010).

[30] R. Bendraou, B. Combemale, X. Crégut and M.-P. Gervais : “Definition
of an eXecutable SPEM2.0”. In: 14th Asia-Pacific Software Engineering
Conference (APSEC), pp. 390-397. IEEE Computer Society, Nagoya,
Japan (2007).

[31] Web Services Business Process Execution Language Version 2.0.
Working WS-BPEL TC OASIS, April 2007. URL: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

654 655

Conformance Checking of Software Development Processes Through Process
Mining

Artini M. Lemos, Caio C. Sabino,Ricardo M. F. Lima, César A. L. Oliveira
Center for Informatics, Federal University of Pernambuco

Recife, Pernambuco, Brazil
{aml2, ccss2, rmfl, calo}@cin.ufpe.br

Abstract

The design and management of software development
processes is essential to reduce costs and improve the qual-
ity of software products. The execution of such processes is
usually monitored to register important information about
the dynamic behavior of the software development process.
As a result, a huge amount of information is stored in the
database and the software managers are deluged by data.
Then, it is important to find ways to automatically ana-
lyze the process execution logs to discover the actual pro-
cess model, characterize trends in it, and flag anomalies.
Process mining is a well established technique designed to
attack this challenge. This paper demonstrates the appli-
cation of process mining technique and tools to perform a
software development process conformance analysis to de-
tect inconsistencies between a process model and its corre-
sponding execution log. The work conducts a case study us-
ing an event log database with more than 2,000 process in-
stances gently provided by a Brazilian software house. The
paper aims at closing the gap between process mining and
software engineering areas. We hope to motivate and guide
software managers to adopt process mining technique as a
practical tool for the analysis and improvement of software
development processes.

1. Introduction

Software development usually follows a sequence of ac-
tivities designed to capture the best practices from software
development projects. Such sequence of activities defines
the software development process, which should be con-
stantly revised and improved to embody strategies for ac-
complishing software evolution. Even when the process
is automated, due to personal preferences, previous experi-
ences, or even time and cost pressures, it is common to see
project managers adopting their own software development

processes. Moreover, usually some process activities are ig-
nored to save time and meet the project deadline. Therefore,
the first step of any software process improvement project
should be the conformance analysis to determine if the de-
fined process is being actually followed.

In this context, it is important to discover the real soft-
ware development process to compare it with the company’s
formal process. Software development process discovery
has been an intensive task, either done through exhaustive
empirical studies or in an automated fashion.

Software houses usually automate their development
processes through a monitoring system. This system is ca-
pable of registering valuable information about process exe-
cution, such as timestamps, task identification, stakeholders
involved in the execution of an activity etc., in the form of
execution logs. Such execution logs (also called event logs
or audit trails) are the starting point for the process min-
ing technique, which was developed to semi-automatically
extract useful information from them [4].

Processing mining has been successfully applied in
many different areas, including software engineering. In [1]
authors explore process mining techniques for discovering
development processes from publicly available open source
software development repositories. In [6] authors define
a process mining framework to discover software devel-
opment processes from event logs generated by software
configuration management (SCM) systems. Unfortunately,
these works are more oriented to the computational intel-
ligence area. They focus on describing the mining tech-
niques, demonstrating their efficiency in discovering soft-
ware process models. Less attention is devoted to the appli-
cation and use of such techniques to evaluate the software
development process in a real environment.

This work aims at bridging this gap between process
mining and software engineering areas by demonstrating
how to explore process mining techniques to perform a
conformance analysis and evaluate whether the established
software development process is being followed. The con-
formance analysis main goal is detecting inconsistencies

1

654 655

between a process model and its corresponding execution
log. Despite some works have explored process mining
techniques for the conformance analysis of general business
processes [5], it is not of our knowledge any study that ap-
plies process mining to conformance checking of software
development processes.

In this work we use the process mining ProM tool [9]
to mine the event logs of a real company and discover the
process model that is actually employed by them. We are
particularly interested in the process control-flow perspec-
tive. In the control-flow conformance analysis, we want to
evaluate if process activities are being executed in the cor-
rect order and discover which activities are actually being
executed in the process instances. For this objective, we
employed a feature of the ProM framework that generates a
Markov chain from the process logs.

The paper explores a real database with event logs gener-
ated in the past five years from the execution of a software
development process. The database was gently provided
by a Brazilian software house with annual revenue of more
than US$ 500 million. The database includes more than
2,000 cases (process instances).

The paper is organized as follows. Section II describes
the process mining technique and presents the ProM tool.
Section III discusses the conformance checking study con-
ducted in this work. It begins by presenting the formal soft-
ware development process defined by the company; then
describes the event log characteristics and the mining strat-
egy; in the next step it demonstrates how to use ProM to
identify problems in the even logs and how these problems
were corrected; finally, it discusses the conformance analy-
sis study herein conducted. Conclusions and future works
are discussed in Section IV.

2. Process Mining

Business process mining, or just process mining, is a
“nascent research field at the intersection of data mining
and business process modeling” [3] that targets the extrac-
tion of non-trivial and useful information based on execu-
tion logs [4]. Since many systems record their transactions
in log files, process mining techniques can be used for a
large class of business processes. By using process min-
ing, many kinds of information can be collected about the
process, such as control-flow, performance, organizational
information and decision patterns.

It is important to note that most process mining tech-
niques do not generate a model for only reproducing all
log entries, but collects general information about the pro-
cess real execution, considering that exceptional behavior
or some minor errors may occur in the log file that should
not be part of the process.

Once the process model is obtained and possibly vali-
dated, it can be analyzed in order to better understand how
it actually works. In the analysis of the process model, some
changes can be proposed and their effects can be estimated
and measured. That means that the impact of some changes
can be calculated without having to change and verify the
real process. Therefore, process mining techniques can be
used to gain insight on how to improve the process quality.

Many process mining algorithms have been proposed.
The ProM Framework [9] is a tool that features many min-
ing and analysis plug-ins implementing several of these al-
gorithms.

ProM is an extensible open source framework imple-
mented in Java with a user-friendly graphical interface that
provides a wide variety of plug-ins that support, implement,
and use process mining techniques. There are currently
more than 230 plug-ins, distributed on functionalities like
filtering, mining, analysis, exporting and conversion.

The input log files for ProM are in a common log for-
mat: Mining XML (MXML). ProM can also take as input
process model files, such as PNML and many others. When
the log file is opened, ProM collects some statistical data
about it and present them in the main window. Also, many
plug-ins become available to operate on the log.

The mining plug-ins aim at discovering multiple per-
spectives of the process, such as the control-flow, the orga-
nizational structure, the data perspectives and some other
information. Details about these perspectives are given
in [9]. The analysis plug-ins deal with verification of pro-
cess models, conformance checking between the log and the
model, performance analysis, among other things.

ProM also provides filters for cleaning the log from un-
desired elements. Filtering “is usually a projection of the
log to consider only the data you are interested in” [9]. Also,
some mining plug-ins have configurable settings in order to
obtain better results depending on the user’s purposes.

ProM allows multiple combinations of plug-ins, making
it possible to analyze the results of a mining algorithm or
merge the contents of multiple perspectives to obtain a more
complete model for the process.

With an extensible framework, new algorithms can be
easily added as new plug-ins and this makes ProM a very
powerful tool. ProM works with several modeling lan-
guages, such as Petri Nets [2], EPCs [7], YAWL [8], and
supports the conversion between most of them, being a very
versatile tool.

3. Discovering a Software Development Pro-
cess

In this section, we explore the case of a Brazilian soft-
ware house with annual revenue of more than US$ 500 mil-
lion. Five years ago, the company defined a software devel-

656 657

opment process and deployed a monitoring system to reg-
ister relevant information about its execution. Since then, a
huge volume of event logs has been generated, in a way that
became impossible to the software quality team to manually
extract useful and trustful information from the database.

In this context, we applied process mining techniques to
extract important information on the real software develop-
ment process from the event logs. The main objective is to
discover the actual process being executed by the develop-
ment teams and compare it against the documented process.
The database under consideration includes more than 2,000
instances of the process.

3.1. The Formal Software Development Process

In its documented specification, the software develop-
ment process begins with the activity Proposal and Produc-
tion Budget (PPB) as it can be seen in Figure 1. The PPB in-
cludes two tasks: 1) creating a functional specification doc-
ument, which aims at detailing the recommended solution;
2) and filling in a worksheet to estimate the software de-
velopment effort. A manager analyzes the functional spec-
ification document in the activity Functional Specification
Document Analysis (FSDA) before submitting the proposal
to the client. In the next step the production planning and
budget proposal is sent to the client - activity Send Produc-
tion Planning and Budget (SPPB). Then, the client analyses
the production planing and budget proposal and returns an
approval/reject response - activity Client Proposal Analysis
(CPA).

When the customer approves the proposal and produc-
tion budget (CPA activity), the team leader analyses the
technical specification to evaluate its complexity. Only
complex specifications are validated - activity Validate
Technical Specification (VTE). The Development (DEV)
activity starts after validation. During this activity, pro-
grammers implement the software, create the processing
scripts and database objects script (triggers, functions,
packages, and view). When the development phase is com-
pleted, the Code Verification (CODV) activity is performed
to check whether code complies with the specification and
follows the development patterns. After the code verifica-
tion phase, the program is tested in the Testing (TEST) ac-
tivity. Eventually, with the software validated and tested,
the process reaches the Documentation activity (DOC) and
the process terminates.

This is an iterative process, allowing specification refine-
ments/corrections and negotiation of the production plan-
ning and budget proposal. As one can see in Figure 1, activ-
ities FSDA, CPA, VTE, CODV, and TEST represent points
where the process may move back to previous activities.

3.2. Mining the Software Process Logs

The company’s quality team is interested in assessing the
model (or models) of the real process and compare it against
the process that was supposed to be executed. Such con-
formance analysis will be the starting point for a process
improvement project in the company.

The Mining XML (MXML) is an extensible, XML-
based format for storing process event logs which can
be analysed by the ProM tool [9]. Since the company’s
database adopts a private file format, a compiler was devel-
oped to translate the event logs into the MXML file format.

ProM allows one to discovery different perspectives of
the process being analyzed, namely control-flow, perfor-
mance, and organizational perspectives. In the conformance
analysis conducted in this paper, we are interested in the
control-flow perspective. To discover which tasks are ac-
tually performed and their order of execution is of partic-
ular importance for the software quality team. The idea is
to compare the control-flow model of the formal process
against the control-flow model (or models) discovered from
the real event logs.

In the ProM tool, information about each event is
recorded in the form of an audit trail entry. Our event
logs store the following information on each audit trail: 1)
taskID: name of the task involved in a process event; 2)
event type: a mark to indicate whether the event is a start or
complete point in the process instance; 3) timestamp: mo-
ment at which the event took place; 4) originator: worker
who perform the task (originate the event).

Since the audit trail entry identifies the tasks that are ex-
ecuted in a process (taskID) and allows for inferring their
order of execution (event type and time stamp), then the
control-flow perspective can be discovered.

Existing techniques for process mining perform very
well for well-structured and organized event logs. How-
ever, the situation is not that simple upon dealing with real
event logs. In this case the logs are usually very obscure
and have noises, making it difficult to extract useful infor-
mation. Therefore, in these situations a preprocessing phase
to remove noises and organize the event logs is an obliga-
tion.

Our event log database was generated in the past five
years, in a very active company, with hundreds of process
instances executed each year. Thus, the preprocessing phase
is essential to produce a well structured event log database.
We used the reports produced by ProM tool to carefully an-
alyze the database and a number of problems were found
and fixed, as follows.

Incomplete timestamps - a) The monitoring system only
registers the moment a given activity initiates, but it does
not monitor the activity duration. However, this would be
a concern only if we were interested in analyzing the per-

656 657

Figure 1. The Formal Software Development Process

formance perspective of the process, which is not the case.
b) The original log recorded timestamps using information
about days, months, and years, but missing hour, minute,
and second details. Thus, activities occurring within a day
were assumed to be parallel activities, rather than sequen-
tial ones. To solve this problem we redefined timestamps
such that all activities in a process instance received differ-
ent timestamps. We used the formal company’s process to
determine the order of activities in time. One might argue
that the solution is biased by the control-flow of the for-
mal process. However, observing the original database, in
more than 90% of the cases, if two activities in the same
process instance have different timestamps, they follow the
control-flow order defined for the formal process, which is a
good result for the conformance analysis being conducted.
Therefore, our assumption for the timestamps modification
is acceptable. Nevertheless, despite the good conformance
results for the control-flow order, in most cases, the set of
activities being executed in a process instance are only a
subset of the activities defined in the formal process. So, a
deeper conformance analysis is still required.

Database corruption - Data stored in the audit trail en-
try of a small number of process instances appeared to be
corrupted. For instance, we found timestamps with invalid
date values. Moreover, some process instances had no start
or complete events. Fortunately, the number of process in-
stances with this kind of problem represented less than 2%
of the whole database. Thus, they were discarded without
significative loss for the conformance analysis study.

After the database preprocessing, we proceeded with the
conformance analysis. We want to answer two main ques-
tions: 1) does the real process respect the ordering of ex-
ecution defined in the formal process?; 2) which subset of
activities in the formal process are actually executed in the
real process? As we already observed, the answer for the
first question is yes for more than 90% of the cases. But we
need to investigate more to answer the second question.

3.3. Conformance Analysis

In this section, we describe the approach employed to
analyze the software process based on the information pro-
vided by process mining.

ProM features a plugin capable of generating a Markov
chain from the discovered model, where each node is a pro-

cess activity and transitions are labeled with probabilities as
in ordinary Markov chains. Through the Markov chain it is
possible to discover if sequences of activities defined for the
process actually occur, and with which frequency. It is also
possible to measure the probability of skipping a given ac-
tivity that is defined in the flow and the probability of each
decision that must be taken during the process execution.

We used Prom’s Markov chain model discovery feature
in our study. Table 1 presents the Markov chain generated
using ProM’s sequence clustering analysis plug-in.

With the Markov chain in hands, we can start the confor-
mance analysis of the software development process. The
purpose is to detect points in the actual process that are not
in conformance with the company’s expectations and pro-
vide useful information for the company to initiate the pro-
cess improvement project.

Figure 2 presents the formal process enriched with tran-
sition probabilities assessed from the Markov chain (Ta-
ble 1). For clarity and readability, Fig. 2 includes only
transitions relevant for the control-flow conformance anal-
ysis. Besides the transitions already present in the formal
process, we included some transitions (dashed arrows) to
indicate undesirable situations observed in the discovered
process model.

Now, let us analyze the results presented in Fig. 2 to point
out and discuss some conformance problems.

The probability of transitioning from the initial state (in)
to the development state (DEV) is of 25.2%. This means
that about one in each four projects started by the develop-
ment activity, skipping the whole planning stage.

The activity send production planing and budget (SPPB)
is almost never reached by any other activity in the process
model and could be removed from the formal process.

Although validate technical specification (VTE) is per-
formed for complex software projects, the execution of such
activity in the actual process is fairly rare, with probability
of 0.2%. This points out that this activity is executed in very
exceptional cases and, therefore, could be removed from the
company’s standard development process.

A more critical problem can be seen in the end of the pro-
cess. Software verification, testing, and documentation are
important activities of the best practices for software devel-
opment projects. Nevertheless, such activities are ignored
by 43.6% of the software development processes analyzed
(see transition from the development phase (DEV) to the

658 659

Table 1. Markov chain model for the process
in PPB FSDA SPPB CPA DEV VTE CODV TEST DOC out

in - 0.56 0.018 0.003 0.128 0.252 - 0.018 0.007 0.014 -
PPB - - 0.285 0.021 0.276 0.136 - 0.005 0.008 0.003 0.266

FSDA - 0.068 - - 0.305 0.19 - 0.032 0.004 0.016 0.385
SPPB - - - - - 0.658 - 0.026 - - 0.316
CPA - 0.01 0.006 0.002 - 0.767 0.002 0.065 0.015 0.002 0.131
DEV - 0.016 0.006 - 0.013 - 0.002 0.462 0.061 0.004 0.436
VTE - - - - - 0.75 - 0.25 - - -

CODV - 0.009 - - 0.003 0.035 - - 0.234 0.013 0.706
TEST - 0.006 0.006 - 0.029 0.02 - 0.018 - 0.553 0.368
DOC - 0.032 - 0.001 0.028 0.016 - 0.036 0.015 - 0.872
out - - - - - - - - - - -

Figure 2. The actual development process with the undesired transitions shown as dashed arrows

Table 2. Activity execution frequency
Activity Absolute occurrence Relative occurrence

DEV 1556 27.385%
PPB 1356 23.865%

CODV 853 15.012%
CPA 841 14.801%

FSDA 442 7.779%
TEST 342 6.019%
DOC 250 4.4%
SPPB 38 0.669%
VTE 4 0.07%

terminal state (out)). This shows that the software project
terminates in the development stage with a very high prob-
ability, without even being verified. Even worst, looking at
the transition from the code verification activity (CODV) to
testing (TEST), one can notice that, if the software happen
to be verified, it is usually neither tested (TEST) nor docu-
mented (DOC).

Eventually, Figure 2 demonstrates that the actual process
is not iterative. Thus, it is very unlike to observe a return to
previous activity during the process execution. Apparently,
when a problem occurs during the process execution, it goes
straight to the terminate state.

In ProM, a cluster of process instances with same se-
quence of activities is called a process type. Using ProM’s

sequence clustering plugin we can discover the process
types present in the log and the frequency of occurrence of
each one. The goal is to evaluate the conformance of these
process types against the formal process.

ProM discovered 190 different process types in our event
log. Figure 3 presents the two most frequent. The most fre-
quent process type only executes the development (DES)
activity, which is a clear indication of nonconformance
against the formal process. On the other hand, the second
most frequent process shows that many projects are can-
celled by the company after the proposal and production
budget (PPB), which is a fairly acceptable behavior.

We then analyzed the list of the ten most frequent process
types to select those with at least three activities. Out of the
ten most frequent process types, only the 4th, 5th, and 10th
had three or more activities. Figure 4 depicts these process
types. The testing (TEST) and documentation (DOC) activ-
ities are not executed in the fourth and fifth most frequent
process types. A good conformance result is observed in the
tenth most frequent process type. Only validation (VTE)
and send production planing and budget (SPPB) activities
are missing. Nevertheless, VTE activity is optional in the
formal process. Additionally, through the analysis of the
Markov chain, we had already identified that the SPPB ac-
tivity is almost never executed and recommended its elimi-
nation from the formal software development process.

658 659

Figure 3. The most frequent process types

Figure 4. Most similar process types to the
formal development among the ten most fre-
quent

4 Conclusions

This paper demonstrated the application of process min-
ing techniques to examine if the actual software develop-
ment process employed by a company conforms to its for-
mal specification. The work is conducted within the context
of a Brazilian software house. A total of 2,000 process in-
stances, recorded in five years of operation, were evaluated.

The conformance checking demonstrated that, although
some projects follow the formal process, most of them do
not occur as expected. Some serious problems were iden-
tified. The initial phase of the formal process, responsi-
ble for budged/functionalities proposal/approval, is usually
skipped. This may have important impact on the budged
planning and increase the costs with software maintainance.
Another conformance problem was observed in the final
phase of the process. The software implementation is val-
idated against the specification only in 46.2% of the cases.
Even worst, if the software happens to be validated, in
70.6% of the cases it is neither tested nor documented.

It is not the purpose of this work to evaluate the impact
of the conformance problems in the company’s productiv-
ity. Indeed, the conformance analysis produced a set of
reports indicating inconsistencies detected between a pro-
cess model and its corresponding execution log. For in-
stance, one of the reports enumerate the most common pro-
cess types1 in the event logs. In this report, we observed that
the tenth most common process type conforms to the formal
software development process. However, only the software

1process type: a cluster of process instances with the same sequence of
activities

quality team is able to attest if this is a good scenario and
take actions to solve the detected issues.

This work aimed at bridging the gap between process
mining and software engineering areas. From a software en-
gineering perspective, it describes how to apply the process
mining tool in a practical fashion. We believe that software
project managers can benefit from this paper by gaining in-
sights on how to incorporate process mining tools in their
professional routines.

Although in the conformance analysis we have explored
the control-flow perspective, the procedures may be easily
adapted to evaluate other software development process per-
spectives, such as performance, cost, resource allocation,
and many others. As a future work, we intend to demon-
strate how process mining can be applied to analyze other
software development process perspectives and develop a
guide to help software engineering people in the use of pro-
cess mining techniques and tools.

References

[1] Chris Jensen and Walt Scacchi. Data mining for software pro-
cess discovery in open source software development commu-
nities, 2004.

[2] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag
New York, Inc., New York, NY, USA, 1985.

[3] Aubrey J. Rembert and Clarence Ellis. An initial approach to
mining multiple perspectives of a business process. In The 5th
Richard Tapia Celebration of Diversity in Computing Confer-
ence, pages 35–40, New York, NY, USA, 2009. ACM.

[4] A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst.
Discovering simulation models. Inf. Syst., 34(3):305–327,
2009.

[5] A. Rozinat and W. M. P. van der Aalst. Conformance checking
of processes based on monitoring real behavior. Information
and Systems, 33:64–95, March 2008.

[6] Vladimir Rubin, Christian W. Günther, Wil M. P. Van
Der Aalst, Ekkart Kindler, Boudewijn F. Van Dongen, and
Wilhelm Schäfer. Process mining framework for software pro-
cesses. In 2007 international conference on Software process,
ICSP’07, pages 169–181, Berlin, Heidelberg, 2007. Springer-
Verlag.

[7] Wil M. P. van der Aalst, Arjan J. Mooij, Christian Stahl, and
Karsten Wolf. Service interaction: Patterns, formalization,
and analysis. In SFM, pages 42–88, 2009.

[8] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Yawl:
yet another workflow language. Inf. Syst., 30(4):245–275,
2005.

[9] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek,
A. J. M. M. Weijters, and W. M. P. van der Aalst. The proM
framework: A new era in process mining tool support. In Ap-
plications and Theory of Petri Nets 2005: 26th International
Conference, volume 3536, pages 444–454. Springer Verlag,
June 2005.

660 661

SET-MM – A Software Evaluation Technology
Maturity Model

Raúl Garcı́a-Castro
Ontology Engineering Group

Departamento de Lenguajes y Sistemas Informáticos e Ingenierı́a de Software
Facultad de Informática, Universidad Politécnica de Madrid, Spain

rgarcia@fi.upm.es

Abstract—The application of software evaluation technologies
in different research fields to verify and validate research is a
key factor in the progressive evolution of those fields. Nowadays,
however, to have a clear picture of the maturity of the tech-
nologies used in evaluations or to know which steps to follow in
order to improve the maturity of such technologies is not easy.
This paper describes a Software Evaluation Technology Maturity
Model that can be used to assess software evaluation technologies
in a research field. To illustrate the use of this model, we have
employed it for assessing the maturity of software evaluation
technologies in some evaluation initiatives within the semantic
research field.

I. INTRODUCTION

For research to reach maturity it is necessary to improve the
quality of the research processes and their results over time.
However, to apply the vague concept of maturity to a research
field, which is itself difficult to define, may seem an arduous
task.

It is well known that any research field has to periodically
assess its status by measuring different aspects of it (e.g.,
outreach to other fields, quality of publications, technology
maturity) and that the results obtained from these assessments
are the ones that initiate the actions needed towards improve-
ment and maturity in the field.

Nevertheless, to perform successful assessments for choos-
ing the most appropriate actions, it is necessary to have clear
goals and be aware of what is needed to achieve those goals.

Maturity models have been used for decades to guide
improvement by providing both a framework of incremental
maturity levels to be compared against and different measur-
able goals that must be satisfied to achieve each maturity level.

The most relevant maturity models are probably the Capa-
bility Maturity Model (CMM or SW-CMM) [1] and its suc-
cessor, the Capability Maturity Model Integration1 (CMMI).
Both maturity models have been defined by the Software Engi-
neering Institute with the goal of improving an organization’s
software development processes.

Other maturity models have also been defined, most of them
inspired by CMM or CMMI, mainly in the software engi-
neering domain but also in domains such as the organization
management one (e.g., the Portfolio, Programme and Project

1http://www.sei.cmu.edu/cmmi/

Management Maturity Model [2]) or the e-learning one (the
e-learning Maturity Model [3]).

One of the measurable aspects of a research field is what
technologies support the evaluation of the research outcomes.
In fact, the application of software evaluation technologies in
any research field to verify and validate research is a key
factor for research evolution by means of experimentation-
driven research [4].

The goal of this paper is to describe a Software Evaluation
Technology Maturity Model (SET-MM) that can be used to
assess software evaluation technologies in any research field.

Similarly to other maturity models, the goal of the SET-MM
is not to derive a figure for a specific level but to provide some
guiding to improve the current activities in the research field.

To illustrate how the SET-MM maturity model functions,
we have used it to assess the maturity of software evaluation
technologies in some evaluation initiatives within a concrete
research field, that of semantic research.

This paper is structured as follows. Section II introduces
other maturity models that are related to the one here presented
as they cover similar domains. Then, Section III presents the
scope of this work and the process followed to define the
maturity model, whereas Section IV enumerates the assump-
tions taken into account when defining this maturity model.
Section V describes the five maturity levels of SET-MM and
the main notions behind the model. Section VI presents how
we have used the maturity model here presented to assess the
maturity of software evaluation technologies in the semantic
research field. Finally, Section VII draws the conclusions from
this work and proposes future lines of research.

II. RELATED WORK

This section presents other maturity models that cover
similar domains and that have served us as input for defining
the maturity model presented in this paper.

The Capability Maturity Model for Software was defined by
the Software Engineering Institute in the early 1990s [1]. Since
then different maturity models have appeared, each collecting
the best practices to be used when comparing an organization’s
practices and guiding process improvement.

The proliferation of such models has led to their com-
bination into a single improvement framework, namely, the
Capability Maturity Model Integration that, in its current

660 661

version, contains three different models: CMMI for Acqui-
sition (CMMI-ACQ) [5], which is used for acquiring products
and services; CMMI for Development (CMMI-DEV) [6], for
developing products and services; and CMMI for Services
(CMMI-SVC) [7], for providing superior services.

The CMMI models focus on the following dimensions that
affect organizational improvement: people, procedures and
methods, tools and equipment, and processes.

From the number of maturity models that have been defined
we present here six, all related to SET-MM and largely
inspired by CMM or designed to work in conjunction with
it. While the first three models (namely, the Testing Maturity
Model, the Measurement Capability Maturity Model and the
Software Measurement Process Capability Maturity Model)
focus on process maturity, the other three focus on technology
maturity (as our model does).

The Testing Maturity Model (TMM) [8] was designed to
assist software development organizations in evaluating and
improving their testing processes.

It covers nine different attributes of a mature testing process:
testing policies, test life cycle, test planning process, test
group, test process improvement group, test-related metrics,
tools and equipment, controlling and tracking mechanism, and
product quality control.

The Measurement Capability Maturity Model (M-CMM) [9]
enables organizations to assess their software and software
process measurement capabilities and provides organizations
with directions for improving their measurement capability.

It covers the following main areas: measurement focus, mea-
surement design, measure collection, measure analysis, tech-
nology support, measurement feedback, measurement training,
and measurement management.

The Software Measurement Process Capability Maturity
Model (SMP-CMM) [10] helps organizations to assess their
measurement processes and provides guidelines for improving
them.

It supports improvement in five areas: metrics plan, data
collection, data gathering, data analysis, and feedback activity.

Daskalantonakis et al. [11] defined a measurement technol-
ogy maturity model for assessing the software measurement
technology of an organization.

Their maturity model covers ten different themes: formaliza-
tion of the development process, formalization of the measure-
ment process, scope of measurement, implementation support,
measurement evolution, measurement support for management
control, project improvement, product improvement, process
improvement, and predictability.

Wettstein and Kueng [12] defined a maturity model for
performance measurement systems, that is, systems that track
and manage the performance of an organization (or part of it).

Their maturity model covers six different dimensions: qual-
ity of measurement process, scope of measurement, data
collection, data storage, use of measures, and communication
of results.

Gao et al. [13] define five levels to evaluate the maturity
level of software test automation in the test processes of an

organization.
In their work, maturity is evaluated through two different

perspectives regarding the existence of systematic solutions
and tools that support a) the different tasks to be performed
during software testing; and b) the measurement of the testing
process.

If we classify the main areas covered in these maturity mod-
els according to the four improvement dimensions (people,
procedures and methods, tools and equipment, and processes)
taken into account in CMMI, it can be observed how all these
approaches cover the four dimensions and emphasize the areas
related to processes while understate those related to people.

While the model presented in this paper is quite similar to
the maturity models described above, the main difference is
that these maturity models focus on an organization, whereas
in our case the focus is on a research field.

This entails two major distinctions between SET-MM and
the other models. First, and contrarily to the maturity models
presented, we do not cover processes in our model. This is
so mainly because at a research field level it is not possible
to define, measure, or control any process since the field is
composed of highly distributed and heterogeneous members.
The second distinction is that data themselves are main topics
in SET-MM since the ability to improve largely relies on
the capacity of reusing the different evaluation data (e.g.,
workflows, test data, results). By contrast, in the other maturity
models data are secondary issues.

III. RESEARCH METHODOLOGY

This section presents the scope of the work presented in this
paper and the process followed to define the maturity model.

As mentioned above, the maturity model here presented
is solely focused on software products and does not cover
software processes.

Besides, this maturity model is grounded in the notion
of evaluation as defined by the ISO/IEC 14598 standard
on software product evaluation [14] and in the following
evaluation entities: in any evaluation a given set of tools are
exercised, following a given evaluation workflow and using
determined test data. As an outcome of this process, a set of
evaluation results is produced.

These entities are depicted in Figure 1. A detailed descrip-
tion of them and of their life cycles can be found in [15].

Tools

Test data

Results

Evaluation
workflow

Evaluation

Fig. 1. Main entities in a software evaluation scenario

Furthermore, any evaluation activity is always expected to
be the input of some decision-making process. Niessik and

662 663

van Vliet [16] exemplify this by proposing a generic process
model for measurement-based improvement in organizations;
such a model is composed of a measurement cycle followed
by an improvement one in which changes in the organization
are implemented based on the measurement results.

In our case, the scope is limited to the measurement (i.e.,
evaluation) cycle; thus, it does not cover improvement, since
the analysis and change processes of a research field cannot
be controlled nor monitored.

The process followed to define the maturity model contains
the same steps than those defined by [11]:

1) First, we identified the set of assumptions upon which
the different software evaluation technology maturity
levels are defined. Each of these assumptions defines one
or more themes (i.e., aspects) that influence maturity.

2) From these themes, five evolutionary stages were de-
fined; these stages have to be followed by any research
field in order to reach the highest level of maturity for
that particular theme.

3) Then, level i of the maturity model corresponds with the
i-th stage of the themes used to characterize and evaluate
the software evaluation technology maturity.

IV. WORK ASSUMPTIONS

This section enumerates the assumptions taken into account
while defining the maturity model.

These assumptions (and their corresponding themes) were
derived by analysing a) existing maturity models and ab-
stracting their main concepts; and b) evaluations performed
in the semantic research field, focusing on the technologies
that support these evaluations.

Assumption 1. Software evaluation is facilitated by a well-
defined software evaluation workflow and such well-defined
workflow will very likely yield quality evaluation results.
Furthermore, having both a common framework for defining
software evaluations and the means for easily defining evalua-
tion workflows and also automating them is a significant factor
that contributes greatly to the improvement of such workflows.
Therefore, the following theme is important: Formalization of
the evaluation workflow.

Assumption 2. Automation of software evaluation tasks
enables to perform cost-efficient software evaluations and
to diminish manual errors in them. Furthermore, the only
way of managing and processing large quantities of software
evaluation data is through the use of dedicated evaluation
infrastructures. Therefore, the following theme is important:
Software support to the evaluation.

Assumption 3. The quality of a software evaluation work-
flow depends on whether such workflow can be applied to
different and heterogeneous types of software products. Only
by applying the same evaluation workflow across different
types of software and under different settings we can validate
our hypotheses and conclusions. Therefore, the following
theme is important: Applicability to multiple software types.

Assumption 4. The automated generation and manipulation
of test data for software evaluations helps to focus on how to

define test data instead of on how to manage them. Moreover,
test data that can be used in different software evaluations are
easier to understand, and the results obtained from them are
easier to interpret. Therefore, the following theme is important:
Usability of test data.

Assumption 5. Software evaluation results that are described
in some machine-processable format enable the automated
integration and exploitation of such results. This integration
of results allows the compilation of a significant body of
evaluation results, which leads to the exploitation of such
results in unexpected ways. Therefore, the following theme
is important: Exploitability of results.

Assumption 6. The quality of a software evaluation increases
when different teams with different viewpoints define and sup-
port such evaluation. A software evaluation is more respected
when it is supported not by a single team or organization (e.g.,
the software developers) but by multiple teams (e.g., software
providers, users) or by the whole research field. Therefore,
the following theme is important: Representativeness of par-
ticipants.

V. MATURITY LEVELS OF SOFTWARE EVALUATION
TECHNOLOGY

This section describes the five maturity levels of the Soft-
ware Evaluation Technology Maturity Model. These levels and
the goals to be achieved in each of them for a defined theme
are presented in Table I.

What follows next is a general description of each level.

A. Level 1. Initial

At this level, a single team defines and carries out the
evaluation workflow, which is specific to certain evaluation
settings, is informally defined, and is manually performed with
no software support. Evaluation is applied to a small number
of software products of the same type, using test data not
formally defined. The results obtained in the evaluation are
also informally described, which makes them impossible to
verify.

B. Level 2. Repeatable

At this level, the evaluation workflow is completely defined
by one or a few teams and, although it is repeatable, it is still
specific of certain evaluation settings. Evaluation software has
been developed to partially support the evaluation of a small
number of software products of the same type; these software
products require to implement evaluation-specific mechanisms
so they can be integrated with the evaluation software. The test
data used in the evaluation are thoroughly described, and the
evaluation results are defined in a machine-processable format,
which allows combining the results of the evaluated software
products.

C. Level 3. Reusable

At this level, several teams define an evaluation workflow
that completely covers one type of software products and that
can be reused to evaluate with different test data different

662 663

TABLE I
LEVELS AND THEMES OF SOFTWARE EVALUATION TECHNOLOGY MATURITY

Level Formalization of the
evaluation workflow

Software support to
the evaluation

Applicability to multiple
software types

Usability of test data Exploitability of
results

Representativeness
of participants

Initial Ad-hoc workflow informally
defined.

Manual evaluation.
No software support.

Small number of software
products of the same type.

Informally defined. Informally defined.
Not verifiable.

One team.

Repeatable Ad-hoc workflow defined. Ad-hoc evaluation soft-
ware.

Small number of software
products of the same type.
Ad-hoc access to software
products.

Defined. Machine-processable.
Combined for some
software products of
the same type.

One or few teams.

Reusable Technology-specific
workflow defined.

Reusable evaluation
software:
- multiple software
products.
- multiple test data.

Multiple software prod-
ucts of the same type.
Generic access to soft-
ware products.

Machine-processable. Machine-processable.
Combined for many
software products of
the same type.

Several teams.

Integrated Generic workflow defined.
Machine-processable and
built reusing common parts.
Evaluation resources built
upon shared principles.

Evaluation
infrastructure:
- multiple types of
software products.
- multiple test data.

Multiple software prod-
ucts of different types.
Generic access to soft-
ware products.

Machine-processable.
Reused across evalua-
tions.

Machine-processable.
Combined for many
software products of
different types.

Several teams.
Stakeholders.

Optimized Generic workflow defined.
Machine-processable and
built reusing common parts.
Evaluation resources built
upon shared principles.
Measured and optimized.

Federation of evaluation
infrastructures:
- autonomous infras-
tructures.
- interchange of evalua-
tion resources.
- data access and use
policies.

Multiple software
products of different
types.
Generic access to
software products.
Support any software
product requirement.

Machine-processable.
Reused across
evaluations.
Customizable,
optimized and
curated.

Machine-processable.
Combined for many
software products of
different types.
High availability and
quality.

Community.

characteristics of such software products. This workflow is
supported by evaluation software that can be used to assess
any software product of the type covered by the evaluation;
the software product must have previously implemented the
required mechanisms to be integrated with the evaluation soft-
ware. Test data and evaluation results are machine-processable;
therefore, they can be reused. Furthermore, the results can be
combined for all the software products of the same type.

D. Level 4. Integrated
At this level, several teams in collaboration with relevant

stakeholders (e.g., users or providers) define a generic evalu-
ation framework that can be used with any type of software
product. This generic framework for software evaluation al-
lows building evaluation resources (i.e., evaluation workflow,
tools, test data, and results) upon shared principles and reusing
common parts. Here, evaluation workflows are defined in a
machine-interpretable format so they can be automated. An
evaluation infrastructure gives support both to the evaluation
of multiple types of software products, taking into account
their different characteristics, and to the management of the
different evaluation resources. Test data can be reused across
different evaluations, and the evaluation results can be com-
bined for software products of different types.

E. Level 5. Optimized
At this level the whole community has adopted a generic

framework for software evaluation in which evaluation work-
flows are measured and optimized. The centralized scenario
of the previous levels has now evolved into a federation
of autonomous evaluation infrastructures. These evaluation
infrastructures must support not only the evaluation workflow
but also new requirements, such as the interchange of eval-
uation resources or the implementation of policies for data

access, interchange, and use. This federation of infrastructures
permits satisfying any software or hardware requirements of
the different software products; customizing, optimizing, and
curating test data; and improving the availability and quality
of the evaluation results.

One of the notions behind the maturity model, as Figure 2
shows, is that a higher maturity level implies higher integra-
tion of evaluation efforts in one field, ranging from isolated
evaluations in the lower maturity level to fully-integrated
evaluations in the higher level. In this scenario, maturity
evolves from a starting point of decentralized efforts into
centralized infrastructures and ends with networks of federated
infrastructures.

Another notion to consider in this model is that of cost.
While the cost of defining new evaluations decreases when the
maturity level increases, mainly due to the reuse of existing
resources, the cost associated to the evaluation infrastructure
(hardware and infrastructure development and maintenance)
significantly increases.

VI. ASSESSMENTS IN THE SEMANTIC RESEARCH FIELD

This section presents how we have used SET-MM to assess
the maturity of software evaluation technologies in a specific
research field.

Other maturity models provide appraisal methods for com-
paring with the maturity model. However, we do not propose
any appraisal method because our scope is a whole research
field and, therefore, it would be difficult to obtain objective
metrics since any judgment would be subjective.

Therefore, our approach has been, first, to identify some
evaluation efforts that stand out because of their impact in the
field and, second, to try to assess the maturity of the software
evaluation technologies used in them.

664 665

1. Initial

2. Repeatable

3. Reusable

4. Integrated

5. Optimized

Fig. 2. The SET-MM maturity levels.

A. The Semantic Research Field

The notion of Semantic Web appeared at the beginning of
the 21st century [17] and, since then, it has become a research
field on its own.

The idea behind the Semantic Web is to have mechanisms
to express knowledge and data in the Web so that it can be
properly exploited by computers in an automated way.

The way of expressing such knowledge is through on-
tologies (explicit, structured models of the terminology and
conceptual structures used in an application domain), which
provide the basis for interpreting and relating data from differ-
ent sources and that can be used to derive implicit knowledge
about data.

One key requirement to make the Semantic Web real is the
availability of technologies capable of managing and process-
ing these data at web scale. Because of this, a huge number
of research efforts have been devoted to the development and
evaluation of semantic technologies.

B. Maturity of Evaluation Efforts

Evaluations in the semantic research field, as in any other
field of research, are highly frequent and their main goal is to
validate research.

However, if we analyse the technologies used to support
those evaluations, we can see that in most of the cases the
maturity of such evaluation technologies is at the Initial level,
which makes almost impossible to reproduce any evaluation.

Nevertheless, there are still some efforts we should highlight
because of their maturity in terms of software evaluation
technologies.

1) The Lehigh University Benchmark: The Lehigh Univer-
sity Benchmark (LUBM) [18] is the benchmark most used in
the semantic field. This benchmark can be used to evaluate
the efficiency of ontology storage and reasoning systems and

it is composed of a synthetic generator of test data, a set of
test queries to be issued to the system, and a test module to
automate execution.

LUBM’s evaluation technology is at the Repeatable level in
most of the themes, except in the next two aspects, in which
it improves.

The usability of test data is between the Reusable and the
Integrated levels, since the clear definition of test data and
their automated generation largely facilitates their reuse across
evaluations.

Additionally, the representativeness of participants is at the
Integrated level because, even if the benchmark was defined
by a research group, it is nowadays largely used by researchers
and companies.

This high test data maturity can also be observed in the use
of LUBM in the field: most of the people that reuse the bench-
mark only reuse the test data and define their own evaluation
settings; furthermore, posterior benchmark improvements have
mainly been made on test data [19], [20].

2) The Ontology Alignment Evaluation Initiative: The On-
tology Alignment Evaluation Initiative2 (OAEI) is an interna-
tional initiative that, since 2004, has been organizing different
ontology alignment contests with the goal of establishing a
consensus for evaluating ontology alignment methods and their
associated tools.

In these contests, ontology alignment systems are compared
using a common set of synthetic and real-world tests using a
common evaluation framework.

OAEI’s evaluation technology is at the Reusable level in
all themes except one, in which it improves. The representa-
tiveness of the participants is at the Optimized level; since the
OAEI gathers the main stakeholders in the ontology alignment

2http://oaei.ontologymatching.org/

664 665

topic, its evaluations have become the de facto standard for
ontology alignment evaluation.

3) The SEALS Platform: The SEALS Platform [21] is an
infrastructure for the evaluation of semantic technologies that
offers independent computational and data resources for the
evaluation of these technologies.

The SEALS Platform is currently under development in a
European project3 and its goal is to provide the semantic field
with an evaluation infrastructure at the Integrated level by the
end of the project.

To this end, the SEALS Platform provides a common
evaluation framework, based on the reusability of evaluation
resources, in which different types of semantic technologies
can be evaluated. Once the cumulative evaluation results reach
a critical mass, the research community will be able to exploit
them in novel ways.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented the SET-MM maturity model that
defines the maturity of software evaluation technologies in six
different themes.

This maturity model can be used by anyone in a research
field willing to assess the maturity of software evaluation
technologies, either in the whole field or in specific evaluation
initiatives.

SET-MM permits not only to make this assessment but
also to guide improvement processes on software evaluation
technologies by identifying the different goals to be achieved
in each level and for each theme.

This way, the maturity model can be a useful mechanism to
increase awareness on the role and on the benefits of software
evaluation technologies in research fields.

To illustrate the use of the maturity model, we have assessed
the maturity of the software evaluation technologies used in
different initiatives within the semantic research field.

Clearly, this assessment is neither exhaustive nor represen-
tative of the whole research field. However, it is useful to
analyse how software evaluation technologies have been used
in different efforts in order to extract those lessons that are
worth learning.

CMMI classifies maturity model components into three dif-
ferent categories, namely, required (specific and generic goals),
expected (those practices relevant for achieving a goal) and
informative (informative material that helps understanding the
model). SET-MM currently covers the required components.
Future work will deal with the definition of the expected and
informative components in order to enrich the model.

ACKNOWLEDGMENT

This work is supported by the SEALS European project
(FP7-238975) and by the EspOnt project (CCG10-UPM/TIC-
5794) co-funded by the Universidad Politécnica de Madrid
and the Comunidad de Madrid. Thanks to Rosario Plaza for
reviewing the grammar of this paper.

3http://www.seals-project.eu/

REFERENCES

[1] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capabil-
ity Maturity Model for Software, Version 1.1,” Software Engineering
Institute, Tech. Rep. CMU/SEI-93-TR-024, February 1993.

[2] R. Sowden, D. Hinley, and S. Clarke, “Portfolio, Programme and Project
Management Maturity Model (P3M3) Version 2.1. Introduction and
Guide to P3M3,” Office of Government Commerce, United Kingdom,
Tech. Rep., 2010.

[3] S. Marshall, “E-Learning Maturity Model Version Two: New Zealand
Tertiary Institution E-Learning Capability: Informing and Guiding E-
Learning Architectural Change and Development,” New Zealand Min-
istry of Education, Tech. Rep., 26th July 2006.

[4] V. R. Basili, “The role of experimentation in software engineering:
past, current, and future,” in Proceedings of the 18th International
Conference on Software Engineering (ICSE 1996). Berlin, Germany:
IEEE Computer Society, 1996, pp. 442–449.

[5] CMMI Product Development Team, “CMMI for Acquisition, Version
1.3,” Software Engineering Institute, Tech. Rep. CMU/SEI-2010-TR-
032, November 2010.

[6] ——, “CMMI for Development, Version 1.3,” Software Engineering
Institute, Tech. Rep. CMU/SEI-2010-TR-033, November 2010.

[7] ——, “CMMI for Services, Version 1.3,” Software Engineering Institute,
Tech. Rep. CMU/SEI-2010-TR-034, November 2010.

[8] I. Burnstein, T. Suwanassart, and R. Carlson, “Developing a testing
maturity model for software test process evaluation and improvement,”
in Proceedings of the IEEE International Test Conference on Test and
Design Validity (ITC 1996). Washington, DC, USA: IEEE Computer
Society, 1996, pp. 581–589.

[9] F. Niessink and H. van Vliet, “Towards mature measurement programs,”
in Proceedings of the 2nd Euromicro Working Conference on Software
Maintenance and Reengineering (CSMR 1998). Florence, Italy: IEEE
Computer Society, March 8–11 1998, pp. 82–88.

[10] M. YongGang and D. JianJie, “Software measurement process capability
maturity model,” in Proceedings of the Second International Conference
on Computer Modeling and Simulation (ICCMS 2010). Sanya, China:
IEEE Computer Society, 2010, pp. 400–402.

[11] M. K. Daskalantonakis, R. H. Yacobellis, and V. R. Basili, “A method
for assessing software measurement technology,” Quality Engineering,
vol. 3, no. 1, pp. 27–40, 1990-91.

[12] T. Wettstein and P. Kueng, Management Information Systems 2002 – GIS
and Remote Sensing. Southampton: WIT Press, 2002, ch. A Maturity
Model for Performance Measurement Systems, pp. 113–122.

[13] J. Z. Gao, H.-S. J. Tsao, and Y. Wu, Testing and Quality Assurance for
Component-Based Software. Norwood, MA, USA: Artech House, Inc.,
2003.

[14] ISO/IEC 14598-6: Software product evaluation - Part 6: Documentation
of evaluation modules. ISO/IEC, 2001.

[15] R. Garcı́a-Castro, M. Esteban-Gutiérrez, M. Kerrigan, and S. Grimm,
“An ontology model to support the automatic evaluation of software,”
in Proceedings of the 22nd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2010). Redwood City,
CA, USA: Knowledge Systems Institute, July 1–3 2010, pp. 129–134.

[16] F. Niessink and H. van Vliet, A Pastry Cook’s View on Software
Measurement. Wiesbaden, Germany: Deutscher Universitaetsverlag,
1998, pp. 109–126.

[17] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[18] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL
Knowledge Base Systems,” Journal of Web Semantics, vol. 3, no. 2,
pp. 158–182, 2005.

[19] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu, “Towards
a complete OWL ontology benchmark,” in Proceedings of the 3rd
European Semantic Web Conference (ESWC 2006), ser. LNCS, vol.
4011. Budva, Montenegro: Springer, June 11-14 2006, pp. 125–139.

[20] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. von Henke, and
O. Noppens, “Real-world reasoning with OWL,” in Proceedings of the
4th European Semantic Web Conference (ESWC2007), ser. LNCS, vol.
4519. Springer, 2007, pp. 296–310.

[21] R. Garcı́a-Castro, M. Esteban-Gutiérrez, and A. Gómez-Pérez, “To-
wards an infrastructure for the evaluation of semantic technologies,” in
Proceedings of the eChallenges 2010 Conference, P. Cunningham and
M. Cunningham, Eds., Warsaw, Poland, October 27-29 2010.

666 667

A Feature-Based Modeling Approach to Configuring Privacy and Temporality in
RBAC

Sangsig Kim1, Yen-Ting Lee1, Yuanlin Zhu1, Dae-Kyoo Kim1, Lunjin Lu1, and Vijayan Sugumaran2

1Department of Computer Science and Engineering
2Department of Decision and Information Sciences

Oakland University
Rochester, MI 48309

{skim2345,ylee2,yzhu2,kim2,l2lu,sugumara}@oakland.edu

Abstract

Role-Based Access Control (RBAC) has been increas-
ingly popular due to its efficiency, flexibility, and scalabil-
ity. Traditionally, RBAC is concerned with Separation of
Duty (SoD) among roles and role hierarchies. However,
there have been demands for extensions of RBAC as envi-
ronments of RBAC systems have changed. As part of re-
sponse to the demands, privacy RBAC and temporal RBAC
have been proposed. While the two extensions address dif-
ferent aspects, they are often needed together in many sys-
tems such as hospital systems. In this paper, we present
a feature-based approach that enables systematic enforce-
ment of combined privacy and temporal RBAC in develop-
ment. The approach models the two extensions as features
based on partial inheritance which supports verifiable fea-
ture composition. We demonstrate the approach using a
hospital example.

1 Introduction

Role-Based Access Control (RBAC) [5] is a popular ac-
cess control model concerning Separation of Duty (SoD)
and role hierarchies. As the environment of RBAC sys-
tems has changed dramatically, there is a strong demand
for extending the traditional RBAC. For instance, in the en-
vironment where data objects contain private information,
privacy should be protected. If the environment is time-
sensitive, time-related policies should be supported. In re-
sponse to the demands, privacy RBAC (PRBAC) [12] and
temporal RBAC (TRBAC) [1] have been proposed. While
each PRBAC and TRBAC addresses a well-dened aspect,
there are domains where both PRBAC and TRBAC are de-
sired. For instance, in the hospital domain, a doctor should
not be granted access to the records of patients who are not

assigned to him/her, and even if the patient is his patient, the
doctor should not be able to access the patient’s record other
than his/her working hours. In the banking domain, access
to customer accounts by a teller should be allowed only
when there is a transaction request during his/her working
hours.

In this paper, we present an approach that enables sys-
tematic enforcement of combined PRBAC and TRBAC dur-
ing development. In our approach, PRBAC and TRBAC
are modeled as features [8] based on partial inheritance [9],
which enables veriable feature composition. We use the
UML and the Object Constraint Language (OCL) for den-
ing the semantics of PRBAC and TRBAC. We demonstrate
the approach using a hospital example and discuss tool sup-
port developed for the approach.

The rest of the paper is organized as follows. Section 2
gives an overview of related work. Section 3 presents the
designs of privacy and temporal features based on partial
inheritance. Section 5 describes how PRBAC and TRBAC
can be used for the development of a hospital application
through composition and instantiation. Section 5 concludes
the paper.

2 Related Work

Several researchers describe access control models us-
ing the UML. The work can be categorized into two ap-
proaches. One is using the UML as is. Shin and Ahn use
UML class diagrams to describe the structure of RBAC and
the OCL to dene RBAC constraints [15]. Our previous
work uses object diagrams to visualize RBAC constraints
[10]. Priebe et al. view an access control model as a design
pattern and use the Gang-of-Four (GoF) pattern template to
describe it [13]. The other approach uses UML proles,
an extension mechanism in the UML, for dening access
control concepts. Jurjens proposed a UML prole called

1

666 667

UMLsec for modeling and evaluating security aspects for
distributed systems based on the multi-level security model
[7]. Similarly, Lodderstedt et al. proposed a UML prole
called SecureUML for dening security concepts based on
RBAC [11]. Doan et al. extend the UML, not by a prole,
but by directly incorporating security aspects of RBAC and
MAC into UML model elements [3].

Composition of RBAC features in this work is related
to model composition in aspect-oriented modeling (AOD)
(e.g., [2, 14, 17, 18]). In AOD, cross-cutting concerns are
designed as design aspects that are dened separately from
functional aspects (referred to as primary models). Clarke
and Walker proposed composition patterns to compose de-
sign aspects described in UML templates with a primary
model through parameter binding [2]. Straw et al. proposed
a set of composition directives (e.g., creating, adding) for
aspect composition [18]. Similar to Clarke and Walker’s
work, Reddy et al. use sequence diagram templates for
specifying behaviors of design aspects and use tags for be-
havior composition [14]. An aspect may include position
fragments (e.g., begin, end) which constrain the location of
fragment interactions to be inserted in a sequence diagram.
The composition method in their work, however, is not rig-
orous, and thus it is difcult to verify resulting models.
Their position fragments inuenced join points in our work.
Song et al. proposed a composition method for composing
a design aspect with an application design [17]. They verify
composed behaviors described in OCL by discharging a set
of proof obligations. However, their verication is limited
to OCL expressions, and the entire composed model cannot
be veried.

3 Modeling PRBAC and TRBAC as Features

In this section, we design PRBAC and TRBAC as feature
based on partial inheritance [9]. Partial inheritance designs
RBAC features in terms of a core feature and several com-
ponent features. The Core feature [9] captures the essential
functions of RBAC that every RBAC system must possess,
while component features inherit from the Core feature and
dene additional functions. Unlike the traditional inheri-
tance, component features inherit only those properties that
are needed to carry out its functions, which establish partial
inheritance. This simplies feature design and composition.

Privacy feature. The Privacy feature provides support
for privacy-related policies. Fig. 1 shows the feature where
the symbol “|” denotes parameters.

In addition to the inherited classes (User, Role, Ses-
sion, Operation, Object, Permission, and Reference Moni-
tor) from the Core feature, the Privacy feature includes con-
cepts of Purpose, DataCondition, and Obligation. Purpose

|checkAccess(|o, |op, |pur)

|Permission

|getActiveRoles(): Set(|Role)
|Session

|checkCondition(|pur:|Purpose): Boolean
|DataCondition

|Obligation

|Operation

|Purpose

1..*

1..*
|senior

1..*
|junior
1..*

|PurposeHierarchy
|addInheritance(|pur1,|pur2)
|deleteInheritance(|pur1,|pur2)

:|ReferenceMonitor :|Session |ars:|Role |o:|Object |c:|DataCondition

|ars=|getActiveRoles()

[i < ars.size]

opt [|ps−>includes(|o, |op)]

opt [|pass=true]
True

|pass=|checkCondition(|pur)
|c=|getCondition()

|ps=|permissions()

False

loop

|permissions(): Set(|Permission)
|Role

0..*0..*

0..*
|active_in

|getCondition(): |DataCondition
|Object

0..*

0..* 0..*
|given_to

0..*

0..*

1

1
|is_constrained_by
1 0..*0..*

1

1 1 1 1

RBAC::Privacy

|checkAccess(|o:|Object, |op:|Operation, |pur:|Purpose): Bool
|ReferenceMonitor

|executed_on

0..*
0..* 0..*

0..*

0..*1

0..*

0..*0..*

CheckAccess

1

Figure 1. Privacy Feature

is the intention to perform a task that causes access to pri-
vacy information. The purpose can be organized according
to the hierarchical relationships to simplify the management
of purposes since purposes by nature have a hierarchical re-
lationships among them in common business environments.
DataCondition describes restrictions/qualications for ac-
cess to privacy information and the purpose of information
use. Obligation species additional protection measures to
personally identiable information.

These privacy concepts enable privacy policies to be
better supported at the modeling level. Suppose that an ac-
count receivable clerk requests for access to read customer
contact information for sending a bill to customers. This
policy can be specied using the template in [4] as follows:

“Allow [Accounts Receivable Clerk] to perform [Read]
on [Customer Contact Information] for [Billing] pro-
vided [Billing is the Data Purpose for Customer Contact
Information]. Carry out [immediate logging of access
and deleting of banking information from customer in-
formation for customers with no billing activity for the
last 12 months].” where Accounts Receivable Clerk
represents role, Read represents operation, Customer
Contact Information represents object, Billing represents
purpose, Billing . . . Information describes data condition,

2

668 669

and immediate . . .months describes obligation.

The checkAccess() operation in the ReferenceMonitor
class is redened, which is denoted in bold, to check data
purpose of the object being accessed. The new semantics is
dened as follows:

1. context ReferenceMonitor::checkAccess (o:Object,
2. op:Operation,pur:Purpose):Boolean
3. pre : true
4. post: let act:OclMessage = SessionˆgetActiveRoles()
5. in Act: act.hasReturned() and act.result() = acrs and
6. let pss:Sequence(OclMessage) =
7. acrs → collect(r | rˆˆpermission())
8. in if ((pss → notEmpty()) and
9. (pss → includes (ps|ps.result()→includes(o,op))))
10. let cond:OclMessage = o:ObjectˆgetCondition()
11. in Cond: cond.hasReturned() and
12. cond.result() = c and
13. result = c:DataConditionˆcheckCondition(pur)
14. endif

In the semantics, privacy-specic constraints are spec-
ied in lines 12-14 checking access purpose against data
condition. The sequence diagram CheckAccess in Fig. 1 de-
scribes checking accessibility based on privacy constraints.
In addition to the traditional RBAC checking, the Privacy
feature checks if the purpose of access matches the data
condition. If it does not match, access is denied.

Temporal feature. The Temporal feature supports tem-
poral constraints on user-role assignments, role-permission
assignments, role hierarchies, and SoD. Fig. 2 shows the
feature.

In the feature, the TemporalConstraint class is responsi-
ble for enforcing temporal constraints on enabling and dis-
abling roles and activating and deactivating roles in session
during a specied period or duration. Two types of time
constraints are supported by the feature, namely periodicity
and duration, which is captured by the hierarchy of tem-
poral constraints in Fig. 2. A periodic constraint is a pe-
riodic time interval expressed in terms of (begin time, end
time, periodic expression). For example, the policy that the
working time of a day-duty doctor starts from 9 am to 5 pm
everyday can be specied as Enable [day-duty doctor] from
[9 am] to [5 pm], [Everyday]. A duration constraint speci-
es a specic time duration. For example, “After [1 hours]
of [day-duty nurse enabled], enable [nurse on training] for
[4 hours]” describes that a nurse on training is enabled to
work 4 hours during day time after 1 hour working of a
day-duty nurse. Both constraints can be used in role en-
abling/disabling, user-role assignments, or role-permission
assignments. However, duration constraints can only be

|r:|Role

|priority:Integer

|TemporalConstraint

|enable()

|enable()

|Duration

|duration:Time
|delay:Time
|durationExpr:String

|addActiveRole(|r:|Role)

|Session

:|User

expired

|enable(|tc)

EnableRole

|enable()

|expired duration

|r:|Role |tc:|Duration

RBAC::Temporal

0..*

|enable(|tc:|TemporalConstraint)

|checkEnabled()

|state:Integer

|disable()

|Role

|Periodic

|begin:Time
|end:Time

|enable()

|periodicExpr:String

0..*

0..*

0..*

|constrained_by_temp

|enable_during

0..*0..*

|ReferenceMonitor

|checkAccess (|o:|Object, |op:|Operation,

|active_in
0..* 0..*

1 1

|pur:|Purpose): Bool

:|Session
AddActiveRole

|result=|checkEnabled()
opt

opt [|result=true]

[|ars−>includes(|r)]

|ars=|get()

|ars=|authorizedRoles()
|addActiveRole(|r)

add(|r)

Figure 2. Temporal Feature

specied for role activation/deactivation as a user can ac-
tivate or deactivate a role at any time [4].

Role hierarchies with temporal constraints can be cat-
egorized into unrestricted hierarchies, enabling time re-
stricted hierarchies, and activation time restricted hierar-
chies based on the effect of temporal constraints. Unre-
stricted hierarchies are not affected by temporal constraints.
In enabling time restricted hierarchies, when a senior role
is enabled for a specic time, the permissions of its junior
roles are also acquired. Enabling time restricted hierarchies
can be either weak or strong. In weak hierarchies, a senior
role can acquire permissions of its junior roles without the
junior roles being enabled, while in strong hierarchies, the
junior roles must be also enabled in order for the senior role
to acquire junior roles’ permissions. In activation time re-
stricted hierarchies, a junior role can be activated only at the
time when its senior roles are activated [6]. Both periodicity
and duration place time contraint on SoD in the traditional
RBAC.

The Temporal feature redenes the CheckAccess() op-
eration inherited from the Core feature and requires that
the requested role be enabled and activated before access is
granted. The sequence diagram AddActiveRole in Fig. 2 de-
scribes role activation in a session. It redenes the AddAc-
tiveRole sequence diagram in the Core feature by adding
checking the enable/disable status of the requested role be-
fore it can be activated in the session. Note that the AddAc-
tiveRole scenario does not take into account role hierarchies
as role hierarchy is dened as a separate feature (see [9] for
the Hierarchy feature). The role hierarchy version can be

3

668 669

built by conguring the Temporal feature with the Hierar-
chy feature. The EnableRole sequence diagram describes
role enabling during a specic time.

4 Feature Composition

We use the composition method in our previous work
[9] for composing the Privacy and Temporal features when
they are congured together. Syntactically, the composition
method combines the properties of congured features into
the composed feature based on name matching. Semanti-
cally, the behavioral properties that have the same name
are composed to be renement of the behaviors that were
composed. The formal denition of renement for opera-
tions and interaction behaviors can be found in [9]. Using
the denition, one can reason about the resulting feature for
correctness.

Built upon partial inheritance, the composition method
also enables step-wise feature composition, allowing imme-
diate evaluation of the impact of composition. The Core
feature, which is the base of any RBAC conguration, is
selected by default forming the rst conguration and the
nth conguration is built upon the (n − 1)th conguration.
We view this approach as a special kind of multiple inher-
itance where the elements having the same name get com-
posed rather than renamed as in the traditional multiple in-
heritance.

5 Case Example: Hospital Application

In this section, we demonstrate how the resulting feature
from composition can be used for designing a hospital ap-
plication via instantiation. The application is used by day-
duty doctors, night-duty doctors, day-duty nurses, night-
duty nurses, nurses on training and medical students to per-
form read/write operations on privacy information such as
patients’ medical records. Fig. 3 shows the privacy and tem-
poral policies of the hospital system.

TimeRole

Day Resident Phys.

Night Resident Phys.

Non−resident Phys.

Day Reg. Nurse

Night Reg. Nurse

Nurse in Training

Medical Student

Read Access

All documents

All documents

Progress Notes,
Equipment Order

Progress Notes,
Equipment Order

Progress Notes,
Equipment Order

Progress Notes,
Equipment Order

Surgical Report

Patient Presc. Order,

Write Access

Surgical Report

Surgical Report

Surgical Report,

Surgical Report,
Progress Notes,

Surgical Report,
Progress Notes,

Progress Notes,

None

Patient Presc. Order,

Patient Presc. Order,

Patient Presc. Order,

Patient Presc. Order,

Purpose

Treatment

Treatment

Treatment

Attendance

Attendance

Attendance

Research

9 am − 5 pm

2 am − 9 pm

9 am − 5 pm

0 hour after
Day Resident Phys.

0 hour after
Night Resident Phys.

Day Reg. Nurse

9 am − 5 pm

1 hour after

Figure 3. Permissions

Based on the privacy templates and the temporal tem-
plates in [4], we present templates for describing both pri-
vacy and temporality as follows:

• Privacy-periodic events. Allow [Role] to perform [Opera-
tion] on [Object] for [Purpose] provided [DataCondition].
Carry out [Obligation] from [begin time] to [end time], [Pe-
riodic Expression]

• Privacy-duration events. Allow [Role] to perform [Opera-
tion] on [Object] for [Purpose] provided [DataCondition].
Carry out [Obligation] after [delay time] of [event].

Using the templates, the privacy and temporal policies of
the hospital system can be described as follows:

• Allow [Day Resident Physician] to perform [Read] on [All
Documents] for [Treatment Purpose] provided [The doctor
is the patient’s on-duty doctor] carry out [Logging of access
and closing the patient’s case if the patient is transferred to
other hospital] from [9:00 am] to [5:00 pm]

• Allow [Day Registered Nurse] to perform [Write] on [Sur-
gical Report, Progress Notes and Patient Prescription Order]
for [Attendance Purpose] provided [The nurse is the patient’s
on duty nurse] carry out [Logging of Access] after [0 hour]
of [Enabling Day Resident Physician]

First Configuration. In order to support the above poli-
cies, the system is congured with the Privacy feature and
the Temporal feature together on top of the Core feature,
which is the rst conguration. The congured features
are composed using the RBAC composition method in Sec-
tion 4 to produce congured RBAC. Enabled by partial in-
heritance, features can be composed in any order. In this
demonstration, we compose features in the order of Core,
Privacy, and Temporal.

Second Configuration. The Core and Privacy features
are composed, which results in the second conguration,
by (1) adding the Purpose, Purpose Hierarchy, Obliga-
tion, and DataCondition classes and their associated rela-
tionships to the core feature, (2) composing the Role, Ses-
sion, ReferenceMonitor, Permission, Object, and Operation
classes which appear in both features, and (3) composing
the matching operations (e.g., checkAccess()) in both fea-
tures. Based on the composition method, the semantics
of composed operations must rene both core operations
and privacy operations that were involved in composition,
which can be formally veried using the renement deni-
tion in [9].

For sequence diagrams, the CheckAccess sequence dia-
gram in the Core feature is composed with the correspond-
ing sequence diagram in the Privacy feature. This results
in the O:Object and c:DataCondition lifelines in the Pri-
vacy feature being added to the Core feature. The O:Object
lifeline is responsible for obtaining data purpose from the
requested object and the c:DataCondition lifeline checks if

4

670 671

the data purpose matches the purpose of the operation re-
quest.

Third Configuration. The second conguration is com-
posed with the Temporal feature, which results in the nal
conguration in this demonstration. They are composed by
(1) adding the hierarchy of temporal constraints involving
the TemporalConstraint, Periodicity, and Duration classes
and their associated relationships to the second congu-
ration, and (2) composing the Role, Session, and Refer-
enceMonitor classes which appear in both features, and (3)
composing the matching operations (e.g., addActiveRole())
in both features. The resulting class diagram is shown in
Fig. 4. Ensured by the composition method, the composed
operations in the nal conguration renes both privacy op-
erations and temporal operations.

added by the Privacy feature

|enable()

|Duration
|duration: Time
|delay: Time
|durationExpr: String

|begin: Time
|end: Time
|periodicExpr: String

|Periodicity

|enable()

|Permission

|addActiveRole(|r:|Role,|tc:|TempCons)
|dropActiveRole(|r:|Role)

|Session

|getActiveRoles: Set(|Role)

0..*

1

|addInheritance(|pur1,|pur2)
|deleteInheritance(|pur1,|pur2)

1..* 1..*

|PurposeHierarchy

|assignUser(|u:|User,|tc:|TemporalConstraints)
|deassignUser(|u:|User)
|grantPermission(|p:|Permission,|tc:|TempCons)

|disableRole()
|descendants():set(|Role)
|authorizedUsers(): Set(|User)
|permissions(): Set(|Permission)

|state:Integer
|Role

0..*

|enableRole(|tc:|TemporalConstraints)

0..*
0..*

|TemporalConstraint0..*

|priority: Integer

|Obligation

|is_constrained_by
1

0..*
|given_to
0..* 0..*

added by the Temporal feature

0..*

0..*
|enable_during

|monitors_role

0..*
|executed_on

|Operation

0..*

0..* 0..*

1

|is_constrained_by
1
1

0..* 0..*

|senior |junior

1..* 1..*
0..*
|getCondition(): |DataCondition

|Object |Purpose

|checkCondition(|pur:|Purpose): Boolean
|DataCondition

|checkAccess(|o:|Object, |op:|Operation, |pur:|Purpose): Bool
|ReferenceMonitor

11 1 1

|revokePermission(|p:|Permission)

Figure 4. Partial Class Diagram after Third
Configuration

For sequence diagrams, the AddActiveRole sequence di-
agram in the second conguration is composed with the cor-
responding sequence diagram in the Temporal feature. This
results in adding the tc:Duration lifeline to the AddActive-
Role sequence diagram in the second conguration. Fig. 5
shows the resulting diagram.

The tc:Duration lifeline is added to activate the re-
quested role during a given duration. In addition, a role
needs to be enabled before it is activated (checkEnabled()).

|tc:|Duration:|User

[i < ars.size]

[|ps−>includes(|o, |op)]

False

opt
True

[|pass=true]

|ps=|permissions()

|c=|getCondition()

|pass=|checkCondition(|pur)

|addActiveRole(|r,|tc)

AddActiveRole
:|Session

:|ReferenceMonitor

|checkAccess(|o, |op, |pur)
|ars=|getActiveRoles()

|ars=|authorizedRoles()

:|Session |ars:|Role |o:|Object |c:|DataCondition

|ars=|get()

CheckAccess

loop

opt

added by the Privacy fature

opt [|result=true]

added by the Temporal fature

[|ars−>includes(|r)]opt
|result=|checkEnabled()

add(|r)

|enable()

|r:|Role

Figure 5. Partial Sequence Diagram after
Third Configuration

Fig. 5 shows the composition of CheckAccess in Core and
Privacy and AddActiveRole in the second conguration and
Temporal. The composition of the second conguration and
the Temporal feature results in the nal conguration. Fig. 4
shows partial design of the nal conguration.

The nal conguration can be used for building a de-
sign of the hospital system via instantiation. Fig. 6 shows
an instantiation of the nal conguration in the context of
the hospital application. The instantiation is carried out
based on a mapping between RBAC elements and appli-
cation concepts. For instance, the |Object and |Operation
classes in RBAC are mapped, respectively, to the hospital
objects such as the Patient Prescription Order and Equip-
ment Order classes and transaction operations such as Read
and Write. The instantiated model lends itself as an initial
design model for the application addressing access control
concerns.

6 Conclusion

We have described a feature-based modeling approach
for designing PRBAC and TRBAC as features of RBAC to
support systematic use of both PRBAC and TRBAC in the
development of access control systems. The composition

5

670 671

getCondition(): |DataCondition
Day Resident Physician

Non−resident Physician

Night Resident Physician

Medical Student Nurse in Training

Day Registered Nurse

Night Registered Nurse

0..* Obligation0..* 0..*
Permission

0..*
given_to

WriteRead

Surgical Report

Patient Prescription Order

Equipment Order

Progress Notes

state: Integer

permissions(): Set(Permission)

grantPermission(p:Permission,tc:TemporalConstraint)
deassignUser(u:User)

descendants():set(Role)
authorizedUsers(): Set(User)

enableRole(tc:TemporalConstraint)
disableRole()

assignUser(u:|User,tc:TemporalConstraint)

HospitalRole

duration: Time
delay: Time
durationExpr: String
enable()

Duration Periodicity

enable()

begin: Time
end: Time
periodicExpr: String

DataCondition
checkCondition(|pur:|Purpose): Boolean

addInheritance(pur1,pur2)
deleteInheritance(pur1,pur2)

PurposeHierarchy

priority: Integer
TemporalConstraint

enable()

constrained_by

1..*senior 1..* junior

PurposeOperation

0..*0..*

0..* 0..*

0..*

1

1

constrained_by

RBAC::Privacy
RBAC::Temporal

RBAC::Core

1..*1..*

0..*
excuted_on

HospitalObject

revokePermission(p:Permission)

Figure 6. Partial Instantiation in Hospital Domain

in the paper involves only the Core, Privacy, and Tempo-
ral features for demonstration, but other traditional features
such as the Hierarchy and SoD features may also be com-
posed with the Privacy and Temporal features to account
for the needs emerged from enivornment changes. Besides
the hospital example presented in this paper, we have also
carried out a case study using SmallSQL [16], a database
management system. Other domains to which the presented
approach can be applied include the banking domain and
the academic domain where privacy and temporal issues are
critical. We have developed a prototype that implements the
composition method and feature instantiation based on Ra-
tional Software Architect and Eclipse.

References

[1] E. Bertino, P. Bonatti, and E. Ferrari. Trbac: A temporal
role-based access control model. ACM TISS, (3):191–233,
2001.

[2] S. Clarke and R. Walker. Composition Patterns: An Ap-
proach to Designing Reusable Aspects. In ICSE, pages 5–14,
2001.

[3] T. Doan, S. Demurjian, C. Phillips, and T. Ting. Research
Directions in Data and Applications Security XVIII. In IFIP
TC11/WG 11.3, pages 25–28, 2004.

[4] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-Based
Access Control. Artech House, 2nd edition, 2003.

[5] D. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST Standard for Role-Based
Access Control. ACM TISS, 4(3):224–274, 2001.

[6] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A general-
ized temporal role-based access control model. IEEE TKDE,
17(1):4–23, 2005.

[7] J. Jurjens. UMLsec: Extending UML for Secure Systems
Development. In UML, pages 412–425, 2002.

[8] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90TR-21, 1990.

[9] D. Kim, L. Lu, and S. Kim. A Veriable Modeling Ap-
proach to Congurable Role-Based Access Control. In
FASE/ETAPS, pages 188–202, 2010.

[10] D. Kim, I. Ray, R. France, and N. Li. Modeling Role-
Based Access Control Using Parameterized UML Models.
In FASE/ETAPS, pages 180–193, 2004.

[11] T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML:
A UML-Based Modeling Language for Model-Driven Secu-
rity. In UML, pages 426–441, 2002.

[12] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C. Karat, J. Karat,
and A. Trombetta. Privacy-aware role-based access control.
ACM TISS, 13(3):1–31, 2010.

[13] T. Priebe, E.B. Fernandez, J.I. Mehlau, and G. Pernul. A
Pattern System for Access Control. In IFIP WG 11.3, 2004.

[14] R. Reddy, A. Solberg, R. France, and S. Ghosh. Compos-
ing Sequence Models using Tags. In MoDELS Workshop on
AOM, 2006.

[15] M. Shin and G. Ahn. UML-Based Representation of Role-
Based Access Control. In Workshops on Enabling Technolo-
gies, pages 195–200, 2000.

[16] SmallSQL. http://www.smallsql.de/.

[17] E. Song, R. Reddy, R. France, I. Ray, G. Georg, and
R. Alexander. Veriable Composition of Access Control and
Application Features. In SACMAT, pages 120–129, 2005.

[18] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. Bie-
man. Model Composition Directives. In UML, 2004.

6

672 673

Using Security Patterns to Tailor Software Process

Rosana Wagner
Instituto Federal Farroupilha

Alegrete, Brasil
rosanawagner@gmail.com

Lisandra Manzoni Fontoura
Universidade Federal de Santa Maria

Santa Maria, Brasil
lisandramf@gmail.com

Adriano Brum Fontoura
Instituto Federal Farroupilha

Santo Augusto, Brasil
afontoura@sa.iffarroupilha.edu.br

Abstract — Secure software development processes can
reduce the quantity of security errors and the vulnerabilities
involved in software projects. A secure development process
is composed by activities that propose the insertion of
security requirements in all software development phases.
These activities can be based on standards and/or security
models such as SSE-CMM, ISO/IEC 27001, ISO/IEC 15408.
The problem is that the standards and security models
describe security requirements which can be followed but do
not describe how these requirements must be implemented in
software processes. Security patterns describe good security
practices which can be incorporated to the software process
and satisfy the requirements that are described by the
standards and models. This work proposes a methodology for
the tailoring of software processes based on security
requirements that are defined by the security practices of the
Systems Security Engineering Capability Maturity Model
(SSE-CMM). The tailoring has as basis a process framework
that is elaborated from the Rational Unified Process (RUP)
and security patterns proposed on the literature.

Keywords - software processes, information security,
processes tailoring, security patterns.

I. INTRODUCTION

The lack of security in software projects is one of the main
concerns of the organizations. It is through the vulnerabilities
that are present in software projects that the secrecy breaking
and the information theft occur. Due to this factor, the
organizations are seeking to adopt measurements that are more
and more rigorous in terms of protection aligned with
standards and security models [1].

The SSE-CMM model (System Security Engineering
Capability Maturity Model) [2], currently known as the
ISO/IEC 21827 standard, provides a set of good security
practices which can be adopted by the organizations in order
to increase the software security. The model is recommended
for the development of secure software and the elaboration of
security management processes.

The security patterns provide solutions that are already
consolidated for recurrent problems and serve as reference for
the organizations that seek to satisfy security requirements [3].
Thus, patterns can be associated to the SSE-CMM practices,
identifying how they may be incorporated into a software
process. The incorporation of the patterns into the software
process happens at the moment of the process tailoring to
answer to the specific needs of a project.

This article proposes an approach to processes tailoring
that have as basis a process framework which is built from the
Rational Unified Process and from security patterns
association rules to the SSE-CMM process areas. The
processes that are obtained from the framework aim at the
development of secure software.

Tailoring processes consists in altering or adapting the
descriptions of a process for a particular purpose. In this
article, the tailoring is given by means of selecting and
incorporating patterns into organization’s software process,
which is instantiated from the framework, originating the
specific software process to use in a project. A methodology
for processes tailoring that is based on the framework is
proposed.

The contributions of this work include the methodology
proposal for software processes tailoring based on security
requirements, the framework for elaborating secure processes,
which can be customized by the user, and a tailoring support
tool.

II. SOFTWARE PROCESS SECURITY

Elaborating secure processes can be obtained by means of
the security patterns incorporation, which describe
consolidated solutions for recurrent security problems, that are
associated to the practices of the SSE-CMM Model.

The System Security Engineering Capability Maturity
Model (SSE-CMM) describes the essential characteristics that
must exist in the processes of an organization in order to
assure a good systems security by means of 22 process areas
(PAs) that are organized in two groups: Security Base
Practices and Organizational and Project Base Practices. In
this work we considered the Security Base Practices because
they are responsible for implementing security in software
processes, which is the objective of this work.

672 673

Security patterns have been associated to security base
practices because they provide solutions for recurrent security
problems. The patterns capture the experience of security
specialist individuals and provide solutions for security related
problems which can be applied by non-specialist individuals.
Associating security patterns to the base practices facilitate the
processes tailoring, since once the association rules are
defined it is not necessary that the process engineer is a
security specialist.

The solution that is proposed by a pattern can be
implemented with the help of other patterns, which solve parts
of the whole problem [4]. The most known pattern catalogues
are: Schumacher et al. [3], Rosado [5], Romanosky [7],
Kienzle and Elder [8].

III. ELABORATING THE SECURITY METHODOLOGY
TAILORING (SMT) FRAMEWORK

The processes tailoring that is proposed by this work is
based on a process framework elaborated from Rational
Unified Process. This framework is extended by adding a set
of security related activities. The security related activities
aims to satisfy the PAs of the SSE-CMM and have been
defined from security patterns catalogues [3][5][7][8][9][10].
It is important to highlight that new activities can be added to
the proposed framework according to the organization
necessities.

The process for elaborating the SMT framework followed
the undermentioned stages: elaborating rules to associate
process areas to security patterns and incorporating these
rules, security patterns and process areas to the framework.

A. Elaborating the Association Rules
Considering that the PAs have a list of objectives that

indicate the expected results after its implementation and a list
of BPs (Base Practices) that assist in the making of the
objectives, the systematics followed to identify the patterns
was the undermentioned: based on the objectives of the PA
and its BPs, we have analyzed pattern catalogues to search for
patterns, one or more, that addressed to these objectives.
Examples provided in the PA description were also
considered.

The association of each PA to the patterns that satisfy their
objectives originates an association rule. As an example of an
elaborate rule, we quote the usage of the AssetValuation [4];
ThreatAssessment [4]; VulnerabilityAssessment [4] and
RiskDetermination [4] patterns for implementing PA03 –
Assess Security Risk.

The purpose of Assess Security Risk is to identify the
security risks involved with relying on a system in a defined
environment. This process area focuses on ascertaining these
risks based on an established understanding of how
capabilities and assets are vulnerable to threats. Specifically,
this activity involves identifying and the assessing the
likelihood of the occurrence of risk exposures. The risk
assessment is made in order to support the decisions related to
the development, maintenance or system operation whose
environment is known.

Table I shows the rules of association to the process areas
that are elaborated in this work.

TABLE I – ASSOCIATING SECURITY PATTERNS TO SSE-CMM PROCESS
AREAS

Process Areas SuggestedPatterns

PA01 – Administer
Security Controls

Security Provider [7];
Controlled Process Creator [3];
Access Control Requirements [3];
Role Rights Definition [3];
Role-Based Access Control [3];
Authorization Pattern [5];
Multilevel Security Pattern [5];

PA02 – Assess Impact Risk Determination [3];

PA03 – Assess Security
Risks

Asset Valuation [3];
Threat Assessment [3
Vulnerability Assessment [3];
Risk Determination [3];

PA04 – Assess Threats Threat Assessment [3];

PA05 – Assess
Vulnerabilities

Vulnerability Assessment [3];

PA06 – Build Assurance
Argument

Patch Proactively [8];
Engage Customers [9];
Check Point [10];
Red Team the Design [8];

PA07 – Coordinate
Security

Enterprise Partner Communication [3];
Share Responsibility for Security [8];
Gatekeeper [9];
Buffalo Mountain (organizational) [9];

PA08 – Monitor Security
Posture

Minefield [8];
Security Accounting Requirements [3];
Security Accounting Design [3];
Audit Requirements [3];
Audit Design [3];
Audit Trails & Logging Requirements [3];
Audit Trails & Logging Design [3];
Non-Repudiation Requirements [3];
Non- Repudiation Design [3];

PA09 – Provide Security
Input

Document the Security Goals [8];
Document the Server Configuration [8];
Enterprise Security Approaches [3];
Enterprise Security Services [3];

PA10 – Specify Security
Needs

Security needs Identification for Enterprise
Assets [3];

PA11 – Verify and
Validate Security

Task Process Pattern – Technical Review
[10];
Check Point Pattern [5];
Whitehat, Hack Thyself [7];
Technical Guide to Information Security
Testing and Assessment [11].

The rules of association pattern to process areas are
suggestions elaborated through the literature and may be
improved by the organization by analyzing past projects,
retrospective sessions, etc.

B. Incorporating the Association Rules to the Framework
After defining the association rules, it is necessary to

incorporate them to the framework, as well as their constituent
elements (security patterns and process areas).

674 675

So that security patterns may be incorporated into software
processes, it is necessary that they are described by means of
concepts that will be used in the processes modeling.
Metamodels are used to describe elements that can be used for
the process elaboration. In this work, we have decided to use
the PRiMA-M (Project Risk Management Approach –
Metamodel) metamodel (Fig. 1), which was elaborated in
previous works by one of the authors [12]. PRiMA-M
represents a set of concepts that are used to elaborate software
processes. Process elements, instantiated from the PRiMA-M,
can be used in the definition of planned, agile or hybrid
processes.

Figure 1. PRiMA – Metamodel adapted from [12][13]

This metamodel was elaborated from the concepts
described in the Rational Unified Process. The following is an
explanation about the classes of this metamodel. More
information can be obtained in [12][13].

Lifecycle of a process is an aggregation of Phases which,
in turn, are associated to Activities. A Discipline identifies a
set of Workers which participate in the Discipline and define a
set of Activities that compose the Discipline. An Activity
specifies a particular collaboration within a Discipline and
represents Tasks grouping, given that a Worker is responsible
for each Task.

Artifacts are products generated during the execution of
Tasks and may be models, plans, software versions, reports,
etc. Workers represent the roles executed by individuals in a
project. Tools are used to assist the making of tasks.
ToolsMentors describe how to execute a Task by using a
certain Tool.

In order to exemplify how security patterns can be
described by means of process elements, instantiated from the
PRiMA-M, the AssetValuation pattern, described by using the
process elements proposed in the framework, can be
visualized in the Fig. 2.

Figure 2. AssetValuation pattern represented by using process elements
proposed in PRiMA-M

The security engineer executes the tasks with the
assistance of the project manager. The main artifact elaborated
during the execution of these tasks is the Security
Requirements document which describes the assets along with
the security value, financing value and the impact that the
asset may have in the business, as well as the assessment
tables that were elaborated for the asset assessment.

Each pattern that is described in an association rule has
been defined by using the process elements proposed in the
metamodel. The execution sequence of the activities has been
defined by means of an activity diagram proposed by the
UML. In the RUP, activity diagrams are proposed for each
discipline in order to organize the activities that are possible to
be executed in the software processes instantiated from it.

Considering that disciplines in the RUP seek to group
activity collections related to a concentration area, we opted to
group the proposed activities in order to add security to the
RUP in one single discipline, named “Software Security”.

Another alternative would be to set activities related to
security in the existing disciplines in the Unified Process, for
example, “Specify Security Needs” could be inserted to the
Requirements discipline. Several disciplines would have their
activity diagrams altered, which makes difficult for the
understanding and implementation of the process. Another
advantage of having a separate discipline for dealing with
security issues is the facility that organizations will have if
they wish to extend their process based on this work.

This discipline has been elaborated according to the
orientations for tailoring of the RUP [5], and it must be
executed in all phases but with more intensity in the inception
and elaboration phase. Considering that, supporting disciplines
are concerned with the overall management and structure of a
RUP project, Software Security is this type because it
concerns security management.

674 675

Each activity proposed for patterns implementation has
been analyzed in order to define the activity execution
sequence. This sequence has been defined from analyzing
artifacts that are necessary to the activity execution and
artifacts that were generated by activities. The sequenced
activities have been organized in an activities diagram for the
security discipline (Fig. 3).

Figure 3. Activities Diagram for the Security Discipline

IV. METHODOLOGY PROPOSED FOR TAILORING
The methodology for software processes tailoring has the

objective of allowing the elaboration of a software
development process for a specific project, considering
security practices that are described in the SSE-CMM and the
SMT framework that is described in the section III.

In this work, the processes tailoring considers that there is
an organization’s standard software process (OSSP), which
describes the process elements that must exist in all projects of
the organization. The tailoring consists in altering OSSP in
order to satisfy the project needs, especially in relation to
security, and it results in the project-specific process (PSP).
Fig. 4 shows the activities proposed methodology.

Figure 4. Security Methodology Tailoring (SMT)

Based on the security requirements identified for the
project, the security engineer, who is assisted by the project
manager, selects a set of process areas SSE-CMM that must be
incorporated to the project (software requirements). In this
selection, the opinion of specialists and stakeholders must be
considered besides the security requirements that were defined
for the project.

The patterns that seek to satisfy the PAs are selected based
on the association rules defined in the SMT framework. The
process engineer selects the patterns that they wish to
incorporate to the OSSP from the suggested list. After
selecting the security patterns, the process elements associated
to their implementation are incorporated to the OSSP
originating the PSP.

V. SMT – TOOL

An experimental environment to processes tailoring based
on security requirements was developed and it is composed by
the tools: Security-Based Methodology Tailoring (SMT-
TOOL), Project Risk Management Approach (PRIMA-TOOL)
[12] and Pattern-Based Methodology Tailoring (PMT-TOOL)
[15].

PMT-Tool is responsible for cataloguing the security
patterns. SMT-Tool is responsible for registering the processes
areas and associates them to the security patterns. PRIMA-
Tool module is responsible for the elaboration of the project
software process, from organization’s standard process
tailoring, inserting in it the elements of the process associated
to the selected patterns to the satisfaction of the processes
areas proposed by SSE-CMM.

Having concluded the project process tailoring, PRIMA-
Tool generates a website with the description of the project-
specific software process to be consulted by developers,
managers and process engineers. The website facilities easier
the adoption of the software process by the developing team.
These tools were used for the achievement of the case studies.

VI. CASE STUDIES

Two case studies were carried out to validate the proposed
methodology. The first case study was made on XirooPACS
system from Animati Computação Aplicada enterprise.

XirooPACS is a system about filing and communication of
medical images. Examinations scheduling, patients’ registers
and the appraisal delivering of doctors and patients ordering
by the internet are the main features of this system.

The system analysis was made considering mainly the
matter of visualization of exams on web systems by patients
and doctors, what makes this to need a highlevel of security.

The second case study was made on Plex system, from
Elevata enterprise. PLEX is a credit card system which aims to
enable the enterprises to have their own credit cards. This
system joins services of cards administration including
monitored selling services and evaluated risks.

The access to PLEX system is made on web. As the data
bases of this system will involve data of many clients and
several enterprises, and also flaws may cause a huge financial
loss, this is a system which needs a high level of security
involved in the process. The system analysis was made
considering mainly the data bases and the integration on
clients register and charge.

For the study case realization was used SMT framework
proposed by this work. In the database of tools was inserted
the elements of the process recommended by Rational Unified

676 677

Process, as well as the rules of association presented on Table
I. Each pattern associated to a process area was described
using the process elements proposed by the metamodel.

The first step in the realization of the case study was the
filling of a questionnaire to the identification of the process
area necessary for each project. The questionnaire was
distributed to the project manager who with his team,
answered the questionnaire for the prioritization of the security
requirements (process areas) proposed by SSE-CMM model.
The questionnaire contains the needs specifications to the
understanding of the process areas. It was used a scale of
relevance to the following levels: highest, high, medium, low
or not relevant. The project manager attributed a level to each
process area.

Based on the answers and on the framework configured on
the tools the processes were adapted and are analyzed on next
section.

A. Case Studies Analysis
The developed studies generated project-specific software

process to each of the systems. These processes are used as a
guide to the project development.

The case studies were made with projects which have very
distinct features, although both of them need a high security
level and therefore, generate specific-process similar. At the
first case study, some process areas were not prioritized for the
project security, yet on the second case study all the process
areas were considered high or highest to the project, all of
these prioritized (Table II).

The verification of whose activities are really high
important to the project is not an easy task, once the
consideration of adding requirements, which are not really
necessary, it can be added extra and unnecessary costs to the
project.

Through the two case studies was possible to verify the
second project demands more security because the security
engineer assigned to all process areas a high or highest
importance. More preoccupation related to assess threads and
vulnerabilities, build assurance argument, coordinate security
and monitor security posture were presented; corresponding to
process areas which were not implemented at the first study.

TABLE II. PRIORITIZATION OF THE PROCESS AREAS

PROCESS AREAS XIROOPACS PLEX

PA01 – Administer Security Controls High Highest
PA02 – Assess Impact High Highest
PA03 – Assess Security Risks High Highest
PA04 – Assess Threats Medium High
PA05 – Assess Vulnerabilities Medium Highest
PA06 – Build Assurance Argument Low Highest
PA07 – Coordinate Security Medium High
PA08 – Monitor Security Posture Medium Highest
PA09 – Provide Security Input High High
PA10 – Specify Security Needs Highest High
PA11 – Verify and Validate Security High Highest

The generated processes as the tailoring result were
evaluated jointly to the project managers who on their
analyses described that the process tailored to security presents
clear activities to be implemented.

The rules of pattern association to the process areas are
suggestions elaborated through the literature and may be
improved by the organization by analyzing past projects,
retrospective sessions, etc.

VII. RELATED WORKS

The development of reliable software has been discussed
on many works which seek ways of enhancing the assurances
of a project security or a software process. Some related works
are presented next.

Mellado, Mediana and Piattini consider security
requirements since the initial level of development of
production lines, through an interactive and incremental
process which where can be added additional tasks, according
necessities. Through this tasks incorporation these authors
search to make easier the conformity with the security
requirements and manage the possible varieties which can
happen on security requirements. The authors do not
exemplify how the security requirements, out of security rules
can be unfolded into task. In this sense, this article aims to
define the tasks from the patterns association, which, usually,
are widely explained or even suggest the tasks to be realized to
fulfill the associated requirement.

Paes and Hirata (2007) propose an extension to the RUP
with the inclusion of a discipline called "security". The
discipline is based on good-practices and on experiences of the
authors [5], but does not consider security standards or
models. It is not described on this work how the defined
process can be tailored to the projects needs.

Hafiz, Adamczyk and Johnson (2007) aim on using
patterns to meet the criteria of security software. Although, the
authors relate that there is a huge numbers of available
security patterns and it is hard to choose which pattern is more
recommended to each situation, as well as how to organize
them to be used in a project.

This work is different from the others because it purposes a
tailoring of software processes using security patterns and also
because it elaborates a framework to make easier the
elaboration of secures processes. The utilization of practices
recommended by SSE-CMM model and of security patterns
aim to use practices already consolidated for the development
of reliable software.

VIII. CONCLUSIONS

This work proposes a methodology for processes tailoring
that considers security requirements, which are proposed by a
security model as criterion for tailoring, generating reliable
software processes.

Information security has shown itself to be more and more
important for the organizations, developers and users, and
considering security from the beginning of the software
development is desirable.

676 677

Elaborating a methodology for software processes tailoring
is important to ease the tailoring task. The efficiency of the
processes elaborated from the framework will depend of the
rules of association pattern to process areas. An initial
framework has been elaborated from the Rational Unified
Process and activities proposed by the literature; from the
security requirements proposed by the SSE-CMM e by the
ISO/IEC 27001 Standard; and from security patterns described
by Schumacher et al. [4], Rosado [5], Romanosky [7],
Kienzle, among others.

The framework proposes a way to organize different
elements used to elaborate new process. The organization can
define patterns, processes elements and association rules that
are adequate to their reality. The framework can be updated
and must improve with time and as the team gets more
experience. Results of post-mortem analysis of projects can
help in this task.

Future work includes the definition of criterion associated
to the security rules that seek to facilitate the prioritization of
patterns to be applied in determined context and the
experimentation of processes tailored by SMT in real projects.

ACKNOWLEDGMENT

We want to express our gratitude to CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior) for the
financial support and a special gratitude to the organizations
Animati and Elevata and their projects managers Jean Carlo
Albiero Berni and Marcio Puntel for all their feedback and the
very useful scientific discussions.

REFERENCES

[1] Kroll, J., Fontoura M. L., Wagner, R., (2010) “Usando Padrões
para o Desenvolvimento da Gestão da Segurança de Sistemas de
Informação baseado na Norma ISO/IEC 21827:2008”. In:
Simpósio Brasileiro de Sistemas de Informação, Marabá, Pará.

[2] SSE-CMM, 2003, Systems Security Engineering Capability
Maturity Model SSE-CMM Model Description Document, Version
3.0, Carnegie Mellon University, Pennsylvania, USA.

[3] Schumacher, M., Fernandez, E. B., Hybertson, D., Buschmann, F.
and Sommerlad, P.. 2006. Security Patterns, J.Wiley& Sons,
England.

[4] Mellado D., Medina, F. E., Piattini M., 2008 Security Requirements
Variability for Software Product Lines In: IEEE. University of
Castilla La-Mancha – Spain.

[5] Rosado, David G. 2006A Study of Security Architectural Patterns.
In Proceedings of the First International Conference on
Availability, Reliability and Security (ARES’06).

[7] Romanosky, S. (2003) “Operational security patterns”, In:
EuroPLoP. Available
on<http://hillside.net/europlop/europlop2003/papers/WritingGroup
/WG4_RomanoskyS.doc> accessed in January 2010.

[8] Kienzle, D. M. and Elder, M. C. (2002) “Security Patterns for Web
Application Development”, Final Technical Report, Univ. of
Virginia.

[9] Coplien, James. Sofware Patterns. Originally published by SIGS
Books and Multimedia,1996.

[10] Ambler, S. W. (1998) “An introduction to process patterns”, in
SIGS Books/Cambridge University Press.

[11] Scarfone, K., Souppaya, M., Cody, A. and Orebaugh, A. (2008)
“Technical Guide to Information Security Testing and Assessment:
Recommendations of the National Institute of Standards and
Technology”, National Institute of Standards and Technology
(NIST) Special Publication 800-115.

[12] Fontoura, Lisandra Manzoni; Price, Roberto Tom. Systematic
Approach to Risk Management in Software Projects through
Process Tailoring. In: International Conference on Software
Engineering and Knowledge Engineering (SEKE'2008), 2008,
Redwood City. Proceedings of the 20th International Conference
on Software Engineering and Knowledge Engineering. Skokie:
Knowledge Systems Institute Graduate School.

[13] Fontoura, M. L. “PRiMA: Project Risk Management Approach”.
Tese (Doutorado em Ciência da Computação). Universidade
Federal do Rio Grande do Sul – UFRGS. Porto Alegre, Brazil.
2006.

[14] Shuya, A. “Welcome to the IBM Rational Unified Process and
Certification”. In: IBM Rational Software.
Available at:<http://www.ibmpressbooks.com/bookstore/product.a
sp?isbn=0131562924 > Acessed jan. de 2010, 2008.

[15] Hartmann, J.; Fontoura, L. M.; Price, R. T. Tailoring Software
Processes with Organizational Patterns Languages using Risk
Analysis.In: Simpósio Brasileiro em Engenharia de Software,
SBES, 19., 2005, Uberlândia.Rio de Janeiro: PUCRJ, 2005.

[16] Yoder, J. and Barcalow J. (1997) “Architectural Patterns for
Enabling Application Security”, In: 4th Conference on Pattern
Languages of Programs. Edinburgh, United Kingdom.

[17] Paes, C. E. B. e Hirata, C. M. 2007. RUP extension for the
development of secure systems. In: Portal ACM, Pontifícia
Universidade Católica de São Paulo - Instituto Tecnológico de
Aeronáutica – São Paulo, Brazil.

678 679

Security Analysis of FileZilla Server Using Threat
Models

Michael Sanford, Daniel Woodraska, Dianxiang Xu
National Center for the Protection of the Financial Infrastructure

Dakota State University
Madison, SD 57042, USA

{michael.sanford, dcwoodraska, dianxiang.xu}@dsu.edu

Abstract— FTP is a widely used protocol for working with remote
file systems. Various FTP implementations have had security
problems reported as late as 2010. There lacks a systematic
analysis of FTP security. In this paper, threat models are built to
provide a systematic coverage of potential security attacks
against an FTP server. Security tests are then generated from the
threat models and applied to FileZilla Server, a popular FTP
server implementation. When FileZilla Server is properly
deployed, it holds fast against our security attacks. To further
evaluate the effectiveness, the security tests are used to exercise a
number of security mutants of FileZilla Server where various
vulnerabilities are injected deliberately. The security tests have
detected all but one of the injected vulnerabilities. This indicates
that the threat model-based approach to security analysis of
FileZilla Server is effective.

Keywords- Security testing, FTP, threat modeling, threat tree,
mutation testing

I. INTRODUCTION

FTP (File Transfer Protocol) is a widely used method for
working with remote file systems. While FTP is an old
protocol, various implementations show security problems that
were reported as late as 2010 [1-3]. Using FTP across an
untrustworthy network (e.g., Internet) can still expose an
organization or business to security risks, yet there is no
systematic analysis of FTP security to help understand the risks
and mitigate them.

This paper presents an approach to FTP security analysis
using threat models. We build threat models against most of the
FTP services using the STRIDE threat classification system
[4]. STRIDE stands for Spoofing, Tampering, Repudiation,
Information disclosure, Denial of service, and Elevation of
privileges [4]. It provides a systematic coverage of the potential
security attacks against an FTP server. We generate security
tests from STRIDE threat models and apply them to FileZilla
Server, a popular open source FTP implementation. When
FileZilla Server is properly deployed, all of the attacks against
it fail. When the deployment uses the default settings, however,
one of the security tests leads to a successful denial of service
attack.

To further evaluate the effectiveness of our approach, we
created a number of security mutants of the FileZilla server
program by injecting various vulnerabilities into the code. Then
we ran the security tests against each of the mutants. A mutant

is said to be killed if one of the security tests is a successful
attack. The security tests have killed all but two of the mutants.
This demonstrates that the threat model-based approach to
security analysis of FileZilla Server is effective.

II. THREAT MODELING OF FTP SERVER

Security threats are potential security attacks. Threat
modeling usually consists of four steps: modeling system
functions, specifying security threats, ranking threats for risk
analysis, and mitigating threats [4]. Functional modeling helps
identify the system assets (e.g., data) that need to be protected
and the entry points that an attacker might exploit. As this
paper focuses on the security analysis of an existing system,
we are not concerned with threat ranking or mitigation.

Table 1. Partial list of FTP Services vs. STRIDE Threats

Service S T R I D E
Login 4 1 3 2
Change directory 1 3 1 2 1 1
Get current directory
Change to passive mode 2 2
Put file to server 4 1 3 1
Get file from server 3 2 1 1
Create directory 1 1
Delete a directory 2 1 1
Delete a file 3 2 2
Execute commands
on server 1 1 1 1

Rename a file 2 1 2 1
Append to a file 1 1
Non-service specific 1 1 1

The FTP standard has evolved over many years via RFCs
(959, 1123, 3659, 4217) published by the Internet Engineering
Task Force (IETF). FTP operations include login, change
directory, list directory, get current directory, change to
passive mode, put file to server, get file from server, create
directory, delete directory, delete a file, execute commands on
server, rename a file, append a file, etc. These operations are
listed in the first column of Table 1. To provide a systematic
coverage of the potential attacks against the FTP services, we
identify the STRIDE threats with respect to each service. We
have also considered the vulnerabilities reported by various

678 679

sources, including but not limited to SANS [1], US-CERT [3],
Security Focus [2], Vulnerability Scanning [5], Offensive
Security’s exploit database [6], the now extinct website
milw0rm.com (went down during our research) [7], and
FileZilla’s own bug report system [8].

Attack (threat) trees [9][10] are used to visualize the threat
models, An attack tree shows the steps an attacker would go
through to compromise a system. The root of an attack tree
specifies the ultimate goal of an attack; child nodes represent
the sub-goals of their parent node (or the steps to achieve the
parent’s goal); and leaf nodes describes the primitive attack
conditions or actions. An “AND” relation between two or
more nodes means that all of the sub-goals or conditions in
these nodes must be satisfied in order to achieve the parent’s
goal. An “OR” relation means that the parent’s goal is reached
when one of the sub-goals or conditions is satisfied [10].

Figure 1 shows denial of service attacks that prevent a
legitimate user from logging in. The first attack attempts to fill
up the login table that keeps track of the user connections. The
second attack fills up the receive buffer of the server to the
point to of crashing. The protocol requires a carriage return to
be sent at the end of the command. Otherwise, it just keeps
buffering the data coming in until it overflows.

We have built 14 attack trees for the FTP services. They
include 52 unique attack paths. An attack path is the
minimalist set of leaf nodes taken to achieve some goal of the
tree (root or sub-goal) [10]. Table 1 shows the number of
threat trees that apply to each STRIDE category. Note that a
threat tree can belong to multiple STRIDE categories. For
example, an elevation of privilege attack often leads to
information disclosure and tampering.

III. SECURITY TESTING OF FILEZILLA SERVER

After the attack trees have been constructed, we conduct
security testing as follows. For each attack tree, we first
generate all attack paths (also called test sequences). Then they
are converted into security tests. Consider the attack tree in
Figure 2. A is achieved if B or C are satisfied. B can be
satisfied by 1 and 2 and node C by 3 and 4. Therefore, the
attack paths are <1, 2> and <3, 4>. In our approach, we
generate the test sequences from an attack tree automatically.

Definition 1. Suppose S[i] (0≤ i ≤ n) is a set of sequences. The
combinational concatenation of all sequences in S[i], S[0] ×
S[1] × …× S[n] = {<s0, s1,…,sn>: for s0 S[0], s1 S[1],…

sn S[n]}.

For example, let S[0] = {p1, p2, p3}, S[1] = {q1, q2}, S[2] =
{r1, r2}, where pi(1≤ i≤ 3), qj(1≤ j ≤ 2), rk (1≤ k ≤ 2) are
sequences. Then S[0]×S[1]×S[2] yields the following 12
sequences:

{<p1, q1, r1>, <p1, q1, r2>, <p1, q2, r1>, <p1, q2, r2>
<p2, q1, r1>,<p2, q1, r2>,<p2, q2, r1>,<p2, q2, r2>
<p3, q1, r1>,<p3, q1, r2>,<p3, q2, r1>,<p3, q2, r2>}

Algorithm 1 below describes how to compute the
combinational concatenation of sequences, where “ ” in line
7 refers to union of sets.

Algorithm 1: concatSequences
Function: combinational concatenation of sequences
Input: {S[0], S[1], …,S[n]}; Output: S[0] × S[1] × …× S[n]
Declare: S is a set of sequences
S[i][j] is the j-th sequence in S[i]

1. begin
2. if n=0
3. then return S[0];
4. S = ;
5. for i=0 to S[0].size-1
6. for j=0 to S[1].size-1
7. S S {<S[0][i], S[1][j]>}
8. endfor
9. endfor
10. if n=1
11. return S;
12. else //n>1
13. return concatSequences(S, S[2],…, S[n]);
14. end

Algorithm 2 describes how to generate test sequences from
(the root of) a threat tree, where “ ” in line 12 refers to union
of sets and “×” refers to combinational concatenation of
sequences in Definition 1 and Algorithm 1.
Algorithm2: genSequences
Function: Generate attack paths from a threat tree node.
Input: threat tree node; Output: attack paths
Declare: childNodes is the list of child nodes of a node;
childNodes[i] is the i-th node in childNodes
S[i] is a set of sequences

1. begin

A

B C

1 2 3 4

OR

AND AND

2.1. Overflow Login table

2.1.1. Login
using valid

credentials for
2000 time

AND

2.2. Crash Server

2.2.2. Keep
sending data

to port 21
without CR

2.1.2. Close
the last

connection

2: Prevent login of legitimate users

OR

2.2.1.
Login to
server

AND

Figure 1. Prevent legitimate login

Figure 2. A sample attack tree

680 681

2. if node is leaf
3. then return {<node>};
4. childNodes all child nodes of node
5. if childNodes.size()=1
6. then return genSequences[childNodes[0];
7. for i=0 to childNodes.size-1
8. S[i] genSequences(childNodes[i])
9. endfor
10. if the relationship between child nodes is “OR”
11. then
12. return S[0] S[1] … S[childNodes.size-1]
13. else // the relationship is “AND”
14. return S[0] × S[1] × …× S[childNodes.size-1]
15. end

Let us apply Algorithm 2 to the attack tree in Figure 2,
genSequence(A) = genSequences(B) genSequences(C)
because the relation between B and C is “OR”.
genSequences(B) = genSequences(1) × genSequences(2) =
{<1>} ×{<2>} = {<1,2>} because the relation between 1 and
2 is “AND” , genSequences(1) = {<1>}, and genSequences(2)
= {<2>}. Similarly, genSequences(C) = genSequences(3) ×
genSequences(4) = {<3>} ×{<4>} = {<3,4>}. Thus,
genSequence(A) ={<1,2>} {<3,4>} = {<1,2>, <3,4>}.

For simplicity, Algorithm 2 assumes that all the child
nodes of a node, if any, have a single logical relation, i.e.,
either “AND” or “OR”, but not a combination of them. This
does not lose generality because a mixed relation of “AND”
and “OR” can be easily converted into a tree without mixed
relation. For example, the nodes in the attack tree in Figure 3
have a combination of “AND” and “OR”. It can be converted
to the attack tree in Figure 2. They have the same attack paths
{<1,2>, <3,4>}.

Once the sequences were generated, they were converted
into security tests by determining the system settings (i.e., user
accounts and server setting), the actual parameters for the
attack actions and conditions in the test sequence (e.g., user
name and password for a login session), and oracle values
(e.g., criteria about whether or not the attack is successful). If
the primitive attack actions or conditions in the security test
are programmable, we write code for the security test so that it
can be executed automatically. It should be noted that security
tests generated from the threat models are different from
traditional functional tests in success and failure terminology.
If a security test passes, the attack is successful (which would
violate security requirements or policies). A failure can be due
to a variety of issues, such as failure to connect to server,

failure to get to a specific directory, unexpected response from
the server, etc., or that the actual attack didn’t work.

Table 2. Summary of security tests

Service S T R I D E
Number of threat trees 5 6 3 3 4 2
Number of test cases 8 33 7 24 10 15
Number of automated
test cases 7 28 2 17 4 10

From the 14 threat trees we created, we generated 52
security tests. 39 of them can be executed automatically,
another 8 can be executed automatically with some tester
intervention and 5 are entirely manual tests. Table 2 shows
how many tests are related to each classification of STRIDE.
Again, one test can belong to multiple STRIDE categories.

IV. EXPERIMENTS

Our experiments consist of two phases. First, we run the
security tests generated from the attack trees against FileZilla
Server (version 0.9.34). Second, we create security mutants of
FileZilla Server by vulnerability injection and run the same
security tests against each of the mutants. FileZilla Server
version 0.9.34 has 88,596 lines of code (71,940 actual C++
code lines), 107 classes, 1,716 methods, 193 functions, with an
average method complexity of 4.74. Method complexity is
defined as the number of unique execution paths that can be
made through a function or method. In the following, we
present the results of testing FileZilla Server and its mutants
and discuss the lessons learned from this work.

A. Security Testing of FileZilla Server
When FileZilla Server is properly deployed (i.e., settings

are configured properly), all generated security attacks failed to
accomplish their goal. This indicates that FileZilla Server is
secure against these attacks. When the security tests were first
executed against FileZilla Server with the default settings, two
of the attacks were successful. One achieved denial of service
through creating thousands of login connections with the same
id. The attack overflowed the login table of FileZilla Server,
which keeps track of the active users and the current activity of
that id. A proper setting should limit the number of concurrent
connections any given id may have. The default is zero which
means unlimited. This default setting doesn’t give any hint to
the administrator that there is an actual limit that might be
exploited. The other successful test gained the version of the
server that was running. While the version information is not
always harmful, it can give the attacker clues as to what attacks
might be possible by looking at the public bug tracker. In the
attack trees, the disclosure of version information for
production use (not development use) is considered as a
security risk although the risk is not necessarily high.

B. Security Mutation Analysis of FileZilla Server
 The fact that the properly deployed FileZilla Server has

warded off our security tests indicates the good security profile
of FileZilla Server. But it does not reflect how effective the

A

1 2 3 4

OR
AND AND

Figure 3. Informal attack tree with combined AND and OR

680 681

security tests can be. In this paper, we use security mutation
testing to evaluate the vulnerability detection capability of the
security tests and the thread modeling process.

Mutation testing has been used for evaluating software for
the past several decades [11]. The fundamental idea of
mutation testing is to run test cases against mutants which are
obtained by injecting faults deliberately into the correct or
baseline version of a program. These faults would represent the
same programming errors a programmer might make. Usually,
the percentage of mutants killed by the test cases is an indicator
of how effective the tests are [12]. So far, creation of mutants
in the existing mutation testing research has focused on
syntactic changes, such as replacing && (and) with || (or).
However, syntactic changes may not result in meaningful
vulnerabilities in security-intensive software. In this paper, we
create security mutants according to the causes and
consequences of vulnerabilities. The causes of vulnerabilities
include design-level defects (e.g., incorrect policy
enforcement) and implementation-level programming errors
(e.g., buffer overflow and unsafe function calls). Design-level
vulnerabilities are a major source of security risks in software
[13]. To create design-level mutants we took a high level look
at the program by creating a software architecture document of
the program. This document, along with a thorough code
review gave us a broad view of how pieces fit together
throughout the program and gave us the necessary insight to
create some design level mutants. A mutant allowing a user to
create directories without the necessary permissions would be
classified as a design-level vulnerability in the FileZilla
program. This is because no matter what the programmer does
it is an unfixable problem using the current design. The
consequences of vulnerabilities refer to various potential
STRIDE attacks. We have created 30 mutants of FileZilla
Server, 13 with design-level vulnerabilities and 17 with
implementation vulnerabilities. The mutants have also included
reported vulnerabilities of FileZilla Server.

Injection of security vulnerabilities into FileZilla Server is
conducted independently of threat modeling and test
generation. A different person from the team not involved with
the threat modeling studied the FileZilla server and created the
mutant injections. The security tests generated from our initial
set of threat models killed 8 of the first 14 mutants (57.14%).
The other mutants were not killed because the threat models
did not cover these vulnerabilities. Then, we built more threat
models and thus generated more tests to exercise the mutants. It
is important to note that no implementation details were
discussed between the person that implemented the mutations
and the person that implemented the threat models. Only
generic information such as “List command causes crash” is
given. In the end, we were able to kill 28 of the 30 mutants for
a 93.33% success rate. The two remaining mutants were a
memory leak which is difficult to capture by threat models and
an implementation dependent issue of an FTP command not
covered by the threat model.

C. Discussion
Our experiments show that threat model-based testing is an

effective approach to the security analysis of FileZilla Server.
The security tests generated from the threat models have killed

93.33% of the deliberately-created mutants. One reason for
this effectiveness is that the security tests generated from the
threat models directly target the unintended behaviors or
invalid inputs that are exploited by attacks. They meet the
need of security testing to test the “presence of an intelligent
adversary bent on breaking the system” [14].

From the experiments, we have learned several lessons.
First, compared to traditional modeling that focuses on the
intended behaviors of software, threat modeling requires a
significantly different way of thinking. It would not be
effective unless the threat models are built as if the builder
were an intelligent adversary. Examining STRIDE threats
against each system function can help build threat models in a
systematic manner. This greatly reduces the chance of missing
critical threats. Second, the vulnerability detection capability
of the threat-based testing depends upon the threat models. A
vulnerability may not be revealed if it is not captured by the
threat models. Since threat models typically represent known
or anticipated attacks, it can be hard to detect unknown
vulnerabilities. Third, test automation can reduce the testing
workload because the test execution can be easily repeated.
For example, the security tests were executed against each of
the 30 mutants. It would have been a daunting task if the
security tests had not been automated. Although automation is
desirable, not all tests can be automated. For example, user
interactions may be needed to change server configuration
(e.g., permissions), use administrative functions, and verify
attack effects. Fourth, security mutation through injection of
vulnerabilities is more difficult than traditional mutation. The
former requires an in-depth understanding about the system
functions and security requirements. The latter usually focuses
on syntactic changes. Although the 30 distinct mutants have
covered all FTP services and different vulnerabilities leading
to various STRIDE attacks, they are far from complete.

V. RELATED WORK

Threat modeling has been a viable practice for secure
software development for some time [15]. Threat models can
be used to generate security tests for exercising an
implementation. In the past, we have proposed security testing
approaches based on threat models represented by UML
sequence diagrams [16] and threat trees [17]. Our previous
work on testing with threat trees focused on web applications.
This paper applies threat modeling and testing to FTP services,
which has not been found in the literature. This paper has
formally described the algorithms for generating test
sequences from attack trees and used the security mutation to
evaluate the vulnerability detection capability of the threat
model-based testing approach.

Blackburn et al. [18] have developed an approach for
generating test vectors (i.e., test cases with test input values,
expected output values and traceability information) from
security properties. Jürjens [19] has developed an approach for
testing security-critical systems based on UMLsec models.
Test sequences for security properties are generated from
UMLsec models to test the implementation for vulnerabilities.

682 683

Julliand et al. proposed an approach to generating security
tests in addition to functional tests [20]. The above work does
not involve threat models in security testing.

Recently, testing of access control policies has gained
increasing attention. Martin et al. [21] have been investigating
techniques for test generation from access control policy
specifications written in XACML (OASIS eXtensible Access
Control Markup Language). Masood et al. [22] have
investigated a state-based approach to test generation for role
based access control (RBAC) policy. Their approach first
constructs a finite state model of the RBAC policy and then
drives tests from the state model. Le Traon et al. have
investigated various issues of model-based testing of access
control policies [23]. Mallouli [24] et al. have used formal
access control models for generating tests. None of this work
has used threat models for security testing.

VI. CONCLUSIONS

We have presented the modeling of various security threats
against FTP services. These threat models can be used for
security testing of different FTP server implementations. In
this paper, the security tests generated from the threat models
are executed against Filezilla Server, a popular FTP server
implementation. Our experiments demonstrate that this is an
effective approach to the security analysis of FileZilla Server.
Although the security tests did not find risky vulnerabilities in
the properly deployed FileZilla Server, they have detected the
vast majority of the injected vulnerabilities in the security
mutants. Our study indicates that modeling and testing with
attack trees has some limitations. It is difficult to describe data
flows among attack conditions and actions and represent
repetitive actions. As a result, it requires some effort to
transform the test sequences generated from attack trees to
meaningful or executable security tests. This is a barrier to
automated generation of executable code for those security
tests where the attack actions are programmable. We are
exploring how to generate executable security tests from
formal threat models represented by Petri nets [13].

Currently, our study has created and used 30 security
mutants of the FileZilla Server program. To better evaluate the
vulnerability detection capability of the threat model-based
testing approach, we plan to create mutants in a more
systematic way. For example, we can try to inject
vulnerabilities according to the various programming bugs that
lead to security vulnerabilities.

ACKNOWLEDGMENT

This work was supported in part by NSF under grants CNS
0855106 and CNS 1004843.

REFERENCES

[1] SANS. (2010). Computer Security Training, Network Research &
Resources. Available: http://www.sans.org/

[2] SecurityFocus. (2010). Security Focus. Available:
http://www.securityfocus.com/

[3] US-CERT. (2010). US-CERT: Other Resources. Available:
http://www.us-cert.gov/resources.html

[4] F. Swiderski and W. Snyder, Threat Modeling. Redmond, WA, USA:
Microsoft Press, 2004.

[5] VulnerabilityScanning.com. (2010). Vulnerability Assessment available
for FTP. Available: http://www.vulnerabilityscanning.com/FTP-
Security.htm

[6] Offensive-Security. (2011). Exploit Database search results. Available:
http://www.exploit-
db.com/search/?action=search&filter_page=1&filter_port=21

[7] JF, Keystroke, ExtreemUK, savec0re, and VeNoMouS. (2010, June 17).
Milw0rm search: port 21. Available: http://www.milw0rm.com

[8] FileZilla-Project. (2010, June 21). Open Bug Reports. Available:
http://trac.filezilla-
project.org/query?status=accepted&status=assigned&status=new&status
=reopened&component=FileZilla+Client&order=time&desc=1&type=B
ug+report

[9] B. Schneier, "Attack trees: modeling security threats," Dr. Dobb’s
journal, vol. 24, pp. 21-29, 1999.

[10] A. Jürgenson and J. Willemson, "Serial model for attack tree
computations," Information, Security and Cryptology–ICISC 2009, pp.
118-128, 2010.

[11] Y. Jia and M. Harman, "An analysis and survey of the development of
mutation testing," Software Engineering, IEEE Transactions on, p. 1.

[12] J. H. Andrews, L. C. Briand, and Y. Labiche, "Is mutation an appropriate
tool for testing experiments?," Proc. of the 27th international conference
on Software Engineering, St. Louis, MO, USA, 2005.

[13] D. Xu and K. E. Nygard, "Threat-driven modeling and verification of
secure software using aspect-oriented Petri nets," IEEE Transactions on
Software Engineering, vol. 32, pp. 265-278, 2006.

[14] B. Potter, B. Allen, and G. McGraw, "Software security testing,"
Security & Privacy, IEEE, pp. 32-36, 2004.

[15] D. Xu, "Software Security," in Wiley Encyclopedia of Computer Science
and Engineering. vol. 5, B. W. Wah, Ed., ed Hoboken, NJ: John Wiley
& Sons, Inc, 2009, pp. 2703-2716.

[16] L. Wang, E. Wong, and D. Xu, "A threat model driven approach for
security testing," in 3rd International Workshop on Software
Engineering for Secure Systems, Minneapolis, MN, 2007, p. 10.

[17] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, "Security test
generation using threat trees," presented at the Fourth International
Workshop on the Automation of Software Test (AST’09), in conjunction
with ICSE'09, Vancouver, Canada, 2009.

[18] M. Blackburn, R. Busser, A. Nauman, and R. Chandramouli, "Model-
based approach to security test automation," in Quality Week 2001.

[19] J. Jürjens, "Model-based security testing using UMLsec," Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 220, pp. 93-104,
2008.

[20] J. Julliand, P. Masson, and R. Tissot, "Generating security tests in
addition to functional tests," in Third International Workshop on
Automation of Software Test (AST’08), 2008, pp. 41-44.

[21] E. Martin and T. Xie, "A fault model and mutation testing of access
control policies," in 16th international Conference on World Wide Web
(WWW’07), 2007, pp. 667-676.

[22] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur, "Scalable and
effective test generation for role-based access control systems," IEEE
Transactions on Software Engineering, pp. 654-668, 2009.

[23] T. Mouelhi, Y. Le Traon, and B. Baudry, "Transforming and selecting
functional test cases for security policy testing," in Second International
Conf. on Software Testing Verification and Validation (ICST'09),
Denver, CO, 2009, pp. 171-180.

[24] W. Mallouli, J. M. Orset, A. Cavalli, N. Cuppens, and F. Cuppens, "A
formal approach for testing security rules," in 12th ACM symposium on
Access Control Models and Technologies, Nice-Sophia Antipolis,
France, 2007, pp. 127-132.

682 683

Misuse Patterns for Cloud Computing

Keiko Hashizume, Eduardo B. Fernandez

Dept. of Computer and Electrical Engineering and

Computer Science

Florida Atlantic University

Boca Raton, FL, USA

ahashizu@fau.edu, ed@cse.fau.edu

Nobukazu Yoshioka

GRACE Center

National Institute of Informatics

Tokyo, Japan

nobukazu@nii.ac.jp

Abstract—Cloud Computing is a new computing architecture that

allows providers to deliver services on demand by means of

virtualization. This work presents misuse patterns that describe

how some typical attacks are performed and indicates

appropriate countermeasures. These misuse patterns provide

insight on how to build secure clouds and are also useful to

evaluate the security of existing cloud systems. Specifically, we

present a pattern for Malicious Virtual Machine Creation and

describe two other patterns we have written.

Keywords--; cloud computing, misuse patterns, security

patterns, virtualization threats

I. INTRODUCTION

The Internet has been developing very rapidly during the
last decade. The cost of storage is increasing as well as the cost
of the power consumed by the hardware [9]. Thus,
organizations need new solutions for these problems. Cloud
computing is a new paradigm that improves the utilization of
resources and decreases the power consumption of hardware.
Cloud computing allows users to have access to resources,
software, and information using any device that has access to
the Internet.

Virtualization is a key feature for cloud computing [5], it
allows many virtual machines to run on a single physical
machine. Virtual machines are created and monitored by a
Virtual Machine Monitor (Hypervisor), a software layer that
mediates between the hardware and the operating systems
running in each virtual machine. Virtualization allows users to
create, copy, share, migrate, and roll back virtual machines,
which provide significant benefits for the users [4]. However, it
also brings new security problems.

To design a secure system, we first need to understand
possible threats to the system. In [2], we proposed an approach
to identify threats by considering the activities in each use case.
That approach finds threats as goals of the attacker that must be
realized by the lower levels of the system. We need to
understand how the specific components of the architecture are
compromised or used by an attacker in order to fulfill her
objectives. To do this, we apply misuse patterns [3], to describe
threats in cloud computing. A misuse pattern describes how a
misuse is performed from the point of view of the attacker. It
defines the environment where the attack is performed,
countermeasures to stop it, and it provides forensic information
in order to trace the attack once it happens. Misuse patterns are
useful for developers because once they determine that a
possible attack can happen in the environment, a corresponding

misuse pattern will indicate what security mechanisms are
needed as countermeasure. Also, misuse patterns can be very
useful for forensic examiners to determine how a misuse is
performed, and where they can find useful evidence
information after the attack is done. Note that the misuse
pattern describes a complete misuse, e.g. stealing information
from a database, not just specific steps used to perform the
misuse, such as SQL injection or buffer overflow. Misuses do
not provide steps to be avoided when building the system, so
they are not antipatterns, although they have common aspects.

We present here one example of a misuse pattern to
illustrate our approach. While the specific attacks we describe
are known, our contribution is describing the attacks in a
systematic way, indicating how they can be neutralized. In
particular, sharing virtual machine images brings new threats.
Virtual machine images are prepackaged software templates
that are used to instantiate virtual machines [8]. Cloud
providers offer a repository service where providers and users
can store their images. Users can either create their own image,
or they can use any image stored in the repository. An attacker
who creates a valid account can create an image containing
malicious code such as a Trojan horse. If another customer uses
this image, the virtual machine that he creates will be infected
with the hidden malware. This malware can then perform a
variety of misuses.

Section 2 presents a template used to describe misuse
patterns. In Section 3, we present a misuse pattern for cloud
computing, Malicious Virtual Machine Creation. In Section 4,
we present some discussion on how misuse patterns can be
used, and in Section 5 we offer some conclusions and possible
future work.

II. TEMPLATE FOR MISUSE PATTERNS

A. Name

The name of the pattern should correspond to the generic
name given to the specific type of misuse in standard attack
repositories.

B. Intent or thumbnail description

A short description of the intended purpose of the pattern
(what problem it solves for an attacker).

C. Context

It describes the generic environment including the
conditions under which the attack may occur. This may include

684 685

minimal defenses present in the system as well as typical
vulnerabilities of the system.

D. Problem

From an attacker’s perspective, the problem is how to find a
way to attack the system. The forces indicate what factors may
be required in order to accomplish the attack and in what way;
for example, which vulnerabilities can be exploited.

E. Solution

This section describes the solution of the attacker’s
problem, i.e., how the attack can reach its objectives and the
expected results of the attack. UML class diagrams show the
system under attack. Sequence or collaboration diagrams show
the exchange of messages needed to accomplish the attack.

F. Affected system components (Where to look for evidence)

The pattern should represent all components that are
important to prevent the attack and are essential to the forensic
examination.

G. Known uses

Specific incidents where this attack occurred are preferred
but for new vulnerabilities, where an attack has not yet
occurred, specific contexts where the potential attack may
occur are enough.

H. Consequences

Discusses the benefits and drawbacks of a misuse pattern
from the attacker’s viewpoint. The enumeration includes good
and bad aspects and should match the forces.

I. Countermeasures and Forensics

It describes the security measures necessary in order to
stop, mitigate, or trace this type of attack. This implies an
enumeration of which security patterns are effective against
this attack. From a forensic viewpoint, it describes what
information can be obtained at each stage tracing back the
attack and what can be deduced from this data in order to
identify this specific attack.

J. Related Patterns

Discusses other misuse patterns with different objectives
but performed in a similar way or with similar objectives but
performed in a different way.

III. MISUSE PATTERNS FOR CLOUD COMPUTING.

We present one of our patterns, although not complete due to

space restrictions.

Malicious Virtual Machine Creation

1) Intent
A Virtual Machine Image is a type of virtual appliance that

is used to instantiate a Virtual Machine (VM). Virtual Machine
Images contain initial file system state and software for the
machine. An attacker may create a virtual machine image that

contains malicious code so it can infect other users when they
create their virtual machines. The attacker may read also
confidential data from images that are publicly stored in the
provider’s repository.

2) Context
Some IaaS (Infrastructure as a Service) providers offer a

VM image repository where users can retrieve images in order
to initialize their VM. These VM Images can be created and
published by the provider or by a client.

3) Problem
To perform some types of misuse it is necessary to be able

to create and publish VM images.

The attack can be performed by taking advantage of the
following vulnerabilities:

• Any person who has a valid account can create and
register a VM image.

• There should be a common place where the users can
share VM images.

• VM images contain prepackaged software components
for an application. Thus, an attacker can create a VM
image with malicious code.

• VM images contain installed and fully configured
applications. The configuration may require sensitive
operations such as creating username and password
[8].

4) Solution
When a user publishes a VM image as public, any other

user of the cloud is able to use it to instantiate his VM. This
VM image can contain malicious code. The Virtual Machine
Monitor (VMM) will run this image in order to instantiate the
user’s VM. Now, the attacker can have control of the virtual
machine and perform malicious activities such as infect other
computers. Infected virtual machines may appear briefly, infect
other virtual machines, and disappear before they can be
detected [4].

Structure

Figure 1 shows a class diagram for the repository for VM
images in cloud computing. A Virtual Machine (VM) is an
isolated software container that has a CPU, RAM, hard disk,
and network controllers. It requires the installation of operating
system and applications. A Virtual Machine Image (VMImage)
is a pre-installed operating system and application stack. A
User retrieves a VMImage from the Provider’s Repository.
These images can be created and published by other users or by
the provider. The Provider is composed of a Hypervisor and
Hardware (server, storage and network). The Virtual Machine
Monitor (VMM) creates VMs by instantiating a VMImage, and
it assigns their instances to the users who requested them.
When the instance is launched, it is assigned to a physical
server and given other hardware resources. The VM passes
system calls to the VMM which executes those calls in the
Hardware.

684 685

`

Figure 1. Class diagram for VM Image Misuse Pattern

Dynamics

UC1: Publish a Malicious Virtual Machine Image (Fig. 2)

Summary: The Attacker publishes a Virtual Machine Image
that contains malicious code.

Actor: Attacker

Precondition: The Attacker must have an account with the
Provider

Description:

a) The Attacker creates a VM Image.

b) The Attacker installs malicious software within the

VM image

c) The Attacker requests to the Provider to upload the

VM Image.

d) The Provider checks if the attacker (legal user) has an

account.

e) The Provider uploads the VM Image into the

repository.

f) The Provider sends an acknowledgement to the

attacker.

Postcondition: A VM Image is created and placed into the
Provider’s repository, so any other user can use it and get
infected.

UC2: Launch a VM using an infected VM Image (Figure 3)

Summary: A user launches a VM using an infected VM
Image.

Actor: User

Precondition: The user must have an account, and the
attacker has published her VM Image into the Provider’s
repository. Also, the user should choose the VM Image created
by the attacker.

Figure 2. Sequence Diagram for the use case Publish a Malicious VM Image

Description:

a) The User request to the Provider to retrieve a VM

Image.

b) The Provider checks if the user has a valid account.

c) If the user is valid, the Provider sends the list of VM

Images.

d) The User chooses the VM Image, and he requests to

launch a VM to the Provider.

e) The Provider forwards the request to the VMM that

will create the VM.

f) Once the VM is launched, it executes the malicious

code.

Postcondition: The user’s VM is infected and it may infect
other VMs.

5) Consequences
Some of the benefits of the misuse pattern are the

following:

• An attacker can open an account using a valid credit
card and register malicious VM images into the
provider’s repository.

• VM Images contain all the software dependencies
needed to run the Trojan horse, so the attacker does not
need to worry whether the victims’ software stacks
satisfies the Trojan horse’s dependencies [8].

• An attacker can get control of the infected virtual
machines and obtain some confidential information.

• Repositories that contain malicious VM images can be
a way to distribute malware.

• Infected virtual machines may infect other virtual
machines. For example, an attacker may create a
malicious VM image in order to infect other machines
creating a collection of infected machines, Botnet [6].

686 PB

Figure 3. Sequence Diagram for the use case Launch a VM using a

malicious VM Image

Possible sources of failure include:

• There is a possibility that the users choose to create
their own VM images instead of using a public VM
Image.

• Since VM images are dormant artifacts that reside in
the repository, they are not harmful if they are not
executed.

• Users can only retrieve images that are from certified
owners.

6) Countermeasures
Malicious VM Images can be stopped by the following

countermeasures:

• [8] proposed an image management system that control
access to images, tracks the origin of images, and
provides image filters and scanners that detect and
repair security violations.

• Verify the background of the user when opening an
account; however, this is very hard to do.

• Users can only retrieve images from certified owners.

• Use an Intrusion Detection System (IDS) to identify
malicious activities such as in [7].

7) Forensics
Where can we find evidence of this attack?

• Providers can keep logs of the users that
publish/retrieve VM Images.

• We can audit a suspicious VM Image.

IV. DISCUSSION

Designers need to understand first possible threats before
designing secure systems. However, identifying threats is not
enough; we need to understand how a whole misuse is
performed. Misuse patterns appear to be a good tool to
understand how misuses are performed. It is possible to build a
relatively complete catalog of misuse patterns for cloud
computing. Having such a catalog we can analyze a specific

cloud architecture and evaluate its degree of resistance to these
misuses. The architecture (existing or under construction) must
have a way to prevent or at least mitigate all the misuses that
apply to it. When potential cloud customers buy cloud services
they negotiate a Service Level Agreement (SLA) with the
provider. This SLA could indicate what misuses the provider is
explicitly able to control. Many providers do not want to show
their security architectures; showing their list of misuse
patterns would give them a way to prove a degree of resistance
to misuses without having to show their security details.

V. CONCLUSIONS AND FUTURE WORK

We can describe cloud computing threats as misuse
patterns, which describe in a systematic way how cloud
misuses are performed. We illustrated our ideas with a specific
pattern. We are continuing developing misuse patterns for
cloud environments in order to create a relatively complete
catalog for it that can be used by designers of secure cloud
environments. Finally, we intend to incorporate these patterns
into a secure systems design methodology.

ACKNOWLEDGMENT

This work was supported in part by the NSF (grants OISE-
0730065). This work was also supported by the National
Institute of Informatics of Japan. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect those of the
NSF or the NII.

REFERENCES

[1] Amazon, “Amazon Elastic Compute Cloud – Developer Guide”,
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/

[2] F. Braz, E.B.Fernandez, and M. VanHilst, "Eliciting security
requirements through misuse activities" Procs. of the 2nd Int. Workshop
on Secure Systems Methodologies using Patterns (SPattern'07). 2008..

[3] E.B. Fernandez, N. Yoshioka, and H. Washizaki, "Modeling misuse
patterns", 4th Int. Workshop on Dependability Aspects of Data
Warehousing and Mining Applications (DAWAM 2009), in
conjunction with the 4th Int.Conf. on Availability, Reliability, and
Security (ARES 2009). March 16-19, 2009, Fukuoka, Japan

[4] T. Garfinkel and M. Rosenblum, “When Virtual is Harder than Real:
Security Challenges in Virtual Machine Based Computing
Environments”, Proceedings of the 10th conference on Hot Topics in
Operating Systems. June 12-15, 2005. Santa Fe, NM.

[5] U. Gurav and R. Shaik, “Virtualization – A key Feature of Cloud
Computing”, International Conference and Workshop on Emerging
Trends in Technology (ICWET 2010)

[6] Intel Corporation, “The Dark Cloud: Understanding and Defending
against Botnets and Stealthy Malware”, Intel Technology Journal,
Volume 13, Issue 02, 2009

[7] K. Vieira, A. Schulter, C. Westphall, and C. Westphall, “Intrusion
Detection Techniques in Grid and Cloud Computing Environment”, IT
Professional, July-August 2010, 38-43

[8] J. Wei, X. Zhang, et al, “Managing Security of Virtual Machine Images
in a Cloud Environment”, 2009 ACM Cloud Computing Security
Workshop (CCSW) at CCS. November 13, 2009. Chicago, Illinois,
USA.

[9] S. Zhang, X. Chen, et al, “Cloud Computing Research and Development

 Trend”, 2010 Second International Conference on Future Network. 2010

PB 687

A Meta-Process to Support Trade-Off Analysis in
Software Product Line Architecture

Edson A. Oliveira Junior and Itana M. S. Gimenes
Informatics Department - State University of Maringá

Maringá-PR, Brazil
Email: edson@edsonjr.pro.br, itana@din.uem.br

José C. Maldonado
Computing Systems Department - University of São Paulo

São Carlos-SP, Brazil
Email: jcmaldon@icmc.usp.br

Abstract—The software product line approach has been
applied as a successful software reuse technique for specific
domains. Such an approach takes advantage of domain and
application engineering concepts. One of its most important
artifacts is the product line architecture because it explicitly
represents similarities and variabilities of a product line, as well
as the products that can be generated. Product line architecture
evaluation can serve as a basis for analyzing the managerial and
economical values of a product line for software managers and
architects. Such an evaluation might be carried out in terms of
a trade-off analysis of the architecture quality attributes. Thus,
this paper presents a Trade-off Analysis Meta-Process for Prod-
uct Line Architecture, the TAMPro-PLA. TAMPro-PLA must
be instantiated to define the essential artifacts for product line
architecture trade-off analysis, such as business drivers, quality
attributes, and respective scenarios. Therefore, TAMPro-PLA
can be used to carry out product line architecture evaluations.
It differs from current literature as it allows the definition
and application of prodcut line architecture quality attribute
metrics to provide support for performing quantitative and
qualitative analysis. A proof of concept example based on the
SEI’s Arcade Game Maker (AGM) product line is presented.

Keywords-meta-process, metrics, product line architecture,
quality attributes, software product line, trade-off analysis.

I. INTRODUCTION

A Software Product Line (PL) represents a set of systems
sharing common features that satisfy the needs of a particu-
lar market or mission segment [8], [14]. This set of systems
is also called a product family. The family’s members are
specific products developed in a systematic way from the PL
core assets. The core asset has a set of common features as
well as a set of variable parts, which represent later design
decisions [14]. The composition and the configuration of
such assets yield specific products.

The PL Architecture (PLA) is one of the most important
asset of a PL because it abstractly represents the architecture
of all potential PL products from a specific domain. The
PLA addresses common design decisions, called similarities,
as well as its postponed design decisions, called variabili-
ties [16].

The results obtained from a trade-off analysis of PLA
quality attributes are important from both academic and
industrial view-points due to their potential to increase the

productivity and the quality of products, decrease the time
to market, improve the PL production capability [8], and to
be used as a parameter for evaluating the PL in general [6].
PLA quality attributes take into account variabilities, which
increase the effort to evaluate the quality of the overall PL
[6]. Thus, we proposed a Trade-off Analysis Meta-Process
for Software Product Line Architectures, the TAMPro-PLA.

TAMPro-PLA aimed at analyzing PLA quality attributes
in order to prioritize them based on quantitative and qual-
itative analyzes. Such analyzes are carried out by instanti-
ating TAMPro-PLA, performing its activities and defining
its elements for a given PLA, such as business drivers,
scenarios, and metrics. The instantiation of TAMPro-PLA is
illustrated, as a proof of concept, by performing its activities.
Such activities generate the artifacts that allow PLA trade-off
analysis taking into account the Arcade Game Maker (AGM)
[15] PLA complexity and extensibility quality attributes.

This paper is organized as follows: Section II presents
important concepts of quality attribute trade-off analysis
for single product architectures as well as PLA principles;
Section III describes the TAMPro-PLA meta-process, its
activities, and essential artifacts for a PLA trade-off analysis;
Section IV illustrates the application of TAMPro-PLA to the
AGM PL; Section V discusses related work; and Section VI
provides final remarks and directions for future work.

II. QUALITY ATTRIBUTE TRADE-OFF ANALYSIS AND
PRODUCT LINE ARCHITECTURE

Trade-off is the term used when one wishes to balance one
situation or quality against another, in order to produce an
acceptable result. With regard to software quality attributes,
trade-off analysis means analyzing between multiple con-
flicting quality attributes to satisfy user requirements and
come up with a better overall system [2].

One of the most consolidated method applied in industry
to perform software architecture evaluation by means of
trade-off analysis is ATAM (Architecture Tradeoff Analysis
Method) [4]. ATAM’s trade-off analysis allows discovering
architectural problems during early software development
phases. The cost to fix such problems in early stages is way
less than in later stages.

688 689

Trade-off analysis usually takes into consideration the
following artifacts of a software architecture [4]: (i) business
drivers, which are statements about the architecture’s overall
goals; (ii) quality attributes defined for an architecture; and
(iii) scenarios specified to exercise such quality attributes by
taking into account the business drivers.

As the number of scenarios tends to be large in an
architecture evaluation [4], stakeholders usually rank and
select the most important scenarios. Thus, a widely known
technique, applied in ATAM for instance, is the stakeholders
voting. Each stakeholder involved in the evaluation process
must assign a priority for each scenario based on predefined
factors, such as the importance of a scenario. Then, scenarios
are ranked and the most important are taken into consider-
ation for performing quality attributes trade-off analysis.

Trade-off analysis can be performed to a PLA [7], [13]
to prioritize its quality attributes for PLA evolution and
deriving PL products. PLA differs from a single product
architecture as it must represent the single architecture of all
products that can be generated from a PL for a specific do-
main. The PLA gives stakeholders a means to develop multi-
product architectures, while keeping their explicit models
and visualizations in single product architectures. It results
in product reduced cost and high quality. In addition, the
PLA encompasses similarities, as well as postponed design
decisions, the variabilities [16].

III. THE TAMPRO-PLA META-PROCESS

TAMPro-PLA aims at defining artifacts for PLA quality
attribute trade-off analysis. This involves the definition of
business drivers and scenarios, selection of the PLA quality
attributes to be analyzed; definition of managerial and tech-
nical questions to be answered with respect to the selected
quality attributes; and application of quality attribute metrics
to support data collection and analysis.

TAMPro-PLA takes as input the PL quality attributes, PL
models, including the feature model. TAMPro-PLA does not
depend on specific model notations or approaches. It can
take into consideration, for instance, UML models. Regard-
less their granulatiry, PL models represent the main source of
information to support the definition of the TAMPro-PLA’s
artifacts.

The artifacts that can be defined throughout TAMPro-PLA
instantiation activities are:

• Business Drivers (BD): represent the main goals of
PLA, based on the PLA quality attributes;

• Defined Scenarios (DS): a set of scenarios is defined
for each PLA quality attribute;

• Ranked Scenarios (RS): scenarios are ranked based
on PLA factors such as cost/risk of a scenario;

• Managerial and Technical Questions (MTQ): they
should be answered in order to analyze a PLA and
support the quality attribute metrics definition;

• Quality Attribute Metrics (QAM): they are defined
to support the prioritization of PLA quality attributes
in a trade-off analysis.

Figure 1 presents a UML activity diagram, which repre-
sents the TAMPro-PLA’s activities (rounded rectangles) and
their inputs and outputs (squared rectangles).

Ranked Scenarios (RS)

Scenarios Ranking

Scenarios Definition

Quality Attributes (QA)PL Models (PLM)

Business Drivers Definition

Start

End

Quality Attributes Metrics (QAM)

Managerial and Technical Questions Definition

Managerial and Technical Questions (MTQ)

Metrics Definition

Selected Quality Attributes (SQA)

Scenario-based Quality Attributes Selection

Business Drivers (BD)

Defined Scenarios (DS)

Feature Model (FM)

Figure 1. The TAMPro-PLA Meta-Process Activities and Artifacts.

The following items present a brief description of each
TAMPro-PLA’s activity:

The Business Drivers Definition takes as input the PL
Models (PLM) and the PLA Quality Attributes (QA), and
defines the Business Drivers (BD) that a PLA should reach
to develop products. The defined business drivers support the
definition of scenarios and managerial and technical ques-
tions, as well as they comprise the modeled PL variabilities.

The Scenarios Definition takes as input the Business
Drivers, Feature Model (FM), and PLA Quality Attributes. It
generates the Defined Scenarios (DS) for each PLA quality
attribute to support its selection activity.

The Scenarios Ranking takes as input the Defined Sce-

688 689

narios (DS) in order to rank them based on the following
PLA factors: (i) the overall importance of a scenario for
the PLA, (ii) scenario generality (mandatory, alternative or
optional), (iii) scenario cost/risk associated, and (iv) amount
of variability associated to a scenario. It generates as output
Ranked Scenarios (RS).

The Scenario-based Quality Attributes Selection takes
as input the Ranked Scenarios (RS) and selects which quality
attributes will be evaluated for a certain PLA as they tend to
be in a large number. Its output is a set of Selected Quality
Attributes (SQA), which is a subset of the Quality Attributes
(QA) set.

The Managerial and Technical Questions Definition
takes as input the Business Drivers (BD), Feature Model
(FM), and Selected Quality Attributes (SQA). It defines the
Managerial and Technical Questions (MTQ) that might be
answered by defining metrics to support trade-off analysis.
Such questions are defined with regard to the PLA business
drivers, and they take into account the roles involved in the
PL process as in [3].

The following items show some examples of roles and
questions. More examples can be found in [16]:

– PL Manager: carries out activities such as
planning, monitoring, and controlling the PL. Example
of PL manager questions are: (i) what is the
effective investment for adopting the
PL approach for a company? and (ii) which
PL configuration is most feasible for a
certain domain?.

– PL Architect: in charge of the management of
the PLA evolution, as well as for providing quantitative
and qualitative design decision support. Examples of PL
architect questions are: (i) what is the required
amount of effort to develop a product
from a PL, based on the PL artifacts and
their variabilities? and (ii) what is the
impact of adding/modifying/removing the
features of/from a PL on its PLA quality
attributes?.

The Metrics Definition: takes as input the PL Models
(PLM), Selected Quality Attributes (SQA) and the Man-
agerial and Technical Questions (MTQ). It defines Quality
Attributes Metrics (QAM) to answer such questions and
support data collection and quantitative analysis in PLA
evaluations.

Although TAMPro-PLA contains the cited activities, per-
forming of all of them are not mandatory. Stakeholders
might already have defined, for instance, quality attribute
scenarios and/or metrics. Therefore, TAMPro-PLA might
be partially instantiated, as predefined artifacts might be
incorporated.

IV. TAMPRO-PLA INSTANTIATION EXAMPLE

As a proof of concept, this section illustrates the instanti-
ation of TAMPro-PLA to perform a trade-off analysis to the
Arcade Game Maker (AGM) [15] PLA quality attributes.

AGM is a pedagogical PL created by the Software Engi-
neering Institute (SEI) to support learning and experimenting
based on PL concepts. It has a complete set of documents,
as well as a set of tested classes and source code for three
different games: Pong, Bowling, and Brickles. Although
AGM is not a commercial PL, it has been used to illustrate
the concepts of several different PL approaches, as well as
to support performing PL and architecture evaluation case
studies [5], [9].

For this example, it is taking into account the AGM
models, specially the feature model, as they are provided by
the SEI [15]. The feature model, presented in Figure 2, is
concerned with four top-level features for AGM products,
which are: services, rules, configuration, and
action.

Arcade Game Maker (AGM)

services rules configuration

BowlingBrickles Pongplay pause save movement collision

action

Legend:

Mandatory Feature

Optional Feature

Alternative Feature

Figure 2. The Arcade Game Maker Feature Model.

In order to illustrate the TAMPro-PLA instantiation, com-
plexity and extensibility quality attributes are considered.
Thus, the activities of Figure 1 are realized. TAMPro-PLA
takes as inputs the AGM PL models, its feature model and
the PLA quality attributes. Therefore, next items present the
TAMPro-PLA instantiation by realizing each of its activities.

Business Driver Definition: for the AGM example, we
defined two business drivers based on [13] and [7] sugges-
tions, as well as the analysis of the AGM PL models and
the complexity and extensibility quality attributes:

• BD.1 - keep game complexity degree lower than 0.7
(70%), compared to the overall PLA complexity,
for at least 50% of produced products: uphold low
maintainability and low cost rates by focusing on com-
plexity. Complexity degrees can provide an indicator of
how dificult is to maintain the products derived from a
PLA.

• BD.2 - keep game extensibility degree higher than
0.75 (75%), compared to the overall PLA exten-
sibility, for at least 50% of produced products:
maintain high reuse rate by focusing on extensibility.
Extensibility factors can provide an indicator of how
reusable is a product in terms of its components.

690 691

Scenarios Definition: taking into account the feature
model, defined business drivers, and PLA quality attributes,
Tables I and II present AGM defined scenarios. Features
support the scenarios definition by linking a business driver
to one or more scenarios and quality attributes.

Table I
AGM DEFINED SCENARIOS FOR COMPLEXITY.

AGM - Quality Attribute Utility Tree

Quality Attribute Complexity

Related Feature(s) services, rules, actions

Related Business Driver(s)
BD.1: keep game complexity degree lower than 0.7 (70%), compared to the overall

PLA complexity, for at least 50% of produced products

Sc.1
Variation points and/or variants are added, modified, or removed maintaining

the BD.1 true.

Sc.2 50% of variabilities are removed maintaining the BD.1 true. Scenario(s)

Sc.3
One-game environments have complexity values at most 0.65 (65%)

compared to the overall AGM PLA complexity.

Table II
AGM DEFINED SCENARIOS FOR EXTENSIBILITY.

AGM - Quality Attribute Utility Tree

Quality Attribute Extensibility

Related Feature(s) services, rules, actions

Related Business Driver(s)
BD.2: keep game extensibility degree higher than 0.75 (75%), compared to the

overall PLA extensibility, for at least 50% of produced products

Sc.4
Variation points and/or variants are added, modified, or removed

maintaining the BD.2 true.

Sc.5 50% of variabilities are removed maintaining the BD.2 true. Scenario(s)

Sc.6
Two-game environments have extensibility values at least 0.8 (80%)

compared to the overall AGM PLA extensibility.

Scenarios Ranking: stakeholders might take into consid-
eration the following attribute concerns to support ranking
each scenario as High (H), Medium (M), or Low (L):

• its overall importance for the PLA and its business
drivers;

• the generality of the scenario with respect to the PLA.
It is ranked as mandatory (High), alternative (Medium),
and optional (Low) as in [13];

• its cost/risk, i.e., the effort involved in providing proper
responses to the scenarios, as well as its perceived risk;

• the number of variability, encompassed by a scenario.
Table III presents the complexity and extensibility quality

attribute scenarios ranking for our AGM example.
Scenario-based Quality Attribute Selection: in a trade-

off analysis the number of PLA quality attributes can be
large. Stakeholders might wish to select a subset of them to
analyze. A widely known adopted strategy is the voting sys-
tem as in the ATAM method [1], [4]. However, stakeholders
can define their own strategy. For the AGM example both
complexity and extensibility quality attributes are analyzed.
However, as a matter of illustration, we present the rationale
for it based on Table III: scenarios Sc.1, Sc.4, and Sc.5 are
mandatory and have high number of variability and overall
importance to the PLA with medium cost/risk; scenario
Sc.6 is optional and it has the same ranking for amount
of variability and overall importance as Sc.1, Sc.4, and

Table III
AGM COMPLEXITY AND EXTENSIBILITY SCENARIOS RANKING.

Business Drivers BD.1 BD.2
Quality Attributes Complexity Extensibility

Scenarios Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6
H X X X X X
M XOverall

Importance
L
H X X
M X X Generality
L X X
H X X
M X XCost/Risk
L X X
H X X X X X
M X

Sc
en

ar
io

s R
an

ki
ng

Number of
Variability

L

Sc.5, as well as a low cost/risk; scenario Sc.2 is alternative
and it has a high amount of variability and cost/risk, with
medium importance to the overall PLA; and scenario Sc.3
is alternative and it has a low cost/risk, and high importance
to the AGM PLA.

Thus, scenarios Sc.1, Sc.4, and Sc.5 are the most im-
portant for the AGM example. Sc.1 is related to the busi-
ness driver BD.1, whereas Sc.4 and Sc.5 are related to
BD.2. Therefore, both complexity and extensibility quality
attributes are related to important scenarios and are selected
for the AGM example.

Managerial and Technical Questions Definition: Table
IV presents questions defined by analyzing the AGM fea-
ture model, business drivers, selected quality attributes, and
scenarios.

Table IV
AGM MANAGERIAL AND TECHNICAL QUESTIONS FOR THE PLA

BUSINESS DRIVERS.

The Metrics Definition activity is not completely pre-
sented in this paper, as its realization involves theoretical
and empirical validation of metrics. Thus, it was previ-
ously defined and validated [11] metrics for complexity
and extensibility based on a basic metrics suite [10] for
UML models [12]. Therefore, Figure 3 presents a GQM
(Goal-Question-Metric) model relating the defined business

690 691

Arcade Game Maker

BD.1:
Complexity

BD.2:
Extensibility

Q.01 Q.02 Q.03 Q.04 Q.05 Q.06 Q.07 Q.08 Q.09 Q.10

CompClass

CompVarPointClass

CompVariabilityClass

CompVarComponent

CompPLA ExtensInterface

ExtensClass

ExtensVarPointClass

ExtensVariabilityClass

ExtensVarComponent

ExtensPLA

M
et

ric

Q
ue

st
io

n

G
oa

l

CompInterface

Figure 3. AGM Example Goal-Question-Metric Model.

drivers, questions and metrics.
Once TAMPro-PLA is instantiated and its artifacts are

defined, stakeholders are able to perform a PLA trade-off
analysis. As such analysis is usually based on the stake-
holders analysis experience and knowledge of the domain,
and they do not have a systematic realization of activities,
some guidelines are suggested. They allow performing a
PLA quality attributes analysis based on the instantiated
TAMPro-PLA and its defined artifacts. Such guidelines are
as follows:

1) generate a set of PLA configurations (PL products),
sufficient to apply statistical normality tests and para-
metric or non-parametric methods for data interpreta-
tion;

2) collect quality attributes metrics from the generated
configurations;

3) analyze the collected metrics descriptive statistics and
present its important data, such as mean, median, and
standard deviation;

4) identify how many scenarios satisfy the analyzed
quality attributes and verify if either these scenarios
are appropriated to the quality attributes or they must
be re-stated; and

5) verify which quality attributes satisfy the PLA busi-
ness drivers.

Therefore, based on such guidelines, stakeholders might
decide which quality attribute(s) must be prioritized for PLA
development and evolution. Stakeholders can also: provide
potential PL products and PLA analyzes; share all data,
keeping it for future analyzes; and write a final trade-off
analysis report.

V. RELATED WORK

Current literature presents two main works related to ours.
Both are extensions of the ATAM method for PLA evalua-
tion and emcompass quality attribute trade-off analysis.

The EATAM (Extended ATAM) method is proposed by
Kim et al. [7]. Its main goal is PLA evaluation based on four
methods: (i) identification of quality attributes, (ii) identifica-
tion of architectural views, (iii) definition of PLUC (Product
Line Use Case) tags for quality attribute variation points, and
(iv) perform ATAM activities to validate the PL products
single architecture separatelly. Basically, they use the first
three methods to identify and represent variability and the
fourth method to analyze the PL products architecture. The
first method is strictly based on four main quality attributes:
modifiability, portability, scalability, and extensibility. Thus,
ATAM PLA trade-off analysis concerns general PLA quality
attributes for qualitative analyzes. EATAM does not take into
account nor provides metrics to support PLA quantitative
analysis. EATAM provides, by means of the PLUC tag,
directions of how to identify and relate scenarios to PLA
variabilities which is used to perform trade-off analysis.
TAMPro-PLA takes some of these directions to create sce-
narios. However, TAMPro-PLA does not use specific tags
to represent variability as it does not depend on the type of
the PL models.

The HoPLSAA (Holistic Product Line Software Architec-
ture Assessment) approach, proposed by Olumofin [13], is
aimed at evaluating PLA by means of qualitative analysis
of variation point scenarios. It emcompasses two stages: (i)
PLA analysis and (ii) single product architecture analysis.
Its outputs are similar to the ATAM’s outputs. Thus, it
allows performing trade-off analysis based on PLA quality
attributes during its first stage. HoPLSAA does not explicitly
provide quantitative analysis due to its ATAM qualitative
nature. In addition, HoPLSAA does not take into account
metrics for performing trade-off analysis nor quality at-
tribute metrics to support quantitative analysis. However,
HoPLSAA allows the statement of scnearios based on PLA
variabilities, providing TAMPro-PLA interesting directions
fot the scenarios definition activity.

692 693

VI. FINAL REMARKS AND FUTURE WORK

This paper presented the TAMPro-PLA, a Trade-off
Analysis Meta-Process for PLA to support performing PLA
quality attribute trade-off analysis. TAMPro-PLA provides
important artifacts for PLA trade-off analysis, such as:
business drivers, scenarios, and metrics. Stakeholders must
realize the TAMPro-PLA activities to instantiate TAMPro-
PLA and produce its artifacts. As it does not depend on the
type of PL models, it can be applied in general to perform
PLA analyzes.

TAMPro-PLA differs from existing trade-off approaches
as it both provides activities, that are realized systematically
to produce essential trade-off analysis artifacts for a PLA,
and allows the definition and application of quality attribute
metrics, corroborating its quantitative and qualitative analy-
sis results.

An example of how to instantiate TAMPro-PLA for qual-
ity attribute trade-off analysis of the Arcade Game Maker
(AGM) PLA was demonstrated. In addition, guidelines to
perform PLA trade-off analysis were suggested. At the end
of the trade-off analysis process, stakeholders are able to:
(i) decide which quality attribute(s) must be prioritized for
PL development and evolution; analyze the potential PL
products to predict their generation behavior; confirm the
PLA accuracy of its modeled variabilities; share all data,
keeping it for future analyzes and write a final trade-off
analysis report; and use performed trade-off analyzes as
parameter to evaluate overall PLs.

Based on current results, some directions for future work
and contribuition might be: (i) the application of TAMPro-
PLA to a commercial PL; (ii) the establishment of TAMPro-
PLA’s feasibility and effectiviness by carrying out exper-
iments taking into account well-qualified industry profes-
sionals; (iii) the definition of relevant PL domains to apply
TAMPro-PLA in several case studies; (iv) the development
of an automated tool to support the TAMPro-PLA instanti-
ation, as well as trade-off analysis; (v) the investigation of
how TAMPro-PLA can provide Model-driven Architecture
(MDA) support for definition and transformation of PL
models; and (vi) how to incorporate TAMPro-PLA into PL
evaluation approaches.

REFERENCES

[1] M. R. Barbacci, “SEI Architecture Analysis Techniques and
When to Use Them,” Software Engineering Institute (SEI),
Pittsburgh, USA, Tech. Rep. CMU/SEI-2002-TN-005, 2002.
[Online]. Available: http://www.sei.cmu.edu/pub/documents/
02.reports/pdf/02tn005.pdf

[2] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B.
Weinstock, “Quality Attributes,” Carnegie Mellon University
(CMU) - Software Engineering Institute (SEI), USA, Tech.
Rep. CMU/SEI-95-TR-021, 1995.

[3] G. Chastek and R. Ferguson, “Toward Measures for
Software Architectures,” Software Engineering Institute
(SEI), Pittsburgh, USA, SEI Technical Note CMU/SEI-2006-
TN-013, 2006. [Online]. Available: http://www.sei.cmu.edu/
pub/documents/06.reports/pdf/06tn013.pdf

[4] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[5] P. C. Clements, L. G. Jones, L. M. Northrop, and J. D.
McGregor, “Project Management in a Software Product Line
Organization,” IEEE Software, vol. 22, no. 5, pp. 54–62, 2005.

[6] L. Etxeberria and G. Sagardui, “Variability Driven Quality
Evaluation in Software Product Lines,” in Proceedings of the
Software Product Line Conference. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 243–252.

[7] T. Kim, I. Y. Ko, S. W. Kang, and D. H. Lee, “Extending
ATAM to Assess Product Line Architecture,” in Proceedings
of the IEEE International Conference on Computer and
Information Technology. USA: ACM Press, 2008, pp. 790–
797.

[8] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[9] B. Neto, L. Fernandes, C. Werner, and J. M. de Souza,
“Developing Digital Games through Software Reuse,” Journal
of Information Processing Systems, vol. 6, no. 2, pp. 219–234,
2010.

[10] E. A. Oliveira Junior, I. M. S. Gimenes, and J. C. Mal-
donado, “A Metric Suite to Support Software Product Line
Architecture Evaluation,” in Proceedings of the Conferencia
Latinoamericana de Informática, Santa Fé, Argentina, 2008,
pp. 489–498.

[11] ——, “Empirical Validation of Complexity and Extensibility
Metrics for Software Product Line Architectures,” in 2010
Fourth Brazilian Symposium on Software Components, Archi-
tectures, and Reuse. Salvador-BA, Brasil: IEEE Computer
Society, 2010, pp. 31–40.

[12] ——, “Systematic Management of Variability in UML-based
Software Poduct Lines,” Journal of Universal Computer Sci-
ence (J.UCS), vol. 16, no. 17, pp. 2374–2393, 2010.

[13] F. Olumofin, A Holistic Method for Assessing Software Prod-
uct Line Architectures. Saarbrücken, Germany, Germany:
VDM Verlag, 2007.

[14] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product
Line Engineering: Foundations, Principles, and Techniques.
Secaucus, NJ, USA: Springer-Verlag, 2005.

[15] SEI, “Arcade Game Maker Pedagogical Product Line,” 2010.
[Online]. Available: http://www.sei.cmu.edu/productlines/ppl

[16] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. USA: John
Wiley & Sons, 2009.

692 693

Design of a UML profile for feature diagrams and its tooling implementation

Thibaut Possompès∗‡, Christophe Dony‡, Marianne Huchard‡, Chouki Tibermacine‡
∗IBM France – PSSC Montpellier

Montpellier, France
thibaut.possompes@fr.ibm.com

‡LIRMM, CNRS and Montpellier 2 University
Montpellier, France

{possompes, dony, huchard, tibermacin}@lirmm.fr

Abstract—This paper proposes an instrumented solution to
integrate feature diagrams with UML models to be used as
part of a general approach for designing software product lines
and for product generation. The contribution is implemented
in IBM R©Rational Software Architect (RSA). It is intended
to be used in the context of large, complex and multi-
domain projects, and at allowing model transformations to
derive products. Our RSA implementation makes it possible
to link feature diagrams with UML model artifacts. It allows
traceability between feature models and other different kinds
of models (requirements, class diagrams, sequence or activity
diagrams, etc.). It is used in a project dedicated to create smart
building optimization systems.

I. INTRODUCTION

IT projects are closely related to business domains. How-
ever, there exist few techniques to gather, link and manage
the knowledge related to each domain. Nowadays projects
are particularly confronted to problems where instrumenta-
tion of specific business domains is required to enhance their
efficiency. Examples of these projects are smart buildings,
grids, water management, health care or food systems. The
research presented in this paper is done in the context of
the RIDER project1, which brings together several actors
who works on improving energy efficiency of buildings. This
context requires to be able to link several domains, such
as building system components, IT infrastructure, air flow
modeling, building thermal management, database models,
etc. Each domain can be modeled by a different stakeholder,
or sometimes being based upon a standard. Software product
line approach is perfectly appropriate to manage the varia-
tions that can be found in building instrumentation systems.
The solutions presented in this paper are applied to the
RIDER project and benefit of its feedback. Our approach
is used as a part of a general approach for software product
lines and for product generation.

There exist several commercial tools such as [3], [9],
[21] that allow linking features to model artifacts extracted

1The RIDER project (“Research for IT as a Driver of EneRgy efficiency”)
is led by a consortium of several companies and research laboratories,
including IBM and the LIRMM laboratory, interested in improving building
energy efficiency by instrumenting it.

from various modeling tools; eclipse plug-ins [20], [1], [13],
[10], [27], [15], [12]; and standalone feature modeling tools
[22], [24], [26]. These tools do not implement the latest
feature modeling concepts and are not well integrated in
UML modeling tools. There also exist several UML profiles
[5], [30] and meta-models [29] implementations but they
address neither the latest UML specification nor all feature
model concepts that are useful in our context.

This paper is organized as follows. Section II presents a
new synthetic and expressive feature diagram model based
on the state of the art. Section III presents our feature
meta-model which synthesizes this state of the art. Section
IV explains how the corresponding UML profile has been
created and implemented using RSA, and shows an excerpt
of the project feature model. Section V will sum up what has
been presented and suggests some perspectives for further
study.

II. SYNTHESIS OF EXISTING FEATURE DIAGRAM
MODELS

Various feature diagram semantics and implementations
have been proposed since the initial one given in FODA
[16]. We use the following criteria to analyze them and to
define our model:
1 – Feature definition.
2 – Feature relationships. We identify four criteria to clas-
sify existing proposals regarding relations among features.

• 2.1 – Hierarchical relationships.
• 2.2 – Feature choice constraint relationships. necessary

to guide the user through feature selection (feature
dependency, or mutual exclusion).

• 2.3 – Mandatory and optional feature identification.
• 2.4 – Sub-feature selection semantics.

3 – Feature logical groups. Allowing to group arbitrary
features by business domains, or abstraction layers.
4 – Product and implementation information. To deter-
mine what kind of information can help implementing a
product from a set of selected features.

694 695

Table I
HIERARCHY RELATIONSHIP

Decomposition Specialization
Enrichment Realization

FODA [16] Consists of
FORM [18] Composed of Generalization Implemented by

Specialization
Fey et al. [11] Refine Provided by

Zhang et al. [29] Decompose Specialize
Detail

Czarnecki et al. [8] Relation

A. Feature Definitions

The initial definition of features was introduced by Kang
et al. in FODA [16] which is extended by the FORM [17]
method. Features are defined as being essential characteris-
tics of applications, described with domain vocabulary.

FORM has introduced four different perspectives to enrich
the semantics of feature diagrams: capability, operating envi-
ronment, domain technology and implementation technique.
Indeed, features are also able to model knowledge of the
various domain experts involved in the project. Fey et al.
[11] add the pseudo feature concept in order to allow for
specialization with non-exclusive alternatives and to avoid
feature redundancy thanks to implicit inheritance. Zhang et
al. define features [28], [29] as being essentially a cohe-
sive set of individual requirements representing the user-
visible capability of a software system. Czarnecki et al.
[8], [6] consider that features are system properties relevant
for some stakeholder, and that any kind of functional or
non-functional characteristic of a described system can be
represented by a feature. This extends the intention definition
presented by Zhang et al. [28].

The definition proposed by Czarnecki et al. allows more
freedom of expressiveness in feature diagrams. Its combi-
nation with FODA perspectives allows us to apply feature
diagrams to the numerous domains involved in a project. The
property concept introduced by Fey et al. and the attribute
concept presented by Czarnecki et al. are semantically very
close. It could be assessed that a property expresses the same
information that an attribute, i.e., a measurable characteristic.
We will use the property concept to describe specific feature
typed values (e.g., a room volume, etc.) and how one
property can influence another one.

We extend this concept to allow the customer to choose
the property value. Therefore, we will add the necessary
semantics to restrict the possible choices to consistent ones.

B. Feature Relationships

1) Hierarchical Relationships: Features and sub-features
can be bound by either decomposition or specialization.
Table I illustrates the different variations on these con-
cepts. The FODA consists-of relationship [4], [16], [25]
is designed to represent decomposition. One parent feature
can have several sub-features grouped either by an AND or

XOR decomposition semantics. FORM [17], [18] introduces
the relations Composed-of, to describe the constituents of
a feature; Generalization / Specialization, to specialize or
generalize a feature; and Implemented-by, to define how
a high-level feature can be implemented by a lower-level
one. Fey et al. [11] uses two kinds of hierarchical links
between features: refine, to detail a given feature at a
lower abstraction level; and provided-by, to link a pseudo-
feature with the features which it realizes. Pseudo-features
express an abstract functionality, quality or characteristic.
Fey et al. make it possible to build directed acyclic graphs,
which is impossible with FODA, by allowing one feature to
refine several ones. Zhang et al. [29] identify three different
kinds of hierarchy relationships: decomposition, to refine a
feature into its constituents; detailization, to identify feature
attributes; and specialization, to add further details into a
feature. Czarnecki et al. [8], [6], [7] decided not to consider
relationships between features in favor of entity-relationship
or class diagrams.

We have chosen to keep the hierarchy relationships cat-
egorized in Table I. with the following concepts: decom-
position, which consists in detailing the sub-features that
compose the parent feature; specialization, which encom-
passes the concepts of enrichment for sub-features that add
functions to the parent feature, and Realization (or imple-
mentation) that describes how a feature can be implemented.

2) Feature Choice Constraint Relations: FODA [16] uses
the concept of composition rules to describe how features
relate to one another: one feature can require another one, or
two features can be mutually exclusive. Riebisch et al. [23]
introduce the hint relationship which recommend features to
the user.

We have kept the constraints require and conflict to ensure
a coherent product generation. Furthermore the hint relation
is also convenient to make recommendation to the user
during the feature selection process.

3) Mandatory and Optional Features Identification: In
the FODA [16] and FORM [18] specifications and tools, all
features are mandatory by default; optionality is represented
as a feature property as in [23], [14], [29]. Czarnecki et
al. [6] use cardinalities to express optionality. For instance,
a (1,1) cardinality describes a mandatory feature and (0,1)
describes an optional one. Setting a cardinality greater than
1 specify how often the sub-features of a parent can be
duplicated.

We keep for our model the cardinality based relationship
introduced by Czarnecki et al. [6] that brings an interesting
enhancement to the initial definition, useful to describe more
complex products from a product line.

4) Sub-feature Selection Semantics: FODA [16] and
FORM [18] methods propose two ways to manage sub-
feature selection. A simple link between the parent and
its sub-features means that there is no choice constraint;
equivalent to an or binary choice. A semi circle drawn

694 695

across the links means that there is an alternative choice;
equivalent to the xor binary choice. Likewise, Fey et al.
[11] express with a simple link that the choice is an or, but
the alternative choice is expressed with a complete graph
of mutually exclusive constraints among all sub-features.
Riebisch et al. [23] and Czarnecki et al. [8] use cardinalities
to define how many sub-features can be chosen.

The most convenient semantics relies on cardinality based
selection semantics. It allows a maximum flexibility to de-
scribe how many sub-features can be selected. Furthermore,
we chose to keep the “or”, “and”, and “xor” groups to
ease the feature models semantics understanding for non-IT
specialists end-users.

C. Feature Logical Groups

The FORM [18] method classifies features into four
categories called layers, from a functional point of view.
Riebisch et al. [23] use logical groups to represents aspects
valuable to the customer and explain that abstract features
could be used to encapsulate features related to a given
concept. Fey et al. [11] present feature-sets to group features
from an arbitrary point-of-view. Zhang et al. [29] present the
binding-time concept to represent the phases of the software
life-cycle in which each feature must be chosen. Czarnecki
et al. [6], [8] use abstract features to reference other feature
diagrams to reuse a set of features. They also introduce
different types of features that can be considered as feature
groups.

The binding-time concept can be extended according to
the software development process chosen by the final user
to allow him to assign features or groups of features to
a development phase. It can be modeled by the feature
set concept presented by Fey et al. The different kinds
of features presented by Riebisch et al. [23] could be
easily modeled by sub-layers. Hence, we choose to keep
the layer concept to organize features in logical groups
and sub-groups accordingly to the type of information they
represent. We propose to enhance Fey et al. feature-set
concept by adapting Zhang et al. [29] constraints meta-
model to describe constraints inside a group of features,
and constraints between two groups of features. The feature-
sets could also be used along with the Kano method [19]
to help the user choosing a set of product features that
yield high customer satisfaction. The customer preference
categories can be modeled as feature-sets encompassing the
corresponding features. We also keep the feature-sets idea to
reference sub-parts of a feature diagram. Hence, a feature-
set could be a leaf of the diagram that encompasses another
feature hierarchy. Staged configuration can be modelled by
creating one feature-set for each configuration stage, and
associating it with a group of stakeholders that have the same
business concern. Czarnecki et al. [6], [8] have presented
four types of features that have been integrated in our
meta-model proposal: concrete features can be stored in the

implementation layer; aspectual features can be stored in
a sub layer of implementation layer; abstract features, e.g.
performance requirements, can be represented by feature
properties; and grouping features can be modeled as a
feature set.

D. Product and Implementation Information

Riebisch et al. [23] argue that the feature hierarchy must
be organized to make easier the choice of features by using
composition relations and require associations. Zhang et al.
[29] present a feature attribute for representing the feature
binding-state. It must be used in a binding-time context, i.e.
when features are implemented in the software product at a
given software life-cycle phase. Mathematical relationships
have been presented to describe the relative impact of one
feature to another.

III. A SYNTHESIS META MODEL FOR FEATURE
DIAGRAMS

This section describes a meta model synthesizing the
choices we presented and motivated in the previous section.
This work extends the work of Asikainen et al. [2] in order
to apply our work in the context of a rich industrial project.

As depicted in Figure 1, a product line contains features,
and a feature belongs to one product line. A product belongs
to one product line and can be composed of as many
features as needed. Features associated to a product must
be analyzed in order to check whether all constraints, like
mutual exclusion between features or require relations, are
satisfied.

Figure 1. Product lines relation to features and products

Mutual exclusion and require relations link features re-
gardless of their position in the hierarchy, they are modeled
by the conflictingFeature and requiredFeature relationships.
Furthermore, we add the recommendedFeature role used to
advise a user to choose another feature pertinent in the
product. These roles are depicted in Figure 1 in reflective
association on the Feature class.

Feature properties (Figure 2) are used to describe either a
feature parameter related to its inner requirements (e.g. the
bandwidth capacity of a network) or a characteristic chosen
by the user during the product definition (e.g. the frequency
of automatic backups of a word processing software).

696 697

Features can have a variability type (VariabilityKind)
which is further described below:

• fixed, A property value is fixed throughout all products
of the product line.

• variable, A property value can change, within a prod-
uct, depending on other features properties, e.g. the text
buffer size of a text field in the user interface can vary
accordingly to the type of information we want to store
(i.e., name or address).

• family-variable, A property can vary from product
to product accordingly to the selected features, e.g.
the phone book capacity depends on the presence of
internal memory property and the sim card capacity.

• user-defined, A property value can be freely chosen in a
given product, e.g., the frequency of automated backups
in a word processing software.

Figure 2. Feature properties

The hierarchy relationships and sub-feature groups are
depicted in Figure 3. The relations between a feature and its
sub-features are grouped by the RelationshipGroup class that
contains the cardinalities necessary to restrict the number of
sub-features to choose. Cardinalities can be chosen freely,
but some groups have fixed cardinalities: OrGroup, (0,*);
AndGroup, (*,*); and XorGroup, (0,1). The DirectedBina-
ryRelationship class represents the kind of association that
links a parent feature and a sub-feature. It is specialized
either by Enrich, Implement, or Detail classes.

Figure 4 shows how layers and feature sets can be associ-
ated with the project stakeholders. A stakeholder represents
any kind of people (e.g. domain experts, IT architects, etc.)
allowed to choose features. Feature sets and layers can be
attached to a concern specific to the project, e.g. network
architecture, or business requirements. A Layer represents a
specific view onto the software application, a feature can be
in only one layer at a time. A FeatureSet inherits from the
Feature class, and allows grouping features from an arbitrary
point of view, e.g., a business domain, or representing the
features that must be implemented to fulfill a norm.

Figure 5 depicts how constraints can be applied to feature
sets: mutex, when only one feature can be selected in the fea-
ture set; None, when there is no constraint among features;

Figure 3. Groups and hierarchy relationships

Figure 4. Stakeholders concerns

All, when all features or none of them can be selected. The
ConstraintRelation class describes the relation between two
feature sets: one feature set can require another one, two
feature sets can mutually require each other, or be mutually
exclusive. A BindingPredicate is used to represent how a
constraint must be applied on each constrained feature-set.
The choice of the specialized class must be made according
to the kind of feature-set.

IV. UML PROFILE IMPLEMENTATION

A. Description

Our profile integrates the previously described feature
meta-model into the UML meta-model hierarchy with an
appropriate semantics. We describe here which UML meta-
classes we have chosen to extend, which information has
been added with the stereotypes and how we have restricted
the semantics of extended meta-classes thanks to OCL
constraints. However, the profile could be implemented in
different ways by choosing to extend different meta-classes.
We chose the meta-classes that had the closest semantics
to our concepts, added the required information with the
stereotypes and restricted the initial semantics of meta-
classes to what is necessary for our profile with the Object
Constraint Language (OCL) constraints.

Contrary to [5] we have based our feature diagram profile
on the Components UML meta-class. A component, as a

696 697

Figure 5. Constraints on feature sets

feature, can be seen as a high level view of a software
element and, as such, is the concept the closest to what
we want to express. Components have ports, which can
be linked together. Ports are thus reasonably well suited
to support the relationships between features and other
elements defined in section III. It is the UML 2 concept
the closest to what we want to express because it is a high
level view of the structure of a software element. This first
choice influences the other meta-classes selection.

Table II
STEREOTYPES EXTENSIONS

Stereotype Extended Meta-class
Feature Component

Stakeholder Actor
Concern Class

ModelRelationship Dependency
Layer Package

ProductLine Component
Product Component
Property Port

RelationshipGroup Port
Modification Usage

DirectedBinaryRelationship Association
BindingPredicate Port

ConstraintRelation Association

The port meta-class allows us to represent the interaction
of a feature with other elements. It can be linked to other
ports or components. The modification of a property value
can be modeled by textual or OCL constraints placed upon
the relationship between two properties.

We choose to create a Rational Software Architect plug-in
to leverage its UML modeler, modeling editors, views and
tools. All managed models are instances of EMF models.
Hence using Rational Software Architect allows simplifying
tasks like creating a specific plug-in for integrating feature
modeling capabilities into standard EMF-based UML mod-
els and diagrams. The plug-in is currently used in the RIDER
project.

Table II gives an abstract of our specialization choices, but

Figure 6. Stakeholders and feature sets

due to space constraints we did not explicit all our design
choices.

B. Example

Figure 6 shows an excerpt of a RIDER feature diagram
expressed, using our profile, by two stakeholders having
different concerns on a RIDER smart building project. One
focusing on HVAC (Heating Ventilation Air Conditioning)
domain and the second on data centers and office building
optimization problems. Each feature set encompasses several
features that are not shown in this example because of space
limitation. The example shows in particular require high
level constraints applying on groups of features (feature
sets). The example also shows how properties can be used
to add further information on the product context (such as
the building volume).

The feature selection process is achieved by showing
feature diagrams to the user accordingly to his concerns
thanks to model transformations.

V. CONCLUSION AND PERSPECTIVES

In this paper we have presented a new feature diagram
model and its profile implementation in UML2. This feature
diagram model is first based on a synthesis of existing ones,
and it has then been improved to fit the requirements of the

698 699

RIDER smart buidings project in which it is applied. Thanks
to Rational Software Architect, we have generated a tool
making it possible to produce feature diagrams conforms
to our model. This synthesis is achieved by classifying the
existing concepts into categories. This approach allows a
full integration of feature diagrams into UML models and
facilitates model transformations. In comparison with [2] we
add several concepts such as layers, stakeholder concerns,
feature-sets, and group constraints.

For the time being, we still need to guide users to
organize features into layers and sub-layers in order to
best integrate them into the software development life-cycle.
Hence, the next steps will be to create a framework able
to use the full potential of our feature meta-model, and to
develop automated model transformation functionalities to
automatically generate UML models.

REFERENCES

[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin: feature
modeling plug-in for eclipse. In eclipse ’04: Proceedings of
the 2004 OOPSLA workshop on eclipse technology eXchange,
pages 67–72, New York, NY, USA, 2004. ACM.

[2] T. Asikainen, T. Mannisto, and T. Soininen. A unified
conceptual foundation for feature modelling. In Proceedings
of SPLC ’06, pages 31–40. IEEE Computer Society, 2006.

[3] BigLever Gears. http://www.biglever.com/overview/software
product lines.html.

[4] Y. Bontemps, P. Heymans, P. Y. Schobbens, and J. C. Trigaux.
Semantics of FODA feature diagrams. In Proceedings SPLC
2004 Workshop on Software Variability Management for
Product Derivation, pages 48–58, 2004.

[5] M. Clauss. Untersuchung der Modellierung von Variabilität
in UML. Technische Universität Dresden, Diplomarbeit, 2001.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their staged configura-
tion. University of Waterloo, 2004.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged con-
figuration using feature models. Lecture notes in computer
science, 3154:266–283, 2004.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process Improvement and Practice, 10(1):7–29,
2005.

[9] M. Eriksson, H. Morast, J. Börstler, and K. Borg. The PLUSS
toolkit: extending telelogic DOORS and IBM-rational rose to
support product line use case modeling. ACM, 2005.

[10] Feature-Oriented Software Development Research.
http://fosd.de/fide/.

[11] D. Fey, R. Fajta, and A. Boros. Feature modeling: A Meta-
Model to enhance usability and usefulness. In Software
Product Lines, pages 198–216. Springer, 2002.

[12] fmp2rsm Plug-in . http://gp.uwaterloo.ca/fmp2rsm/index.html.

[13] Generative Software Development Lab.
http://gsd.uwaterloo.ca.

[14] M. L. Griss, J. Favaro, and M. d’Alessandro. Integrating
feature modeling with the RSEB. In In Proceedings of the
Fifth International Conference on Software Reuse, pages 76–
85, 1998.

[15] Hydra. http://caosd.lcc.uma.es/spl/hydra/index.htm.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented domain analysis (FODA) feasi-
bility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, Nov. 1990.

[17] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: a feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering,
5(1):143–168, 1998.

[18] K. C. Kang, J. Lee, and P. Donohoe. Feature-Oriented product
line engineering. IEEE Software, 2002.

[19] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji. Attractive
quality and must-be quality. Journal of the Japanese Society
for Quality Control, 1984.

[20] ProS Labs - Moskitt Feature Modeler.
http://oomethod.dsic.upv.es/labs/index.php.

[21] Pure-Systems GmbH. http://www.pure-systems.com/.

[22] RequiLine. http://www-lufgi3.informatik.rwth-
aachen.de/TOOLS/requiline.

[23] M. Riebisch. Towards a more precise definition of feature
models. Modelling Variability for Object-Oriented Product
Lines, pages 64–76, 2003.

[24] S2T2 - An SPL of SPL Techniques and Tools.
http://download.lero.ie/spl/s2t2/.

[25] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps.
Generic semantics of feature diagrams. Computer Networks,
51(2):456–479, Feb. 2007.

[26] SPLOT - Software Product Line Online Tools.
http://www.splot-research.org/.

[27] XFeature. http://www.pnp-software.com/XFeature/.

[28] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement
dependency analysis and high-level software design. Require-
ments Engineering, 11(3):205–220, 2006.

[29] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based
method for verification of feature models. Lecture Notes in
Computer Science, 3308:115–130, 2004.

[30] T. Ziadi, L. Hélouët, and J. M. Jézéquel. Towards a UML
profile for software product lines. Lecture Notes in Computer
Science, pages 129–139, 2004.

698 699

Software Product Lines
System Test Case Tool: A Proposal

Crescencio Rodrigues Lima Neto1,3, Ivan do Carmo Machado2,3,
Paulo Anselmo Mota Silveira Neto1,3, Eduardo Santana de Almeida2,3,

Silvio Romero de Lemos Meira1,3

1Center for Informatics - Federal University of Pernambuco (CIn/UFPE)
2Computer Science Department - Federal University of Bahia (DCC/UFBA)

3Reuse in Software Engineering Labs (RiSE)
{crln, pamsn, srlm}@cin.ufpe.br, {icm, esa}@dcc.ufba.br

Abstract—Nowadays the decision whether to work with
Software Product Lines (SPL) or not becomes a binding
requirement for the strategic planning of companies. Learning
how to choose the ideal tools to test a SPL is beneficial for
companies in this planning process. Even though the ascending
number of available software engineering testing tools, SPL
testing lacks specific tools capable of supporting the SPL
Testing Process and managing the variability of test assets.
This paper evaluates how to reduce the effort during the SPL
Testing Process and consequently, how to make the variability
of test assets manageable. We propose a software product line
testing tool to build system tests from use cases that addresses
challenges for SPL Testing we identified in a literature review.

Keywords-Software Testing; Software Product Lines; Soft-
ware Reuse; Testing Tools;

I. INTRODUCTION

Software testing tools are available for testing in every
stage of the software development life cycle, although it is
not commercially viable for the tools vendors to produce
a tool that suits every organization. It is inevitable, then
customizations of tools is desirable [1].

Software product lines testing tools are not an exception,
choose testing tools suitable for test applications and support
process could be one of the most critical tasks of a project.
In the SPL context, the amount of available tools decrease
drastically, and the need of tools to reduce the effort during
the SPL testing process is an obvious gap that need to be
filled.

Software product lines is a planned, systematic and pro-
active reuse strategy, through exploiting the similarities
within a set of products. SPL can enable organizations to
achieve significant reductions in terms of development and
maintenance cost and time-to-market as well [2], and re-
markable quantitative improvements in productivity, quality
and customer satisfaction [3], thus addressing the problems
aforementioned.

In order to manage the variability, avoid the explosion
of test cases due to the great number of variation points
combinations and reduce the effort to test a software product

line we need to implement testing tools that would allow for
improvements in costs, time-to-market and quality [4].

The availability of tools makes testing a more systematic
activity and can minimize the cost and time consumed, as
well as the errors caused by human intervention [5]. A
wide range of tools, with both commercial and academic
purposes can be found. However, these tools have almost
always been implemented for specific purpose and they
are isolated from others, presenting its own architecture
and internal structures [5]. As a consequence, difficulties in
integration, evolution, maintenance, and reuse of these tools
are very common. These tools often focus on automating
specific testing techniques and criteria, without considering
the whole testing process [5].

In this paper, we propose a SPL Test Tool for create
system test cases based on use cases that supports the
RiPLE-TE [6] test discipline of the RiPLE project. The
RiPLE project is an effort of developing a framework to
support a set of disciplines that compose the life-cycle of
a SPL, namely Scoping [7], Requirements [8], Design [9],
Implementation [10], Testing [11], Evolution Management
[12].

We also investigate tools that can help during all tests
levels of the SPL phases. Furthermore, in order to gure out
the needs of the research field, we split our investigation
into two steps. Firstly we analyzed test tools that have
been developed for testing single systems; and secondly, we
focused on tools that have been developed specifically to
product lines. The question that motivates our work is: How
to handle variation points and their combination within a
test case?

The remainder of this paper is organized as follows.
Section II describes the related work. Section III is an
introduction to software product lines testing tools. Section
IV analyzes the challenges of SPL Testing. Section V
discusses the proposal. Finally, Section VI summarizes and
concludes this paper.

700 701

II. RELATED WORK

There are few studies describing and detailing tools for
testing SPL projects. If we decide to narrow the scope,
encompassing the search for only system test related tools,
within the SPL context, the findings are worse.

According to [13] the ScenTED-DTCD (Domain Test
Case Scenario Derivation) is a prototype tool focused on
generating test cases scenarios that describe the test engi-
neer’s activities and the systems response if modeled within
the activity diagram.

Another prototype tool can be found [14]. It generates
system test scenarios from use cases. The approach is based
on the automation of the generation of application system
tests, for any chosen product, from the system requirements
of a product line.

These studies are deemed to be good sources of infor-
mation regarding tools for testing SPL. In order to develop
our work, we considered every mentioned study, since they
bring relevant information that comprises the knowledge to
develop SPL system testing tools.

III. SPL TESTING TOOLS

Testing is an expensive and laborious phase of the soft-
ware process [15]. In SPL, this assumption continues to hold
true. As a result, testing tools were among the rst software
tools to be developed. These tools now offer a bunch of
facilities and their use can signicantly reduce the costs of
testing [15].

Finding an effective and efficient software testing tool
could be a life-saver for a project or a company. There is no
single test tool suitable for all possible systems and industry
sectors. Deciding what criteria to apply when selecting a
specific tool for a project is quite tricky [16].

A software product line is a large system, with large
volume of source code, and such automated tools can aid
developers and testers to scan through the large volume of
product lines source code and reveal unreliable program
features to the human program. Testing tools can support
testing large size of software product lines to achieve its
goals [17].

An important factor in SPL Testing is automated testing
and the use of testing tools. This decreases the effort when
reusing test assets and makes the complex testing process
more manageable [18]. There are numerous mature testing
tools available. Despite the seeming abundance of available
testing tools SPL testing lacks efficient tool support. The
problem with testing tools is that few of them directly
support SPL [18].

A. Literature Review

This section presents how we identied papers reporting
single systems testing tools and product lines testing tools,
how we extracted data and information from the research
papers, and how we analyzed them with respect to identify

the requirements to compose a new testing tool focused on
SPL Testing.

In order to extend the research and better understand the
needs of tools for SPL Testing, we performed a research that
firstly identified 26 relevant studies using dened search items
related with the subject SPL testing tools. Then, we rened the
search by applying some exclusion criteria to the study title.
Next, we excluded studies on the basis of exclusion criteria
applied to abstract and conclusion reducing the number to
15 papers. Finally, we obtained the primary studies set to
be critically appraised. This set comprised 8 papers, that
accordingly describe the implementation of a SPL testing
tool.

In accordance with our findings, it is possible to check
a huge amount of tools that support testing, but very few
support SPL testing.

IV. SOFTWARE PRODUCT LINES TESTING CHALLENGES

SPL Testing may be represented as two instances of the V-
model, according to [6]. First, the domain assets are tested.
Then, the products are tested according to the model. This
raises two problems. First, complete integration and system
testing in domain engineering is usually not yet specified
[18]. Try to test the different combinations of components
leads to exponential growth of tested configurations [19].
Second, it is hard to decide on how much we can depend
on the domain testing. According to [18] it does not seem to
be clear where testing belongs in the overall SPL process.

Another challenger is the organization of test assets. Man-
agement of testing becomes very difcult if testers cannot tell
the difference between assets that belong to the domain and
assets that belong to a product. Commonality and variability
in product lines require rich traceability, from requirements
to implementation and test assets, encompassing the whole
development life cycle [19].

Integrating test environments and the test asset repository
is a cumbersome work, that is even worse due to the lack
of automated support tool, which leads to be a manually
performed task. There is a need for specic testing tools
that should help to manage the reusable testing assets and
automate the execution of tests and the analysis of their
results as well [18].

It is also evident the need of tools that integrate the
whole process of software product lines testing including test
environments and a test asset repository. A feasible approach
for this would be to use a product lines specific integrated
testing environment [20].

The product line approach requires a carefully planned
testing process that can be easily adapted and used in dif-
ferent domains. Currently, there is a gap between the overall
product line engineering processes and the assumed testing
processes using the practical testing methods, because it is
not clear how the processes and test assets are aligned to test

700 701

Figure 1. RiPLE-TE [6]

a product lines in cost-effective manner, while preserving
quality [18]

In order to lessen some of these problems, this work is
focused on the building of a tool to support testing activities,
at the system test level, aiming at reducing the required
effort. It builds on the definition of a structured process for
testing SPL, the RiPLE-TE [6], as next described.

V. TOWARDS A TOOL TO SUPPORT SPL TESTING

In RiPLE-TE, test assets are built in parallel to the de-
velopment assets. Thus it is possible to maintain traceability
among these artifacts, and consequently ease the process of
developing and rebuilding them, if necessary. Testing a SPL
includes the core asset, product specific assets, and their
interactions.

In this effect, RiPLE-TE consists of two processes, con-
sidering the particularities of each phase, as showed in
Figure 1. In Core Asset Development, when assets have to
be developed with a special attention to the forthcoming
reuse, the process advocates that unit and integration testing
levels should be performed, whereas system and acceptance
testing have to be postponed to Product Development, where
the assets previously developed will be reused. Hence,
knowledge produced in the core asset testing can be reused
in product testing, reducing the overall effort.

Every test case created in the basis of the RiPLE-TE
process can represent variability in a way that reuse is
encouraged. Figure 2 shows an extract of a metamodel
[21] developed in order to capture the relationship among
the artifacts created in a SPL project. This figure basically
depicts the Test model fragment, in which test cases are
considered the main artifact to be handled.

Since each use case in a SPL project is supported by one
or more test cases, the variability herein in handled as the
same way than in use cases elaboration. This latter expands

Figure 2. The tests model excerpt - from [21]

on the abstract use case definition, in which variability is
represented in the use cases. A use case is herein composed
by the entity AbstractFlow, that comprises the subentity
Flow, which actually represent the use case steps. Every
step can be associated with a subflow, that can represent
a variation point. In both, fragments compose every (use
or test) case, and are thus considered when deriving some
product. This way, dependencies among test cases fragments
and use case fragments make sense.

In addition the model also include other involved artifacts,
such as planning and management assets.

A. Software Product Lines System Test Case Tool

The literature still lacks works describing tool support for
testing software product lines [11], [17], [18]. In this effect,
we propose a tool focused on the elaboration of system test
cases for a SPL projects, thus encouraging reusable artifacts
to be produced. We will use the test model previously
mentioned (and fully described in [21]) to manage the test
assets and dependencies.

Additionally, Figure 3 illustrates how the system test cases
are built from use cases. According to [22], a use case goal
can be decomposed recursively into sub-goals, as a result is
necessary to create test cases for each fragments ensuring
the use cases coverage.

1a. The use case document are composed by the use cases
of the SPL project.

1b. The tool allow users to select all the use cases or part
of these. The selected use cases will be extracted from the
document described in 1a.

2a. Each use case can generate a system test case. When
the use case is more complex the tool will generate a test
cases group described below.

2b. Test Cases groups will be composed by two or more
system test cases.

2c. The combination of system test cases generated by the
tool will compose the Test Case Document. The tool also
allow users to select specic test cases in order to generate
customized test cases documents.

702 703

Figure 3. Proposal

Next, the system test cases are formed by the following
fields: an ID (unique identication number created automat-
ically by the tool), the name of the test case, its summary
and classication (positive and negative test cases), steps of
the test case, pre and post conditions, variability type, use
case references and screen path (describes the path of the
system that should be tested).

When all the use cases were selected the application will
focus at the construction of mandatory test cases. Thus the
optional test cases can be built in accordance with the needs
of specic products of the SPL product development phase.
However, every mandatory use case, have to be validated,
which consequently demands the creation of mandatory test
cases. Besides test cases priority will be also classied in
agreement with requirements priority dened by [8] as High,
Medium and Low.

In addition to the proposal, test cases are composed by
extracting information from use cases. Figure 4 illustrates
the data extraction from the use case document (1x) for
the construction of test case document (2x). The main flow
(1y) of the use cases leads to the building of positive
test cases (2y - when determined action should succeed
[23]) that analyze if the main functionalities are working
properly. Secondary flows (1z) of the use cases are divided in
Alternative and Exception flows. Alternative secondary flows
result in positive test cases (2z) that validate instructions
that should succeed [23]. Finally, exception secondary flows
result in negative test cases (2w - when determined action
should not succeed [23]) that verifies errors messages and
unsuccessful procedures.

In order to manage the variability, all the variation
points are associated with requirements specified in the SPL
requirement document detailed by [21]. As requirements

Figure 4. Test Case Composition

include variability, test cases must also contain explicit
variability information. Test cases that include variability
are called variant test cases. Test cases without variability
are called common test cases and can be applied to all
applications [13].

Moreover, each variation point are related with a use case,
consequently for every single use case is possible to create
test cases. Hence, variation points leads to the creation of
test cases in this way preserving the variability within the
tests cases.

The prioritization of the variation points is established in
line with the variability type and priority of the require-
ments. Mandatory requirements with high priority have to
be examined first. For this reason we propose that tests cases
of mandatory variation points with high priority should be
created first.

Figure 5 explains how the test case document can support
the test architect. Using the document the test architect
can delegate which tests should be created by developers
(Unit and Integration tests because they need source code
knowledge to support White-box techniques. White-box test
cases consider the entire source code of the program while
grey-box test cases only consider a portion of it [24]) and
which tests must be done by test analysts (System and
Acceptance tests because they need part or the entire system
working, will be useful to support Blackbox techniques.
Blackbox test cases are those in which no details about the
implementation, in terms of code, is provided. These test
cases are based exclusively on the inputs and outputs of the
system under test [24]).

1) Tool Architecture: [21] presents a web tool imple-
mented using the Django1 framework, which enabled the
fast development of a functional prototype. Through Django,
the metamodel mapped entities and their relationship into

1http://www.djangoproject.com

702 703

Figure 5. Using of the Test Case Document

Python2 classes, and then it is automatically created a rela-
tional database for these entities. Finally, Django generates
a Web application where it is possible to test the mapping
by inserting some test data, the documentation regarding
features, requirements and so on.

Currently, it is possible to use the tool to document all
the assets regarding the metamodel, however the test cases
derivation from use cases is not supported yet [21]. This is
the focus of our proposal and to bridge this gap we propose
the architecture showed in Figure 6.

In order to understand the architecture of the proposed
tool is necessary to know that Django follows the Web
Server Gateway Interface (WSGI) protocol, so we can model
incoming communication as browser and server.
Figure 6 describes the architecture of the proposed tool
combined with the SPL Metamodel. Details of the layers
are described below:

• Browser: Users access the application through web
browsers.

• Template: A Django template separates the application
from the data. A template defines the presentation logic
that regulate how the information should be displayed.

• URL Dispatcher: It defines which view is called for a
given URL pattern. Basically, it is a mapping between
URL patterns and the view functions that should be
called for those URL patterns.

• Model: It describes the data structure/database schema.
It contains a description of the database table, repre-
sented by a Python class. This class is called a model.
Using it, is possible to create, retrieve, update and
delete records in the database using simple Python
code.

• View: It contains the business logic. View layer is
itself a stack. Python view methods call a restricted
template language, which can itself be extended with
custom tags. Exceptions can be raised anywhere within
a Python program, and if not handled they rise up as
far as the environment.

• Database: All the data information will be recorded

2http://www.python.org

Figure 6. Proposed architecture

at the repository. Django attempts to support as many
features as possible on all database backends. However,
not all database backends are alike, and we have to
make design decisions on which features to support and
which assumptions we can make safely.

The view and the model layers can raise exceptions, but
Python uses exceptions for control flow. So not all of these
rise to the server.
The architecture of the proposed tool is suitable to support
the construction of the test case document. However, to work
managing source code is necessary to adapt the architecture,
more details can be seen at Section VI.

VI. CONCLUDING REMARKS AND FUTURE WORK

Currently, despite of the increasing interest by the research
community regarding SPL testing [11], it is very difficult to
find suitable tools to support SPL testing processes. It has
a direct impact in the high costs this activity poses, since
testing becomes a cumbersome and laborious work [17].

This work proposes a system test tool to support the test
process of a Software Product Line. The tool is aimed at
reducing the effort of testing, by reducing the work required
to follow a SPL testing process.

The creation of system tests cases will help to manage
the traceability between use cases and tests cases. It is also
necessary to organize and manage the variability of the tests
assets after the creation of the test case document.

During the definition of our proposal we identify the
necessity of extend the architecture in order to allow support
the management of source code and subsequently automat-
ically generate unit and integration test cases.

As a future work, we are intended to conduct a series of
experimental evaluations in order to analyze the effective-
ness of the proposed tool.

704 705

ACKNOWLEDGMENT

This work was partially supported by the National In-
stitute of Science and Technology for Software Engineering
(INES), funded by CNPq and FACEPE, grants 573964/2008-
4 and APQ-1037-1.03/08 and CNPq grants 305968/2010-6,
559997/2010-8, 474766/2010-1.

REFERENCES

[1] M. Fewster and D. Graham, Software Test Automation: Ef-
fective Use of Test Execution Tools. John Wiley Sons, Ltd.,
1999, vol. 10, no. 2.

[2] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns. Boston, MA, USA: Addison-Wesley,
2001.

[3] L. M. Northrop, “Sei’s software product line tenets,” IEEE
Software, vol. 19, no. 4, pp. 32–40, 2002.

[4] E. S. Almeida, A. Alvaro, V. C. Garcia, V. A. A. Burégio,
L. M. Nascimento, D. Lucredio, and S. R. L. Meira,
C.R.U.I.S.E: Component Reuse in Software Engineering,
1st ed. C.E.S.A.R e-book, 2007.

[5] E. Y. Nakagawa, A. da Silva Simão, F. C. Ferrari, and J. C.
Maldonado, “Towards a reference architecture for software
testing tools,” in International Conference on Software En-
gineering & Knowledge Engineering (SEKE). Knowledge
Systems Institute Graduate School, 2007, pp. 157–162.

[6] I. C. Machado, “Riple-te : A software product lines testing
process,” M.Sc. Dissertation, UFPE - Federal University of
Pernambuco, Recife-PE, Brazil, Aug 2010.

[7] M. B. S. Moraes, E. S. Almeida, and S. R. L. Meira, “A
systematic review on software product lines scoping,” 4th Ex-
perimental Software Engineering Latin American Workshop,
pp. 63–72, 2009.

[8] D. Neiva, F. C. Almeida, E. S. Almeida, and S. R. L. Meira,
“A requirements engineering process for software product
lines,” in Information Reuse and Integration (IRI), 2010 IEEE
International Conference on, aug 2010, pp. 266 –269.

[9] L. L. Lobato, P. O’Leary, E. S. de Almeida, and S. R. L.
de Meira, “The importance of documentation, design and
reuse in risk management for spl,” in Proceedings of the 28th
ACM International Conference on Design of Communication,
ser. SIGDOC ’10. New York, NY, USA: ACM, 2010, pp.
143–150.

[10] V. A. Buregio, E. S. Almeida, D. Lucredio, and S. R. L.
Meira, “Specification, design and implementation of a reuse
repository,” in Proceedings of the 31st Annual International
Computer Software and Applications Conference - Volume 01,
ser. COMPSAC ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 579–582.

[11] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D.
McGregor, E. S. de Almeida, and S. R. de Lemos Meira, “A
systematic mapping study of software product lines testing,”
Information and Software Technology, vol. In Press, Accepted
Manuscript, 2010.

[12] M. Anastasopoulos, T. H. B. de Oliveira, D. Muthig, E. S.
de Almeida, and S. R. de Lemos Meira, “Evolving a software
product line reuse infrastructure: A configuration management
solution,” in VaMoS, ser. ICB Research Report, D. Benavides,
A. Metzger, and U. W. Eisenecker, Eds., vol. 29. Universität
Duisburg-Essen, 2009, pp. 19–28.

[13] A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-based
system testing of software product families,” International
Conference on Advanced Information Systems Engineering
CAiSE, pp. 519–534, 2005.

[14] C. Nebut, Y. Traon, and J. Jezequel, “System testing of
product lines: From requirements to test cases,” Software
Product Lines, pp. 447–477, 2007.

[15] I. Sommerville, Software Engineering, 8th ed. Pearson
Education, 2008.

[16] Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage
based testing tools,” in Proceedings of the 2006 international
workshop on Automation of software test, ser. AST ’06. New
York, NY, USA: ACM, 2006, pp. 99–103.

[17] O. O. Edwin, “Testing in software product lines,” M.Sc.
Dissertation, School of Engineering at Blekinge Institute of
Technology, Mar 2007.

[18] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product family
testing: a survey,” ACM SIGSOFT Software Engineering
Notes, vol. 29, pp. 12–12, March 2004.

[19] J. D. McGregor, “Testing a software product line,” CMU/SEI
- Software Engineering Institute, Tech. Rep., 2001.

[20] R. Kauppinen, “Testing framework-based software prod-
uct lines,” Department of Computer Science University of
Helsinki Technical Report, 2002.

[21] Y. C. Cavalcanti, I. C. Machado, P. A. M. S. Neto, L. L. Lo-
bato, E. S. Almeida, and S. R. L. Meira, “Towards metamodel
support for variability and traceability in software product
lines,” 5th International Workshop on Variability Modelling
of Software-intensive Systems, 2011.

[22] F. Dias, E. A. Schmitz, M. L. M. Campos, A. L. Correa, and
A. A. J., “Elaboration of use case specifications: an approach
based on use case fragments,” Proceedings of the 2008 ACM
symposium on Applied computing, pp. 614–618, 2008.

[23] C. Condron, “A domain approach to test automation of
product lines,” International Workshop on Software Product
Line Testing, p. 27, 2004.

[24] S. Segura, D. Benavides, and A. R. Cortés, “Functional testing
of feature model analysis tools: A first step,” in Proceedings
of SPLiT 2008 - Fifth International Workshop on Software
Product Lines Testing, P. Knauber, A. Metzger, and J. D.
McGregor, Eds., September 2008, pp. 36–39.

704 705

Scalability of Variability Management: An Example
of Industrial Practice and Some Improvements

Yinxing Xue, Stan Jarzabek
School of Computing,

National University of Singapore, Singapore
{yinxing,stan}@comp.nus.edu.sg

Pengfei Ye, Xin Peng, Wenyun Zhao
School of Computer Science,

Fudan University, Shanghai, China
{072021110,pengxin}@fudan.edu.cn

Abstract— Having set up reusable core assets for a Software
Product Line (SPL), it is a common practice to apply Variation
Techniques (VTs) to manage variant features. As each VT can
handle only certain types of variability, multiple VTs are often
employed, such as conditional compilation, configuration
parameters or build tools. Our earlier study of an SPL at Fudan
Wingsoft Ltd revealed potential scalability problems of multiple
VTs. As a remedy to the above problems, in the follow-up study
we replaced multiple VTs originally used in the Fudan Wingsoft
product line, with a single, uniform VT of XML-based Variant
Configuration Language (XVCL). This paper provides a proof-
of-concept that commonly used variation techniques can indeed
be superseded by a subset of XVCL, in a simple and natural way.
We describe the essence of the XVCL solution, and evaluate the
benefits and trade-offs involved in multiple VTs solution and
single VT - XVCL solution.

Keywords- Generative technique; Software Product Line;
Variability management

I. INTRODUCTION

In previous paper [16], we analyzed a Software Product
Line (SPL) called Wingsoft Financial Management Systems
(WFMS-PL), developed by Fudan Wingsoft Ltd. WFMSes
provide web-based financial services for employees and
students at universities in China. Following a common practice,
Wingsoft set up product architecture, identified core assets for
reuse, and then applied a range of common design-time
Variation Techniques (VTs), such as conditional compilation,
design pattern or configuration parameters, to manage product-
specific features in core assets.

Features vary in the granularity and in the scope of their
impact on core assets [5][12]: Fine-grained features affect
many core assets of an SPL, at many variation points [8]. Code
of such features becomes scattered across core assets. A
Coarse-grained feature, on the other hand, can be contained in
a component (e.g., a class or package) that is included into a
custom product when a given feature is needed. Mixed-grained
features involve both fine- and coarse-grained impact.

Coarse-grained features are easier to manage than fine-
grained features. Feature granularity depends to some extent on
the design of core assets. Good architectural design can change
feature granularity in our favor, increasing the number of
coarse-grained features, and reducing the number of variation
points in core assets for the features that remain fine-grained.

Variation Techniques (VT) must match feature granularity.
Therefore, it is common to use multiple VTs, for example,
conditional compilation to handle fine-grained features or a

build tool such as Ant to handle coarse-grained features. Such
VTs are easy to apply, and most of developers are familiar with
them. However, as our study revealed [16], applying multiple
VTs does not scale well, especially in cases of mixed-grained
features. While reuse and modification of mixed-grained
features is inherently difficult, applying multiple, often poorly
compatible VTs aggravates the problems.

As a remedy to the above problems, in the follow-up study
we replaced VTs originally used in the Fudan Wingsoft product
line, with a single, uniform VT of XVCL (XML-based Variant
Configuration Language) [15]. XVCL applies generative
mechanisms to organize software into highly parameterized
meta-components. These meta-components form SPL core
assets that are adaptively reused in product derivation,
automated by the XVCL Processor [9]. In this paper, we
propose to use XVCL as a uniform VT to replace the original
ones described in [16]. We also present an initial evaluation of
benefits and trade-offs involved in adopting a uniform VT.

A practical lesson learned from our study is that in small- to
medium-size product lines, applying multiple VTs may be a
viable solution, as it requires less training, and variability can
still be effectively managed in that way. As the product line
grows in size and the impact of features on core assets becomes
more complex, a company may experience problems. Then
moving towards a uniform variation technique approach may
be beneficial. However, this will require a more systematic
approach to reuse, and training of SPL personnel.

The paper is organized as follows: Section II summarizes
the findings from our earlier study of multiple VTs in WFMS-
PL [16]. Section III describes the XVCL solution to WFMS-
PL, and explains how it alleviates problems of the multiple
VTs. We evaluate the XVCL approach in Section IV. Related
work and concluding remarks end the paper.

II. PROBLEM OF MULTIPLE VARIATION TECHNIQUES

WFMS for Fudan University developed in 2003 evolved
into a Software Product Line WFMS-PL [16] with more than
100 customers including major universities in China such as
Shanghai Jiaotong University (WFMS for this university can
be found at http://www.jdcw.sjtu.edu.cn/wingsoft/index.jsp),
Zhejiang University, Chongqing University and others.

Main functionalities of WFMS include the Financial
Management Subsystem (FMS) that manages all the university
income and expenses, the Salary Management Subsystem
(SMS) that manages salary of employees, the Reward
Management Subsystem (RMS) that manages rewards for

706 707

employees and students, and the Tuition Management
Subsystem (TMS) that manages student tuition fees. The TMS
is a web-based portal for students to pay their tuition fee online,
with functions such as login, service customization, on-line
payment and history query. In addition, the TMS also provides
accounting services (e.g., report generation and bill
settlements) that interface universities with banking systems.

First five WFMS product variants were developed by ad
hoc copy-and-paste reuse, and each WFMS was maintained as
a separate product. As the number of customers was growing,
ad-hoc reuse and maintenance was becoming more and more
taxing on company resources. To address this problem,
Wingsoft set up SPL core assets as follows: First, Wingsoft
designed architecture to be shared by future products and
adopted commonly available VTs, such as conditional
compilation and configuration parameter files. Wingsoft did
not use any advanced VTs due to the practical need for an easy-
to-implement, cost-effective SPL. Such an SPL was built and
reused with minimum training of the staff in SPL techniques.

We described implications of using multiple variation
techniques in WFMS-PL in [16], so here we only summarize
the main results. We analyzed the Tuition Management
Subsystem (TMS), as it involved types of variability and
variation techniques that are representative for the whole
WFMS. The code of TMS is 25% of the whole WFMS system,
comprising 58 Java source files, 99 JSP web pages, and several
configuration files. In TMS feature model, there are 32 variant
features and 9 mandatory features1.

Wingsoft adopted simple, freely available VTs, selecting
the right VT for features at hand [16]. Fine-grained features
were managed by conditional compilation and commenting
code in core assets. Coarse-grained features were managed by
build tool Ant. Mixed-grained features were managed by
configuration parameters. For the 32 variant features in TMS,
conditional compilation or commenting technique was
involved in 31 variant features. Ant was used by 19 variant
features, overloading fields - by 13 features, configuration file -
by 12 features, and design patterns - by 3 features.

Our study [16] revealed potential problems of multiple VTs
in an SPL: One feature was often handled by several VTs
which had to be properly synchronized. 26 among 32 variant
features were managed by more than one VT, 13 features - by 3
VTs, and 3 features - by 4 VTs. The difficulty roots in the
management of variant features involved in several VTs at the
same time. Examples below illustrate what was involved in
managing such features, and hint at complications that are
bound to arise as the size of the system and the number of
inter-dependent variant features grow.

Feature PayByItem (Fig. 1, Fig. 2 and Fig. 3) is a mixed-
grained feature managed by configuration parameters that
parameterize reflection, strategy design patterns [7], and also
the build tool Ant. In Fig. 2, method user.getPayMode() at line
6 returns the value of the parameter paymode at line 2 in the
configuration file (Fig. 1). According to that value, strategy

1 Details on TMS’s feature particulars and feature dependency are available at

this link: www.comp.nus.edu.sg/~yinxing/TMS-information.html.

pattern generates the specific code skeleton for feature
PayByItem.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<webFee>
<paymode>PayByItem</paymode>
<bank-info>

<bankList>
<bank>ICBC</bank>
<bank>CCB</bank>
<bank>CMB</bank>

</bankList>
 <ICBC>

<bankUrl>http: //mybank.icbc.com.cn/...</bankUrl>
<keyPath>C: /apache-tomcat-5.5.25/…</keyPath>
<keyPass>12345678</keyPass>

</ICBC>
</bank-info>
<DownloadDetail>true</DownloadDetail> …

</webFee>

Fig. 1. Managing PayByItem with configurations parameters

1
2
3

4
5
6
7
8
9
10
11
12

public class FeeOrder {
private Initializer initializer;
public init(FeeUser user, FeeInfo info,

HttpServletRequest request) {
Class c;
try{

c = Class.forName(user.getPayMode());
initializer = (Initializer) c.newInstance();
initializer.init (. . .);

} catch(Exception e) {
e.printStackTrace();

}
}..}

Fig. 2. Managing PayByItem with reflection and strategy patterns

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

<project name="webfee" basedir="." default="main">
<target name="copy-src" depends="create-folders">

<!-- Copy java classes of Feature PayByItem -->
<copy todir="${src.dir}">

<fileset dir="${core-src.dir}/${PayByItem}"/>
</copy>

</target>
<target name="copy-webpage"

depends="create-folders">
<!-- Copy webpages of Feature PayByItem -->
<copy todir="${web-root.dir}">

<fileset dir="${core-webpage.dir}/
${PayByItem}" />

</copy>
</target>…

<project>

Fig. 3. Managing PayByItem with Ant

Coarse-grained impact of feature PayByItem is managed by
build tool Ant (Fig. 3). Using parameters, Ant could
include/exclude source files that were relevant/irrelevant to a
given feature. An Ant script sets the target path for the source
code to be included in the final build. Feature PayByItem has a
related JSP file selFeeItem.jsp, which was included by the
command <fileset dir> at line 12.

Mixed-grained impact of features is the main source of
problems for scalability of the multiple VTs to manage SPL
variability. Scattered impact of mixed-grained features brings
forth the difficulties to keep multiple VTs in synchronization
one with another. Inter-related configuration parameters control
both Ant and Java conditional compilation. There are many
examples of such interactions between multiple VTs in the
original TMS core assets. Its maintenance entails the accurate
understanding of multiple VTs, and familiarity with variant
features and core assets. As the size of the system grows and
the feature dependencies increase, the above inconveniences
aggravate. These observations encouraged us to experiment

706 707

with a single VT to manage the common variability situations
found in TMS core assets in a uniform and traceable way.

III. SINGLE VARIATION TECHNIQUE APPROACH TO TMS
CORE ASSETS

XVCL [9][15], based on Frame Technology [2], is a
generative language-independent variation technique for SPLs.

XVCL encapsulates core assets in so-called x-frames.
Coarse-grained features are contained in dedicated x-frames.
Each variation point in core assets is marked with a suitable
XVCL command, such as <adapt>, <insert-before> <insert>,
<insert-after> and <break>, to enable customizations. SPL
variant features are formally mapped into all the relevant
variation points in core assets by means of XVCL parameters
and commands. The SPeCification x-frame, called SPC, sets
values of XVCL parameters according to feature selection.
XVCL Processor interprets x-frames starting from the SPC
(Fig. 4), traverses x-frames, propagates customization
information (parameters) to them, adapting visited x-frames
accordingly, and emitting code for a custom product. XVCL
mechanisms allow us to manage features with fine-, coarse-
and mixed-grained impact on core assets. Due to its language-
independence, any type of SPL artifacts including Java code,
JSP files, DB scripts, WORD files, test cases or even UML
models in XMI can be consistently customized for any legal
selection of features required in a custom product.

A. TMS core assets instrumented with XVCL
Fig. 4 provides a snapshot of the WFMS core assets in

XVCL representation, and Fig. 5 expands some x-frames to
highlight the working mechanism of XVCL 2 . The SPC
specifies which features we need in a custom WFMS product
by setting values for XVCL parameters that correspond to
selected features. Values of those parameters propagate to x-
frames below, navigating configuration and detailed
customizations of core assets and features accordingly. Level 2
x-frames define architecture-level customizations, in terms of
configuration of core assets for a custom WFMS product.
Some of the coarse-grained feature impacts are also addressed
at Level 2. Level 3 x-frames contain the actual code of core
assets and features, instrumented with XVCL commands to
enable customization of fine-grained features.

Features we want to select for a custom product are
assigned non-empty string values, while features to be de-
selected are assigned empty string values. Thus, SPC shown in
Fig. 5 selects features IDCard and SSO (related to Login), and
feature PayByItem (related to Paymode) for a custom product.
It deselects feature Direct, PayByYear and PayByYearOrder.

<select> commands mark variation points in x-frames
below SPC. The value of an XVCL parameter that controls
<select> identifies an <option> to be processed. <select
PayByItem> in x-frame OnlinePayment at Level 2 illustrates a
simple variation point affected by one feature only, namely
PayByItem. If feature PayByItem is selected, then the Processor
emits feature code to the custom product; otherwise, <select>
has no effect.

2 Details on TMS’s XVCL solution are available at this link:

www.comp.nus.edu.sg/~yinxing/TMS-XVCL-solution.html.

SPC

Settlement
OnlinePayment

Login

Config

WebService

FeeUser

FeeInfo

FeeOrder

DBSchema

WebFee

Agent Return SettleLog

ServiceManager

Level 1

Level 3

Level 2

Fig. 4. Overview of WFMS core assets in XVCL

<select Login> in x-frame FeeUser at Level 3 marks a
variation point affected by three features, namely IDCard, SSO
and Direct. Notation @v, where v is an XVCL parameter,
means reference to v’s value, as assigned in respective <set>
command. The value of Login, <set> to be a concatenation of
the three XVCL parameters corresponding to these features,
controls <select>, directing processing to the <option>
corresponding to the particular combination of selected features.
Note that <option “IDCard+SSO”> is processed whenever the
two interacting features IDCard and SSO are selected. Symbol
‘+’ is a separator. By the multiple features in <option>, XVCL
can handle the interacted features.

XVCL parameters formally link together customizations of
all the core assets affected by selected features, at all the
relevant variation points. XVCL parameters set in SPC create a
bridge between features and WFMS core assets in XVCL.

B. One variation technique instead of many
Our example of Fig. 5 also illustrates how a single variation

technique can successfully provide capabilities of many
variation techniques. In x-frame FeeOrder, @PayMode c =
new @PayMode replaces configuration files and applications
of Strategy pattern in the original WFMS core assets in Fig. 1,
Fig. 2 and Fig. 3. Here, we need a parameterizable name of the
class. Java generics support parametric types, but not class
names. In the original WFMS core assets, Strategy pattern and
configuration parameter stored in a configuration file were used
to mitigate the problem (Fig. 2). Strategy pattern reads the
name of a required class from the configuration file.

In the original WFMS core assets, architecture-level
configurations of core assets and coarse-grained features were
done by Ant. For example, if we select feature PayByItem,
Ant’s command <fileset dir> in Fig. 3 includes file
selFeeItem.jsp into the custom product. The same is achieved
by <adapt> placed under <select> in x-frame
OnlinePayment. Of course, Ant has more capabilities than
XVCL’s <adapt>, but in this context only Ant’s asset
configuration capabilities are used.

In x-frames DBSchema and FeeUser, we see how XVCL’s
parameters and <select> replace conditional compilation and
commenting out feature code. For example, feature
InitPayMode affects DBSchema and FeeUser and is managed
by conditional compilation and commenting out technique.
Manual modification of the conditional compilation or
comments has to been done to include/exclude features. In
XVCL on the other hand, variation points are inter-lined and
customizations are automated.

708 709

1
2

3
4
5
6
7
8
9

10
11
12
13
14
\15
16
17
18
19
20
21

 OnlinePayment // x-frame at Level 2
<set Login= @IDCard+@SSO+@Direct/>

<select PaytByItem >

 <option "PaytByItem">
 <adapt selFeeItem.jsp/>

 <set PayMode = "PayByItem"/>
 </select>

<select PayByYear >
<option "PayByYear">

 <adapt selFee.jsp/>
 <set PayMode = "PayByYear"/>
 </select>

<select PayByYearOrder >
 <option "PayByYearOrder">

 <adapt selFeeOrder.jsp/>
 <set PayMode ="PayByYearOrder"/>

 </select>
 ...
<adapt FeeOrder />
<adapt DBSchema/>
<adapt FeeUser/>
...

Level 3

Level 1

Level 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 DBSchema // x-frame at Level 3
create table userInfo(

uniNo char(21),
name char(30),
password char(21),
id_card char(20),
inYm char(6),

 banks char(50),
// If feature InitPayMode is selected,

//the following field will be activated
 <select InitPayMode >

 <option "InitPayMode" >
 payMode char(1) default 'F',
 </select>

 feeDBUser char(50),
 primary key(unino)

);

1
2
3

4
5
6
7
8
9

10
11
12

 FeeOrder // x-frame at Level 3
public class FeeOrder {

public init(FeeUser user, FeeInfo info,
HttpServletRequest request) {

...
 try{
 @PayMode c = new @PayMode();

c.init (. . .);
} catch(Exception e) {

e.printStackTrace();
}

}.. .
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20

FeeUser // x-frame at Level 3
public class FeeUser {
…

 public FeeUser() throws Exception {
. ..

 <select Login >
 <option "IDCard">
 // only support variant feature IDCard
 <option "IDCard+SSO">
 //support variant features IDCard and SSO
 </select>

}
 …
 public boolean login() throws Exception{
 …
 <select InitPayMode >
 <option "InitPayMode">

 payMode = Global.nTrim
 (rs.getString("payMode")).charAt(0);
 </select>

 } }

1
2
3
4
5
6
7
8
9

10
11
12

SPC
// Login feature group

<set IDCard = "IDCard"/>
<set SSO = "SSO"/>
<set Direct = ""/>

// Paymode feature group
 <set PaytByItem = "PayByItem"/>

<set PayByYear = ""/>
<set PayByYearOrder = ""/>

 <set InitPayMode = "InitPayMode"/>
<adapt OnlinePayment />
...

Fig. 5. Detailed view of WFMS core assets in XVCL

IV. EVALUATION

What are the implications of replacing multiple variation
techniques with a single one on SPL productivity? To answer
this question, we conducted lab studies and collected inputs
from Fudan Wingsoft Ltd. regarding the original WFMS core
assets developed by Wingsoft using multiple variation
techniques, and core assets in XVCL. Below, we comment on
productivity during domain engineering (i.e., building and
evolving core assets), and product derivation.

A. Domain engineering effort
The original WFMS core assets were built by gradual re-

engineering of existing WFMSes. Core components and their
interfaces were stabilized first, and then variation techniques
were used to prepare them for ease of customization, as
described in Section II. While it is difficult to precisely
determine the effort to build core assets, we obtained some
relevant information from Wingsoft engineers who were

involved in re-engineering. Selecting suitable variation
techniques for various features was not difficult for
experienced engineers. Also, each step of applying variation
techniques was quite simple. New staff joining the Wingsoft
team had little difficulty to understand the variation techniques
used in WFMS core assets and their role. However, some
problems could be observed during evolution of the WFMS
core assets. When multiple variation techniques were used
together to implement a variant feature, it might not be clear
how to find all the relevant variation points, and understand the
exact interplay between variation techniques. Still, given the
size of WFMS core assets and relatively small number of
features, the solutions adopted by Wingsoft team were
considered to be adequate for the purpose.

To get insights into the effort of unifying multiple variation
techniques with XVCL, one PhD student and one developer re-
engineered the original WFMS core assets into XVCL
representation. PhD student was an XVCL expert, and the

708 709

developer was a WFMS expert, also participating in
maintenance of the original WFMS core assets. It took two
weeks for them to replace multiple variation techniques with
XVCL in core assets for TMS subsystem. Applying XVCL was
greatly simplified, as core assets were already in place, and
they preserved most of the variation points. The main task was
to work out overall XVCL controls and then to replace multiple
variation techniques with XVCL commands at respective
variation points.

Evolution of core assets involves adding new features and
modifying features. The effort to evolve core assets depends on
the number of variation points involved in change, and the
complexity of finding, analyzing, changing variation points and
tracing the impact of change. While the number of variation
points in both solutions is almost the same, we assume that
evolution of XVCL solution is easier than evolution of the
original solution. This is due to uniform treatment of features,
formal links between all the variation points relevant to a given
feature, and feature query system [10].

B. Product derivation and maintenance effort
Deriving new products includes reuse of existing features,

modifying features, and implementing extra features required
by product customers. Similarly, the effort of each such task
depends on the number of variation points involved in product
customization, and the complexity of finding, analyzing,
customizing variation points and tracing the impact of change.

 Table I summarizes statistics relevant to product derivation
effort. “Managed variation points” means variation points that
have to be revised manually when reusing or modifying
features. “Managed variation points” is a subset of all the
variation points at which one feature affects core assets. For
example, among core assets affected by feature InitPayMode
are Java files and DB schema files. To reuse this feature in the
original WFMS-PL, all affected files need to be manually
changed. In the XVCL solution, once we <set> value of XVCL
parameter InitPayMode in SPC (Fig. 5), all the customizations
for feature InitPayMode spark from there, can be found by
feature queries, and automatically performed by the XVCL
Processor. Therefore, feature InitPayMode requires only one
managed variation point in XVCL solution.

TABLE I. MANAGED VARIATION POINTS

 #variation
points

#managed
variation
points

files containing
managed
variation points

Original WFMS
core assets

275 126 31

XVCL WFMS
core assets

275 40 6

As another example, core assets affected by feature
Settlement include seven Java files, four JSP scripts, one
configuration file, and one file containing DB schema, totally
13 variant points. To reuse feature Settlement in the original
WFMS-PL, we must customize code at 8 managed variation
points handled by conditional compilation, comments and Ant.
The location of managed variation points as well as
relationship among them is not formally captured, therefore
must be communicated via external documentation or re-
discovered when needed. In XVCL solution, for the same

feature there are also 13 variation points, but only 3 managed
variation points (XVCL parameters for Settlement and for two
dependent features). All the variation points are inter-linked via
relevant XVCL parameters <set> in SPC, and reuse of the
feature is automated by the XVCL Processor.

C. Other inputs from Wingsoft
Besides the above comparison study, we also collected

some feedback and comments on the XVCL solution from
interview with several Wingsoft engineers.

Comments on code readability. Both XVCL
representations and the original final-boolean conditional
compilation and commenting out applied variation techniques
to embed fine-grained feature code in the code of core assets at
relevant variation points. Wingsoft engineers reported about
30% of code in class FeeOrder, 20% of code in FeeInfo and
35% of code in FeeUser was managed by final-boolean
conditional compilation and commenting out (the respectively
similar percentages managed in XVCL representations).

Comments on copyright protection. In the original
WFMS core assets, run-time binding variation techniques such
as design pattern and configuration parameters are widely used.
Therefore, Wingsoft engineers often included unnecessary
feature code into a custom product release because of the
characteristics of runtime variation binding and also time
involved in feature removal. When extra functionality is
contained in files that are released in readable form (e.g., JSP
or XML configuration files), this practice can sometimes create
copyright problems, as other customers may use extra
functionality that was not meant for them or not included in
their licenses. In XVCL, unwanted features are never included
into a custom product, as the job of feature manipulation is
consistently and automatically done by the XVCL Processor.
Other than protecting copyrights, such precise and flexible
control over feature inclusion/exclusion to/from custom
products also matters in situations when we need to build
highly optimized products, for example embedded software.

D. Evaluation summary and comments on relation work
Overall, it was felt that for small-to-medium systems such

as WFMS (around 50KLOC), adopting multiple variation
techniques is still practical. Variation techniques used in the
original WFMS are simple and known to most of engineers.
They came into engineers’ mind naturally, could be applied on
the fly during core asset design, with minimum disruption of
conventional programming. Multiple traditional VTs provide
an elementary infrastructure for SPL support. Handled by the
experienced engineers, the original WFMS core assets serve
well for the derivation of almost 100 product variants.

As the size of core assets and the number of variant features
grows, and feature interactions get more complicated, problems
may show up. Feature reuse and maintenance may become
more complex because of the many variation points at which
feature code needs be understood. Manual customizations
become time-consuming and error-prone, even for skilled
domain engineers. Then, it may be worth to consider migrating
to a uniform variation technique such as XVCL.

In XVCL, for a feature reused as-is we need small number
of managed variation points, at which we <set> XVCL

710 711

parameters for that feature and its dependent features (in SPC).
All the variation points for a given feature are formally linked
to XVCL parameter representing that feature. The ability to
locate and analyze traces of customizations for each feature
helps developers reuse and modify features with less errors and
unwanted side-effects as compared to working with the original
WFMS core assets. Reuse is automated by the XVCL
Processor.

However, the adoption of XVCL is not without pitfalls,
some of which XVCL shares with other variation techniques.
Much of the code of features still remains tangled with core
assets, affecting readability. This is a big problem, but so far
alternative approaches based on specification-based variation
points such as AOP [13] or FOP [3] failed to provide an
effective solution to fine-grained feature management in SPLs
[11] [12] .

Industrial tools such as GEARS [4] and pure::variants [14]
could certainly manage the WFMS SPL. However, we do not
have hands-on experience with those tools or specific studies to
provide detailed comparison. GEARS can handle configurable
software artifacts – such as source code, test cases and
requirement documents. Its capability is similar to the XVCL.
Pure::variants captures the problems (family model) and the
solutions (variant model, which records the customized feature
models for product variants) separately and independently, to
reuse the solutions and the feature models in new projects.

The new emerging academic tool FEATUREHOUSE [1], in
virtue of the FST, the direct annotation in artifacts is avoided
and the readability is not undermined. The trade-off is that it
has to integrate the various adapters and computation rules for
the different languages. Since no annotation inside the artifacts
for feature code at arbitrary granularity, we find that
FEATUREHOUSE has to adopt hook a method to deal with the
fine-grained impact of features. Compared with XVCL,
FSTCOMPOSER in FEATUREHOUSE is flexible in supporting
additional features. It cannot really change an existing fragment.
But XVCL is more flexible in what can be variable.

V. CONCLUSION

This study was conducted jointly by Fudan Wingsoft Ltd.,
and researchers at Fudan University and National University of
Singapore (NUS). Our earlier study of a Wingsoft Software
Product Line (SPL) revealed that applying multiple variation
techniques poorly scale to larger SPLs. In particular, it may
become increasingly difficult to find and understand feature
code scattered through core assets (so-called fine-grained
features), and to coordinate changes at multiple inter-related
variation points. Multiple variation techniques also hinder
readability, reuse and evolution of core assets heavily affected
by fine-grained features.

In this paper, as a remedy to the above problems, we
presented an approach based on a single, uniform variation
technique of XVCL, capable of managing both fine-grained
features, as well as features whose impact requires
customizations at the product architecture/component level. We
evaluated the XVCL-based product line representation in lab

experiments, and in Fudan Wingsoft Ltd, a company that
initially used multiple VTs and then applied XVCL.

An SPL in our study was small, with only 39 features.
Feature dependencies were few and feature impact on core
assets was not very complicated. Still, we could sense some of
the above problems. However, as the impact of features on core
assets accumulates and gets more complex, understanding and
synchronizing multiple, poorly compatible variation techniques
may become difficult. Other SPLs may contain much larger
code base in core assets, with hundreds or thousands inter-
dependent features [6]. We believe that in case of such SPLs,
the problems reported in our study are bound to become more
severe, and a single variation technique approach even more
attractive.

ACKNOWLEDGMENT

This work was supported by Fudan University grant (the
NSF of China under Grant No. 60703092), and National
University of Singapore grant R-252-000-336-112.

REFERENCES

[1] Apel, S., Kästner, C. and Lengauer, C. “FEATURE-HOUSE:
Language-independent, automated software composition. ”, ICSE 2009:
221-231

[2] Bassett, P., Framing software reuse - lessons from real world, Prentice
Hall, 1997

[3] Batory, D., Sarvela, J.N. and Rauschmayer, A. “Scaling Step-Wise
Refinement,” Proc. Int. Conf. on Soft. Eng.,, ICSE’03, Portland, Oregon,
May 2003, pp. 187-197

[4] BigLever. GEARS. http://www.biglever.com/, 2009.
[5] Clements, P. and Northrop, L. Software Product Lines: Practices and

Patterns, Addison-Wesley, 2002
[6] Deelstra, S., Sinnema, M. and Bosch, J. “Experiences in Software

Product Families: Problems and Issues during Product Derivation,” Proc.
Software Product Lines Conference, SPLC 2004, Boston, Aug. 2004,
LNCS 3154, Springer-Verlag, pp. 165-182

[7] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns.
Addison-Wesley Professional, 1995.

[8] Jacobson, I., Griss, M. and Jonsson. P., Software Reuse: Architecture,
Process and Organization for Business Success. Addison Wesley
Professional, 1997.

[9] Jarzabek, S. Effective Software Maintenance and Evolution: Reuse-
based Approach, Taylor & Francis CRC Press, 2007

[10] Jarzabek, S., Zhang, H., Lee, Y., Xue, Y. and Shaikh, N., Increasing
usability of preprocessing for feature management in product lines with
queries. ICSE Companion 2009: 215-218

[11] Kästner, C., Apel, S. and Batory, D. “A Case Study Implementing
Features Using AspectJ,” Proc. Int. Software Product Line Conference,
SPLC’07, Kyoto, Japan, Sept.2007, pp.223-232

[12] Kästner, C., Apel, S. and Kuhlemann, M.: Granularity in Software
Product Lines. In ICSE’08, 2008.

[13] Kiczales, G, Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J-M. and Irwin, J. “Aspect-Oriented Programming,” Europ.
Conf. on Object-Oriented Programming, ECOOP’97, Finland, Springer-
Verlag LNCS 1241, 1997, pp. 220-242

[14] Pure systems. pure::variants. http://www.puresystems.com, 2009
[15] XVCL (XML-based Variant Configuration Language)

http://xvcl.comp.nus.edu.sg
[16] Ye, P., Peng, X, Xue, Y. and Jarzabek, S. “A Case Study of Variation

technique in an Industrial Product Line,” 11th Int. Conf. on Software
Reuse, ICSR09, USA, Sept. 27-30, 2009, pp. 126-136

710 711

RiPLE-TE: A Process for Testing Software Product Lines

Ivan do Carmo Machado1,2, Paulo Anselmo da Mota Silveira Neto2, Eduardo Santana de Almeida1,2,
Silvio Romero de Lemos Meira2,3

1 Federal University of Bahia (UFBA) - Salvador, Bahia, Brazil
2 Reuse in Software Engineering (RiSE) - Recife, Pernambuco, Brazil

3 Federal University of Pernambuco (UFPE) – Recife, Pernambuco, Brazil

Email: {ivanmachado,esa}@dcc.ufba.br, {pamsn,srlm}@cin.ufpe.br

Abstract—Software Product Lines Testing has received special
attention in recent years, due to its crucial role in quality and also
due to the high cost this activity poses. In this effect, to make
testing a feasible activity, some improvements are required. This
paper presents a process for testing product lines, designed based
on the gaps identified by a systematic mapping study, performed
in order to understand the current scenario in this research field.
An experimental study was performed in order to evaluate the
proposed process in terms of understanding the role of a
structured testing process in a SPL project.

Keywords- Software Product Lines; Software Testing; Software
Process; Software Reuse.

I. INTRODUCTION
Testing can be considered one of the most effective methods

of quality assurance [1]. However, the state of software testing
practice is not as advanced in general as software development
techniques and, the same holds true for Software Product Lines
(SPL) [2]. Although a number of studies can be found in recent
literature on SPL Testing, including definition of processes,
methodologies, modeling strategies, and other topics, it is not
clear how to effectively apply testing in a coordinated, timely
and cost-saving manner, together [3][4].

From an industry point of view, the growing SPL adoption
points to the need of more efficient and effective testing
approaches, since testing is still a difficult, expensive and
challenging process, more explicitly due to the presence of
variability, which hinders the way software is tested [5].

Such statements are based upon the results of a systematic
mapping study performed by the authors in order to under-
stand the current state of the art and practice of this field [3].
This study involved the investigation of 120 research papers,
dated from 1993 to 2009, published by the most important
vehicles in the computer science field.

The study describes that existing research on SPL testing
addresses a diverse range of topics [3]. Special attention goes to
the huge lack of empirical research, seeing that proposed
techniques are mostly novel and have usually not yet been
implemented in practice. Although solution proposals are very
common in the literature, they are usually not process-centered,
that can be largely applied to different context and projects. In
addition, reported proposals do not care about evaluation
research. Researchers are not also concerned about experience

reports on their personal expertise using particular approaches.
Practitioners in the field should report results on the adoption, in
real projects, of the techniques proposed and reported in the
literature. In addition, authors should express opinions about the
desirable direction of SPL Testing research, expressing their
experts’ viewpoint.

Our findings are in line with a similar study [4], which also
surveyed existing research on SPL testing in order to identify
useful approaches and needs for future research.

Based on the findings [3], we decided to initially work in the
definition of a structured process to support testing in SPL
projects. The proposed process is composed of a set of
activities, tasks and roles, encompassing the both SPL phases
[6]: core asset development (CAD) and product development
(PD). We believe that such effort can be an initial endeavor to
filling out the gaps of existing approaches, enhancing the SPL
testing practice.

An empirical evaluation was performed on the basis of the
proposed process. It consisted of an experiment, performed on
the unit test level of the process. It involved 30 undergraduate
students. Statistical techniques were applied to analyze gathered
data. Our decision about including only one test level was based
on the idea of incremental construction of knowledge about the
role of testing procedures for SPL. We believe that solving
every step once at a time could raise better results and
accordingly we could extract more detailed feedback.

The remainder of this paper is structured as follows: Section
II outlines the research field. Section III describes the proposed
approach. Section IV presents the evaluation performed. Section
V gives an overview about related work and finally Section VI
concludes the paper and outlines future work derived from this
research.

II. TESTING IN SOFTWARE PRODUCT LINES
Among the aspects that differentiate testing in single

systems development (SSD) and SPL, variability should be
mentioned as the most important issue to be handled, since its
exploitation can lead to a huge combinatorial explosion of
configurations a system can support. It directly reflects in the
testing activities, because the large amount of variability in a
product line increases the number of possible testing
combinations.

712 713

Indeed, testing all combinations is almost impossible in

practice. This is the main reason for some authors to consider
testing as the bottleneck in SPL, since the cost of testing product
lines is becoming increasingly more costly than in SSD [7].
High cost makes testing an attractive target for improvements
[8].

In this effect, a systematic testing approach can save
significant development effort, increase product quality and
customer satisfaction, and also lower maintenance costs. Hence,
techniques that consider variability issues and coordinate testing
activities are desirable.

A systematic approach for testing has to consider the both
SPL phases, CAD and PD, in which in the prior the assets are
designed and built considering the possible variable parts to be
further reused, in the latter. In PD phase, products are
instantiated, on the basis of assets from the core asset base. This
strategy can foster reuse of assets. The systematic reuse of
assets enables efficiencies in development time and cost.
Creating document templates and abstract test cases may serve,
for example, as a feasible strategy [8].

It is just as important to mention that the different test levels
should be considered. The goals of unit, integration, system and
acceptance testing levels should be combined with the goals of
the SPL phases.

Evidences collected from the studies analyzed and reported
in our previous work [3] points out that these mentioned aspects
constitute the core elements when considering testing SPL.

III. RIPLE-TE: A PROCESS FOR TESTING SPL
In line with the results of the mapping study, through

exploiting the gaps reported in the literature, we have devoted
effort towards designing a structured process to support the test
discipline in SPL projects. The design is based on the RiPLE -
RiSE Product Line Engineering - project. This project is an
effort1 of developing a framework to support a set of disciplines
that compose the lifecycle of a SPL, namely Scoping,
Requirements, Design, Implementation, Testing and Evolution
Management. RiPLE-TE is the name given to the test discipline
in this framework.

Testing with RiPLE-TE comprises the core assets, product
specific assets, and the interactions among these. The process
considers particularities of each of these SPL phases.

• In CAD, when assets have to be developed with a
special attention to the forthcoming reuse, attention
goes to the execution of unit and integration test levels.

In a first moment testing should be concerned about
evaluating assets from its initial development effort. Hence, in
RiPLE-TE the initial effort is devoted to unit testing.
Components are here considered the units. Then, in order to
ensure that a component may be further reused, it should be
tested, under planned conditions. Although coupling and
cohesion are considered the cornerstones in modular software
development, provided by component-based development, in
practice it is usual to work with tightly coupled units. In these
cases, after performing unit tests in a component, and ensure

1 RiPLE is a RiSE project - http://labs.rise.com.br/

that it fulfills what it was specified to, integration tests are then
performed.

These levels are responsible for detecting different types of
faults. While unit testing independently tests methods, classes,
and the interaction among these pieces that comprises a
component, whereas integration testing is responsible for testing
the interaction among components interfaces and the integration
between modules.

• In PD, integration, system and acceptance testing is
performed, based on the assets previously developed
and tested. In special cases unit tests can also be
performed in PD, as explained next. The purpose of
such a division is linked to the role of testing in every
phase, as advocated by other approaches, e.g. [8].

Integration testing is the first level to be performed. The
point is why to perform it again. Given that the purpose is to
avoid repetition and thus consequently reduce the overall testing
effort, in CAD it is only performed the integration between
tightly coupled units, regardless integrating the whole set of
components. It regards the behavior of the core asset base, in
which there are several components, attending to a diverse
range of variations, that not necessarily integrate with each
other, but indeed should be ready for instantiation in PD. This is
when integration testing in PD takes place.

In PD, the integration test of the components that will
comprise a product is performed, in order to ensure the
workability of the interconnected modules as well.

Next, system testing is performed. This level is then focused
on evaluating the product as a whole, intended to detect system
architectural and/or end-to-end defects. At this point, testers
evaluate the system against system requirement specification.

Acceptance tests are carried out after system testing, in order
to gather customer feedback on the product just instantiated. It
is more a demonstration to user that intends to show that the
product does what is expected.

As mentioned before, unit tests may be performed in PD. It
may happen whenever a new requirement or feature that does
not belong to the core asset base yet is probably to be included
in a specific product. As this new artifact is built, unit tests have
to be performed. Then, the remaining levels should also be
performed, considering the new artifact. After that, the new
“asset” can be included in the core asset base, and be used in
next products, thus motivating reuse. This way, we handle the
interactions between CAD and PD, as previously stated.

RiPLE-TE is indeed not focused on evolution issues, as the
probable “propagation” of assets from PD to CAD afore-
mentioned. The boundary between testing and evolution is
rather supported by another discipline in RiPLE, the RiPLE-EM
(Evolution Management) [9].

The main workflow of RiPLE-TE is presented in Figure 1,
which represents both SPL phases and associated levels.
Feedback is a closure activity common to all these levels.

712 713

This Figure shows the activity master planning as the initial
point in both CAD and PD. It refers to the development of a
Master Test Plan, artifact responsible for orchestrating the
whole testing activity. This plan is based on [10], and defines:
how testing will be done; who will do it; what will be tested; the
coverage criteria; and schedule associated with. As all levels
should be planned, not only in the beginning, Figure 1 includes
a support activity called planning, linked to all activities, to
illustrate the need of performing the activities in a coordinated
manner, following a plan that can be continuously updated.

Furthermore, it is desirable that project members can detect
and get rid of errors/defects early in the life cycle, even before
any code is available [11]. In CAD the activity technical review
is responsible for reviewing the main assets of a SPL project
that directly impacts the testing activities, such as: Feature
Model, Product Map, Requirements (and Use Cases), Feature
Dependency Model, and the Architectural Document (Design).
This activity should be performed before starting the tests.

In overall, testing in CAD tries to minimize the PD testing.
It can be achieved through preserving variability in core assets.
Knowledge produced in the CAD testing can be reused in PD
testing, which may reduce the effort of building assets. This will
be detailed next.

A. Managing Test Assets Variability within RiPLE-TE
In all activities mentioned from both CAD and PD testing,

each level encompasses four main tasks: planning, design,
execution and reporting. Figure 2 shows the process workflow,
which also includes the notion of Change Requests (CR), which
is handled by RiPLE-EM. In decision node 1, if any error was
found during execution that needs to be supported by a CR,
RiPLE-EM discipline is invoked.

The feedback flow represented in the Figure referring to the
decision node 2 asks whether the coverage criteria defined in
planning was achieved. If yes, then the flow gets to the end
node. Otherwise, planning is revisited and the main flow is
performed again.

Although the remaining flows are presented as sequentially
initiated, this is an iterative and incremental activity, with
feasible feedback connections enabling refinements.

Due to limitation constraints in this paper, the complete and
detailed list of steps, artifacts, input, outputs, and roles
associated can be found at the RiPLE website2 and also in [12],
the M.Sc. dissertation this work is associated with. Our proposal
indeed does not introduce new terminologies for testing, but
rather tailors existing patterns [10][13].

The management of assets in RiPLE-TE is defined under the
idea that every test case created may represent variability. Our
previous effort was to define a meta-model in order to capture
the relationship among the artifacts created in a SPL project
[14]. In the metamodel, the RiPLE-TE works mainly in the
relationship of use cases and test cases.

In the test model, test cases are considered the main artifact

to be handled. Every use case supports one or more test cases.
The use case elaboration expands on the abstract use case

2 http://riselabs.dcc.ufba.br/riple/

Figure 1. Testing Workflow.

Figure 1. RiPLE-TE CAD and PD Workflow.

714 715

definition, in which variability is represented in the use cases. A
use case is composed by the entity AbstractFlow that comprises
the sub entity Flow, which actually represent the use case steps.
Every step can be associated with a sub flow that can represent
a variation point. Figure 3 shows an excerpt of the metamodel.

Reuse is encouraged in a sense that, both use cases and test
cases are composed by fragments. Each fragment represents a
recurring set of interactions required to achieve a sub-goal. As
each fragment deals with some specific sub-goal, it can be
customized and fit variation point needs. This strategy is built
on the work described in [15]. Dependencies among fragments
in test cases and use case can be tracked.

A tool has been under development that will support the
RiPLE-TE, but so far we have only counted on manually
performed tasks.

IV. INITIAL EVALUATION
This initial evaluation was focused on trying to understand

the role of unit testing in SPL, using the RiPLE-TE, according
to the process defined in [16].

A. Definition
Based on the GQM [17], the experimental study goal was to

analyze the RiPLE-TE Process, Unit Test level for the purpose
of evaluation with respect to its effectiveness and to identify
which professional skills have impact on the test activity results
from the point of view of the potential users in the context of a
SPL testing project at the University.

We were intended to answer the following questions:

• Q1. Do the quality of detected defect improve when the
process is followed?

• Q2. Does the rate of defect detection increase when the
process is followed?

• Q3. Does the test coverage rate increase when the
process is followed?

• Q4. Which professional skills have influence on the
results of the testing activity?

Since the literature [3][4] does not provide metrics directly
associated to SPL testing, we applied known practices from
SSD testing, with some adaptations to reflect SPL issues.

• M1. Test Case Effectiveness (TCE): the ratio of the
amount of defects reported (Dtot) to the total number of
test cases (Ntc). TCE metric validates the effectiveness
of functional test cases. This metric refers to Q2 and
Q4. Defined as: TCE = (Dtot/Ntc) × 100.

• M2. Quality of Defects Found (QDF): the number of
valid defects found, normalized to Difficulty (DD) and
Severity (SV) values. Every defect is valued with a
coefficient (k and r) according to its DD and SV. M2
refers to Q1 and Q4. Defined as: QDF = k.f(DD) +
r.f(SV).

• M3.Test Coverage (TC): gives the fraction of all
features (or requirements/use cases) covered by a
selected number of test cases or a complete test suite.
Coverage (Cov) was, in this study, generated by the
Eclemma code coverage tool, and JUnit framework.
M3 refers to Q3 and Q4. Defined as: TC = Cov.

B. Preparation
Design. One factor with two treatments. We compared the

two treatments against each other [16]. Factor in this experiment
was the RiPLE-TE unit testing process and treatments were: (1)
Testing with the process; and (2) testing without it. The
participants were divided in two groups, in which one
performed testing using the process and the second performed
in an ad-hoc fashion.

Experiment materials. Objects used in this experiment was
as follows: Consent Form, Background Questionnaire, Test
Assets and Component Source Code, RiPLE-TE Documentation
- including guidelines and usage samples, Error Reporting
Form, Feedback Questionnaire. A copy of common artifacts
was provided: master test plan, unit test plan template, feature
model, project code - components to be tested and specification
- requirements and use cases. Error reporting forms were also
provided.

All participants signed a consent form, as a means of
agreeing to join the study, and filled in a questionnaire, with
their background information, the background questionnaire.
They provided information about their experience with software
development, SPL, testing, and the tools required by the
experiment, and expertise in industrial projects.

There were designed three types of feedback
questionnaire: (a) addressed to the group that did not use the
process; (b) another to the group that applied the RiPLE-TE.
The questionnaires were designed to provide information on the
use of the approach, through gathering information about the
participants’ satisfaction; (c) designed to gather feedback on the
subjects that did not use the process, regarding their opinion
about the possibility of finding more defects, if they had used
the process. This was answered after the last training session,
when the RiPLE-TE was addressed.

Hypotheses. The Null Hypotheses are stated considering
that there is no benefit of using the process (RP), if compared to
ad-hoc testing (AH), in terms of effectiveness. They are:

H01: μTCEAH ≤ μTCERP

Figure 1. An excerpt of the metamodel [14].

714 715

H02: μQDFAH ≤ μQDFRP
H03: μTCAH ≤ μTCRP

Conversely, alternative hypotheses state the opposite values.
Due to space constraints, we omitted them.

Variables. Dependent variables were the metrics TCE and
QDF. The independent variables were the background
information of the participants, due to our intention of
evaluating the effectiveness of the proposed approach and to
identify which skills could interfere in the results.

Project. It was chosen a SPL project in the domain of
conference management. The goal of the project is to develop
the RiSE Chair product line, targeted at the submission/
management of papers in conferences, journals, and others,
including the control over the review life cycle. The RiSE Chair
platform was based on commonality and variability among
systems such as: EasyChair, CyberChair and JEMS 3. The
project is composed of 41 features extracted from the scoping
analysis of such systems. The code was developed in the J2EE
platform, with Spring and Hibernate, implementing variability
in 8 core components.

Participants. 30 undergraduate students taking a V&V
course, from Computer Science department at Federal
University of Bahia, Brazil. This course is targeted at last year
undergraduate students. All students had previously enrolled in
courses on OOP, Java, and Testing.

C. Execution
The experiment was conducted from November to

December in 2009, according to the definition and planning
documented. From the amount of components of the developed
SPL, we selected one feature, with its variants, and
dependencies, to our experiment.

Participants were said for not to implement new features, but
rather analyze the components they were given and implement
the test cases to evaluate existing assets.

D. Analysis
Test case effectiveness. In terms of valid defects found, in

group 1 (G-1) (without run the process), the mean value was
6.188 with an standard deviation (sd) of 3.187, while in group 2
(G-2) (with the process), the mean was 3.857, with a sd of
3.505. Regarding designed test cases, in G-1 the mean was
10.38 with a sd of 5.137 and 8.143 with a sd of 3.670 in G-2. By
applying the TCE formula, the mean in G-1 was 0.725 with a sd
of 0.540. In G-2 the mean was 0.425 with a sd of 0.353. Median
of G-1 was slightly greater than in G-2.

Quality of defects found. What we mean by defect
category refers to defects found that, although described in
many different ways, they expressed similar problems in the
code. We arranged these similar problems into categories. Then,
we identified 12 groups of defects, and classified them
according to associated Difficulty (DD) and Severity (SV). The
classification was done based on a discussion performed with
experts, considering their industry expertise. Each group of
defect was assigned to a coefficient. As there were no baseline
values to these coefficients, we performed PCA calculations

3 http://submissoes.sbc.org.br/

[18], to identify such values. These formed the elements to
calculate the score of quality. As result, the mean in G-1 was
8.868, and a sd of 3.896; in G-2 the mean was 6.048, and a sd of
5.302.

Test Coverage. While in G-1 the mean was 0.663 with a sd
of 0.136, whereas in G-2 the mean was 0.630 with a sd of 0.364.

Hypothesis Testing. Regarding TCE, t-test (unpaired, two-
tailed) was applied and resulted in a p-value higher than 0.05,
which indicates that the Null Hypothesis H01 could not be
rejected. H02 could not also be rejected, since calculated p-value
was higher than 0.05. Thus, we can conclude that there was no
gain using the process instead of an adhoc fashion, regarding
QDF. TCov presented apparent similar values, but when
applying t-test in this sample resulted in a very high p-value,
which lead us to conclude that means are extremely different. In
TCov, then, we could not draw conclusions.

Interpretation. Considering absolute values, the results
presented insights that enabled us to infer that unit testing in
SPL does not have impressive differences if compared to SSD,
since practitioners which did not have experience in SPL
projects had slightly better results than others who applied a
formalized process. However, the model extracted from the
multivariate regression analysis (MRA) [18], which correlated
all variables, did not return satisfactory results, in a sense that,
much was collected but a very small amount of variables
impacted the results.

The insights served as a first step towards defining, and in
long-term, refining, a process for testing SPL. Moreover,
although the results have presented results very different from
expected, in terms of the use of a formalized process for SPL,
this experiment served for us to sketch models using MRA, and
to define baselines for future experiments.

V. RELATED WORK
In [19] an approach providing a method to derive scenarios

to be tested is proposed. It deals with textual use cases as the
central development artifact. Use cases are extended with tags,
which describe the variability. Test specifications containing
variability are derived from these use cases. It handles how to
manage variability and how to instantiate test cases for a
specific product.

In [20], a method for automatic generation of test cases
associated to specific products is provided, from sets of
incomplete and generic scenarios associated to a product line.
They propose a two-step process, from test requirements to
product-specific test cases. From use cases, they structure
scenarios to produce reusable test patterns common to an entire
product line and represented using the UML. When the final
design is available and a product is chosen as test target, test
cases for that particular product are synthesized.

In [21], an approach to support the systematic reuse of assets
for system and integration testing of SPL is provided. It
describes test cases from requirements, by using UML activity
diagram to represent all possible use case scenarios for a use
case.

These are representative approaches to the field, but they
have limitations that prevent their larger application. They do
not provide elements of software process, encompassing the

716 717

whole life cycle and the SPL phases. Besides, little is reported
regarding validation. Only [21] did it. However, replications
would be difficult since no details but rather only the results are
described. It does not invalidate the proposed process, but it
may be infeasible to implement it in contexts other than what
was reported. Hence, more practical evidence is required.

In our proposal, we use the test case generation methods
from these approaches, since we considered them as well
defined practices, but we also give details that are not provided
by them, in terms of activities sequence, inputs and outputs, and
so on.

VI. CONCLUDING REMARKS AND FUTURE WORK
In this paper, the RiPLE-TE process for testing SPL has

been introduced as a process-centered strategy to coordinate the
testing activities. It was designed based upon results gained
from a systematic mapping study performed aimed at providing
evidences about this research field and sketch a set of open
rooms for improvement [3].

The RiPLE-TE process was based on best practices re-
ported in the literature, and focused on a direction that no
existing approaches had been concerned about, the coordination
of test activities in the whole lifecycle and the SPL phases. This
way, our proposal works out as a complementary solution to
existing ones.

In addition, based upon the underlying assumption that
effective processes are required due to the additional complexity
of testing SPL because of assets variability [3], we designed an
experiment in order to investigate such assumption through
evidences. Hence, our initial evaluation was focused on
understanding the role of RiPLE-TE process, unit test level, in a
SPL project. This served as an initial step towards clarifying
peculiar characteristics of different test levels in a SPL project.
A formal basis of experimentation was applied in this work
[16].

We have been working towards incrementally building
knowledge about the role of testing procedures in SPL. Thus, as
future work we are intended to empirically investigate other test
levels, based on this proposed process and also making
comparisons with approaches that support other levels. Besides,
we are also intended to investigate how variability affects test
cases and explosion of test cases, and how we manage that and
how we organize SPL test cases. Our model for representing
test assets and their interaction with other artifacts [14] was a
first step towards such understanding.

ACKNOWLEDGEMENTS
This work was partially supported by the National Institute

of Science and Technology for Software Engineering (INES),
funded by CNPq and FACEPE, grants 573964/2008-4 and
APQ-1037-1.03/08, CNPq grants 305968/2010-6, 559997/2010-
8, 474766/2010-1 and FAPESB grant 783/2010.

REFERENCES
[1] R. Kolb and D. Muthig, “Challenges in testing software product lines,”

CONQUEST - 7th Conference on Quality Engineering in Software
Technology, pp. 81–95, 2003.

[2] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product family testing: a
survey.” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 2, p.
12, 2004.

[3] P. A. M. S. Neto, I. C. Machado, J. D. McGregor, E. S. Almeida, and S.
R. L. Meira, “A systematic mapping study of software product lines
testing,” Information and Software Technology, vol. 53, no. 5, pp. 407 –
423, 2011.

[4] E. Engström and P. Runeson, “Software product line testing - a
systematic mapping study,” Information and Software Technology, vol.
53, no. 1, pp. 2 – 13, 2011.

[5] M. Jaring, R. L. Krikhaar, J. Bosch,“Modelingvariability and testability
interaction in software product line engineering,” in 7th International
Conference on Composition-Based Software Systems, 2008, pp. 120–
129.

[6] P. Clements and L. Northrop, Software Product Lines: Prac- tices and
Patterns, Boston, MA, USA: Addison-Wesley, 2001.

[7] R. Kolb and D. Muthig, “Making testing product lines more efficient by
improving the testability of product line architectures,” in ROSATEA:
ISSTA workshop on Role of software architecture for testing and
analysis, 2006, pp. 22–27.

[8] J. D. McGregor, “Building reusable testing assets for a software product
line,” in 14th International Conference on Software Product Lines: Going
Beyond, ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
505–506.

[9] M. Anastasopoulos, T. H. B. Oliveira, D. Muthig, E. S. Almeida, and S.
R. L. Meira, “Evolving a software product line reuse infrastructure: A
configuration management solution,” in VaMoS - 3rd Workshop on
Variability Modeling of Software-Intensive Systems, Seville, Spain,
2009, pp. 19–28.

[10] IEEE Standard for Software Test Documentation - 829:1998. IEEE
Computer Society, 1998.

[11] C. Denger and R. Kolb, “Testing and inspecting reusable product line
components: first empirical results,” in International Symposium on
Empirical Software Engineering, 2006, pp. 184–193.

[12] I. C. Machado, “RiPLE-TE: A software product lines testing process,”
M.Sc. Dissertation, CIn - Informatics Center, UFPE - Federal University
of Pernambuco, Recife-PE, Brazil, Aug 2010.

[13] J. D. McGregor, “Testing a software product line,” CMU/SEI - Software
Engineering Institute, Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2001-
TR-022, ADA401736, 2001.

[14] Y. C. Cavalcanti, I. C. Machado, P. A. M. S. Neto, L. L. Lo- bato, E. S.
Almeida, and S. R. L. Meira, “Towards metamodel support for variability
and traceability in software product lines,” in VaMoS - 5th Workshop on
Variability Modeling of Software-Intensive Systems, Namur, Belgium,
2011, pp. 49– 57.

[15] F. G. Dias, E. A. Schmitz, M. L. M. Campos, A. L. Correa, and A. J.
Alencar, “Elaboration of use case specifications: an approach based on
use case fragments,” in SAC - ACM Symposium on Applied computing,
Fortaleza, Ceara, Brazil, 2008, pp. 614–618.

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wessle ́n, Experimentation in software engineering: an introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[17] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal question matric
paradim,” in Encyclopaedia of Software Engineering, vol. 2. John Wiley
& Sons, Inc., 1994.

[18] I. T. Jolliffe, Principal Component Analysis. Springer, 2002.
[19] A. Bertolino and S. Gnesi, “Pluto: A test methodology for product

families,” in Software Product-Family Engineering, 5th International
Workshop, PFE, Siena, Italy, 2003, pp. 181– 197.

[20] C. Nebut, S. Pickin, Y. L. Traon, and J. Jézéquel, “Reusable test
requirements for uml-modeled product lines,” in REPL: Proceedings of
the Workshop on Requirements Engineering for Product Lines, Essen,
Germany, 2002, pp. 51–56.

[21] A. Reuys, S. Reis, E. Kamsties, and K. Pohl, “The scented method for
testing software product lines,” Software Product Lines - Research Issues
in Engineering and Management, pp. 479–520, 2006.

716 717

An Agile Scoping Process for Software Product Lines
Marcela Balbino1, Eduardo Santana de Almeida2, 3, Silvio Meira1, 3

1 Federal University of Pernambuco (UFPE) – Recife, Pernambuco, Brazil
2 Federal University of Bahia (UFBA) – Salvador, Bahia, Brazil

3 Reuse in Software Engineering (RiSE) – Recife, Pernambuco, Brazil

Email: {mbsm, srlm}@cin.ufpe.br, esa@rise.com.br

Abstract – The constant changes and the search for new benefits in
the software industry make possible the emergence of new
research areas. In this context, a trend that has presented
important benefits is the area of agile software product lines.
Software Product Lines (SPL) and Agile Methods (AM) both
search to satisfy the customer, increase quality and decrease time-
to-market and costs. The integration between SPL and AM is a
challenge, but can increase the benefits that these approaches
offer. In this sense, this paper proposes an agile scoping process
for SPL.

Keywords – Scoping, Software Product Lines, Software Process.

I. INTRODUCTION

The main aspect for software development processes
adoption, with objects or not, is the idea of reuse. The idea is to
build software across the use of existing artifacts or knowledge.

The implications for decreasing development time and costs
and quality increase make the reuse approach highly attractive.
In this context, one of the reuse approaches with significantly
and increasing success is Software Product Lines (SPL) [5].

In order to obtain success in the SPL development, the
planning should be made carefully. The planning performed in
the initial phase of software product lines development is called
scoping. Product lines scoping is the phase by which
information used in software systems development within a
domain is identified, captured and organized with the purpose
of making it reusable when building new products [2]. The
literature has highlighted the importance and benefits of
scoping for the product line success [13][14][15][21].

On the other hand, another success practice in industry is
agile methods that encourage strong business involvement in
development activities, focus only on the requirements at hand
with incremental planning and design. Initial evidences based
on the results of ongoing research suggest that agile methods
are advantageous, given the right context [3][6]. In spite of the
differences, when compared to SPL, AM has the same overall
objective: improve software development productivity. In this
sense, recently, the community started to investigate if these
approaches can be combined and how the agile aspects can be
integrated in product lines processes for maximizing the
benefits searched by product lines and agile methods [7][10]
[11][18][19][20][24]. However, even with the initial efforts,
specific areas have been few explored on this perspective, such

as scoping. In this sense, this paper presents a scoping process
for SPL based on some agile principles.

II. PROCESS OVERVIEW

For more than one decade, the SPL scoping has been
investigated [5][8][13]. However, the studies do not address the
issue “how to perform systematic and agile scoping” which
starts a new research direction.

The importance of scoping to be systematic in SPL is based
on the idea that it should manage variabilities and
commonalities among several applications, factor which
increases its complexity compared to traditional software
development. Thus, in order to develop a SPL is needed
systematic scoping to obtain positive results. On the other
hand, as SPL scoping is totally defined up-front, it demands
high effort and costs. In this sense, introducing agile aspects in
SPL scoping enables to add agility for scoping decreasing
effort and costs.

In this context, a systematic and agile scoping process with
tasks, guidelines, inputs, outputs and well defined roles,
incorporating agile practices in their lifecycle is important to
decrease the risks related to product lines and decrease the
effort and costs up-front.

Based on this scenario, this work presents RiPLE-SC, an
agile scoping process for SPL. It is part of the RiPLE (The
RiSE Process for Product Line Engineering), project that is
being developed within Reuse in Software Engineering (RiSE)
Labs1 to develop a process covering the full SPL lifecycle.

RiPLE-SC is the first discipline of the RiPLE as can be
seen in Figure 1 and has a direct relationship with the process
of Requirements Engineering (RE), Risks Management (RM)
and Evolution Management (EM) from RiPLE.

The RE activities are responsible for refining the scope,
thus, the scope definition is a pre-requisite to start the RiPLE-
RE which has the Product Map artifact (a matrix of features
and products generated by the RiPLE-SC) as a mandatory
input. The RM activities are related to the identification and
management of the risks related to scoping as well as all the
risks identified during the RiPLE execution. If some risk is
identified, it is catalogued by the RM and techniques for risk
management are applied to mitigate it.

The communication between SC and EM is performed by
Change Requests and maintenance tasks in the artifacts created
during the scoping phase. If some artifact of SC is incomplete

1 http://labs.rise.com.br.

718 719

or inconsistent and it is discovered in some of the phases of the
scoping process, the SC requests a change to EM. The EM
analyzes the change and when approved, sends a task to SC.

In the composition of RiPLE-SC, there are phases related to
tasks, roles and work products (inputs and outputs). The roles
defined in the process are: scoping expert - responsible to
conduct the scoping process, driving the workshops performed
in the process; customer - it has critical role in the process and
their presence is essential for that the product lines products
present their real needs; domain expert - provides their know-
ledge on the domains and the products related to it; market
analyst - provides knowledge on market analysis and can help
in the identification of the domains and products more relevant
for a determined market segment; developer - important for the
assets scoping phase, where they define estimative related to
effort; architect - responsible to indicate which features will
constitute the reference architecture; and product line
manager - responsible by providing the organizational goals.

Regarding the phases, they are iterative, incremental and
clearly integrated with agile aspects, such as: review meetings
to obtain customers’ feedback; creation of user stories to obtain
the real needs from the customers; pre-scoping meeting to
gather the different visions of the stakeholders; and so on. The
phases are discussed in details in the next section.

III. PHASES AND GUIDELINES

RiPLE-SC consists of four main phases that are performed
in an iterative way to enable frequent feedback: (A) Pre-
Scoping, (B) Domain Scoping, (C) Product Scoping and (D)
Assets Scoping. Besides, we believe that during the
achievement of theses phases it is very important the use of
reflection meetings, meetings that should be performed at
regular intervals in order to discuss, what is good, what should
be improved and what should be performed to improve,
adjusting the behavior of the team adequately.
A. Pre-Scoping

This phase is composed of two tasks: pre-scoping meeting
and analyze market. In it, relevant characteristics that will
influence the next stages of the scoping process such as project
vision, operational and organizational context, stakeholders and
roles, business goal and market potential are identified.

1) Pre-Scoping Meeting
This task has as objective to identify general information

related to: customer, team and organization. Moreover, this
task aims to provide an initial contact between the customer
and the project team and exposes the agenda that will drive the
application of the process.

The identification of the information necessary from the
customer, project team and organization can be obtained with
the use of questionnaires and semi-structured interview that
drive the pre-scoping meeting. The meeting is conducted by the
scoping expert through informal conversation with the
stakeholders, factor that encourages the customer collaboration
in the project and the collaboration inside the team. The active
involvement of the customer and the cooperation among all the
stakeholders is essential for the success of agile projects [9].
Besides, the communication face-to-face is considered by the
Agile Manifesto as the most efficient and effective method of
conveying information in a project team.

Figure 1. Relationship of the SC with RM, EM and RE.

Four steps should be performed in the pre-scoping meeting:
identify organizational context, identify operational context,
analyze stakeholders and identify business goals. For
performing these steps, the pre-scoping meeting receives as
inputs the stakeholders’ information, which are related to
information such as “what” are the expectations of the
stakeholders for the SPL, “what is the profile of the project
team” and in “which” operational and organizational context
the project will be inserted; and a domains list, an artifact in
which are defined the domains that will be analyzed in the
product line. As output is produced, the SPL vision, where
relevant information for the project, identified in the pre-
scoping meeting, are documented.

a) Identify Organizational Context
It must capture context aspects of the organization for

identifying how the activities performed during the
identification of the scope will be influenced. Thus, the
following aspects should be considered: 1. structure, it is an
aspect that can influence the planning of meetings and
workshops. In the context of small organizations, the execution
of an agile approach, i.e., focused on workshops integrated by
all the projects stakeholders, makes possible the face-to-face
communication, the collaboration among the stakeholders and
consequently the decrease of documentation. On the other
hand, in complex organizations, dates are harder to find and
important experts might miss due to other obligations and
sometimes it is not possible that all people meet at the same
location [13], thus for mitigating these problems, we
recommended the use of different ways such as workshops and
individual interviews for communication and coordination; and
2. maturity, it directly influences the problem understanding
and consequently the agility in which the scoping process is
performed. The knowledge of both, process and domain is
fundamental for the best scoping result. Therefore, the maturity
will determinate the need for trainings on the process and the
investigation of documentation about the domains before
performing the scoping process.

b) Identify Operational Context
The operational context has impact on the scoping

planning, influencing the overall scoping process [13]. They
drive decisions that affect all further scoping tasks. These
decisions are exposed in the following aspects: 1. business
constraint, (e.g. time-to-market and resources) can affect the
process lifecycle and the detail level of some assets.
Furthermore, it influences on the choice of stakeholders, tools

718 719

and in the scope size. In projects where the time and the
resources are limited, the team should commit oneself with a
smaller scope; and 2. process, the identification of the process
used by the organization determines if there is a relationship
between it and reuse practices. In cases where the organization
presents reuse practices inserted in the current process, the
adoption of SPL practices is easier, as well as the
understanding of why specifics scoping tasks are performed.

c) Analyze Stakeholders
A stakeholder is someone who has a defined interest in the

outcome of the project. In the RiPLE-SC, the choice of the
stakeholders and their respective roles is performed according
to the profile analysis of each stakeholder in the initial context
of the product line.

A product line can start from the scratch, i.e. it can be
introduced while some products are already under
development, or its core assets can be reengineered from
legacy systems. Thus, the initial context influences on the
identification of the stakeholders and consequently in the scope
definition, because it can present different information sources.
In this choice is also considered the maturity of the
stakeholders on the domains that will be analyzed in the SPL.

d) Identify Business Goals
In this step, stakeholders’ goals are identified. RiPLE-SC

considers that scoping is not only an economical activity, but
also a social activity and, therefore, should be defined with the
participation of each relevant stakeholder group for the SPL,
making possible the identification of different views and
business goals. In this sense, there are an arbitrary number of
business goals for the product line development. However,
according to the study on software reuse measurement based on
experts performed by the RiSE Labs, the business goals most
considered in organization that adopts practices of product
lines are, respectively: reduce costs, improve the productivity,
improve the time-to-market, improve the quality, increase the
company portfolio and gain new markets.

2) Analyze Market
The systematic research and the analysis of external factors

such as market segments and potential determine the success of
a domain in the market. It involves the gathering of business
intelligence, competitive studies and assessments, market
segmentation, customer plans, and the integration of this
information into a cohesive business strategy and plan [5].
Thus, the task analyze market aims to obtain information of the
market segments in which the domains are inserted for
identifying issues that can determine their success in the
marketplace.

This task uses as input the domains list that will be
analyzed in the product line and the SPL vision, producing as
output the business plan. The business plan is a strategic plan
that has information about the domains potential in the market,
the market segments related, their sales channel and the factors
that determine the success of these domains in the marketplace.
The market expert performs this task.

B. Domain Scoping
A key question in developing a domain scoping process is:

which set of factors can determine the domains and sub-
domains of more potential? The answer for this question is to
consider dimensions such as: maturity, volatility, market

potential, reuse potential, risks, experience, coupling and
existing code potential. These dimensions directly impact on
the potential of a domain or sub-domain, for example, mature
domains make possible easy access to documentation and the
existence of reusable code is more probable. In this sense, the
domain scoping phase of the RiPLE-SC combines the
fundamental aspects for a success domain analysis.

The domain scoping of RiPLE-SC aims to analyze and
discuss the domains and sub-domains among the projects
members, considering points which aid in the definition of the
most relevant ones. Moreover, this phase proposes the
knowledge dissemination of the domain and sub-domain
among the team, decreasing the need for documentation.

This phase is composed by the task analyze domains, which
has as inputs: an already prepared list of domains, the SPL
vision, the stakeholders’ knowledge, relevant information of
each stakeholder about the dimensions discussed, and the
business plan. It produces as output: the domains and sub-
domains list, which is composed by the domains and sub-
domains of more potential for the SPL

1) Analyze Domains
In the RiPLE-SC, the task analyze domains as well as the

other tasks of the process is iterative and incremental.
Therefore, in each iteration, new information can be searched
and thus evidenced the need of inclusion or exclusion of some
domain. For example, it is common that in the definition of the
products, new domains are identified and thus an analysis of
these domains should be performed. It is possible also that with
the prioritization of the features, a domain is considered
dispensable and excluded.

The domain analysis of the RiPLE-SC uses the workshops
culture in its execution, i.e., all steps of the task analyze
domains are performed in the workshops format, mediated by
the scoping expert. The workshops are a fundamental resource
from agile methodologies for maintaining the integration in a
team. Moreover, it allows that the stakeholders of the project
discuss several aspects expressing their viewpoints.

The domain analysis workshops proposed in the RiPLE-SC
makes possible the communication face-to-face and the
collaborative work between business and technical people. It
has as goal to identify the domains and sub-domains more
relevant for the product line. In addition, this analysis requires
a clear understanding of the stakeholders that integrate the
workshops of the domains, because the agility can be
negatively influenced when the stakeholders do not have
experience with them. Thus, before the beginning of the
domain analysis, the participants should explore information on
the domains that will be analyzed. This information can be
obtained from: project plans, user manuals, modeling, data
dictionary, existing applications and knowledge from domain
experts.

Four steps should be performed in the task analyze
domains: review domains, identify sub-domains, analyze sub-
domains and prioritize domains and sub-domains. These steps
are discussed in the next sections.

a) Review Domains
In this step, the objective is to discuss general

characteristics of the domains, making possible to align the
knowledge of the stakeholders regarding them. The review of

720 721

each domain is performed in pre-determined timeboxes. The
timeboxes are time interval which cannot be exceeded. With
them is possible to limit the time of the analysis and maintain
the focus on the workshop. In the review, the stakeholders
should express their understanding on the domains, enabling
them to identify new domains, exclude existent ones or
maintain the initial set of domains.

b) Identify Sub-Domains
A domain can be composed by a big number of systems.

Furthermore, the identification of “what” is in and out in a
given domain depends on the vision of specialists and
stakeholders in general, because each one has their particular
interests. Thus, the division of the domains in technical sub-
areas (sub-domains) makes possible a deepened analysis of
each individual area of the domain, facilitating the choice of
the areas where the reuse is adequate and where the economical
potential is most suitable.

The sub-domains definition is performed in brainstorms
sessions. These brainstorms provide an opportunity for the
stakeholders, together, gather information about their needs and
expectations regarding to key sub-domains that are of
particular concern to them. In this step, is important also that
the team is aligned with the customer’ needs and the product
line as whole. Thus, the knowledge of domain experts and
market experts is determinant to drive the team in the choice of
which sub-domains are more relevant for SPL and their
customers.

c) Analyze Sub-Domains
In this step, each sub-domain is individually discussed by

the stakeholders concerning the relevant dimensions previously
defined for the analysis. Thus, considering the different visions
of the stakeholders, a conclusion about each dimension
evaluated in each sub-domain is performed. The following
dimensions are considered in the analysis: 1. experience, it
indicates the level of knowledge that the participants of the
workshop have on the sub-domain; 2. risks, they are identified
and analyzed to determine the negative impact on the sub-
domain. In the analysis, the risks are prioritized according to
the perceptions of the team about their severity; 3. volatility, it
determines if the sub-domain changes with the time. 4.
maturity, it determines if the sub-domain is stable; 5. code
potential, the code existence facilitates the understanding of the
sub-domain and aids in the development; 6. market potential, it
identifies which sub-domains can obtain greater economical
return in the market segments; 7. reuse potential, it determines
the possibility of the sub-domains of composing a generic reuse
infrastructure; and 8. coupling, it identifies if the sub-domains
can be dealt in an independent way. The dimensions considered
in the evaluation of the sub-domains were defined with base on
relevant aspects identified in [21].

d) Prioritize Sub-Domains
The prioritization is performed based on the results

obtained in the sub-domains analysis, the business goals and
considerations made by the customers in the task of pre-
scoping meeting.

This step is performed by different stakeholders and is
possible that the different viewpoints result in conflicts. Thus,
it is recommendable an initial search for common interests and
the negotiation of the divergent ones. In this case, discussion

sessions moderated by the scoping expert can be made,
enabling the alignment of the interests for all the team. With
these sessions is constructed the final list of domains and sub-
domains more relevant for the product line.

C. Product Scoping
In today’s competitive business environment, it is

extremely important to offer for customers exactly the products
that they want. SPL has the potential to enable companies to
offer a large variety of products while still being able to
manage the complexity caused by this increased number of
products. In this sense, the product scoping phase aims to
define the product portfolio that optimally satisfies customer
demands, characteristic of highest priority in agile process,
where the customers’ role is critical [22] and at the same time
restricts the number of products offered.

In this phase, the products and features associated with
them are identified and evaluated with respect to their potential
for introduction in the product line. In this identification and
evaluation, the market analysis as well as the real needs of the
customers are considered.

In order to define the product scoping, five tasks should be
performed: construct user stories, identify features, features
review meeting, identify products, construct product map and
validate product map.

1) Construct User Stories
In a product line started from scratch or in its evolution, the

utilization of user stories as basis for identification of
customers’ needs and consequently features of product is very
important. It is well known the fact that customers have
difficulties of expressing their expectations before using the
final product [23]. Thus, user stories should be used in these
cases, because in our vision this is the most natural way for
customers express their needs. However, in cases where is
necessary to construct a product line of pre-existents products,
i.e. in cases of reengineering, the construction of user stories is
unusual, and the features are identified from the analysis of
documents associated to products or through the code.

RiPLE-SC defines user stories as brief descriptions on how
customers will use the system [9]. The stories present short
names, business value and are written in a short way or
graphical description.

Each story can be written in index cards because they are
relatively small, easy to move and order [9]. If there is the need
to report the progress to others parts of the organization in a
traditional format, electronic media can be used.

2) Identify Features
The goal of this task is to determine the features which will

be present in the further products of the SPL. It is performed
across a workshop whose collaborative participation of the
team is essential. This workshop should be moderated by the
scoping expert, and all participants are expected to be fully
engaged. During the workshop is possible to identify and
discuss several issues with base on different perspectives. In
this sense, different views of the stakeholders will be
confronted and analyzed enabling a better scoping result.

For identifying the features, RiPLE-SC uses as base: 1. user
stories, in this case an evaluation of the user stories by
representative stakeholders is essential to determine if the
stories are feasible and complete, and thus to identify potential

720 721

features for the product line and create competitive products;
and/or 2. the abstraction of the previous knowledge obtained
from e.g. books, user manuals, design documents and code.

In the RiPLE-SC process, functional and non-functional
features are considered. The functional features are related to
aspects as “what” the system has to do. The non-functional
features are associated with quality attributes, which the
products should address. These attributes will serve as
architectural drivers for the product line and present impact on
the product line architecture. Therefore, the identification of
non-functional features is of extreme relevance for the
architecture of the product line.

3) Feature Review Meeting
The feature review meeting is related to feature evaluation

and negotiation between the organization (domain expert and
marketer) and customers. Domain experts and market experts
are indicated for this task because they have high knowledge of
the domains, and also know potential market segments and
their needs. In this context, it is possible to obtain the
customer’s feedback enabling they to evaluate the work
performed and define if the releases are aligned to their real
needs. With the review meeting, new features can be included,
excluded or reprioritized in the list.

4) Identify Products
The task identify products has as objective to find

appropriated products for the product line. This task receives as
inputs the market experts’ knowledge, the SPL vision, the
features list and the business plan. The output of this task is a
list that presents the products of more potential for the SPL.

The choice of products for a product line is critical for the
organizations, because the market is competitive and requires
products diversity, factor that can have negative consequences,
such as: increase of costs, complexity and time-to-market,
causing decrease of benefits for the product line [12]. Thus, in
this choice it is highly important to consider a set of products
aligned with the goals of the organization and needs of a
specific group of customers or market segment.

5) Construct Product Map
After the identification of the products and their features,

these are organized in a product map. In this map, columns and
rows are used to represent products and features, respectively.
Moreover, in this map, each column is composed of two other
columns: the first indicates if the feature is a possible further
feature of the product; the second indicates if the feature is
required in the product. Thus, it is possible to determine which
features will integrate or not each product. In addition, in the
product map, each feature is related to a scope as follows:
mandatory, features that are required by all members of the
product line; optional, features that are part of some products,
i.e., can or cannot be selected by the SPL products; or out of
scoping, features that are part of only one product.

6) Validate Product Map
The product map validation is performed in meetings with

the participation of customers, domain experts and market
experts. These meetings have as objectives: 1. identify if any
feature was forgotten or allocated improperly in some product;
and 2. verify the scope defined for the features.

With this task, the product map is consolidated enabling the
choice of the assets that will integrate the reuse infrastructure

for the SPL.

D. Assets Scoping
The goal of the assets scoping is to determine the

appropriate features that should be built for reuse. Thus, the
assets scoping establishes the reusability of features relevant
for the development of the reference architecture. This phase is
based on a quantitative analysis of the benefits of making the
feature reusable. In this sense, our process determines the
definition of metrics for measuring the benefits that specific
feature has for the product line. It aims to optimize the product
line according to specific benefits.

It is well known that projects have different visions from
different stakeholders and that benefits can differ according to
the business goals of them. In this context, we consider Goal
Question Metric (GQM) [4] as a way for deriving metrics
based on different business goals expected by the stakeholders.
The choice of performing assets scoping focused on GQM was
influenced by the study performed in [1], where ten experts
were surveyed regard some factors related to software reuse
measurement and was identified that GQM is the most utilized
method for reuse measurement.

This phase is composed by the tasks: create metrics, apply
metrics and prioritize product map, as next described.

1) Create Metrics
The metrics creation involves two well-defined steps: refine

and operationalizate business goals, develop benefit and
characterization metrics.

a) Refine and Operationalizate Business Goals
This task initiates with the step refine and operationalize

business goals. Initially, the goals, prior produced in the pre-
scoping phase, are analyzed and refined. The refinement is
made because in the phase of pre-scoping, the goals are
identified generically. Thus, the goals are refined according to
their relevance for the customers, organization and domains.

After the refinement, it is performed the operationalization
of the goals according to four distinct levels: goal, question,
characterization metrics and benefits metrics. The
operationalization flow starts with the goal level, where the
optimized description of the goal is performed following the
schema that has the form of <Purpose><Issue><Object>
<Context>, such as Minimize the effort needed for the
development of new applications from the viewpoint of
software engineers in the company.

In the question level, additional aspects are elicited and the
goal is defined more preciously. After the aspects have been
elicited, the goal is expressed in characterization metrics that
will be used in the benefits metrics. The characterization and
benefit metrics are next detailed.

b) Develop Benefit and Characterization Metrics
The characterization metrics are used for identifying the

need of a specific feature to integrate a product in the product
line. The benefit metrics describe the potential of introducing a
specific feature into reuse infrastructure considering a defined
business goal.

2) Apply Metrics
In this task, the benefit and characterization metrics are

applied for the product map in two steps: apply
characterization metrics and apply benefit metrics.

722 723

a) Apply Characterization Metrics
In general, this task is performed by the stakeholders who

provided the different goals, e.g., the developer can be useful to
estimate effort, while the architect can help in the definition of
which are the impacts of some features in the reuse
infrastructure.

b) Apply Benefit Metrics
After the application of the characterization metrics, the

benefits of the assets for the product line are evaluated. In this
step, the metrics are applied based on the goals previously
considered.

3) Prioritize Product Map
After assigning the values for the benefit metrics, the task

prioritize product map is performed. In this task, the features
with more potential for the product line are selected.

The product map prioritization is performed in a meeting
which involves the customer, manager, marketer and domain
expert, where considerations and negotiations are performed.

As RiPLE-SC is intended to satisfy the customer’s real
needs, their feedback is indispensable for definition of the SPL
scope. Thus, the base to perform the prioritization of the
product map is the customers’ need.

IV. RELATED WORK

In [21], we performed a systematic review on scoping
approaches for SPL where relevant approaches were analyzed
and clustered. Therefore, in this section, we will make a brief
discussion about the main related work.

Helferich et al. [8] focus on Product Portfolio Planning
(PPP) based on Quality Function Deployment. Their work
demonstrates how QFD-PPP can be used to identify different
customer groups and their needs, derive systematically product
portfolio (i.e. members of a product line) and derive common
and variable product functions.

The scoping customization is inserted in [13]. This work
highlights that scoping should be customized for concrete
situation and activities, because representative stakeholders,
artifacts and execution time for the tasks can change according
to several factors, such as: resources, organizations factors, etc.

In the context of agile product lines, one approach proposes
agile scoping [24], where the goal is to define a product map,
i.e. a matrix that relates products and features using active
participation and collaboration among the project stakeholders.
During the approach, tasks of Collaboration Engineering and
practices of AM are used in parallel.

In our work, we defined a systematic agile scoping process
for SPL making possible the incremental scope definition and
agility, favoring the up-front costs and effort decrease.

V. CONCLUSIONS

During the last decade, several efforts were conducted to
achieve effective ways of dealing with the software industry
competitive needs. In this context, Agile Product Line
Engineering (APLE) is a new research area that aims to join the
benefits of product lines and agile methods and which was
motivated by the need to rapidly deliver high quality software
that meets the changing needs of stakeholders.

In this paper, we explored this combination in the scoping
phase. Scoping is the first activity to start a software product

line and is considered key for its success. It aims to decide
which features are in and out in the product line. We believe
that our work can be used as important base to develop the next
generation of scoping approaches covering agile issues. As
future work, we intend to evaluate our process in an industrial
case study in the medical domain.

ACKNOWLEDGEMENT

This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES),
funded by CNPq and FACEPE, grants 573964/2008-4 and
APQ-1037-1.03/08, CNPq grants 305968/2010-6, 559997/20
10-8, 474766/2010-1 and FAPESB grant 783/2010.

REFERENCES

[1] Almeida, E. S. Software reuse measurement – what the experts think
about it. Workshop to Introducing Reuse in the Enterprises, Invited Talk,
Brazil, 2009.

[2] America, P., Thiel, S., Ferber, S., and Mergel, M. Introduction to Domain
Analysis. Technical Report, ESAPS project, 2001.

[3] Boehm, B. Get ready for agile methods, with care. IEEE Computer, 2002.
[4] Briand, L., Differding, C., and Rombach, D. Practical guidelines for

measurement-based process improvement. Software Process
Improvement and Practice Journal, 2(4), 1996, 253-280.

[5] Clements, P., and Northrop, L. Software Product Lines: Practices and
Patterns. Addison Wesley, 2001.

[6] Erickson, J., Lyytinen, K., and Siau, K. Agile modeling, agile software
development, and extreme programming: the state of research. Journal of
Database Management, 16(4), 2005, 88–100.

[7] Hanssen, G. K., and Fægri, T. E. Process fusion: an industrial case study
on agile software product line engineering. Journal System and Software,
2008.

[8] Helferich, A., Herzwurm, G., and Schockert, S. QFD-PPP: product line
portfolio planning using quality function deployment. In Proceedings of
the SPLC, France, 2005, 162-173.

[9] Hunt, J. Agile Software Construction, 2006.
[10] Ghanam, Y., and Maurer, F. An iterative model for agile product line

engineering. In Proceedings of the SPLC, Ireland, 2008, 377-384.
[11] Ghanam, Y., Maurer, F., Abrahamsson, P., and Cooper, K. A report on

the XP workshop on agile product line engineering. ACM SIGSOFT,
2009.

[12] Jiao, J., Zangh, Y., and Wang, Y. A heuristic algorithm for product
portfolio planning. Computers & Operations Research, 34(6), 2005.

[13] John, I., Knodel, J., Lehner, T., and Muthig, D. A practical guide to
product line scoping. In Proceedings of the SPLC, U.S., 2006, 3-12.

[14] John, I., and Eisenbarth, M. A decade of scoping – a survey. In
Proceedings of the SPLC, U.S., 2009, 31-40.

[15] John, I. Using documentation for product line scoping. IEEE Software,
2010.

[16] McGregor, J. D. Agile software product lines, deconstructed. Journal of
Object Technology, 7(8), November, 2008, 7-19.

[17] McGregor, J. D. Agile software product lines - a working session. In
Proceedings of the SPLC, Ireland, 2008, 364.

[18] Mohan, K., Ramesh, B., and Sugumaran, V. Integrating software product
line engineering and agile development. IEEE Software, 2010.

[19] Moraes, M. B. S., Almeida, E. S., and Meira, S. R. L. A systematic
review on software product lines scoping. In VI Experimental Software
Engineering Latin American Workshop (ESELAW), São Carlos, Brazil,
2009, 63-72.

[20] Nerur, S., Mahapatra, R., and Mangalaraj, G. Challenges of migrating to
agile methodologies. Communications of the ACM, 48 (5), 2005, 72-78.

[21] Nuseibeh, B., and Easterbrook, S. Requirements engineering: a roadmap,
In Proceedings of the FOSE, Limerick, Ireland, 2000, 35-46.

[22] Noor, M. A., Rabiser, R., and Grünbacher, P. Agile product line planning:
a collaborative approach and a case study. Journal of Systems and
Software, 2007, 81(6), 868-882.

[23] Schmid, K. A comprehensive product line scoping approach and its
validation, In Proceedings of the SPLC, USA, 2002.

722 723

An Approach for Identifying and Implementing Aspectual Features in
Software Product Lines

Mohamed A. Zaatar
College of Computing & IT

Arab Academy for Science & Tech.
Cairo, Egypt

mzaatar@acm.org

Haitham S. Hamza
Dept. of IT

Cairo University
Giza, Egypt

hshamza@acm.org

Abd El Fatah Hegazy
College of Computing & IT

Arab Academy for Science & Tech.
Cairo, Egypt

abdheg@yahoo.com

Abstract

Software Product Lines (SPL) exploits reuse by identi-
fying, modeling, and systemically reusing software features
to develop different but related software systems. Success-
ful reuse of a product line depends greatly on the modular-
ity of the features that characterize the product line. Tra-
ditionally, features in SPL are grouped along the dimen-
sion of commonality and variability. However, this single-
dimension grouping overlooks the crosscutting nature of
some features in the system, which negatively impacts the
reusability and modularity of the product line architecture.
In this paper we address this particular problem by investi-
gating the concept of Aspectual Feature (AF) as another
grouping dimension that can be used in SPLs. To this end,
the paper proposes the Aspectual Product Line Engineering
(APPLE) approach for identifying, modeling, and imple-
menting AFs to enhance the reuse of SPLs. A tool support
for implementing the APPLE approach is also presented
and demonstrated through a case study.

1 Introduction

Software product line (SPL) engineering has emerged as
an effective and practical technology to exploit systematic
reuse in developing software applications. An SPL can be
defined as “a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that
are developed from a common set of core assets in a partic-
ular way” [1]. A core activity in engineering product lines
is the Domain Engineering (DE) process used to engineer
reusable assets necessary to develop a family of applica-
tions within a defined domain [2] [3].

Domain Analysis (DA) [4] is a key activity in DE that

Figure 1. Aspectual Feature Existence

focuses on identifying and modeling common and vari-
able features for a set of software systems, and exploit-
ing these features into reusable artifacts that can be used
for engineering various related products and applications.
This activity is known as Commonalities and Variabili-
ties (C&V) analysis. Identifying, modeling, and encoding
C&V features play a key role in facilitating the reuse of
these features. Dependency, coupling, and cross-cuttings
among features may limit their reuse, or at least make reuse
more difficult and error prone. Conventional SPL devel-
opment approaches group features along the dimension of
commonality and variability without considering the inter-
relationships among these features.

In practice, features do not live in isolation. They typi-
cally cross-cut and interact with each other to implement the
key functionalities of the system. Figure 1 shows some ex-
amples of features that may cross-cut each other within the
commonality (A and B) or variability layers (X and Y), or
even across the two layers (C and D).

Dealing with cross-cutting features in SPL is not new.
In the literature, two research directions were investigated
in this context. The first direction focuses on identifying
crosscutting features within the variability features (e.g.,
Features X and Y in Figure 1. [6] [7] [8] [9]. However,
this work ignores other types of crosscutting features within
the commonality or across the commonality and variability
layers. The second research direction focuses on developing

724 725

and end-to-end development process to handle crosscutting
features in the SPL life-cycle. Example of this direction is
the approach reported in [12]. However, this approach is
complex as it relies on data-mining and natural language
processing to identify crosscutting features.

We argue that identifying cross-cut features is circuital
in developing truly reusable software product lines, and
there should be a practical approach for identifying vari-
ous types of such features. Accordingly, in this paper, we
investigate the concept of Aspectual Feature (AF) as an-
other grouping dimension that can be used in conjunction
with the traditional commonality and variability dimension
used in most SPL techniques. Recent work reported in [6],
[7], [8], and [9] focuses on To this end, we propose a new
approach, namely, the Aspectual Product Line Engineer-
ing (APPLE) approach based on the theory of Formal Con-
cept Analysis (FCA) for identifying, modeling, and imple-
menting AFs to enhance the reuse of SPLs. In addition, we
present a CASE tool for implementing the APPLE approach
and demonstrate its use via a case study.

The rest of the paper is organized as follows. Section
2 presents the proposed APPLE approach and describes its
main activities. In Section 3, a case study for applying the
APPLE approach is presented. Related work is discussed in
Section 4. Conclusions are presented in Section 5.

2 The Proposed Approach

In this section we present the proposed Aspectual Prod-
uct Line Engineering (APPLE) approach, and provide an
overview about its main activities and implementation. A
brief overview about the Formal Concept Analysis (FCA)
theory is first presented.

2.1 Formal Concept Analysis (FCA)

Formal concept analysis (FCA) provides means to iden-
tify meaningful groupings of objects that share common
attributes as well as provides a theoretical model to ana-
lyze hierarchies of these groupings [18]. A formal context
C = (A,O,R) in FCA consists of a set of objects O, a set
of attributes A, and a binary relation R ⊆ O × A between
objects and attributes, indicating which attributes are pos-
sessed by each object. The formal context can be used to
generate a set of concepts where a concept C is defined as
a pair of sets (X,Y) such that:

X = {o∈O|∀a∈Y : (o, a)∈R} (1)
Y = {a∈A|∀o∈X : (o, a)∈R} (2)

Where X is said to be the extent of the concept C and Y
is said to be its intent.

The set of all concepts of a formal context and the partial
ordering can be represented graphically using a concept lat-
tice. A concept lattice consists of nodes that represent the

Figure 2. Lattice for the Context of Table 1.

concepts and edges connecting these nodes. The concept
lattice is the basis for further data analysis.

Table 1 shows an example of a simple context. The lat-
tice of this context is illustrated in Figure 2.

Table 1. Sample Formal Context.
A1 A2 A3

O1 X
O2 X
O3 X
O4 X

2.2 The APPLE Approach

APPLE aims at providing a practical approach for de-
tecting and propagating aspects from analysis to implemen-
tation without imposing heavy-weight analysis techniques
those are not in the mainstream development process. As
we discuss below, in the proposed approach, typical SPL
activities such as Use Case analysis and Feature-Oriented
Domain Analysis (FODA) are employed. The use of FCA
helps to achieve this goal as it is a semi-automated tech-
nique that does not require much knowledge from typical
analysts and developers.

In the following we present the various steps of the AP-
PLE approach (Figure 3). A summary of the various activi-
ties, their input, and outputs are summarized in Table 2.

Step 1: Domain Analysis: As with typical SPL development
approaches, the first step is to perform functional and
domain analysis in order to identify the required func-
tionalities and the common and variable features in the
systems under consideration. In this step, the follow-
ing two parallel activities are performed:

1.1 UML Domain Analysis: This activity aims at
analyzing the functional and non-functional re-
quirements of the systems within the specified
domain. The output of this activity is a set of
Use Cases (UCs) describes the requirements of
the systems.

2

724 725

Figure 3. Main Activities In The Proposed APPLE Approach.

1.2 Feature Oriented Domain Analysis: In this ac-
tivity, common and variable features among the
systems are identified using the FODA method
[5]. Identified features are modeled using con-
ventional feature models (FM) [5].

Step 2: Aspectual Features Detection: This step focuses on
identifying aspectual features (AFs) based on the UCs
and FM developed in Step 1 above. To do so, the fol-
lowing two activities are performed:

2.1 Features and UCs Dependencies Detection: In
this activity, the relationship between the identi-
fied UCs and features are carefully analyzed in
order to identify their dependencies. We follow
an approach similar to that reported in [8][9].
The result of this activity is a dependency matrix
where the rows and columns represent the fea-
tures and the UCs, respectively.

2.2 Aspectual Feature Extraction: The matrix ob-
tained from the previous activity is processed us-
ing FCA in order to identify actual Aspectual
Features in the systems. A lattice is constructed
and its structure is analyzed (via a tool) in order
to identify crosscutting and non-crosscutting fea-
tures.

Step 3: Aspectual Feature Modeling: In this step, the con-
ventional feature model constructed in Step 1 is now
revised and updated based on the results of Step 2.2
above. The result is a new feature model with a set
of features classified along two dimensions. The first
dimension differentiates between common and vari-
able features (from the original FM), whereas the sec-

ond dimension differentiates between crosscutting and
non-crosscutting features (based on activity 2.2). It is
worth noting that, at this point crosscutting and non-
crosscutting features include both common and vari-
able features. This particular point set the APPLE ap-
proach from most existing research that focuses only
on identifying crosscutting features within variabilities
only. The result of this step is an updated FM named
Aspectual Feature Model (AFM).

Step 4: Code Generation: In this step, the actual implemen-
tation of the SPL is performed. In our approach, we
adopt the PLUM (Product Line Unified Modeler) as a
tool for generating the code for the product line un-
der development [17]. In PLUM, common features
are encoded in what is called Flexible Components
(FCs), whereas variable features are presented in the
so-called Decision Model (DM). DM is used to set the
values of the variable features according to the partic-
ular product in the SPL family. Accordingly, we han-
dle the common and variable aspectual features differ-
ently. That is, common AFs are handled in the FCs,
whereas variable AFs are handled in the DM. The fol-
lowing are the two activities used in APPLE to imple-
ment AFs:

4.1 Aspectual Features Filtration: In this activity, we
isolate common and variable aspectual features
in order to prepare these features for appropriate
implementation.

4.2 PLUM Implementation: In this activity the actual
code is developed and generated as appropriate.
In particular, common AFs are implemented in
the FCs using appropriate Aspect-Oriented Pro-

3

726 727

Figure 4. Tool Interface for APPLE.

Figure 5. Aspectual Feature Model

gramming (AOP) languages (e.g., AspectJ). Vari-
able AFs are handled in the DM using a sub-class
of the Decision Class in PLUM Decision Meta
Meta Model.

A CASE tool is developed in order to semi-automated
most of the activities in the proposed APPLE approach. The
tool supports the four steps shown in Figure 3. The GUI of
the developed tool is illustrated in Figure 4. In the lattice
generation it extracts and identifies the aspectual features by
exploring the scattering and tangling dependencies. Each
feature have to be scattered and at least one of the corre-
sponding use cases are tangled to be an aspectual feature. A
customization done on the FCA generation to show the as-
pectual features by analysis of the dependencies and draw
hashing on the aspectual features. The tool includes add-in
for UC modeling, and Feature Modeling.

The conventional feature model is extended to include
the aspectual feature types. Figure 5 shows a sample as-
pectual feature model with two aspectual features, namely
Save and Persistence.

Aspectual features are marked with an X in the left-hand
side as shown in the figure. Each aspectual feature crosscuts

Figure 6. Arcade Game Maker Feature Model.

Figure 7. Arcade Game Maker FCA Lattice.

one or more features. The modified aspectual model illus-
trates this crosscutting nature by dotted line. For example,
as shown in Figure 5, the aspectual feature Save crosscuts
three other features: Pause, Exit, and Persistence.

3 Case Study: The Arcade Game Maker

To demonstrate the APPLE approach, we applied it to the
Arcade Game Maker Product Line [8][16]. Arcade Game
Maker is a SPL that aims at generating three related, but dif-
ferent games. Each game is a Single-player Game and has
some Rules. A Scoring point is obtained by hitting some
hurdles. The installer component of the software can install
and uninstall the game. The User should be able to interact
with the game. Some interactions with the game is to play,
save Game and exit. Saving Score is one of the features
available in the game. Examples for some functional re-
quirements in this system include: Play, Pause, install, and
Uninstall. Examples for some non-functional requirements
include: Performance and Persistence. Most of the func-

4

726 727

Table 2. Summary of Main Activities in the APPLE Approach.
Step Activities Input Output
1- Domain Analysis UML Domain Analysis Requirements Use Cases (UCs)

Feature Analysis (FODA) Domain Require-
ments

Feature Model (FM)

2- Aspectual Features Detection Features and UCs Depen-
dencies Detection

UCs and FM FCA Lattice

Aspectual Feature Extrac-
tion

FCA Lattice Aspectual Features (AFs)

3- Aspectual Feature Modeling AF Modeling AFs Aspectual Feature Model
(AFM)

4- Code Generation Aspectual Features Filtra-
tion

AFM Aspectual Variability and
Commonality Features

PLUM Implementation Filtered Features PLUM Code

tional requirements are mandatory and some are related to
the particular game that will be generated.

First, the UC and the feature models are constructed us-
ing conventional UC analysis and FODA (Figure 6). Next,
the dependencies between the identified UCs and features
are captured using the technique reported in [8][9]. The re-
sults of these analysis steps are used to generate the FCA
lattice given in Figure 7. Based on analysis of the generated
lattice, an updated Aspectual Feature Model is generated.
The identified AFs are filtered and implemented in the FCs
and DM of the PLUM tool as discussed above.

4 Related Work

The use of FCA in SPLs is not new. In [13], Niu and
Easterbrook reported the use of FCA to examine and refine
the functional and quality requirements in software product
lines based on the concept of clustering. In [15], Tonella and
Ceccato proposed the use of FCA to mine the aspects from
the execution traces of the software. These research efforts
exploit FCA in SPL at the code level only. In our work;
however, we exploit FCA early in the analysis phases.

In [10], Salinas and Suesaowaluk have developed an
aspect-oriented approach for SPLs in the context of web ap-
plications. They focused on identifying and managing the
variabilities from the analysis to the coding phases. In [14],
Silva et al. , proposed an approach for the mapping be-
tween the SPL-AOV graph and the feature model to present
a graph that contains both the features and the requirements
of the system.

In [8], Conejero and Hernández proposed an approach
based on their previous work reported in [9] to identify the
effects of crosscutting features. The approach uses matrix
operations to identify the relationships between a set of UCs
and features by identifying the so-called scattering and tan-
gling matrices. However, they do not show how crosscut-

ting features can be identified from these matrices. The AP-
PLE approach presented in this paper, does not only identify
crosscutting features, but it also discovers the relationships
between UCs and features without complex manual matri-
ces operations as those used in [8].

Loughran et al. proposed in [12] the NAPLES (Nat-
ural language Aspect-based Product Line Engineering of
Systems) approach. NAPLES aims at providing an end-
to-end SPL development approach from requirements to
code generation. Similar to the APPLE, NAPLES attempts
to analyze aspects in addition to conventional commonal-
ity and variability analysis for product lines. In NAPLES,
natural language processing and data mining (EA-Miner)
techniques are applied to the requirements documents and
the textual assets related to the domain of the systems un-
der development in order to identify early aspects, view-
points, and the commonalities and variabilities. We argue
that NAPLES can be complex for use in mainstream SPL
development life-cycles. APPLE, on the other hand, makes
use of Use Case and FODA, which are more natural to the
typical SPL developers.

Table 3 gives a comparison between the proposed AP-
PLE approach and the matrix-based and NAPLES ap-
proaches.

5 Conclusions

In this paper, the Aspectual Product Line Engineering
(APPLE) approach is proposed to exploit the concept of
aspectual features (AFs) for developing modular software
product line systems. The key objective of APPLE is to
identify, model, and implement the crosscutting features by
analyzing the relationships between the requirements and
features of the system early in the analysis phase. Based
on this analysis, AFs are identified and handled efficiently
to facilitate the reuse of the SPL. The APPLE approach is

5

728 PB

Table 3. Comparison Between Various SPL Approaches.
Property Matrix-based Technique [8] NAPLES [12] APPLE (This Paper)
Supported Development Analysis Analysis Analysis
Phase(s) Code Generation Design and Architecture

Code Generation
Aspectual Feature Modeling No No Yes
C & V No Yes Yes
Crosscutting Feature Matrices Data Mining FCA
Detection Technique

presented and its activities are described. A CASE tool
to semi-automate the various activities of the APPLE ap-
proach is also presented and its use is demonstrated through
the Arcade Game Maker software case study.

References

[1] P. Clements and L. Northrop. Software Product Lines:
Practice and Patterns. Addison-Wesley, 2007.

[2] H. Mili et al. Reuse-based software engineering. John
Wiley & Sons, Inc. 2002.

[3] G. Arango, “A brief introduction to domain analysis,”
1994, ACM.

[4] J. Neighbors, “Software Construction using compo-
nents,” PhD Thesis, Dept. of Information and Com-
puter Science, U. of California, Irvine, 19981.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. “Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study,“ Chapter 1, pp 21-31.
Carnegie Mellon University, SEI, 1990.

[6] R. Bonifácio, P. Borba, and S. Soares, “On the Bene-
fits of Scenario Variability as Crosscutting,“ Proc. of
the 2008 AOSD workshop on Early Aspects, EA ’08,
pp. 1-6, Belgium, 2008.

[7] R. Bonifácio and P. Borba, “Modeling Scenario Vari-
ability as Crosscutting Mechanisms,“ Proc. of the 8th
ACM Int. Conf. on Aspect-oriented Software Develop-
ment, AOSD ’09, pp. 125-136, Virginia, USA, 2009.

[8] J. M. Conejero and J. Hernández, “Analysis Of Cross-
cutting Features In Software Product Lines,“ Proc. of
the 13th Int. Workshop on Early Aspects, EA ’08, pp
3-10, Germany, 2008.

[9] K. van den Berg, J. M. Conejero, and J. Hernández,
“Analysis of Crosscutting Across Software Develop-
ment Phases Based On Traceability,“ Proc. of the 2006
Int. Workshop on Early Aspects at ICSE, EA ’06, pp
43-50, China, 2006.

[10] G. H. A. Salinas and P. Suesaowaluk, “An Aspect-
Oriented Product Line Framework to Support the De-
velopment of Software Product Lines of Web Applica-
tions,“ Proc. of 24th South East Asia Regional Com-
puter Conf., pp 13-18, Thailand, November 2007.

[11] Finkelstein, A., Sommerville, I.: The Viewpoints
FAQ. BCS/IEE Software Engineering Journal 11(1),
pp.24 (1996)

[12] N. Loughran, A. Sampaio, and A. Rashid, “From Re-
quirements Documents To Feature Models For Aspect
Oriented Product Line Implementation,“ Workshop on
MDD in Product Lines (held with MODELS 2005),
Montego, vol. 3844 of Lecture Notes in Computer Sci-
ence, pp 262-271. Springer, 2006.

[13] N. Niu and S. Easterbrook, “Concept Analysis For
Product Line Requirements,“ Proc. of the 8th ACM
Int. Conf. on Aspect-Oriented Software Development,
AOSD ’09, pp. 137-148, Virginia, USA, 2009.

[14] L. Silva, T. Batista, S. Soares, and L. Santos, “On
the Role of Features and Goals Models in the Aspect-
Oriented Development of Software Product Line,“ In-
formation Sciences and Technologies Bulletin of the
ACM Slovakia, Special Section on Early Aspects,
R.Chitchyan, S. Zsachaler (Eds.), Vol. 2, No. 1, pp.
60-65, 2010.

[15] P. Tonella and M. Ceccato, “Aspect Mining through
the Formal Concept Analysis of Execution Traces,“
Proc. of 11th Working Conf. on Reverse Engineering,
pp. 112-121, Delft, The Netherland, 2004.

[16] Arcade Game Maker,
http://www.sei.cmu.edu/productlines/ppl/

[17] Product Line Modified Modeler (PLUM),
http://www.esi.es/Projects/plum/

[18] R. Wille, “Restructuring Lattice Theory: an approach
based on hierarchies of concepts, in: Ivan Rivali, ed.,
Ordered Sets, pp. 445-470, 1982.

6

PB 729

Automating the Detection of Complex Semantic
Conflicts between Software Requirements

An empirical study on requirements conflict analysis with semantic technology

Thomas Moser, Dietmar Winkler, Matthias Heindl and Stefan Biffl
Christian Doppler Laboratory “Software Engineering Integration for Flexible Automation Systems”

Vienna University of Technology, Vienna, Austria
{firstname.lastname}@tuwien.ac.at

Abstract—Keeping requirements consistent already at early
project stages is a main success factor for software development
projects. However, manual requirements conflict analysis takes
significant effort and is error-prone. Requirement engineers and
other project participants such as technical architects use differ-
ent terminologies (due to different domain backgrounds) which
makes automation of conflict analysis difficult. In this paper we
propose semantic approach as foundation for automating re-
quirements conflict analysis and introduce the automated ontolo-
gy-based reporting approach OntRep. We evaluate the effective-
ness of OntRep referring to (a) different types of conflicts and (b)
different levels of conflict complexity in a real-world industrial
case study. Major results were that OntRep had considerably
higher recall and precision of conflict detection for all conflict
types compared to a manual approach. Regarding complexity,
the comparison with manual results shows that recall and preci-
sion of OntRep is considerably higher for complex conflicts.

Keywords—requirements conflict detection, requirements
consistency checking, ontology, case study, empirical evaluation.

I. INTRODUCTION

Modern software and systems engineering projects are
complex due to (a) the high number and complexity of re-
quirements (e.g., mutual dependent or contradicting require-
ments), and (b) geographically distributed project stakeholders
with different backgrounds and domain terminologies. A major
goal of requirements engineering is to achieve consistent re-
quirements descriptions in order to create a common and
agreed understanding on the set of requirements between all
project stakeholders. Initial observations at our industry part-
ners showed that establishing consistency of requirements takes
significant effort and is error-prone when performed manually.
Thus, automation approaches for requirements conflict analysis
are needed that (a) increase the effectiveness and quality of
analyzing requirements from different stakeholders for symp-
toms of inconsistency, e.g., contradicting requirements, and (b)
reduce the conflict analysis effort. Unfortunately, current au-
tomation approaches for conflict analysis suffer from the fol-
lowing challenges and limitations:

High level of incompleteness [2] of conflict detection, leav-
ing complex requirements uncovered.

Focus on executable code. Some approaches need executa-
ble code to identify requirements conflicts [2], but in early
stages - where conflict analysis is important - executable
code may not available.

Limitation to syntactical comparison. Potential conflicts are
identified by using trace dependencies between require-
ments that have been explicitly captured before, e.g. by in-
formation retrieval approaches like “keyword matching”
[6][7]. These approaches allow syntactical comparison of
requirements, but do not cover semantics, even if different
terms are used in these requirements definitions.

Thus, using semantic technologies seems to be a promising
approach to address these challenges: ontologies provide the
means for describing the concepts of a domain and the relation-
ships between these concepts in a way that allows automated
reasoning [10]. In this paper, we propose OntRep [4], an auto-
mated ontology-based reporting approach for the analysis of
complex semantic conflicts between requirements based on
ontologies and reasoning mechanisms. The main criteria for the
evaluation of OntRep are: correctness and completeness of
identified requirements conflicts and the effort to develop a
project or domain ontology. OntRep aims at lowering the effort
for requirements conflict analysis, while keeping requirements
consistency high. Initially, OntRep automatically categorizes
requirements into a given set of categories using ontology
classes modeled in Protégé and mapping the terms used in the
requirements to these classes. Using this foundation, OntRep
analyzes the content of the requirements and identifies conflicts
between requirements. Therefore, conflict analysis is not only
based on traditional keyword-matching-approaches, but also
considers different terminologies used for describing semanti-
cally equivalent concepts. We empirically evaluate OntRep [4]
in a real-life project at our industry partner to investigate per-
formance and quality with respect to (a) different types of con-
flicts and (b) conflicts on different levels of complexity.

The remainder of the paper is organized as follows: Section
2 summarizes related work on requirements conflict analysis
and natural language processing; Section 3 introduces the Ont-
Rep approach and motivates research issues. Section 4 de-
scribes the performed empirical study. Section 5 presents the
results which are discussed in Section 6. Finally, Section 7
concludes and suggests further work.

730 731

II. RELATED WORK

This section presents related work on requirements conflict
analysis and natural language processing [4].

A. Requirements Conflict Analysis
“Requirements conflict with each other if they make con-

tradicting statements about common software attributes […]
Given that there may be up to n2 conflicts among n require-
ments […], the number of potential conflicts, […], could be
enormous, burdening the engineer with the time-intensive and
error-prone task of identifying the true conflicts” [2].

The Trace Analyzer by Egyed and Grünbacher [2] analyzes
the footprints of test cases to detect requirements conflicts. If
two requirements execute overlapping lines of code, a potential
conflict may exist. A prerequisite for the Trace Analyzer is to
have executable code, which is often not available in early
project phases, when conflict analysis is a major goal. Heit-
meyer et al. [5] describe a formal analysis technique, called
consistency checking, for the automated detection of syntactic
errors, such as type errors, non-determinism, missing cases, and
circular definitions, in requirements specifications. The ap-
proach does not find semantic conflicts.

Information retrieval approaches [6], such as the RETH ap-
proach [7] use keyword-matching techniques to identify gener-
al requirements interdependencies. These captured interdepen-
dencies can be used to identify requirements conflicts. Howev-
er, these techniques do not allow identifying conflicts or other
interdependencies between requirements, if they use different
terms for similar concepts. Thus, these approaches are less ef-
fective in practice, because they cannot identify the full set of
interdependencies between requirements. The extended Bak-
kus-Naur-Form (EBNF) [12] is a syntax for requirements,
which is used to improve the understandability of requirements
for humans and machines.

B. Natural Language Processing
Natural language processing (NLP) techniques are useful to

extract structure and content of requirements given in natural
language for transformation into the structure of an ontology.
NLP generally refers to a range of computational techniques
for analyzing and representing naturally occurring texts [1].
The core purpose of NLP techniques is to achieve human-like
language processing for a range of tasks or applications [8].

Most important NLP models used in this research are part-
of-speech (POS) tagging and sentence parsers [1]. POS tagging
involves marking up the words in a text as corresponding to a
particular part of speech, based on both its definition, as well as
its context. In addition, sentence parsers transform text into a
data structure, which provides insight into the grammatical
structure and implied hierarchy of the input text [1]. Standford
parser/tagger1 and OpenNLP2 are the core set of NLP tools
used in this paper. Furthermore, we use WordNet, a large lexi-
cal database in English [9]. Nouns, verbs, adjectives and ad-
verbs are grouped into sets of cognitive synonyms (synsets),
each expressing a distinct concept. Synsets are interlinked by

1 http://nlp.stanford.edu/software/lex-parser.shtml
2 http://opennlp.sourceforge.net/

means of conceptual-semantic and lexical relations. WordNet
is a useful building block for requirements analysis. These NLP
technologies can be used for our purpose, namely to improve
the effectiveness of requirements management activities like
categorization, conflict analysis, and tracing.

III. ANALYSIS OF CONFLICTS WITH AN ONTOLOGY

Due to the limitations of requirements analysis approaches
that address only links between requirements based on syntac-
tic equality, we explore an approach based on semantic equali-
ty: OntRep [4] links similar concepts sharing the same meaning
even if their syntactic representations are different. As ontolo-
gies are versatile for representing knowledge on requirements
and for deriving new links between requirements, we introduce
an ontology-based approach for reporting analysis results on a
set of requirements. The goal of the ontology-based reporting
approach OntRep is making requirements management tasks
such as requirements conflict analysis more effective based on
the automation of selected steps in these tasks. We focus on
complex semantic, which we define as conflicts regarding a set
of more than two requirements and constraints, which based on
observations at our industry partners are hard to identify ma-
nually. In the following subsections, we provide an overview
on the approach and motivate research issues.

A. Basis for Requirements Conflict Analysis

Figure 1. EBNF requirements structure (sentence level) [12].

For formally specified requirement semantics, in our case
following an EBNF template (see Figure 1), semantic analysis
can identify inconsistencies and conflicts using a set of asser-
tions that should hold true for all available facts. These asser-
tions are based on available requirements, while available facts
are based on the environment and properties of the target sys-
tem. Typically, requirements following this EBNF template
specify under which conditions (under condition) a target sys-
tem should provide a certain functionality (process) regarding a
specific object (thing to be processed), e.g., the system confi-
guration, to a certain entity or role (somebody or something),
e.g., to an user or to the administrator. In this paper, we focus
on (a) functional requirements (following an EBNF template)
and (b) a set of requirements constraints regarding technical,
requirement-specific or documentary issues.

We derive three types of conflicts, which can be detected
with OntRep:

730 731

Not well-formed requirements (conflicts between
requirements and EBNF grammar).
Conflicts between functional requirements and technical
and/or requirement constraints.
Conflicts between two functional requirements.

B. Automated Conflict Analysis
We developed a prototype tool for the OntRep approach as

a plug-in to Trac3, which can be extended by Python plug-ins.

Phase A: Linking of natural language to semantic concepts.
In a first phase, natural language texts (technical constraints,
requirements constraints, documentation guidelines and glos-
sary knowledge) have to be linked to semantic concepts as
preparation for further analysis and reporting [4]. The follow-
ing 8 steps are used to build this project knowledge:

1) Define project-specific concepts in Protégé. Each concept
is defined as an ontology class in Protégé. It is important to
define project-relevant “semantic” concepts and not formal
ones in order to enable the automated assignment, e.g.,
“Security”. Typically, these concepts can be defined based
on a project glossary that contains important project-
specific terms.

2) Provide input data to be categorized: Constraints,
guidelines and glossary knowledge are typically
represented as natural language text. For our research we
export these natural language texts and import them into
OntRep prototype tool.

3) Remove irrelevant stop-words, like “and”, “any”, “but”,
which cannot be used for assignment. This step is
performed automatically using a standard stop-word list4.

4) Bring all remaining words into their root form (e.g.,
“jumping” to “jump”): this process is called “stemming”
based on algorithms like “Porter Stemmer” [11].

5) Get all synonyms and hyponyms of the analyzed words in
the requirements by using the natural language processing
library “WordNet” [9]. For example, “house” is a synonym
for “building”, “dog” is a hyponym of “animal”.

6) Heuristic-based assignment of each requirement to the
defined concepts depending on the number of hits for (a)
synonyms, (b) hyponyms, and (c) substring matches. The
heuristic checks if the hits for synonym, hyponym and
substring matches meet the given threshold values. If this
number is equal or higher than the number of thresholds
that must be met, the word will be related to that concept,
otherwise not. If several concepts reach these thresholds,
the requirement will be assigned to all of these concepts.

7) Save the element as an individual of the ontology class, if
it is not already in the class. This can only be checked if
one or more of the elements attributes have been declared
as primary keys (uniquely identifying the element). If the
element has already been saved in another class as well
(which could be the case), declare that the new element is
the same as the already existing one with the
“owl:sameAs” property.

8) Manually check the validity and correctness of the
imported fact, both regarding its assignment to the right
concepts as well as regarding its meaning.

3 http://trac.edgewall.org/
4 http://www.textfixer.com/resources/common-english-words.txt

Phase B: Mapping of Requirements and Semantic Con-
cepts. In the second phase, analysis and reporting approaches
build on the mapping of requirements to semantic concepts.
For formally specified requirement semantics, in our case fol-
lowing an EBNF template (see Figure 1), semantic analysis can
identify inconsistencies and conflicts using a set of assertions
that should hold true for all available facts. These assertions are
based on the available requirements, while the available facts
are based on the environment and properties of the target sys-
tem (which were imported in the first phase). The following 4
steps describe the semantic requirements conflict analysis:

1) Import of requirements. The requirements are represented
as tickets in Trac. For our research prototype we export
these requirements via CSV from Trac and import them
into the OntRep prototype tool.

2) Parsing of requirements. If the requirements are formally
described using a specified grammar (e.g., EBNF), the
information contained in the textual requirement
descriptions can be semantically analyzed in order to
identify possible inconsistencies and/or conflicts. Based on
the specified grammar, certain parts of the requirements
are extracted for further usage. In our case, this primarily
affects the “thing to be processed” and the “obligation”
(“shall” or “shall not”) specified in EBNF.

3) Linking of requirements to semantic concepts. The “things
to be processed” of the specific requirements, which were
extracted in the previous step, now are linked to semantic
concepts modeled in the first phase of the OntRep
approach. If there is no semantic concept available for a
specific “thing to be processed”, a new semantic concept is
created, in order to later identify conflicts between two
functional requirements. Additionally, the “obligation” for
each requirement is stored to enable requirement conflict
detection.

4) Requirement conflict detection. After all requirements have
been successfully parsed and linked to their related
semantic concepts, every semantic concept enables
checking for consistency, validity, and correctness of the
related requirements using ontology-based reasoning.
From the point of view of semantic analysis, we focus on
two different kinds of conflicts in this paper, namely on
logical inconsistencies between facts, as well as numerical
discrepancies of facts. In the following, we present an
example for these kinds of conflicts.

RC-1: No requirement shall allow secured resources to
be processed by an untrusted person.

GL-1: "Trusted persons" are: administrator,
authenticated user, developer, tester.

GL-2: “Secured resources” are: administration panel,
config information page, configuration page, meta data.

Requirement
Constraint

Glossary

Glossary

Functional
Requirement

RQ-11: The user shall be able to access his
configuration page.

Figure 2. Logical requirement conflicts.

Figure 2 depicts an example for logical conflicts between
requirements and constraints. Requirement RQ-11 links the

732 733

semantic concept “User” to the semantic concept “Configura-
tion page”. Additionally, there exists a requirement constraint
specifying that no links may exist between the semantic con-
cepts “Secured Resource” and “Untrusted Person”. In the
project glossary the semantic concept “Configuration Page” is
identified as sub-concept of the “Secure Resource” concept,
and the semantic concept “User” as sub-concept of the “Un-
trusted Person” concept since it is not a sub-concept of the
“Trusted Person” concept which is defined as the negation of
the “Untrusted Person” concept. Using these facts, the OntRep
approach successfully identifies a logical conflict between RQ-
11 and RC-1, relying on the facts specified in GL-1 and GL-2.

Figure 3 depicts an example for conflicts between require-
ments as well as for numerical discrepancies between require-
ments and constraints. There are three requirements which are
linked to the semantic concept “Notification”, RQ-12, RQ-17,
and RQ-21. RQ-12 and RQ-17 are additionally linked to the
semantic concept of “Messages per Second”, but with a differ-
ent parameter value, therefore the OntRep approach successful-
ly identifies a conflict between these two requirements. Addi-
tionally, the semantic concept of “Notification” is linked to the
semantic concept “SSL Encryption”, for which a technical con-
straint is defined, specifying a link to the semantic concept
“Messages per Second” with a parameter value of 3. While this
holds true for RQ-17, RQ-12 requires at least a parameter value
of 4 for the “Messages per Second” semantic concept; therefore
the OntRep approach detects another conflict between RQ-12,
RQ-21, and TC-1.

C. Research Issues
The underlying idea of this research is to use advanced se-

mantic technologies, like ontologies and reasoning mechan-
isms, to increase the effectiveness of the analysis of complex
requirements conflicts. Based on our findings in [4], the main
research questions of this paper are:

RQ-12: When notifying the system shall be able to send
at least 4 messages per second.

RQ-21: When notifying the software system shall use
SSL encryption.

TC-1: The SSL encryption technique that is being used
allows to process at most 3 messages per second.

Functional
Requirement

Technical
Constraint

Functional
Requirement

Functional
Requirement

RQ-17: When notifying the system shall be able to send
at least 3 messages per second.

Figure 3. Numerical discrepancies of requirements and constraints.

RQ1) How effective is OntRep in finding different types
of conflicts compared to manual analysis by experts? We
mentioned 2 kinds of conflicts in section 3.B: numeric discre-
pancies and logical requirements conflicts. These conflicts may
occur between different elements: (a) between requirements,
(b) between a requirement and a constraint, and (c) between a
requirement and a formal guideline. For these 3 types of typical
conflicts we analyze the correctness and completeness of con-
flicts found with OntRep and compare the results to a manual
approach for each conflict type.

RQ2) How effective is OntRep to identify conflicts of
different degrees of complexity compared to manual ana-
lyses by experts? A conflict may consist of two or more ele-
ments, e.g., a conflict may exist between two or three require-
ments. We define these conflicts as “simple conflicts” because
we assume they are easy to identify. On the other hand, we
define conflicts consisting of more than 3 elements to be “com-
plex conflicts”. These complex conflicts might be more diffi-
cult to identify completely, especially when performing conflict
analysis manually. We assume that OntRep reaches a higher
completeness of complex conflict identification compared to
the manual approach. For each complexity level we analyze the
correctness and completeness of each identified conflict.

Based on our previous experience with tool support for
quality assurance [4], we assume that OntRep can help increas-
ing effectiveness and quality of requirements conflict analysis.
Additionally, we also assume that OntRep reduces the effort for
requirements conflict analysis.

IV. STUDY DESCRIPTION

This section summarizes study settings, i.e., goals, design,
process, material, and participants, and identifies a set of
threats to validity.

Goals. The goal of the pilot study was to analyze the effec-
tiveness and quality of the OntRep conflict analysis approach
compared to traditional manual approaches with focus on dif-
ferent types and complexity levels of conflicts.

Study Subject. As described in [4] the case study project is
a software development project at our industry partner with the
goal to design and implement a web application that serves as a
platform for communication and networking between technol-
ogy experts. This type of project seemed well suitable to apply
and evaluate the OntRep prototype, because OntRep has been
implemented as Trac plug-in and was easy to integrate with the
project’s tool infrastructure.

Participants were six project managers for individual con-
flict detection, randomly assigned to two teams for preparing
an agreed team conflict list. One requirement engineering ex-
pert, i.e., one of the authors, provided control data for all tasks.

Material. We used a list of requirements (i.e., a spread-
sheet) containing 23 functional requirements, 11 constraints (7
technical and 4 business constraints), and 4 formal documenta-
tion rules (documentation guidelines). To focus on individual
conflict classes, i.e., conflict between requirements (CRR),
conflict of a requirement with a constraint (CRC), conflict of a
requirement with a formal guideline, i.e., ill-formed require-
ment (CRG), we seeded an overall number of 22 conflicts ac-
cording to different conflict types and two complexity levels.
Conflicts related to up to 3 elements are rated as simple, con-
flicts with more than 3 elements involved are considered as
complex conflicts. In addition we used a data capturing sheet,
guidelines to support the participants in identifying conflicts,
and questionnaires to capture the background of participants
prior to the study and feedback after afterwards.

Variables & metrics. Independent variables were the
number of seeded conflicts, the defect types, and the number of

732 733

requirements per defect type. Dependent variables are the
number of identified conflicts and for conflict identification.
We used recall and precision as study metrics.

Figure 4.Evaluation Setting: Manual (l), OntRep (r) [4].

Study Design and Study Process. We applied the standard
practices of empirical software engineering research according
to Freimut et al. [3] and Wohlin et al. [13] to investigate the
performance of OntRep in comparison to manual conflict de-
tection. Figure 4 illustrates the relevant steps for evaluating
requirements conflict analysis. This study was part of a larger
overall study, reported in [4], where requirements categoriza-
tion and tracing aspects were addressed in addition to conflict
analysis. In context of this paper steps A2, A3, B2, and B3 are
important for conflict detection. The other steps are described
in [4] as part of the overall study.

A2) Individual requirements conflict analysis: The partici-
pants read through the task description, i.e., supporting
guidelines, and were asked to (a) identify conflicts ac-
cording to different conflict types and complexity levels
and (b) report them within the data capturing sheet. Re-
sults of the individual conflict detection step were 6 indi-
vidual results, provided by project managers and control
data provided by one requirements engineering expert,
i.e., one of the authors. Furthermore, we captured the in-
dividual effort of every participant.

A3) Team requirements conflict analysis: Afterwards, the par-
ticipants harmonized their individual results within 2 ran-
domly assigned groups of 3 team members. Again, the ef-
fort needed for this task was captured, resulting in 2 team
sheets.

B2) Ontology preparation: A tool expert constructed one on-
tology class in OntRep for each category and then im-
ported the given requirements from Trac as CSV into
OntRep.

B3) OntRep requirements conflict analysis: Then, we provided
the requirements as CSV-input to OntRep. Further, the
tool expert had to model the constraints as facts and the
formal guidelines as rules in the ontology. We captured
the effort for this preparation. Afterwards, automated con-
flict identification was executed. The results were summa-
rized in a final report.

Finally, we analyzed and evaluated the following results: (a) 6
spreadsheets for conflict analysis from each of the 6 individual
participants, (b) 2 team spreadsheets, (c) 1 conflict analysis
spreadsheet from a requirement engineering expert, and finally
(d) 1 conflict analysis spreadsheet created with the OntRep
approach. The results were evaluated with descriptive statistics
in Excel and R and are described in the following section. We
applied the Mann-Whitney-Test at a significance level of 95%
(2-sided) for statistical testing.

Threats to Validity. Following the standard practice of
empirical software engineering [13], we identified a set of in-
ternal and external threats to validity. We addressed internal
threats to validity [3] of the study by two measures: a) inten-
sive reviews of the study concept and materials, and b) a test
run of the study conducted by a test person in order to make
sure that the guidelines, explanations, and task descriptions are
understandable for the participants and to estimate the required
effort/time frame. Regarding external validity, we performed
this initial case study in a professional context at a software
development company. The participants had medium require-
ments management know-how and advanced software engi-
neering know-how (captured by background questionnaire
prior to the study). In addition, we had an expert in Require-
ments Engineering as control group. Nevertheless, the small
number of participants might hinder the generalization of re-
sults. Therefore, we suggest replicating the study in a larger
context in future work.

V. RESULTS

The following subsections describe the results of require-
ments conflict analysis with OntRep.

A. Conflict analysis results by conflict types
The first research question was how effective OntRep is in

finding different types of conflicts compared to manual analy-
sis? We defined 3 types of typical conflicts: Conflicts between
a requirement and a constraint (CRC), e.g., when a particular
requirement requires a response time that is not feasible with
the chosen technology (the chosen technology constrains re-
sponse times); Conflicts between a requirement and a docu-
mentation guideline (CRG), e.g. a requirement may conflict
with the documentation guideline “all requirements must use
the obligation word ‘shall’”; Conflicts between requirements
(CRR), e.g. the requirements “The system shall update the in-
dex at least 30 times per hour” and “The system shall update
the index at least 20 times per hour” results in a conflict.

The individual recall and precision results for detecting
CRC conflicts manually are low: approx. one third of existing
conflicts has been identified and only one third of found con-
flicts were identified correctly. Group harmonization was quite
effective for this type of conflict, because both recall and preci-
sion were improved, i.e., the conflicts found by each individual
in the group have been merged in a discussion session, which
results in a recall of approx. 60%; and some false positives
were eliminated, which results in a precision of 50%. The ex-
pert performed better than the individuals regarding recall and
precision, but the group results regarding recall were better. In
this case the discussion of conflicts in the group was valuable.

734 735

Comparing the expert’s CRC recall value with the CRG and
CRR results shows that CRC results are clearly lower than the
others. This is probably due to the fact that CRC conflicts were
complex only, and thus hard to find, whereas the CRG and
CRR conflict bulks consisted of either simple only or both
simple and complex.

Mann-Whitney Test at significance level 95% (2-side) did
not show any significant differences (p-values >0.098(-)) re-
garding study groups, i.e., individuals, groups, experts, and
OntRep and individual conflict classes, i.e., total, CRC, CRG,
and CRR. The main reason is a low number of involved data
sets. Note that expert (Exp) and OntRep include one data set
and we had 2 groups and an overall number of 6 individuals.

The CRG results are similar to the CRC results: rather low
recall and precision values of individual conflict analysis and
an improvement by group harmonization. A slight difference is
that the expert performed much better than both the individuals
and groups. He reached pretty high recall and precision values
(more than 80%). The CRR results of the expert are similar to
his CRG results, but totally different regarding individual and
group results: The individual results were rather good (40%
recall and 56% precision, but then worsened by group harmo-
nization (30% recall and 24% precision).

Table 1. Overall Recall and Precision per Conflict Type.

Total CRC CRG CRR
Rec Prec Rec Prec Rec Prec Rec Prec

Indiv. 32% 46% 29% 31% 30% 66% 40% 56%
Group 48% 49% 57% 49% 50% 68% 30% 24%
Expert 68% 88% 43% 100% 80% 89% 80% 80%
OntRep 100% 100% 100% 100% 100% 100% 100% 100%

Table 1 shows that OntRep has 100% values for both recall
and precision for every conflict type. This means that OntRep
found all of conflicts (7 CRC, 10 CRG, 5 CRR conflicts and no
false positives). Although these results look like rigged for
making OntRep look good, we think that the defined conflict
types and the seeded conflicts are typical and realistic. Thus,
the study is well-balanced and the comparison of OntRep with
manual analysis results is valuable and meaningful.

B. Conflict analysis results by complexity
After analyzing the results regarding the different conflict

types, we studied how effective OntRep is to identify conflicts
of different degrees of complexity compared to a manual anal-
ysis. We defined two levels of complexity based on the number
of elements involved in a conflict: simple and complex. The
threshold number of elements to make a conflict complex is 3.
We chose this threshold subjectively, because we think that
analyzing 3 elements cognitively is still feasible, but gets more
complicated and difficult to analyze conflicts with 4 or more
involved elements. We seeded 12 simple and 10 complex con-
flicts (see Table 2).

In comparison to OntRep, the manual conflict analysis ap-
proach resulted in a lower completeness, no matter which type
of conflict: the only conflict types for which the manual results
come close to the OntRep results are the simple CRG and com-
plex CRR conflicts; and there it is only the expert result that is
similar to the OntRep result, the average results of individuals

and groups are far away and false positives are introduced.
They have been reduced slightly during group harmonization.

Table 2. Conflict identification per conflict type and complexity level.

Simple Conflicts (12)
Ind. / Group / Expert / OntRep

(std. dev.)

Complex Conflicts (10)
Ind. / Group / Expert / OntRep

(std. dev.)
Type CRC: To find: 0 simple and 7 complex conflicts

Fully (f) n/a n/a n/a n/a 0.8
(2.0)

2.0
(1.4)

0.0 7.0

Partially
(p)

n/a n/a n/a n/a 1.2
(1.6)

2.0
(0.0)

3.0 0.0

Recall
(f+p)

n/a n/a n/a n/a 29% 57% 43% 100%

False Pos. 3.2
(3.8)

0.5
(0.7)

0.0 0.0 1.2
(1.5)

3.5
(0.7)

0.0 0.0

Precision n/a n/a n/a n/a 63% 53% 100% 100%
Not Found 0.0 0.0 0.0 0.0 5.0

(2.1)
3.0

(1.4)
4.0 0.0

Type CRG: To find: 10 simple and 0 complex conflicts
Fully 2.3

(1.2)
3.0

(0.0)
8.0 10.0 n/a n/a n/a n/a

Partially 0.7
(1.2)

2.0
(1.4)

0.0 0.0 n/a n/a n/a n/a

Recall
(f+p)

30% 50% 80% 100% n/a n/a n/a n/a

False Pos. 2.7
(3.8)

2.0
(2.8)

1.0 0.0 0.7
(1.0)

0.5
(0.7)

0.0 0.0

Precision 53% 71% 89% 100% n/a n/a n/a n/a
Not Found 7.0

(2.0)
5.0

(1.4)
2.0 0.0 0.0 0.0 0.0 0.0

Type CRR: To find: 2 simple and 3 complex conflicts
Fully 0.0

(0.0)
0.0

(0.0)
0.0 2.0 0.5

(0.8)
0.5

(0.7)
2.0 3.0

Partially 0.8
(0.4)

1.0
(0.0)

1.0 0.0 0.7
(0.8)

0.0
(0.0)

1.0 0.0

Recall
(f+p)

42% 50% 50% 100% 39% 17% 100% 100%

False Pos. 2.2
(2.3)

4.5
(0.7)

1.0 0.0 0.0
(0.0)

0.0
(0.0)

0.0 0.0

Precision 28% 18% 50% 100% 100% 100% 100% 100%
Not Found 1.2

(0.4)
1.0

(0.0)
1.0 0.0 1.8

(0.8)
2.5

(0.7)
0.0 0.0

Complex CRC conflicts seem to be very hard to identify
manually: from 7 existing conflicts only 0.9 conflicts on aver-
age have been identified completely, 2 conflicts have been
identified partially; i.e. less than 45% of conflicts have been
identified manually. On the other hand, false positives have
been introduced. We expected that the number of false posi-
tives is reduced during group harmonization, but the opposite
was the case: the amount of false positives increased from av-
erage individual results to the avg. group results. This is due to
the complexity of the conflicts and the discussion that was
caused by it during group harmonization.

Comparing completeness of simple and complex conflicts
shows that the differences between manual and OntRep results
increase with the level of complexity: e.g. regarding complex
CRC conflicts the difference between manual and automated
results is higher than regarding simple CRG conflicts where 8
conflicts have been found manually (as optimum) and 10 con-
flicts have been found completely with the OntRep.

Comparing correctness of simple and complex conflicts
shows that correctness of identified complex conflicts is higher
than of simple ones: For example, regarding CRR 2.6 false
positives have been introduced for simple conflicts in average.
On the other hand, no false positives have been identified for
complex conflicts. The OntRep results for all types of conflicts
are complete: all 22 conflicts of the defined conflict classes in

734 735

the given data were identified, due to the 3 reasons for 100%
conflict identification described in section 5. We did not find
any significant differences regarding the Mann-Whitney Test at
a significance level of 95% (2-side). The necessary efforts for
both the manual and automated approach are reported in [4].

VI. DISCUSSION

The results of conflict analysis with OntRep seem convinc-
ing for the conflict types. The automated conflict analysis de-
pends on the following factors:

Requirements structure: OntRep analyzes different sections
of each requirement to map them to the according concepts
and to identify conflicts. Thus, a certain structure (EBNF) is
necessary. When documents are used, this syntax is not
used so frequently, but the importance of such a grammar
increases when requirements databases are used instead of
documents, because requirements have to be understanda-
ble and clear even without the context that usually exists in
a requirements document.

Completeness of glossary: the detection of logical conflicts
depends on the terms captured as glossary terms in the on-
tology. OntRep recognizes conflicts between requirements
that use different terms only if these terms are appropriately
defined and their dependencies are clear. Usually, there is a
project glossary existing in a project that can be imported
into the ontology without big effort, so that all relevant
terms are available for analysis.

Quality of ontology: another prerequisite is correct model-
ing of the ontology, which requires expert knowledge. If the
user does not specify it correctly, the tool cannot find the
conflicts. If a constraint is missing in the ontology, the tool
does not find any conflicts linked to that constraint. If a
constraint has been specified wrongly, the tool might find
conflicts with that constraint it was not intended to be found
by the user. So if all facts have been modeled correctly, the
tool will find all corresponding conflicts.

Despite the given prerequisites and limitations of OntRep,
we think that this study is relevant, because its focus was on (a)
evaluating the general technical feasibility of applying seman-
tic technology to automated requirements conflict analysis, and
(b) compare the results with the results of a manual approach
for a practical-relevant set of conflict types.

VII. CONCLUSION AND FURTHER WORK

Keeping requirements consistent is a main success factor
for software development projects. That is why conflict analy-
sis activities are important for requirements managers and
project managers. However, the manual conduct of these ac-
tivities takes significant effort and is error-prone, especially
with an increasing number of requirements. Another issue is
that participants with different domain backgrounds and termi-
nologies have to work together in large distributed projects.

In this paper we proposed semantic technology as founda-
tion for automating requirements conflict analysis and intro-
duced the automated ontology-based reporting approach Ont-
Rep based on a project ontology and a reasoning mechanism.

We used requirements formulated in EBNF as input to the pro-
posed OntRep approach, which supports automated require-
ments conflict analysis. We evaluated the effectiveness of the
OntRep conflict analysis approach referring to (a) different
types of conflicts and (b) different levels of conflict complexity
in a real-world industrial case study with 6 project managers in
2 teams. In addition a requirements expert and an OntRep user
performed the same tasks to enable comparing the quality of
results. Regarding the given conflict types the results of the
evaluation are similar: OntRep found all conflicts in the re-
quirements during the empirical study, while manual conflict
analysis identified 30 to 80% of the conflicts for each conflict
type and produced more false positives.

Further work will focus on the replication of this pilot study
in a larger context. In addition, we want to increase the number
of requirements and conflicts to be analyzed in order to get (a)
more accurate numbers regarding recall and precision of the
automated conflict analysis approach (b) more meaningful data
regarding efforts of OntRep and manual conflict analysis ap-
proach for a higher number of requirements and conflicts.

ACKNOWLEDGMENT

We want to thank Alexander Wagner for the implementa-
tion of OntRep. This work has been supported by the Christian
Doppler Forschungsgesellschaft and the BMWFJ, Austria.

REFERENCES

[1] F.Y.Y. Choi, “Advances in domain independent linear text segmenta-
tion”, Proceedings of the 1st North American chapter of the Association
for Computational Linguistics conference., Morgan Kaufmann Publish-
ers Inc., Seattle, Washington, 2000

[2] A Egyed, P Grünbacher, “Identifying Requirements Conflicts and Co-
operation: How Quality Attributes and Automated Traceability Can
Help”, IEEE software, 2004

[3] B. Freimut, T. Punter, St. Biffl, M. Ciolkowski, “State-of-the-Art in
Empirical Studies”, Report: ViSEK/007/E, Fraunhofer Inst. of Experi-
mental Software Engineering, 2002

[4] M. Heindl, T. Moser, D. Winkler, St. Biffl, „Requirements Manage-
ment with Semantic Technology“,Vienna University of Technology,
Technical Report IFS-QSE-10-03,
http://qse.ifs.tuwien.ac.at/publication/IFS-QSE-10-03.pdf, March 2011

[5] C.L. Heitmeyer, R.D. Jeffords, B.G. Labaw, “Automated consistency
checking of requirements specifications”, 2nd International Symposium
on Requirements Engineering (RE '95), York, England, 1995

[6] J. Jackson, “A Keyphrase Based Traceability Scheme”, IEE Collo-
quium on Tools and Techniques for Maintaining Traceability during
Design, pp.2-1-2/4, 1991

[7] H. Kaindl, “The Missing Link in Requirements Engineering”, ACM
SigSoft Software Engineering Notes, vol. 18, no. 2, pp. 30-39, 1993

[8] E.D. Liddy, “Natural Language Processing”, 2 ed. Encyclopedia of
Library and Information Science. NY. Marcel Decker, Inc., 2001

[9] G. A. Miller, “WordNet: A Lexical Database for English”, Communi-
cations of the ACM Vol. 38, No. 11: 39-41, 1995

[10] C. Pedrinaci, J. Domingue, A. K. Alves de Medeiros, “Core Ontology
for Business Process Analysis”, 5th European Semantic Web Confe-
rence, 2008

[11] C.J. van Rijsbergen, S.E. Robertson, M.F. Porter, “New models in
probabilistic information retrieval”, British Library Research and De-
velopment Report, no. 5587, 1980

[12] C. Rupp, Requirements Engineering und –Management, Hanser, 2002
[13] C. Wohlin, M. Höst, et al., “Controlled Experiments in Software Engi-

neering”, Journal for Information and Software Technology, 921-924,
Elsevier Science BV, 2001.

736 737

A Process Oriented Approach to Model Non-Functional Requirements
Proposition Extending UML

Aneesh Krishna
Department of Computing, Faculty of Science & Engineering
Curtin University of Technology, WA 6102, Perth, Australia

a.krishna@curtin.edu.au

Abstract
Non-functional requirements (NFRs), sometimes termed
quality, or quality of service, attributes or requirements,
have been a topic of interest within systems engineering,
software engineering, and requirements engineering for a
considerable period of time. NFRs have been for too long
overlooked during the development of software systems.
This has led to numerous cases of failure resulting in over
budgeting or cancellation of projects. This paper proposes
a method to extend the UML diagrams to model NFRs. A
car rental case study is provided to illustrate the use of
the proposed method.

1. Introduction
Functional Requirements (FRs) determine what functions a
software product should offer. Multiple proposals have
been developed to analyze and model them, and are
nowadays widely used. For Non-Functional Requirements
(NFRs), the problem is more complex and due to that they
have been ignored for a long time in the early phases of
the software development process. NFRs are defined as
constrained on the emergent properties of the overall
system. Hence, software products are sometimes refined
late in the development process to satisfy NFRs, this as a
result leads to over budget or cancelled projects [1].
Software engineers now acknowledge the importance of
dealing with NFRs in the early phases of the development
process [1]; however, there is lack of credible proposals to
be used in the software development. In this paper we
propose a solution to integrate the analysis and modelling
of NFRs into UML [2], which is the most popular lan-
guage for modelling purposes in object-oriented paradigm.
Our goal is to offer a method to analyze, refine and inte-
grate NFRs in existing diagrams to provide justifications
for the design.
Chung et al [1] developed a framework to represent and
analyze non-functional requirements. This framework is
an interesting one; having potential to fully analyze the
dependencies between non-functional requirements. This
work uses the concept of ‘claim’ in the diagram. Claims
are linked to interdependency, and provide a rationale to
design decision. However, having multiple claims can
make diagrams complicated and harder to read. Cysneiros

et al [3] first proposed a method to integrate NFRs into
ER and UML data models. This strategy uses the notion
of lexicon, namely, the Language Extended Lexicon
(LEL), as an anchor to integrate NFRs into OO models.
The idea of LEL is to register the vocabulary (symbols) of
a project, and determine the relations between the sym-
bols. The concept of LEL is not widely accepted/used in
software industry. Imposing its usage would hugely in-
crease the workload of the systems analysts. Therefore,
another solution is needed to link NFRs to UML diagrams
that would have practical usefulness in industry. This
work also considers that functional and non-functional
aspects should be carried through two independent cycles
with convergence points, while efforts should be carried
out to merge the two aspects. Cysneiros’s proposal can be
used to integrate NFRs into any UML diagram, but no
support is provided to deal with diagrams other than Class
Diagrams. These reasons form the basis for our proposal
in this paper.
This paper is structured as follow: Section 2 formally
formulates the proposal, providing new notations to deal
with NFRs through an example. Finally, Section 3 con-
cludes the paper.

2. Incorporation of NFRs into UML
The proposal considers that NFRs and FRs should not be
carried out through two independent cycles, but should be
part of a common, global strategy. This decision had a
huge impact on the process designed. The process can be
visualized in Figure 1.
The main steps of the proposal are the following:
1. First, we determine what the FR and NFRs are.
2. From the FRs, we shall draw the use cases, and then

associate the NFRs with the different parts of the
system they control. When associating them, two
cases may arise: either the NFR is specific to an FR
(e.g. ‘the authentication must be fast’), or it is global
and thus not linked to a single FR (e.g. ‘all screens of
the system should look similar’). In the first case, the
NFR is linked with a use case, else with the entire
system.

3. The NFRs will then be refined using the use cases. In
this step, the systems analysts will use their expe-
rience to find missing NFRs that should be included

736 737

in the diagrams. This is quite important, because the
stakeholders do not always think about every single
NFR (some might seem obvious, other irrelevant at
first), or some of them are simply hard to come up
with. This should prevent NFR from emerging at later
stages of the project.

4. Using the FRs and NFRs that have been extracted, a
requirement graph will be drawn. This graph will
show the decompositions of the NFRs into subgoals,
how to satisfy the sub-goals with operationalizations,
and the way all these elements interact with each oth-
er. The focus here is solidly on FR that can impact
NFRs, so not every FR will be included in this graph.

5. Study the interdependencies between the different
requirements, their subgoals and their operationaliza-
tions. If necessary, perform trade offs (for example,
using uncompressed format is good for performance,
but not for space usage), and more generally, refine
the requirements graph by studying the impact of
each interdependency on the related requirements
(see subsection 3.4).

6. Finally, use all the information gathered to draw other
UML diagrams. This paper highlights only the appli-
cation of this to sequence, class and deployment dia-
grams.

Figure 1: Diagram of the proposed strategy
Use cases controlled by NFRs: Incorporation of NFRs
into use case diagrams is done by using a solution similar
to [4]. A prerequisite for this is a complete or near com-
plete list of the system requirements. FRs are subsequently
used to produce use cases. Each NFR is documented with
three pieces of information: the interested stakeholder, the
NFR’s type and NFR identification code (ID). Represent-
ing an NFR in the diagram, these three pieces of informa-
tion are particularly important. First, we need a non am-
biguous way to link a use case to an NFR, which is done by
stating the ID of the NFR. Then, including both the
stakeholder and the type of the NFR in the representation
provides the systems analysts’ with useful information
without overloading the schema.
The general representation of such a diagram is presented
on Figure 2.

Figure 2: Actors and use cases controlled by NFRs

Construction of the NFRs graph: The aim of this step is
to decompose an NFR into sub-softgoals [1]. Then,
sub-softgoals that can’t be subdivided find alternatives to
operationalize it. Therefore, the following process has to
be completed for each NFR represented in the use cas-
es/control cases diagram. Add the object that the NFR is
related to. Given that the NFR is not linked to a use case
in this diagram, it is important to know on what the NFR
acts (e.g. if we consider the informal high-level NFR
‘Good Performance for accounts’, the object is ‘Account’).
Next, the analyst has to specify the priority of the NFR.
This is important to algorithmically determine what subset
of the NFRs can actually be satisfied. The mark 1 means
that the NFR can easily be ignored, while 5 mean that the
NFR has to be satisfied no matter what. With the conclu-
sion of the process, the NFR is renamed ‘Formulated
NFR’ as shown in Figure 3.

Figure 3: Representation of a high-level NFR

Sub-softgoals are subdivided until the analysts decide that
no more decomposition is feasible or interesting. If possi-
ble, the analysts must try to avoid dividing a subgoal
using only ‘helps’ contributions. If a softgoal does not
have a sub-softgoal (or a group of sub-softgoals) which
‘satisfies’ it, it will be hard to determine if the higher level
softgoal can actually be met. Once no more division is
needed, possible operationalizations are associated to each
leaf of the constructed graph. To do that, one must think
about the most intelligent solutions to respond to the need
expressed by a softgoal. All these alternatives will be
represented on the graph using a unique ID and linked to
the corresponding softgoal using the same connectors than
before.
At the end of this phase, the analyst should have a graph

738 739

of formulated NFR, each with its own set of sub softgoals
and operationalizations. The next step is to study the
interactions between graphs and to incorporate the neces-
sary FR.
Studying interdependencies in the requirements dia-
gram: At this point of the process the analysts concentrate
on the interdependencies between the different require-
ments. First all the NFRs graphs which are related are
grouped. Obviously, the NFRs controlling the entire sys-
tem must appear on each diagram. For the others it is
quite easy: the NFRs linked to the same use cases, or
having the same ‘object’ (Figure 3) can interact or be in
conflict. Once all the related NFRs are on the same dia-
gram, one uses the use case diagram and the associated
documentation to add all the related FRs to the diagram.
FR can also have an ID.
What remains is the selection of the operationalizations
which will be used to design the system. In this work, we
don’t propose any algorithm (this forms part of the future
investigation on this topic) to solve this problem, but such
an algorithm should:
- analyze the impact of choosing each operationalization
(which requirements are satisfied or helped, which opera-
tionalizations or requirements are hurt or broken)
- assure that every FR (and NFR of priority 5) is satisfied
(one of its operationalization is chosen)
- give a mark to each alternative subset (using the weight
of the contributions and the priority of the NFRs)
- return the highest-ranked solutions
The analyst then chooses the most appropriate subset for
the design of the system. The chosen operationalizations
are marked with the letter “C” in the ‘Expected status’ box,
while the others with the letter “R”, “Rejected”. The
‘Expected status’ of the Formulated NFRs and softgoals
will then be updated according to this choice.
UML diagrams: This section demonstrates how to inte-
grate NFRs and their operationalizations into UML dia-
grams. The focus is on sequences, deployment and classes,
but the techniques can work on other diagrams.
The following links can be used in these diagrams, as
shown in Figure 4
- The «implements» link means that the element has been
added to the design of the product in order to satisfy the
operationalization. If the operationalization is not consi-
dered anymore, this element can be removed.
- The «contributes to» link means that an element pre-
viously existing in the diagram is used by the operationa-
lization. It is important to highlight such an element: if it
has to be modified to comply with its primary function,
the systems analysts must study the impact of the change
on the realization of the operationalization.
- The «controlled by» link defines that one knows that the
implementation has to be guided by a particular NFR but
no specific solution has been chosen yet. Most of the time,
such a link must come with an annotation.

Figure 4: Links to be used in UML diagrams

Sequence Diagram: Once the sequence diagrams are
ready, the analysts will incorporate the NFRs into them.
Usually, a sequence diagram will be related to one of the
use cases that has been designed earlier, and this use case
might be related to one or more NFRs. If this is the case,
then for each of them, the analyst has to ask himself:
where does this NFR impact the sequence diagram, and
how? The analyst can choose the level of detail for the
diagram as shown on Figure 5. Therefore the analyst can:
- state that a subsequence is «controlled by» an NFR,
- link some specific previously existing messages to a
operationalization («contributes to»),
- add new messages (and maybe new classes) to the dia-
gram which «implements» an operationalization.

Figure 5: Representation of an operationalization
Class Diagram: The approach to incorporate NFRs into
class diagram is quite simple and is shown in Figure 6.

Figure 6: Incorporating NFRs into class diagrams

738 739

Verification: Once the NFRs or their operationalizations
have been included in every necessary diagram, one has to
verify that everything planned on the NFR graphs is actu-
ally considered in the design of the product. This justifies
the existence of the box ‘Current status’ at the bottom of
the representations of NFRs and operationalizations in the
NFR graphs. For each operationalization chosen, one has
to check if it appears on diagrams with links of type «im-
plements» or «contributes to». If it is the case, then the
operationalization has been ‘satisfied’, or else it was ‘not
handle’. Then update the ‘current status’ of all NFR soft-
goals that the operationalization links to. After considering
the operationalization, if an NFR softgoal that was ex-
pected to be ‘satisfied’ or ‘weakly satisfied’ is not, it has to
be verified if this NFR is linked to any other diagram with
relation «controlled by». If so, the NFR has not been
forgotten, however, no technical solution has been indi-
cated on the design. If it is the case, it is up to the analyst to
decide if this is good enough to mark to softgoal as ‘weakly
satisfied’/’satisfied’ or if the design needs to be refined.
These verifications should in fact be done automatically by
a framework implementing our proposal. After these
verifications, the operationalizations which were chosen
but are not satisfied and the NFR softgoals where ‘ex-
pected status’ is different from ‘current status’ should be
highlighted for the analyst to know immediately what is
missing.
Car Rental Case Study: This case study demonstrates the
application of the method for designing an e-commerce
application for online car rentals. The example concen-
trates on core aspects of such a system with emphasis on
business processes that relate to rental and provision of
information to customers regarding the company. The
complete explanations of the approach (along with case
study) can be had by visiting
http://www.computing.edu.au/~aneesh/NFR (details
withheld due to space limitations).
Use cases enriched with NFRs are shown in Figure 7.
The sequence diagram of the system is depicted in figure 8.
The functionality depicted is limited to the searching
process for a car.

3 Conclusions and Future Work
This paper presented a novel approach to dealing with
Non-Functional Requirements and to model them in UML
diagrams. This work constitutes an important contribution
given that it allows system analysts to consider NFRs in
their models without requiring additional learning of new
software. Part of our future plans include the automation of
elements of the proposal in order to utilise its full useful-
ness in industrial settings. We accept that the full proposal
is very difficult to automate, as there is a need to provide
manual support by systems analysts at certain steps of the

approach. However, this is the case with almost all meth-
ods proposed so far in this challenging area.

Figure 7: Use cases enriched with NFRs

Figure 8: Sequence diagram of the searching process

References
[1] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.

Non-Functional Requirements in Software Engineering,
Kluwer Academic Publishers, 2000

[2] OMG UML, Unified Modeling Language (UML),
http://www.omg.org/spec/UML/ (accessed 10 May 2011)

[3] Cysneiros, L. M., do Prado Leite, J. C. S. & de Melo Sabat
Neto, A framework for integrating non-functional require-
ments into conceptual models, Requirements Engineering
6(2), pp. 97–115, 2001

[4] Zou, J., Pavlovski, C. J. Modeling architectural non func-
tional requirements: From use case to control case. Pro-
ceedings of IEEE International Conference on e-Business
Engineering, Shanghai, IEEE Computer Society, pp.
315–322, 2006

740 741

Use Case Driven Extension of ProjectIT-RSL to Support Behavioral Concerns

David de Almeida Ferreira, Alberto Rodrigues da Silva
INESC-ID / Instituto Superior Técnico

Rua Alves Redol 9, 1000-029 Lisboa, Portugal
david.ferreira@inesc-id.pt, alberto.silva@acm.org

Abstract—Requirements Engineering is a system engineering
discipline of paramount importance. Its primary deliverable is
the requirements specification, a document that entails the de-
tailed description of business-specific needs to which the target
software system must comply to. Despite the advances brought
by modeling techniques, the specification of software systems
still consists mostly in manually writing down requirements
in natural language. Resorting to natural language to convey
requirements has some advantages, such as its expressiveness
and the stakeholders proficiency at using it for communica-
tion purposes, when compared with semi-formal or formal
languages. However, ad-hoc natural language has intrinsic
characteristics that make it error-prone, some of which may
even hinder the effort of complying with good requirement
criteria, regardless the usage of an automated requirements
tools. To address this problem, within the scope of the ProjectIT
initiative, a requirements specification language named Projec-
tIT-RSL was developed, based on common linguistic patterns.
Despite covering several structural aspects of the software
system under specification (e.g., actors, components, entities,
properties, and relationships), ProjectIT-RSL still lacks the
support for capturing behavioral concerns.

This paper presents a Use Case Driven extension for Pro-
jectIT-RSL , with the purpose of supporting the specification
of functional requirements according to a controlled natural
language approach. The proposed solution combines patterns
from Use Case textual description best practices with Pseu-
docode specifications.

Keywords-Requirements Engineering; Specification Lan-
guage; Controlled Natural Language; Use Cases; Pseudocode.

I. INTRODUCTION

The size and complexity of modern large-scale software
systems demand for high-levels of abstraction, conceptual
reasoning, and validation upfront. Namely, a clear definition
of the real business-specific needs is required. Therefore, re-
gardless of the achievements in both industry and academia,
the development of software systems is still a rather chal-
lenging process. From all system engineering disciplines,
it is argued that Requirements Engineering (RE) is one of
the most important regarding this issue, since it supports
the work of several other disciplines throughout the entire
software product life-cycle [1]: it provides useful scope
and status information to Project Management upstream and

This work is supported by FCT (INESC-ID multi-annual funding and
PhD Scholarship SFRH/BD/36972/2007) through the PIDDAC Program.

provides a stable basis for development downstream, namely
for design and testing.

Typically, the development of a software system begins
with Requirements Engineering (RE) [2]. RE deals with
the early activities related with the process of discovering
the purpose, scope, stakeholders, boundaries, and actors
of the system being specified [3]. These early activities
can be classified as the requirements development process,
whereas the activities of evolving accepted requirements
(e.g., dealing with change requests, impact analysis, tracing,
and status-tracking) can be regarded as the requirements
management process [4]. In short, RE is concerned with
real-world goals for software systems functionality, and also
how it can be precisely specified and maintained throughout
the software development process [5].

However, often the importance of RE is underestimated,
resulting in a large amount of rework: any attempt to start
technical work beforehand, without a deep understanding of
the target software system’s purpose, will certainly jeopar-
dize the project outcome [6].

The main deliverable of RE is an artifact (usually called
requirements document) that contains the detailed textual
description of what the target system should do, or con-
straints on its behavior [7]. However, this form of speci-
fication (based on natural language) is ambiguous and, in
many cases, unverifiable because of the lack of a standard
machine-executable representation [7]. The main problem
appears during the translation of natural language require-
ments into a formal or, at least, semi-formal computer
model [8]. Despite these complementary approaches, natural
language textual specifications are still the most suitable,
fast, and preferred manner (by non-technical stakeholders)
to contribute and validate requirements specifications [7].

Taking these facts into consideration, within the scope
of the ProjectIT initiative [9], [10], a requirements specifi-
cation language named ProjectIT-RSL [11] was developed.
This initiative seeks to address some of the aforementioned
problems, since it advocates that the software development
process should be focused on higher-level activities (such
as Project Management, Requirements Engineering, and
Architectural Design), instead of repetitive and error-prone
manual activities. Following this mindset, ProjectIT-RSL
was designed to increase the rigor of requirements specifica-
tions to enable tool support, namely to provide user feedback

740 741

during the specification process and the automatic generation
of initial design drafts upon validated requirements.

Despite the concrete results achieved, there are still sev-
eral open issues, namely the lack of support for the defini-
tion of software system behavior. To cope with real-world
problems, the controlled natural language approach provided
by ProjectIT-RSL needs to cover not only static aspects of
the target system (e.g., domain model concepts) but also
dynamic aspects related with functional requirements.

The remainder of this paper is organized as follows.
Section II presents a review of related work regarding
the specification of software system behavior. Section III
presents the Use Case Driven extension of ProjectIT-RSL
and introduce an illustrative example. Finally, Section IV
concludes this paper with final thoughts and discussion.

II. RELATED WORK

Historically, the requirements specification process has
consisted in creating a natural language description of what
the target system should do or constraints about its behav-
ior [4], [7]. As opposed to constructed, artificial, or any
other kind of engineered languages (with specific purposes
in mind), the term natural language refers to any language
commonly used by humans in their daily communication. Its
usage to support RE activities has already been studied for
a long time [8]. However, this form of specification is both
ambiguous and, in many cases, unverifiable because of the
lack of a standard machine-executable representation [7].

To mitigate the undesirable effects of natural language,
one can impose some restrictions to reduce its complex-
ity while maintaining its naturalness. Controlled Natural
Languages (CNL) are subsets of natural languages whose
grammars and vocabularies have been engineered in order
to reduce (or even eliminate) both ambiguity (to improve
computational processing) and complexity (to improve read-
ability). CNLs are typically designed for knowledge en-
gineering, not addressing behavioral aspects. A thorough
analysis on the state-of-the-art of CNLs is provided in [12].
Attempto Controlled English (ACE) [13] is a good represen-
tative of this category of textual languages, because it is a
mature general-purpose CNL with a solid toolset and a wide
literature body of knowledge1. Furthermore, ACE possesses
some interesting (and useful) characteristics, namely every
ACE sentence is unambiguous, even if people may perceive
the sentence as ambiguous in full English [14].

To address functional aspects, namely to specify complex
behavior (implementation-independent algorithms and other
abstract computations), one can resort to Pseudocode [15].
The high-level algorithmic descriptions achieved with Pseu-
docode could be integrated with the previous CNL ap-
proaches to address their weaknesses in terms of behavioral
expressivity. However, Pseudocode lacks a widely accepted

1http://attempto.ifi.uzh.ch/site/pubs/

and well-defined standard (only some guidelines are de-
fined [16]). We considered that PlusCal [17], [18] is a
suitable representative for this approach. Despite having
formal roots, PlusCal was designed having in mind some of
the Pseudocode’s guidelines (e.g., simplicity), which in turn
reflects on PlusCal’s design principles and syntax. PlusCal
is an algorithm language that can be used to replace Pseu-
docode, for both sequential and concurrent algorithms [17].
Specifications in PlusCal can be automatically translated into
another formal language enabling the verification of formal
properties through model-checking.

Additionally, one can resort to semi-formal graphical
approaches. This category of languages is well represented
by UML, the general-purpose language endorsed by OMG
and considered by many as the de facto standard for mod-
eling and documenting object-oriented software. Usually,
modelers use Activity and Sequence UML diagrams to
specify software system behavior. However, the information
conveyed by UML models is usually incomplete, informal,
imprecise, and sometimes even inconsistent. These flaws are
caused by the diagrams’ limitations. These diagrams cannot
fully convey the details of a thorough specification.

Also, there are hybrid approaches such as Use Cases:
UML Use Case diagrams can be complemented with their
textual descriptions counterpart. Use Cases provide a natural
approach to organize and describe the overall system func-
tionality through descriptions, in abstract terms, of how ac-
tors interact with the system to accomplish their goals [19].
Although they are not suitable to describe functional re-
quirements of all kinds of systems, they are adequate to
specify general information systems [19]. Also, since they
describe the system functionality from an actor’s perspective,
they can be easier to read and understand by non-technical
stakeholders than more formal or complex notations (formal
methods or UML diagrams enhanced with OCL). However,
although it might seem a trivial task, the relatively small
number of concepts, allied with the lack of a rigid set of
structuring rules (or compositional rules, when dealing with
Use Case diagrams), makes people often struggle to write
(or model) useful and adequate Use Cases.

Finally, there are some combined approaches. Natural
Language Processing (NLP) approaches to automatically
derive conceptual models from requirements texts are not
new [8], and neither is the usage of formal methods to sup-
port consistency checking through mapping techniques [20].
Debnath et al. [21] propose a solution to integrate re-
quirements written in natural language into the OMG’s
Model-Driven Architecture. They defined manual derivation
strategies to obtain conceptual models and formal specifi-
cations from textual requirements. Their approach follows
an OCL-based transformation process to define Computer
Independent Model (CIM) models from natural language
oriented models. Mala et al. present research regarding Use
Cases combined with NLP techniques. They present an ap-

742 743

proach for the automatic construction of object-oriented de-
sign models in UML from the natural language requirements
specification. Unlike others, their approach combines do-
main modeling, Use Case descriptions (written in a restricted
form of natural language), and non-functional taxonomy
to derive non-functional requirements prioritization through
trade-off analysis. Konrad et al. [24] also attempts to ease
the integration of formal specification languages through the
process of specifying properties of formal system models in
terms of natural language and formally analyzing these prop-
erties using existing formal analysis tools. Still regarding
natural language approaches, the work of Meziane et al. [8]
follows a different approach to mitigate miscommunication
problems by generating natural language specifications from
UML class diagrams.

Despite this wide range of techniques and approaches,
many problems concerning the pragmatic usage of these
solutions are still unresolved [25].

III. PROJECTIT-RSL EXTENSION

ProjectIT-RSL is a controlled natural language aligned
with a metamodel derived from common linguistic pat-
terns [11]. This language was designed to convey informa-
tion in such manner that a tool can extract requirements
models from its textual specifications. ProjectIT-RSL meta-
model already provides concepts (e.g., Operation, Activity,
and Action) to convey information about software system
behavior. However, until now, the concrete realization of
the dynamic part of the metamodel in terms of language
constructs has not been addressed [10]. Thus, ProjectIT-RSL
lacks the means to convey behavioral concerns about the
software system under consideration. The specification of
complex interaction patterns between actors and the target
system is crucial for gaining a thorough understanding of
the software system’s functionality, namely to perform a
more extensive analysis (e.g., consistency checking and
model-checking) on requirements specifications written in
this controlled natural language. This kind of feedback is
crucial to increase stakeholder engagement in RE activities
related with verification and validation.

According to the object-oriented paradigm, so far the
conceptualizations that ProjectIT-RSL conveys are typically
referred to as a domain model. This kind of conceptual-
ization describes the various entities, their properties and
relations (an example is provided in [26]). The domain
model provides a structural view of the domain of inter-
est, which can be complemented by other views focusing
dynamic aspects, such as the one presented in this paper.

Considering the original mindset and design principles of
ProjectIT-RSL [11], namely the grammar and writing style,
we follow the seminal results presented in [27]. Hence, our
proposal extends the previous version of ProjectIT-RSL by
combining Use Case textual descriptions with Pseudocode.

A. Reusing and Structuring with Use Cases

Besides the metamodel previously mentioned, ProjectIT-
-RSL specifications also follow another metamodel (depicted
in Figure 1) with different concerns. The former is related
with the specifications’ content, whereas the latter addresses
the best practices regarding requirements document’s struc-
ture. Our proposal in this paper focuses on providing an
extension for the Functional Requirements section.

Figure 1. ProjectIT-RSL structural metamodel.

Given the match between our goals in terms of representa-
tion of functional requirements and the purpose of Use Cases
specifications, we consider that, to avoid “reinventing the
wheel”, Use Cases are the best underpinning for developing
the ProjectIT-RSL extension. Use Cases employ a small set
of straightforward concepts that are easily understood by
non-technical stakeholders. We also benefit from a well-
-defined body of knowledge [28]–[30], namely how these
specifications can be structured and reused in an easy to
understand and industry-standard manner. Finally, bearing
in mind the current ProjectIT-RSL support for domain
modeling, by adopting Use Cases for conveying functional
requirements, we become aligned with the early stages of
the well-known ICONIX process [30]. The major pitfall of
using Use Cases as a requirements specification technique is
the lack of well-defined rules. Nevertheless, this problem can
be addressed by providing a Use Case context-free grammar
that is aligned with the metamodel presented in Figure 2.

This extension enhances the Functional Requirements
section by providing a subsection named Use Cases, which
contains all Use Case specifications of the (sub)system being
considered. An illustrative example is presented in Listing 1.
This Use Case describes a simple and common interaction
with a web application, in which a registered user tries to
recover a password. The textual description already provides
syntax highlighting according to a context-free grammar
aligned with the metamodel presented in Figure 2.

742 743

Figure 2. Use Case Driven metamodel.

B. Complex Behavior Specification with Pseudocode

To cope with the description of complex software sys-
tem behavior, we advocate the usage of Pseudocode-like
descriptions. According to our proposal, these Pseudocode-
-like [15], [16], [31] snippets act as adornments for Use
Case steps. They only should be used when a fine-grain
level of detail is required, namely to customize the intended
action meaning or to entail the detailed specification of a
complex behavior (not provided by built-in actions). The
verbs used while describing detailed Use Case steps have
linguistic properties (such as thematic relations2) that allow
us to consider them as extension points to which functions
in Pseudocode can be hooked up (if the function presents
the same number of arguments and constraints as the verb
theme). Gottesdiener [19] provides a comprehensive list of
suggested verbs for both informative Use Cases that provide
information to actors (e.g., find, list, notify, select, view) and
performative Use Cases that allow actors to handle complex
tasks (e.g., approve, authorize, choose, send, submit, val-
idate). By resorting to this hook up mechanism we gain
an additional level of flexibility regarding the possibility
of providing custom-made functional specifications for the
specific needs of the project at hand.

Pseudocode often appears in the literature as a simplified
programming language to describe algorithms. Regarding
the Pseudocode syntax, we adopt PlusCal’s due to its bene-
fits: we do not “reinvent the wheel” by designing a concrete
syntax for Pseudocode, and we also automatically ensure

2Thematic relation is a linguistic term used to express a syntax–semantic
correlation, namely the roles that a noun phrase plays with respect to the
action or state described by a sentence’s main verb.

compatibility with PlusCal’s formal verification tools. Plus-
Cal’s documentation [17] already provides a context-free
grammar that we reuse within the ProjectIT-RSL extension
for specifying Pseudocode-like snippets.
1. System "MyWebApp"
1.1. Section Business Entities (...) End Section
1.2. Functional Requirements
1.2.1. Section Actors Declaration (...) End Section
1.2.2. Section Use Cases

BeginUseCase
Identifier: "UC22"
Name: "Recover Password"
PreConditions: Previous{"UC21"/"Authenticate User"} ;

State{"The User is not authenticated."}
PostConditions: State("The system updates the User password.")
PrimaryActor: "Anonymous User"
SecondaryActors: "Mail Server"
TriggeringEvent: "The user does not know the password."
Description: "Verify if the e-mail is valid and if the e-mail is associated

with a registered user. Generate a new password and send the
new password to the user’s email."

BasicFlow: InTheFollowingOrder
1. "The system asks the Anonymous User for the registration e-mail."
2. "The Anonymous User inserts the registration e-mail."
3. "The system verifies the registration e-mail."
4. "The system generates a new password."
5. "The system sends an e-mail with new password to the Anonymous User

through the Mail Server."
6. "The system displays a PasswordRecovered success message to the

Anonymous User."
Exceptions:

3. "The Anonymous User provides an invalid e-mail."
3.1a "The system displays an InvalidEmail error message to the

Anonymous User."
3.1b "The system terminates the use case."
3. "The Anonymous User provides an inexistent e-mail."
3.2a "The system displays an InexistentEmail error message to the

Anonymous User."
3.2b "The system terminates the use case."
5. "The Mail Server is unavailable."
5.1a "The system displays a ServiceUnavailable error message to the

Anonymous User."
5.1b "The system terminates the use case."

EndUseCase
End Section

End Section
End System

Listing 1. Use Case example: “Recover Password”.

Following the example of Listing 1, we can illustrate the
usage of Pseudocode to specify the behavior related with the
verb “send” used within step 5 (“The system sends an e-mail
with new password to the Anonymous User through the Mail
Server.”). According to VerbNet, the sentence’s main verb
(“send”) has three roles (arg0 the “sender”, arg1 the “sent”,
and arg2 the “sent-to”). While mapping these roles we notice
that step 5 contains additional information provided by a
prepositional sentence (“through the Mail Server”). This
piece of information will not be considered while hooking
up the verb arguments with the built-in actions, unless
we introduce a Pseudocode extension. We can specify a
custom-made Pseudocode snippet (illustrated in Listing 2)
to support this additional verb role (arg3 the “by-means”).
--algorithm Send

variables maxAttempts = 3, secondsBetweenAttempts = 60

procedure SentToBy(variables sender, message, destination, channel)
variables count = 0
while (count < maxAttempts)
if (call SendToChannel(message, destination, channel))

return ’true’
else

count := count + 1
call SleepSeconds(secondsBetweenAttempts)

end if
end while
return ’false’

end procedure

end algorithm

Listing 2. “Send-To-By” Pseudocode specification example.

744 745

C. Parsing of ProjectIT-RSL Extension

This extension of ProjectIT-RSL resorts to different pars-
ing techniques, being the pipeline divided in two different
stages. First, we make use of a structural template, derived
from Use Case textual description best practices [28]–[30].
This derived template is processed with a context-free gram-
mar similar to those used by programming languages. Next,
after the structural information has been parsed, the process
follows to the second stage of the pipeline. At this stage
we make use of NLP techniques, namely shallow parsing3

of the pieces of information previously captured according
to its context within the structural template. The extracted
information, namely from detailed Use Case steps, will
populate models aligned with the ProjectIT-RSL metamodel.
Pseudocode is used to specify complex behavior not covered
by built-in actions associated with the verbs used while
describing detailed Use Case steps.

We resort to shallow parsing techniques to address com-
plexity of natural language, which hinders the possibility
of building a general-purpose representations of meaning
from ad-hoc natural language text [32]. To ease the burden
of full parsing, we only look for very specific kinds of
information in detailed Use Case steps, namely to populate
models according to the “Actor performs Operation on
Entity” core structure emphasized by the ProjectIT-RSL
metamodel. Our shallow parsing approach can be considered
as Chunking [32, Ch. 7, p. 261], more specifically a regular
expression cascaded chunker. The possibility of adding new
parsing rules that express linguistic patterns, namely to ex-
tract specific and contextualized pieces of information from
detailed Use Case steps, makes the language extensible.

IV. CONCLUSION

Requirements Engineering is a mature discipline, and
throughout the last decades several approaches to improve
its processes and artifacts have been proposed. Yet, there
are still open issues to address, namely problems regarding
communication and requirements quality.

The ProjectIT initiative advocates that a greater attention
should be given to the rigor and quality of requirements
specifications. Namely, it emphasizes the need for tool
support, because most RE techniques are manually applied,
thus making them error-prone and less cost-effective when
dealing with modern software systems, due to their size and
complexity. Since requirements provide the foundation for
most of subsequent technical work, these activities would
certainly benefit from consistency checking of the require-
ments specifications. Also, unless suitable tool support is
provided, to validate and generate an early design draft from
requirements specifications, it will be difficult to seamlessly
integrate RE with the Model-Driven Engineering paradigm.

3As opposed to full parsing, where one or more complete parsing tree are
derived, shallow parsing techniques try to identify and extract information
from relations between words.

Considering these facts, this paper presents an extension
for the ProjectIT-RSL language, to address its current lack
of support for the specification of behavioral aspects. To
convey information about the software system behavior with
ProjectIT-RSL, namely to specify functional requirements,
we propose an integration of well-known techniques, more
specifically textual Use Cases with Pseudocode specifica-
tions. The former is an industry-standard technique that
provides a template for structuring functional requirements,
thus reducing the complexity of natural language parsing
with well-defined contexts. The latter provides a technol-
ogy-agnostic approach to express complex behavior (the
computations associated with the customized-actions, i.e.,
the verbs used within Use Case steps). This extension
complements the current ProjectIT-RSL support for domain
modeling and, although it is process-independent, it can be
well supported by processes such as ICONIX or RUP.

As future work, in the short-term we plan to validate
the ProjectIT-RSL language with real-world case studies.
First, we are going to develop the required tool support by
extending the current ProjectIT toolset, namely the parsing
algorithms and text editor. In the long run, we plan to
use the requirements models entailed within ProjectIT-RSL
to infer or verify properties of the target system (e.g.,
model-checking or theorem proving) in order to ensure the
overall quality of its specification.

REFERENCES

[1] C. Hood, S. Wiedemann, S. Fichtinger, and U. Pautz, Require-
ments Management: The Interface Between Requirements
Development and All Other Systems Engineering Processes,
1st ed. Springer, December 2007, ISBN: 978-3540476894.

[2] D. Firesmith, “Modern Requirements Specification,” Journal
of Object Technology, vol. 2, no. 1, pp. 53–64, March 2003.

[3] B. Nuseibeh and S. Easterbrook, “Requirements Engineering:
a Roadmap,” in Proc. of the Conference on The Future of
Software Engineering (ICSE’00). New York, NY, USA:
ACM, 2000, pp. 35–46, ISBN: 978-1-58113-253-3.

[4] K. Wiegers, Software Requirements, 2nd ed. Microsoft Press,
March 2003, ISBN: 978-0735618794.

[5] P. Zave, “Classification of research efforts in requirements
engineering,” ACM Computing Surveys, vol. 29, no. 4, pp.
315–321, December 1997, ISSN: 0360-0300.

[6] R. R. Young, The Requirements Engineering Handbook.
Artech Print on Demand, November 2003, ISBN: 978-
1580532662.

[7] H. Foster, A. Krolnik, and D. Lacey, Assertion-based Design.
Springer, 2004, ch. 8 - Specifying Correct Behavior.

[8] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating
Natural Language specifications from UML class diagrams,”
Requirements Engineering, vol. 13, no. 1, pp. 1–18, January
2008, DOI: 10.1007/s00766-007-0054-0.

744 745

[9] A. Silva, “O Programa de Investigação ProjectIT (whitepa-
per),” October 2004.

[10] A. Silva, J. Saraiva, D. Ferreira, R. Silva, and C. Videira,
“Integration of RE and MDE Paradigms: The ProjectIT
Approach and Tools,” IET Software Journal, vol. 1, no. 6,
pp. 217–314, December 2007.

[11] C. Videira, D. Ferreira, and A. Silva, “A Linguistic Patterns
Approach for Requirements Specification,” in Pro. of the 32nd
EUROMICRO Conf. on Soft. Eng. and Advanced Applica-
tions. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 302–309, ISBN: 0-7695-2594-6.

[12] T. Kuhn, “Controlled English for Knowledge Representation,”
Ph.D. dissertation, Faculty of Economics, Business Admin-
istration and Information Technology of the University of
Zurich, 2010, Retrieved Friday 6th May, 2011 from http://
attempto.ifi.uzh.ch/site/pubs/papers/doctoral thesis kuhn.pdf.

[13] N. E. Fuchs, U. Schwertel, and R. Schwitter, “Attempto
Controlled English – Not Just Another Logic Specification
Language,” in Logic-Based Program Synthesis and Transfor-
mation, ser. Lecture Notes in Computer Science, P. Flener,
Ed., no. 1559, Eighth International Workshop LOPSTR’98.
Manchester, UK: Springer, June 1999.

[14] N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto Controlled
English for Knowledge Representation,” in Reasoning Web,
Fourth International Summer School 2008, ser. Lecture Notes
in Computer Science, no. 5224. Springer, 2008, pp. 104–124.

[15] S. McConnell, Code Complete: A Practical Handbook of
Software Construction. Microsoft Press, June 2004, vol.
5565, ch. The Pseudocode Programming Process, ISBN: 978-
0735619678.

[16] J. Dalbey, “Pseudocode Standard,” Retrieved Friday 18th

February, 2011 from http://users.csc.calpoly.edu/∼jdalbey/
SWE/pdl std.html.

[17] L. Lamport, “The pluscal algorithm language,” in Proceedings
of the 6th International Colloquium on Theoretical Aspects
of Computing, ser. ICTAC ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 36–60, Retrieved Wednesday 15th

December, 2010 from http://research.microsoft.com/en-us/
um/people/lamport/pubs/pluscal.pdf. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03466-4 2

[18] Microsoft Corporation, “The PlusCal Algorithm Language,”
January 2009, Retrieved Wednesday 15th December, 2010
from http://research.microsoft.com/en-us/um/people/lamport/
tla/pluscal.html.

[19] E. Gottesdiener, The Software Requirements Memory Jogger:
A Desktop Guide to Help Software and Business Teams
Develop and Manage Requirements, 1st Spiral-Bound ed.
Goal/QPC, October 2009, ISBN-13: 978-1576811146.

[20] W. E. McUmber and B. H. C.Cheng, “A General Framework
for Formalizing UML with Formal Languages,” in Proceed-
ings of the 23rd International Conference on Software Engi-
neering (ICSE’01). Washington, DC, USA: IEEE Computer
Society, 2001, pp. 433–442, ISBN: 0-7695-1050-7.

[21] N. Debnath, M. C. Leonardi, M. V. Mauco, G. Montejano,
and D. Riesco, “Improving Model Driven Architecture with
Requirements Models,” Information Technology: New Gener-
ations, Third International Conference on, vol. 0, pp. 21–26,
April 2008, ISBN: 978-0-7695-3099-4.

[22] G. S. A. Mala and G. V. Uma, PRICAI 2006: Trends
in Artificial Intelligence, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer-Verlag, July 2006,
vol. 4099, ch. Automatic Construction of Object Oriented
Design Models [UML Diagrams] from Natural Language
Requirements Specification, pp. 1155–1159, ISBN: 978-3-
540-36667-6.

[23] G. S. A. Mala and G. V. Uma, Elicitation of Non-functional
Requirement Preference for Actors of Usecase from Domain
Model, ser. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer-Verlag, December 2006, vol. 4303, pp.
238–243, ISBN: 978-3-540-68955-3.

[24] S. Konrad and B. H. C. Cheng, Satellite Events at the
MoDELS 2005 Conference, ser. Lecture Notes in Computer
Science. Springer-Verlag, January 2006, vol. 3844, ch.
Automated Analysis of Natural Language Properties for UML
Models, pp. 48–57.

[25] B. Cheng and J. Atlee, “Research Directions in Requirements
Engineering,” ICSE FOSE, 2007.

[26] D. Ferreira and A. Silva, “A Requirements Specification Case
Study with ProjectIT-Studio/Requirements,” in Proceedings of
the 2008 ACM symposium on Applied computing. New York,
NY, USA: ACM, 2008, pp. 656–657.

[27] D. Ferreira and A. Silva, “Survey on System Behavior Spec-
ification for Extending ProjectIT-RSL,” in Proc. of the 7th
Int. Conf. on the Quality of Information and Communications
Technology (QUATIC 2010). Los Alamitos, CA, USA: IEEE
Computer Society, September 2010, pp. 210–215, ISBN: 978-
0-7695-4241-6.

[28] A. Cockburn, Writing Effective Use Cases, 1st ed. Addison
Wesley, October 2000, iSBN-13: 978-0201702255.

[29] S. Adolph, P. Bramble, A. Cockburn, and A. Pols, Patterns
for Effective Use Cases, 1st ed. Addison Wesley, August
2002, iSBN-13: 978-0201721843.

[30] D. Rosenberg and M. Stephens, Use Case Driven Object
Modeling with UML: Theory and Practice, 1st ed. Apress,
January 2007, iSBN-13: 978-1590597743.

[31] C. Borysowich, “Guidelines for Pseudocode in Documenting
Specifications,” Retrieved Friday 18th February, 2011
from http://it.toolbox.com/blogs/enterprise-solutions/
guidelines-for-pseudocode-in-documenting-specifications-16011.

[32] S. Bird, E. Klein, and E. Loper, Natural Language Processing
with Python, 1st ed. O’Reilly Media, June 2009, ISBN-13:
978-0596516499.

746 747

Applying and Validating a UML Metamodel for the
Requirements Analysis in Multi-Agent Systems:

The AME-A Case Study
Gilleanes Thorwald Araujo Guedes, Rosa Maria Vicari

Instituto de Informática - Programa de Pós-Graduação em Computação (PPGC)
Universidade Federal do Rio Grande do Sul (UFRGS) - Porto Alegre - RS – Brasil

gtaguedes@inf.ufrgs.br, rosa@inf.ufrgs.br

Abstract—This paper presents the application and validation of a
UML metamodel developed for the requirements modeling in
multi-agent systems projects. In this paper we describe the
metamodel and its application into the modeling of an intelligent
tutor system called AME-A. We also demonstrate the way we
intend to validate this metamodel.

Keywords-Metamodels; Stereotypes; Agents; Agent Roles;
AgentRole_Actors; Internal Use-Cases; AME-A

I. INTRODUCTION

AOSE (Agent-Oriented Software Engineering) is a new
area that mixes concepts both from the software engineering
and artificial intelligence areas. This new area arose from the
multi-agents systems (MAS) development increase and from
the new challenges relative to the analysis and project
generated by this kind of software. The AOSE seeks to develop
methodoologies, techniques, and languages that allow the
modeling of the special features presented by the MAS.

UML (Unified Modeling Language) is a standard modeling
language adopted by the software engineering area, thus, within
the AOSE context, some attempts to create new
languages after the UML as adapted to the Multi-agent Systems
(MAS) project were made. However, none of the languages
studied was concerned about extending or adding new
metaclasses to the metamodel that serves as the basis for the
use-cases diagram (UCD), for that is mainly employed in the
requirements analysis (RA) an essential step for the
achievement of a good software project.

Considering the importance of the requirements analysis
phase, we developed a UML metamodel for the requirements
modeling in MAS projects. In this metamodel we created new
metaclasses and stereotypes, thus to allow the employment
of the use-cases diagram for this purpose.

In this paper we shall discuss the UML-derived languages
for the MAS project we have studied. Next we shall speak
about the RA importance, passing on to the definition of
metamodels, models, and profiles. After that, we shall describe
the developed metamodel and present an application of it.
Finally, we shall discuss the validation of the metamodel, when
we shall compare the diagrams produced using our metamodel
concepts with the diagrams produced by means of the standard
UML, thus trying to demonstrate that the UML does not
support the modeling of the concepts that our metamodel does.

II. DERIVED LANGUAGES FROM UML FOR THE MULTI-
AGENT SYSTEMS PROJECT

Some languages were derived from UML to adapt it to the
MAS Project, like AUML [1], AORML [2], AML [3], MAS-
ML [4], and the [5] agency metamodel. However, there were
found no mechanisms in these languages to model the
requirements for the MAS project, nor any concern into
making a RA as in the system life cycles described by [6] or in
software development methodologies like the UP [7].

One of AUML [1] main contributions was the adaptation of
the UML sequence diagram to the agent communication.
However, there has been no adaptation of the UCD for it to be
applied into the RA. We imagined that, as the AUML is based
in UML, the UCD would be applied in its original way;
however, were this the case, this diagram could not be used to
model the internal requirements of a MAS.

The AORML concentrates on the matter of interaction
modeling between agents and how these react to stimuli. With
respect to the requirements modeling, [2] proposes, but does
not show, the use of the activity diagram for the RA. In [8] the
UCD is applied in its original format, identifying only external
requirements; no adaptation of this diagram was attempted to
model agent roles, goals, perceptions, actions or plans.

The AML represents agents and the roles played by them
and it allows to dynamically model role changes. AML further
represents the agents' perceptions and actions. [3] mentions it is
possible to apply mental states so as to enrich the use case
modeling by means of the requirements modeling based on
goals; however we did not find examples of how that could be
done. Besides, no metaclasses were created to model
requirements in MAS as proposed in our work.

MAS-ML [4] represents agents, their environments, the
resources the agents can manipulate, the organizations of the
system and the roles that can be played by the agents, as well as
their beliefs, goals, and plans. However, the language is not
concerned about the matter of the requirements analysis and no
attempt was made to adapt the UCD to this end.

The metamodel in [5] represents roles, organizations,
environments, beliefs, goals, and plans, as well as the agents
communication. However, this metamodel does not focus on
the requirements modeling and no attempt was made to adapt
the UCD for this function.

746 747

III. REQUIREMENTS ANALYSIS

According to [9], about half of the factors associated with
successful projects is related to requirements and the project
success is directly bound to its quality. Now [10] states that the
incorrect requirements definition is one of the mainly factors
contributing for the failure of a project. And, according to [11],
the requirements elicitation, analysis and documentation in
complex systems is a crucial and non-trivial task. Finally,
according to [6], use-cases (UC) are of special interest in the
requirements engineering, since they were demonstrated as
valuable to elicit, document, and analyze requirements.

Within this context, several authors recommend the UML
UCD for the requirements modeling, like [6], [9] and [11]. The
objective of this diagram, as can be seen in [12] is that of
identifying the actors that might interact with the system, the
functionalities offered by the software and which actors will be
allowed to use which functionalities. Being a standard language
widely accepted and used, with great flexibility for adaptation
to new dominions we believe that UML notation use can easen
understanding by developers. Thus we developed a UML
metamodel in which we created new metaclasses and
stereotypes with the goal of allowing the employment of the
UCD for the requirements modeling in the MAS project.

IV. UML, METAMODELS, MODELS AND STEREOTYPES

UML is a visual language for specifying, constructing, and
documenting system artifacts. It is a general-purpose modeling
language that can be applied to all application domains [13],
The UML specification is defined by using a metamodeling
approach. When metamodeling, a distinction is established
between metamodels and models. A metamodel defines a
semantics for the way of modeling elements within a model. A
model captures a vision of a physical system, it is an
abstraction of the software with a purpose that determines what
must be included and what is irrelevant.

A stereotype is a limited type of metaclass that can only be
used in conjunction with one of the metaclasses it is extending.
A stereotype allows to define how a metaclass can be extended,
assigning to it new characteristics and/or constraints. When a
new metaclass is derived from a previous metaclass and uses
the stereotype named, “stereotype”, this new metaclass allows
to model instances of the original metaclass containing a
stereotype with the new metaclass name, making possible to
model stereotyped elements in a model with characteristics that
differentiate them from the original elements.

V. THE PROPOSED UML METAMODEL

Considering that UML is a widely accepted language and
that MAS has its own characteristics and that none of the
studied languages that extended the UML to the MAS project
focused on the RA issue, we created a metamodel containing
new metaclasses and stereotypes prepared to identify the
requirements of this kind of system.

Initially, we tried to create a UML profile to adapt the
UCD, but we realized that only extending the metaclasses used
by this diagram would not be enough. Previous versions of the
original profile have been published in [14], [15] and [16];

nonetheless, we evolved it into a real metamodel, adding new
metaclasses and stereotypes and adapting it to the work by
[17]; besides, in the previous publications we did not speak
about how we intend to validate this metamodel.

Initially, we tried to use the Actor metaclass to model agent
roles, because, according to [12], this metaclass represents a
kind of role played by an entity that interacts with the system,
but is external to it. However, the agents are not external to the
system, they are inserted within the system and, as they are
independent, proactive, and able to interact with the software
according to their goals, the roles of these agents must be
represented as actors. Therefore, as states [18], it is necessary
to adapt this concept, since agents are internal to the system,
and if we intend to represent agent roles as actors, these actors
must be represented internally, inside the system boundaries.

The representation of agents/roles as UML actors can also
be seen in [19], where agents represent active objects and are
modeled within the system as actors with square heads.
However, [18] only suggests that the actor concept should be
adapted, all the while [19] did not create a UML metamodel. In
our work we explicitly created new metaclasses to allow for an
adequate requirements modeling to be employed in the MAS.

All the same, according to [13], it is not possible to take
away any constraints once applied to a metamodel in a profile.
Thusly, instead of extending the Actor metaclass, we created a
new metaclass from the same metaclass as was created the
metaclass Actor, as can be seen in the Fig. 1, thus creating the
metaclass AgentRole_Actor. In this new metaclass we copied
all the characteristics of the metaclass Actor, suppressing only
the constraint that an actor must be external to the system.

From this new metaclass we derived the Reactive and
Cognitive_AgentRole metaclasses. We applied the stereotype
named, “stereotype”, to both metaclasses, which means that
these metaclasses will be applied as stereotypes upon
AgentRole actors and will assign them special characteristics.

We specialized still further the Cognitive_AgentRole
metaclass by deriving the PS, UAM and SMI_AgentRole
metaclasses. They were created after the work of [17], who
suggested the use of specialist agents Problem Solving (PS),
that must own knowledge about the problem the application
will help to solve; Users and Agents Modeling (UAM), that
must own the knowledge about the users and agents modeling
in order to make cognitive models; and Social Mediated
Interactions (SMI), that must own knowledge about how to
mediate social interactions between the user and the system.

According to [12], UC can be used to specify the system's
external requirements. A UC is the specification of a set of
actions performed by software, generating an observable result
and producing some value for one or more actors. We intended
to represent actions, perceptions, goals, and plans as UC, but
the UseCase metaclass semantic states that UC represents
external requirements, thus, with the objective of adapting the
UC concept for the MAS modeling, we derived a new
metaclass from the same metaclass as the UseCase metaclass
had been derived, calling it InternalUseCase (IUC) and then we
created relationships for this metaclass, equal to those existing
between the Classifier metaclass and the UseCase metaclass.

748 749

Figure 1. UML Metamodel for Requirements Modeling in the Multi-Agent Systems Project

All IUCs are internal to the system and cannot be seen or
used by external entities. From the InternalUseCase metaclass,
we extended some metaclasses to attribute special
characteristics to the IUCs. These extended metaclasses will be
employed as stereotypes. Thus, we created the Perception and
Action metaclasses to model IUCs that contain the necessary
steps for an agent to perceive an event or perform an action.

A third metaclass was derived from the InternalUseCase
metaclass, to represent goals. An IUC employing the Goal
sterotype will contain a description of an agent's desire and the
possible conditions for that desire to become an intention. A
somewhat similar proposal to represent goals as use cases can
be seen in [19]. However, besides creating the IUC concept, we
went even further, when we considered that, in the same way a
goal represents a desire that will not necessarily became an
intention, the steps for its execution should be detailed in one
or more IUCs other than the IUC that represents the goal.

So, in a situation where an IUC employing the Goal
stereotype was used, we would detail in this IUC only those
perceptions and conditions necessary for that goal to become
an intention. Considering that a goal can eventually own more
than a plan and that these plans only will be executed under
certain conditions, we decided to derive a fourth metaclass
named Plan, to identify the plans associated to the goals.

According to [12], an extend is a relationship that specifies
how and when a behavior defined in the extended use case can
be inserted into the behavior of the extending use case. If the
extension condition is true, the extended use case behavior will
be also performed. Considering that a plan is only triggered
after a condition is satisfied, we extended the Plan Extend
metaclass from the Extend metaclass and associated it with the
Goal metaclass. We proceeded this way to differentiate normal
extension associations from plan extension associations.

We also derived the Plan Extension Point metaclass from
the Extension Point metaclass. According to [12], an extension
point identifies a point in the use case behavior that can be

extended by the behavior of another use case. We derived this
metaclass to establish a difference between plan extension
points and normal extension points.

Finally, we derived the IncludeActionPerception metaclass
from the same metaclasses that the Include metaclass was
derived. We made it because the semantics of the Include
metaclass says that it is intended to be used when there are
common parts of the behavior of two or more use cases.
Though agent roles can share perceptions and actions it is not a
rule, so we choose to create a new metaclass in which we
copied the same characteristics of the Include metaclass but we
taked off these constraint.

VI. A CASE STUDY - THE AME-A PROJECT

The AME-A architecture [20] is composed by a hybrid
society of agents that cooperate into aiding students' learning.
The environment interacts with human agents that can be both
the teacher or the students and has several reactive and
cognitive agent roles. Previous versions of this case study were
published in [15] and [16]; however, in these publications
we used old versions of the current metamodel that did
not support the types of agent roles proposed by [17]

The teacher can create a learning activity or evaluate the
students with the aid of the agent who assumes the Teacher's
Tools agent role. The student can choose between performing
an unmonitored or a monitored learning session. In the first, he
only interacts with the agent who takes the Unsupervised
Learning agent role that only presents the content to be learned.

The monitored learning activity is the system main focus, in
which it aims to maximize the student learning by means of the
aid of five cognitive agent roles, to wit: Student Modeling
(SM), Methodology and Teaching Plan (MTP), Learning
Orientation (LO), Learning Analysis (LA) and Knowledge
Application Orienting (KAO). The first models the student
profile in a dynamic way, while the second chooses the
methodology and teaching plan that are more adequated to the

748 749

student profile every time it changes or whenever the student
performance is lower than the expected level; the LO agent role
selects the contents to be taught and the way how these will be
presented according to the methodology; the LA agent role
checks on the student performance throughout the session and
the KAO agent role applies a evaluation after the session ends.

Considering that teacher and student are both roles assumed
by external human agents, we modeled them as normal actors

outside the system boundaries and we associated to that
actor who represents the teacher the functionalities “Create
learning activity” and “Evaluate students”, represented by
normal use cases. In these functionalities there is also an
interaction with the agent role, Teacher Tools, that being a
reactive agent role, was modeled as an AgentRole_Actor with
the sterotype “Reactive AgentRole” and put within the system
boundaries, since it is inserted in the system.

Figure 2. The AMEA Use-Cases Diagram

The actor student was associated to the functionalities,
“Execute an unmonitored learning session” and “Execute a
monitored learning session”', represented as normal use cases.
In the first functionality there is also an interaction with the
agent role, Unsupervised Learning, that was represented as an
AgentRole_Actor with the stereotype “Reactive_AgentRole”.

The functionality, “Execute monitored learning session”
involves the five cognitive agent roles, that were classified as
PS, UAM and SMI actors, as is demonstrated by their
stereotypes in the figure 2. Thus, the SM actor received the
UAM_AgentRole stereotype, since it is responsible for the
modeling of the students that interact with the system. On its
turn the MTP actor received the SMI_AgentRole stereotype,
since it is responsible for establishing which methodology will
be used with each student. All the other actors received the
PS_AgentRole stereotype, because they own knowledge about
the problem the application intends to solve.

The SM agent role has for its goal to model the student in a
dynamic way. The agent who plays this role needs to perceive

when the learning session is beginning and, in this case, trigger
the plan, “Apply questionary”, to determine the student profile.
He also needs to perceive when the student behavior changes,
thereby to trigger the plan to remodel the student profile.

We associated the SM agent role to an IUC with the Goal
stereotype representing the goal to which the agent who plays
this role has to model the student profile. Note that this goal
has two inclusion actionperception (IAP) associations
(<<include ap>>) with two IUCs that represent the perceptions
the agent needs to own to determine whether it is necessary to
trigger any of the plans associated with the goal. Thus, to
achieve its goal, the SM agent role has to perform mandatorily
these perceptions. So, we used an IUC with the Perception
stereotype to represent the perception of the learning session
beginning and other IUC with the same stereotype to represent
the perception of the student behavior.

In the IUC that represents the goal, there are two Plan
Extension Points that represent those points in the goal
behavior where the plan associated to it can be extended and

750 751

besides establish also the conditions for those plans to be
performed. So, in the moment the agent perceives the learning
session is beginning, it will trigger the plan to apply a
questionnaire to the student, represented by an IUC with the
stereotype Plan; and, if the agent perceives a change in the
student behavior, it will forthwith trigger the plan to remodel
the student, equally represented by an IUC with the Plan
stereotype. Both IUCs that represent the plans are associated
with the IUC Goal by means of plan extend associations, i. e.,
these IUCs only will be performed when the conditions
detailed by the Plan extension points are satisfied. Both plans
own an action which is also represented by an IUC with the
Action stereotype, and it represents the sending of the student
model to the agent who plays the MTP agent role.

On its turn, the MTP agent role has for its goal to choose
the methodology and the teaching plan most adequate to the
student; to do this, it needs to perceive when the student model
changes. This goal is associated to a plan, “Change Learning
Methodology and Teaching Plan”, that will be triggered
whenever the student's model changes or every time the
student's performance is proven to be poor. The execution of
this plan includes the sending of a message to the agent who
plays the LO agent role, to inform the latter that the
methodology has been changed.

To model these requirements we associated an IUC with the
Goal stereotype with the agent role in order to represent its
goal. Next, we associated, by means of IAP associations, two
IUCs with the Perception stereotype, to represent the student
model change and the student performance perceptions. After
that, we created a plan extend association to link the IUC with
the Plan stereotype, that represents the plan to change the
methodology and the teaching plan, with the IUC Goal. This
plan will be triggered only when the student model changes or
when the student performance is poor, as is shown by the Plan
extension points of the IUC, Goal. Finally, if the plan is
triggered, it will be necessary to communicate to the agent who
plays the LO agent role the methodology change; as this is
done by means of a communication between agents, we
identified it as an action and we associated it to the plan by
means of an IAP association.

The LO agent role has for its goal to present learning
contents for the student and for its perception the choice of the
methodology and teaching plan. When the methodology and
the teaching plan are perceived, the agent who takes the LO
agent role executes the plan “Select material for learning”. To
model these requirements we represented the goal, the
perception, and the plan as IUCs containing respectively the
stereotypes, Goal, Perception and Plan. As the plan will only be
triggered when the choice of a methodology is perceived, there
is an IAP association between the goal and the perception,
forcing the agent to verify whether it occurs. There is also an
extension association between the goal and the plan, since the
plan only will be triggered if the condition is satisfied.

The LA agent role has for its goal to check the knowledge
acquired by the student, represented by an IUC containing the
Goal stereotype. To execute this goal, the agent who takes this
role must perceive the student's performance; this perception is
represented by an IUC containing the Perception stereotype.

Besides, the agent who assumes the LA agent role must inform
this performance to the agent who takes the MTP agent role,
which is represented as an IUC containing the Action
stereotype. If the student performance is considerated low, then
the plan, “Boosting student”, is triggered, equally represented
as an IUC with the Plan stereotype. This plan has for action to
send motivation messages to the student; we identified this as
an IUC containing the Action stereotype and we connected this
to the plan by means of an IAP association.

Finally, the KAO agent role, has for its goal to evaluate the
student after the session ends. Thus, it needs to perceive that
the learning session has ended so as to know when to trigger
the plan, “Apply evaluation”.

VII. VALIDATING THE PROPOSED METAMODEL

With relation to the validation, we compared the models
created by means of this metamodel with the models created
from the UML original UCD, trying to demonstrate that the
proposed metamodel allows the modeling of concepts not
supported by the standard UCD. Following this idea, we
produced a UCD for the AME-A system using only the
standard UML and comparing it with the diagram produced by
means of our metamodel, as can be seen in the next figure.

Figure 3. Use-Cases Diagram Using the Standard UML

We did not consider possible to model the goals, plans,
perceptions, or actions of these roles, because they are internal
functionalities to which the external users do not have access.
Besides, the standard UML simply does not have mechanisms
to represent goals, plans, perceptions, or actions in a UCD.

Alternatively, using the standard UML, we could try to
make the use case “Execute monitored learning session”, to
encompass the steps of the use cases, “Student modeling”,
“Choose methodology and teaching plan”, “Present material
for learning”, “Verify student knowledge”, and “Evaluate
student”. What could be done in this specific situation, would
be to associate the use cases that represent the plans to the use
case, “Execute a monitored learning session”, by means of
extend associations, establishing the conditions for those use
cases to be performed, as demonstrated in the figure 4.

By this approach we tried to use the standard UML in order
to achieve the same objective reached by the use of the
proposed metamodel. As can be perceived we kept suppressing
the representation of agents, as these are internal to the system

750 751

and an actor represents entities external to the system.

Figure 4. An alternate for the AME-A modeling using extend associations

We tried to associate to the use case, “Execute a monitored
learning session”, the use cases originally used to represent the
plans that should be performed by the agents. Thus, we
attributed the plan extension points of the Goal internal use
cases to the use case, “Execute a monitored learning session”,
thus trying to demonstrate under which conditions each “plan”
could be performed.

However, these functionalities were not conceived as
services to be performed in the “traditional” way by the
software but to be divided among cognitive agents, i. e., they
are functions separated from the “Execute a monitored learning
session” functionality, that represents a service offered to the
student, where he will choose, for instance, the learning session
theme, but thereafter there will be an interaction with the
agents, when those will assume a series of tasks to aid the
student and to do it they will need to perceive events, take
decisions, and perform actions with respect to which attitudes
should be performed. It is not possible to render explicit these
kinds of functionalities by using the standard UML.

It is important to note that in reality the use cases associated
by means of extensions are not functionalities that the student
actor has access to; these functionalities should be performed
by agents according to their goals. We further highlight that it
is not possible to represent the goals of an agent nor the plans
associated to each goal using the standard UML. Likewise, the
UML does not support the perception and action representation
nor it is able to represent internal agents as actors.

VIII. CONCLUSIONS

We presented a UML metamodel developed for the
requirements analysis for the multiagent systems project. This
metamodel allows to represent agent roles, besides modeling
the perceptions and actions the roles should own, as well as the
goals of these roles, together with the plans to achieve them

and the conditions for these plans to be performed. We
demonstrated the applicability of this metamodel by means of
the AME-A intelligent tutor system modeling.

The metamodel in question fills a gap not focused by other
approaches that extended the UML language for the MAS
project, since none of the studied languages was concerned
with addressing the requirements analysis question, a phase of
extreme importance for the success of a software project.

With respect to the metamodel validation, we compared the
models created by means of this profile with models created
from the UML original use-cases diagram; we thus tried to
demonstrate that the new proposed metamodel allows to model
the concepts not supported by the standard use-cases diagram.

REFERENCES

[1] M. Huget, J. Odell, “Representing Agent Interaction Protocols with
Agent UML”, The Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2004)}, New York, 2004.

[2] G. Wagner, “A UML Profile for External AORModels”, Third
International Workshop on Agent-Oriented Software Engineering,
Bologna, Italy, LNCS, Vol. 2585. Berlin: Springer-Verlag, 2003.

[3] I. Trencansky, “Agent Modeling Language (AML): A Comprehensive
Approach to Modeling MAS”, Informatica, v 29, n 4, 2005.

[4] V. Silva, R. Choren, C. Lucena, “MAS-ML: A Multi-Agent System
Modeling Language”, IJAOSE, Interscience Publishers, v.2, no.4, 2008.

[5] C. Silva, “Separating Crosscutting Concerns in Agent Oriented Detailed
Design: The Social Patterns Case”, Doctoral Thesis, UFPE, 2007.

[6] I. Sommerville, “Software Engineering, 6th Ed”, Addison-Wesley, 2000.
[7] J. Arlow, I. Neustadt, “UML 2 and the Unified Process: Practical

Object-Oriented Analysis and Design, 2nd Ed”, Addison-Wesley, 2005.
[8] K. Taveter, G. Wagner, “Towards Radical Agent-Oriented Software

Engineering Processes Based on AOR Modelling”, Idea Group, Agent-
Oriented Methodologies, ISBN 1-59140-581-5, USA, 2005.

[9] B. Berenbach, Software and Systems Requirements Engineering In
Practice, McGraw-Hill, New York, 2009.

[10] E. Hull, K. Jackson, J. Dick, Requirements Engineering - Second
Edition, Springer, London Berlin Heidelberg, 2005.

[11] B. Regnell, Requirements Engineering with Use Cases - A Basis for
Software Development, Lund University, Sweden, 1999.

[12] OMG - Object Management Group, Unified Modeling Language:
Superstructure Specification, v 2.1.1, OMG, 2007. http://www.omg.org.

[13] OMG - Object Management Group, Unified Modeling Language:
Infrastructure Specification, v 2.1.1, OMG, 2007, http://www.omg.org.

[14] G. Guedes, R. Vicari, “A UML Profile Oriented to the Requirements
Collecting and Analyzing for the Multi-Agent Systems Project”, 22nd
International Conference on Software Engineering and Knowledge
Engineering – SEKE 2010, Redwood, California, USA, 2010.

[15] G. Guedes, “A UML Profile Oriented to the Requirements Modeling in
Intelligent Tutoring Systems Projects”, The Third IFIP International
Conference on Artificial Intelligence, IFIP AI 2010, Brisbane, 2010.

[16] G. Guedes, R. Vicari, “Applying a UML Profile in the Requirements
Modeling to Multi-Agents Systems”, Quatic 2010, Porto, Portugal, 2010.

[17] R. Vicari, J. Gluz, “An Intelligent Tutoring System (ITS) View on
AOSE”, IJAOSE, v. 1, n 3-4, 2007.

[18] B. Bauer, J. Odell, “UML 2.0 and Agents: How to Build Agent-based
Systems with the new UML Standard”, IJEAAI, v 2, i 2, 2005.

[19] S. Flake, C. Geiger, J. Kuster, “Towards UML-based Analysis and
Design of Multi-Agent Systems”. ENAIS'2001, Dubai, 2001.

[20] C. D'Amico, R. Viccari, “Adapting Teaching Strategies in a Learning
Environment” on WWW, WebNet, 1998.

752 753

A Panorama of Software Architectures in Game
Development
Leonardo Bitencourt Morelli

Elisa Yumi Nakagawa
Dept. of Computer Systems

Institure of Mathematics and Computational Science - ICMC
University of São Paulo - USP

morelli,elisa@icmc.usp.br

Abstract—As video games evolve into richer and more so-
phisticated products, the software driving those games become
more complex. One of the research areas offered by Software
Engineering to cope with this complexity, while reducing risks
and improving software quality, is Software Architecture. The
purpose of this paper is to present an overview of possibly
all work having investigated, established and used software
architectures for the development of video games. For this, a
Systematic Mapping was conducted. The achieved results show
an increasing, however still mild, interest in the exploration of
software architectures for the development of video games, and
lays out lines of research that can be explored.

Keywords- Software Architecture; Game Development; Video
Game; Computer Game; Systematic Mapping

I. INTRODUCTION

Developing video games has evolved from a one-man job into
highly complex projects, executed by large groups of highly
specialized professionals [4] over the period of years. This
reflects the fact that the video games industry is the fastest
growing one in the entertainment market [17], with titles
(i.e., individual games) selling millions of copies in the week
immediately following each release date [5]. Both the growing
complexity and the diversity of target platforms require efforts
from the development team to improve software quality and
reduce project risks, as well as minimize the cost of a product
and make sure it meets today’s market standards.

One of the Software Engineering disciplines that can address
these efforts is Software Architecture [18], commonly associ-
ated with software quality and maintainability. From the first
work of Kruchten on iterative software development with a
focus on software architecture [10], a number of works has
recognized the value of considering software architectures ex-
plicitly in system development processes [2], [19]. As already
stated by Shaw and Clements [15], software architectures have
attained the status of truly successful disciplines. Software
architectures play a major role in determining system quality
— performance, maintainability, and reliability, for instance
— since they form the backbone of any successful software-
intensive system [18].

According to Garlan [8] and the SEI [16], a Software Architec-
ture consists of a component structure, the relations between

components, and the rules governing the design and evolution
of software systems. A well-defined software architecture can
improve system reliability, enable the integration of third-party
libraries and COTS(Commercial, Off-The-Shelf) components,
and promote component reuse, reducing producion costs be-
tween projects. Because of this, numerous application domains
have been the subject of software architecture studies, and so
should video games. It is, therefore, interesting to search for
previous works associating software architectures with video
game development.

Evidence-Based Software Engineering (EBSE), which is in-
spired in the medical area and has contributed considerably
to software engineering practices, gives us the Systematic
Mapping technique. It offers a systematic method for mapping
a given research topic in order to obtain a comprehensive
overview of the area[13].

This paper’s main objective is, through the conduction of a
Systematic Mapping Study, to identify possibly all research
works investigating the use of software architecture in video
game development. While few such publications currently
exist, results point out that interest in the area is growing and
reveal interesting specific topics that haven’t been explored.

This paper is organized as follows. In Section II we present
a brief overview on the Systematic Mapping technique. In
Section III we present the conducted Systematic Mapping.
In Section IV we discuss about achieved results. Finally,
in Section V we summarize our contributions and discuss
perspectives for further work.

II. A BRIEF OVERVIEW OF SYSTEMATIC MAPPING

When a research field reaches its maturity, there is almost
always a noticeable increase in the number of reports and
results which are made available. At some point in the study
of new areas, researchers usually conduct bibliographical
reviews (almost always informal ones) to identify publications
corresponding to their specific subjects. These reviews are
not, however, done systematically, nor is any support given
to prevent bias from occurring during the selection of publi-
cations set to be analyzed. It is important to have mechanisms
to summarize and provide overviews of an area or topic of
interest [13].

752 753

Fig. 1. Systematic mapping process (Adapted from [13])

For this, EBSE has proposed the use of the Systematic
Mapping technique [3], [13]. In this context, any individual
evidence (e.g., a case study or an experimental study divulged
in a publication or paper) which contributes to a systematic
mapping is called a primary study, while the result of a
systematic mapping is a secondary study. Systematic mapping
aims at providing an overview of a research field, assessing
the quantity and types of primary studies existing in the area
of interest [13]. In short, systematic mapping is carried out
by planning, conduction of search and screening of primary
studies by use of inclusion and exclusion criteria [3]. A
systematic mapping also includes data extraction and analysis
through the identification of categories and classification of
primary studies within these categories. As a result, this
technique provides maps (i.e., tables and charts) containing
condensed information on the area of interest.

III. CONDUCTED SYSTEMATIC MAPPING

This systematic mapping aims at identifying studies describing
the use of software architectures in the development of video
games, and it was conducted between May and June, 2010,
using the process shown in Fig. 1. It is, in short, composed by
four stages: (i) systematic mapping planning; (ii) conduction
of the search; (iii) selection of the primary studies; and (iv)
analysis, classification and mapping. These steps are explained
in further detail in the next sections, which present the
conducted systematic mapping and explain its execution.

A. Systematic Mapping Planning

This plan consists of formulating the research questions,
selecting the sources of primary studies and establishing the
inclusion and exclusion criteria.

1) Research Questions (RQ): These questions are struc-
tured according to the objective of the systematic map-
ping. In this case, their purpose is the identification of
a panorama featuring both software architectures and
video game development. The research questions for our
systematic mapping are:

RQ1: Which software architecture topics have been
studied for the development of video games?

RQ2: Who are authors researching the use of soft-
ware architectures for the development of video
games?

RQ3: Which software architecture topics for video
game development have been given more at-
tention?

RQ4: Which video game subsystems have been tar-
geted in software architecture research?

2) Selection of Sources: As the sources of primary studies,
the databases indexing the most important publications
in software engineering were selected: IEEE Xplore1,
ACM Digital Library2 Springer Link3, Scopus4, Science
Direct5 and ISI Web of Knowledge 6. Only papers
written in English were considered in the systematic
mapping, since English is the most widely adopted
language in the publication of scientific papers.

3) Establishment of Selection Criteria: The definition of
Inclusion Criteria (IC) and Exclusion Criteria (EC) is
another important element in the planning of systematic
mapping. These criteria make it possible to include pri-
mary studies that are relevant for the research questions
and to exclude studies that do not answer them. The
inclusion criteria in our systematic mapping are:

IC1: The study describes the investigation of a soft-
ware architecture for video games;

IC2: The study describes the investigation of a ref-
erence architecture for video games;

IC3: The study describes the investigation of a
framework for video games;

The exclusion criteria established are:
EC1: The study is not in English;
EC2: The study does not have an abstract;
EC3: The study is in abstract-only format.
EC4: The study does not describe the investigation

of a software architecture.
EC5: The study does not describe an investigation

about video game development.
EC6: The study is a copy or older version of another

considered study.

B. Conduction of the Search

At this stage, the search for primary studies is conducted
according to the previously established plan, i.e., by search-
ing for all primary studies matching a search string in the
databases selected as sources. This can be done automatically
if the sources provide an efficient search engine. For this,
useful keywords are selected and search strings are created.

1) Keywords: To keep studies within the systematic map-
ping’s scope, the keywords must be simple and well-
chosen. They must be sufficiently simple to produce an
adequate number of results, but also rigorous enough to
avoid the inclusion of undesired studies. The keywords

1http://ieeexplore.ieee.org/
2http://portal.acm.org/
3http://www.springerlink.com/
4http://www.scopus.com/
5http://www.sciencedirect.com/
6http://www.isiknowledge.com/

754 755

chosen for this systematic mapping, separated by area,
are shown in Table I.

TABLE I
KEYWORDS SEPARATED BY AREA

Area Keyword
Software Architecture “software architecture”
Video Games “video game”, “computer game”

2) Search Strings: Using the keywords, the search string is
built with AND/OR operators in a way that it represents
the correct search parameters. The search string used in
our systematic mapping was:
(“software architecture” OR “software architectures”) AND
((“video game” OR “video games”) OR (“computer game”

OR “computer games”))
This search string was accepted by all selected
databases, so no custom strings were necessary. With the
Springer Link search engine, application of filters after
the search was required. The following two filters were
used: (i) in “Subject” the filter “Computer Science”; and
in “Subject” the filter “Software Engineering”. With the
ISI Web of Knowledge database, the string was used in
“topic or title”.

This stage resulted in a total of 276 primary studies: 70 from
ACM digital library, 12 from IEEE Xplore, 77 from Springer
Link, 95 from Science Direct, 6 from Scopus and 16 from ISI
Web of Knowledge.

C. Selection of Primary Studies

At this stage, the inclusion and exclusion criteria were em-
ployed to select the relevant primary studies.

Table II summarizes the number of primary studies obtained
after applying the inclusion and exclusion criteria. To give
the databases a fair comparison, this table does not take EC6
(which excludes duplicated studies) into account. From a total
of 276 primary studies previously identified, 33 studies (i.e.
12 %) were considered relevant and thus selected. ISI Web of
Knowledge, Scopus and IEEE Xplore were very useful sources
for this study: They had high inclusion rates, even though
the number of returned studies was low. Ten of the studies
returned by Springer Link were included and, despite the low
inclusion rate, it should also be considered relevant. Most of
the excluded studies didn’t cover software architectures or
video games at all.

TABLE II
PARTIAL AND TOTAL AMOUNTS OF PRIMARY STUDIES INCLUDED AND

EXCLUDED, EXCEPT BY EC6

incl excl total % incl
IEEE Xplore 4 8 12 33.3%
ACM Digital Library 3 67 70 4.3%
Springer Link 10 67 77 13%
Science Direct 4 91 95 4.2%
Scopus 3 3 6 50%
ISI Web of Knowledge 9 7 16 56.3%
total 33 243 276 12%

For the remainder of the Systematic Mapping, EC6 is also
applied, excluding duplicated results from the relevant primary
studies. If there were two revisions of the same primary study,
the oldest was discarded. The updated relevant primary studies
are shown in Table III.

TABLE III
PARTIAL AND TOTAL AMOUNTS OF PRIMARY STUDIES INCLUDED AND

EXCLUDED, INCLUDING BY EC6

included excluded total % included
total 31 245 276 11.2%

D. Analysis, Classification and Mapping

While the previous section presented a quantitative analysis of
the systematic mapping, this section categorizes the primary
studies. For this, two tasks were conducted: (i) search by key-
words; and (ii) grouping of the primary studies into categories.
To start with, primary studies had their titles, keywords and
abstracts carefully read. Following this procedure, terms that
seemed to be more relevant were selected as keywords, and
these keywords are divided into categories. For this systematic
mapping, there was an interest in identifying relationships
between software architecture and the development of video
games. Thus, four categories, each with a group of keywords,
were created:

Category 1: Video game subsystems: This category shows
which video game subsystems software achitectures have been
proposed for. Fig. 2 illustrates these subsystems and their
relationships in a common game system. The subsystems
considered here are the result of empirical observation, both
by the authors and by the game development community [12].
The keywords for this category are:

• graphics: Studies that describe the subsystem in charge
of graphics rendering and display;

• audio: Studies that describe the subsystem in charge of
audio, e.g., music and sound effects;

• input: Studies that describe the subsystem in charge of
capturing user input from devices, e.g., controllers, mouse
and camera;

• network: Studies that describe the subsystem in charge of
network communications;

• physics: Studies that describe the subsystem in charge
of physics simulations. This may include the use of a
dedicated physics processor or GPU (Graphics Processing
Unit) processing;

• AI: Studies that describe the subsystem in charge of Arti-
ficial Intelligence processing. This may include scripting,
strategic/behavioural (i.e., how entities decide what ac-
tions to execute) and tactical (i.e., how entities decide
how to execute actions) logic, some of which may be
title-specific;

• control: Studies that describe the subsystem in charge of
orchestrating the execution of the other subsystems. It
includes the game loop and other title-specific logic; and

• hardware: Studies that describe an abstraction layer be-
tween the other subsystems and hardware.

754 755

Category 2: Software architecture topics: This category
shows which topics of the software architecture domain have
been more applied in the development of video games. Key-
words in this category are:

• product line: Studies that present Software Product Lines
(SPLs) for the development of video games. SPLs were
born as an approach to develop a diversity of software
products and software-intensive systems at lower costs,
in shorter time, and with higher quality [14];

• reference architecture: Studies that propose reference
architectures for the development of video game software.
Reference architectures have emerged as an element that
aggregates knowledge of a specific domain by means
of activities and their relations. They can promote reuse
of design expertise by achieving solid, well-recognized
understanding of a specific domain[1];

• framework: Studies that describe software frameworks,
which are, in short, abstracted application layers contain-
ing common code that provide generic functionality for
a domain [6];

• design pattern: Studies that describe the use of Software
Design Patterns in the development of video games.
Design patterns represent reusable solutions to recurring
problems in software design [7];

• aspect: Studies that describe the use of Aspect-Oriented
Programming (AOP) for the development of video game
software. AOP has arisen as a new technology to sup-
port a better SoC (Separation of Concerns) and more
adequately reflects the way developers think about the
system [9]. Essentially, AOP introduces a unit of modular
implementation — the aspect — which has been typically
used to encapsulate crosscutting concerns in software
systems (i.e., concerns that are spread across or tangled
with other concerns). Modularity, maintainability, and
ease to write software can be achieved with AOP [11];

• COTS: Studies that describe the use of COTS components
that can be used as libraries, tools or building blocks for
the development of video games; and

• quality: Studies that explore the use of software archi-
tectures aiming at improving the quality of video game
software.

Category 3: Research environment: This category shows
whether the studies come from the industry or the academia.
Keywords in this category are:

• academia: Studies that were conducted and published by
the academia; and

• industry: Studies that were conducted and published by
the game industry.

Category 4: Evaluation and use level: This category shows
how mature the presented software architecture is and how, if
at all, it was used.

• in use: Studies presenting the use of software architec-
tures that were or are in use in a video game product.

• prototype: Studies presenting the use of software archi-
tectures that were validated through the implementation

Fig. 2. Game loop and subsystems in a common game system (adapted from
[12])

of a prototype.
• study only: Studies that propose software architectures

for the video game domain and that presented the use of
neither a prototype nor a product.

Following the creation of those four categories, the primary
studies were classified according to topics within them. It
is important to notice that a study may fit into more than
one topic per category, or not be classifiable based on the
reading of its abstract, title and study keywords. Additional
categories for target platform and game genre were considered
but ultimately omitted for brevity and because only a few
studies could be classified by those categories.

After the conclusion of these groupings, several maps were
built, partitioning the relevant primary studies by categories
and by year, and the most relevant of those maps are presented
and discussed.

Fig. 3 shows the result for the category “Video game sub-
systems”, organized by year of publication. The map shows
an increasing interest in researching software architectures
for video games, with the substantial rise in 2009 hinting
at a larger number of future studies. A constant amount of
AI research over time can also be identified, as well as an
increasing interest in the control, graphics, input and network
subsystems. The augmented interest in the control subsystem
can be linked to the newer multi-processed target systems.
The appearance of the input and network subsystems can
also be explained by the emergence of new technologies,
such as non-conventional input systems (e.g., motion and
biometric sensors) for the first, and ubiquitous networks for
the latter. It is observable, therefore, that there is a tendency
towards the use of software architectures to improve each
of the subsystems that make up a video game. Considering
how software architectures can affect the quality of software
products, however, more research work can greatly contribute
towards architecturally organizing the video game subsystems
and improving the maturity of future video game software.

Figure 4 shows the category “Software architecture topics”, by
year of publication. This map shows an increase in research
in the last few years, and gives us a recurring software archi-

756 757

Fig. 3. Map for the category “Video game subsystems”, by year

Fig. 4. Map for the category “Software architecture topics”, by year

tecture topic: Frameworks, which are straightforward enough
to define and develop, and help streamline the development
of video games by keeping all the common problems between
different titles treated and solved in a single software package.
All topics do, however, remain fairly unexplored in the context
of video game development, especially aspect-oriented archi-
tectures, COTS usage and reference architectures. The study of
validated architectural solutions to problems specific to a game
platform or genre, for example, could give birth to reference
architectures for that particular platform or genre, which could
drastically reduce development time and improve product
quality. The study of aspect-oriented architectures for video
game development, on the other hand, could help developers
model cross-cutting concerns. There is a need for discussions
evaluating the use of aspects in game development, be it
positively, e.g., identifying important cross-cutting concerns,
or negatively, e.g., in respect to program performance or the
lack of justifiable reason for the use of aspects.

Fig. 5 condenses two maps. The first crosses two categories,
“Research environment” and “Video game subsystems”, and
shows that the great majority of studies comes from the

Fig. 5. Map for the categories “Research environment” and “Evaluation and
use level”, by “Video game subsystems”

academia. These academic studies focus mainly on the AI,
control and graphics subsystems. We have found the lack of
publications originated in the industry disturbing, since game
developers and software engineers alike could greatly benefit
from the knowledge of how real-world problems are solved in
production environments. A deeper, more detailed look into
the knowledge created by the industry could greatly improve
our perception of how video games evolve and how they
influence computing and engineering in general, as well as
contribute new ideas on how to solve complex architectural
problems in software.

The second map in Fig. 5 crosses the categories “Evaluation
and use level” and “Video game subsystems”, showing that
most investigations involve the development of prototypes.
The studies resulting in “in-use” products are about the AI,
audio and graphics subsystems, and studies that result neither
in prototypes nor in products are related to the AI and graphics
subsystems. Although the evaluation by prototype is better
than no evaluation at all, the small number of “in-use” studies
can be a symptom that either the solutions proposed are not
practical, or that the studies are not being taken seriously
enough.

In regards to RQ2, which asks who are the authors researching
the use of software architectures in video game development,
no author appeared in more than one of the relevant primary
studies. Therefore, it is observed that there is a lack of research
groups investigating and publishing work about software ar-
chitectures in the context of video game development.

IV. DISCUSSION

The use of systematic mapping to elicit previous and current
research on the use of software architectures for video game
development has uncovered evidence of the growing interest
in this subject. This section includes the discussion of a few
issues, before a presentation of limitations and lessons learned.

During Section III, all research questions established for our
systematic mapping were successfully answered. This suggests
that the general knowledge of software architectures in video
game development has been mapped. It is also believed that

756 757

the results presented in this work are representative of the
whole video game development domain, since the systematic
mapping technique provides mechanisms and results that allow
us to make such statement.

Considering the information gathered throughout this work, it
is possible to identify interesting and important research lines
that can be investigated in future work.

Current software engineering trends point towards the use of
design patterns, COTS components, product line engineering,
reference and aspect-oriented architectures to further reduce
production costs, project risks and help build products with
better quality. These topics do, however, deserve more atten-
tion from the game development community if a consensus on
their value for developing video games is to be reached.

From the video game perspective, there is room for research
in software architectures for all subsystems, in special the
control, graphics, input and network subsystems, which have
been increasing in popularity.

Also, the game development community can strongly benefit
from a detailed description of industry practices that are tested
and already known to be successful in real-world applications.

Regarding the limitations of this work, other categories could
be established and, consequently, different related maps could
be drawn. Also, new research questions could be asked,
targeting specific research topics.

V. CONCLUSIONS

This work’s main contribution is the presentation of an en-
compassing view of the application of software architectures
in the development of video games. To establish this view, a
set of steps provided by the Systematic Mapping technique
was systematically applied. It is believed that this overview
can contribute to the video game development area, shedding
light on the existing domain and presenting new oportunities
for investigation.

It is widely accepted that software architectures play a major
role in determining system quality. More work bridging soft-
ware architecture and video game development can reduce the
gap between these two areas and both improve the quality of
video games and bring new architectural styles and solutions
to the software architecture domain.

Motivated by the promising results, we intend — as future
work — to conduct Systematic Mapping studies involving
more specific topics. Thus, our research group strives to-
wards the achievement of an even better understanding of the
intersection between software architectures and video game
development.

ACKNOWLEDGEMENTS

Thanks to Alexandre R. Inforzato for linguistics support. Also
to Daniel Feitosa and Lucas Bueno Ruas de Oliveira for
guidance with the Systematic Mapping technique.

REFERENCES

[1] Samuil Angelov, Jos J. Trienekens, and Paul Grefen. Towards a method
for the evaluation of reference architectures: Experiences from a case. In
Proceedings of the 2nd European Conference on Software Architecture
(ECSA’08), pages 225–240, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. The SEI Series in Software Engineering. Addison-Wesley, 2
edition, 2003.

[3] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham. Using mapping
studies in software engineering. In Proceedings of the 20th Annual
Meeting of the Psychology of Programming Interest Group (PPIG) 2008,
pages 195–204, Lancaster, United Kingdom, September 2008. Lancaster
University.

[4] D. Callele, E. Neufeld, and K. Schneider. Requirements engineering
and the creative process in the video game industry. Requirements
Engineering, 2005. Proceedings. 13th IEEE International Conference
on, pages 240 – 250, aug.-2 sept. 2005.

[5] Brian Crecente. Take-two confirms gta’s half a billion
week. On-line, 2008. http://kotaku.com/5008102/take+
two-confirms-gtas-half-a-billion-week, 20/05/2010.

[6] M. F. Fayad and D. C. Schmidt. Object-oriented application frameworks.
Communications of the ACM, 40(10):32–38, 1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[8] D. Garlan. Software architecture: a roadmap. In ICSE ’00: Proc. of the
Conference on The Future of Software Engineering, pages 91–101, New
York, NY, USA, 2000. ACM Press.

[9] Gregor Kiczales, John Irwin, John Lamping, Jean Marc Loingtier,
Cristina Videira Lopes, Chris Maeda, and Anurag Maendhekar. Aspect-
Oriented Programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, ECOOP ’97: Proceedings of the 11th European Conference
on Object-Oriented Programming, pages 220–242, Jyväskylä, Finland,
1997. Springer-Verlag.

[10] P. Kruchten. An iterative software development process centered on
architecture. In Proc. 4ème Congrès de Génie Logiciel, pages 369–378,
1991.

[11] R. Laddad. Aspect-oriented programming will improve quality. IEEE
Software, 20(6):90–91, Nov.-Dec. 2003.

[12] Loki Software, Inc. and John Hall. Programming Linux Games: Learn to
Write the Games Linux People Play. Linux Journal Press, San Francisco,
CA, USA, 2001.

[13] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson.
Systematic mapping studies in software engineering. In EASE ’08:
Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, pages 1–10, Bari, Italy, 2008.
Blekinge Institute of Technology.

[14] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer-
Verlag, 2005.

[15] Mary Shaw and Paul Clements. The golden age of software architecture.
IEEE Software, 23(2):31–39, Mar/Apr 2006.

[16] Software Engineering Institute. How do you define software architec-
ture? On-line, 2009. http://www.sei.cmu.edu/architecture/definitions.
html, 20/05/2010.

[17] Sizhu Tan and Mingzhi Li. The market structure of the video game
industry: A platform perspective. In 2008 International Conference on
Service Systems and Service Management, pages 1 –4, june 2008.

[18] A. I. Wasserman. Towards a discipline of software engineering. IEEE
Software, 13(6):23–31, November 1996.

[19] Zhang You-Sheng and He Yu-Yun. Architecture-based software process
model. ACM SIGSOFT Software Engineering Notes, 28(2):1–5, March
2003.

758 759

Detecting Architecture Erosion by
Design Decision of Architectural Pattern

Lei Zhang, Yanchun Sun*, Hui Song, Franck Chauvel, Hong Mei
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China
Email: {zhanglei07, sunyc, songhui06, franck.chauvel}@sei.pku.edu.cn, meih@pku.edu.cn

Abstract—In the software architecture design, architects usu-
ally adopt many classic architectural patterns. However, such
important design decisions often fail to be effectively captured
in practice. The problem called “architecture erosion” may
happen easily. During the design iterations, the latest design
may accidentally violate the constraints implied by existing archi-
tectural patterns. During the evolution of system, the improper
modification may conflict with the original design.

In this paper, we present an approach for detecting architec-
ture erosion, by capturing the most important design decisions
about the adopted architectural patterns. Architects can use a col-
lection of predefined and frequently-used architectural patterns
in their design. Our supporting tool can capture what and how
the architectural patterns are used, and then generate a set of
corresponding OCL code automatically. With these specifications,
we can both verify the architecture in design phase and validate
the run-time architecture to detect architecture erosion. Finally,
we use an illustrative example to demonstrate the feasibility of
this approach.

keywords: architectural pattern, architecture erosion, design
decision

I. INTRODUCTION

Nowadays as the size and complexity of software systems
increase, software architecture plays an important role in soft-
ware development [1]. It is important not just in the develop-
ment phase, but in every aspect of software development, from
the initial conceptualization of the system through require-
ments to the system’s deployment. [2]–[4]. Nevertheless, in
current architecture centric development process, the problem
called “architecture erosion”(or “decay”) [5] frequently hap-
pens in many projects. On one hand, it is common to see
the architecture design of a system and its implementation
diverged to a certain extend. On the other hand, when archi-
tecture undergoes several evolutions for changed or new added
requirements, architecture erosions may also happen.

The key cause of architecture erosion is the loss of the
important “design decisions” [5], which are taken during the
architectural design and embedded in the resulting software ar-
chitecture implicitly. To address this problem, design decision
became an emerging research trend in recent years and it drew
increasingly attention in architecture community [6]. Many
useful approaches and methods have been proposed. Such
as, Archium [7], AREL [8], ArchDesigner [9], AQUA [10],
and our own ABC/DD [11]. Most of them provide different
methods to capture kinds of design decisions. However, as

* Corresponding Author

pointed by van Vliet et al., there are too many design decisions
but not all of them are that important [2], and it is expensive to
document design decisions. Therefore, we hope to only capture
the minimal set of the really important ones.

Adopting architectural patterns1 is one kind of the most im-
portant decision. Architectural pattern expresses a fundamental
structural organization or schema for software architecture
design [14], and in fact it is incorporated in most software
architectures. Since 1994 when Shaw and Garlan classified
architectural patterns in their seminal book [15], a number of
patterns have been applied in many modern systems. Many are
used frequently. For instance, pipe-filter, black-board, multi-
layers, model-view-controller, client-server, and so on.

However, architectural pattern does not become the focus
in most design decision approaches. In practice, adopted
architectural patterns are usually hidden in architecture design
without an explicit notation. When these design decisions are
lost, it will take time to identify those used patterns. Thus,
they might be distorted unintentionally by other patterns or
improper modifications Even worse, once those patterns have
been programmed, they disappear in the code. It is more
difficult to ensure whether they are implemented faithfully.

To address this problem, we present an approach to detect
architecture erosion, by capturing the most important design
decisions about the adopted architectural patterns. Architects
can use a collection of predefined and frequently-used ar-
chitectural patterns in their design. Our supporting tool can
capture what and how the architectural patterns are used, and
then generate a set of corresponding OCL code automatically.
With these specifications, we can both verify the architecture
in design phase and validate the run-time architecture to detect
architecture erosion.

The rest of the paper is organized as follows: Section II
describes the motivative example; Section III presents our
proposed approach of capturing architectural pattern, as well
as the process of our approach; then Section IV provides an
illustrated example using this approach; and related work are
discussed in Section V; in the final Section VI, we discuss
some limitations of our approach and future work.

1we use the term “architectural pattern” as synonym for “architecture style”
as suggested by Hofmeister et al. [12] and Bass et al. [13]

758 759

II. MOTIVATIVE EXAMPLE

Multi-layer architecture (also referred as n-layers architec-
ture) is one of the most common used architectural pattern.
When adopting multi-layer pattern, the architect needs to break
up a system into several layers which logically grouping
components that offers a cohesive set of services. Each layer
provides a set of services to the layer above and uses the
services of the layer below. The most widespread use of multi-
layer pattern is three-layer architecture as shown in Fig.1(a).
It separates presentation, application processing, and the data
management components into three independent layers.

Fig. 1. Multi-layer architectural pattern

Two topological constraints are imposed when adopted
multi-layer pattern. Firstly, components in one layer cannot use
services provided by the upper layer. Secondly, components
cannot use services across the layer. The dashed line marked
with error in Fig.1 (b) and (c) illustrate the two violations
respectively.

Nevertheless in practice, throughout the entire software life
cycle there are some situations in which architecture erosion
may occur.

(a) Patterns in Architecture Design
Within one architecture, often several architectural patterns

can coexist in the same design. Previously used patterns may
conflict with the subsequently used patterns during architecture
design iterations.

For example, multi-layer pattern in Fig.1 (a) was adopted al-
ready, then Model-View-Controller (MVC) pattern was adopted
later. The architect wants to separate the components of model,
view, and controller into different layers. Then the interaction
between these components maybe conflict with multi-layer
pattern, if it is not designed properly.

(b) Patterns in Implementation
The best architecture is worthless if the code does not follow

it [1]. However, it is hard to guarantee each design introduced
by architects can be faithfully transformed to program source
code.

For example, the layered architecture design in Fig.1 can
be violated accidentally. A report of a real project said that
the key developer of the GUI directly accessed the database
without modifying architecture design just like Fig.1 (c) [16].
Even the popular open-source IDE – Eclipse, which adopts

multi-layer pattern, has similar layers violations, as discussed
in [17].

Similar violations also can happen during the evolution
phase of systems. Without an explicit representation of ar-
chitectural pattern, people often modify the system without a
fully understanding of the system. If it evolves in a way that
conflicts with the original design, the architectural pattern may
be broken.

III. PROPOSED APPROACH

A. Software Architecture Meta Model

Based on our previous underlying meta-model for architec-
ture design [11], we extend it to support architectural pattern,
as shown in Fig.2.

Fig. 2. The Core Meta-Model of the Approach

B. Predefined Architectural Pattern

In order to provide a handily cataloged architectural pattern
repository of ready-to-use, we must clearly define what con-
stitute a pattern in advance. According to existing literature,
mainly [3], [14], [15], [18], we use the minimal set of
constituent elements to characterize an architectural pattern:

(1) Structure
Each architectural pattern has a structure which is consti-

tuted by several subsystems. The name of each subsystem
provides a vocabulary of design solution. For example, pipe,
filter, blackboard, client, server. We use a package diagram to
illustrate the structure of a pattern.

(2) Structural Constraints
The constraints define how elements can be integrated to

form this pattern and determine allowed interaction between
subsystems, e.g., as discussed in the motivative example,
components in multi-layers architectural pattern, should not
access the components across the layer, as Fig.1 (c). We use
natural language to describe these constrains, and use a set of
templates of OCL code to precisely describe them.

(3) Known Quality Attributes Impact
Most architectural pattern will affect the quality attributes.

Applying a given architectural pattern may make it easier or
harder to implement certain quality attributes. Based on exist-
ing literature, we collect known impact on quality attributes.
Table.1 lists some of the most representative ones.

760 761

Fig. 3. Process diagram of the approach

C. Process of Proposed Approach

The process of our approach is depicted in Fig.3. There
are in all four segments horizontally representing four phases
of the software life cycle, including requirement analysis,
architecture design, implementation, deployment/evolution. In
the vertical direction, the diagram is divided into two com-
partments: the upper one contains manual activities, while the
lower one contains the activities finished by our tool.

(a) Requirement Analysis Phase
In the first phase, architects must organize all the archi-

tectural significant requirements (ASR) of software system,
including both functional and non-functional requirements.

(b) Architecture Design Phase
(b.1) Select Architectural Pattern
By examining the predefined architectural patterns, archi-

tects should select a suitable one as a starting point according

to identified non-functional requirement and the known quality
attributes impact.

(b.2) Import Predefined Architectural Pattern

With the help of our modeling tool, adopting a specific
architectural pattern is simple. All that the architect needs to
do is to click on the selection from the palette of patterns, then
drag and drop to the editing area. By doing this, our tool will
automatically place a skeleton of this pattern. For example,
Fig.4 shows the case that MVC pattern is adopted. The
rounded rectangles labeled with the name of each subsystem
are explicit notations of the adopted architectural patterns.

The action of adopting a pattern is an important design
decision and it will be captured by our tool automatically in
chronological order.

(b.3) Detailed Design

After importing the architectural pattern, architect then can

Pattern
Name

Pattern
Structure

Pattern
Element

Structural
Constraints Quality Attributes

Pipe and
Filter

A set of
Pipes

Pipe is connected with a filter
End with a pipe not a filter

+ modifiability
+ portability
+ scalability
— performance

Model-
View-

Controller

Model,
View,

Controller

Components in View and Model should not
directly access
All the connections should be managed by
Controller

+ scalability
+ extensibility
+ reusability
+ evolvability
— performance

Layers Layer
If component resides in layer i ,
then it can only access the components
reside in layer i and i-1.

+ portability
+ extensibility
+ reusability
— performance
— evolvability
— reconfigurability

Client-
Server

Client,
Server

Client should only access the server
Client can not access other clients

+ scalability
+ evolvability
— reusability

Table.1. Predefined Architectural Patterns

760 761

continue the detailed design within the generated skeleton of
pattern. Concrete components and connectors can be filled
into the skeleton. The explicit skeleton makes the boundary
of architectural pattern more clearly and prevents an ad-hoc
architecture design.

(b.4) Generate Architectural Pattern Specification
When the architecture design is finished, the supporting tool

will generate a set of OCL code to specify every constraints
imposed by existing architectural patterns.

In our predefined architectural pattern repository, pattern
constraints are denoted as several templates of OCL code.
When generating the executive OCL code, parameters in those
templates will be substituted by concrete components and
connectors in pattern.

For example, in the Model-View-Controller architectural
pattern, one constraint is that components of Model cannot
directly access components of View, and all the connections
should be managed by components of Controller. We denote
this constraint as a template of code as shown in Fig.5.
The parameters denoted as c1 to c3 and r1 to r3 represent
components and connector respectively, and they will be
substituted by concrete components, such as “OnlineShop”,
“Compare” components in Fig.4.

The reason why we use OCL is because it is a precise
language that provides constraint expressions on any MOF
model or meta-model [19]. The meta-model that we used is
conformed to MOF, therefore we chose OCL to specify pattern
constraints.

Fig. 5. Template of OCL Code for MVC Pattern Constraints

(c) Detect Architecture Erosion

In our approach, the generated OCL code can be used to
detect architecture erosion in two situations, as discussed in
section II. Firstly, we can take a static verification to detect
whether there are some conflicts among existing architectural
patterns. When a conflict is detected, the tool will warn the
architect and highlight the components and connector that are
improperly designed in the architectural model.

When system has been implemented and deployed, we can
leverage the ability of reflecting the runtime system’s archi-
tecture [20] to reflect the real architecture. By executing the
OCL codes against this architecture, we can judge whether the
system still conforms to its original design. When architecture
erosion is detected, ABC tool also will prompt a warning and
highlight the problematic components and connectors.

Fig. 4. Screenshot of Supporting Tool

762 763

D. Tool Support

Based on our previous architecture modeling tool, ABC
(Architecture-Based Component Composition) Tool [21],
which we developed as an new plug-in to support the proposed
approach. This tool implements an integrated environment
that provides support for designing architecture, adopting
predefined architectural pattern, capturing design decision and
detecting architecture erosion.

ABC Tool is developed as a suite of Eclipse Plug-ins.
We mainly use three open source frameworks: EMF (Eclipse
Modeling Framework) to model our architecture model, ar-
chitectural pattern, design decision; and use GMF (Graphical
Modeling Framework) to provide visual design ability; and
use Eclipse-OCL to parse and execute generated constraints.

IV. ILLUSTRATIVE EXAMPLE

A. A Simple On-line Voting System

In this section, we use a simple case to illustrate our ap-
proach. This is a project selected from a software architecture
course for graduate students. Requirements of this on-line
voting system includes: (1) provide a user interface for each
kind of user; (2) when login, user can view each candidate’s
information, (3) user can vote for a selected candidate; (4) each
user can only vote at most three times; and (5) this system
should have high portability.

B. Using the Proposed Approach

One group of students’ architecture is presented in Fig.6. In
this architecture, there are three adopted architectural patterns.
The first one is three-layer pattern; and within the middle layer,
there is the second pattern: pipe-and-filter; and the third one
is model-view-controller which is scattered in three layers. In
total, there are eight components and seven connectors.

User Interface

ID
Authentication

Registration

Candidate

Candidate
Information Vote Record

Vote Validation lidation

Layer1

Layer2

Layer3

Pipe and Filter

User Interface
View

Candidate

Controller

Candidate
Information Vote Record

Model

Fig. 6. Architecture of On-line Voting System

In the help of ABC Tool, this group of students used our
proposed approach and finished this project. By reviewing this
project, we find that ABC Tool detected 2 structural problems
in their architecture design and 2 implementation problems

during the runtime stage. That is to say, there are 4 potential
architecture erosion. We list them in Table.2.

Architecture Design Run-time Architecture

Three-Layer
Connect “User Interface” to
“Vote Record”

1) “User Interface” directly
invokes “Candidate Information”
2) “User Interface” directly
invokes “Vote Record”

Pipe-Filter null null

Model-View-
Controller

Connect “Candidate Infor-
mation” to “User Interface”

null

Table.2. Detected Architecture Erosion

For example, during the architecture design stage, architect
connected “User Interface” to “Vote Record” which broke the
constraint of multi-layer pattern; the tool also detected an
improper design that connected “User Interface” to “Candidate
Information”, which violated the constraint of model-view-
controller pattern.

V. RELATED WORK

A. Software Architectural Pattern

There are three major approaches used for modeling ar-
chitectural patterns, including ADL(Architecture Description
Language), UML and formal Method.

Most of ADLs are introduced by academia and aim at
representing software architectures in general [22]. Some of
them directly support architectural pattern description and also
leverage formal or semi-formal approaches for the formal-
ization of pattern specifications. For example, ACME [23]
uses first-order logic language, Armani, to formally specify
architectural pattern. Likewise, Wright ADL uses CSP and
ArchWare uses (π-calculus), etc.

UML aims at providing a generic modeling language. There
are also some researchers tried to use UML to describe
software architectures [24] and architectural patterns [25].

Some researchers proposed to use pure formal methods to
describe architectural pattern. For example, [26] uses graph
grammars to formal specify pattern. Similarly, [27] also uses
some formal methods to analysis architectural pattern. Another
comprehensive work [18] presents a semi-formal way using
architectural primitives to model architectural patterns. Their
work provided a solid foundation for our work.

B. Software Architecture Design Decision

In recent years, there are lots of valuable work in design de-
cision area. Such as Archium, AREL, AQUA, ArchDesigner,
ABC/DD, and so on. The most related one is SEURAT [28]
that supports the software architects in selecting architectural
patterns, design patterns, and idioms for use in architecture. It
also captures the rationale for each pattern and the rationale
and store them in the pattern library. Compared to our work,
although SEURAT records the decisions of adopted pattern
and corresponding rationale, it did not provide a visual mod-
eling environment and did not support verification.

762 763

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an architectural pattern-
based approach to capture important architecture design de-
cisions. By predefining a collection of architectural patterns,
architects can directly select and apply them in their archi-
tecture design. Meanwhile our ABC tool can capture these
important design decisions, i.e., adopted architectural patterns,
and generate a set of OCL code to specify the constraints
imposed by those patterns. Then, we can detect architecture
erosion in both conceptual design and runtime by executing
the generated OCL code.

This paper presented our preliminary work. So far, we
have already identified a number of areas that call for further
improvements and some of them have become our ongoing
work.

The first limitation is that we do not support variants of
architectural pattern. Some patterns have several variants to
adapt to a specific problem. For example, in the multi-layer
pattern, sometimes components in a high layer do need to use
components in a very low layer. Such intentional violation of
layers constraints is called “layer bridging”. Similarly, there
are many patterns have variants, so we need to improve this
problems.

The second limitation is that we do not provide an extension
mechanism for architects to add some new architectural pat-
terns. All the predefined patterns in our tool are hard-coded.
This problem limits the extendibility of our approach. Since
our tool support is based on the Eclipse platform, we plan to
take advantages of the meta-modeling capabilities of EMF to
support this.

The third limitation is our approach is unavailable to sup-
port specifying behavioral aspect of architectural pattern. We
plan to extend this work to detect critical behavioral design
decisions and their trade-offs.

As part of our future work, we also plan to evaluate the
feasibility of our approach with quantitative experiment in a
more complex system in real world.

ACKNOWLEDGMENT

This effort is sponsored by the National Basic Research
Program of China (973) under Grant No. 2009CB320703,
the Science Fund for Creative Research Groups of China
under Grant No. 60821003, and the National Natural Science
Foundation of China under Grant No. 61073020. The authors
want to express their gratitude to the anonymous reviewers for
their valuable comments that helped to improve this work.

REFERENCES

[1] P. Clements and M. Shaw, “”the golden age of software architecture”
revisited,” Software, IEEE, vol. 26, no. 4, pp. 70 –72, 2009.

[2] H. Van Vliet, Software engineering: principles and practice (3rd Edi-
tion). John Wiley & Sons, 2008.

[3] P. Clements, F. Bachmann, L. Bass, J. Garlan, G. Ivers, R. Little,
P. Merson, R. Nord, and S. J., Documenting software architectures: views
and beyond (2nd Edition). Addison-Wesley Professional, 2010.

[4] R. N. Taylor., N. Medvidovic., and E. M. Dashofy, Software Architec-
ture: Foundations, Theory, and Practice. John Wiley and Sons, Inc.,
2010.

[5] J. Bosch, “Software architecture: The next step,” Software Architecture,
vol. In EWSA, 3047 of LNCS, pp. 194–199, 2004.

[6] M. A. Babar and P. Lago, “Design decisions and design rationale in
software architecture,” Journal of Systems and Software, vol. 82, no. 8,
pp. 1195 – 1197, 2009, sI: Architectural Decisions and Rationale.

[7] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Software Architecture, 2005. WICSA 2005. 5th
Working IEEE/IFIP Conference on, 2005.

[8] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software,
vol. 80, no. 6, pp. 918–934, 2007.

[9] T. Al-Naeem, I. Gorton, M. Babar, F. Rabhi, and B. Benatallah, “A
quality-driven systematic approach for architecting distributed software
applications,” in Proceedings of the 27th international conference on
Software engineering. ACM, 2005, pp. 244–253.

[10] H. Choi, Y. Choi, and K. Yeom, “An integrated approach to quality
achievement with architectural design decisions,” Journal of Software,
vol. 1, no. 3, p. 40, 2009.

[11] X. Cui, Y. Sun, and H. Mei, “Towards automated solution synthesis and
rationale capture in decision-centric architecture design,” in Proceedings
of the Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008). IEEE Computer Society, 2008, pp. 221–230.

[12] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design derived
from five industrial approaches,” Journal of Systems and Software,
vol. 80, no. 1, pp. 106 – 126, 2007.

[13] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Addison-Wesley Professional, 2003.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, A
system of patterns: Pattern-oriented software architecture. Wiley, 1996.

[15] M. Shaw and D. Garlan, Software architecture: perspectives on an
emerging discipline. Prentice Hall Englewood Cliffs, NJ, 1996, vol.
123.

[16] M. Stal, “Over the Fence,” http://stal.blogspot.com/2010/03/ over-
fence.html, 2010.

[17] B. Merkle, “Stop the software architecture erosion: building better
software systems,” in Proceedings of the ACM international conference
companion on Object oriented programming systems languages and
applications companion. ACM, 2010, pp. 129–138.

[18] U. Zdun and P. Avgeriou, “A catalog of architectural primitives for
modeling architectural patterns,” Information and Software Technology,
vol. 50, no. 9-10, pp. 1003–1034, 2008.

[19] M. Richters and M. Gogolla, “OCL: Syntax, semantics, and tools,”
Object Modeling with the OCL, pp. 447–450, 2002.

[20] H. Song, G. Huang, F. Chauvel, Y. Sun, and H. Mei, “SM@ RT:
representing run-time system data as MOF-compliant models,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. ACM, 2010, pp. 303–304.

[21] H. Mei and G. Huang, “ABCTool: a tool for architecture centric
engineering of component based systems,” in Companion of the 30th
international conference on Software engineering. ACM, 2008, pp.
957–958.

[22] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” Software Engi-
neering, IEEE Transactions on, vol. 26, no. 1, pp. 70–93, 2000.

[23] D. Garlan, R. Monroe, and D. Wile, “Acme: Architectural description
of component-based systems,” Foundations of component-based systems,
pp. 47–68, 2000.

[24] M. Bjerkander and C. Kobryn, “Architecting systems with UML 2.0,”
Software, IEEE, vol. 20, no. 4, pp. 57–61, 2003.

[25] N. Medvidovic, D. Rosenblum, D. Redmiles, and J. Robbins, “Modeling
software architectures in the Unified Modeling Language,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 11,
no. 1, pp. 2–57, 2002.

[26] D. Le Métayer, “Describing software architecture styles using graph
grammars,” Software Engineering, IEEE Transactions on, vol. 24, no. 7,
pp. 521–533, 2002.

[27] J. Kim and D. Garlan, “Analyzing architectural styles,” Journal of
Systems and Software, 2010.

[28] W. Wang and J. Burge, “Using rationale to support pattern-based
architectural design,” in Proceedings of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge. ACM, 2010, pp. 1–8.

764 765

A Flexible Event-Driven Architecture for Peer-to-Peer Based Applications

Leone Parise Vieira da Silva, Rajiv Geeverghese, Edward de Oliveira Ribeiro,
Genaı́na Nunes Rodrigues and Célia Ghedini Ralha

Computer Science Department, University of Brası́lia
POBox 4466, Brası́lia/DF, ZIP 70.904-970, Brazil

{leone.parise,rajiv.unb,edward.ribeiro}@gmail.com, {genaina,ghedini}@cic.unb.br,

Abstract

Over the last decade, we have seen an increasing inter-
est in the event-driven architecture (EDA) approach. EDA
allows the transmission of events among loosely coupled
and highly-distributed software components, which is to-
tally adequate to peer-to-peer based applications mainly
considering features of scalability and flexibility. In this
paper, we present the initial steps towards the design and
implementation of a peer-to-peer based EDA, which is in-
tended to reduce the coupling between application layers,
and achieve a better distribution of responsibilities between
the architecture elements and the environment. Our flex-
ible EDA framework, proposed in this work, inherits im-
portant features such as scalability, decentralization and
fault-tolerance from the peer-to-peer domain. For a pre-
liminary evaluation of our approach, two experiments us-
ing the EDA framework were conducted in different domain
applications.

1. Introduction

Event-driven architecture (EDA) is a style of software
architecture based on real time flows promoting the produc-
tion, detection, consumption of, and reaction to events [8].
This architectural pattern may be applied by the design and
implementation of applications and systems, which transmit
events among loosely coupled and highly-distributed soft-
ware components and services.

In EDA, events processing may follow three different
styles: simple, stream and complex [8]. In simple process-
ing, when a meaningful event happens it initiates down-
stream actions. Stream processing deals with multiple
streams of event data aiming at identifying the meaning-
ful events within those streams. Complex event processing
evaluates a confluence of events and then takes action. The
events, which may be meaningful or ordinary, may cross
event types and occur over a long period of time.

Peer-to-peer (P2P) networks offer an appropriate
paradigm for developing efficient distributed systems and
applications. In a P2P network, all processes involved in a
work or activity have similar roles, interacting cooperatively
as peers with no distinction between client and server com-
puters or the infrastructure where they perform [13]. P2P
applications are composed by a great number of processes
executing on a distributed peer way. The communication
pattern among processes is a key point which depends on
the application necessities.

Important aspects of P2P applications must be ful-
filled through software development frameworks encom-
passing loose coupling, scalability, decentralization and
fault-tolerance skills. The convergence of EDA and P2P
is a natural outcome of the recent evolution of distributed
systems, since many of the challenging standards issues
are closely related. This convergence creates best practices
that enable interoperability between networking systems for
P2P applications. Therefore, a flexible EDA is essential to
improve communication, allowing the exchange of objects
between processes in a natural way.

In this work, we propose a flexible EDA for peer-to-
peer based applications, keeping the principles of modu-
larity, loose-coupling, well-distribution and P2P technology
independence. We implemented a basic version of the pro-
posed EDA, which accommodates the simple event process-
ing style. We evaluate our proposal using two different do-
main applications, so as to explore distribution through par-
allelization of the applications tasks. Our results show the
easy integration with P2P technologies, while seamlessly
preserving EDA principles.

The rest of the paper is organized as follows. The pro-
posed EDA is presented in Section 2, focusing on the archi-
tecture (Section 2.1), with the implementation aspects (Sec-
tion 2.2) and the developed interfaces (Section 2.2.1). The
description and the results of the experiments carried out are
described in Section 3. Related work is presented in Sec-
tion 4. Finally, Section 5 concludes the paper and presents
our future research directions as well.

764 765

2. Our Proposed EDA

The main principle adopted during the definition of the
proposed EDA is to divide the development of applications
in different layers, providing communication among them
through the use of an event bus module and their respective
interfaces. This principle allows flexibility, loosely cou-
pling between application layers, better distribution of re-
sponsibilities between the architecture elements and the en-
vironment, maintaining functionality even when using mo-
bile devices through a TCP network and personal comput-
ers in a P2P approach. Together with the P2P applications,
other important skills are maintained e.g. scalability, decen-
tralization and fault-tolerance.

The rest of this section presents the proposed EDA archi-
tecture, including implementation aspects with the defined
interfaces and P2P technologies.

2.1. The Architecture

Our proposed EDA presents four layers: Application,
Environment, Network Adapter and Event Bus, as pre-
sented in Figure 1. The Application layer is the upper plat-
form layer, which allows the development of different P2P
applications, using our EDA framework as a middleware of
development.

Figure 1. The four-layered architecture.

The Environment layer is composed by the Distributed
Services, the Event Routing and the Service Discovery
modules. The Environment layer abstracts the modules, al-
lowing the communication and localization of services to
be done in a transparent way. In other words, the appli-
cation issues events in the Environment, which is respon-
sible to notify listeners, without direct communication and
connection among different services. In this way, the ap-
plications do not know if they are in the same or in dif-
ferent machines. This abstraction feature would help the
development of different applications, including software

agents, allowing their interaction without the communica-
tion bottleneck and independent of the network topology
being used.

Apart from offering the described abstraction feature,
the Environment layer has an Event Routing and a Ser-
vice Discovery modules to publish and locate services in
a distributed way. Services like distributed database, agent
transport, integration of mobile devices can be developed
and coupled to the environment transforming it in a more
integrated framework. Lots of applications using for exam-
ple multiagent approach with heavy data, information and
knowledge requirements such as bioinformatics, forensics,
automated reasoners on the Web may benefit from the fea-
tures above mentioned.

The Network Adapter is responsible for integrating the
Environment to the underlying network, acting as an inter-
face between the P2P middleware and the other EDA frame-
work layers. This layer is composed by the Address Trans-
lation, Serialization, Message Routing and Security mod-
ules. The integration among the chosen P2P middleware
and our EDA framework is done by assigning a unique iden-
tifier of each addressable component of the platform, which
is represented by the UUID (Universally Unique IDentifier)
object of Java API. The P2P middleware implementation
uses a table in order to translate these identifiers into other
address type, e.g. IP address or P2P network node. In this
way, another P2P implementation, such as Chord [17] or
Tapestry [10], can be couped to our proposed EDA without
modifying other modules.

We should note that, if the chosen P2P middleware has
the necessary features of address translation, message rout-
ing, serialization and security, then it is not necessary to
implement the Network Adapter layer. But, in case it is
necessary, it receives the events from the upper platform
layers, serializes as a message in the network and sends to
the application. Whenever the adapter receives a message,
it unserializes as an event, which is sent to the event bus
module so that the upper platform layers receive the com-
munication.

Finally, the Event Bus layer is responsible for the Event
Dispatch and Event Delivery modules. An event flow starts
with the event being generated and culminates with the ex-
ecution of any downstream activity. The processing of this
flow can be described in logical layers. The four logical lay-
ers are: event generators, event channel, event processing,
downstream event-driven activity [8]. The event processing
flow used in our work includes the event generator, event
channel, event processing and downstream event-driven ac-
tivities. The flexibility at each logical layer is the power of
event, since the way events are created, how they are trans-
mitted, received and processed is transparent to the P2P ap-
plications developed over our proposed EDA.

766 767

2.2. Implementation Aspects

The methodology used to define the EDA was based in
design patterns with the objective to support its implemen-
tation. In order to keep the principles of modularity and
loose coupling of event-driven architecture we applied six
design patterns, which were the most suitable to the princi-
ples of the proposed EDA: AbstractFactory, Singleton,
Observer, Decorator, Command and Mediator [5]. To
validate the proposed EDA, we implemented a prototype in
Java at the Computer Science Department of University of
Brası́lia. The prototype has 67 classes and 3,600 lines of
documented code.

All the communication in the proposed EDA is done by
events, which reduces the object coupling, allowing flexi-
bility and scalability to the architecture. In this sense, the
communication has two important elements: the event and
the listener, which always come in pairs, since the event
carries the object message content and the listener defines
which object has to listen specific event.

The Event Bus layer is responsible for the events dis-
patch and delivery in the platform, which is implemented
through three design patterns: Singleton, Observer and
Mediator. Singleton guarantees only one Event Bus in-
stance, while Observer records all listeners and notify them
of sent events. The Event Bus layer is also the object medi-
ator in the communication of the platform according to the
Mediator pattern. The Event Bus interface is described in
Section 2.2.1.

The possibility to execute commands between objects
through the Event Bus layer allows the method call between
different distributed components in the P2P network. Us-
ing Command design pattern we have implemented two
special events: CommandEvent and ResponseEvent,
which inherit from the Event abstract class. Though these
events work just like the others, their expected behavior
is different. All object that receives a CommandEvent
may execute the command and send the results by the
ResponseEvent. All objects that send a command may
wait for an answer during a limited time, and in case the
answer does not come, a timeout event is send to the object
to notify the expiration time. A method getId() is used in
the Event class to identify events.

2.2.1 Interfaces

In order to allow the flexibility and the loosely coupled fea-
tures of our architecture, considering the application, en-
vironment, network and event processing, along with the
EDA layers intercommunication, we have developed some
interfaces. We present the major interfaces implemented:
(i) Platform – interface where all layers and modules
are integrated; (ii) EventManager – the event interface

that handles the event processing; (iii) Environment – the
environment interface to deal with services discovery and
distribution; (iv) NetworkAdapter – network interface to
deal with the P2P processes.

The Platform interface is the core of our EDA frame-
work. It defines the management of the platform configu-
rations and disaggregates all components (layers and mod-
ules) into implementation interfaces, allowing uncoupling
and flexibility. This interface follows the AbstractFactory
design pattern. Therefore, every component can be reim-
plemented and replaced without affecting the operation of
the other components. The Platform component is also
a Singleton, which helps and unifies the access of objects
among all Platform components, helping the unitary and
integration tests.

The EventManager is one of the most important de-
veloped interfaces that implements the Event Bus layer, pre-
sented in Figure 2. Note that the EventManager interface
has two methods: addlListener() – responsible to regis-
ter listeners and fireEvent() – responsible to communi-
cate an event to a group of listeners. The EventManager
interface keeps the reference of all the registered listeners.
Whenever the event bus receives an event, it extracts all
the objects that inherit the class obtained from the method
getAssociatedListener() and notify them in a separate
thread. The EventManager implements the Mediator
design pattern. Suppose ObjectA wants to communicate to
ObjectB, then ObjectA creates a ConcreteEvent(string)
and send it to EventManager using the fireEvent()
method. The EventManager that has ObjectB registered
in the listeners list, communicates the event to ObjectB us-
ing onEvent() method.

Figure 2. Implementation of the
EventManager interface.

The Environment interface defines the environ-

766 767

ment in the EDA framework, which has two meth-
ods: requestService() and destroyService(). The
requestService() is responsible to publish and get an in-
stance of the published service.

NetworkAdapter interface deals with the P2P pro-
cesses. The NetworkAdapter contains two send methods,
one to send simple events and the second to send commands
and the respective temporary listener to the network. Re-
lated to the P2P approach some middlewares were studied
to integrate our framework. Important aspects of scalability,
fault-tolerance and self-organization were considered, in-
cluding Chord [17], Can [9], Tapestry [10] and Pastry [12].

We could have used any of the above mentioned P2P
middlewares. However, we chose Pastry together with
Scribe [2] considering their comprehensiveness. Pastry
uses routing mechanisms to achieve great scalability, while
Scribe depends on Pastry to route messages to the destina-
tions. Scribe [2] is a typical pub-sub system built on top
of Pastry, which leverages its scalability, routing efficiency
and self-organization capabilities [15]. The event process-
ing, including dispatch, delivery and routing of events, and
the service discovery in our EDA is executed over the
Pastry and Scribe mechanisms, making use of the ben-
efits provided by such combination. In this sense, the
NetworkAdapter interface is responsible for encapsulat-
ing an event through the PastryEvent and send to Pastry.

3. Experiments and Evaluation

During this research project two experiments using the
EDA framework prototype were conducted: the turtle and
the bioinformatics projects. The objective to use two exper-
iments is to evaluate our framework.

3.1. The Turtle Project

The turtle project is the simple sum of harmonic series,
which apparently converge to a number, but is proved math-
ematically that it varies very slowly. Equation 1 presents the
sum of first n elements of the series.

Hn =

n∑
k=1

1

k
(1)

Table 1 presents the relationship between the lowest
number of terms required for the sum of the series is equal
to or greater than a specific number. Note that to reach a
total value of 1,000 this amounts to 10434 terms which is
a computational challenge to calculate the sum of the har-
monic series term by term, in an iterative fashion.

Our solution was to build a distributed application using
the “divide and conquer” and software agents approaches,
using the facilities that the EDA framework offers. We

Table 1. Number of n terms sum.
k least n | Hn ≥ k
1 1
2 4
3 11
5 83

10 12,367
20 272,400,600
100 ≈ 1.51 * 1043

1,000 ≈ 1.10 * 10434

used blocks, with the start and size information, and dis-
tribute the blocks throughout the network to perform a par-
tial calculation. To implement the distributed solution, two
distinct roles become evident: (i) a central figure, to con-
trol the distribution of blocks in the network and the re-
ceipt of partial calculations; and (ii) a task force, special-
ized in the processing of the blocks. Each role is imple-
mented by one particular agent, the BossAgent and the
TraineeAgent (respectively) both agents have a parent in
common, AbstractAgent, and inherit their behavior. The
AbstractAgent seeks the event services and discovery of
services and adds to the platform using the environment
interface (Section 2.2.1).

The BossAgent has an internal data structure to track
which blocks are being calculated at the time and a vari-
able that stores the next block, starting with the value 1.
The block size is fixed, but can be changed before start-
ing the agent. When the BossAgent receives a block re-
quest from the TraineeAgent, it sends the next block to be
processed and waits for the partial sum. Every 5 seconds,
the BossAgent uses a log tool to print the partial sum and
the number of blocks processed in a file. Once created the
agents, the application is started automatically via the ex-
change of events.

The computational platform used in this test bed (exper-
iment) had eight computers with the same configuration:
Pentium 4, 2.66 GHz, 1GB of RAM, and Ethernet 10/100
MB/s. The number of blocks processed with one computer
is 209, with two computers is 418, with four computers is
827 and with eight computers is 1,612, considering the to-
tal execution time of 00:04:58. Note that the growth in the
number of processed blocks is linear as presented in Figure
3.

3.2. The Bioinformatics Projects

P2P model is being used for applications that requires
great amount of computer resources, since it offers some
direct solution to modularity and scaling properties in large
scale distributed systems. In this context, P2P approach is
very important to bioinformatics. Thus, we have conducted

768 769

Figure 3. The number of blocks processed
over time.

this experiment to illustrate the use of our EDA prototype
in this area.

In this project we executed a particular bioinformatics
application, BLAST, which is a family of algorithms for
searching similarities between two biological sequences,
widely used in genome projects [1]. We used real data of
Escherichiacoli or E.coli bacteria, which is very known
to bioinformatics community. The objective of the experi-
ment is to apply BLAST algorithm to E.coli sequences in
order to validate EDA aspects of distribution, parallelism,
and fault-tolerance. Although the E.coli sequences is not
expressive enough to justify high-throughput processing,
our intention is to evaluate the abstraction of EDA proposal
from the application perspective in different domains.

To implement the distributed solution, we used the same
approach of the turtle project, presented in Section 3.1, ac-
cording to the simple event processing style. The computa-
tional platform used in this test bed (experiment) had eight
machines with the same configuration: Intel(R) Core(TM)2
Duo CPU E7500, 2.93GHz, 2GB of RAM and Ethernet
10/100 MB/s. Table 2 presents the execution time to pro-
cess distributed BLAST over 6,400 E.coli sequences. Note
that the growth in time is linear, just like the turtle project
presented in Figure 3.

3.3. Experimental Evaluation

Considering the fact that both experiments were carried
out in different domains, extra effort was not necessary in
the EDA layers. The modularity of our EDA framework was
guaranteed by the defined layers and the modules. The pro-
vided interfaces (e.g., Environment, EventManager)
assured the flexibility of our EDA framework, since it could
encapsulate the application in both experiments, without
generating extra implementation efforts to the application

Table 2. Time execution to process 6,400 se-
quences.

Number of Execution
Computers Time

1 00:24:44
2 00:12:25
4 00:06:16
8 00:03:07

development. Other computer intensive P2P applications
may use our EDA in a similar way.

In addition, our architecture promotes a high level of ab-
straction of the underlying P2P technology used, preserving
flexibility. The EDA framework could benefit from the scal-
ability and decentralization guaranteed by the P2P middle-
ware. In this work, we have analyzed basic fault-tolerance
features of our framework through the use of Scribe, which
implements the services of the Network Adapter layers. The
analysis consisted in repeatedly disabling the root node dur-
ing our test beds. The rendez-vous point was reassumed
without harming the processes computation.

As a preliminary evaluation of our approach the con-
ducted test beds were satisfactory, but further experiments
are necessary for a comprehensive evaluation, specially
considering scalability and fault-tolerance features. The
modularity and the extensibility of our framework may al-
low the use of other implementations for the security and
reliability of the P2P processes at runtime, such as the work
proposed by Spanoudakis [16] in the context of mobile P2P
systems.

4. Related Work

Our proposed EDA functionally keeps the same princi-
ples presented in the EDA architecture, but the elements are
organized in a different way, since our focus lies on P2P
applications [8]. Pastry was chosen in this work due to its
advantages over previous P2P frameworks as JXTA [19].
JXTA modular design and building blocks makes it rela-
tively quick and simple to prototype P2P systems like doc-
ument sharing and instant messaging in a timely fashion.
Nevertheless, its design choices had severe impact on its
scalability and reliability. JXTA is defined by a six layer
XML based protocol stack that makes its implementations
complex, heavyweight and slow [6].

Quite a few research work have focused on event-driven
systems [3, 4, 7]. The EDA pattern has been usually associ-
ated to SOA, since they are complimentary, as SOA focuses
on the decomposition of business functions and EDA fo-
cuses on business events [14]. Our approach to EDA is com-

768 769

prehensive since the development of P2P applications can
be related to services through the decomposition of busi-
ness functions.

Much research has been done to propose systems over
structured P2P networks [18]. There are many applications
developed using a P2P approach in various domains, par-
ticularly in bioinformatics [11]. However, as far as we are
concerned, we could not find research work that integrates
EDA approach to P2P networks with focus on a flexible ar-
chitecture suitable for a multitude of various application do-
mains.

5. Conclusion and Future Work

In conclusion, this work proposed a flexible EDA for
P2P based applications. We implemented a basic version
of the proposed EDA, which accommodates simple event
processing style. We evaluate our proposal using two dif-
ferent domain applications exploring distribution of the P2P
network. Our results an easy integration with P2P technolo-
gies, while exploring the features provided by the underly-
ing P2P middleware used. Our preliminary results show
that our EDA framework could be used seamlessly in two
different domains.

As future work, we intend to expand the basic version
of our current EDA implementation in order to deal with
complex event processing style. Particularly, extend the im-
plementation to deal with various and distinct event types
simultaneously. For example, applications in web domain
with events of different source types, video, text and image.
We also plan to evaluate our framework for its flexibility
using different P2P middlewares for validation purposes.

Another important future work is concerned to the ex-
tension of the current EDA core in order to transform the
application module to encapsulate agents approach. In this
direction, computer-intensive applications that may take ad-
vantage of multi-agent approach, through the use of ratio-
nality and distributed resources can take advantage of our
EDA approach.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic Local Alignment Search Tool. Journal of Molecular
Biology, 215:403–410, 1990.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas
in Communications (JSAC), 20:2002, 2002.

[3] S. Chakravarthy and R. Adaikkalavan. Events and streams:
Harnessing and unleashing their synergy! In Proc. of the
2nd DEBS, Italy, pages 1–12. ACM, 2008.

[4] H. Dempo. Qos evaluations of distributed event orchestra-
tion system. In Proceedings of the Third ACM International

Conference on Distributed Event-Based Systems, DEBS ’09,
pages 22:1–22:5, New York, NY, USA, 2009. ACM.

[5] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, 1995.

[6] E. Halepovic and R. Deters. The costs of using jxta. In
Proceedings of the 3rd International Conference on Peer-
to-Peer Computing, P2P ’03, pages 160–, Washington, DC,
USA, 2003. IEEE Computer Society.

[7] A. Hinze, Y. Michel, and L. Eschner. Event-based commu-
nication for location-based service collaboration. In Proc. of
the 20th ADC - Volume 92, pages 125–134, Australia, 2009.
Australian Computer Society, Inc.

[8] B. M. Michelson. Event-driven architecture overview.
Technical report, Patricia Seybold Group, OMG, 2006.
http://www.omg.org/soa/UploadedDocs/EDA/bda2-2-
06cc.pdf.

[9] S. Ratnasamy, P. Francis, S. Shenker, and M. Handley. A
Scalable Content-Addressable Network. In In Proceedings
of ACM SIGCOMM, pages 161–172, 2001.

[10] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weather-
spoon, and J. Kubiatowicz. Maintenance-Free Global Data
Storage. IEEE Internet Computing, 5(5):40–49, 2001.

[11] E. O. Ribeiro, M. Walter, M. M. Costa, R. Togawa, and
G. Pappas. p2pBIOFOCO: Proposing a Peer-to-Peer Sys-
tem for Distributed BLAST Execution. In 10th IEEE HPCC,
China, pages 594–601, 2008.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-
Peer Systems, volume 2218, pages 329–350. Springer, 2001.

[13] R. Schollmeier. A Definition of Peer-to-Peer Networking
for the Classification of Peer-to-Peer Architectures and Ap-
plications. In Proceedings of the First International Con-
ference on Peer-to-Peer Computing, P2P ’01, pages 101–,
Washington, DC, USA, 2001. IEEE Computer Society.

[14] H. Sharma and J. Odell. Event-Driven Architecture (EDA)
And Its Relationship with SOA & BPM. Technical report,
OMG, September 2006.

[15] D. Shi, J. Yin, Z. Wu, and J. Dong. A Peer-to-Peer Ap-
proach to Large-Scale Content-Based Publish-Subscribe. In
Proc. of the 2006 IEEE/WIC/ACM WI-IATW, pages 172–
175, USA, 2006. IEEE Computer Society.

[16] G. Spanoudakis and K. Androutsopoulos. Monitoring se-
curity and dependability in mobile p2p systems. In Proc.
of The 3rd International Conference for Internet Technology
and Secured Transactions, ICITST ’08. IEEE Computer So-
ciety, 2008.

[17] I. Stoica, R. Morris, D. Karger, F. M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proc. of ACM SIGCOMM, vol-
ume 31, pages 149–160, New York, NY, USA, October
2001. ACM.

[18] L. Stout, M. A. Murphy, and S. Goasguen. Kestrel: an
XMPP-based Framework for Many Task Computing Appli-
cations. In Proc. of the 2nd Workshop on Many-Task Com-
puting on Grids and Supercomputers, MTAGS ’09, pages
11:1–11:6, New York, NY, USA, 2009. ACM.

[19] W. Yeager and J. Williams. Secure peer-to-peer networking:
The jxta example. IT Professional, 4:53–57, 2002.

770 771

A Formal Approach for Incorporating Architectural Tactics into the
Software Architecture

Hamid Bagheri
University of Virginia,
151 Engineer’s Way,

Charlottesville, VA 22903 USA
hb2j@virginia.edu

Kevin Sullivan
University of Virginia,
151 Engineer’s Way,

Charlottesville, VA 22903 USA
sullivan@virginia.edu

Abstract—Software architects principally leverage successful
architectural design practices systematized in terms of archi-
tectural styles and tactics. While architectural tactics focus on
particular non-functional properties, styles are typical solutions
that generally coverage several aspects. The problem is that we
do not yet have a formal account of how styles and tactics inter-
act in a way that is sufficient to enable automated synthesis of
architectures from application models and the combination of
architectural styles and tactics specifications. The contribution
of this paper is an extension of our previous work on formal
architectural maps that makes this fundamental relationship
clear, and a demonstration that it enables automated formal
derivation of architectures.

Keywords-Software Architecture; Architectural Styles; Ar-
chitectural Tactics; Architectural Maps; Alloy Language.

I. INTRODUCTION

Software engineering researchers and practitioners have
recognized software architecture as a promising means of
managing the complexity of software systems [20], [22].
Other studies have further shown its significant role in
achieving systems’ non-functional properties [7], [13]. De-
veloping a sound and appropriate architecture, however,
remains a significant and intellectually challenging activity.

Notwithstanding the growing body of research and signif-
icant progress in architecture-based software development,
the success of architecture construction still mainly depends
on the experience of software architects [14]. As software
systems unrelentingly grow in complexity and size, design-
ing such systems manually in this way becomes more costly
and labor-intensive, and, once completed, hard to change.
Moreover, failure to meet the requirements, which might
be later discovered, causes the need to backtrack, which is
expensive especially in the case of architectural decisions.

To address this issue, we proposed a model-based ap-
proach to automated synthesis of architectural descrip-
tions from formal, abstract application models and separate
choices of architectural style specifications [3]. While our
previous work deals with issues of architectural structure, it
does not address support for non-functional properties.

Architectural tactics [5] have emerged as architectural
decisions that codify and record best practice knowledge for

achieving a desired quality attribute. However, despite years
of research and practice, we have little formal account of
how styles and tactics interact. Furthermore, the reusability
of architectural tactics is hampered by a number of factors,
among which is the absence of formalization, as they are
typically represented as a set of documents. In fact, unlike
architectural styles, characteristics of an architectural tactic
are not understood in such a formal manner, making it
difficult for architects to make informed choices.

In this paper, we present a novel approach based on
our formal notion of architectural maps that makes this
fundamental relationship clear. In particular, we show the
feasibility of incorporating the notion of tactics with that
of styles to enhance the specification of architectural maps,
which provides the capability of formally applying refine-
ment tactics to improve quality attributes.

This paper makes three principal contributions in this area.
First, we formalize and automate architectural tactics by
means of constraint predicates parameterized by choices of
application type and architectural style. Second, we show
that our ideas for formal and reusable representation of
tactics parameterized in this way can be realized in practice.
More specifically, starting with an application model and
using the formal definition of the architectural maps as
well as the architectural tactics provided in this work, it
is possible to arrive to the set of compliant architectural
descriptions. Third, we have developed the technique as
an extension of our tool for model-based development of
software architecture, Monarch [1], which leverages Alloy
as the basis for the specification of mappings’ semantics and
the automatic analyzer [15].

The rest of the paper is organized as follows. Section II ex-
plains the background context of our work. While Section III
presents our approach for incorporation of architectural
tactics into the formal synthesis of software architecture,
Section IV demonstrates that it can be realized in practice. In
Section V, we report on experiences applying our approach
and tool set and provide a discussion. Section VI briefly
surveys related work. Section VII finally concludes.

770 771

II. BACKGROUND: ARCHITECTURAL MAPS

In this section, we provide an overview of the notion
of architectural maps, introduced and formalized in our
previous work [3] based on the idea that choices of ar-
chitectural style are made separately from choices of es-
sential application properties, and that architects in essence
implement a mapping that takes an application model and an
architectural style to an architectural model. Knowledge of
this mapping is crucial to expertise in software design. Given
an application description of some type, the experienced
designer knows both what architectural style to pick, and
how to map an application description of the given type to
an architectural model in the chosen style. In some sense
an architectural map embodies knowledge of how to real-
ize different types of applications in different architectural
styles.

Figure 1, which is an extension of our previous work,
represents the fundamental elements of our model on the
basis of the architectural maps and their relationships: s, an
architectural style specification; {ai}, a set of architectural
models; a binary relation, conforms, on the cross product,
that encodes the conformance of the set of architectural
models, {ai}, to an architectural style, s; t, an application
type specification; m, an application model; an analogous
binary relation, conforms encoding the conformance of a
given application model, m, to a given application type,
t; and a relation, refines, encoding the notion that a set
of application-specific architectural models, {ai}, refines,
or implements, the application model, m. Finally, we have
map(t,s), which takes an application model, m of type t, and
an architectural style, s, to the set of architectural models,
{ai}, such that refines(ai,m) and conforms(ai, s).

More recently, we have shown that the proposed separa-
tion of concerns supports a model-based development and
tools approach to architectural-style-independent application
modeling, and architecture synthesis with style as a separate
design variable [4].

III. APPROACH

Above and beyond providing a proof of concept of the
feasibility of the proposed formal architectural maps in an
automated way, previous works revealed deficiencies in cur-
rent specifications of architectural styles. That is, applying
architectural maps leads not to a single plausible architec-
ture, but to a set of architectures, where not any instances
in that set necessarily satisfies all required non-functional
properties. In fact, as can be seen in the diagram, one more
optimizing search step is required within that space to find
the subset of plausible instances especially with respect to
quality attributes. This is mainly because style specifications
to which application models were being mapped are still
underspecified, and in turn their corresponding architectural
maps leave overly large architectural spaces.

t : AppType s : ArchStyle

map(t,s)(m)

m : AppModel {ai : ArchModel}

{pi : PlausibleArchModel}

conforms

in in

in

refines

conforms

out

Optimizing Search

Figure 1. Key entities and relations involved in the notion of
architectural maps.

As such, the systematic process of getting from an ap-
plication model to an architecture involves two steps: (1)
constraining the formal architectural space; (2) performing
optimizing search over the derived space for properties of
interest. The more we can do in the mapping, the less we
have to do in the search. Therefore, to achieve a practical
automated design tool for software architecture, there is
a pressing need to formally specify relationships between
architectural design decisions and quality attributes [7].

Architectural tactics are architectural decisions concen-
trating on non-functional properties that shape the system’s
architecture but in a smaller extent compared to the style de-
cisions [5]. Several architectural tactics have been proposed
for various quality attributes such as reliability, performance
and modifiability. As architectural styles have extensive
use in the architectural modeling, relating styles to tactics
provides a basis for making rational design decisions [5].
That is, tactics can systematically be leveraged to adapt
styles for the purpose of improving their properties with
respect to particular quality attributes. As such, the structure
of the tactic must fit within the rules implied by the style. To
effectively apply architectural tactics along with the styles
the architect needs to realize their side effects and how they
relate each other [14].

This paper develops the notion that architectural tactics
are not independent of, but rather are parameterized by,
choices of application type and architectural style, and it
is possible to represent tactics parameterized in this way in
a formal and reusable form. Architectural styles and tactics
then can be considered as complementary techniques, sub-
sequently allowing for the automated reuse of architectural
best practices. Indeed, the effect of a tactic refines and
extends the architectural map.

map(AppType,ArchStyle) tactic(AppType,ArchStyle)
extends

772 773

In our approach, one expresses an application model as an
instance of an application type, then selects an architectural
style in which to synthesize an architecture for the applica-
tion. The combination of application type and architectural
style selects a mapping from applications of that type into
architectural instances in that style. The decision to use
a particular tactic in mapping an application model to an
architecture then involves the explicit inclusion of such
a reusable tactic specification along with a more generic
architectural map. Applying this compound map to the
application model yields a family of correct-by-construction
architectural descriptions for the given application in the
given style supporting the given tactics. In the next section,
we show that our ideas can be reduced to practice.

IV. AUTOMATION

To demonstrate the viability of implementing tools that
support automated formal synthesis of software architectures
complying with the rules implied by choice architectural
styles and tactics, we present a proof of concept leveraging
the Alloy language for formalization and the Alloy Analyzer
for automation.

Alloy is a lightweight specification language based on
the first-order relational logic [15]. Signature is an essential
construct of the Alloy language that represents the basic type
of elements and the relationships between them. Facts can be
used to define constraints over model instances. Alloy further
provides Predicates to be used in defining parameterized
reusable constraints always evaluated to be either true or
false. A Function similar to a predicate can be invoked by
instantiating its parameters, but what it returns is either a
true/false or a relational value instead.

Its SAT-based analyzer makes automatic analysis of Alloy
models possible. The Alloy Analyzer can be used either
to find satisfying solutions with respect to the constraints
of a given model, or to find any possible counterexample
violating constraints in a given model. The former is used
in our approach to compute architectural models.

Five pieces of Alloy specifications are conjoined in the
process of synthesizing compliant architectural models: (1)
an application type represented in an Alloy module; (2) an
architectural style specification module; (3) an application
model, comprising an instance of an application type, again
represented in an Alloy module; (4) an architectural map
specifying the relationships required to hold between an
application of the given type and an architecture in the
given style, represented in an Alloy predicate; and (5) a
tactic predicate specified for a given pair of an application
type and an architectural style to incorporate a given tactic
into the software architecture. The Alloy Analyzer computes
satisfying solutions to the compound specification, leading
to the synthesized architectures.

V. EVALUATION

Our claim we make in this paper is that it is feasible
to represent architectural tactics parameterized by choices
of application type and architectural style in a formal and
reusable form. In this section, we report and interpret data
from experimental testing of our approach and hypothesis.
More specifically, we first show that our approach supports
formal specifications of architectural tactics with respect
to the architectural maps developed for each pair of an
application type and an architectural style. We then show that
it also supports automatic synthesis of architectural instances
which conform to the rules implied by both the application
model and the architectural style as well as supporting the
given architectural tactic.

In support of our approach, we have extended our tool
suite, Monarch, which is available for download and in-
spection [1], and applied it to several case studies. This
paper cannot accommodate detailed presentations of all
of our experiments. Rather, we report one case in more
detail, which is about the employment of a fault detection
tactic in the process of formal synthesis of Lunar Lander
architecture [22] in the implicit-invocation (II) style from
its abstract application description in the sense-compute-
control (SCC) application type. This section is followed by
presenting discussion over the experiments.

A. Application Model: Lunar LanderSCC

Our application case study is inspired by Taylor et al. [22].
In their new textbook on software architecture, they illustrate
the structuring of an embedded control system called Lunar
Lander in different architectural styles. The FlightControl
analyzes the information provided by various sensors, i.e.
Altimeter, Gyroscope, Fuel level indicator and Engine con-
trol switch, to maintain the state of a spacecraft. Then,
it provides updated data to the various actuators: Descent
engine controller, Attitude control thruster and Display.

Figure 2. Lunar Lander application modeled within GME using the
generated modeling environment for our SCC metamodel.

772 773

Figure 2 illustrates Lunar Lander application modeled
as an instance of our SCC metamodel within Generic
Modeling Environment (GME). We customize GME such
that application types are realized concretely as GME meta-
models, providing architecture-independent modeling lan-
guages (AIML). We specify a formal model of the SCC
type to model applications in which sensors and actuators
are connected to controllers that cycle through the steps
of fetching sensor values, computing function values, and
sending outputs to actuators.
module LunarLander
open SCC

one s i g A l t i m e t e r ex tends S en so r{}
one s i g F u e l L e v e l ex tends S en so r{}
one s i g E n g i n e C o n t r o l S w i t c h ex tends S en so r{}
one s i g Gyro ex tends S en so r{}
one s i g A t t i t u d e C o n t r o l T h r u s t e r ex tends A c t u a t o r{}
one s i g D e s c e n t E n g C o n t r o l l e r ex tends A c t u a t o r{}
one s i g D i s p l a y ex tends A c t u a t o r{}
one s i g F l i g h t C o n t r o l ex tends C o n t r o l l e r {}{

s e n s o r s = F u e l L e v e l + E n g i n e C o n t r o l S w i t c h + Gyro+ A l t i m e t e r
a c t u a t o r s = D e s c e n t E n g C o n t r o l l e r + D i s p l a y +

A t t i t u d e C o n t r o l T h r u s t e r
c o n t r o l l e r d i s p a t c h s t a t e = p e r i o d i c
f r e q u e n c y s t a t e = f a s t
program = c o n t r o l l e r c o d e

}
. . .

Listing 1. Lunar Lander application description represented in Alloy

Listing 1 partially outlines the Alloy representation of the
Lunar Lander application description, automatically synthe-
sized from its concrete representation. The application model
(an Alloy module) imports the SCC module, and defines
four sensors and three actuators using signature extension to
subtype the Sensor and Actuator types. The only controller
of the application is then synthesized, while its properties
are specified as Alloy facts.

B. Tactic: PingEcho(SCC,II)

Ping/Echo and Heartbeat are two architectural tactics
proposed for Fault Detection, which is one of the four design
concerns for reliability [5]. In this case study we employ the
Ping/Echo tactic, although the structures of these two tactics
are very close. For detecting a fault using the aforementioned
tactic, a monitor component regularly sends ping messages
to receivers. The receiver is then supposed to respond with
an echo message within a certain time period, otherwise it
is considered to have failed.

Listing 2 partially presents the Alloy representation of
the Ping/Echo tactic. It starts by importing the Alloy spec-
ification modules of the pair of an application type and an
architectural style, for which an architectural map, enhanced
by the architectural tactic under consideration, is developed.
The parameterized predicate which gets as input a set of
pinged components then, in line 6-7, dedicates an IIObject,
an implicit-invocation object which extends Object [3], to
the pinger. It has a port of type Procedure that can be called
by other components. Lines 9–17 state that for each receiver,

its Procedure port is connected to the call port of the pinger’s
IIObject via a PrecedureCall connector connected to it. On
the other hand, the call ports of receivers are connected to
the Procedure port of the pinger’s IIObject.

1 module PingEcho SCC II
2 open SCC
3 open I I
4
5 pred pingEcho SCC II (s : s e t needHandle){
6 one o : I I O b j e c t | o . h a n d l e = P i n g e r &&
7 no h a n d l e d : needHandle−P i n g e r | h a n d l e d in o . h a n d l e &&
8 one p : P r o c e d u r e | p in o . p o r t s &&
9 a l l n : needHandle | n in s =>{

10 one c1 : p r o c e d u r e C a l l |
11 c1 in n . ˜ h a n d l e . p r o c e d u r e [a t t a c h m e n t s] . r a n . c o n n e c t o r&&
12 c1 in o . c a l l [a t t a c h m e n t s] . r a n . c o n n e c t o r
13
14 one c2 : p r o c e d u r e C a l l |
15 c2 in n . ˜ h a n d l e . c a l l [a t t a c h m e n t s] . r a n . c o n n e c t o r &&
16 c2 in o . p r o c e d u r e [a t t a c h m e n t s] . r a n . c o n n e c t o r
17 }
18 . . .
19 }

Listing 2. The Alloy predicate for Ping/Echo tactic developed for
the architectural map of the pair of SCC application type and II
architectural style

C. Incorporation of Tactic into Architectural Map

After modeling the application and specifying the map-
pings and tactics predicates, we need to define a compound
module incorporating tactics’ specifications into the process
of synthesizing satisfying architectural models. Here, we
have leveraged the architectural map for the SCC application
type and the implicit-invocation architectural style specified
in earlier work [4].
module LunarLander SCC II

open LunarLander as AppDesc
open SCC II as map SCC II
open PingEcho SCC II

pred e x e c u t e{
map SCC II []
PingEcho SCC II [F l i g h t C o n t r o l]

}
Listing 3. The Alloy module for incorporation of Ping/Echo tactic

Listing 3 represents the Alloy module for synthesizing
Lunar Lander architectural models in implicit invocation
style supporting the Ping/Echo tactic. It starts by importing
the modules of the Lunar Lander application description,
the (SCC, II) architectural map and the Ping/Echo tac-
tic. The execute predicate is then specified, which calls
both mapping and pingEcho predicates. The Flightcontrol
element is then passed as an input to the parameterized
tactic predicate to address the potential issue of crashing
or otherwise failure of this component.

D. Satisfying Architectural Models

Given all the specifications and mapping constraints,
Monarch using the Alloy Analyzer computes a set of ar-
chitectural models that refine the application description in
conformance with the fully formal definitions of the im-
plicit invocation architectural style and the Ping/Echo tactic,

774 775

represented as Alloy solutions. To make those low-level,
XML formatted outputs human-readable, it then using our
Alloy2ADL transformer [4] converts them to an architecture
description language (ADL).

Figure 3. One of the computed architectural models represented in Acme.

A considerable number of ADLs have been proposed
during the past several years to model specific application
domains or as general purpose architectural modeling tools.
We use Acme [11] in our tool, which is a mature general
purpose ADL, with a particular support for architectural
styles. It is also designed to work as an interchange between
wide varieties of architecture description languages. Figure 3
shows an instance of the computed architectural models in
Acme. In general, there is more than one satisfying solution,
and the result is a set of formally derived architectural
models for the given application with respect to the enforced
architectural constraints.

E. Discussion

This work shows that architectural tactics can be for-
malized and implemented as executable specifications. By
incorporating both the architectural styles and tactics dur-
ing the synthesis, our approach formally derives narrower
architectural spaces, which reduces the difficulty of design
space exploration. We note that automated search could
occur not only within one architectural style but across
styles incorporating a set of tactics – leading to a tool able
to automatically find appropriate architectural models for a
given application model.

It is also worth mentioning that the incorporation of a
tactic within a style might result in either the alteration of
the style or even addition of a style to the architecture [14].
As a case in point, by application of the Ping/Echo tactic to
an architecture developed upon the Pipe and Filter style, the
derived architecture contains an added component in charge
of performing monitoring process and having connections
with the pinged components (filters), which consequently

imposes Broker style into the architecture. The current
version of Monarch avoids such mismatches by deriving
an empty set of architectural instances, as there is no such
architectural model that thoroughly complies with rules
implied by the Pipe and Filter style and embodies an instance
of the Ping/Echo tactic simultaneously. As a future work, we
plan to investigate ways of handling such cases.

Another interesting avenue for future work is to provide
more rigorous representation of application models espe-
cially with respect to non-functional requirements (NFRs).
The more complete the specifications of application models,
and the more tightly constrained the mapping specifications,
the narrower the outcome architectural spaces, and the
slighter the required postprocessing optimizing search. Work
by Rosa et al. [19] and more recently by Jackson et al. [16],
proposing that many forms of NFRs can be considered as
constraints over the space of models, suggest interesting
possibilities in this regard, which we intend to explore.

Finally, the upshot is that those who are doing research in
software architecture, patterns, and tactics should recognize
the need to specialize tactics to the particular settings in-
duced by a choice of both application type and architectural
style, and could consider the function of tactics as extending
and refining architectural maps.

VI. RELATED WORK

We can identify in the literature three categories of works
that are related to our research. The first one concerns works
that deal with formal modeling of architecture using Alloy.
The second encompasses researches on leveraging architec-
tural best practices to satisfy quality attributes. Finally, the
last area of related work focuses on formal approaches to the
evolution of architectures under the guidance of architectural
styles

Focusing on the first category, numerous researchers have
applied Alloy to formal specification of software architec-
ture. Among others, Kim et al. [17] proposed an approach
to translate architectural styles described formally in an
architecture description language to Alloy language, and
in turn, to verify properties implied by architectural styles.
Georgiadis et al. [12] similarly specified structural archi-
tectural styles as a set of constraints in order to control
runtime reconfiguration by means of constraints evaluation.
While these works use formal modeling and verification for
detecting architectural mismatch [9], we focus on preventing
such mismatches with a formal synthesis approach. That is,
we use Alloy not only to specify the application model or
architectural constraints, but also to model the spaces of
mappings consistent with both given application models as
well as target architectural styles and tactics, and to automate
the mapping process.

Bucchiarone and Galeotti [6] also proposed an approach
based on graph grammars and DynAlloy [8] to verify
programmed dynamic software architectures in which all

774 775

possible architectural changes are defined before run-time.
Although this work, like other work we have studied, lacks
an explicit notion of separating application description from
other design decisions, it appears to have the potential to
help us extend application models to include richer seman-
tics.

Focusing on the second category, a number of approaches
explored relating architectural styles and tactics stimulated
by them regarding various quality attributes (e.g. modifi-
ability [2], reliability [14]). Extending the same line of
work, Kumar et al. [18] recently proposed a more gen-
eral pattern-oriented knowledge model composed of four
dimensions, including the pattern to tactic relationship. Our
work is different from these works in several ways. First,
our work is geared towards the systematic specification of
mapping architecture-independent application models into
the architectural styles and the associated tactics. Second,
our approach has a formal basis which is missing in theirs.

Regarding the last area of related work, Tamzalit and
Mens [21] recently proposed an approach for the evolution
of an architecture description under the guidance of architec-
tural style. To this extent, they rely on a formalism based on
graph transformation. The other similar work is the recent
work of Garlan et al. [10] on the evolution of programs
with respect to architectural style. The premise of this work
is that it is sometimes necessary to change a program written
in one architectural style into a related program in another
style. These works share with ours an emphasis on formal
application of architectural best practices, but our work
focuses on formal mappings of architecture-independent
application models to a diversity of realized architectural
models in practical architectural styles and tactics.

VII. CONCLUSION

While a wealth of research has been done on software
architecture, architectural styles and architectural tactics,
very little has been done on automated support for the
derivation of software architecture with respect to styles and
tactics. We presented an approach based on the notion of ar-
chitectural maps, that formally supports automatic synthesis
of architectural models from abstract application models
in conformance with the architectural styles. In this paper,
we showed that architectural maps can also incorporate
architectural tactics in a formal and reusable form.

REFERENCES

[1] Monarch tool suite. http://monarch.cs.virginia.edu/.

[2] F. Bachmann, L. Bass, and R. Nord. Modifiability tactics.
Technical report SEI-2007-TR-002, 2007.

[3] H. Bagheri, Y. Song, and K. Sullivan. Architectural style
as an independent variable. In Proceedings of the 25th
IEEE/ACM International Conference on Automated Software
Engineering, 2010.

[4] H. Bagheri and K. Sullivan. Monarch: Model-based de-
velopment of software architectures. In Proceedings of the
13th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, pages 376–390, 2010.

[5] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley Professional, 2nd edition, 2003.

[6] A. Bucchiarone and J. P. Galeotti. Dynamic software archi-
tectures verification using DynAlloy. In Proceedings the 7th
International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT), 2008.

[7] P. Clements and M. Shaw. ”The golden age of software
architecture” revisited. IEEE Software, 26(4):70–72, 2009.

[8] M. F. Frias, J. P. Galeotti, C. G. L. Pombo, and N. M. Aguirre.
DynAlloy: upgrading alloy with actions. In ICSE, 2005.

[9] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match: Why reuse is still so hard. IEEE Software, 26(4):66–
69, 2009.

[10] D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku. Evolution
styles: Foundations and tool support for software architecture
evolution. In WICSA, 2009.

[11] D. Garlan, R. T. Monroe, and D. Wile. Acme: architectural
description of component-based systems. In Foundations of
component-based systems, pages 47–67. 2000.

[12] I. Georgiadis, J. Magee, and J. Kramer. Self-organising
software architectures for distributed systems. In Proceedings
of the first workshop on Self-healing systems, 2002.

[13] N. B. Harrison and P. Avgeriou. Leveraging architecture
patterns to satisfy quality attributes. In ECSA, 2007.

[14] N. B. Harrison and P. Avgeriou. How do architecture patterns
and tactics interact? a model and annotation. Journal of
Systems and Software, 83:1735–1758, 2010.

[15] D. Jackson. Alloy: a lightweight object modelling notation.
TOSEM, 11(2):256–290, 2002.

[16] E. K. Jackson, D. Seifert, M. Dahlweid, T. Santen, N. Bjorner,
and W. Schulte. Specifying and composing non-functional
requirements in Model-Based development. In SC, 2009.

[17] J. S. Kim and D. Garlan. Analyzing architectural styles.
Journal of Systems and Software, 83(7):1216–1235, 2010.

[18] K. Kumar and P. T.V. Pattern-oriented knowledge model for
architecture design. In PLoP, 2010.

[19] N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha. Incorporating
non-functional requirements into software architecture. In
Proceedings of the 15 IPDPS 2000 Workshops on Parallel
and Distributed Processing, pages 1009–1018, 2000.

[20] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[21] D. Tamzalit and T. Mens. Guiding architectural restructuring
through architectural styles. In ECBS, 2010.

[22] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 2009.

776 777

Towards Quality Based Solution Recommendation
in Decision-Centric Architecture Design

Lei Zhang, Yanchun Sun*, Yuehui Peng, Xiaofeng Cui, Hong Mei
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China
Email: {zhanglei, meih}@pku.edu.cn, {sunyc, pengyh08, cuixf04}@sei.pku.edu.cn

Abstract—Designing software architecture is an important and
complex activity. To design a high quality architecture, architects
need to make decisions on a number of inter-dependent design
issues, each of which usually has a set of viable alternative
solutions. Moreover, each viable solution often has diverse impact
on different quality attributes which often conflict with each
other. Existing methods for architecture design still face the
challenge of bridging the gap between software requirements
and high quality architecture. To alleviate the complexity of
architectural design, we propose a decision-centric approach:
ABC/DD. We attempt to provide pragmatic assistance for prac-
titioners to narrow this gap, and also ensure the quality of
target architecture. This approach transits from requirements to
architectures through a five-step process including requirement
refining, solution exploiting, relation identifying, solutions and
quality attributes synthesizing, and architecture deciding. Finally
we illustrate the applicability of this approach using a case study.

keywords: architecture design; design decision; quality at-
tribute

I. INTRODUCTION

Designing software architecture is one of the most important
activities for a software system. Because architecture not only
provides the key framework for the earliest design decisions,
which are taken to achieve both functional and non-functional
requirements [1], but also plays a crucial role in the whole
lifecycle of software system [2].

On one hand, designing software architecture is not a trivial
activity. Architects need to elaborate system requirements and
then transform them into a viable software architecture with
respect to reusable subsystems, existing technology and quality
attributes, etc. Because of the inherent gap between problem
domain and solution domain, the transition from software
requirements to architecture design remains a challenging
problem. There is still a lack of fundamental process models
and guidelines. In practice, architects usually design based on
their own experience and intuition [3].

On the other hand, designing a high quality architecture
is also very difficult, because architects usually need to make
design decisions on a number of inter-dependent design issues,
each of which has a set of viable alternative solutions [4].
Moreover, different alternatives usually have diverse impacts
on different quality attributes. Even worse, such impacts
sometimes conflict with each other. Consequently, architects
have to deliberately tradeoff among these entangled problems.

* Corresponding author

In recent years, a new research trend has emerged in archi-
tecture community to facilitate a better software architecture
design process. It is suggested that design decisions should
be modeled and considered as a first class entities [5]. The
seminal paper [6] advocates this perspective, in which software
architecture can be seen as a composition of architectural
design decisions. Many design methods have been proposed in
such a paradigm shift [7], including Archium [8], AREL [9],
ArchDesigner [4], AQUA [10], and Bayesian-Belief Network
based method (BBNbASM) [11], etc. These design methods
focus on describing architecture design process using design
decision and they greatly promote the progress of research.
However, most of these design methods do not aim at directly
guiding architects to derive architecture from requirement.
Besides, only a few of these decision-centric design methods
explicitly support quality analysis. More details about these
methods is analyzed in Section IV.

To address this problem, we propose a decision-centric
architecture design method: ABC/DD (Architecture Based
Component composition by Design Decision) in order to
narrow the gap between requirement and architecture. We use
“Divide and Conquer” as the principle idea of our approach.
We firstly divide system requirement as a set of design issues,
then solve these design issues and determine the quality
attributes independently, and then synthesize solutions for
each design issue to generate a set of candidate architectures,
finally recommend the optimal candidate based on quality
attributes. Specifically, our approach transits from require-
ments to architectures through a five-step process including:
(1) requirement refining, (2) solution exploiting, (3) relation
identifying, (4) solutions and quality attributes synthesizing,
and (5) architecture deciding.

The remainder of this paper is structured as follows.
Section II presents our approach and tool support; Section
III demonstrates the applicability of our approach using a
case study; then Section IV gives an overview of related
work including decision-centric architecture design methods,
and quality attributes related research in architecture; finally
Section V concludes the paper.

II. PROPOSED APPROACH

A. Design Decision-Centric Meta-Model

Based on the Core model [12], we propose the meta-model
of our approach in Fig. 1.

776 777

Fig. 1. The design decision-centric meta-model

In this approach, a design issue means an architecturally
significant requirement. It acts as a linkage between the
architecture design and requirements. Design issues can be
either project-specific or reusable. For those appear in many
architecture design projects, we named them “reusable design
issue”, and we can retrieve them from repository and then
reuse them. And for those only appear in a specific project,
they are “project-specific design issue”, and need to be solved
independently manually.

An issue solution provides a possible way of solving a
design issue. And an architecture solution is a candidate
architecture, which is synthesized from all issue solutions
and solves every design issue. In our approach, each solution
is instantiated by a set of components, connectors and their
configuration(C&C view).

Quality attribute (QA), such as maintainability, portability,
scalability, etc., are identified from non-functional require-
ment. The scope of quality attribute can be either a design
issue (IssueQA) or the entire system (SystemQA). Usually, a
design issue is related with multiple quality attributes. While
several different design issues also can be related to the same
one quality attribute.

Quality attributes do not share the same equal significance.
We use an evaluation criterion to characterize different pri-
orities of quality attributes in order to reflect system’s quality
goal. Based on an evaluation criterion, a recommendation will
be presented among a set of candidate architectures. According
to this recommendation, architects can make a decision, i.e.,
to accept or to reject one candidate architecture solution.

In addition, another important element enclosed in design
process is rationale, which is the reason and justification
behind a decision. Solution’s impact on quality attributes is a
kind of important rationale, and will be captured by ABC/DD
automatically. Besides, architects can also denote some pros,
cons and any comments to each decision. These rationales
will be valuable when reviewing or evolving the architecture.

B. Decision-Centric Design Process: ABC/DD

Based on the above meta-model, we present an itera-
tive process to implement our design decision-centric design

method in Fig.2. We use an activity diagram to illustrate this
process in five steps. Main inputs to this process include both
functional and non-functional requirement. And outputs of
this process include a final architecture, along with a set of
unselected candidate architecture and captured rationale. We
describe each step of this approach in turn.

Step (1) : Refine System Requirement
In the first step, architects need to clarify the requirements.

Functional requirements describe supports that user needs,
while non-functional requirements impose constraints on how
the system should accomplish the systems functionality [13].
Architects deliberate and determine design issues from func-
tional requirement, and identify quality attributes from non-
functional requirement.

When architect refining the requirement, ABC/DD will
search repository in order to match existing design issues.
For example, “application integration style” is a common
design issue when designing a distributed system, and pos-
sible alternative solutions include “Remote procedure call”,
“Message Bus”, “Shared Database” and “File Transfer” [14].
These solutions are relatively ‘stable’, and less likely need
to redesign in a new project. Thus, we can directly retrieve
this set of alternative solutions and present them to architects.
Reusing design issue not only reduces the burden, but also
improves the quality of design.

Step (2) : Exploit Solutions
In this step, architects need to derive alternative solutions to

each design issue. They can create or reuse a concrete design
fragment. We adopt common used Component & Connector
View (C&C View) to describe the solution.

For reusable design issues, architects can refer to existing
issue solution and determine whether reuse one of them or not.
For project-specific design issues, architects need to solve them
on their own by designing a set of components and connectors.

Fig.3 and 4 are two examples of issue solutions.

C

Type =
BROSWER

S

Type =
WEB

NetProtocol
=HTTP

N

Fig. 3. Solution instance of “B/S structure”

778 779

The Decision-centric Architecture Design Process

A
rc

hi
te

ct
A

B
C

/D
D

R
ep

os
ito

ry

Step.5
Architecture Deciding

Step.1
Requirement Refining

Step.2
Solution Exploiting

Step.3
Relation Identifying

Step.4
Solution Synthesizing

Design Issue
Eliciting

QAs
Eliciting

Reusable
Issue

Searching
Repository

Solutions
Relation

Identifying

Solution-QA
Relation

Identifying

Solution
Exploiting

Reusing
Solution

Reusable
Solution

Design
Rationale

Capturing
Rationale

Synthesizing
Solution-QA

Candidate
Architecture

Decision
Making

Final
Architecture

Activity flow

Artifact flow

Artifact

Activity
(Manual)

Activity
(Automatic)

Legend

Fig. 2. The decision-centric architecture design process

C

Security =
NEED

S

Security =
SUPPORT

SecProtocol
= SSL

SecProtocol

A

Fig. 4. Solution instance of “Security communication”

Step (3) : Identify Relations
(a) Relations between issue solutions
In this step, architects need to explore the C&C models for

each issue solution, and identify relations between solutions
of any two different issues. In [15], Kruchten et.al, present
an ontology which describes a group of relations. We select
four relations from them, which can be used in our approach,
including:
• INCLUSIV E , means that one solution ISa includes

another solution ISb, or ISa is part of ISb.
• CONFLICTIV E, indicates that two solutions are

conflictive to each other and cannot be selected together to
synthesize architecture solution.
• GENERALIZED, means that one solution is a gener-

alization or a specialization of another solution.
• INDEPENDENT , means the above three relations do

not exist.
Each pair of issue solutions should be identified as only

one kind of these relations. Relations determined in this
step are foundations for solutions synthesis in the following
step. According to these identified relations, different issue
solutions, which are not CONFLICTIV E, can be merged
together. For example, issue solutions in Fig.3 and Fig.4 are
INDEPENDENT , and they can be merged as one solution
as shown in Fig.5.

C

Type =
BROSWER
Security=

NEED

N

SecProtocol
= SSL

P t
A

NetProtocol
=HTTP

S

Type =
WEB

Security=
SUPPORT

Fig. 5. The merged solution of (a) and (b) in Fig.3 & 4

(b) Relations between issue solutions and quality attributes
Each issue solution impacts on several quality attributes.

And these impacts should be determined by architects after
they design or reuse an issue solution. We use four kinds of
relations to qualitatively describe such relations.

• SATISFY (solution,QA)
• NEUTRAL(solution,QA)
• V IOLATE(solution,QA)
• UNDETERMINED(solution,QA) [default]
Step (4) : QA-Based Solutions Synthesize
According to the identified relations between the issue solu-

tions, as well as the quality attributes for each issue solution,
our recursive synthesis algorithm can build a combination
tree, in which all feasible combinations of issue solutions
can be explored. And it merges every feasible combination
of issue solutions automatically. The outputs of this synthesis
are the C&C models of candidate architecture solutions, and
the established synthesis of quality attributes. We denote the
quality of one candidate architecture as a vector:

CA.QA =< QA1, QA2, . . . , QAn > .

and then we assign a value to each relation as: SATISFY =
1, V IOLATE = −1, and NEUTRAL = 0. Then each
quality attribute of candidate architecture can be calculated:

CA.QAi
=

n∑
i=1

value(ISx,y, QAi),

∀x, y(ISx,y ∈ CA.QAi ∧ value(ISx,y, QAi) �= null)

Step (5) : Architecture Deciding
(a) Evaluation Criterion
In most cases, different quality attributes have different

importance. In order to express the desired quality goals,
architects can give a partial order or specify concrete weights
to all quality attributes.

For example:
{Real-time} > {Maintainability, Cost}, or
Real-time.weight = 0.3; Maintainability.weight = 0.1,

etc.
These values will form a quality weight vector.
(b) Recommendation and Architecture Decision
In this final step, we already have quality value vectors for

different candidates and quality weight vector. The dot product
of these two vectors reflects the quality of each candidate
architecture, and can be used for comparison.

To design a high quality architecture, we should satisfy QAs
as more as possible. Therefore, after ranking all candidates,

778 779

the one which received the highest quality value will become
the recommendation. Then architects can inspect this recom-
mended architecture holistically and decide whether accept or
reject it as the final architecture.

C. Tool Support

We have developed a visual architecture modeling tool
named ABC Tool to support this design decision-centric
design method. This tool implements an integrated environ-
ment that provides support for architecture design, automated
architecture synthesis, quality-attribute analysis and candidate
recommendation, etc. ABC Tool is developed as a suite of
Eclipse Plug-ins. We mainly used two Eclipse open source
frameworks: EMF (Eclipse Modeling Framework) to model
our meta-model supported design method and GMF (Graphical
Modeling Framework) to provide visual design ability.

III. CASE STUDY

A. Case Description

This is a case study based on a real-world Commanding
Display Systems (CDS) that has served in a Space Flight
Center for years. And this system is currently in need of
refactoring to deal with several emerging problems. Fig.6
shows the simplified architecture of the legacy system. In this
architecture, there are a data source (DS) that reads various
kinds of live data, and a set of monitors (Ms) that display the
processed data. There is also a dedicated display server (Svr)
that receives the data transmitted from DS, pre-processes the
data in some specific ways, and pushes the data to Ms.

Fig. 6. Simplified Architecture of Legacy System

Several main problems of this legacy system include:
(a) Due to increasing amount of data, current design ex-

poses the system to performance problem. When a burst of
data occurs, it will cause seconds of delay. However, as a
commending system, quality of real time is crucial.
(b) The history data is stored in Svr without database (DB)

supporting. The management and usage of the history data are
inefficient and inconvenient.
(c) Current CDS is designed as a stand-alone application.

Because of a great deal of changing and upgrading require-
ments and implementations, the maintenance of this system is
a hard work.

We applied our approach in this case study.

B. Applying the Method

Step 1: Identify System Requirement

Table I
ELICITED DESIGN ISSUES AND QUALITY ATTRIBUTES

Design
Issue Description Quality Attributes

Issue System

Firstly, we elicit design issues and quality attributes in Table
I. In all, there are four design issues, three issue-QAs and two
system-QAs.

Step 2: Exploit Solutions
Then we discover and instance a group of issue solutions

for each elicited design issue. For example, there are two issue
solutions for design issue 1, as shown in Fig.7 and 8:

Fig. 7. Issue solution 1.1

Fig. 8. Issue solution 1.2

Step.3: Identify Relations
(a) Solutions Relation
Firstly, relations between the issue solutions are identified,

as shown in Table II.

Table II
IDENTIFIED RELATIONS BETWEEN ISSUE SOLUTION

Relation Type Issue Solution
INCLUSIVE (IS1.2, IS2.3)
GENERALIZED (IS2.1, IS3.1), (IS2.2, IS3.2)

CONFLICTIVE (IS1.1, IS2.3), (IS1.2, IS2.1), (IS1.2,
IS2.2), (IS3.1, IS4.2)

For example, IS2.3 is part of IS1.2, so INC(IS1.2, IS2.3) is
true; the DB in IS2.1 is a specialization of the DB in IS3.1,
so GEN(IS2.1, IS3.1) is true; the DB in IS1.1 has different
attribute value from the DB in IS2.3, so CON(IS1.1, IS2.3) is
true.
(b) Solution-QA Relation
Secondly, relations between the issue solutions and quality

attributes are identified. We implemented a Solution Quality

780 781

View, in which architects can evaluate each issue solution
and determine related QA relation. Fig.9 illustrates the issue
solution 1.1 and its corresponding QAs, including two issue
QAs and two system QAs.

Fig. 9. Quality-View of Issue Solution 1.1

Step.4: QA-Based Solutions Synthesize
In this step, issue solutions and solution-QA relations will

be synthesized to generate a set of feasible candidate combi-
nations.

In this case study, the results are eight candidate architecture
solutions, named CA1∼CA8. Limited by space, we only
illustrate CA7 in Fig.10.

Step.5: Recommend Candidate Architecture
(a) Specify Evaluation Criterion
We ordered these QAs and quantitatively set the weight to

them.
Real-Time = 0.3,
Non-overload = 0.2

Recoverability = 0.1

Maintainability = 0.2

Cost = 0.1

Then, the quality weight vector can be denoted as:
QA =<0.3, 0.2, 0.1, 0.2, 0.1>

(b) Recommendation
Using this quality weight vector as a evaluation criterion,

we can calculate the dot product of candidate architectures
quality and weight vector as shown in Table IV.

Table IV
CANDIDATE ARCHITECTURE AND QUALITY VALUE

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.1 -0.2 0.9 0.5 0.8 0.7 1.8 1.3

We implemented another view to present this evaluation
result. Fig.10 shows this view, in which architects can examine
each feasible architecture and its various quality attributes.
And the highlighted candidate architecture is the recommen-
dation. In the case, CA7 is highlighted.

Fig. 10. Architecture Quality View of CA7

C. Discussion

This case study illustrates a simple but complete usage of
our approach. From this experience, both effectiveness and
limitations can be learned. We discuss about some of our
finding in this section.

This approach provides the support in several activities to
alleviate the difficulties. Our approach can relieve the difficulty
of directly designing a complete architecture solution. When
facing a number of requirements, architects need to explore
every combination of the options and then present all of the
resulting architectures for comparison. It will be a hard and
error-prone work to accomplish. By applying the principle
of “divide and conquer”, we separate requirements into a set
of design issues, and let architects concentrate on designing
solutions for relatively simple problem. Then, with the help
of solution synthesize algorithm, architects are able to rely on
automated processes and ABC Tool that help him intelligently
explore the possibility solution space, and provide a small
set of humanly-intelligible recommendations for him to chose
from at the end.

However, the limitation is that only the problem whose
design issues are relatively independent is suitable for our ap-
proach. For the problems whose design issues are overlapping
and tightly interrelated, are not quite suitable.

IV. RELATED WORK

The software architecture community has developed differ-
ent methods to support reasoning about various quality attri-
butes during architecture design and also support evaluation
of final architecture’s quality.

Bruin and Vliet introduce an approach named Quality-
Driven Composition (QDC) [16]. It firstly derives the architec-
ture that only addresses functional requirements and contains a
number of variability points. The solution fragments address-
ing quality requirements are used to iteratively compose the
architecture.

The ADD method [17] is proposed by CMU SEI. This
method defines software architecture as a design process
based on the quality attribute requirements. ADD follows a

780 781

recursive process that decomposes a system or system element
by applying architectural tactics and patterns that satisfy its
driving quality attribute requirements. ADD can be used with
traditional and with agile software engineering methods.

Jansen et al. propose an approach named Archium [8].
They give a meta-model of software architecture decisions and
they develop a tool to model design decision and architecture
fragment separately. They use composition model as a glue to
combine decision and design fragment.

Choi et al. introduce an integrated design-decision based
architecture design approach, AQUA [10]. It has a three-step
process includes finding, evaluating and changing decisions.
They use a decision constraints graph as the most significant
technique to support the entire process and guaranteed the
quality.

Al-Naeem presents ArchDesigner [4] as a systematic ap-
proach for facilitating the architectural design. Using opti-
mization techniques, it can determine the best combination of
design alternatives that best satisfy stakeholders’ quality goals
and project constraints.

Bayesian-Belief Network based method (BBNbASM) [11]
describes uncertain relations between quality attributes and
design decisions by a formal model which can be used to
predict the probability of architecture’s quality.

Although the above approaches are proposed to support
quality attributes to architecture design, they lack of enough
support for design process. In contrast to these approaches,
our approach offers a more complete support of guidance from
requirement to target architecture design and support analysis
of quality attributes as well.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed and implemented a
decision-centric architecture design method which alleviates
the complexity of architecture design . This approach provides
pragmatic guidance to architects in the design process from ar-
chitecturally significant requirements to candidate architecture
solutions. It supports automated synthesizing candidate archi-
tecture and also recommends an optimal candidate, making
the design process more efficient and effective.

This paper presents our preliminary work. So far, we have
already identified a number of areas that call for further
improvement.
(a) In current ABC/DD, we only use qualitative relations

to describe the solution’s impact on quality attributes. Three-
valued score is not able to deal with the complexity of
real problems. Although quantitatively measuring such impact
surely will incur more burdens, there are many quality attri-
butes which are more suitable to be quantitatively described.
As a part of our ongoing work, we are trying to leverage fuzzy
logic to tackle this problem and have achieved initial results.
(b) Furthermore, to enhance this approach, we are going

to integrate a more sophisticated evaluation mechanism. A
promising way is to leverage some existing research on quality
evaluation of architecture.

(c) We do not validate the effectiveness of the recommenda-
tions. And we plan to produce some measures of the pertinence
or an expert’s independent opinion to compare with the results
produced by our approach.

ACKNOWLEDGMENT

This effort is sponsored by the National Basic Research
Program of China (973) under Grant No. 2009CB320703,
the Science Fund for Creative Research Groups of China
under Grant No. 60821003, and the National Natural Science
Foundation of China under Grant No. 61073020. The authors
want to express their gratitude to the anonymous reviewers for
their valuable comments that helped to improve this work.

REFERENCES

[1] M. A. Babar and P. Lago, “Design decisions and design rationale in
software architecture,” Journal of Systems and Software, vol. 82, no. 8,
pp. 1195 – 1197, 2009, sI: Architectural Decisions and Rationale.

[2] R. N. Taylor., N. Medvidovic., and E. M. Dashofy, Software Architec-
ture: Foundations, Theory, and Practice. John Wiley and Sons, Inc.,
2010.

[3] M. Galster, A. Eberlein, and M. Moussavi, “Transition from require-
ments to architecture: A review and future perspective,” in Software En-
gineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, 2006. SNPD 2006. Seventh ACIS International Conference
on, 19-20 2006, pp. 9 –16.

[4] T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, and B. Benatallah, “A
quality-driven systematic approach for architecting distributed software
applications,” in ICSE ’05: Proceedings of the 27th international con-
ference on Software engineering. New York, NY, USA: ACM, 2005,
pp. 244–253.

[5] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Software Architecture, 2005. WICSA 2005. 5th
Working IEEE/IFIP Conference on, 2005, pp. 109 –120.

[6] J. Bosch, “Software architecture: The next step,” Software Architecture,
vol. In EWSA, 3047 of LNCS, pp. 194–199, 2004.

[7] W. Bu, A. Tang, and J. Han, “An analysis of decision-centric archi-
tectural design approaches,” in SHARK ’09: Proceedings of the 2009
ICSE Workshop on Sharing and Reusing Architectural Knowledge.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 33–40.

[8] A. Jansen, J. Van der Ven, P. Avgeriou, and D. Hammer, “Tool support
for architectural decisions,” in Software Architecture, 2007. WICSA’07.
The Working IEEE/IFIP Conference on, 2007, pp. 4–4.

[9] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software,
vol. 80, no. 6, pp. 918–934, 2007.

[10] H. Choi, Y. Choi, and K. Yeom, “An Integrated Approach to Quality
Achievement with Architectural Design Decisions,” Journal of Software,
vol. 1, no. 3, p. 40, 2009.

[11] H. Zhang and S. Jarzabek, “A bayesian network approach to rational
architectural design,” International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 4, pp. 695–717, 2005.

[12] R. de Boer, R. Farenhorst, P. Lago, H. Van Vliet, V. Clerc, and A. Jansen,
“Architectural knowledge: Getting to the core,” Software Architectures,
Components, and Applications, pp. 197–214.

[13] L. Xu, H. Ziv, T. Alspaugh, and D. Richardson, “An architectural pattern
for non-functional dependability requirements,” Journal of Systems and
Software, vol. 79, no. 10, pp. 1370–1378, 2006.

[14] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[15] P. Kruchten, P. Lago, and H. van Vliet, “Building up and reasoning
about architectural knowledge,” Quality of Software Architectures, pp.
43–58, 2006.

[16] H. de Bruin and H. van Vliet, “Quality-driven software architecture
composition,” Journal of Systems and Software, vol. 66, no. 3, pp. 269–
284, 2003.

[17] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Boston, MA: Addison-Wesley, 2003.

782 783

Representation of Reference Architectures:
A Systematic Review

Milena Guessi, Lucas Bueno Ruas Oliveira and Elisa Yumi Nakagawa
Department of Computer Systems

University of São Paulo - USP
PO Box 668, 13560-970, São Carlos, SP, Brazil
Email: {milena, buenorlo, elisa}@icmc.usp.br

Abstract—Software architectures play a major role in
determining system quality, since they form the backbone
to any successful software-intensive system. In this context,
reference architecture is a generic architecture for a class
of software systems used as a foundation for the design
of concrete architectures from this class. Because of their
fundamental role, reference architectures need to be properly
represented in order to be effectively used, and understood
by all stakeholders. In this perspective, we have found
initiatives proposing different approaches to represent them.
However, there is a lack of detailed overview about all these
approaches. In this paper, we identify possibly all approaches
used or proposed to represent reference architectures. For
this, we have used a technique proposed by Evidence-Based
Software Engineering (EBSE): the Systematic Review.
As achieved results, we can observe different approaches
adopted to represent reference architectures; however,
there is no consensus about which are more adequate or
their effectiveness. Based on this overview, interesting and
important perspectives for future research can also be found.

Keywords: Reference Architecture, Architectural View, Architec-
tural Description Language, Systematic Review.

I. INTRODUCTION

Reference architectures have emerged as elements that
aim at facilitating and systematizing the development of
software systems. However, there is no commonly accepted
definition for reference architectures [1]. In this work, we
considered that a reference architecture aggregates knowl-
edge of a domain, identifying abstract solutions of a prob-
lem and promoting reuse of design expertise by achieving
solid, well-recognized understanding of a specific domain.

Particularly, representing reference architectures in order
to make them understandable for a wide variety of stake-
holders (such as customers, product managers, project man-
agers and engineers) consists of an essential activity for their
success. Despite the relevance of reference architectures, it
has been observed that their representation, in practice, is
often conducted informally. Additionally, there is a lack of
works that summarize all approaches that have addressed
an adequate representation of these architectures.

In another perspective, during the study of a new knowl-
edge area, researchers usually conduct a bibliographic re-

view (almost always an informal review) to identify pub-
lications related to a specific subject. However, this kind
of review does not offer any support to avoid bias during
the selection of the publications that will be analyzed. In
this context, Evidence-Based Software Engineering (EBSE)
[2] has investigated and proposed the use of the systematic
review, an technique used to summarize, assess and interpret
all evidences related to a specific question, topic area,
or phenomenon of interest. In this context, an individual
evidence (for instance, a case study or an experimental study
divulged in a publication) which contributes to a systematic
review is called primary study.

The main objective of this paper is to identify, summarize
and analyze possibly all approaches that have been proposed
or used to represent reference architectures. For this, we
have adopted and conducted a systematic review1. Results
have pointed out that this is a novelty topic of research and,
considering the relevance of reference architectures in the
software development, more effort must be focused on this
research area. Besides that, we could identify future and
important research lines based on our achieved results.

This paper is organized as follows. In Section II we
present the conducted systematic review. In Section III we
discuss achieved results. In Section IV we summarize our
contributions and discuss perspectives for further work.

II. SYSTEMATIC REVIEW APPLICATION

Our systematic review was conducted in the reference ar-
chitecture context, aiming at identifying all relevant primary
studies related to the representation of this architecture. It
was conducted from September 1st, 2010 to October 15th,
2010 and involved three people (one software engineering
researcher, one systematic review specialist, and one under-
graduate student). In order to conduct our systematic review,
we followed the process proposed by Kitchenham [3]. In
short, this process is composed by three main phases: (i)
planning; (ii) conduction; and (iii) reporting. The phases

1Detailed information about our systematic review is available in a
technical report found in http://www.icmc.usp.br/~biblio/BIBLIOTECA/
rel_tec/RT_363.pdf

782 783

are explained in more details during presentation of our
systematic review.

A. Planning

In this phase, the objectives and the systematic review
protocol are defined. The protocol guides the conduction
of the systematic review and is composed by research
questions, search strategy, inclusion and exclusion criteria
and data extraction and synthesis method.

1) Research Questions: Aiming to find all primary stud-
ies to understand and summarize evidences about proposed
or used approaches to represent reference architectures, the
following research question (RQ) was established:

• RQ1: Which are the approaches proposed or used to
represent reference architectures?

Additionally, we defined three secondary research ques-
tions to specify the objectives of our search:

• RQ2: Which are the UML techniques proposed or used
to represent reference architectures?

• RQ3: Which are the ADLs proposed or used to repre-
sent reference architectures?

• RQ4: What is the maturity level of the found ap-
proaches, considering their application to describe ref-
erence architectures?

2) Search Strategy: In order to establish the search
strategy, considering the research questions, we initially
identified the main keywords “Reference Architecture” and
“Architectural Description”. We also identified synonyms
for these keywords. Thus, the final search string was: (“Ref-
erence Architecture” OR “Reference Model”) AND (“Ar-
chitectural View” OR “Architecture View” OR “Architec-
tural Model” OR “Architecture Model” OR “Architectural
Description” OR “Architecture Description”). In particular,
we add “Reference Model” in our search string, since some
authors use this referring to reference architectures. Also,
we only considered papers written in English, since it is
the most common language in scientific papers. Finally,
we established ACM Digital Library, IEEEXplore, ISI Web
of Knowledge, ScienceDirect, Scopus, and SpringerLink
as search sources (i.e., publication databases) to find the
primary studies.

3) Inclusion and Exclusion Criteria: The selection crite-
ria are used to evaluate each study recovered from the search
sources. Thus, the inclusion criteria (IC) used to include
relevant studies in our systematic review were:

• IC1: The primary study proposes or uses an approach
to represent reference architectures; and

• IC2: The primary study proposes or uses an ADL to
describe reference architectures.

Alternatively, the exclusion criteria (EC) used to exclude
the studies that do not contribute to answer the research
questions were:

• EC1: The primary study does not address reference
architectures;

• EC2: The primary study does not propose or use any
approach to represent reference architectures;

• EC3: The primary study does not present an abstract
or its full text is not available;

• EC4: The primary study is written in a different
language than English;

• EC5: The primary study is directly related to another
primary study of the same author. In this case, only
the most recent primary study will be considered; and

• EC6: The primary study consists of a compilation of
work, for instance, from a conference or workshop.

4) Data Extraction and Synthesis Method: We plan to
build data extraction tables related to each research ques-
tion, when applicable.

B. Conduction

In this phase, the primary studies are identified, selected
and evaluated according to the previously established pro-
tocol. To support the organization of the primary studies,
we used JabRef2, an open source reference management
system. It is worth highlighting that only primary studies
published until September 14, 2010 are considered in this
paper.

As a result of our search in the publication databases
using the search string, 110 primary studies were recovered.
After the application of the inclusion and exclusion criteria,
only 10 studies were considered relevant for our systematic
review. Table I presents these studies. Following, a more
detailed analysis was conducted on each primary study
included.

TABLE I
INCLUDED PRIMARY STUDIES

Study Authors Year
S1 Bashroush et al. [4] 2005
S2 Chen et al. [5] 2010
S3 Fritschi and Gatziu [6] 1999
S4 Hofmann et al. [7] 2009
S5 Lin et al. [8] 2008
S6 Lopez and Blobel [9] 2009
S7 Meland et al. [10] 2009
S8 Nakagawa and Maldonado [11] 2008
S9 Sarathy et al. [12] 2010
S10 Schroth [13] 2008

C. Reporting

In this last phase, we present analytical results of our
systematic review. The obtained data extraction and syn-
thesis of knowledge considering each research question is
discussed next.

2http://jabref.sourceforge.net

784 785

1) RQ1: Regarding RQ1 (i.e., approaches proposed or
used to represent reference architectures), we have identified
10 different adopted approaches. Table II summarizes each
of these approaches. Particularly, studies S4, S5, S9, and
S10 represented the reference architecture using a graphic
approach other than UML. Also, study S8 proposed an
architectural view, the Conceptual View, which describes
by means of ontologies each of the terms that are present
in the reference architectures. It is worth noting that this
diversity points out that there is no consensus about how to
represent reference architectures.

TABLE II
SHORT DESCRIPTION OF THE APPROACH PROPOSED OR USED IN EACH

PRIMARY STUDY

Study Approach proposed or used in the primary study
S1 Architectural Description Language ADLARS
S2 Architectural Description Language π-ADL
S3 Architectural Description Language WRIGHT
S4 Model-View-Controller and Moderator Architectural Styles
S5 Layers Architectural Style
S6 Business, Information and Computational Architectural

Views
S7 Component Architectural View and Information Model
S8 Module, Runtime, Deployment and Conceptual Architec-

tural Views
S9 Logic and Physical Architectural Views
S10 Community, Process, Service and Infrastructure Architec-

tural Views

2) RQ2: This research question addresses UML tech-
niques proposed or used to represent reference architectures.
Table III summarizes the found UML techniques. For in-
stance, Lopez and Blobel [9] (study S6) adopted three archi-
tectural views: enterprise, information and computational.
Then, the authors used, respectively, the use case diagram,
the class diagram and the component diagram of UML to
represent each of these views.

TABLE III
UML TECHNIQUES PROPOSED OR USED IN THE REPRESENTATION

Study Architectural View UML Technique
S6 Enterprise View Use Case Diagram
S6 Computational View Component Diagram
S6 Information View Class Diagram
S7 Component and Connector View Component Diagram
S7 Information Model Class Diagram
S8 Deployment View Deployment Diagram
S8 Module View Class Diagram
S8 Runtime View Component Diagram

The enterprise view offers a perspective of the system’s
architecture and environment, describing the system’s pur-
pose, scope and policies. The computational view shows the
logical components and their interactions through interface.

The information view, also referenced by study S7 as an
information model, offers a perspective on the information’s
structure and its semantics. The runtime view proposed by
Nakagawa and Maldonado [11] is also known as Com-
ponent and Connector View (C&C) by the “Views and
Beyond” method [14]. The C&C view shows the system as
a set of cooperating units of runtime behavior and was also
proposed in study S7. The deployment view describes the
machines, software that is installed on those machines and
network connections that are used by the software systems.
Finally, the module view shows how a software system is
structured as a set of implementation units.

3) RQ3: This research question addresses the ADLs
proposed or used to represent reference architectures. In
spite of the diversity of ADL available in the literature,
there are few initiatives of using ADL to represent reference
architectures. Bashroush et al. (study S1) developed the
ADLARS (Architecture Description Language for Real-
time Software Product Lines), an ADL to be used in the
software product line context. This ADL aims at supporting
the relationship between the system’s feature model and the
architectural structures. The feature model encompasses the
variability and commonality among the different products
within the scope of a family. Thus, the link between
the feature model and the architectural structures allows
for automatic generation of product architectures from the
family reference architecture, making the task of deriving
product-specific architectures much more straightforward.

Chen et al. (study S2) applied π-ADL to describe the
High-Level Architecture (HLA), which is a reference ar-
chitecture and a common infrastructure for large scale
distributed interactive simulation systems, accepted as an
IEEE standard in 2000 [15]. In π-ADL, architectures are
composite elements representing systems. In this sense, a
composite consists of external interfaces and internal behav-
ior. Therefore, π-ADL supports the description of composite
dynamic behaviors. Additionally, the virtual machine for the
system dynamic analysis, called π-ADLVM, can be used to
test the architectural models written in π-ADL.

Fritschi and Gatziu (study S3) represented the reference
architecture by means of WRIGHT [16]. This language
presents the basic architectural abstractions of components,
connectors and configurations, providing explicit structural
notations for each of these elements. Particularly, the con-
figuration is a collection of component instances combined
via connectors.

4) RQ4: This research question addresses the maturity
level of the approaches, considering their application to
describe reference architectures. In order to answer this
question, we classified each study in one of the following
categories: (i) proposal, if the primary study proposes an
approach to represent reference architectures, but does not
present any case study; (ii) case study, if the primary study

784 785

presents at least one case study; and (iii) application, if
the approach is already been used in a project or in the
development industry. Table IV shows the maturity level of
each approach. It is observed that only two studies presented
a case study. In this sense, it seems interesting to concentrate
efforts to increase the maturity level of these approaches
and to verify if they are adequate for the representation of
reference architectures.

TABLE IV
MATURITY LEVEL OF THE FOUND APPROACHES

Maturity Level Total Percentage Primary Studies
Proposal 4 40% S1, S4, S5, S10
Case study 2 20% S2, S8
Application 4 40% S3, S6, S7, S9

III. DISCUSSION

Results of our systematic review point out that, in spite
of relevance of reference architectures to the software
development, there are few recent works that show concern
with their adequate representation. Therefore, more studies
are necessary that investigate which are and how other, if
any, architectural views can be used to properly describe
reference architectures. Also, investigation of well-known
graphic notations, such as UML, would be relevant, aiming
at standardizing the representation of such architectures.
Additionally, the use of ADLs in the context of reference
architectures should be further investigated concerning their
application and suitability.

Considering knowledge arisen from this work, it is possi-
ble to identify interesting and important research lines that
can be investigated in future work. For instance, investiga-
tion or proposition of software tools to support the represen-
tation and modeling of reference architectures; conduction
of case studies in order to increase the maturity level of the
found approaches; investigation of how well-known graphic
notation could be applied in order to represent different
detail levels of reference architectures; and, establishment
of a consensus of the best approaches to the representation
of reference architectures.

Regarding limitation of this work, other research sources
could be selected, such as Google Scholar, and other key-
words could be added to the search string. Moreover, it is
worth highlighting that systematic review conduction is not
a trivial task because of the amount of papers that need
to be manipulated. Besides that, relevant primary studies
written in languages other than English were overlooked in
this instance.

IV. CONCLUSIONS

The main contribution of this work was to present a
detailed panorama about proposal and use of approaches

for the representation of reference architectures. Based on
this panorama, another important contribution is to bring
forth new research lines on this topic. As main result, we
found that the representation of reference architectures
has not been sufficiently explored and there are still
different perspectives that could be investigated in order
to deal adequately with reference architectures, aiming at
promoting their dissemination and effective use.

Acknowledgments This work is supported by Brazilian
funding agencies: FAPESP, CNPq and Capes.

REFERENCES

[1] S. Angelov, P. Grefen, and D. Greefhorst, “A Classification of
Software Reference Architectures: Analyzing Their Success and
Effectiveness ,” in ECSA’09 at WICSA’09, Cambridge, UK, 2009,
pp. 141–150.

[2] T. Dybå, B. Kitchenham, and M. Jorgensen, “Evidence-based soft-
ware engineering for practitioners,” IEEE Software, vol. 22, no. 1,
pp. 58–65, 2005.

[3] B. A. Kitchenham, “Procedures for performing systematic reviews,”
Keele University and National ICT Australia Ltd, Tech. Report
TR/SE-0401 and NICTA TR 0400011T.1, 2004.

[4] R. Bashroush, T. J. Brown, I. Spence, and P. Kilpatrick, “ADLARS:
An Architecture Description Language for Software Product Lines,”
in SEW’05, Maryland, USA, 2005, pp. 163–173.

[5] J. Chen, D. Wu, J. Zhang, and F. Oquendo, “Formal modelling
and analysis of HLA architectural style,” Int. Journal of Modelling,
Identification and Control, vol. 9, no. 1-2, pp. 71–82, 2010.

[6] H. Fritschi and S. Gatziu, “A Reusable Architecture to Construct
Active Database Systems,” University of Zurich, Tech. Report ifi-
99.02, 1999.

[7] C. Hofmann, N. Hollender, and D. W. Fellner, “Workflow-Based
Architecture for Collaborative Video Annotation,” in OCSC’09 at
HCII’09, San Diego, USA, 2009, pp. 33–42 (LNCS v.5621).

[8] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi,
“Service-Oriented Architecture for VIEW: A Visual Scientific Work-
flow Management System,” in IEEE SSC’08, vol. 1, Honolulu, USA,
2008, pp. 335–342.

[9] D. M. Lopez and B. G. Blobel, “A development framework for
semantically interoperable health information systems,” Int. Journal
of Medical Informatics, vol. 78, no. 2, pp. 83–103, 2009.

[10] P. H. Meland, S. Ardi, J. Jensen, E. Rios, T. Sanchez, N. Shahmehri,
and I. A. Tondel, “An architectural foundation for security model
sharing and reuse,” in ARES’09, vol. 1–2, Fukuoka, Japan, 2009, pp.
823–828.

[11] E. Y. Nakagawa and J. C. Maldonado, “Reference architecture
knowledge representation: an experience,” in SHARK’08 at ICSE’08,
Leipzig, Germany, 2008, pp. 51–54.

[12] V. Sarathy, P. Narayan, and R. Mikkilineni, “Next Generation Cloud
Computing Architecture: Enabling Real-Time Dynamism for Shared
Distributed Physical Infrastructure,” in WETICE’10, Larissa, Greece,
2010, pp. 48–53.

[13] C. Schroth, “A Service-oriented Reference Architecture for Orga-
nizing Cross-Company Collaboration,” in Enterprise Interoperability
III. Springer, 2008, pp. 71–83.

[14] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford, Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2003.

[15] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA), IEEE Std. 1516-2000.

[16] R. J. Allen, “A Formal Approach to Software Architecture,” Carnegie
Mellon University, Tech. Report CMU-CS-9-144, 1997.

786 787

A Model-View-DynamicViewModel and its
Performance in a Web-based Component Architecture

Graeme Baillie, Brian Armour, Dave Allan,
Robert Milne

CC Technology Ltd
Glasgow, Scotland

{graeme.baillie, brian.armour, dave.allan,
robert.milne}@cctechnology.com

Thomas M Connolly, Richard Beeby
School of Computing

University of the West of Scotland
Paisley, Scotland

{thomas.connolly, richard.beeby}@uws.ac.uk

ABSTRACT

The implementation of an appropriate software architecture
is crucial in achieving the optimum performance from a
system. Web-based applications are becoming increasingly
popular in replacing previous Windows-based applications.
This has lead to a growth in new technologies and architectures
to cope with the new workload and performance demands that
web-based applications can require.

This paper will look at a current software company that
provides process-heavy web-based application systems
providing grant management services to medical and academic
research. The purpose of this paper is to analyze the
performance of their existing Web Forms based management
system against newly developed dynamic component-based
architecture using a variant of the Model View Controller
(MVC) and Model-View-ViewModel (MVVM) patterns,
which we have termed MVDVM (Model-View-DynamicView
Model). Accurate and meaningful results will demonstrate how
applications can now benefit from this approach.

Keywords – Component based architecture, Dynamic forms,
Interoperability, Model View Controller.

I. INTRODUCTION

Web-based software applications are becoming more
popular and crucial to the running of businesses in their day-to-
day processes. Due to the growth of the world wide web and of
Internet services capabilities, software companies are in a much
better situation to offer services that previously would have
only been possible through an offline platform.

 Improvements in Internet connectivity and hardware
performance within the last ten years has meant that software
developers no longer have to worry as much about bandwidth,
processor or memory requirements when implementing
process-heavy applications. Although this has been beneficial
to the software industry it has lead to many systems being
implemented in ways that do not utilize best performance
techniques available. This can deliver sub-optimal user

experience and utilizes greater server capacity than is necessary
at a time when datacenter costs are rising.

 This paper will look at a software company that
implements process-heavy web applications. The company’s
current working practice and techniques being used will be
analyzed. The techniques will then be compared against a new
dynamic component-based solution to identify the change in
performance achieved for one of its key software products.

Statistics such as page load time, page size, number of
database queries will be measured under varying loads and
analysed to assess how these will benefit by applying latest
thinking and best practice when developing high-performance
software systems

In the next section, a brief overview of the product is
provided followed by a discussion of related research. The
subsequent sections will discuss the technology platform, the
test platform and then present the performance data of the old
product and the re-architected product.

II. CASE STUDY OVERVIEW

This paper analyzes a component-based dynamic solution
used to manage application forms within CC Grant Tracker, a
Grants Management software product. The solution builds and
publishes forms, which are then used for the completion,
submission and ongoing management of applications. CC
Grant Tracker is a solution from CC Technology, a leading
global supplier of advanced grant management software
solutions, based in Glasgow, Scotland. CC Grant Tracker
supports organizations such as charities, academic institutions,
public funding bodies and corporate foundations who often
employ a regular cycle of grant applications, where
professional reviewers decide which applications are worthy of
funding. For a large organization, there may be hundreds or
even thousands of applications, as well as dozens of reviewers,
not to mention stringent auditing requirements. In such cases,
simply administering the application process is a major
undertaking. CC Grant Tracker manages the full life cycle of
grant administration, from initial application through
evaluation, approval and ongoing management.

786 787

When CC Technology originally created the software
product the emphasis of the initial analysis and design phase
was based on functionality rather than the performance of the
system. The application is heavily web forms-based and the
initial version was delivered using the standard web
development tools from Microsoft – ASP.NET Web Forms.
This delivered a tightly-coupled solution with associated
maintenance issues. As the number of clients and the breadth of
their requirements have increased the requirement to develop
the flexibility and performance of the application forms has
become a priority.

CC Technology have been using a re-architected solution
with a number of new large clients and the new system has
been extremely well received.

III. RELATED RESEARCH

A. Web Forms vs MVC
Microsoft currently endorses two web architectures, Web

Forms, which was released in 2002, and the Model-View-
Controller (MVC), which was released in 2009. MVC is a
standard design pattern that Microsoft has adopted. The MVC
pattern helps deliver solutions that separate the different
aspects of the application (input logic, business logic and UI
logic), while providing a loose-coupling between these
elements [1]. Both architectures provide benefits to the
developer and end-user depending on the circumstances. For
this study we examined both approaches to obtain a better
understanding as to which provides the better performance
benefits.

1) Web Forms – The major advantage of a Web Forms
implementation is that it allows an application to be developed
in a relatively short period of time as there is lower initial
design requirements for the solution architecture. However,
research and experience shows that there are a number of
performance disadvantages inherent to this approach.

Web Forms allow only one form tag to be added per page.
This means that in order for the page to get information to or
from the server, the entire page must be posted back. A
common approach to address this uses Microsoft’s Ajax
Control Toolkit and update panels. This reduces performance
problems related to sending unnecessary data back to the server
however the Ajax update methods can be just as performance
heavy in bandwidth and processing on the server due to the
View State that is required on all updates from a Web Form
regardless of a full postback or asynchronously.

The View State holds session information for each page [2].
This adds considerably to the data size of the page and as this is
exchanged in all updates this impacts the bandwidth for the
solution. Many of the built-in ASP.NET components make
heavy use of View State, so it is not unusual for a page to have
10’s of Kbytes of View State [3]. This is measured in terms of
performance for end-users and bandwidth costs at the data
centre. There is therefore no performance gain in using Ajax
update panels throughout the application as the net effect can
be the same or greater than doing a full postback.

A further serious issue for modern web pages is the
abstraction from HTML, as this hinders accessibility, browser
compatibility, and integration with JavaScript frameworks like
JQuery and PrototypeJS [4]. Of lesser importance to this case
study, the postback model makes it harder for search engines to
rank ASP.NET pages high.

2) MVC – The Model-View-Controller (MVC)
architectural pattern was first proposed by Trygve Reenskaug
in the late 1970s (the earliest source available is [5] but MVC
was not publicly documented until 1988 [6]). It was first used
in Smalltalk [7] and is an effective approach for supporting
multiple presentations of data. Users can interact with each
presentation in a style that is suitable to the presentation. The
data to be displayed is encapsulated in a model object and
each model object may have a number of separate view
objects associated with it, where each view is a different
display representation of the model. Each view has an
associated controller object that handles user input and device
interaction. MVC was devised to target desktop applications,
but because of its relatively loose formulation it was easily
adapted for the Web. MVC (or Model 2 using the Sun
Microsystems terminology [8]) is now used widely in web
frameworks (e.g., ASP.NET, Django, Ruby on Rails, Code
Igniter, Apache Struts, JavaServer Faces). In Web MVC
(which differs somewhat from traditional MVC), a model
encapsulates application data in a way that is independent of
how that data is rendered by the application. The view accepts
some number of models as input and transforms them into
appropriate output that will be sent to the browser. The
controller connects the models and views, typically by
gathering model data and sending it to the view for rendering.
The view accepts data as input and produces a string as output,
which may include information about its type (e.g., HTML,
XML or JSON). After being manipulated by some post-
processing filters, the string is sent directly to the browser.
Because the view’s output is treated as an opaque string, it is
difficult for the framework to reason about the structure of the
content. These views are complicated by the need to provide
both Ajax and non-Ajax versions of a site [9]. In ASP.NET,
MVC is implemented as shown in Figure 1(a).

(a)

(b)

Figure 1: MVC Architectures: (a) Model-View-
Controller; (b) Model-View-Presenter; (c) Model-View-

ViewModel

(c)

788 789

In addition to managing complexity, the MVC pattern
makes it easier to test applications than it is to test Web Forms.
For example, with Web Forms a single class is used both to
display output and to respond to user input, which when testing
has to be instantiated along with all its child controls and
additional dependent classes. Moreover, tests in Web Forms
require a Web server. In contrast, the MVC framework
decouples the components and makes heavy use of interfaces,
which makes it possible to test individual components in
isolation from the rest of the framework. The loose coupling
between the three main components of an MVC application
also promotes parallel development. For instance, one
developer can work on the view, a second developer can work
on the controller logic, and a third developer can focus on the
business logic in the model.

A variant of MVC is the Model-View-Presenter (MVP)
pattern [10], as shown in Figure 1(b). In MVP, the Presenter
has the same responsibilities as MVC’s Controller, acting as a
mediator between the view and the model. It receives user
input requests from the view and evokes changes on the model
in response. The Presenter is able to query the view for data but
to enforce separation of concern (SoC), the presenter is
decoupled from the view by holding a reference to the view’s
interface rather than its implementation [11] [12]. Fowler
describes a different approach for achieving SoC called the
Presentation Model [13]. This pattern is similar to MVP in that
it separates a view from its behavior and state and introduces a
Presentation Model that is an abstraction of a view.

A further variant of MVC is the Model-View-ViewModel
(MVVM) design pattern for Microsoft’s Windows Presentation
Format (WPF) [14], as shown in Figure 1(c). The MVVM
pattern is a more specific version of the Presentation Model
pattern [21]. MVVM also separates the view from the logic.
However, unlike Controllers in MVC (Figure 1a) and
Presenters in MVP (Figure 1b), an MVVM ViewModel has no
awareness that a view even exists [15]. The ViewModel is an
abstraction of the view but does not need a reference to the
view like MVP does. The view uses the ViewModel as a data
context and binds properties to fields in the ViewModel,
providing a very loosely coupled design. This separation allows
a graphics design team to focus on the view while a software
development team can focus on implementing a stable and
good ViewModel. As the ViewModel does not have to have a
reference to the view, the logic can be tested without the view
and it is also easy to make different views for GUI evaluations
and compare them without changing the ViewModel. Note,
Esposito and Saltarello [16] regard MVVM as the same pattern
as Fowler’s Presentation Model.

Zeller and Felton [9] introduce a stateless, framework-
agnostic web application development style, which they call
SVC (Selector-based View Composition) (SVC). With SVC, a
developer defines a web page as a series of transformations on
an initial state where each transformation consists of a selector
(used to select parts of the page) and an action (used to modify
content matched by the selector). SVC applies these
transformations on either the client or the server to generate the

complete web page. The authors contend this approach has two
advantages: (i) SVC can automatically add Ajax support to
sites, allowing developers to write interactive web applications
without writing any JavaScript; (ii) developers can reason
about the structure of the page and produce code to exploit that
structure, increasing the power and reducing the complexity of
code that manipulates the page’s content.

There are many other approaches to SoC. Presentation-
Abstraction-Control (PAC) [17] in which the UI is formed by a
tree of agents for each of the three components (Presentation,
Abstraction and Control). In Naked Objects [18], a UI is
automatically generated from the model by analyzing the
model interface using Java’s reflection features. As a result, the
model must contain all of the application domain logic. On the
other hand, in Visual Proxy [19] the model/view separation is
abandoned. While the model and view objects are still separate
objects, they are implemented within the scope of a single
class. The model and view layers are tightly coupled, rather
than decoupled. Holub argues that the purpose of a model is to
provide services to the view and if they are separated, the
model cannot provide all the services for the view.

IV. TECHNOLOGY PLATFORM

CC Technology has a proven history in the use of Microsoft
development tools and therefore it was logical to deliver the
original system using ASP.NET Web Forms which was the
prevalent Microsoft technology in 2004 when the solution was
implemented. The Microsoft Ajax Control Toolkit was
implemented to limit the amount of postbacks needed to the
server. For database connections a custom ADO.NET entity
generator connects to a SQL Server database. This platform has
worked well, the technologies interact successfully and
developers can develop and maintain a web-based solution
without having detailed low-level web knowledge.

The new component-based approach uses what we have named
an MVDVM (Model-View-DynamicViewModel) architecture.
The MVDVM architecture is an MVC-based architecture that
is heavily influenced by the MVVM (Model View View-

Figure 2: New MVDVM Architecture

788 789

Model) architecture, as Figure 2 shows. It contains a set of
view-models and handles each one in a similar way. The major
difference between the MVVM and MVDVM architectures is
that the latter model dynamically builds and persists the view-
models at runtime rather than having statically designed view-
models, as in MVVM. The architecture is extremely powerful
because of the ability to have encapsulated components (view-
models) that persist themselves, thereby requiring no code to
save and load components, producing an architecture that is
extremely extensible. Each component that is added has no
dependency or relationship to other components, allowing a
separation of concerns and removing the risk of breaking other
components when introducing new ones. By having this ability
the only development that has to occur is writing new view-
models. The view-models’ logic and behaviour are captured in
the view, which means that they can be updated or created
without the need to compile. This in turn allows role-based
logic to be performed on smaller subcomponents than would
usually be possible. The view-models can be any user control
such as text boxes, drop down lists or more complex composite
user controls with contained business logic. A component can
also seamlessly interact with other non-MVDVM systems and
other databases meaning that saving and loading is not limited
to a component’s own data. The architecture allows the user to
specify at runtime HTML to render each individual component
to multiple document types to allow hard copies of forms. The
difference between what the MVDVM architecture offers from
other form designer tools and architectures is that it has no
bounds or limitations as to what the components can do, other
than what the .NET framework offers. The entire framework is
self contained, which allows seamless integration with other
architectures and systems. The scalability of controls and ease
of extensibility make this architecture a good alternative to the
web forms implementation.

The architecture is also advanced through use of client-side
logic in JQuery components. As JQuery is now part of
Microsoft’s release with MVC, the integration in the
development environment is seamless and therefore easy to
use. Having JQuery allows quicker and more efficient
behaviour and postbacks than was previously possible.

The final major change to the technologies used was the move
away from the company’s own entity generation tool for
Database access. A repository pattern was implemented into
the software so that at any time we could change the database
connection technique without consequence. Initially
Microsoft’s Entity framework was evaluated. However, due to
the early version of the software it was decided that the more

established and Nhibernate model should be used.

V. TEST PLATFORM

To ensure accurate measurement of the performance of the
original Web Forms and the new MVDVM architecture a
common set of tests were developed. The tests were performed
under the same situations and with the same metrics. A number
of standard web pages in each system were tested with single
users and also with increasing number of users (load testing).
Both tests resulted in page load speed, number of pages per
second and database information being obtained.

An accurate and consistent set of results was achieved by
running a dedicated environment comprising a LAN, a test
client containing load testing software, a web server running an
instance of the forms software and a database server. To ensure
that hardware performance was not compromising the results,
the memory and CPU usage were monitored on each computer
to ensure they stayed within 60% utilization. MS Visual Studio
2010 Ultimate Edition Load testing suite was used to generate
relevant graphs and performance data.

VI. SERVER PERFORMANCE

Individual tests were carried out on both architectures. The
test cases used pages on each system with the same function
and content, albeit with different implementations.

Area Page Load Time
(Average(seconds))

Time to receive
first byte
(seconds)

Opening a form 0.413 0.145
Financial page 1.361 1.113
Standard page 0.372 0.030

Saving form (including
redirect)

0.635 0.588

Figure 3: MVDVM Page Times (in seconds)
Area Page Load Time

(Average)
Time to receive

first byte
Opening a form 1.526 0.940
Financial page 1.556 0.599
Standard page 1.744 0.668

Saving form (including redirect) 0.656 0.114
Figure 4: Web Forms Page Times (in seconds)

The performance results in Figures 3 and 4 clearly show
that the MVDVM architecture is faster on an individual load. It
must be noted that there is a change in logic between the two
solutions. The MVDVM application forms bind the models
dynamically on every page load. Thus for every load and page
exit data is read and written to the database. The Web Forms

Figure 5 Web Forms Performance Graph

Figure 6 MVDVM Graph

Minutes

Minutes

790 791

solution does not write to the database until a user hits submit,
which may be after n*page visits. This is reflected in the load
times for the financial page. This is a complex page where
hundreds of requests are being sent to the database. Although
the MVDVM is still faster for this page the number of
connections is the reason the difference is not as substantial.

The single tests are a good indication of the efficiency of
each architecture. However, live systems are characterized by
uneven and high loads. For a production system the number of
concurrent users could be in the hundreds. Load testing was
carried out on the same pages as noted in Figures 3 and 4. The
resulting graphs are shown in Figures 5 and 6 (Vertical axis
represents number of users, number of pages per second and
average page load per second and all using corresponding
ranges outlined in figures 7 and 8) . The graphs show that the
MVDVM out performs the Web Forms by a large margin.
Each test began with one simulated user running a web test.
This proceeded through each page in a defined order. Every ten
seconds five more users were added to the current list of users.
The results are shown in Figures 7 and 8 for each run of the
test.

Range on graph Min Max Avg
User load
(num users)

1000 1 176 88

Pages/sec
(seconds)

10 0 7.8 4.53

Ave page load
(seconds)

100 0.25 39.7 16.2

Figure 7: Web Form Graph Averages
Range on graph Min Max Avg

User load
(num users)

1000 1 176 88

Pages/sec
(seconds)

10 1 39 23

Ave page load
(seconds)

100 0.0.35 13.9 3.04

Figure 8: MVDVM Graph Averages

Figure 5 shows that the average page load speed increases
in relation to the number of users. As the number of users
increases the number of pages loaded per second severely
decreases.

The MVDVM results are quite different. The pages per
second start very high and remain so throughout the test. At the
points of lowest performance where the graph dips the response
times are still acceptable for an end-user. These dips occur
where a large number of users (more than 100 users) tried to
call an action concurrently. This is a quirk of using a test suite
and the phenomena are unlikely to occur in production at this
usage level. Usually in this case it would be the hardware
performance that would fail or cause performance issues. The
page load speed also remains very constant and, apart from the
dips, remains lower than one second for each page throughout
the test.

VII. CLIENT PERFORMANCE

Client performance can be characterized by the download
time for the pages and of the rendering time.

Figure 9 shows the details for an average page in the
performance tests. The details emphasize the earlier comments
about how large or inefficient the HTML can become due to
the View State and the ASP.NET automatically generating
HTML. The Javascript size is also very high as the previous
forms were rendering pure Javascript. The Javascript was not
compressed, which is also inefficient, causing larger page sizes.

Figure 9: Web Forms Average Page Detail

Figure 10: MVDVM Average Page Detail

The detail of an average MVDVM page in Figure 10 shows
that the page size is smaller. The ability to control the HTML
and use JQuery to write minimal amounts of code has resulted
in a reduction of the page size from 471k to 176k.

The HTML code in the Web Forms output is controlled by
ASP.NET and is not standards-compliant, whereas the
MVDVM output is controlled by the developer. This control
allows the developer to address client performance issues,
which Google describe as 5 performance factors [20]: (i)
optimizing caching, (ii) minimizing round-trip times, (iii)
minimizing request overhead, (iv) minimizing payload size, (v)
optimizing browser rendering. The MVDVM solution
improves on each of these factors through the communications
and page content.

VIII. DATABASE PERFORMANCE

A statistical analysis of the database transaction times
compares the performance between the two architectures. The
results are split into two parts: using all the data and using only
the data that had duration times greater than zero. The results
show every query that happened when the tests were run.
Because of this there are many light weight queries that had
durations of less than 1 ms, these show as 0ms durations.

A. Analysis using all of the data
Using the Web Forms architecture, reads were performed

an average of 48.60 times (SD = 1061.05) with a range of 0 to
32,350 whereas using the MVDVM architecture reads were

790 791

performed an average of 24.54 times (SD = 283.12) with a
range of 0 to 6,440.

Using the Web Forms architecture writes were performed
an average of 0.0145 times (SD = 0.30) with a range of 0 to 17
whereas using the MVDVM architecture writes were
performed an average of 0.0093 times (SD = 0.20) with a range
of 0 to 22.

Transactions using the Web Forms architecture had an
average duration of 1.01 ms (SD = 48.06) with a range of 0 to
9,157 ms where transactions using the MVDVM architecture
had an average duration of 0.1223 ms (SD = 2.04) with a range
of 0 to 93 ms.

Paired samples t-tests indicated that the MVDVM
architecture performed significantly less read commands
(t(65,527) = 5.607, p < 0.000), significantly less write
commands (t(65,527) = 3.733, p < 0.000) and took significantly
less time to perform read and write commands (t(65,527) =
4.729, p < 0.000) than the Web Forms architecture.

B. Analysis using only the data that had duration tims
greater than zero
Using the Web Forms architecture reads were performed an

average of 2,047.19 times (SD = 6,955.46) with a range of 0 to
32,350 whereas using the MVDVM architecture reads were
performed an average of 990.40 times (SD = 1,664.82) with a
range of 0 to 6,440. Using the Web Forms architecture writes
were performed an average of 0.4087 times (SD = 1.63) with a
range of 0 to 17 whereas using the MVDVM architecture
writes were performed an average of 0.1095 times (SD =
0.879) with a range of 0 to 22.

Transactions using the Web Forms architecture had an
average duration of 47.08 ms (SD = 324.75) with a range of 0
to 9,157 ms where transactions using the MVDVM architecture
had an average duration of 5.70 ms (SD = 12.74) with a range
of 0 to 93 ms.

Paired samples t-tests indicated that the MVDVM
architecture performed significantly less read commands
(t(1,406) = 5.339, p < 0.000), significantly less write
commands (t(1,406) = 5.996, p < 0.000) and took significantly
less time to perform read and write commands (t(1,406) =
4.764, p < 0.000) than the Web Forms architecture.

IX. CONCLUSION

This paper has presented a comparison of two web
architectures used in process-heavy web applications. The first,
Web Forms, is an established standard Microsoft approach and
the second, MVC, is a relatively recent approach gaining some
acceptance in the development community. This paper has
proposed a variant of MVC, called MVDVM and has
demonstrated that this architecture delivers performance benefit
over the traditional Web Forms based architecture. The
performance has been shown to be improved at the database,
web server and client. With each of the tests it has been shown
to be faster or more efficient.

The results of the case study have proven that under these
circumstances the performance benefits are large and the move
to an MVC architecture are justified.

X. ACKNOWLEDGEMENTS

This project received financial support from the Knowledge
Transfer Partnerships programme (KTP). KTP is funded by the
Technology Strategy Board.

XI. REFERENCES

[1] G. Krasner, and S. Pope. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system.
Journal of Object Oriented Programming, Vol 1, Issue 3, pp. 26–
49, 1988.

[2] D. Esposito. The ASP.NET View State, MSDN Magazine,
February 2003.

[3] S. Mitchell. Understanding ASP.NET View State,
http://msdn.microsoft.com/enus/library/ms972976.aspx, May
2004.

[4] D. Esposito. Comparing Web Forms and ASP.NET MVC,
MSDN Magazine, July 2009.

[5] Reenskaug, T., Thing-Model-View-Editor, Xerox Parc, 1979.
[6] Krasner, G. and S. Pope. A cookbook for using the Model-

View-Controller user interface paradigm in Smalltalk-80.
Journal of Object Oriented Programming, 1988, Vol 1, Issue 3,
pp. 26-49.

[7] A. Goldberg, and D. Robson. Smalltalk-80: The Language and
Its Implomentation. Reading, MA: Addison-Wesley, 1983.

[8] G. Seshadri. Understanding JavaServer Pages Model2
Architectire. JavaWorld, December 1999.

[9] W. P. Zeller, and E.W. Felten. SVC: Selector-based View
Composition forWeb Frameworks, Proceedings of the 2010
USENIX conference on Web application development, 20-25
June 2010, Boston, MA, USA.

[10] M. Potel. MVP: Model-View-Presenter - The Taligent
Programming Model for C++ and Java. Taligent Inc. 1996

[11] J-P. Boodhoo. Design Patterns: Model View Presenter. MSDN
Magazine, August 2006.

[12] G. Hall. Pro WPF & Silverlight MVVM: Effective Application
Development With Model-View-ViewModel (Expert's Voice in
WPF). Apress Academic. 2010

[13] M. Fowler. Presentation Model, Essay, July 2004.
[14] J. Smith. WPF Apps with the Model-View-ViewModel Design

Pattern. MSDN Magazine, February 2009.
[15] S. Sanderson. Pro ASP.NET MVC 2 Framework (2nd edition).

Apress Academic. 2010
[16] D. Esposito and A. Saltarello (2009). Microsoft .NET:

Architecting Applications for the Enterprise. Microsoft Press.
[17] J. Coutaz. PAC: an Object Oriented Model for Dialog Design.

IFIP Interact, 1987, ppp. 431-436.
[18] R. Pawson. Naked Objects. PhD Thesis. Trinity College Dublin.

2004
[19] A. Holub, Building User Interfaces for Object Oriented Systems.

Javaworld, September, 1999 (Available at:
http://www.javaworld.com/javaworld/jw-09-1999/jw-09-
toolbox.html)

[20] Google, http://code.google.com/speed/page-
speed/docs/rules_intro.html, 2011.

[21] J. Follesø. Model-View-ViewModel, in Proceedings of
Norwegian Developers Conference, Oslo, Norway, June 17-19,
2009

792 793

Analysis of the continuity of software processes execution in software organizations
assessed in MPS.BR using Grounded Theory

Carlos Diego Andrade de Almeida
UNIFOR, IVIA
Fortaleza, Brazil

Email: carlosdiegoa@gmail.com

Thiago Crystyan Macedo
UNIFOR

Fortaleza, Brazil
Email: crystyanjlc@gmail.com

Adriano Albuquerque
UNIFOR

Fortaleza, Brazil
Email: adrianoba@unifor.br

Abstract— Many companies look for in a implementation of a
Improvement Program based on software maturity models as a
way of increasing their product's quality. For knowing their
maturity level, they have to submit themselves for an
assessment based in models. To be assessed, a company spends
some time into the definition and implementation of the
necessary software processes. However, after the assessment
most of the companies have some difficulties to continue the
execution of some activities of the processes or leave this
execution. This paper proposes the analysis of the continuity of
software processes into the companies assessed in MPS.BR, the
Brazilian Maturity Model, identifying factors that help or
make difficult to maintain the adherence of those process to the
model and the easiest practices to be maintained in execution,
after the company has been assessed. With this work, we hope
to make easier for consultants to implement the processes,
specially those that have more percentage of leaving or
difficulties.

Keywords-Software processes; Maturity Model

I. INTRODUCTION

The software's importance grows every day and as the
quality of the software products is so closely related to the
quality of processes that are used to develop them, invest in
the processes quality became very important to the software
organizations [14].

Among these, the MPS.BR, the Brazilian Maturity
Model, fits perfectly into a proposal of improving the
quality of software produced in Brazil. According to [10],
the program MPS.BR, launched in December 2003, aimed
at improving software processes of micro, small and
medium size companies.

The reference model, MR.MPS, contains the
requirements that the processes of organizational units must
meet to comply with the model.

However, like others maturity models, after the
assessment companies have trouble to keep their processes
adherent to the reference model.

Therefore, it is important to know the main difficulties to
maintain such compliance.

This paper presents the results of a survey carried out
with professionals involved at MPS.BR, which the objective
was to find out the factors that influence positively in the
continuity of the processes execution and the practices of
the Project Management and Requirement Management
processes considered more difficult to maintain the
execution on new projects after the assessment.

This paper is organized in four sections. Section 1 is the
Introduction. Section 2 presents the literature review. Section

3 presents all about the survey applied on assessed
organizations. The section 4 presents the quality research
using Grounded Theory. Finally, section 5 concludes the
paper and presents further works.

II. LITERATURE REVIEW

As a starting point, the literature review was performed
using some steps of systematic review, a kind of secondary
study, widespread by [3], in order to identify factors that
may influence the continuity of the software processes
execution. We set a protocol for implementation of a
systematic review based on the protocol developed by [13].
We used tools such as spreadsheets to supporting the
registration and analysis of the data collected.

Initially, the literature review was conducted in the main
papers published in relevant symposium and workshops to
the software quality area in Brazil.

According to [11], [2], [6] and [12], the level of
formalization of organizational structure is one factor that
can facilitate the implementation of a process improvement
program.

For example, [11] observed that the formalization of
organizational structures in areas, functions, skills and
responsibilities demonstrates a level of organization that
allows a simple way to visualize how the company is
organized to meet their goals. The formalization should not
be understood, in this case, as bureaucracy, but as a mean to
facilitate the communication into the organization. The
higher the level of organization and formalization of
organizational structure, the lower is the risk of short-term
view on the implementation of process improvement.

This factor can also affect positively the maintenance of
quality, because a company with a more formal
organizational structure has the ability to get sucess and
maintain awareness of their roles, responsibilities and areas.

Another factor was the level of tools and techniques for
reuse of knowledge utilization. [6], [2], [4] and [12] said
that a company that wants to improve the maturity of their
processes needs to take advantage of existing knowledge in
the organization. It might be supported by a knowledge
management environment. From the reuse of knowledge the
organization can implement improvements to the software
processes and accelerates the implementation and execution
of them.

This factor is also relevant to the continuity context,
because the company that has tools and techniques to
support the reuse of knowledge can more easily keep alive
the knowledge of the implemented processes, encouraging

792 793

their use and keeping clear the need of their activities and
tasks. [2] [6] and [12] described the use of return of
investment (ROI) indicators as having a strong influence in
the maintaining of a Improvement Program. [12] said that
during the implementation of the processes, the team clearly
felt the need for a mechanism to recognize the benefits
associated with improvement efforts. It serves to motivate
the members to continue the improvement of the processes
aiming to achieve higher levels of maturity. [6] also advise
organizations to analyze, often, the ROI achieved with the
improvement of software processes, making them visible,
because it decreases the risk of stopping the process of
continuous improvement.

Others factor were: the level of available resources for
the maintenance and improvement of the processes and the
commitment of the high managers with the Improvement
Program.

According to [6], a company that wants to continually
improve their processes needs to provide the necessary
resources, because it depends largely on investment in
personnel, support tools, as well as in specialist consultants.
Thus, the existence of committed high managers, providing
the appropriate support, aids the company to achieve
continuous improvement of their processes. High managers
that keep the team motivated and the processes properly
supported will likely remain adherent to the model,
obtaining a continuous improvement of the processes’
quality [8] [4].

One of the factors cited was the level of commitment of
the Improvement Program coordinator to the
implementation and improvement of the processes. [11] said
that the ability of the company’s SEPG (Software
Engineering Process Group) to conduct the Improvement
Program affects directly the performance of the project.

In some companies, it was found that the attitudes of the
SEPG may difficult the monitoring of the activities related
to the implementation and maintenance of the processes
execution. [11], [6] and [5].

The level of the formalization of communication is other
factor described by [6] and [8]. [11] said that the higher the
level of organization of communication in the organization,
the lower the risk of failure in interpretation and
understanding the requirements to implement the activities.

To maintain the continuous improvement of the
processes and adherence to the maturity model, also
depends of the formalization of communication in the level
of projects and inside of the Improvement Program.

There are also two factors that have similarities and are
cited by [6], [8] and [9], which are: the level of knowledge
about software processes and software quality, and the level
of use of software engineering methodologies and concepts.

To [11], a high level of knowledge and understanding of
the collaborators, mainly opinion makers, on concepts
related to software quality is very important to evaluate and
to understand the impact that an Improvement Program can
represent to the organization. The higher the level of

knowledge about concepts related to software quality and to
the maturity model, the lower the risk of underestimating
the resources required to the Improvement Program. [5] said
that the implementation of software processes involves
knowledge-intensive activities. It means that those involved
in software process improvement initiatives must have deep
knowledge of software engineering and must be able to use
this knowledge to guide the implementation of the
processes.

The company that has knowledge about software quality
and software engineering, distributed among its employees,
has a better chance of maintaining their activities adherent
to the maturity model.

Other factor which influences the maintenance of the
Improvement Program is the level of resistance to cultural
changes. The comfort zone that exists before the
implementation of the processes and during the maintenance
of the Improvement Program is a very important barrier.

 The human being has a natural resistance to changes.
Whenever the organization leaves the comfort zone, some
employees opposed the execution of required tasks and the
use of necessary methods and techniques [6]. [4] highlighted
another important factor: the level of investment in training
on software processes. [11], for example, said that
difficulties related to cultural changes can be mitigated with
training, lectures and meetings in complementary
disciplines.

A continuous investment in training facilitates the
continuity of the adherence to maturity models by
improving the knowledge related to software quality and
software engineering.

One factor that can make difficult the benefits of training
initiatives is the high turnover of human resources, because
it generates high cost and the knowledge cannot be used to
support the Improvement Program [8].

According to [6] and [11] an important factor to the
continuity of the Improvement Program is to deal with it as
a project.

In fact , [11] said that as an Improvement Program has
the philosophy of a project it should be planned and
monitored as any software development project, including
setting marks/checkpoints and constant monitoring of
progress and costs involved in this initiative.

Another factor found in the literature is the importance
of consultants to obtain and maintain the software processes
adherence to the maturity model.

For [6], the importance of consultants becomes clear
because many of them has the opportunity to participate in
others organization assessments as a consultant or as an
auditor and so they know exactly what is required and the
reality of others companies (benchmarking). They observed
that a well qualified consultancy facilitates the definition of
better business goals to the company and a more adherence
to the maturity model.

However, it should be highlighted that the continuity of
the Improvement Program depends of how the consultants

794 795

are able to teach the collaborators to execute their activities
and how the knowledge becomes a real asset of the
organization, that is, they can leave and the software process
culture remains on the company.

Finally, another factor was the level of utilization of
support tools. The more support of tools, lower is the risk to
neglect the practices required by the maturity model [11] [2].

III. SURVEY

A. Survey’s Methodology
The next step in the research was the completion of a

questionnaire to identify the level of influence of factors,
identified in the literature review, to maintain adherence to
the software process maturity model.

We defined a questionnaire divided into three parts: the
first was a set of objective questions, which sought to
characterize the professional respondents, the second part
listed the factors that influence the maintenance of software
processes, according to the literature review, and was asked
to respondents how important were the factors for the
maintenance and implementation of the Improvement
Program. Respondents could add others factors of
significance. Finally, the third part of the questionnaire
reported the expected results (practices) of processes
evaluated at the level G of MPS.BR, which are the Project
Management and Requirements Management, seeking to
ascertain the more difficult activities to be continued after
the assessment has been performed. Participants were
encouraged to justify their evaluation if they considered
important for his response.

The questionnaire received 27 responses and the profile
of respondents was: 44% of them had master degree and
22% had finished the university. 40% had 6-9 years of
experience in software quality and 30% had 3 to 6 years.
48% had been a project manager for five or more projects
and 28% had managed 3-5 projects. 37% worked as project
management for 1-3 years and 25% from 3 to 6 years. 66%
had already participated in a software engineering process
group, 40% were certified implementers, 33% were
consultants and 29% were certified auditors of MPS.BR.
50% of respondents participated in one or two assessments
and 30% participated in five or more.

B. Analysis of Results
To help the analysis, a table was built to register the

relevance’s degree of each factor, the degree of difficult to
continue the execution of each practice of the Project
Management and Requirement Management processes, after
an assessment.

The factors were analyzed using the following scale: 0 -
No relevance; 1 - Low relevance, 2 - Reasonable relevance;
3 - High relevance, 4 – Indispensable.

TABLE I. THE LEVEL OF FACTORS’ INFLUENCE

Factors 0 1 2 3 4
F01-Organizational
structure known by the 3,7% 18,5% 33,3% 25,9% 18,5%

employees

F02-Effective structure for
communication 0% 0% 22,2% 29,6% 48,1%
F03-High level of
knowledge about content
related to improvement
process and software quality 0% 0% 34,6% 38,4% 26,9%
F04-High level of maturity
of the organizational culture
to use software engineering
methods and techniques 0% 0% 18,5% 44,4% 37,1%
F05-High level of
automated tools utilization
in supporting the software
process 0% 11,1% 14,8% 37,1% 37,1%
F06- Low level of resistance
to changes 0% 0% 18,5% 44,4% 37,1%
F07-Commitment of project
managers with the
Improvement Program 0% 0% 7,4% 11,1% 81,4%
F08-Utilization of indicators
that demonstrate the return
obtained with the processes’
execution 3,7% 0% 14,8% 48,1% 33,3%
F09-Provision of the
necessary resources by the
High Managers 0% 0% 0% 40,7% 59,2%
F10-Utilization of
knowledge management
approaches and tools 0% 18,5% 59,2% 22,2% 0%
F11-Guidance of an external
consultancy 0% 7,6% 26,9% 50% 15,3%
F12- Effectiveness of the
consultancy, that help the
company to implement the
software process, in
transform the SEPG in an
autonomous group and with
a high level of knowledge 0% 0% 7,4% 48,1% 44,4%
F13-Low level of staff
turnover 0% 0% 44,4% 44,4% 11,1%
F14-Maintanance of a
strong and effective policy
of trainings 0% 3,7% 29,6% 37,4% 29,6%

According to Tab. 1, the factors “F07” and “F09”, “F12”
and “F02” were considered the most relevant for the
continuous execution of software processes, after an
assessment. This result corroborated with the literature
review findings.

However, the factors “F01” and “F10” were considered
as the less important ones for the maintenance needs.

The third part of the questionnaire aimed to evaluate the
practices (expected results) of the level G in MPS.BR,
corresponding to the processes: Project Management and
Requirements Management.

As we said above, each practice (expected result) was
evaluated in relation to the level of difficulty to continue to
perform it, after a MPS.BR assessment. For this, the
following scale was used: 1 - Difficult to continue; 2 -
Reasonable difficult to continue; 3 – Easy to continue. In
cases when a respondent selects “1 - Difficult to continue”
for the practice the questionnaire suggested the participant to
justify it.

794 795

The Tab. 2 presents the obtained results for the practices
(expected results) of the Project Management (PRM)
process.

TABLE II. RESULTS OF PRM PRACTICES

Practices (Expected results) 1 2 3
PRM1 – The work scope for the project is
defined 0% 6% 94%
PRM2 - The project tasks and work
products are dimensioned using appropriate
methods 6% 50% 44%
PRM3 – The model and the project’s life
cycle phases are defined 0% 13% 88%
PRM4 – The effort and cost to perform the
tasks and work products are estimated based
on historical data or technical references 50% 19% 31%
PRM5 – The budget and project schedule,
including the definition of milestones and
checkpoints are established and maintained 25% 44% 31%
PRM6 - Project’s risks are identified and
their impact, likelihood and priority to
treatment are determined and registered 25% 38% 38%
PRM7 - The human resources for the
project are planned considering the profile
and knowledge needed to perform it 19% 56% 25%
PRM8 – The resources and work
environment needed to run the project are
planned 6% 44% 50%
PRM9 - The relevant data of the project are
identified and planned considering
collection, storage and distribution aspects.
A mechanism is established to access them,
including, if pertinent, issues of privacy and
security 38% 31% 31%
PRM10 – A general plan to run the project is
established with the integration of specific
plans 6% 19% 75%
PRM11 - The feasibility of achieving the
goals of the project , considering the
constraints and resources available, is
evaluated. If necessary, adjustments are
made 25% 38% 38%
PRM12 - The project plan is reviewed with
all stakeholders and the commitment to it is
obtained 25% 31% 44%
PRM13 - The project is managed using the
project plan and other plans that affect the
project and the results are registered 13% 44% 44%
PRM14 - The involvement of stakeholders
in the project is managed 19% 44% 38%
PRM15 - Reviews are carried out in
project’s milestones according to the
planning 6% 69% 25%
PRM16 - Record of identified problems and
the results of the analysis of relevant issues,
including critical dependencies are
established and treated with stakeholders 25% 38% 38%
PRM17 - Actions to correct deviations
from the planning and to prevent the
recurrence of identified problems are
established, implemented and followed until
its conclusion 25% 38% 38%

The practices (expected results) “PRM4” and “PRM9”
were considered as the most difficult to be performed after
the assessment.

According to one of the participants the PRM4 is hard to
be continued because the maintenance of a database with
reliable historical data is a great challenge and is
fundamental to this practice (expected result). The difficulty
to maintain such a database can make the involved
collaborators use only subjective opinions to estimate the
project’s effort and cost.

The results obtained for the practices (expected results)
of the Requirements Management (REM) process is
presented in Tab.3.

TABLE III. RESULTS OF REM PRACTICES

Practices (Expected results) 1 2 3
REM1 - The requirements are understood,
evaluated and accepted by the requirement
suppliers, using objective criteria 0% 38% 63%
REM2 - The commitment of technical staff
with the approved requirements is obtained 19% 25% 56%
REM3 - The bidirectional traceability
between requirements and work products are
established and maintained 56% 38% 6%
REM4 - Reviews in plans and work
products of the project are performed to
identify and correct inconsistencies in
relation to requirements 25% 38% 38%
REM5 – Changes to requirements are
managed throughout the project 31% 38% 31%

The practice (expected result) for “REM3” was
considered one of the three expected result most difficult to
be continued by the respondents. For one of them, a
consultant, this result is due to the lack of automated tools
that can ensure the bidirectional traceability. The tools may
facilitate a little more the continuity of this practice.

IV. QUALITATIVE RESEARCH USING GROUNDED
THEORY

A. Grounded Theory Research Methodology
Grounded Theory is a qualitative research method that

uses a set of systematic procedures for collecting and
analyzing data to generate, develop and validate substantive
theories about phenomena, essentially, social, or broad social
processes [15]. Application of Grounded Theory in the areas
like software engineering and process improvement is even
more sparse, as said [16]. But some studies have been
highlighted.

Their authors, Glauser and Strauss, argue that there are
two basic types of theories: the formal and substantive, as
they say [17]. The first type consists of conceptual and
comprehensive theories, while the second type is specific for
a particular group or situation and is not intended to
generalize beyond their substantive area.

According to the line proposed by Strauss, GT
(Grounded Theory) is based on the idea of encoding
(coding), which is the process of analyzing the data. When
coding, concepts are identified (or codes) and categories. A
concept (or code) names a phenomenon of interest to the
researcher, abstract an event, object, action, or interaction
that has a meaning for the researcher [18]. Categories are

796 797

groupings of concepts together in a higher degree of
abstraction.

The encoding process can be divided into three phases:
open coding, axial and selective. The open coding involves
breaking, analysis, comparison, conceptualization and
categorization of data. According to [15], in the early stages
of open coding, the researcher explores the data scrutinizing
what you believe relevant due to the intensive reading of
texts. In the phase of open coding, incidents or events are
grouped into codes by comparing incident-incident.

Also the open coding is performed to create categories
that add the codes to reduce the number of units that the
researcher will work [19].

 After the identification of conceptual categories for open
coding, axial coding examines the relationships between
categories that make up the propositions of substantive
theory [15]. The relationships between the codes can be
defined by the researcher. As proposed by [18], these
relationships form what the authors call as paradigm: causal
conditions, players, strategies and consequences of actions /
interactions.

Finally, selective coding refines the process, identifying
the core category theory, with which all others are related.
The core category should be able to integrate all the others
and express the essence of the social process that occurs
between those involved. This core category can be an
existing or a new one [19].

B. Results Analysis of Grounded Theory
In this qualitative study, were performed three stages of

coding proposed by grounded theory, it was possible to find
the set of theories to answer the question under study (what
influences the continuation or the abandonment of processes
compliant with the model after an evaluation?).

From interviews with members of the SEPG of assessed
companies, responses were transcribed into documents
which collected their quotes. We did not use seed categories
- an initial set of codes to begin coding has been created in
vivo codes from the text of the questionnaires. In some
codes, the quotes are changed to facilitate reading and to
collect more citations. These changes have led to codes
found that resembled with those components of critical
success factors of [16].

The step of open coding and axial is overlap and come
together because of the interactivity of the process. The
codes and categories identified gone through successive
revisions, of which 28 were produced codes associated with
three categories and two subcategories, and all under a
central category.

The core category called "Factors that influence the
maintenance”, and this has (using the notation "is a part of "
as suggested by [20]), the following categories "Social and
Cultural", "Technical", "Resources and Commitment”. The
Figure 1 presents, graphically, this organization.

Figure 1. Axial Coding Categories.

As a memo, during the search were found many citations
that reported results of a company with a presence and the
with a absence of the same factor. Thus, to avoid creating
two categories show that the presence and absence of them
in companies realities, it was decided to add these quotes in
just one factor, which would be named on the presence of the
same, but would add that the quote also reported their
absence. And you are using the notation "Evidence of
difficulty" for when they were found only quotations that
show the influence of a negative factor related to
maintenance.

In several, the category with more quotes aggregated is
one that combines technical factors, in other words, is the
one that has a direct connection with the model MPS.BR.
Two subcategories were used in those categories, to agregate
the coding process areas, given as the more difficult to keep
the outcomes of the G level. Figure 2 shows the connection
of these codes with the category "Technical" through the use
of the notation "is a" according to [20]. g []

Figure 2. Category Factors "Technical".

In this category codes that stand out are "Process has
many activities", “Process inflexible", that complain about
the bureaucracy and about the inflexibility of the model. One
of the respondents cited "If it were a process more flexible
and it had not so many activities, it would be an easier
process for the company to keep". Another that stands out is
the code that denotes a bidirectional traceability requirement,
by the model in GRE3 expected outcome, thus confirming
what was said in our quantitative research.

Another category coding was found in the "Social and
cultural", which collects the social and cultural factors that
may influence the maintenance process of acceding to the
model as follows in Figure 3.

796 797

Figure 3. Category Factors "Social and Cultural".

The code that stands out in this category is the
"Institutionalization of Good Process", one respondent
commented that to avoid abandonment of the processes is
necessary to "Add the process and project management to the
company's culture."

The last category involves the factors that mention the
need for resources, be they personal, cost or time, or the need
for commitment of members involved in the process,
managers or senior management. Figure 4 represents the
connection of these codes.

Figure 4. Category Factors "Resources and Commitment"

"Commitment of top management" was the code of this
category that received more citations, confirming its
importance as an influencing factor. Even the responses
relating to this factor was mentioned that "top management
commitment is one of the main factors that help maintain.
The more committed to senior management, easier to
maintain the process ".

V. CONCLUSION AND FURTHER WORKS

This work presented the result of a literature review, a
survey and a qualitative research, using Grounded Theory,
related to the difficulties that the software organization faces
to maintain the adherence of their software processes to the
maturity models, after the assessments.

The results corroborated with the literature findings, that
is, the software organizations have a lot of difficulties to
continue to perform some practices, considering the
competitive scenario of the industry of software.

This work can be used by the software organizations to
guide their actions to do not permit the abandon of some
practices necessary to the adherence to the models.

As further works, we intend to increase the size of the
sample and define a set of actions that may facilitate the

implementation of the most difficult practices (expected
results).

REFERENCES

[1] CMU/SEI (2006), “Cmmi for development (CMMI-DEV), version
1.2”, technical report CMU/SEI-2006-TR-008. Software engineering
institute, Carnegie Mellon University, 2006.(1)

[2] R. C. Silva Filho and A. E. Katsurayama, Experience in the
implementation of the reuse management process in software
engineering laboratory of COPPE / UFRJ. Rio de Janeiro, RJ:
COPPE/UFRJ, 2008(2)

[3] B. Kitchenham, “Procedures for performing systematic reviews”,
Keele, Staffs: Keele University, 2004.(3)

[4] R. W. Monteiro, R. Cabral, F. Alho , C. Martins and A. R. Rocha,
Required resource for software process institutionalization in
Prodepa. Computer engineering system program. Rio de Janeiro, RJ:
COPPE/UFRJ, 2008

[5] M. Montoni, C. Cerdeiral, D. Zanetti, A. R. Rocha, One approach to
driving improvement initiatives for software process. Rio de Janeiro,
RJ: COPPE/UFRJ, 2008

[6] T. M. G. Parente, A. B. Albuquerque, Domínio informática: the
quality and focus of its strategic plan. IV MPS.BR workshop of
consultants, SOFTEX, 2008.

[7] Pressman, R. S. (2006): “Software Engineer” 6ed. São Paulo:
McGrow Hill.

[8] J. B. Porto, , A. C. Pereira, J. Pohren, Proposal Process Improvement
of WBS Integrated Solutions using MR.MPS and PRO2PI approach.
IV MPS.BR workshop of consultants, SOFTEX, 2008

[9] A. R. Rocha, “IA COPPE/UFRJ: Learned lesson on 2008”, III
MPS.BR Workshop of appraisers, SOFTEX.

[10] SOFTEX, MPS.BR – General Guide, version 1.2. Avaliable on:
www.softex.br

[11] D. Yoshida and M. Tavares, Learned lessons by IIITS on leve G
MPS.BR implementarion project to Salvador’s companies group. IV
MPS.BR workshop of consultants, SOFTEX, 2008.

[12] D. Zanetti, et al, Learned lessons on implementation of MPS.BR in
COPPE/UFRJ Software Engineering Laboratory. IV MPS.BR
workshop of consultants, SOFTEX 2008.

[13] R. C. SILVA FILHO, An approach for evaluating proposals for
improvement in software processes. Rio de Janeiro, RJ:
COPPE/UFRJ, 2006

[14] International Organization for Standardization and International
Electrotechnical Commission. ISO/IEC 12207 Amendment:
Information Technology - Amendment 2 to ISO/IEC 12207. Genebra:
ISO,2004

[15] BANDEIRA-DE-MELLO, R., CUNHA, C., 2006. "Grounded
Theory".In: Godoi, C. K., Bandeira-de-Mello, R., Silva, A. B. d.
(eds), Pesquisa Qualitativa em Estudos Organizacionais: Paradigmas,
Estratégias e Métodos, Chapter 8, São Paulo, Saraiva

[16] Montoni, M, Rocha, A.R. (2010), Aplicação de Grounded Theory
para Investigar Iniciativas de Implementação de Melhorias em
Processos de Software. IX Simpósio Brasileiro de Qualidade de
Software

[17] BIANCHI, E. M. P. G., IKEDA, A. A. (2006). Analisando a
Grounded Theory em Administração. IX SEMEAD - Seminários em
Administração. São Paulo, Brazil

[18] Strauss, A., Corbin, J., 1998. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory. 2 ed.
London, SAGE Publications

[19] Conte, T. U. 2009: Técnica de Inspeção de Usabilidade baseada em
Perspectivas de Projeto Web – Rio de Janeiro: UFRJ/COPPE, 2009

[20] GLASER, B., 1992. Basics of grounded theory analysis. Mill Valley
CA, The Sociology Press.

PB A-1

BDI agents to bridge cloud computing and end-users
Case study: An agent-based personal trainer to COPD patients

Kasper Hallenborg
Maersk Mc-Kinney Moller Institute

University of Southern Denmark
hallenborg@mmmi.sdu.dk

Abstract—Cloud computing is envisioned a dominant role in the
future. Extensive amount of data are stored, applications running
in the cloud, and globally accessible. However, users are not
interested in observing and processing that amount of infor-
mation. Thus, a mentalistic model that represents the user’s goals
could be integrated with the cloud to present processed extracts
in a cognitively accessible way. Such an approach is presented
with deliberative BDI agents both in the general and in a case
study for an agent-based personal trainer for COPD patients.

Keywords: BDI agents, cloud computing, integration, PHRs

I. INTRODUCTION

Personal/Electronic Health Records (PHR/EHR) is a perfect
example for the use of cloud computing, where the multi-user /
multi-role perspective, privacy, security, and accessibility is-
sues are addressed, as both health-care professionals and you
personally are involved. Clouds spawned from service-oriented
architectures and semantic web services, which has approaches
trying to abstract and increase flexibility of services, such as
WSDL and OWL ontology. However, the composition of ser-
vices must still rise from a set of basic action by the user [1].
For PHRs the heterogeneous set of users and the complexity
requires medical information to be presented in a cognitively
accessible way [2]. We propose a deliberative agent model
based on the BDI architecture to bridge cloud-based services
(SaaS) and pervasive services to the user. The model is applied
in a case study for a home training of COPD patients.

II. AGENTS TO THE CLOUD

A. Limitations of a service based model
Traditionally, web services were defined as software sys-

tems designed to support interoperable machine-to-machine
interaction over a network [3]. Even with semantic descriptions
of the services (OWL-S), a service based model does not over-
come the limitations in how users naturally will express the
goals they want to achieve rather than the actions they wish to
be performed [1]. Thus, several key aspects are important if
user-centered cloud apps should provide intelligent services.

Locus of control – design of applications must be user-
centered and reflect the user’s assessment of goals to
be achieved.

Cognition – pervasive applications should not rely on
the user interaction in respect to current goals.

Adaptation – information resources often reside in
many systems (clouds) and needs to be combined ei-
ther to be relevant or make sense for users.

Context – environments are highly dynamic due to us-
ers’ mobility and global accessibility.

B. Capabilities of deliberative agents
Semantic web services is built on the basis of synchronous

remote procedure calls and has been preferred by industry over
more abstract definitions and less strict approaches for agent
technologies, which comes from asynchronous message pass-
ing architectures [1]. However, the goal-oriented agents have a
lot more to offer than services founded in basic actions. From a
modeling perspective the autonomous characteristic of agents
and the architecture for deliberative agents, e.g. the BDI model,
has a more natural mapping to a user-centered design. The BDI
model has a very “mentalistic’ notion for capturing user’s pref-
erences and goals [4], whereas services mostly are designed as
information providers that needs further (mental) processing.

Goal-directed behaviors are the nature of deliberative
agents, and goals can be abstractly described. Reasoning on
percepts and other inputs is required, if user acceptance should
be improved. Interoperability is central to web services, but
despite profile specifications and dynamic service discoveries,
web services are still relying on common standards. The agent
community builds on knowledge representation and ontologies
to abstractly describe content of messages, which improves the
possibilities of adaptation across different systems.

III. THE AGENT MODEL

Deliberative agents extend the basic agents model given by
Jennings and Woolridge [5] with knowledge representation and
symbolic reasoning capabilities [6]. The locus of control is
captured in terms of the autonomous characteristic of agents. A
reasoning engine covers the need for cognition. Adaptation and
context-awareness is well aligned with reactive and proactive
behaviors of agents and their responsiveness in general. The
BDI model by Rao and Georgeff [7] is the most applied archi-
tecture for deliberative agents. The scope of the demo and the
presented model is to cover use of cloud computing as an in-
formation source. The operational logic of BDI agents was
formalized by Rao with the AgentSpeak(L) language [8]. The
BDI agent is given the tuple . Where is the belief
base, is the desire base, the intention base, and is the set
of selection functions and plans, which are defined as practical
rules in the form . is the goal, the concrete plan of
action that should lead to the goal, and the event that triggers
the selection function. The agent-cloud communication is cov-
ered by the social capabilities. Agents would either reactively
observe changes in the cloud or proactively request or query
the cloud. It corresponds to subscribe, request, and query
FIPA protocols. The triggering events for a state change will

A-2 A-3

come from inform messages, that will trigger the selection
function on the belief base, which formally is given by

inform
 (1)

Where id is the identifier of the agent and at is the predi-
cates expressed in first order logic, as explained in [8]. In the
deliberation engine of the agent it will consider the desire base
if there are relevant plans that should be added to the intention
base, and such a plan would be considered applicable if a unifi-
er exists for the plan, so the plan is a logical consequence of
the current belief base with respect to the event. Formally, we
can describe it as an update to the intention base of the agent.

 (2)

where C is the commitment of the belief base, and
 is evaluation of a change in belief base, ,

that will lead to the desire of the plan being followed.

IV. A CASE STUDY

Healthcare systems are quite different around the world, es-
pecially between Europe and the US, but the need to store
health related information and PHRs are universal. An over-
view of the system for the case study is presented in Fig. 1.

Figure 1: Overview of healthcare system with PHRs in the clouds

It is commonly known that the share of elders will double
due to demographics changes and costs of healthcare services
will explode. In particular expenses to chronic diseases, such as
chronic obstructive pulmonary disease (COPD/COLD), diabe-
tes, cardiovascular disorder and Alzheimer’s. There were
726,000 hospitalizations for COPD in the US in 2000, and the
cost of COPD is $32.1 billion [9]. Especially, for COPD pa-
tients can benefit from training. Due to breathing trouble they
do not only get anxious while exercising, but also fear walking
the neighbor (even if capable), which lead to social exclusion.
Ideally, exercise training would be individual, customized,
assisted, and supervised by physiotherapists. Unfortunately,
such training sessions are only provided to a very few patient.
Recent year of advancement in sensor technologies enables
opportunities for monitoring training at home.

A. Our approach
COPD patients are no different than the rest of us – it is

very hard to keep up the motivation for physical exercising,
unless someone constantly motives you or the results/effects
are very visual. Thus, we need a responsive and proactive feed-
back that can motivate to keep up the training. Not all COPD
patients are capable of walking outside, so exercises at home
are required for many patients. Exercise programs are provided
by physiotherapists, and we are developing a prototype based

on the Kinect camera that can verify exercises and stream data
to a PHR Google Health account. Integration with Google
Health is rather simple, as it is part of the Google Data Proto-
col. The API for the Kinect camera allows you to analyze the
joint angles of the body so it can be compared to an exercise
program. Fig. 4 shows the Kinect’s view of joints in the body.

 Figure 2: Kinect view of a body Figure 3: Avatar

From the professional healthcare system the medical rec-
ords and diagnose data of COPD is registered in the personal
health records. However, as training programs are not directly
supported in the Google Health the agent must reason on the
extracted information and compare it to exercise plans in the
desire base of the agent. The agent will update the belief base
based on inputs that are received from the cloud according to
(1). If the evaluation of the change in the belief base, enables a
new plan to be followed it will be added to the intention base of
the agent according to (2). The applicable plan will contain
tasks to update the UI and feedback to the user. The prototype
uses text-to-speech for an audio feedback, and we experiment
with mimic software to create an avatar video. A snapshot of
the avatar is shown in Fig. 5.

V. CONCLUSION

We have presented a BDI-based agent model to close the
bridge between cloud computing and user-centered applica-
tions that aim to present rich and complex information from
clouds in a cognitively accessibly visualization to the end-
users. A prototype system is built for home training of COPD
patients using extracts of information from the cloud to give
motivational user feedback, so they continue training.

REFERENCES

[1] Ian Dickinson and Michael Wooldridge, "Agents are not (just) web
services: considering BDI agents and web services," in Proc. of the 2005
Workshop on Service-Oriented Computing and Agent-Based Engineering
(SOCABE'05), Utrecht, The Netherlands, 2005.

[2] Ali Sunyaev, Dmitry Chornyi, Christian Mauro, and Helmut Krcmar,
"Evaluation Framework for Personal Health Records: Microsoft
HealthVault vs. Google Health," in Proc. of 43rd Hawaii International
Conference on System Sciences, Koloa, Kauai, Hawaii, 2010.

[3] David Booth et al. (2004, February) Web Services Architecture. [Online].
http://www.w3.org/TR/ws-arch/

[4] Stefania Costantini, "Agents and Web Services," The ALP Newsletter, vol.
21, no. 2-3, August 2008.

[5] Michael Wooldridge and Nick Jennings, "Intelligent Agents: Theory and
Practice," Knowledge Engineering Review, vol. 10, no. 2, 1995.

[6] Michael Wooldridge, Reasoning about Rational Agents.: MIT Press, 2000.
[7] Anand S. Rao and Michael P. Georgeff, "BDI Agents: From Theory to

Practice," in In Proceedings of the first international conference on Multi-
agent systems (ICMAS-95), 1995, pp. 312-319.

[8] Anand S. Rao, "BDI Agents speak out in a logical computable language,"
Lecture Notes in Computer Science , vol. 1038, no. 1038, pp. 42-55, 1996.

[9] (2004) COPD International. [Online]. http://www.copd-international.com

A-2 A-3

Cloud Engineering approach in business
innovation

Giorgio Valle
Dipartimento Scienze Informazione

Università degli Studi di Milano
Milan, Italy

giorgio.valle@unimi.it

Bruno Apolloni
Dipartimento Scienze Informazione

Università degli Studi di Milano
Milan, Italy

bruno.apolloni@unimi.it

I. POSTER INTRODUCTION: CLOUD ENGINEERING

The research in the area of Customer Relation Management
(CRM) applied to two prototype studies on learning and
mobility offers an opportunity to experiment new multimedia
data management, data analysis, and distributed collaboration.
Software engineering practices based on cloud technology
techniques acquire from the Web what is needed for rapid
prototyping and to satisfy the needs of customers for market
validation of pricing policies and marketing strategies.

This approach allows to specify the projects’ concepts by
reaching stakeholders of needed Information & Communication
Technologies (ICT) to implement a prototype relying on
software components available elsewhere. Two sample cases
are presented to clarify this cloud-engineering approach:

1) Program for Recovery Insufficient Grades in High-School
 (PRISC);
2) Sustainable Mobility through Social Mobility (SM2) to
 reduce dependence on one’s owned cars to satisfy mobility
 needs.

The PRISC strategy focuses on the learner and on how
proficiency is assessed through grades. The action steps are:

• understanding is focused on the students’ study on
 schoolbooks;
• assessment is delegated to exercises and tests managed on
screens of mobile telephones or PCs in an interactive Web
environment;
• students with excellent grades act as tutors by exploiting
 social networks.

The SM2 strategy focuses on exploiting the empty seats
available in most cars running in metropolitan cities with air
pollution problems. Key features:

• direct negotiation via mobile devices between car drivers
 and ride seekers;
• short range contacts insuring prompt satisfaction;
• GPS ride surveillance.

From the standpoint of a University environment, the attention
that Cloud computing receives on scientific publications [1] and
on the daily press as well, indicates a major potential for
business innovation besides job opportunities for young
graduates once a win-win situation is established which could
leverage on cloud technology techniques to acquire on the Web
what is needed for rapid prototyping of business models
concepts, while reducing time-to-market to satisfy the needs of
customers.

Many companies provide Cloud technology: CA Technologies,
IBM, Microsoft, Google, Seeweb are those we could approach.
The specific focus on CRM brought to select the academic
license granted by SFDC Inc. (www.Salesforce.com) for this

prototype implementations because of its 11 years experience
gathered in offering the "Sales Force Automation" solution in
web-based modality and on-demand. The functionality covering
"Service and Support Management" is of specific value for our
studies allowing us to practice SaaS (Software as a Service).
While the access to the programming infrastructure and the
services of hosting and administration allows to develop PaaS
(Platform as a Service).

The development programming environment refers to a Java
language named APEX which allows to write code for any
application beyond the initial CRM objective.

II. PROGRAM FOR RECOVERY INSUFFICIENT GRADES IN
HIGH-SCHOOL (PRISC)

High School Education is a major concern for Governments
since economy globalization and technological innovation in
industrial processes require staff and managers able to
anticipate unpredictable market changes. At the same time the
economy recession and lower government budgets force to
prototype new educational formats where ICT and social
networking could make education more effective and profitable.

To deliver an overall better education in High-Schools requires
a coordinated action on the stakeholders: teachers, students,
textbook publishers, school administration board, parents,
laboratories and their equipment [2]. Since PRISC strategy
focuses on the learner and on how proficiency is assessed
through grades, the learners involved in PRISC action are both
those with bad grades and those with excellent grades who are
meant to act as tutors.

At present bad grades recovery happens either with additional
classroom-based teaching organized by the School and free of
charge to students, or by private action where parents look for
teachers (or university students) for private tutoring usually
paid cash and with no receipts.
In its initial phase, PRISC focuses on a few subjects:
Mathematics, Physics, Computer Science. The action succeeds
when a student with bad grades in specific subjects succeeds in
recovering them in order to proceed to next higher level class.

All CRM procedures are managed on the cloud. The resulting
system is inherently distributed and the central management
coordinates the outsourced components (users do not know
where data and procedures are stored). The PRISC coordinator
interacts with a set of web-services provided by the cloud
interface. He doesn’t know directly the actual students (both
with insufficient or with excellent grades). He only interacts
with standard tools reckoning the student activities and with a
standard platform to access and store the teaching materials.
Thus there is no need for any venture capital investment, since

A-4 A-5

the financial balance only comes from a pay-per-use fee that is
tightly commeasured to the benefits of PRISC activity.

In particular:
a) the study on text-books of specific topics not well

understood involves cooperation with specific text-book
 Publishers to edit relevant exercises related to their books:
b) modern ICT digital video-interactive communications
 over screens of mobile phones or PCs involves Mobile
 Telecommunications Carriers
c) the web-based support to a learning community (where
 students with good grades help other students to recover
 from bad-grades) involves Social Networks platforms
 d) implementation involves partnership with Education
 stakeholders at national and local government both in

public and in private sectors.

III. THE SM2 (SUSTAINABLE MOBILITY THOUGH
SOCIAL MOBILITY) PROJECT

In metropolitan areas with air pollution problems the SM2

strategy focuses on exploiting the empty seats available in most
cars. The distinguishing strategy through which SM2 plans to
hit its target is the raising up of a Social Mobility community
capturing the consensus of the customers thanks to widespread
ICT instruments such as Internet and GPS on the one hand and
socio/economic motivations on the other [3].

The approach is distributed at a great extent, with cloud
computing acting as an ideal middleware. Indeed, the
community autonomously emerges from the interaction of
commuters without any previous direct contact. They simply
interact through an id that attests their mobility in the same
geographic range and requires information tools in the cloud to
match them on the empty seats on other commuters’ cars.

The model is intrinsically distributed since the managers of the
transactions are exactly the actors who access remote resources
through a portal installed through APIs on their mobile
terminals. This will allow to achieve the following basic goals:

a. Extemporaneity of the transaction. We assume that users
wait for maximum 10 minutes between when they plan to
move and the planning of an alternative ride . Otherwise
they will decide to move with their own means.

b. Efficiency of the transaction. Operational and technological
efficiency are needed to guarantee the above time limit.

c. Reliability of the transaction. Both the reliability and the
security of the service need to be considered together with
emergency procedures in case of anomalies.

d. Green mobility issues require the monitoring of energetic
and ecological efficiency as keen quality parameters.

The GPS availability allows to subdivide the community in
users groups by location and consequently by time-range so that
we could combine demand and offer in an optimal way both in
terms of quality of the services (QoS) and of energetic
consumption. Key implementation aspects are:

1) a distributed information support for the formulation of the
ride requests and offers. The peripheral hardware will be
constituted by new generation mobile terminals endowed
with the Android operative system. An important part of
this support will be the message ciphering and anti-
intrusion systems and the transaction sampling and log
compacting systems.

2) a cloud database for the collection of the requests, their
interface with the availabilities, and finally the dispatching
of the service orders to the transport suppliers. The DB
should also contain the personal data of the community
members with their preferences profile and credibility,
updatable on line. The DB will store the traces of the
transactions, including GPS traces, for a time sufficient
for any security control need, but not exceeding the limits
of the privacy of the members.

3) the design and implementation of the security system
guaranteeing both the passenger and the driver in a non
invasive but sufficiently robust way. Main points are:

3a) the transaction enrolment from the driver-passenger
assignment to the end-of-transport message by both the
actors. The transaction will be followed through the
service messages (call – offer – assignment - starting point
agreement - end-of-transport message) and the GPS traces
of the driver and of the passenger compared with the
optimal routes suggested by satellite navigators

3b) a library of rules for the agent system constituted by
passenger, driver, and central server. With this library we
will face both unpredictable events caused by traffic and
real events linked to any anomalous behaviour of either the
passenger or the driver. We will use fuzzy rules to be
calibrated both in batch mode and online with neuro-fuzzy
learning mechanisms[4].

IV. CONCLUSIONS

The lesson learned is how to deliver leaner, faster and more
agile services to users – students and citizens - alongside with
business stakeholders – Schools and Municipal Transportation
companies – which are under pressure to make their business
processes cheaper and more responsive to the customer’s
environment.

At present these two case studies simply constitute candidate
test sites for Social Clouds instances which must be engineered
in order to check the effectiveness of the benefits promised by
their ecological paradigm [5].

The main benefit lies in the possibility of enabling a fast
prototype implementation, in time to report results of these
studies to the visitors of this poster.

REFERENCES

[1] "IEEE International Conference on Cloud Computing
(CLOUD)".Thecloudcomputing.org
http://www.thecloudcomputing.org

[2] Valle, G. & Epifania, F. (2008). An Interactive VideoJournal to
complement Learning & Training. In Proceedings of World
Conference on Educational Multimedia, Hypermedia and
Telecommunications 2008 (pp.1164-1169). Chesapeake, VA:
AACE.

[3] G. Elofson, P. M. Beranek, and P. Thomas. An intelligent agent
community approach to knowledge sharing. Decision Support
Systems, 20(1):83–98, 1997.

[4] D. Applebaum. Levy processes: From probability to finance and
quantum groups. Notices of AMS, 51(11), 2004.

[5] R. Pezzi. Information Technology tools for a transition economy.
http://www.socialcloud.net/papers/ITtools.pdf

A-4 A-5

Ι.

ΙΙ.

A-6 A-7

A-6 A-7

Towards a Novel Statistical Method for Generating Test Sets with a Given
Coverage Probability

Cristiane Selem Ferreira Neves
Federal University of Rio de Janeiro
Postgraduate Program in Informatics
Fundão Island, Rio de Janeiro - Brasil

cristianeselem@gmail.com

Fábio Protti
Fluminense Federal University

Computation Institute
Niterói, Rio de Janeiro - Brasil

fabio@ic.uff.br

Eber Assiz Schmitz
Federal University of Rio de Janeiro
Postgraduate Program in Informatics
Fundão Island, Rio de Janeiro - Brasil

eber@nce.ufrj.br

Antônio Juarez Alencar
Federal University of Rio de Janeiro
Postgraduate Program in Informatics
Fundão Island, Rio de Janeiro - Brasil

juarezalencar@nce.ufrj.br

Abstract

The basis path testing is one of the most used techniques
for generating white box test cases. This approach depends
on the unknown state of the program variables at the time of
execution, i.e., each path can be seen as the result of a ran-
dom experiment, associated with an execution probability.
We can define the coverage probability of a test set as the
sum of the execution probability of its members. Although
running the program a large number of times provide us
an approximation for this set, its computational cost would
be equal to that of testing the program in itself. This pa-
per presents a method that uses a small set of execution
samples to select a minimal set of execution paths, which
has the property of its coverage probability being above a
required confidence level, and then generate a natural lan-
guage specification of the test case set. Experimental results
show that it is not only simple to be applied but also gener-
ates a reliable test case set.

1. Introduction

White-box testing of software modules is the test activ-
ity where the test cases are derived from the analysis of the
module source code [2, 4, 5]. The basis path testing is one
of the most used techniques for generating white box test
cases, using a set of execution paths. However it can pro-
duce a set with elements that have a small chance to be exe-

cuted in practice. This poster presents a method that uses a
small set of execution samples to select a minimal set of ex-
ecution paths, which has the property of its coverage prob-
ability being above a required confidence level, and then
generate a natural language specification of the test case set.
The structure of this paper is as follows: Section 2 presents
the most important concepts and Section 3 describe in de-
tails the method. Section 4 shows the computational exper-
iments and Section 5 presents the conclusions.

2. Conceptual framework

In “basis path testing”, the program is associated with
a control flow graph, that has unique entry and exit nodes.
A path is a sequence of connected nodes that traverse the
control flow graph from the start node to the end node. Each
path corresponds to a test case element.

Since the number of paths is potentially infinite, leading
to an infinite number of test cases, McCabe [3] introduced
the concept of independence in a strong connected graph.
An independent path is any path in the program that intro-
duces at least a new set of commands or a new condition.
Each independent path must include at least one edge that
has not been crossed when determining the path. The cy-
clomatic number V (G) of the control flow graph G is equal
to its maximum number of linearly independent paths.

The empirical approach defines the concept of probabil-
ity by the definition of sample space, which represents the
outcome of an experiment. In our case, the sample space is

A-8 A-9

the set P of all paths pi resulting from the execution of the
program under test.

The set P may be infinite or very large. PL denotes
a sample (set of paths) obtained by running a program N
times. In PL, each path pi will appear with a certain fre-
quency fi. We define the probability of path pi in PL as the
relative frequency fN (pi) = fi/N .

How to choose N in order to obtain a representative
sample of P? For large samples, we can use the table of
critical values of the Kolmogorov-Smirnov test [1] with de-
sired confidence level α. It is a widely used nonparamet-
ric test for the equality of probability distributions, that can
be employed to compare a sample (in our case, PL) with
a reference probability distribution (the one associated with
P). The Kolmogorov-Smirnov statistic quantifies a distance
KN between the empirical cumulative distribution function
of the sample and the cumulative distribution function of
the reference.

Running N times can be very expensive. The goal of
our method is to obtain a good approximation to PL, PA,
using a generative algorithm and a much smaller sample
size, n. To evaluate the closeness between the distribution
frequencies of PA and PL, we resort to the χ2 test, which
compares the result with the corresponding critical value
obtained from the table with a desired confidence level α.

3. The method

Step 1: The objective of this step is to draw the control
flow graph from the source code of program module M .
This means replacing if-structures by decision nodes, while-
do and do-while structures by loop nodes, for-do structures
and actions by activity nodes. Junction nodes are included
in the end, when a node with several inputs needs to join
them into a single input.

Step 2: Probabilities must be assigned to decision and
loop nodes. Since we do not have a previous knowledge
of the program behavior, these probabilities are estimated
from the results of a number n of program runs, using as
input a random sample from the program’s domain. These
values will enable us to calculate the probability of an exe-
cution path, by simply multiplying the probabilities associ-
ated with decision and loop nodes in the selected path.

Step 3: After assigning probabilities to decision and loop
nodes, we generate execution paths of program M and cal-
culate the probability of each path. This temporary set of
paths is denoted by PA′ . Each path is identified by a se-
quence of nodes being traversed, e.g., the paths 1-2-3-8 or
1-2-3-4-5-6-7-2-3-8. Then, after generating PA′ , we obtain

the execution path set PA, formed by the paths from PA′

whose sum of probabilities is larger than a required confi-
dence level α.

Step 4: Each element of the execution path set will be
used to generate one element of the test case set. Although
a computationally amenable solution could be attempted
by the use of any of the above cited approaches, we rec-
ommend a simpler ad-hoc procedure, in which the devel-
oper translates the required node transitions into natural lan-
guage specifications for the input values.

4. Validation

The method was applied in a set of fourteen programs
written in C/C++. For each program, the path set PL along
with its associated pdf f∗ were generated. Each pdf f∗ was
then compared to f , obtained by our method. The goodness
of fit between each f∗ and f in the set was verified using the
χ2 test with a confidence level of 95% (in the modern ap-
proach, the result has credibility when the confidence level
of the experiment is equal or greater then 95%).

The null hypothesis was formulated as H0 : f∗ �= f

These results showed that H0 is rejected thirteen times
out of fourteen. The only program for which H0 was not
rejected has a particular case of simultaneous recursion, i.e.,
it executes several times recursive operations in parallel.

5 Conclusions

The evaluation tests confirmed that not only the method
is simple to use, but also provides, in a computationally ef-
ficient way, a good approximation when comparing PA (the
set of paths which is the outcome of the method) and PL (a
large sample of the real set P of execution paths).

References

[1] P. G. Hoel. Introduction to Mathematical Statistics. John
Wiley and Sons, California, USA, 1966.

[2] G. Janardhanudu. White box testing. Technical Report 259-
BSI, Cigital Inc., Sept. 2009.

[3] T. J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308–320, December 1976.

[4] R. S. Pressman. Software Engineering - a pratictioner’s ap-
proach. McGraw-Hill, New York, USA, 2001.

[5] M. K. Singh and L. Rakesh. Mathematical principles in
software quality engineering. International Journal of Com-
puter Science and Information Security, 7(3):178–184, March
2010.

A-8 A-9

—

—

A-10 PB

PB A-11

A
Eya Ben Ahmed, 379

Jacky Akoka, 143
Mehmet S. Aktas, 331

Adriano Albuquerque, 792
Fellipe Araújo Aleixo, 42

Antonio Juarez Alencar, 288
Dave Allan, 786

Andrew A. Allen, 59
Mark Allison, 59

Thomas A. Alspaugh, 509
Sousuke Amasaki, 485
Rafael Andrade, 169

Peter Andreae, 77
Bruno Antunes, 349
Eduardo Aranha, 42

Lucas de Oliveira Arantes, 185
C. Ardito, 282

Brian Armour, 786
Hazeline U. Asuncion, 509

Samir Atitallah, 363

B
Mourad Badri, 475

Ebrahim Bagheri, 225
Hamid Bagheri, 770
Xiaoying Bai, 495

Graeme Baillie, 786
Marcela Balbino, 717
Flávia A. Barros, 250

Shuib Basri, 339
Bernhard Bauer, 52
Richard Beeby, 786

Fabiano D. Beppler, 369
Mario Bernhart, 392

Fernando Costa Bertoldi, 169
Swapan Bhattacharya, 319

Stefan Biffl, 608, 729
Emil Börjesson, 276
Geraldo Boz Jr, 149

Marcus de Melo Braga, 163
Derek Bronish, 111

Kevin P. Brown, 402
A. Bruun, 282

Jeremy Buckley, 175
Aditya Budi, 613

P. Buono, 282

C
Sibo Cai, 489

D. Caivano, 282
Mário S. Camillo, 207

Jiang Cao, 539
Licia Capra, 385

Miriam A.M. Capretz, 402
Keith Cassell, 77

Cagatay Catal, 331
Peggy Cellier, 238
Sungdeok Cha, 48
C. W. Chan, 414

Christine W. Chan, 357
Jayeeta Chanda, 319
Shi-Kuo Chang, 1, 9

Sylvain Chardigny, 515
Franck Chauvel, 758
Harmeet Chawla, 153

Liqiong Chen, 578
Xiangping Chen, 547

Xu Chen, 432
Yousu Chen, 268
Zebin Chen, 296

Cleriston Araujo Chiuchi, 37
Peter J. Clarke, 59, 308
Roberta Coelho, 42, 450

F. Colace, 17
Xabriel J. Collazo-Mojica, 560

Philippe Collet, 553
Irina Diana Coman, 640

Isabelle Comyn-Wattiau, 143
Thomas M Connolly, 786
Ovidiu Constantin, 602

Joel Cordeiro, 349
Alexandre Correa, 288

Jone Correia, 398
Ronaldo Celso Messias Correia, 408

Heitor Costa, 272
Leandro T. Costa, 258

Pedro Costa, 349
M.F. Costabile, 282

Bernard Coulette, 646
Xiaofeng Cui, 776

D
Paulo Anselmo da Mota Silveira Neto, 711

Alberto Rodrigues da Silva, 740

Author’s Index

A-12 A-13

Antônio C. da Silva, 481
Leone Parise Vieira da Silva, 764

Maicon B. da Silveira, 258
Mario Antonio Ribeiro Dantas, 163, 169
Carlos Diego Andrade de Almeida, 792

Eduardo Santana de Almeida, 699, 711, 717
Jose Luis de la Vara, 438

Silvio Romero de Lemos Meira, 699, 711
Pasquale De Meo, 385

Flávio M. de Oliveira, 258
M. De Santo, 17

Ismayle de Sousa Santos, 470
Jano Moreira de Souza, 264

Rogéria Cristiane Gratão de Souza, 37, 325
Fang Deng, 101

Deepak Dhungana, 608
Angelica Dias, 288
Samba Diaw, 646

Christophe Dony, 693
Derek Doran, 629

Wheichang Du, 225
Mireille Ducassé, 238
Sheryl Duggins, 466
R. R. Dumke, 462

E
Jon L. Ebert, 308

Ali Ebnenasir, 619
Antonio Marcos Neves Esteca, 325

F
Luc Fabresse, 302

Ricardo de Almeida Falbo, 185
Guisheng Fan, 578
Aly Farahat, 619
Carla Faria, 398

Matthieu Faure, 302
Daniel Feitosa, 590
Robert Feldt, 276

Eduardo B. Fernandez, 683
Emilio Ferrara, 385
Sébastien Ferré, 238

David de Almeida Ferreira, 740
Stephen Fickas, 296
Lance Fiondella, 629
André L. Fischer, 583

Adriano Brum Fontoura, 672
Lisandra Manzoni Fontoura, 672

Marília Aranha Freire, 42
Ilenia Fronza, 456

MariaGrazia Fugini, 602

G
Jerry Gao, 230, 495

Jie Gao, 159
Kehan Gao, 65, 89
Xin Gao, 122, 503
Miguel Garcia, 533

Rogério Eduardo Garcia, 408
Raúl García-Castro, 25, 660

Vicente García-Díaz, 533
Faїez Gargouri, 379

Rajiv Geeverghese, 764
Matthias Geiger, 566

K. Georgieva, 462
Abdolrashid Gharaat, 466
Itana M. S. Gimenes, 687

Rosario Girardi, 398
Swapna S. Gokhale, 629, 635

Alfredo Goldman, 583
Paulo Gomes, 349
Ian Gorton, 268

Johann Grabner, 392
Thomas Grechenig, 392

Andreas Gregoriades, 335
Katarina Grolinger, 402

Lindsay Groves, 77
Hui Gu, 179

Jing Guan, 495
Gilleanes Thorwald Araujo Guedes, 746

Milena Guessi, 782
D. Günther, 462

Simon Suigen Guo, 357
Yi Guo, 539

H
Haitham S. Hamza, 723

Dao-jun Han, 159
Hao Han, 343

Keiko Hashizume, 683
Xudong He, 115, 308

Abd El Fatah Hegazy, 723
Matthias Heindl, 729

Marcelo Takeshi Honda, 325
Érica Hori, 250
Cuiyun Hu, 539

A-12 A-13

Tianming Hu, 191
Wenhui Hu, 503

Gang Huang, 547
Yu Huang, 122, 308

Marianne Huchard, 302, 693

I
Ronald Israels, 602

S. Sitharama Iyengar, xxiv

J
Stan Jarzabek, 705
Sehun Jeong, 48

Lingxiao Jiang, 613
Shuangshuang Jin, 268

Zhi Jin, 521
Edward Jung, 466

K
Filip Křikava, 553

Gail Kaiser, 95, 244
Yasutaka Kamei, 197
Ananya Kanjilal, 319

Ali Asghary Karahroudy, 219
Omar Abou Khaled, 363

Rehab El Kharboutly, 635
Raffi Khatchadourian, 111

Taghi M. Khoshgoftaar, 65, 83, 89
Dae-Kyoo Kim, 666
Sangsig Kim, 666

Jun Kong, 373
Aneesh Krishna, 736
Uirá Kulesza, 42, 450
David C. Kung, 495
Peep Küngas, 353

Gihwon Kwon, 107

L
R. Lanzilotti, 282

Redouane Lbath, 646
Jong-Hoon Lee, 48
Yen-Ting Lee, 666

Artini M. Lemos, 654
Vicky Papadopoulou Lesta, 335

Bixin Li, 31, 127, 213, 230, 254, 625
Ge Li, 521

Jiakai Li, 213
Lei Li, 159

Qiao Li, 254
Ricardo Lima, 450

Ricardo M. F. Lima, 654
Bao-Shuh Lin, xxv
Dongmei Liu, 578

Fei Liu, 127
Gang Liu, 175

Haiwen Liu, 101
Kaiping Liu, 432
Su Liu, 115, 308

Yan Liu, 268
David Lo, 613
Lunjin Lu, 666

Lucia, 613

M
Alex Ma, 495

Bruno Nandolpho Machado, 185
Ivan do Carmo Machado, 699, 711

Mario C. C. Machado, 207
José C. Maldonado, 687

Thiago Crystyan Macedo, 792
Poonam Mane, 543
Xinjun Mao, 539

Alexandre Jonatan B. Martins, 596
Riccardo Martoglia, 131

Mihhail Matskin, 353
Andreas Mauczka, 392

Hing Mei, 776
Hong Mei, 758

Silvio Meira, 717
H. Andres Melgar S., 369

Emilia Mendes, 420
Sheila Mendez, 533
Robert Milne, 786

Shahab Mokarizadeh, 353
Richard Mordinyi, 608

Leonardo Bitencourt Morelli, 752
Thomas Moser, 608, 729

Alexandre Mota, 450
Elena Mugellini, 363

N
Ahlem Nabli, 379

Elisa Yumi Nakagawa, 590, 752, 782
Amri Napolitano, 65, 83

Crescencio Rodrigues Lima Neto, 699
Paulo Anselmo Mota Silveira Neto, 699

A-14 A-15

Pedro de Alcântara dos S. Neto 470
R. Neumann, 462
Laís Neves, 250

Julio C. Nievola, 149
Mahdi Noorian, 225

O
Rory V. O’Connor, 339

César A. L. Oliveira, 450, 654
Lucas Bueno Ruas Oliveira, 782

Edson A. Oliveira Junior, 687
Francisco Ortin, 533

P
Roberto C.S. Pacheco, 369

Bindu Madhavi Padmanabhuni, 432
Emerson Cabrera Paraiso, 149

Sachoun Park, 107
Rebecca Passonneau, 95

Sonal Patel, 71
Ting-Chun Pen, 9

Xin Peng, 705
Yuehui Peng, 776

Petros Petrides, 335
Thibaut Possompes, 693

Nicolas Prat, 143

Q
Giovanni Quattrone, 385

R
Filip Radulovic, 25

Claudia Raibulet, 602
Célia Ghedini Ralha, 764

Filippo Ramoni, 602
Milton P. Ramos, 149
Henrique Rebêlo, 450
Marek Z. Reformat, 71

Björn Regnell, 438
Mehwish Riaz, 420

Edward de Oliveira Ribeiro, 764
Márcio Ribeiro, 450
Olivier Ridoux, 238
Henrique Rocha, 426

Elder M. Rodrigues, 258
Sergio Assis Rodrigues, 264

Genaína Nunes Rodrigues, 764
Raphael Romeikat, 52
Amin Roudaki, 373

S
Caio C. Sabino, 654

S. Masoud Sadjadi, 527, 560
Juan Sánchez, 438

Michael Sanford, 678
Henning Sanneck, 52

Cláudio Sant’Anna, 450
Adriana Barbosa Santos, 37, 325
Alcemir Rodrigues Santos, 470

Rodrigo Santos, 272
Viviane Santos, 583

Gilson Yukio Sato, 149
Ichiro Satoh, 315
Walt Scacchi, 509

Lilian Passos Scatalon, 408
Eber Assis Schmitz, 288

Andreas Schönberger, 566
Sabnam Sengupta, 319

Abdelhak-Djamel Seriai, 515
Jin Shao, 101

Lingshuang Shao, 547
Weizhong Shao, 489
Chia-Chun Shih, 9

Michael E. Shin, 543
Ana Carolina M. Shinoda, 583

Masaru Shiozuka, 197
Fengdi Shu, 444

Alberto Sillitti, 456, 640
Adenilso Simão, 207

Maria Sokhn, 363
Hui Song, 758

Neelam Soundarajan, 111
Paulo S. L. Souza, 207

Simone R. S. Souza, 207
J. Stage, 282

Giancarlo Succi, 456, 640
Vijayan Sugumaran, 666

Kevin Sullivan, 770
Xiaobing Sun, 213

Jinan Sun, 122
Jing Sun, 179, 191

Yanchun Sun, 758, 776
Yao Sun, 1, 9

Richard Berntsson Svensson, 438

T
Nasseh Tabrizi, 219
Cesar A. Tacla, 149

Hee Beng Kuan Tan, 432

A-14 A-15

Chuanqi Tao, 230, 495
Gustavo Taveira, 288
Ewan Tempero, 420
Marcello Thiry, 481

Chouki Tibermacine, 693
Jose L. Todesco, 369

Dante Torres, 250
Fadel Toure, 475

Matthew Tran, 629
Frank Tsui, 466

U
Naoyasu Ubayashi, 197
Christelle Urtado, 302

V
Carlos Roberto Valêncio, 37, 325

Marco Tulio Valente, 426
Gwendolyn W. van der Linden, 308

Simone Vasconcelos, 272
Sylvain Vauttier, 302

Rosa Maria Vicari, 746
Hugo V. Vieira, 258
Patrícia Vilain, 596

Sergiy Vilkomir, 219
David Villegas, 527

Jelena Vlasenko, 456
Aldo Von Wangenheim, 169

W
Rosana Wagner, 672

Hai H. Wang, 179, 191
Huanjing Wang, 83

Lifu Wang, 122
Lijie Wang, 489
Lina Wang, 203

Lulu Wang, 31, 254
Qianxiang Wang, 101

Qing Wang, 444
Ruili Wang, 175

Shaowei Wang, 613
Xifeng Wang, 625
Yingze Wang, 1, 9

Zhengshan Wang, 254
Wanzhi Wen, 213

Cláudia Werner, 272
A.J. Wiebe, 414

Dietmar Winkler, 729

Guido Wirtz, 566, 572
Krzysztof Wnuk, 438

Daniel Woodraska, 678
Leon Wu, 95, 244

X
Bing Xie, 489
Boyi Xie, 95

Chunli Xie, 625
Dianxiang Xu, 678
Haiping Xu, 153
Yinxing Xue, 705

Y
Ye Yang, 444

Zhenyu Yang, 59
Pengfei Ye, 705

Wei Ye, 503
Junwen Yin, 539
Xiaodan Yin, 203
Junbeom Yoo, 48

Nobukazu Yoshioka, 683
Huiqun Yu, 578

Chongyi Yuan, 122

Z
Mohamed A. Zaatar, 723

Ed Zaluska, 207
Vinícius Augusto Tagliatti Zani, 590

Reng Zeng, 115, 308
Du Zhang, 137

Hongyu Zhang, 432
Lei Zhang, 758, 776
Shikun Zhang, 122

Wen Zhang, 444
Zhenyu Zhang, 203
Shi-kun Zhang, 503

Lei Zhao, 203
Wenyun Zhao, 705

Helen M. Zhou, 175
MengChu Zhou, 153

Q. Zhou, 414
Yuanlin Zhu, 666

Hankz Hankui Zhuo, 159
Werner Zirkel, 572

Avelino F. Zorzo, 258
Yanzhen Zou, 489

Alessandra Zoucas, 481

A-16 A-17

Reviewer’s Index
A

Alain Abran
Silvia Teresita Acuna

Taiseera Albalushi
Edward Allen

B
Rosa Badia

Doo-hwan Bae
Ebrahim Bagheri
Rami Bahsoon
Xiaoying Bai

Purushotham Bangalore
Benoit Baudry

Fevzi Belli
Ateet Bhalla

Alessandro Bianchi
Karun N. Biyani

C

Kai-yuan Cai
Borzoo Bonakdarpour

Jean-michel Bruel
Gerardo Canfora
Jaelson Castro

Raul Garcia Castro
Cagatay Catal
Christine Chan

Keith Chan
Kuang-nan Chang

Ned Chapin
Gerardo Antonio Castanon Avila

Shu-ching Chen
Zhenyu Chen

Yung-pin Cheng
Stelvio Cimato

Peter Clarke
Esteban Clua

Nelly Condori-fernandez
Julita Corbalan
Fabio M. Costa

Maria Francesca Costabile
Karl Cox

Jose Luis Cuadrado

Juan J. Cuadrado-gallego

D

Dilma Da Silva
Ernesto Damiani

Jose Luis De La Vara
Deepak Dhungana, Lero
Massimiliano Di Penta

Jin Song Dong
Jing Dong

Dirk Draheim
Weichang Du

Philippe Dugerdil
Hector Duran

E

Christof Ebert
Ali Ebnenasir
Raimund Ege

Magdalini Eirinaki
Faezeh Ensan

Onyeka Ezenwoye

F

Davide Falessi
Behrouz Far
Robert Feldt

Eduardo B. Fernandez
Marian Fernandez De Sevilla
Gerardo Fernandez Escribano

Scott D. Fleming
Liana Fong

Renata Fortes
Fulvio Frati

G

Jerry Gao
Kehan Gao
Felix Garcia

Ignacio Garcia Rodriguez De Guzman
Itana Gimenes

Swapna Gokhale

A-16 A-17

Wolfgang Golubski
Jeff Gray

Desmond Greer
Eric Gregoire

Christiane Gresse Von Wangenheim

H

Xudong He
Miguel Herranz

Howard Ho
Mong Fong Horng

Shihong Huang

J

Clinton Jeffery
Jason Jung

Natalia Juristo

K

Selim Kalayci
Eric Kasten

Taghi Khoshgoftaar
Nicholas Kraft

Sandeep Kulkarni
Vinay Kulkarni
Gihwon Kwon

L

Konstantin Laufer
Juan Carlos Lavariega Jarquin

Jeff Lei
Bixin Li
Ming Li
Tao Li

Chien-hung Liu
Shih-hsi Liu

Xiaodong Liu
Yan Liu
Yi Liu

Hakim Lounis
Joan Lu

Heiko Ludwig

M

Jose Carlos Maldonado
Antonio Mana

Vijay Mann
Hong Mei
Hsing Mei

Emilia Mendes
Ali Mili

Alok Mishra
Ana M. Moreno

N

Antonio Navidad Pineda
Kia Ng

Ngoc Thanh Nguyen
Allen Nikora

P

Kunal Patel
Eric Pardede

Antonio Piccinno
Alfonso Pierantonio

Q

Zhou Qiang

R

Rick Rabiser
Lukasz Radlinski

Damith C. Rajapakse,
Rajeev Raje

Jose Angel Ramos
Marek Reformat
Robert Reynolds
Daniel Rodriguez

Ivan Rodero

S

Samira Sadaoui
Masoud Sadjadi
Ramon Sagarna

Claudio Sant’Anna
Salvatore Alessandro Sarcia

A-18 A-19

Douglas Schmidt
Andreas Schoenberger

Naeem (jim) Seliya
Tony Shan

Yi-dong Shen
Michael Shin

Yang Qiu Song
George Spanoudakis

Gerson Sunye

T

Jeff Tian
Peter Troger

Genny Tortora
Mark Trakhtenbrot

T.h. Tse

V

Giorgio Valle
Michael Vanhilst
Sylvain Vauttier
Silvia Vergilio
Akshat Verma
Arndt Von Staa

W

Huanjing Wang
Limin Wang

Hironori Washizaki
Victor Winter
Guido Wirtz

Franz Wotawa

X

Haiping Xu

Y

Jijiang Yan
Chi-lu Yang
Hongji Yang
Junbeom Yoo

Huiqun Yu

Z

Cui Zhang
Du Zhang
Jing Zhang

Min-ling Zhang
Yong Zhang

Zhenyu Zhang
Hong Zhu

Xingquan Zhu
Eugenio Zimeo

A-18 A-19

Poster/Demo Presenter’s Index
A

Antônio Juarez Alencar, A-7
Bruno Apolloni, A-3

C

Juan Carlos Cuevas-Tello, A-5

F

Cristiane Selem Ferreira Neves, A-7

Jose Antonio Flores-Saucedo, A-5

G

Malek Ghenima, A-9
Henda Ben Ghezala, A-9

H

Kasper Hallenborg, A-1
Azza Harbaoui, A-9

P

Hector Gerardo Perez-Gonzalez, A-5
Fábio Protti, A-7

S

Eber Assiz Schmitz, A-7
Sahbi Sidhom, A-9

V

Giorgio Valle, A-3
Miriam Vázquez-Escalante, A-5

The Twenty-Fourth International Conference on Software Engineering and
Knowledge Engineering (SEKE 2012) will be held at the Hotel Sofitel, Redwood
City, California, USA, July 1-3, 2012.

The conference aims at bringing together experts in software engineering and
knowledge engineering to discuss on relevant results in either software engineering
or knowledge engineering or both. Special emphasis will be put on the transference
of methods between both domains. Submission of papers and demos are both
welcome.

TOPICS
Agent architectures, ontologies, languages and protocols
Multi-agent systems
Agent-based learning and knowledge discovery
Interface agents
Agent-based auctions and marketplaces
Artificial life and societies
Secure mobile and multi-agent systems
Mobile agents
Mobile Commerce Technology and Application Systems
Mobile Systems

Autonomic computing
Adaptive Systems
Integrity, Security, and Fault Tolerance
Reliability
Enterprise Software, Middleware, and Tools
Process and Workflow Management
E-Commerce Solutions and Applications
Industry System Experience and Report

Service-centric software engineering
Service oriented requirements engineering
Service oriented architectures
Middleware for service based systems
Service discovery and composition
Quality of services
Service level agreements (drafting, negotiation, monitoring and management)
Runtime service management
Semantic web

Requirements Engineering
Agent-based software engineering
Artificial Intelligence Approaches to Software Engineering
Component-Based Software Engineering
Automated Software Specification
Automated Software Design and Synthesis
Computer-Supported Cooperative Work
Embedded and Ubiquitous Software Engineering
Measurement and Empirical Software Engineering
Reverse Engineering
Programming Languages and Software Engineering
Patterns and Frameworks
Reflection and Metadata Approaches
Program Understanding

Knowledge Acquisition
Knowledge-Based and Expert Systems
Knowledge Representation and Retrieval
Knowledge Engineering Tools and Techniques
Time and Knowledge Management Tools
Knowledge Visualization
Data visualization
Uncertainty Knowledge Management
Ontologies and Methodologies
Learning Software Organization

Tutoring, Documentation Systems
Human-Computer Interaction
Multimedia Applications, Frameworks, and Systems
Multimedia and Hypermedia Software Engineering

Smart Spaces
Pervasive Computing
Swarm intelligence
Soft Computing

Software Architecture
Software Assurance
Software Domain Modeling and Meta-Modeling
Software dependability
Software economics
Software Engineering Decision Support
Software Engineering Tools and Environments
Software Maintenance and Evolution
Software Process Modeling
Software product lines
Software Quality
Software Reuse
Software Safety
Software Security
Software Engineering Case Study and Experience Reports

Web and text mining
Web-Based Tools, Applications and Environment
Web-Based Knowledge Management
Web-Based Tools, Systems, and Environments
Web and Data Mining

CONFERENCE SITE (HOTEL INFORMATION)
The SEKE 2012 Conference will be held at the Hotel Sofitel, Redwood City,
California, USA. The hotel has made available for these limited dates (6/29 -
7/5/2012) to SEKE 2012 attendees a discount rate of USD$85 for single/double,
not including sales tax.

INFORMATION FOR AUTHORS
Papers must be written in English. An electronic version (Postscript, PDF, or MS
Word format) of the full paper should be submitted using the following
URL: http://conf.ksi.edu/seke2012/submit/SubmitPaper.php.
Please use Internet Explorer as the browser. Manuscript must include a 200-
word abstract and no more than 6 pages of 2-column formatted Manuscript for
Conference Proceedings (include figures and references but exclude copyright
form).

INFORMATION FOR REVIEWERS
Papers submitted to SEKE 2012 will be reviewed electronically. The users
(webmaster, program chair, reviewers...) can login using the following
URL: http://conf.ksi.edu/seke2012/review/pass.php.
If you have any questions or run into problems, please send e-mail to:
E-mail: seke12@ksi.edu.

SEKE 2012 Conference Secretariat
Knowledge Systems Institute
3420 Main Street
Skokie, IL 60076 USA
Tel: 847-679-3135
Fax: 847-679-3166
E-mail: seke12@ksi.edu

IMPORTANT DATES
March 1, 2012 Paper submission due
April 20, 2012 Notification of acceptance
May 10, 2012 Early registration deadline
May 10, 2012 Camera-ready copy

SEKE 2012 Call For Papers
The Twenty-Fourth International Conference on

Software Engineering and Knowledge Engineering
www.ksi.edu/seke/seke12.html

Hotel Sofitel, Redwood City, San Francisco Bay, USA
July 1 - July 3, 2012

Organized by

Knowledge Systems Institute Graduate School

SEKE
2011

Proceedings of the
Twenty-Third
International Conference on
Software Engineering &
Knowledge Engineering

Miami, July 7-9

Copyright © 2011
Printed by
Knowledge Systems Institute
3420 Main Street
Skokie, Illinois 60076
(847) 679-3135
info@ksi.edu
www.ksi.edu
Printed in USA, 2011
ISBN 1-891706-29-2 (paper)

